prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np import random from tqdm import tqdm from collections import defaultdict import os from sklearn.cluster import KMeans os.environ['JOBLIB_TEMP_FOLDER'] = '/tmp' # default runs out of space for parallel processing class TaskGenerator(object): def __init__(self, num_samples_per_class, args): self.num_samples_per_class = num_samples_per_class self.args = args def make_unsupervised_dataset(self, data, partition, true_labels): """ Make unsupervised dataset associating the predicted labels to the corresponding images, sampling the fixed number of elements per class and ordering data per labels """ new_labels = [-1] * len(data) for idx, cluster in enumerate(list(partition.values())): if len(cluster) > self.num_samples_per_class: cluster = sorted(random.sample(cluster, self.num_samples_per_class)) for img in cluster: new_labels[img] = list(partition.keys())[idx] empty_indices = np.argwhere(np.asarray(new_labels) == -1).flatten() new_data = np.delete(data, empty_indices, axis=0) new_true_labels =
np.delete(true_labels, empty_indices, axis=0)
numpy.delete
import warnings import numpy as np from cosymlib.tools import element_mass def get_mass(symbols): mass_vector = [] for symbol in symbols: try: mass_vector.append(element_mass(symbol)) except KeyError as e: warnings.warn('Atomic mass of element {} not found, using 1 u'.format(e)) mass_vector.append(1.0) return mass_vector def get_center_mass(symbols, coordinates): mass_vector = get_mass(symbols) cbye = [
np.dot(mass_vector[i], coordinates[i])
numpy.dot
from typing import Any from typing import Tuple from typing import List from typing import Union from typing import Sequence from typing import Optional from typing_extensions import Annotated from nptyping import NDArray from dataclasses import dataclass from dataclasses import astuple from numpy import asarray from numpy import float64 from numpy import zeros_like from scipy.sparse import diags from compas.numerical import connectivity_matrix from .result import Result @dataclass class FDNumericalData: """Stores numerical data used by the force density algorithms.""" free: int fixed: int xyz: NDArray[(Any, 3), float64] C: NDArray[(Any, Any), int] q: NDArray[(Any, 1), float64] Q: NDArray[(Any, Any), float64] p: NDArray[(Any, 1), float64] A: NDArray[(Any, Any), float64] Ai: NDArray[(Any, Any), float64] Af: NDArray[(Any, Any), float64] forces: NDArray[(Any, 1), float64] = None lengths: NDArray[(Any, 1), float64] = None residuals: NDArray[(Any, 3), float64] = None tangent_residuals: NDArray[(Any, 3), float64] = None normal_residuals: NDArray[(Any, 1), float64] = None def __iter__(self): return iter(astuple(self)) @classmethod def from_params(cls, vertices: Union[Sequence[Annotated[List[float], 3]], NDArray[(Any, 3), float64]], fixed: List[int], edges: List[Tuple[int, int]], forcedensities: List[float], loads: Optional[Union[Sequence[Annotated[List[float], 3]], NDArray[(Any, 3), float64]]] = None): """Construct numerical arrays from force density solver input parameters.""" free = list(set(range(len(vertices))) - set(fixed)) xyz =
asarray(vertices, dtype=float64)
numpy.asarray
''' Define optical components for gtrace. ''' #{{{ Import modules import numpy as np pi = np.pi array = np.array sqrt = np.lib.scimath.sqrt from numpy.linalg import norm from traits.api import HasTraits, Int, Float, CFloat, CArray, List, Str import gtrace.optics as optics import gtrace.optics.geometric from .unit import * import copy import gtrace.draw as draw #}}} #{{{ Author and License Infomation #Copyright (c) 2011-2021, <NAME> # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. __author__ = "<NAME>" __copyright__ = "Copyright 2011-2021, Yoichi Aso" __credits__ = ["Yoichi Aso"] __license__ = "BSD" __version__ = "0.2.1" __maintainer__ = "<NAME>" __email__ = "yo<EMAIL>" __status__ = "Beta" #}}} #{{{ Generic Optics Class class Optics(HasTraits): ''' A general optics class from which other specific optics classes are derived. Attributes ---------- name : str Name of the optics. center : array Center position of the optics. array of shape(2,). rotationAngle : float This angle defines the orientation of the optics. ''' name = Str() center = CArray(dtype=np.float64, shape=(2,)) rotationAngle = CFloat(0.0) #in rad #{{{ isHit(beam) def isHit(beam): ''' A function to see if a beam hits this optics or not. Parameters ---------- beam : gtrace.beam.GaussianBeam A GaussianBeam object to be interacted by the optics. Returns ------- Dict The return value is a dictionary with the following keys: ``isHit, position, distance, face`` ``isHit``: This is a boolean to answer whether the beam hit the optics or not. ``position``: A numpy array containing the coordinate values of the intersection point between the beam and the optics. If isHit is False, this parameter does not mean anything. ``distance`` The distance between the beam origin and the intersection point. ``face``: An optional string identifying which face of the optics was hit. For example, ``face`` can be either "HR" or "AR" for a mirror. ``face`` can also be "side", meaning that the beam hits a side of the optics, which is not meant to be used, e.g. the side of a mirror. In this case, the beam have reached a dead end. ''' #This is an abstract function return {'isHit': False, 'position': np.array((0,0)), 'distance': 0.0, 'face':''} #}}} #{{{ hit(beam, order=0, threshold=0.0): def hit(beam, order=0, threshold=0.0): ''' A function to hit the optics with a beam. This function attempts to hit the optics with the source beam, ``beam``. Parameters ---------- beam : gtrace.beam.GaussianBeam A GaussianBeam object to be interacted by the optics. order : int, optional An integer to specify how many times the internal reflections are computed. Defaults 0. threshold : float, optional The power threshold for internal reflection calculation. If the power of an auxiliary beam falls below this threshold, further propagation of this beam will not be performed. Defaults 0.0. Returns ------- {boolean, dict, str} ``(isHit, beamDict, face)`` ``isHit`` This is a boolean to answer whether the beam hit the optics or not. ``beamDict`` A dictionary containing resultant beams. ``face``: An optional string identifying which face of the optics was hit. For a mirror, ``face`` is any of "HR", "AR" or "side". ''' #This is an abstract function return {False, {}, "side"} # Is this a bug? Shouldn't it be a tuple? #}}} #{{{ _isHitSurface_() def _isHitSurface_(self, beam, surface_center, normal_vector, surface_size=1.0, inv_ROC=0.0): ''' Determine if a beam hit a surface Parameters ---------- beam : gtrace.beam.GaussianBeam A GaussianBeam object to be interacted by the optics. Returns ------- ans : dict A dictionary with the following keys: "isHit": A boolean value whether the beam hit the surface or not. "Intersection Point": numpy array of the coordinates of the intersection point. "distance": Distance between the origin of the beam and the intersection point. "localNormVect": A numpy array representing the normal vector of the surface at the intersection point. "localNormAngle": The angle of the localNormVect. ''' if np.abs(inv_ROC) < 1e-5: ans = optics.geometric.line_plane_intersection(pos=beam.pos, dirVect=beam.dirVect, plane_center=surface_center, normalVector=normal_vector, diameter=surface_size) localNormVect = normal_vector localNormAngle = np.mod(np.arctan2(localNormVect[1], localNormVect[0]), 2*pi) ans['localNormVect'] = localNormVect ans['localNormAngle'] = localNormAngle return ans else: ans = optics.geometric.line_arc_intersection(pos=beam.pos, dirVect=beam.dirVect, chord_center=surface_center, chordNormVect=normal_vector, invROC=inv_ROC, diameter=surface_size) return ans #}}} #}}} #{{{ Mirror Class class Mirror(Optics): ''' Representing a partial reflective mirror. Attributes ---------- curve_direction : str Either 'h' or 'v'. If it is 'h' the mirror is curved in horizontal plane. If 'v', it is vertical. HRcenter : array The position of the center of the arc of the HR surface. shape(2,). HRcenterC : array The position of the center of the chord of the HR surface. shape(2,). normVectHR : array Normal vector of the HR surface. shape(2,) normAngleHR : float Angle of the HR normal vector. In radians. ARcenter : array The position of the center of the AR surface. shape(2,) normVectAR : array Normal vector of the HR surface. shape(2,) normAngleAR : float Angle of the HR normal vector. In radians. HRtransmissive : boolean A boolean value defaults to False. If True, this mirror is supposed to transmit beams on the HR surface. Therefore, for the first encounter of a beam on the HR surface of this mirror will not increase the stray_order. This flag should be set to True for beam splitters and input test masses. term_on_HR : boolean If this is True, a beam with stray_order <= self.term_on_HR_order will be terminated when it hits on HR. This is to avoid the inifinite loop of non-sequencial trace by forming a cavity. term_on_HR_order : int Integer to specify the upper limit of the stray order used to judge whether to terminate the non sequential trace or not on HR reflection. ''' #{{{ Traits definitions HRcenter = CArray(dtype=np.float64, shape=(2,)) HRcenterC = CArray(dtype=np.float64, shape=(2,)) sagHR = CFloat() normVectHR = CArray(dtype=np.float64, shape=(2,)) normAngleHR = CFloat() ARcenter = CArray(dtype=np.float64, shape=(2,)) ARcenterC = CArray(dtype=np.float64, shape=(2,)) sagAR = CFloat() normVectAR = CArray(dtype=np.float64, shape=(2,)) normAngleAR = CFloat() diameter = CFloat(25.0*cm) # ARdiameter = CFloat() thickness = CFloat(15.0*cm) # wedgeAngle = CFloat(0.25*pi/180) # in rad n = CFloat(1.45) #Index of refraction inv_ROC_HR = CFloat(1.0/7000.0) #Inverse of the ROC of the HR surface. inv_ROC_AR = CFloat(0.0) #Inverse of the ROC of the AR surface. Refl_HR = CFloat(99.0) #Power reflectivity of the HR side. Trans_HR = CFloat(1.0) #Power transmittance of the HR side. Refl_AR = CFloat(0.01) #Power reflectivity of the AR side. Trans_AR = CFloat(99.99) #Power transmittance of the HR side. #}}} #{{{ __init__ def __init__(self, HRcenter=[0.0,0.0], normAngleHR=0.0, normVectHR=None, diameter=25.0*cm, thickness=15.0*cm, wedgeAngle=0.25*pi/180., inv_ROC_HR=1.0/7000.0, inv_ROC_AR=0.0, Refl_HR=0.99, Trans_HR=0.01, Refl_AR=0.01, Trans_AR=0.99, n=1.45, name="Mirror", HRtransmissive=False, term_on_HR=False): ''' Create a mirror object. Parameters ---------- HRcenter : array, optional Position of the center of the HR surface. Defaults [0.0, 0.0]. normAngleHR : float, optional Direction angle of the normal vector of the HR surface. In radians. Defaults 0.0. normVectHR : arrary or None, optional Normal vector of the HR surface. Should be an array of shape(2,). Defaults None. diameter : float, optional Diameter of the mirror. Defaults 25.0*cm. thickness : float, optional Thickness of the mirror. Defaults 15.0*cm. wedgeAngle : float, optional Wedge angle between the HR and AR surfaces. In radians. Defaults 0.25*pi/180. inv_ROC_HR : float, optional 1/ROC of the HR surface. Defaults 1.0/7000.0. inv_ROC_AR : float, optional 1/ROC of the AR surface. Defaults 0.0. Refl_HR : float, optional Power reflectivity of the HR surface. Defaults 0.99. Trans_HR : float, optional Power transmissivity of the HR surface. Defaults 0.01. Refl_AR : float, optional Power reflectivity of the AR surface. Defaults 0.01. Trans_AR : float, optional Power transmissivity of the AR surface. Defaults 0.99. n : float, optional Index of refraction. Defaults 1.45. name : str, optional Name of the mirror. Defaults "Mirror". HRtransmissive : boolean, optional If True, this mirror is supposed to transmit beams on the HR surface. Therefore, for the first encounter of a beam on the HR surface of this mirror will not increase the stray_order. This flag should be set to True for beam splitters and input test masses. Defaults False term_on_HR : boolean, optional If this is True, a beam with stray_order <= self.term_on_HR_order will be terminated when it hits on HR. This is to avoid the inifinite loop of non-sequencial trace by forming a cavity. Defaults False. ''' self.diameter = diameter #Compute the sag. #Sag is positive for convex mirror. if np.abs(inv_ROC_HR) > 1./(10*km): R = 1./inv_ROC_HR r = self.diameter/2 self.sagHR = - np.sign(R)*(np.abs(R) - np.sqrt(R**2 - r**2)) else: self.sagHR = 0.0; #Convert rotationAngle to normVectHR or vice versa. if normVectHR is not None: self.normVectHR = normVectHR else: self.normAngleHR = normAngleHR self.HRcenter = HRcenter self._HRcenter_changed(0,0) self.thickness = thickness self.wedgeAngle = wedgeAngle self.ARdiameter = self.diameter/np.cos(self.wedgeAngle) self.inv_ROC_HR = inv_ROC_HR self.inv_ROC_AR = inv_ROC_AR self.Refl_HR = Refl_HR self.Trans_HR = Trans_HR self.Refl_AR = Refl_AR self.Trans_AR = Trans_AR self.n = n self._normAngleHR_changed(0,0) self.name = name self.HRtransmissive = HRtransmissive self.term_on_HR = term_on_HR self.term_on_HR_order = 0 #}}} #{{{ copy def copy(self): return Mirror(HRcenter=self.HRcenter, normAngleHR=self.normAngleHR, diameter=self.diameter, thickness=self.thickness, wedgeAngle=self.wedgeAngle, inv_ROC_HR=self.inv_ROC_HR, inv_ROC_AR=self.inv_ROC_AR, Refl_HR=self.Refl_HR, Trans_HR=self.Trans_HR, Refl_AR=self.Refl_AR, Trans_AR=self.Trans_AR, n=self.n, name=self.name, HRtransmissive=self.HRtransmissive, term_on_HR=self.term_on_HR) #}}} #{{{ get_side_info def get_side_info(self): ''' Return information on the sides of the mirror. Returned value is a list of two tuples like [(center1, normVect1, length1), (center2, normVect2, length2)] Each tuple corresponds to a side. center1 is the coordinates of the center of the side line. normVect1 is the normal vector of the side line. length1 is the length of the side line. Returns ------- [(float, float, float), (float, float, float)] ''' r = self.diameter/2 v1h = np.array([self.thickness/2, r]) v1a = np.array([-self.thickness/2 - r*np.tan(self.wedgeAngle), r]) v1h = optics.geometric.vector_rotation_2D(v1h, self.normAngleHR) + self.center v1a = optics.geometric.vector_rotation_2D(v1a, self.normAngleHR) + self.center center1 = (v1h + v1a)/2 vn1 = optics.geometric.vector_rotation_2D(v1h - v1a, pi/2) normVect1 = vn1/np.linalg.norm(vn1) length1 = np.linalg.norm(v1h - v1a) v2h = np.array([self.thickness/2, -r]) v2a = np.array([-self.thickness/2 + r*np.tan(self.wedgeAngle), -r]) v2h = optics.geometric.vector_rotation_2D(v2h, self.normAngleHR) + self.center v2a = optics.geometric.vector_rotation_2D(v2a, self.normAngleHR) + self.center center2 = (v2h + v2a)/2 vn2 = optics.geometric.vector_rotation_2D(v2h - v2a, -pi/2) normVect2 = vn2/np.linalg.norm(vn2) length2 = np.linalg.norm(v2h - v2a) return [(center1, normVect1, length1), (center2, normVect2, length2)] #}}} #{{{ rotate def rotate(self, angle, center=False): ''' Rotate the mirror. If center is not specified, the center of rotation is HRcenter. If center is given (as a vector), the center of rotation is center. center is a position vector in the global coordinates. Parameters ---------- angle : float Angle of rotation. center: array or boolean, optional Center of rotation, or False. ''' if center: center = np.array(center) pointer = self.HRcenter - center pointer = optics.geometric.vector_rotation_2D(pointer, angle) self.HRcenter = center + pointer self.normAngleHR = self.normAngleHR + angle #}}} #{{{ Translate def translate(self, trVect): trVect = np.array(trVect) self.center = self.center + trVect #}}} #{{{ Draw def draw(self, cv, drawName=False): ''' Draw itself ''' plVect = optics.geometric.vector_rotation_2D(self.normVectHR, pi/2) p1 = self.HRcenterC + plVect * self.diameter/2 p2 = p1 - plVect * self.diameter p3 = p2 - self.normVectHR * (self.thickness - np.tan(self.wedgeAngle)*self.diameter/2) p4 = p1 - self.normVectHR * (self.thickness + np.tan(self.wedgeAngle)*self.diameter/2) cv.add_shape(draw.Line(p2,p3), layername="Mirrors") cv.add_shape(draw.Line(p4,p1), layername="Mirrors") d = self.thickness/10 l1 = p1 - self.normVectHR * d l2 = p2 - self.normVectHR * d cv.add_shape(draw.Line(l1,l2), layername="Mirrors") #Draw Curved surface #HR if np.abs(self.inv_ROC_HR) > 1.0/1e5: R = 1/self.inv_ROC_HR theta = np.arcsin(self.diameter/2/R) sag = R*(1-np.cos(theta)) x =
np.linspace(0, self.diameter/2, 30)
numpy.linspace
import copy import numpy as np import torch class Memory: def __init__(self, memory_size, nb_total_classes, rehearsal, fixed=True): self.memory_size = memory_size self.nb_total_classes = nb_total_classes self.rehearsal = rehearsal self.fixed = fixed self.x = self.y = self.t = None self.nb_classes = 0 @property def memory_per_class(self): if self.fixed: return self.memory_size // self.nb_total_classes return self.memory_size // self.nb_classes if self.nb_classes > 0 else self.memory_size def get_dataset(self, base_dataset): dataset = copy.deepcopy(base_dataset) dataset._x = self.x dataset._y = self.y dataset._t = self.t return dataset def get(self): return self.x, self.y, self.t def __len__(self): return len(self.x) if self.x is not None else 0 def save(self, path): np.savez( path, x=self.x, y=self.y, t=self.t ) def load(self, path): data = np.load(path) self.x = data["x"] self.y = data["y"] self.t = data["t"] assert len(self) <= self.memory_size, len(self) self.nb_classes = len(np.unique(self.y)) def reduce(self): x, y, t = [], [], [] for class_id in np.unique(self.y): indexes = np.where(self.y == class_id)[0] x.append(self.x[indexes[:self.memory_per_class]]) y.append(self.y[indexes[:self.memory_per_class]]) t.append(self.t[indexes[:self.memory_per_class]]) self.x = np.concatenate(x) self.y = np.concatenate(y) self.t = np.concatenate(t) def add(self, dataset, model, nb_new_classes): self.nb_classes += nb_new_classes x, y, t = herd_samples(dataset, model, self.memory_per_class, self.rehearsal) #assert len(y) == self.memory_per_class * nb_new_classes, (len(y), self.memory_per_class, nb_new_classes) if self.x is None: self.x, self.y, self.t = x, y, t else: if not self.fixed: self.reduce() self.x = np.concatenate((self.x, x)) self.y =
np.concatenate((self.y, y))
numpy.concatenate
## # Copyright: Copyright (c) MOSEK ApS, Denmark. All rights reserved. # # File: total_variation.py # # Purpose: Demonstrates how to solve a total # variation problem using the Fusion API. ## import sys import mosek from mosek.fusion import * import numpy as np def total_var(n,m,f,sigma): with Model('TV') as M: u= M.variable( [n+1,m+1], Domain.inRange(0.,1.0) ) t= M.variable( [n,m], Domain.unbounded() ) ucore= u.slice( [0,0], [n,m] ) deltax= Expr.sub( u.slice( [1,0], [n+1,m] ), ucore) deltay= Expr.sub( u.slice( [0,1], [n,m+1] ), ucore) M.constraint( Expr.stack(2, t, deltax, deltay), Domain.inQCone().axis(2) ) fmat = Matrix.dense(n,m,f) M.constraint( Expr.vstack(sigma, Expr.flatten( Expr.sub( fmat, ucore ) ) ), Domain.inQCone() ) M.objective( ObjectiveSense.Minimize, Expr.sum(t) ) M.setLogHandler(sys.stdout) M.solve() return ucore.level() #Display def show(n,m,grid): try: import matplotlib matplotlib.use('Agg') #Remove to go interactive import matplotlib.pyplot as plt import matplotlib.cm as cm plt.imshow(
np.reshape(grid, (n,m))
numpy.reshape
import numpy as np import pandas as pd import GPy, GPyOpt from sklearn.model_selection import train_test_split from sklearn.metrics import brier_score_loss as brier_score from sklearn.metrics import accuracy_score, f1_score from scipy.sparse import load_npz from stuff.models import NBSVM, simpleNBSVM from stuff.tools import tfidf_to_counts from stuff.metrics import binary_diagnostics # Importing the data filedir = 'C:/data/addm/' seeds = np.array(pd.read_csv(filedir + 'seeds.csv')).flatten() corpus = pd.read_csv(filedir + 'corpus_with_lemmas_clean.csv') doctermat = load_npz(filedir + 'doctermat.npz') # Setting the features and targets X = tfidf_to_counts(np.array(doctermat.todense(), dtype=np.uint16)) y = np.array(corpus.aucaseyn, dtype=np.uint8) n_range = range(corpus.shape[0]) # Toggle for the optimization loop optimize = False opt_iter = 30 if optimize: # Regular function for hyperparameter evaluation def evaluate_hps(beta, C): mod = NBSVM(C=C, beta=beta) mod.fit(X[train], y[train]) guesses = mod.predict(X[val]).flatten() final_score = 1 - accuracy_score(y[val], guesses) params = np.array([beta, C]) print('Params were ' + str(params)) print('Error was ' + str(final_score) + '\n') return final_score # Bounds for the GP optimizer bounds = [{'name': 'beta', 'type': 'continuous', 'domain': (0.8, 1.0)}, {'name': 'C', 'type': 'discrete', 'domain': (0.001, 0.01, 1.0, 2, 2**2)} ] # Function for GPyOpt to optimize def f(x): print(x) eval = evaluate_hps(beta=float(x[:, 0]), C=float(x[:, 1])) return eval # Running the optimization train, val = train_test_split(n_range, test_size=0.3, stratify=y, random_state=10221983) opt_mod = GPyOpt.methods.BayesianOptimization(f=f, num_cores=20, domain=bounds, initial_design_numdata=5) opt_mod.run_optimization(opt_iter) best = opt_mod.x_opt # Saving the best parameters to CSV pd.Series(best).to_csv(filedir + 'models/best_nbsvm_params.csv', index=False) # Running the splits stats = pd.DataFrame(
np.zeros([10, 15])
numpy.zeros
import csv import sys import os import numpy as np import torch import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator import pandas as pd import traceback def get_csv_data(csv_file, labels, space_separated=False): data, all_labels = get_csv_data_and_labels(csv_file, space_separated=space_separated) # # Uncomment to print the labels # print(csv_file) # for label in all_labels: # print(label) # print('***\n'*3) n_data = data.shape[0] new_data = np.zeros((len(labels), n_data)) for ll, name in enumerate(labels): if name in all_labels: idx = all_labels.index(name) try: new_data[ll, :] = data[:, idx] except Exception: print(traceback.format_exc()) print("Error with data in %s" % csv_file) sys.exit(1) else: raise ValueError("Label '%s' not available in file '%s'" % (name, csv_file)) return new_data def get_csv_data_and_labels(csv_file, space_separated=False): # Read from CSV file try: if space_separated: series = pd.read_csv(csv_file, delim_whitespace=True) else: series = pd.read_csv(csv_file) except Exception: print(traceback.format_exc()) print("Error reading %s" % csv_file) sys.exit(1) data = series.values labels = list(series) return data, labels def plot_intentions_eval_returns(csv_file, block=False, num_intentions=None): if num_intentions is None: num_intentions = 0 # else: # num_intentions += 1 labels = list() # Add Intentional-Unintentional Label label = 'Test Returns Mean' for uu in range(num_intentions): new_string = label + (' [%02d]' % uu) labels.append(new_string) # Assuming the Main does not have a prefix labels.append(label) data = get_csv_data(csv_file, labels) fig, axs = subplots(num_intentions + 1) if not isinstance(axs, np.ndarray): axs = np.array([axs]) fig.subplots_adjust(hspace=0) fig.suptitle('Average Return', fontweight='bold') for aa, ax in enumerate(axs): ax.plot(data[aa]) ax.set_ylabel(labels[aa]) plt.setp(ax.get_xticklabels(), visible=False) axs[-1].set_xlabel('Episodes') plt.setp(axs[-1].get_xticklabels(), visible=True) print('total_iters:', len(data[-1])) plt.show(block=block) def plot_intentions_info(csv_file, num_intentions=None, block=False): infos_to_plot = [ 'Alpha', 'Entropy', ] adim = get_max_action_idx(csv_file, "Mean Action ") + 1 for ii in range(adim): infos_to_plot.append('Std Action %02d' % ii) # for ii in range(adim): # infos_to_plot.append('Mean Action %02d' % ii) for info in infos_to_plot: plot_intention_info(csv_file, info, plot_label=None, per_action=False, num_intentions=num_intentions, block=block) def plot_intention_info(csv_file, csv_label, plot_label=None, per_action=False, num_intentions=None, block=False): if num_intentions is None: num_intentions = 0 if plot_label is None: plot_label = csv_label # Add Intentional-Unintentional Label csv_labels = [] plot_labels = [] for uu in range(num_intentions): csv_labels.append(csv_label + (' [U-%02d]' % uu)) plot_labels.append(plot_label + (' [U-%02d]' % uu)) # Assuming the Main does not have a prefix csv_labels.append(csv_label) plot_labels.append(plot_label) data = get_csv_data(csv_file, csv_labels) if per_action: subplots_shape = (num_intentions + 1) else: subplots_shape = (num_intentions + 1) fig, axs = subplots(subplots_shape) if not isinstance(axs, np.ndarray): axs = np.array([axs]) fig.subplots_adjust(hspace=0) fig.suptitle(csv_label, fontweight='bold') for aa, ax in enumerate(axs): ax.plot(data[aa]) ax.set_ylabel(plot_labels[aa]) plt.setp(ax.get_xticklabels(), visible=False) axs[-1].set_xlabel('Episodes') plt.setp(axs[-1].get_xticklabels(), visible=True) plt.show(block=block) def plot_contours(ax, x_tensor, y_tensor, values): contours = ax.contour(x_tensor, y_tensor, values, 20, colors='dimgray') ax.clabel(contours, inline=1, fontsize=10, fmt='%.0f') ax.imshow(values, extent=(x_tensor.min(), x_tensor.max(), y_tensor.min(), y_tensor.max()), origin='lower', alpha=0.5) def plot_q_values(qf, action_lower, action_higher, obs, policy=None, obs_dims=(0, 1), action_dims=(0, 1), delta=0.01, device='cpu'): # Values Plots num_intentions = 2 action_dim_x = action_dims[0] action_dim_y = action_dims[1] obs_dim_x = obs_dims[0] obs_dim_y = obs_dims[1] x_min = action_lower[action_dim_x] y_min = action_lower[action_dim_y] x_max = action_higher[action_dim_x] y_max = action_higher[action_dim_y] action_dim = len(action_lower) all_x = torch.arange(float(x_min), float(x_max), float(delta)) all_y = torch.arange(float(y_min), float(y_max), float(delta)) x_mesh, y_mesh = torch.meshgrid(all_x, all_y) x_mesh = x_mesh.t() y_mesh = y_mesh.t() all_acts = torch.stack((x_mesh, y_mesh), dim=-1) fig, all_axs = \ subplots(1, num_intentions + 1, gridspec_kw={'wspace': 0, 'hspace': 0}, ) # fig.suptitle('Q-val Observation: ' + str(ob)) fig.tight_layout() fig.canvas.set_window_title('q_vals_%1d_%1d' % (obs[obs_dim_x], obs[obs_dim_y])) all_axs =
np.atleast_1d(all_axs)
numpy.atleast_1d
#!/usr/bin/env python import numpy as np from numpy import linalg as LA from collections import Counter class CoulombDescriptor: def __init__(self, descriptor): self.descriptor = descriptor def ConstructDescriptor(self, InputMat, mat_Z = None): if self.descriptor == 'Coulomb2Eigval': return self.Coulomb2Eigval(InputMat) elif self.descriptor == 'XYZnuc2CoulombMat': return self.XYZnuc2CoulombMat(InputMat, mat_Z) elif self.descriptor == 'BagOfAtoms': Z_i = self.getNuclearCharges(InputMat) Atoms = self.CountAtoms(Z_i) Diag = self.Coulomb2Diagonal(InputMat) BoA = self.Diagonal2BoA(Diag, Z_i, Atoms) return BoA elif self.descriptor == 'BagOfBonds': Z_i = self.getNuclearCharges(InputMat) ZiZj = self.getOffdiagonal(Z_i) Bonds = self.CountBonds(ZiZj) BoB = self.Coulomb2BoB(InputMat, ZiZj, Bonds) return BoB elif self.descriptor == 'BagOfAtomsBonds': Z_i = self.getNuclearCharges(InputMat) Atoms = self.CountAtoms(Z_i) Diag = self.Coulomb2Diagonal(InputMat) BoA = self.Diagonal2BoA(Diag, Z_i, Atoms) ZiZj = self.getOffdiagonal(Z_i) Bonds = self.CountBonds(ZiZj) BoB = self.Coulomb2BoB(InputMat, ZiZj, Bonds) return np.concatenate((BoA, BoB), axis = 1) def get_CoulombMat(self, atom_xs, Zmat): m = len(Zmat) Cmat =
np.zeros((m,m))
numpy.zeros
import tensorflow as tf from tensorflow import keras import numpy as np import random import cv2 class Agent: ACTION_SPACE = [(0, 0.1), (-1, 0.1), (1, 0.1)] def __init__(self): # -- Basic settings related to the environment -- self.num_actions = 3 # -- TD trainer options -- self.learning_rate = 0.0001 # learning rate self.momentum = 0.8 # momentum self.batch_size = 4 # batch size self.decay = 0.00001 # learning rate decay # -- other options -- self.gamma = 0.9 # future discount for reward self.epsilon = 0.20 # epsilon during training self.epsilon_decay = 0.99 self.min_epsilon = 0.05 self.start_learn_threshold = 20 # minimum number of examples in replay memory before learning self.experience_size = 1000 # size of replay memory self.learning_steps_burnin = 20 # number of random actions the agent takes before learning self.learning_steps_total = 10000 # number of training iterations # -- Buffered model -- self._model = self._build_model() # -- Replay memory -- self._memory = [[] for _ in range(self.experience_size)] # -- Agent counter self.step = 0 # loss record self.loss_rec = [] def _build_model(self): model = keras.Sequential() model.add(keras.layers.InputLayer(input_shape=(60, 240, 1))) model.add(keras.layers.Conv2D(8, (3, 3), padding='same')) model.add(keras.layers.Activation('relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), padding='valid')) model.add(keras.layers.Dropout(0.25)) model.add(keras.layers.Conv2D(16, (3, 3), padding='same')) model.add(keras.layers.Activation('relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), padding='valid')) model.add(keras.layers.Dropout(0.25)) model.add(keras.layers.Conv2D(32, (3, 3), padding='same')) model.add(keras.layers.Activation('relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), padding='valid')) model.add(keras.layers.Dropout(0.25)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(32)) model.add(keras.layers.Activation('relu')) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(self.num_actions, activation='linear')) model.compile(loss='mean_squared_error', optimizer=keras.optimizers.Adam(lr=self.learning_rate, decay=self.decay)) model.summary() return model def _forward(self, state): prediction = self._model.predict(state) return prediction def _backward(self, state, target, epochs=1): history = self._model.fit(state, target, epochs=epochs, verbose=0) self.loss_rec.append(history.history['loss'][-1]) if self.step % 1000 == 0: np.save('./_out/online_loss.npy', self.loss_rec) return history.history['loss'][-1] def _remember(self, state, action, reward, next_state, debug=False): index = self.step % self.experience_size self._memory[index] = (state, action, reward, next_state) if debug: mean, stdv = [120.9934, 18.8303] state = (state * stdv) + mean state = state.astype(int) cv2.imwrite('./_debug/{0:0>5}-{1}-{2}.png'.format(self.step, action, reward), state) # cv2.imwrite('./_debug/' + str(self.step) + '_' + str(action) + '_' + str(reward) + '.png', state) # cv2.imwrite('./_debug/' + str(self.step) + '_next' + '.png', next_state) def learn(self, state, action, reward, next_state): self._remember(state, action, reward, next_state) if self.step >= self.start_learn_threshold: minibatch = random.sample(self._memory[0:self.step], self.batch_size) states = np.array([dp[0] for dp in minibatch]) actions = np.array([dp[1] for dp in minibatch]) rewards = np.array([dp[2] for dp in minibatch]) next_states = np.array([dp[3] for dp in minibatch]) q_hats = self._forward(next_states) td_targets = rewards + self.gamma * np.amax(q_hats) predictions = self._forward(states) for i in range(len(predictions)): predictions[i][actions[i]] = td_targets[i] self._backward(states, predictions) self.step += 1 def act(self, state): self.epsilon = np.max([self.epsilon * self.epsilon_decay, self.min_epsilon]) if self.step < self.learning_steps_burnin or np.random.rand() < self.epsilon: return random.randint(0, self.num_actions - 1) else: act_values = self._forward(np.array([state])) print(act_values) return np.argmax(act_values) def act_greedy(self, state): """ Always act based on the output of NN """ act_values = self._forward(np.array([state])) print('Greedy: {}'.format(act_values)) return np.argmax(act_values) def act_with_guidence(self, state, cte): self.epsilon = np.max([self.epsilon * self.epsilon_decay, self.min_epsilon]) if self.step < self.learning_steps_burnin or np.random.rand() < self.epsilon: print('guiding') if abs(cte) < 1.5: return 0 elif cte > 0: return 1 else: return 2 else: act_values = self._forward(np.array([state])) print(act_values) return np.argmax(act_values) def get_reward(self, cte): if abs(cte) >= 2.5: return -100 else: return 1 def load(self, name): self._model.load_weights(name) def save(self, name): self._model.save_weights(name) def save_memory(self, name): width, height = 240, 60 serialized = [] for index, m in enumerate(self._memory): print(m[0].shape) s_state = np.reshape(m[0], [width * height]) s_next_state = np.reshape(m[3], [width * height]) serialized.append(np.concatenate([s_state, [m[1]], [m[2]], s_next_state])) serialized = np.array(serialized) print('saved memory successfully') np.save(name, serialized) def read_memory(self, name): width, height = 240, 60 l = width * height serialized =
np.load(name)
numpy.load
# from .image_extractor import extract_features import numpy as np from PIL import Image, ImageDraw, ImageColor import consistent_points as cp import transformations_models as tm import ransac def extract_files(file_path): file = open(file_path, 'r') coordinates = [] features = [] counter = 0 for line in file: if counter >= 2: elements = line.split(' ') coordinates.append(np.array(elements[0:2], dtype=np.float)) features.append(np.array(elements[5:], dtype=np.int)) counter += 1 file.close() return np.array(coordinates), np.array(features) def find_key_points(image1_features, image2_features): image1_neighbours = np.array(list(map(lambda image1_feature: cp.find_nearest_neighbours(image1_feature, image2_features)[0], image1_features))) image2_neighbours = np.array(list(map(lambda image2_feature: cp.find_nearest_neighbours(image2_feature, image1_features)[0], image2_features))) enumerated = list(enumerate(image1_neighbours)) # (index, neighbour_index) indexes = np.array(list(filter(lambda img1_neighbour_index: img1_neighbour_index[0] == image2_neighbours[img1_neighbour_index[1]], enumerated))) return np.array([image1_features[indexes[:, 0]], image2_features[indexes[:, 1]]]), indexes def draw_lines(coordinates_img1, coordinates_img2, A = None, color='red'): img1 = Image.open(first_image_path) img2 = Image.open(second_image_path) # img2 = img2.transform(img1.size, Image.AFFINE, A[0:2].flatten()) concat = Image.fromarray(np.hstack((np.array(img1), np.array(img2)))) d = ImageDraw.Draw(concat) for i in range(0, len(coordinates_img2)): d.line([coordinates_img1[i][0], coordinates_img1[i][1], coordinates_img2[i][0] + img1.size[0], coordinates_img2[i][1]], fill=ImageColor.getrgb(color)) del d concat.show() def error_fn(pairs, transformed_pairs, min_inliners): res = np.linalg.norm(pairs - transformed_pairs, axis=1) return np.nonzero(res <= min_inliners)[0] def transformation_fn(points, transformation_params): A = tm.affine_transformation(transformation_params) return A, (A @ np.insert(points.transpose(), 2, 0, axis=0))[0:2].transpose() first_image_path = '../files/extracted/img3.png' second_image_path = '../files/extracted/img2.png' if __name__ == '__main__': coordinates_image1, features_image1 = extract_files(first_image_path + '.haraff.sift') coordinates_image2, features_image2 = extract_files(second_image_path + '.haraff.sift') # swap elements to prevent IndexError # always image1 will be the one with more points if coordinates_image1.size < coordinates_image2.size: temp = coordinates_image1, features_image1 coordinates_image1, features_image1 = coordinates_image2, features_image2 coordinates_image2, features_image2 = temp temp = first_image_path first_image_path = second_image_path second_image_path = temp key_points_features, key_points_indexes = find_key_points(features_image1, features_image2) key_points_coordinates = np.array([ coordinates_image1[key_points_indexes[:, 0]], coordinates_image2[key_points_indexes[:, 1]]]) # draw before algorithms draw_lines( key_points_coordinates[0], key_points_coordinates[1], color='blue' ) number_of_neighbours = int(15 * np.ceil(key_points_coordinates.shape[1] / 100)) # 5% of all key points min_compability = int(
np.ceil(40 / 100 * number_of_neighbours)
numpy.ceil
import matplotlib.pyplot as plt import numpy as np import pandas as pd # Deep Recurrent Reinforcement Learning: 1 capa LSTM y 4 capas Dense, Funcion de activacion tanh, 12 episodes, 50 iteraciones drnnLSTMtanhMakespan0=[799, 798, 799, 799, 805, 806, 799, 805, 805, 800, 798, 798] drnnLSTMtanhMakespan1=[800, 798, 796, 800, 796, 794, 795, 798, 800, 798, 805, 798] drnnLSTMtanhMakespan2=[796, 800, 798, 804, 800, 798, 798, 798, 800, 800, 802, 797] drnnLSTMtanhMakespan3=[805, 800, 800, 803, 794, 802, 800, 798, 799, 804, 799, 806] drnnLSTMtanhMakespan4=[796, 798, 795, 798, 796, 799, 800, 796, 796, 798, 806, 800] drnnLSTMtanhMakespan5=[798, 798, 799, 800, 800, 808, 798, 798, 801, 796, 799, 798] drnnLSTMtanhMakespan6=[800, 796, 805, 798, 798, 796, 799, 800, 803, 800, 798, 800] drnnLSTMtanhMakespan7=[799, 805, 802, 805, 800, 799, 800, 799, 805, 800, 794, 796] drnnLSTMtanhMakespan8=[799, 798, 800, 798, 798, 800, 800, 800, 804, 799, 800, 804] drnnLSTMtanhMakespan9=[795, 800, 795, 796, 798, 796, 797, 800, 797, 798, 796, 795] drnnLSTMtanhMakespan10=[804, 799, 805, 798, 798, 798, 805, 800, 796, 804, 796, 799] drnnLSTMtanhMakespan11=[795, 803, 805, 798, 795, 801, 798, 798, 804, 803, 799, 804] drnnLSTMtanhMakespan12=[798, 798, 799, 800, 798, 798, 799, 799, 801, 796, 799, 798] drnnLSTMtanhMakespan13=[798, 798, 799, 797, 796, 796, 800, 797, 805, 800, 800, 794] drnnLSTMtanhMakespan14=[800, 798, 798, 796, 800, 800, 798, 798, 802, 798, 802, 798] drnnLSTMtanhMakespan15=[796, 796, 800, 801, 800, 800, 796, 794, 796, 800, 796, 798] drnnLSTMtanhMakespan16=[798, 798, 795, 797, 795, 799, 800, 796, 795, 796, 800, 800] drnnLSTMtanhMakespan17=[794, 795, 800, 798, 795, 796, 798, 796, 795, 794, 798, 796] drnnLSTMtanhMakespan18=[797, 795, 794, 794, 800, 796, 796, 795, 798, 795, 798, 794] drnnLSTMtanhMakespan19=[797, 795, 795, 796, 798, 799, 795, 799, 795, 794, 795, 795] drnnLSTMtanhMakespan20=[796, 794, 798, 797, 798, 799, 795, 795, 797, 795, 795, 792] drnnLSTMtanhMakespan21=[797, 795, 797, 793, 794, 794, 800, 794, 798, 795, 797, 795] drnnLSTMtanhMakespan22=[794, 800, 798, 795, 795, 796, 796, 799, 795, 794, 795, 795] drnnLSTMtanhMakespan23=[795, 795, 794, 795, 794, 794, 797, 799, 796, 794, 794, 795] drnnLSTMtanhMakespan24=[798, 795, 795, 795, 792, 794, 795, 794, 794, 795, 795, 795] drnnLSTMtanhMakespan25=[794, 792, 794, 795, 795, 794, 794, 794, 794, 795, 794, 793] drnnLSTMtanhMakespan26=[794, 794, 795, 796, 798, 795, 794, 794, 794, 794, 795, 794] drnnLSTMtanhMakespan27=[795, 794, 795, 795, 795, 794, 794, 794, 794, 794, 795, 795] drnnLSTMtanhMakespan28=[795, 794, 794, 795, 794, 795, 795, 795, 795, 794, 795, 794] drnnLSTMtanhMakespan29=[792, 794, 795, 794, 794, 795, 794, 793, 795, 794, 795, 792] drnnLSTMtanhMakespan30=[795, 794, 795, 795, 794, 794, 794, 795, 794, 794, 794, 794] drnnLSTMtanhMakespan31=[794, 794, 795, 794, 795, 793, 795, 795, 795, 792, 794, 794] drnnLSTMtanhMakespan32=[795, 795, 794, 793, 795, 795, 795, 795, 794, 794, 795, 794] drnnLSTMtanhMakespan33=[793, 794, 795, 793, 792, 795, 794, 794, 794, 794, 794, 795] drnnLSTMtanhMakespan34=[794, 795, 795, 794, 794, 794, 794, 793, 794, 794, 794, 794] drnnLSTMtanhMakespan35=[794, 794, 797, 793, 792, 794, 793, 794, 795, 794, 795, 792] drnnLSTMtanhMakespan36=[794, 794, 793, 794, 795, 797, 795, 795, 794, 795, 793, 794] drnnLSTMtanhMakespan37=[795, 793, 795, 794, 795, 798, 795, 794, 795, 793, 795, 794] drnnLSTMtanhMakespan38=[794, 795, 793, 795, 794, 794, 794, 794, 794, 794, 797, 795] drnnLSTMtanhMakespan39=[794, 794, 795, 794, 795, 795, 794, 795, 794, 795, 798, 797] drnnLSTMtanhMakespan40=[795, 795, 794, 795, 794, 795, 795, 794, 794, 794, 795, 795] drnnLSTMtanhMakespan41=[794, 795, 792, 794, 794, 798, 795, 794, 794, 794, 793, 795] drnnLSTMtanhMakespan42=[793, 795, 794, 793, 794, 794, 792, 794, 795, 794, 794, 793] drnnLSTMtanhMakespan43=[793, 792, 793, 794, 794, 795, 792, 794, 795, 794, 795, 794] drnnLSTMtanhMakespan44=[793, 794, 795, 795, 794, 794, 795, 798, 794, 792, 795, 794] drnnLSTMtanhMakespan45=[795, 794, 794, 794, 794, 792, 794, 795, 794, 796, 795, 794] drnnLSTMtanhMakespan46=[794, 793, 793, 795, 795, 794, 794, 794, 794, 796, 794, 794] drnnLSTMtanhMakespan47=[794, 794, 795, 794, 794, 795, 792, 795, 794, 795, 795, 794] drnnLSTMtanhMakespan48=[794, 795, 794, 794, 794, 792, 794, 795, 796, 794, 794, 795] drnnLSTMtanhMakespan49=[794, 794, 794, 794, 794, 794, 792, 794, 793, 794, 795, 794] drnnLSTMtanhRewards0=[-0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17725973169122497, -0.1759911894273128, -0.177078750549934, -0.177078750549934, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnLSTMtanhRewards1=[-0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765] drnnLSTMtanhRewards2=[-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.1768976897689769, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17653532907770195, -0.17562802996914942] drnnLSTMtanhRewards3=[-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17671654929577466, -0.17508269018743108, -0.17653532907770195, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.1768976897689769, -0.1759911894273128, -0.17725973169122497] drnnLSTMtanhRewards4=[-0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17725973169122497, -0.17617264919621228] drnnLSTMtanhRewards5=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.1776214552648934, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drnnLSTMtanhRewards6=[-0.17617264919621228, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17671654929577466, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228] drnnLSTMtanhRewards7=[-0.1759911894273128, -0.177078750549934, -0.17653532907770195, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387] drnnLSTMtanhRewards8=[-0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1759911894273128, -0.17617264919621228, -0.1768976897689769] drnnLSTMtanhRewards9=[-0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026] drnnLSTMtanhRewards10=[-0.1768976897689769, -0.1759911894273128, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17544633017412387, -0.1759911894273128] drnnLSTMtanhRewards11=[-0.17526455026455026, -0.17671654929577466, -0.177078750549934, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17580964970257765, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.1759911894273128, -0.1768976897689769] drnnLSTMtanhRewards12=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1763540290620872, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drnnLSTMtanhRewards13=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108] drnnLSTMtanhRewards14=[-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765] drnnLSTMtanhRewards15=[-0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.1763540290620872, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drnnLSTMtanhRewards16=[-0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17617264919621228] drnnLSTMtanhRewards17=[-0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387] drnnLSTMtanhRewards18=[-0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108] drnnLSTMtanhRewards19=[-0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards20=[-0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards21=[-0.17562802996914942, -0.17526455026455026, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026] drnnLSTMtanhRewards22=[-0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards23=[-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.1759911894273128, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards24=[-0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards25=[-0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221] drnnLSTMtanhRewards26=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards27=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards28=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards29=[-0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards30=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards31=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards32=[-0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards33=[-0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards34=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards35=[-0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224] drnnLSTMtanhRewards36=[-0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108] drnnLSTMtanhRewards37=[-0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards38=[-0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drnnLSTMtanhRewards39=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942] drnnLSTMtanhRewards40=[-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMtanhRewards41=[-0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026] drnnLSTMtanhRewards42=[-0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221] drnnLSTMtanhRewards43=[-0.1749007498897221, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards44=[-0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards45=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards46=[-0.17508269018743108, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMtanhRewards47=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMtanhRewards48=[-0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drnnLSTMtanhRewards49=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] # Deep Recurrent Reinforcement Learning: 1 capa LSTM y 4 capas Dense, Funcion de activacion relu, 12 episodes, 50 iteraciones drnnLSTMreluMakespan0=[805, 800, 800, 800, 794, 800, 798, 809, 795, 800, 798, 798] drnnLSTMreluMakespan1=[798, 798, 796, 799, 800, 796, 796, 798, 798, 794, 798, 800] drnnLSTMreluMakespan2=[805, 805, 798, 799, 806, 799, 806, 799, 800, 798, 805, 795] drnnLSTMreluMakespan3=[800, 800, 800, 796, 800, 800, 799, 806, 808, 798, 797, 798] drnnLSTMreluMakespan4=[805, 805, 795, 796, 799, 804, 798, 794, 798, 794, 796, 810] drnnLSTMreluMakespan5=[798, 798, 798, 795, 800, 798, 796, 802, 800, 800, 805, 801] drnnLSTMreluMakespan6=[800, 798, 798, 795, 800, 796, 800, 798, 799, 796, 805, 800] drnnLSTMreluMakespan7=[800, 800, 800, 799, 798, 798, 800, 805, 800, 799, 800, 801] drnnLSTMreluMakespan8=[799, 800, 800, 799, 795, 795, 805, 795, 798, 800, 798, 800] drnnLSTMreluMakespan9=[800, 796, 805, 798, 798, 795, 805, 800, 799, 795, 800, 805] drnnLSTMreluMakespan10=[805, 798, 805, 800, 801, 805, 799, 805, 798, 800, 800, 798] drnnLSTMreluMakespan11=[798, 803, 800, 797, 795, 796, 794, 799, 800, 800, 800, 796] drnnLSTMreluMakespan12=[799, 798, 799, 795, 798, 795, 798, 798, 798, 795, 798, 798] drnnLSTMreluMakespan13=[798, 798, 799, 796, 798, 796, 800, 799, 796, 794, 796, 795] drnnLSTMreluMakespan14=[796, 798, 806, 799, 804, 798, 805, 798, 800, 805, 794, 800] drnnLSTMreluMakespan15=[806, 795, 800, 796, 798, 796, 810, 798, 799, 798, 800, 800] drnnLSTMreluMakespan16=[799, 796, 798, 798, 798, 800, 798, 810, 796, 805, 800, 795] drnnLSTMreluMakespan17=[798, 798, 798, 794, 798, 805, 801, 798, 800, 799, 798, 798] drnnLSTMreluMakespan18=[795, 800, 794, 798, 797, 798, 794, 800, 797, 796, 794, 794] drnnLSTMreluMakespan19=[798, 802, 794, 798, 799, 795, 797, 795, 800, 796, 797, 796] drnnLSTMreluMakespan20=[794, 797, 795, 794, 799, 795, 795, 795, 800, 797, 794, 798] drnnLSTMreluMakespan21=[799, 798, 796, 795, 794, 798, 795, 795, 798, 798, 795, 794] drnnLSTMreluMakespan22=[794, 794, 795, 797, 795, 795, 795, 792, 794, 795, 794, 794] drnnLSTMreluMakespan23=[794, 794, 794, 794, 795, 796, 793, 794, 795, 794, 797, 795] drnnLSTMreluMakespan24=[794, 792, 792, 794, 796, 792, 794, 795, 794, 792, 796, 795] drnnLSTMreluMakespan25=[794, 795, 795, 794, 794, 792, 795, 792, 795, 794, 794, 794] drnnLSTMreluMakespan26=[795, 794, 794, 795, 794, 794, 793, 794, 797, 795, 794, 795] drnnLSTMreluMakespan27=[794, 794, 795, 796, 795, 797, 794, 794, 795, 801, 794, 795] drnnLSTMreluMakespan28=[795, 795, 795, 795, 794, 792, 794, 797, 794, 795, 795, 795] drnnLSTMreluMakespan29=[794, 792, 798, 794, 797, 795, 793, 795, 795, 794, 795, 795] drnnLSTMreluMakespan30=[795, 794, 798, 794, 794, 795, 792, 796, 794, 796, 794, 794] drnnLSTMreluMakespan31=[794, 795, 795, 794, 795, 794, 795, 795, 794, 794, 795, 795] drnnLSTMreluMakespan32=[798, 794, 794, 794, 798, 792, 795, 795, 795, 796, 794, 795] drnnLSTMreluMakespan33=[794, 796, 794, 794, 794, 795, 794, 794, 797, 793, 793, 795] drnnLSTMreluMakespan34=[794, 794, 795, 794, 794, 793, 794, 795, 793, 795, 795, 794] drnnLSTMreluMakespan35=[798, 796, 795, 794, 795, 795, 795, 795, 794, 795, 797, 795] drnnLSTMreluMakespan36=[794, 796, 794, 794, 794, 794, 795, 795, 797, 796, 795, 795] drnnLSTMreluMakespan37=[795, 794, 796, 795, 795, 795, 795, 794, 792, 797, 794, 793] drnnLSTMreluMakespan38=[794, 798, 794, 792, 794, 792, 795, 797, 793, 794, 794, 797] drnnLSTMreluMakespan39=[792, 794, 794, 794, 792, 795, 795, 795, 794, 794, 795, 794] drnnLSTMreluMakespan40=[792, 795, 795, 792, 795, 795, 794, 795, 794, 795, 794, 795] drnnLSTMreluMakespan41=[794, 797, 795, 794, 795, 795, 798, 794, 795, 796, 796, 794] drnnLSTMreluMakespan42=[794, 795, 795, 795, 794, 795, 795, 794, 794, 795, 793, 795] drnnLSTMreluMakespan43=[795, 794, 795, 794, 795, 795, 792, 794, 794, 795, 794, 795] drnnLSTMreluMakespan44=[795, 794, 792, 795, 794, 794, 795, 794, 796, 795, 796, 794] drnnLSTMreluMakespan45=[795, 794, 793, 794, 793, 795, 794, 794, 795, 794, 795, 794] drnnLSTMreluMakespan46=[794, 796, 793, 794, 794, 795, 799, 795, 794, 794, 794, 794] drnnLSTMreluMakespan47=[794, 794, 794, 794, 795, 793, 795, 795, 794, 795, 795, 795] drnnLSTMreluMakespan48=[794, 794, 795, 794, 795, 795, 795, 794, 794, 795, 795, 794] drnnLSTMreluMakespan49=[795, 795, 795, 794, 795, 795, 794, 795, 793, 793, 792, 792] drnnLSTMreluRewards0=[-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.1778021978021978, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards1=[-0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17617264919621228] drnnLSTMreluRewards2=[-0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17725973169122497, -0.1759911894273128, -0.17725973169122497, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.177078750549934, -0.17526455026455026] drnnLSTMreluRewards3=[-0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17725973169122497, -0.1776214552648934, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765] drnnLSTMreluRewards4=[-0.177078750549934, -0.177078750549934, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.1768976897689769, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.17798286090969018] drnnLSTMreluRewards5=[-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17653532907770195, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.1763540290620872] drnnLSTMreluRewards6=[-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.177078750549934, -0.17617264919621228] drnnLSTMreluRewards7=[-0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.1763540290620872] drnnLSTMreluRewards8=[-0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.177078750549934, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228] drnnLSTMreluRewards9=[-0.17617264919621228, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17526455026455026, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17617264919621228, -0.177078750549934] drnnLSTMreluRewards10=[-0.177078750549934, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drnnLSTMreluRewards11=[-0.17580964970257765, -0.17671654929577466, -0.17617264919621228, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387] drnnLSTMreluRewards12=[-0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards13=[-0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.1759911894273128, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnLSTMreluRewards14=[-0.17544633017412387, -0.17580964970257765, -0.17725973169122497, -0.1759911894273128, -0.1768976897689769, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17508269018743108, -0.17617264919621228] drnnLSTMreluRewards15=[-0.17725973169122497, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17798286090969018, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnLSTMreluRewards16=[-0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17798286090969018, -0.17544633017412387, -0.177078750549934, -0.17617264919621228, -0.17526455026455026] drnnLSTMreluRewards17=[-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.177078750549934, -0.1763540290620872, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drnnLSTMreluRewards18=[-0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17562802996914942, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards19=[-0.17580964970257765, -0.17653532907770195, -0.17508269018743108, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387] drnnLSTMreluRewards20=[-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17562802996914942, -0.17508269018743108, -0.17580964970257765] drnnLSTMreluRewards21=[-0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards22=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards23=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drnnLSTMreluRewards24=[-0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17508269018743108, -0.17544633017412387, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17544633017412387, -0.17526455026455026] drnnLSTMreluRewards25=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards26=[-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards27=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1763540290620872, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards28=[-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards29=[-0.17508269018743108, -0.17471872931833224, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards30=[-0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards31=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards32=[-0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards33=[-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026] drnnLSTMreluRewards34=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards35=[-0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026] drnnLSTMreluRewards36=[-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards37=[-0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17562802996914942, -0.17508269018743108, -0.1749007498897221] drnnLSTMreluRewards38=[-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942] drnnLSTMreluRewards39=[-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards40=[-0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards41=[-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17508269018743108] drnnLSTMreluRewards42=[-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026] drnnLSTMreluRewards43=[-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drnnLSTMreluRewards44=[-0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drnnLSTMreluRewards45=[-0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards46=[-0.17508269018743108, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnLSTMreluRewards47=[-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drnnLSTMreluRewards48=[-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drnnLSTMreluRewards49=[-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.1749007498897221, -0.17471872931833224, -0.17471872931833224] # Deep Recurrent Reinforcement Learning: 1 capa GRU y 4 capas Dense, Funcion de activacion tanh, 12 episodes, 50 iteraciones drnnGRUtanhMakespan0 = [798, 799, 798, 804, 805, 799, 801, 801, 801, 799, 798, 796] drnnGRUtanhMakespan1 = [800, 798, 798, 798, 798, 798, 801, 798, 795, 796, 800, 796] drnnGRUtanhMakespan2 = [795, 804, 805, 800, 800, 796, 804, 800, 795, 798, 798, 801] drnnGRUtanhMakespan3 = [806, 796, 794, 797, 798, 800, 800, 808, 805, 798, 800, 809] drnnGRUtanhMakespan4 = [805, 801, 795, 798, 798, 800, 796, 796, 805, 798, 799, 798] drnnGRUtanhMakespan5 = [804, 799, 798, 804, 796, 799, 798, 805, 796, 805, 798, 800] drnnGRUtanhMakespan6 = [800, 799, 794, 801, 799, 796, 800, 804, 797, 796, 800, 798] drnnGRUtanhMakespan7 = [798, 800, 810, 810, 805, 800, 795, 798, 800, 805, 799, 800] drnnGRUtanhMakespan8 = [798, 797, 800, 800, 804, 805, 798, 798, 801, 795, 798, 809] drnnGRUtanhMakespan9 = [803, 800, 800, 805, 805, 798, 804, 803, 805, 801, 810, 801] drnnGRUtanhMakespan10 = [798, 799, 798, 798, 805, 804, 805, 798, 799, 798, 800, 800] drnnGRUtanhMakespan11 = [796, 795, 805, 800, 800, 798, 795, 804, 805, 798, 800, 800] drnnGRUtanhMakespan12 = [799, 799, 809, 800, 799, 799, 797, 805, 799, 800, 798, 795] drnnGRUtanhMakespan13 = [805, 800, 800, 805, 800, 799, 798, 801, 798, 797, 805, 800] drnnGRUtanhMakespan14 = [800, 798, 800, 800, 800, 804, 804, 799, 799, 800, 798, 798] drnnGRUtanhMakespan15 = [805, 800, 795, 800, 804, 795, 800, 798, 799, 798, 800, 796] drnnGRUtanhMakespan16 = [806, 795, 801, 799, 799, 796, 796, 794, 802, 796, 800, 802] drnnGRUtanhMakespan17 = [796, 800, 798, 800, 794, 800, 804, 805, 798, 810, 800, 798] drnnGRUtanhMakespan18 = [798, 800, 794, 794, 797, 798, 800, 805, 798, 798, 804, 798] drnnGRUtanhMakespan19 = [796, 800, 806, 799, 796, 800, 798, 805, 798, 799, 797, 805] drnnGRUtanhMakespan20 = [805, 800, 799, 796, 805, 805, 805, 794, 809, 796, 800, 797] drnnGRUtanhMakespan21 = [798, 800, 800, 800, 798, 801, 796, 801, 801, 801, 795, 799] drnnGRUtanhMakespan22 = [798, 801, 797, 800, 799, 795, 799, 799, 800, 801, 800, 799] drnnGRUtanhMakespan23 = [800, 798, 799, 805, 794, 800, 798, 796, 796, 804, 800, 794] drnnGRUtanhMakespan24 = [800, 800, 798, 805, 804, 799, 798, 801, 800, 798, 798, 798] drnnGRUtanhMakespan25 = [798, 798, 798, 795, 800, 803, 798, 798, 800, 799, 796, 798] drnnGRUtanhMakespan26 = [796, 798, 798, 798, 805, 796, 798, 798, 805, 795, 801, 796] drnnGRUtanhMakespan27 = [794, 796, 796, 800, 800, 798, 800, 798, 802, 798, 797, 798] drnnGRUtanhMakespan28 = [799, 799, 800, 800, 798, 802, 799, 798, 795, 795, 794, 798] drnnGRUtanhMakespan29 = [798, 796, 796, 797, 796, 798, 800, 800, 796, 798, 800, 795] drnnGRUtanhMakespan30 = [799, 798, 795, 795, 800, 795, 798, 798, 799, 798, 805, 799] drnnGRUtanhMakespan31 = [795, 799, 794, 794, 796, 795, 795, 794, 798, 797, 798, 795] drnnGRUtanhMakespan32 = [797, 798, 795, 796, 798, 795, 797, 798, 795, 794, 795, 796] drnnGRUtanhMakespan33 = [799, 795, 794, 794, 798, 795, 798, 797, 800, 796, 795, 794] drnnGRUtanhMakespan34 = [798, 795, 798, 796, 798, 794, 796, 798, 798, 798, 796, 797] drnnGRUtanhMakespan35 = [795, 798, 796, 798, 794, 801, 795, 800, 795, 800, 794, 800] drnnGRUtanhMakespan36 = [798, 799, 796, 797, 795, 794, 800, 795, 795, 794, 795, 795] drnnGRUtanhMakespan37 = [799, 798, 795, 795, 794, 795, 795, 796, 805, 795, 798, 796] drnnGRUtanhMakespan38 = [798, 794, 795, 795, 795, 796, 795, 796, 800, 798, 797, 796] drnnGRUtanhMakespan39 = [794, 795, 795, 797, 795, 795, 794, 794, 798, 795, 794, 798] drnnGRUtanhMakespan40 = [795, 795, 795, 795, 795, 795, 794, 794, 793, 797, 794, 795] drnnGRUtanhMakespan41 = [794, 794, 795, 793, 795, 795, 792, 794, 795, 794, 794, 794] drnnGRUtanhMakespan42 = [795, 795, 795, 796, 794, 797, 795, 795, 792, 795, 796, 793] drnnGRUtanhMakespan43 = [794, 795, 795, 794, 795, 794, 798, 794, 797, 795, 794, 794] drnnGRUtanhMakespan44 = [795, 795, 793, 794, 795, 794, 795, 795, 794, 794, 795, 794] drnnGRUtanhMakespan45 = [794, 794, 794, 794, 794, 794, 795, 794, 794, 794, 796, 795] drnnGRUtanhMakespan46 = [795, 794, 795, 794, 794, 794, 793, 794, 795, 795, 794, 797] drnnGRUtanhMakespan47 = [794, 794, 794, 794, 795, 794, 795, 792, 794, 795, 794, 794] drnnGRUtanhMakespan48 = [795, 794, 794, 794, 795, 798, 794, 794, 794, 795, 794, 794] drnnGRUtanhMakespan49 = [795, 795, 794, 795, 793, 795, 796, 794, 795, 794, 794, 797] drnnGRUtanhRewards0 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.1768976897689769, -0.177078750549934, -0.1759911894273128, -0.1763540290620872, -0.1763540290620872, -0.1763540290620872, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387] drnnGRUtanhRewards1 = [-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17544633017412387] drnnGRUtanhRewards2 = [-0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872] drnnGRUtanhRewards3 = [-0.17725973169122497, -0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.1776214552648934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.1778021978021978] drnnGRUtanhRewards4 = [-0.177078750549934, -0.1763540290620872, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUtanhRewards5 = [-0.1768976897689769, -0.1759911894273128, -0.17580964970257765, -0.1768976897689769, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17617264919621228] drnnGRUtanhRewards6 = [-0.17617264919621228, -0.1759911894273128, -0.17508269018743108, -0.1763540290620872, -0.1759911894273128, -0.17544633017412387, -0.17617264919621228, -0.1768976897689769, -0.17562802996914942, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765] drnnGRUtanhRewards7 = [-0.17580964970257765, -0.17617264919621228, -0.17798286090969018, -0.177078750549934, -0.17798286090969018, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17617264919621228] drnnGRUtanhRewards8 = [-0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17580964970257765, -0.1778021978021978] drnnGRUtanhRewards9 = [-0.17671654929577466, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.177078750549934, -0.1763540290620872, -0.17798286090969018, -0.1763540290620872] drnnGRUtanhRewards10 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnGRUtanhRewards11 = [-0.17544633017412387, -0.17526455026455026, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228] drnnGRUtanhRewards12 = [-0.1759911894273128, -0.1759911894273128, -0.1778021978021978, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17562802996914942, -0.177078750549934, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026] drnnGRUtanhRewards13 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17562802996914942, -0.177078750549934, -0.17617264919621228] drnnGRUtanhRewards14 = [-0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1768976897689769, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765] drnnGRUtanhRewards15 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17526455026455026, -0.1768976897689769, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387] drnnGRUtanhRewards16 = [-0.17725973169122497, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17508269018743108, -0.17653532907770195, -0.17544633017412387, -0.17617264919621228, -0.17653532907770195] drnnGRUtanhRewards17 = [-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.1768976897689769, -0.177078750549934, -0.17580964970257765, -0.17798286090969018, -0.17617264919621228, -0.17580964970257765] drnnGRUtanhRewards18 = [-0.17580964970257765, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.1768976897689769, -0.17580964970257765] drnnGRUtanhRewards19 = [-0.17544633017412387, -0.17617264919621228, -0.17725973169122497, -0.1759911894273128, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17562802996914942, -0.1759911894273128, -0.177078750549934] drnnGRUtanhRewards20 = [-0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17544633017412387, -0.177078750549934, -0.177078750549934, -0.177078750549934, -0.17508269018743108, -0.1778021978021978, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942] drnnGRUtanhRewards21 = [-0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.17544633017412387, -0.1763540290620872, -0.1763540290620872, -0.1763540290620872, -0.17526455026455026, -0.1759911894273128] drnnGRUtanhRewards22 = [-0.17580964970257765, -0.1763540290620872, -0.17562802996914942, -0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.1763540290620872, -0.17617264919621228, -0.1759911894273128] drnnGRUtanhRewards23 = [-0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17508269018743108] drnnGRUtanhRewards24 = [-0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.177078750549934, -0.1768976897689769, -0.17580964970257765, -0.1763540290620872, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765] drnnGRUtanhRewards25 = [-0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.17671654929577466, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765] drnnGRUtanhRewards26 = [-0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17526455026455026, -0.1763540290620872, -0.17544633017412387] drnnGRUtanhRewards27 = [-0.17508269018743108, -0.17544633017412387, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765] drnnGRUtanhRewards28 = [-0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17653532907770195, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drnnGRUtanhRewards29 = [-0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026] drnnGRUtanhRewards30 = [-0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.1759911894273128] drnnGRUtanhRewards31 = [-0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026] drnnGRUtanhRewards32 = [-0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnGRUtanhRewards33 = [-0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drnnGRUtanhRewards34 = [-0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942] drnnGRUtanhRewards35 = [-0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.1763540290620872, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228] drnnGRUtanhRewards36 = [-0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drnnGRUtanhRewards37 = [-0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.177078750549934, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drnnGRUtanhRewards38 = [-0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17562802996914942, -0.17544633017412387] drnnGRUtanhRewards39 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765] drnnGRUtanhRewards40 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026] drnnGRUtanhRewards41 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards42 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17544633017412387, -0.1749007498897221] drnnGRUtanhRewards43 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards44 = [-0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drnnGRUtanhRewards45 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drnnGRUtanhRewards46 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942] drnnGRUtanhRewards47 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards48 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drnnGRUtanhRewards49 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942] # Deep Recurrent Reinforcement Learning: 1 capa GRU y 4 capas Dense, Funcion de activacion relu, 12 episodes, 50 iteraciones drnnGRUreluMakespan0 = [800, 799, 798, 797, 798, 800, 800, 796, 800, 794, 800, 800] drnnGRUreluMakespan1 = [798, 800, 805, 795, 799, 808, 795, 800, 796, 798, 799, 798] drnnGRUreluMakespan2 = [799, 800, 806, 800, 800, 805, 805, 798, 799, 807, 800, 800] drnnGRUreluMakespan3 = [798, 795, 799, 800, 800, 796, 798, 800, 800, 804, 805, 800] drnnGRUreluMakespan4 = [811, 800, 799, 800, 805, 798, 798, 799, 796, 804, 805, 804] drnnGRUreluMakespan5 = [799, 795, 797, 800, 798, 800, 800, 798, 800, 797, 800, 798] drnnGRUreluMakespan6 = [798, 800, 798, 799, 797, 798, 800, 796, 801, 799, 795, 798] drnnGRUreluMakespan7 = [800, 804, 795, 801, 796, 806, 805, 798, 800, 799, 799, 804] drnnGRUreluMakespan8 = [800, 799, 799, 800, 805, 796, 800, 800, 810, 796, 800, 798] drnnGRUreluMakespan9 = [794, 800, 799, 805, 800, 800, 798, 798, 796, 795, 798, 796] drnnGRUreluMakespan10 = [798, 800, 798, 801, 795, 802, 796, 809, 800, 800, 798, 795] drnnGRUreluMakespan11 = [804, 800, 799, 799, 798, 803, 798, 798, 805, 803, 800, 796] drnnGRUreluMakespan12 = [800, 799, 805, 797, 798, 796, 799, 794, 799, 805, 799, 800] drnnGRUreluMakespan13 = [796, 800, 798, 800, 795, 799, 800, 804, 800, 794, 805, 805] drnnGRUreluMakespan14 = [800, 795, 796, 798, 798, 801, 805, 794, 800, 801, 801, 796] drnnGRUreluMakespan15 = [798, 800, 796, 796, 798, 794, 797, 800, 796, 801, 795, 799] drnnGRUreluMakespan16 = [800, 805, 794, 800, 799, 800, 805, 801, 798, 800, 801, 799] drnnGRUreluMakespan17 = [797, 803, 801, 808, 794, 799, 799, 800, 805, 796, 801, 796] drnnGRUreluMakespan18 = [805, 800, 800, 804, 799, 798, 800, 799, 804, 796, 800, 804] drnnGRUreluMakespan19 = [804, 798, 800, 799, 799, 799, 805, 795, 801, 799, 799, 805] drnnGRUreluMakespan20 = [799, 804, 796, 798, 796, 798, 800, 805, 799, 810, 800, 800] drnnGRUreluMakespan21 = [798, 799, 799, 805, 798, 798, 805, 798, 794, 799, 798, 798] drnnGRUreluMakespan22 = [799, 798, 798, 796, 798, 805, 799, 798, 798, 799, 796, 798] drnnGRUreluMakespan23 = [798, 805, 808, 798, 798, 805, 810, 796, 804, 799, 800, 799] drnnGRUreluMakespan24 = [798, 796, 798, 795, 800, 798, 799, 798, 797, 805, 798, 800] drnnGRUreluMakespan25 = [799, 796, 799, 798, 805, 798, 798, 800, 796, 794, 810, 798] drnnGRUreluMakespan26 = [799, 798, 805, 800, 802, 798, 799, 799, 799, 794, 802, 797] drnnGRUreluMakespan27 = [798, 800, 805, 796, 798, 795, 802, 796, 798, 800, 798, 794] drnnGRUreluMakespan28 = [796, 805, 798, 800, 800, 798, 810, 798, 798, 798, 796, 796] drnnGRUreluMakespan29 = [800, 798, 798, 802, 794, 798, 796, 808, 800, 800, 798, 799] drnnGRUreluMakespan30 = [798, 796, 798, 798, 794, 798, 794, 800, 796, 794, 800, 800] drnnGRUreluMakespan31 = [794, 802, 797, 799, 798, 800, 799, 799, 796, 796, 798, 798] drnnGRUreluMakespan32 = [799, 798, 794, 795, 798, 805, 804, 797, 795, 800, 796, 798] drnnGRUreluMakespan33 = [803, 799, 805, 796, 794, 798, 797, 798, 798, 794, 794, 798] drnnGRUreluMakespan34 = [810, 796, 795, 798, 799, 798, 796, 795, 795, 797, 798, 798] drnnGRUreluMakespan35 = [799, 799, 799, 799, 795, 798, 795, 800, 796, 795, 795, 796] drnnGRUreluMakespan36 = [795, 797, 798, 799, 799, 799, 800, 794, 796, 795, 798, 800] drnnGRUreluMakespan37 = [800, 798, 799, 794, 800, 796, 798, 798, 797, 800, 794, 798] drnnGRUreluMakespan38 = [800, 799, 794, 796, 795, 800, 796, 804, 800, 795, 800, 798] drnnGRUreluMakespan39 = [794, 798, 795, 804, 805, 799, 798, 800, 796, 798, 795, 794] drnnGRUreluMakespan40 = [799, 798, 796, 798, 798, 799, 800, 796, 798, 798, 799, 798] drnnGRUreluMakespan41 = [796, 798, 800, 797, 799, 796, 797, 796, 799, 804, 805, 798] drnnGRUreluMakespan42 = [798, 794, 795, 799, 799, 798, 797, 798, 798, 798, 798, 795] drnnGRUreluMakespan43 = [799, 798, 794, 794, 795, 794, 795, 799, 799, 800, 799, 794] drnnGRUreluMakespan44 = [795, 796, 795, 799, 794, 795, 794, 796, 795, 794, 795, 796] drnnGRUreluMakespan45 = [794, 797, 794, 795, 796, 795, 794, 799, 795, 794, 798, 798] drnnGRUreluMakespan46 = [795, 795, 794, 795, 794, 794, 792, 794, 795, 797, 794, 794] drnnGRUreluMakespan47 = [798, 796, 797, 798, 794, 798, 794, 797, 794, 803, 798, 798] drnnGRUreluMakespan48 = [795, 794, 796, 798, 795, 794, 796, 795, 796, 794, 796, 796] drnnGRUreluMakespan49 = [798, 798, 796, 798, 798, 796, 796, 798, 798, 798, 796, 798] drnnGRUreluRewards0 = [-0.17617264919621228, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards1 = [-0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17526455026455026, -0.1759911894273128, -0.1776214552648934, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUreluRewards2 = [-0.1759911894273128, -0.17617264919621228, -0.17725973169122497, -0.17617264919621228, -0.17617264919621228, -0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.1759911894273128, -0.1774406332453826, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards3 = [-0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.177078750549934, -0.17617264919621228] drnnGRUreluRewards4 = [-0.1781634446397188, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.1768976897689769, -0.177078750549934, -0.1768976897689769] drnnGRUreluRewards5 = [-0.1759911894273128, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards6 = [-0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765] drnnGRUreluRewards7 = [-0.17617264919621228, -0.1768976897689769, -0.17526455026455026, -0.1763540290620872, -0.17544633017412387, -0.17725973169122497, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.1768976897689769] drnnGRUreluRewards8 = [-0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.17544633017412387, -0.17617264919621228, -0.17617264919621228, -0.17798286090969018, -0.17544633017412387, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards9 = [-0.17508269018743108, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drnnGRUreluRewards10 = [-0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.17526455026455026, -0.17653532907770195, -0.17544633017412387, -0.1778021978021978, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026] drnnGRUreluRewards11 = [-0.1768976897689769, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17580964970257765, -0.17671654929577466, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17671654929577466, -0.17617264919621228, -0.17544633017412387] drnnGRUreluRewards12 = [-0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17562802996914942, -0.17580964970257765, -0.17544633017412387, -0.1759911894273128, -0.17508269018743108, -0.1759911894273128, -0.177078750549934, -0.1759911894273128, -0.17617264919621228] drnnGRUreluRewards13 = [-0.17544633017412387, -0.17617264919621228, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.1768976897689769, -0.17617264919621228, -0.17508269018743108, -0.177078750549934, -0.177078750549934] drnnGRUreluRewards14 = [-0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.1763540290620872, -0.1763540290620872, -0.17544633017412387] drnnGRUreluRewards15 = [-0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.1763540290620872, -0.17526455026455026, -0.1759911894273128] drnnGRUreluRewards16 = [-0.17617264919621228, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.177078750549934, -0.1763540290620872, -0.17580964970257765, -0.17617264919621228, -0.1763540290620872, -0.1759911894273128] drnnGRUreluRewards17 = [-0.17562802996914942, -0.17671654929577466, -0.1763540290620872, -0.1776214552648934, -0.17508269018743108, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.177078750549934, -0.17544633017412387, -0.1763540290620872, -0.17544633017412387] drnnGRUreluRewards18 = [-0.177078750549934, -0.17617264919621228, -0.17617264919621228, -0.1768976897689769, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1768976897689769, -0.17544633017412387, -0.17617264919621228, -0.1768976897689769] drnnGRUreluRewards19 = [-0.1768976897689769, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128, -0.1759911894273128, -0.177078750549934] drnnGRUreluRewards20 = [-0.1759911894273128, -0.1768976897689769, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.1759911894273128, -0.17798286090969018, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards21 = [-0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17508269018743108, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards22 = [-0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.177078750549934, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765] drnnGRUreluRewards23 = [-0.17580964970257765, -0.177078750549934, -0.1776214552648934, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17798286090969018, -0.17544633017412387, -0.1768976897689769, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128] drnnGRUreluRewards24 = [-0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.177078750549934, -0.17580964970257765, -0.17617264919621228] drnnGRUreluRewards25 = [-0.1759911894273128, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17798286090969018, -0.17580964970257765] drnnGRUreluRewards26 = [-0.1759911894273128, -0.17580964970257765, -0.177078750549934, -0.17617264919621228, -0.17653532907770195, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17508269018743108, -0.17653532907770195, -0.17562802996914942] drnnGRUreluRewards27 = [-0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17653532907770195, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.17508269018743108] drnnGRUreluRewards28 = [-0.17544633017412387, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.17798286090969018, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387] drnnGRUreluRewards29 = [-0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.17653532907770195, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.1776214552648934, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128] drnnGRUreluRewards30 = [-0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228] drnnGRUreluRewards31 = [-0.17508269018743108, -0.17653532907770195, -0.17562802996914942, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards32 = [-0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.1768976897689769, -0.177078750549934, -0.17562802996914942, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drnnGRUreluRewards33 = [-0.17671654929577466, -0.1759911894273128, -0.177078750549934, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765] drnnGRUreluRewards34 = [-0.17798286090969018, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards35 = [-0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387] drnnGRUreluRewards36 = [-0.17526455026455026, -0.17562802996914942, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228] drnnGRUreluRewards37 = [-0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17580964970257765] drnnGRUreluRewards38 = [-0.17617264919621228, -0.1759911894273128, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.1768976897689769, -0.17617264919621228, -0.17526455026455026, -0.17617264919621228, -0.17580964970257765] drnnGRUreluRewards39 = [-0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.177078750549934, -0.1759911894273128, -0.17580964970257765, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108] drnnGRUreluRewards40 = [-0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drnnGRUreluRewards41 = [-0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.1759911894273128, -0.1768976897689769, -0.177078750549934, -0.17580964970257765] drnnGRUreluRewards42 = [-0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026] drnnGRUreluRewards43 = [-0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.1759911894273128, -0.17617264919621228, -0.1759911894273128, -0.17508269018743108] drnnGRUreluRewards44 = [-0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387] drnnGRUreluRewards45 = [-0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards46 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108] drnnGRUreluRewards47 = [-0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17671654929577466, -0.17580964970257765, -0.17580964970257765] drnnGRUreluRewards48 = [-0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387] drnnGRUreluRewards49 = [-0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765] # Deep Reinforcement Learning: 5 capas Dense, Funcion de activacion tanh, 12 episodios, 50 iteraciones drlTanhMakespan0 = [794, 794, 805, 799, 810, 800, 794, 810, 804, 806, 812, 808] drlTanhMakespan1 = [796, 795, 795, 798, 799, 800, 800, 795, 797, 796, 797, 799] drlTanhMakespan2 = [800, 797, 798, 801, 799, 800, 796, 795, 797, 796, 794, 798] drlTanhMakespan3 = [800, 795, 799, 796, 799, 798, 795, 799, 795, 799, 798, 796] drlTanhMakespan4 = [809, 795, 795, 800, 797, 795, 798, 798, 799, 799, 798, 798] drlTanhMakespan5 = [795, 795, 795, 799, 795, 798, 795, 800, 795, 796, 795, 805] drlTanhMakespan6 = [794, 800, 795, 793, 798, 795, 794, 798, 795, 799, 795, 796] drlTanhMakespan7 = [795, 795, 795, 795, 798, 795, 797, 797, 795, 795, 798, 797] drlTanhMakespan8 = [795, 795, 795, 794, 800, 800, 794, 795, 794, 794, 797, 795] drlTanhMakespan9 = [793, 794, 796, 795, 796, 800, 794, 797, 793, 795, 798, 795] drlTanhMakespan10 = [795, 795, 797, 794, 795, 798, 797, 795, 798, 794, 794, 794] drlTanhMakespan11 = [795, 795, 795, 795, 797, 795, 795, 794, 795, 795, 795, 794] drlTanhMakespan12 = [794, 798, 795, 794, 795, 795, 795, 797, 799, 795, 795, 795] drlTanhMakespan13 = [795, 797, 795, 800, 796, 795, 796, 795, 795, 795, 798, 794] drlTanhMakespan14 = [795, 795, 796, 794, 794, 794, 797, 795, 798, 795, 795, 793] drlTanhMakespan15 = [799, 794, 795, 795, 795, 796, 801, 797, 795, 794, 795, 799] drlTanhMakespan16 = [795, 795, 796, 798, 795, 795, 795, 795, 795, 798, 798, 796] drlTanhMakespan17 = [800, 798, 795, 795, 798, 794, 795, 795, 797, 795, 796, 794] drlTanhMakespan18 = [797, 800, 798, 797, 796, 794, 799, 797, 795, 796, 799, 798] drlTanhMakespan19 = [797, 800, 795, 794, 794, 796, 795, 798, 796, 798, 797, 795] drlTanhMakespan20 = [794, 795, 795, 799, 798, 797, 795, 795, 798, 795, 798, 795] drlTanhMakespan21 = [796, 795, 795, 795, 795, 797, 798, 794, 797, 795, 796, 794] drlTanhMakespan22 = [799, 796, 795, 795, 795, 795, 796, 795, 796, 798, 796, 795] drlTanhMakespan23 = [799, 799, 795, 796, 796, 799, 796, 797, 794, 794, 798, 796] drlTanhMakespan24 = [795, 795, 797, 800, 797, 795, 795, 796, 795, 795, 798, 799] drlTanhMakespan25 = [795, 797, 795, 795, 795, 795, 800, 796, 795, 797, 795, 795] drlTanhMakespan26 = [795, 795, 799, 794, 797, 794, 794, 798, 794, 796, 795, 798] drlTanhMakespan27 = [796, 796, 795, 796, 798, 797, 794, 795, 794, 794, 794, 798] drlTanhMakespan28 = [795, 795, 794, 798, 796, 796, 800, 797, 797, 796, 795, 794] drlTanhMakespan29 = [795, 795, 798, 800, 797, 794, 796, 794, 792, 794, 794, 795] drlTanhMakespan30 = [798, 797, 795, 799, 797, 800, 798, 799, 797, 800, 794, 796] drlTanhMakespan31 = [794, 795, 800, 798, 800, 794, 800, 798, 799, 798, 798, 798] drlTanhMakespan32 = [795, 795, 795, 794, 794, 794, 793, 795, 794, 793, 794, 795] drlTanhMakespan33 = [794, 797, 792, 794, 795, 795, 797, 795, 795, 794, 792, 795] drlTanhMakespan34 = [795, 794, 795, 798, 795, 796, 794, 795, 794, 794, 795, 794] drlTanhMakespan35 = [796, 794, 797, 793, 794, 798, 795, 794, 793, 793, 795, 794] drlTanhMakespan36 = [795, 795, 794, 795, 795, 795, 794, 795, 795, 793, 795, 794] drlTanhMakespan37 = [794, 794, 798, 794, 794, 796, 795, 794, 793, 795, 795, 792] drlTanhMakespan38 = [794, 796, 795, 794, 798, 798, 795, 795, 794, 794, 795, 794] drlTanhMakespan39 = [794, 795, 795, 796, 792, 794, 795, 794, 795, 794, 794, 795] drlTanhMakespan40 = [798, 795, 794, 795, 794, 794, 793, 795, 794, 794, 797, 794] drlTanhMakespan41 = [795, 792, 795, 794, 794, 795, 794, 795, 792, 797, 795, 795] drlTanhMakespan42 = [792, 794, 794, 795, 794, 794, 795, 794, 792, 794, 794, 794] drlTanhMakespan43 = [794, 796, 794, 793, 795, 795, 793, 798, 794, 794, 798, 794] drlTanhMakespan44 = [794, 794, 794, 794, 795, 794, 793, 794, 794, 795, 795, 794] drlTanhMakespan45 = [790, 794, 793, 794, 793, 794, 795, 794, 791, 795, 795, 794] drlTanhMakespan46 = [792, 794, 794, 794, 794, 794, 794, 793, 794, 794, 794, 794] drlTanhMakespan47 = [794, 794, 794, 794, 794, 794, 794, 794, 792, 795, 793, 795] drlTanhMakespan48 = [794, 794, 792, 792, 797, 794, 792, 794, 794, 795, 794, 795] drlTanhMakespan49 = [795, 794, 794, 796, 794, 797, 794, 794, 794, 794, 794, 794] drlTanhMakespan50 = [794, 792, 795, 794, 794, 794, 794, 794, 795, 794, 795, 794] drlTanhMakespan51 = [794, 792, 796, 795, 794, 794, 795, 794, 795, 795, 795, 794] drlTanhMakespan52 = [794, 794, 795, 792, 795, 795, 795, 792, 794, 793, 795, 794] drlTanhMakespan53 = [794, 792, 794, 792, 794, 794, 794, 795, 795, 794, 794, 792] drlTanhMakespan54 = [795, 793, 794, 794, 794, 792, 795, 794, 794, 792, 794, 796] drlTanhMakespan55 = [795, 794, 794, 795, 795, 793, 794, 795, 794, 797, 795, 792] drlTanhMakespan56 = [795, 795, 792, 795, 794, 795, 794, 794, 794, 795, 795, 795] drlTanhMakespan57 = [795, 792, 795, 794, 795, 795, 792, 795, 794, 797, 792, 792] drlTanhMakespan58 = [795, 795, 794, 795, 792, 794, 794, 794, 792, 792, 792, 793] drlTanhMakespan59 = [795, 794, 792, 794, 794, 794, 792, 794, 794, 794, 793, 795] drlTanhMakespan60 = [794, 795, 795, 795, 798, 794, 794, 794, 794, 794, 794, 792] drlTanhMakespan61 = [792, 795, 794, 794, 795, 794, 792, 795, 795, 794, 794, 795] drlTanhMakespan62 = [795, 794, 794, 794, 799, 794, 792, 794, 795, 795, 794, 793] drlTanhMakespan63 = [791, 795, 792, 796, 794, 794, 792, 795, 793, 794, 792, 794] drlTanhRewards0 = [-0.17508269018743108, -0.17508269018743108, -0.177078750549934, -0.1759911894273128, -0.17798286090969018, -0.17617264919621228, -0.17508269018743108, -0.17798286090969018, -0.1768976897689769, -0.17725973169122497, -0.17834394904458598, -0.1776214552648934] drlTanhRewards1 = [-0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.1759911894273128, -0.17617264919621228, -0.17526455026455026, -0.17562802996914942, -0.17544633017412387, -0.17562802996914942, -0.1759911894273128] drlTanhRewards2 = [-0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.1763540290620872, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17544633017412387, -0.17580964970257765] drlTanhRewards3 = [-0.17617264919621228, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387] drlTanhRewards4 = [-0.1778021978021978, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765] drlTanhRewards5 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17617264919621228, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.177078750549934] drlTanhRewards6 = [-0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17544633017412387] drlTanhRewards7 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942] drlTanhRewards8 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026] drlTanhRewards9 = [-0.1749007498897221, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17617264919621228, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026] drlTanhRewards10 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards11 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards12 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.1759911894273128, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards13 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108] drlTanhRewards14 = [-0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.1749007498897221] drlTanhRewards15 = [-0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17562802996914942, -0.1763540290620872, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128] drlTanhRewards16 = [-0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387] drlTanhRewards17 = [-0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drlTanhRewards18 = [-0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.17562802996914942, -0.17544633017412387, -0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765] drlTanhRewards19 = [-0.17562802996914942, -0.17617264919621228, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026] drlTanhRewards20 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026] drlTanhRewards21 = [-0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108] drlTanhRewards22 = [-0.1759911894273128, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026] drlTanhRewards23 = [-0.1759911894273128, -0.1759911894273128, -0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387] drlTanhRewards24 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.1759911894273128] drlTanhRewards25 = [-0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17544633017412387, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards26 = [-0.17526455026455026, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765] drlTanhRewards27 = [-0.17544633017412387, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlTanhRewards28 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17562802996914942, -0.17544633017412387, -0.17617264919621228, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drlTanhRewards29 = [-0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17562802996914942, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drlTanhRewards30 = [-0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.1759911894273128, -0.17562802996914942, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387] drlTanhRewards31 = [-0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765] drlTanhRewards32 = [-0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026] drlTanhRewards33 = [-0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026] drlTanhRewards34 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drlTanhRewards35 = [-0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.1749007498897221, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards36 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards37 = [-0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224] drlTanhRewards38 = [-0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108] drlTanhRewards39 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards40 = [-0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108] drlTanhRewards41 = [-0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17562802996914942, -0.17526455026455026, -0.17526455026455026] drlTanhRewards42 = [-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards43 = [-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlTanhRewards44 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards45 = [-0.1749007498897221, -0.17435444714191128, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17453662842012357, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards46 = [-0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards47 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.1749007498897221, -0.17526455026455026] drlTanhRewards48 = [-0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlTanhRewards49 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlTanhRewards50 = [-0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108] drlTanhRewards51 = [-0.17508269018743108, -0.17471872931833224, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108] drlTanhRewards52 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026, -0.17508269018743108] drlTanhRewards53 = [-0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224] drlTanhRewards54 = [-0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17544633017412387] drlTanhRewards55 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17471872931833224] drlTanhRewards56 = [-0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026] drlTanhRewards57 = [-0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17471872931833224, -0.17471872931833224] drlTanhRewards58 = [-0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17471872931833224, -0.17471872931833224, -0.1749007498897221] drlTanhRewards59 = [-0.17526455026455026, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17526455026455026] drlTanhRewards60 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224] drlTanhRewards61 = [-0.17471872931833224, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17471872931833224, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026] drlTanhRewards62 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1759911894273128, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221] drlTanhRewards63 = [-0.17453662842012357, -0.17471872931833224, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17526455026455026, -0.1749007498897221, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108] # Deep Reinforcement Learning: 5 capas Dense, Funcion de activacion relu, 12 episodios, 50 iteraciones drlReluMakespan0 = [796, 798, 809, 798, 796, 800, 798, 799, 800, 794, 800, 798] drlReluMakespan1 = [800, 800, 801, 806, 804, 806, 808, 798, 796, 796, 798, 800] drlReluMakespan2 = [805, 805, 798, 800, 800, 798, 801, 799, 800, 806, 800, 800] drlReluMakespan3 = [798, 799, 798, 795, 798, 808, 803, 800, 798, 795, 799, 800] drlReluMakespan4 = [805, 805, 799, 796, 798, 803, 799, 800, 800, 800, 795, 794] drlReluMakespan5 = [799, 796, 795, 800, 801, 796, 800, 795, 803, 800, 800, 805] drlReluMakespan6 = [799, 795, 798, 794, 805, 796, 795, 799, 798, 795, 804, 796] drlReluMakespan7 = [795, 798, 799, 798, 798, 799, 795, 794, 796, 794, 795, 805] drlReluMakespan8 = [805, 794, 794, 795, 798, 795, 798, 795, 799, 800, 796, 798] drlReluMakespan9 = [797, 797, 797, 794, 795, 794, 794, 797, 796, 795, 801, 799] drlReluMakespan10 = [799, 794, 797, 795, 794, 794, 795, 795, 795, 796, 797, 799] drlReluMakespan11 = [796, 798, 800, 795, 805, 794, 798, 796, 795, 794, 798, 795] drlReluMakespan12 = [800, 795, 794, 798, 800, 805, 800, 798, 804, 799, 794, 803] drlReluMakespan13 = [796, 799, 798, 794, 800, 794, 795, 796, 798, 795, 794, 799] drlReluMakespan14 = [795, 798, 798, 798, 805, 798, 798, 798, 795, 794, 800, 796] drlReluMakespan15 = [795, 798, 795, 805, 798, 794, 795, 798, 796, 794, 795, 796] drlReluMakespan16 = [798, 795, 796, 799, 796, 798, 798, 795, 795, 795, 795, 799] drlReluMakespan17 = [794, 798, 796, 798, 795, 801, 794, 798, 797, 795, 796, 801] drlReluMakespan18 = [798, 795, 798, 798, 801, 798, 795, 795, 797, 800, 794, 800] drlReluMakespan19 = [795, 798, 794, 800, 796, 795, 798, 797, 795, 794, 796, 796] drlReluMakespan20 = [794, 794, 795, 795, 795, 795, 796, 798, 799, 799, 799, 795] drlReluMakespan21 = [802, 796, 794, 797, 797, 800, 794, 794, 804, 803, 798, 797] drlReluMakespan22 = [794, 795, 795, 795, 798, 795, 794, 799, 794, 803, 795, 794] drlReluMakespan23 = [794, 798, 799, 794, 795, 795, 799, 795, 796, 795, 797, 799] drlReluMakespan24 = [795, 794, 797, 800, 794, 795, 795, 795, 795, 800, 800, 798] drlReluMakespan25 = [795, 794, 797, 796, 798, 795, 795, 794, 799, 795, 794, 798] drlReluMakespan26 = [801, 795, 800, 794, 794, 796, 800, 798, 798, 799, 794, 796] drlReluMakespan27 = [796, 795, 796, 795, 796, 795, 795, 800, 794, 794, 794, 796] drlReluMakespan28 = [794, 794, 795, 796, 794, 795, 795, 797, 794, 794, 796, 795] drlReluMakespan29 = [793, 794, 795, 800, 795, 795, 794, 798, 798, 796, 795, 794] drlReluMakespan30 = [802, 794, 794, 798, 794, 796, 805, 794, 800, 794, 796, 794] drlReluMakespan31 = [797, 794, 794, 794, 800, 800, 794, 794, 798, 795, 794, 798] drlReluMakespan32 = [794, 798, 794, 795, 794, 795, 798, 794, 794, 795, 794, 798] drlReluMakespan33 = [798, 794, 798, 795, 794, 793, 797, 798, 794, 794, 801, 793] drlReluMakespan34 = [794, 798, 794, 795, 794, 793, 798, 795, 794, 800, 794, 795] drlReluMakespan35 = [794, 796, 794, 796, 806, 795, 795, 795, 796, 795, 795, 799] drlReluMakespan36 = [795, 794, 794, 796, 796, 798, 794, 796, 794, 795, 794, 795] drlReluMakespan37 = [795, 794, 795, 798, 794, 794, 794, 794, 794, 794, 795, 797] drlReluMakespan38 = [794, 798, 794, 798, 797, 794, 794, 795, 795, 794, 795, 795] drlReluMakespan39 = [797, 794, 795, 796, 796, 796, 798, 794, 794, 795, 794, 798] drlReluMakespan40 = [798, 795, 795, 798, 792, 795, 795, 794, 795, 794, 798, 794] drlReluMakespan41 = [795, 794, 794, 794, 794, 794, 798, 793, 794, 794, 794, 793] drlReluMakespan42 = [794, 794, 794, 794, 799, 794, 795, 794, 796, 794, 794, 794] drlReluMakespan43 = [794, 797, 795, 794, 795, 794, 794, 795, 794, 794, 793, 794] drlReluMakespan44 = [794, 792, 793, 794, 794, 796, 794, 798, 795, 794, 794, 796] drlReluMakespan45 = [795, 794, 799, 794, 794, 793, 794, 795, 795, 793, 796, 794] drlReluMakespan46 = [794, 796, 794, 794, 794, 794, 794, 793, 799, 792, 794, 794] drlReluMakespan47 = [795, 794, 793, 794, 796, 797, 794, 794, 795, 794, 794, 794] drlReluMakespan48 = [794, 794, 794, 792, 794, 794, 795, 794, 794, 794, 794, 794] drlReluMakespan49 = [794, 794, 795, 792, 797, 797, 794, 794, 792, 800, 795, 795] drlReluRewards0 = [-0.17544633017412387, -0.17580964970257765, -0.1778021978021978, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drlReluRewards1 = [-0.17617264919621228, -0.17617264919621228, -0.1763540290620872, -0.17725973169122497, -0.1768976897689769, -0.17725973169122497, -0.1776214552648934, -0.17580964970257765, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17617264919621228] drlReluRewards2 = [-0.177078750549934, -0.177078750549934, -0.17580964970257765, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765, -0.1763540290620872, -0.1759911894273128, -0.17617264919621228, -0.17725973169122497, -0.17617264919621228, -0.17617264919621228] drlReluRewards3 = [-0.17580964970257765, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.1776214552648934, -0.17671654929577466, -0.17617264919621228, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228] drlReluRewards4 = [-0.177078750549934, -0.177078750549934, -0.1759911894273128, -0.17544633017412387, -0.17580964970257765, -0.17671654929577466, -0.1759911894273128, -0.17617264919621228, -0.17617264919621228, -0.17617264919621228, -0.17526455026455026, -0.17508269018743108] drlReluRewards5 = [-0.1759911894273128, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.1763540290620872, -0.17544633017412387, -0.17526455026455026, -0.17617264919621228, -0.17671654929577466, -0.17617264919621228, -0.17617264919621228, -0.177078750549934] drlReluRewards6 = [-0.1759911894273128, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.177078750549934, -0.17544633017412387, -0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17526455026455026, -0.1768976897689769, -0.17544633017412387] drlReluRewards7 = [-0.17526455026455026, -0.1759911894273128, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.177078750549934] drlReluRewards8 = [-0.177078750549934, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17617264919621228, -0.17544633017412387, -0.17580964970257765] drlReluRewards9 = [-0.17562802996914942, -0.17562802996914942, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17562802996914942, -0.17544633017412387, -0.17526455026455026, -0.1763540290620872, -0.1759911894273128] drlReluRewards10 = [-0.1759911894273128, -0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17562802996914942, -0.1759911894273128] drlReluRewards11 = [-0.17544633017412387, -0.17580964970257765, -0.17617264919621228, -0.17526455026455026, -0.177078750549934, -0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026] drlReluRewards12 = [-0.17617264919621228, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17617264919621228, -0.177078750549934, -0.17617264919621228, -0.17580964970257765, -0.1768976897689769, -0.1759911894273128, -0.17508269018743108, -0.17671654929577466] drlReluRewards13 = [-0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128] drlReluRewards14 = [-0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.177078750549934, -0.17580964970257765, -0.17580964970257765, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387] drlReluRewards15 = [-0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.177078750549934, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387] drlReluRewards16 = [-0.17580964970257765, -0.17526455026455026, -0.17544633017412387, -0.1759911894273128, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128] drlReluRewards17 = [-0.17508269018743108, -0.17580964970257765, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.1763540290620872, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17544633017412387, -0.1763540290620872] drlReluRewards18 = [-0.17580964970257765, -0.17526455026455026, -0.17580964970257765, -0.17580964970257765, -0.1763540290620872, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17617264919621228] drlReluRewards19 = [-0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17617264919621228, -0.17544633017412387, -0.17526455026455026, -0.17580964970257765, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387] drlReluRewards20 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17580964970257765, -0.1759911894273128, -0.1759911894273128, -0.1759911894273128, -0.17526455026455026] drlReluRewards21 = [-0.17653532907770195, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.1768976897689769, -0.17671654929577466, -0.17562802996914942] drlReluRewards22 = [-0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17671654929577466, -0.17526455026455026, -0.17508269018743108] drlReluRewards23 = [-0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.1759911894273128, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17562802996914942, -0.1759911894273128] drlReluRewards24 = [-0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17617264919621228, -0.17580964970257765] drlReluRewards25 = [-0.17526455026455026, -0.17508269018743108, -0.17562802996914942, -0.17544633017412387, -0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards26 = [-0.1763540290620872, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17617264919621228, -0.17580964970257765, -0.17580964970257765, -0.1759911894273128, -0.17508269018743108, -0.17544633017412387] drlReluRewards27 = [-0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387] drlReluRewards28 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026] drlReluRewards29 = [-0.1749007498897221, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17580964970257765, -0.17544633017412387, -0.17526455026455026, -0.17508269018743108] drlReluRewards30 = [-0.17653532907770195, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.177078750549934, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108] drlReluRewards31 = [-0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17617264919621228, -0.17617264919621228, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765] drlReluRewards32 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards33 = [-0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17562802996914942, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.1763540290620872, -0.1749007498897221] drlReluRewards34 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17617264919621228, -0.17508269018743108, -0.17526455026455026] drlReluRewards35 = [-0.17508269018743108, -0.17544633017412387, -0.17725973169122497, -0.17508269018743108, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.17526455026455026, -0.17544633017412387, -0.17526455026455026, -0.17526455026455026, -0.1759911894273128] drlReluRewards36 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026] drlReluRewards37 = [-0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17562802996914942] drlReluRewards38 = [-0.17508269018743108, -0.17580964970257765, -0.17508269018743108, -0.17580964970257765, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026] drlReluRewards39 = [-0.17562802996914942, -0.17508269018743108, -0.17526455026455026, -0.17544633017412387, -0.17544633017412387, -0.17544633017412387, -0.17580964970257765, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765] drlReluRewards40 = [-0.17580964970257765, -0.17526455026455026, -0.17526455026455026, -0.17580964970257765, -0.17471872931833224, -0.17526455026455026, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17580964970257765, -0.17508269018743108] drlReluRewards41 = [-0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17580964970257765, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221] drlReluRewards42 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards43 = [-0.17508269018743108, -0.17562802996914942, -0.17526455026455026, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108] drlReluRewards44 = [-0.17508269018743108, -0.17471872931833224, -0.1749007498897221, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17580964970257765, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17544633017412387] drlReluRewards45 = [-0.17526455026455026, -0.17508269018743108, -0.1759911894273128, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17526455026455026, -0.17526455026455026, -0.1749007498897221, -0.17544633017412387, -0.17508269018743108] drlReluRewards46 = [-0.17508269018743108, -0.17544633017412387, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.1749007498897221, -0.1759911894273128, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108] drlReluRewards47 = [-0.17526455026455026, -0.17508269018743108, -0.1749007498897221, -0.17508269018743108, -0.17544633017412387, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards48 = [-0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108, -0.17508269018743108] drlReluRewards49 = [-0.17508269018743108, -0.17508269018743108, -0.17526455026455026, -0.17471872931833224, -0.17562802996914942, -0.17562802996914942, -0.17508269018743108, -0.17508269018743108, -0.17471872931833224, -0.17617264919621228, -0.17526455026455026, -0.17526455026455026] if __name__ == "__main__": ############################################## ############################################## ############################################## # Deep Recurrent Reinforcement Learning with 1 GRU layer and 4 Dense layers drnnGRUtanhMakespan = [] drnnGRUtanhRewards = [] drnnGRUtanhMakespanList = [] drnnGRUtanhRewardsList = [] drnnGRUtanhMakespanValues = [] drnnGRUtanhRewardsValues = [] drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan0)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan1)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan2)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan3)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan4)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan5)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan6)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan7)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan8)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan9)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan10)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan11)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan12)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan13)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan14)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan15)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan16)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan17)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan18)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan19)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan20)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan21)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan22)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan23)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan24)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan25)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan26)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan27)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan28)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan29)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan30)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan31)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan32)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan33)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan34)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan35)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan36)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan37)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan38)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan39)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan40)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan41)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan42)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan43)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan44)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan45)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan46)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan47)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan48)) drnnGRUtanhMakespan.append(np.mean(drnnGRUtanhMakespan49)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards0)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards1)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards2)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards3)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards4)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards5)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards6)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards7)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards8)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards9)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards10)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards11)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards12)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards13)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards14)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards15)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards16)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards17)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards18)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards19)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards20)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards21)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards22)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards23)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards24)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards25)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards26)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards27)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards28)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards29)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards30)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards31)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards32)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards33)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards34)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards35)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards36)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards37)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards38)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards39)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards40)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards41)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards42)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards43)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards44)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards45)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards46)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards47)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards48)) drnnGRUtanhRewards.append(np.mean(drnnGRUtanhRewards49)) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan0) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan1) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan2) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan3) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan4) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan5) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan6) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan7) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan8) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan9) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan10) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan11) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan12) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan13) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan14) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan15) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan16) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan17) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan18) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan19) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan20) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan21) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan22) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan23) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan24) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan25) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan26) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan27) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan28) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan29) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan30) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan31) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan32) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan33) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan34) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan35) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan36) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan37) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan38) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan39) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan40) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan41) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan42) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan43) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan44) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan45) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan46) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan47) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan48) drnnGRUtanhMakespanList.append(drnnGRUtanhMakespan49) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards0) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards1) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards2) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards3) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards4) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards5) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards6) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards7) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards8) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards9) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards10) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards11) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards12) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards13) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards14) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards15) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards16) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards17) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards18) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards19) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards20) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards21) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards22) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards23) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards24) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards25) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards26) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards27) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards28) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards29) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards30) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards31) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards32) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards33) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards34) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards35) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards36) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards37) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards38) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards39) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards40) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards41) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards42) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards43) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards44) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards45) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards46) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards47) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards48) drnnGRUtanhRewardsList.append(drnnGRUtanhRewards49) drnnGRUreluMakespan = [] drnnGRUreluRewards = [] drnnGRUreluMakespanList = [] drnnGRUreluRewardsList = [] drnnGRUreluMakespanValues = [] drnnGRUreluRewardsValues = [] drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan0)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan1)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan2)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan3)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan4)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan5)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan6)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan7)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan8)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan9)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan10)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan11)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan12)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan13)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan14)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan15)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan16)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan17)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan18)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan19)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan20)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan21)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan22)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan23)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan24)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan25)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan26)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan27)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan28)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan29)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan30)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan31)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan32)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan33)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan34)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan35)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan36)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan37)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan38)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan39)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan40)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan41)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan42)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan43)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan44)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan45)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan46)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan47)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan48)) drnnGRUreluMakespan.append(np.mean(drnnGRUreluMakespan49)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards0)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards1)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards2)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards3)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards4)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards5)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards6)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards7)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards8)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards9)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards10)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards11)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards12)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards13)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards14)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards15)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards16)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards17)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards18)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards19)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards20)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards21)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards22)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards23)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards24)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards25)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards26)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards27)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards28)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards29)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards30)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards31)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards32)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards33)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards34)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards35)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards36)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards37)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards38)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards39)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards40)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards41)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards42)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards43)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards44)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards45)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards46)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards47)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards48)) drnnGRUreluRewards.append(np.mean(drnnGRUreluRewards49)) drnnGRUreluMakespanList.append(drnnGRUreluMakespan0) drnnGRUreluMakespanList.append(drnnGRUreluMakespan1) drnnGRUreluMakespanList.append(drnnGRUreluMakespan2) drnnGRUreluMakespanList.append(drnnGRUreluMakespan3) drnnGRUreluMakespanList.append(drnnGRUreluMakespan4) drnnGRUreluMakespanList.append(drnnGRUreluMakespan5) drnnGRUreluMakespanList.append(drnnGRUreluMakespan6) drnnGRUreluMakespanList.append(drnnGRUreluMakespan7) drnnGRUreluMakespanList.append(drnnGRUreluMakespan8) drnnGRUreluMakespanList.append(drnnGRUreluMakespan9) drnnGRUreluMakespanList.append(drnnGRUreluMakespan10) drnnGRUreluMakespanList.append(drnnGRUreluMakespan11) drnnGRUreluMakespanList.append(drnnGRUreluMakespan12) drnnGRUreluMakespanList.append(drnnGRUreluMakespan13) drnnGRUreluMakespanList.append(drnnGRUreluMakespan14) drnnGRUreluMakespanList.append(drnnGRUreluMakespan15) drnnGRUreluMakespanList.append(drnnGRUreluMakespan16) drnnGRUreluMakespanList.append(drnnGRUreluMakespan17) drnnGRUreluMakespanList.append(drnnGRUreluMakespan18) drnnGRUreluMakespanList.append(drnnGRUreluMakespan19) drnnGRUreluMakespanList.append(drnnGRUreluMakespan20) drnnGRUreluMakespanList.append(drnnGRUreluMakespan21) drnnGRUreluMakespanList.append(drnnGRUreluMakespan22) drnnGRUreluMakespanList.append(drnnGRUreluMakespan23) drnnGRUreluMakespanList.append(drnnGRUreluMakespan24) drnnGRUreluMakespanList.append(drnnGRUreluMakespan25) drnnGRUreluMakespanList.append(drnnGRUreluMakespan26) drnnGRUreluMakespanList.append(drnnGRUreluMakespan27) drnnGRUreluMakespanList.append(drnnGRUreluMakespan28) drnnGRUreluMakespanList.append(drnnGRUreluMakespan29) drnnGRUreluMakespanList.append(drnnGRUreluMakespan30) drnnGRUreluMakespanList.append(drnnGRUreluMakespan31) drnnGRUreluMakespanList.append(drnnGRUreluMakespan32) drnnGRUreluMakespanList.append(drnnGRUreluMakespan33) drnnGRUreluMakespanList.append(drnnGRUreluMakespan34) drnnGRUreluMakespanList.append(drnnGRUreluMakespan35) drnnGRUreluMakespanList.append(drnnGRUreluMakespan36) drnnGRUreluMakespanList.append(drnnGRUreluMakespan37) drnnGRUreluMakespanList.append(drnnGRUreluMakespan38) drnnGRUreluMakespanList.append(drnnGRUreluMakespan39) drnnGRUreluMakespanList.append(drnnGRUreluMakespan40) drnnGRUreluMakespanList.append(drnnGRUreluMakespan41) drnnGRUreluMakespanList.append(drnnGRUreluMakespan42) drnnGRUreluMakespanList.append(drnnGRUreluMakespan43) drnnGRUreluMakespanList.append(drnnGRUreluMakespan44) drnnGRUreluMakespanList.append(drnnGRUreluMakespan45) drnnGRUreluMakespanList.append(drnnGRUreluMakespan46) drnnGRUreluMakespanList.append(drnnGRUreluMakespan47) drnnGRUreluMakespanList.append(drnnGRUreluMakespan48) drnnGRUreluMakespanList.append(drnnGRUreluMakespan49) drnnGRUreluRewardsList.append(drnnGRUreluRewards0) drnnGRUreluRewardsList.append(drnnGRUreluRewards1) drnnGRUreluRewardsList.append(drnnGRUreluRewards2) drnnGRUreluRewardsList.append(drnnGRUreluRewards3) drnnGRUreluRewardsList.append(drnnGRUreluRewards4) drnnGRUreluRewardsList.append(drnnGRUreluRewards5) drnnGRUreluRewardsList.append(drnnGRUreluRewards6) drnnGRUreluRewardsList.append(drnnGRUreluRewards7) drnnGRUreluRewardsList.append(drnnGRUreluRewards8) drnnGRUreluRewardsList.append(drnnGRUreluRewards9) drnnGRUreluRewardsList.append(drnnGRUreluRewards10) drnnGRUreluRewardsList.append(drnnGRUreluRewards11) drnnGRUreluRewardsList.append(drnnGRUreluRewards12) drnnGRUreluRewardsList.append(drnnGRUreluRewards13) drnnGRUreluRewardsList.append(drnnGRUreluRewards14) drnnGRUreluRewardsList.append(drnnGRUreluRewards15) drnnGRUreluRewardsList.append(drnnGRUreluRewards16) drnnGRUreluRewardsList.append(drnnGRUreluRewards17) drnnGRUreluRewardsList.append(drnnGRUreluRewards18) drnnGRUreluRewardsList.append(drnnGRUreluRewards19) drnnGRUreluRewardsList.append(drnnGRUreluRewards20) drnnGRUreluRewardsList.append(drnnGRUreluRewards21) drnnGRUreluRewardsList.append(drnnGRUreluRewards22) drnnGRUreluRewardsList.append(drnnGRUreluRewards23) drnnGRUreluRewardsList.append(drnnGRUreluRewards24) drnnGRUreluRewardsList.append(drnnGRUreluRewards25) drnnGRUreluRewardsList.append(drnnGRUreluRewards26) drnnGRUreluRewardsList.append(drnnGRUreluRewards27) drnnGRUreluRewardsList.append(drnnGRUreluRewards28) drnnGRUreluRewardsList.append(drnnGRUreluRewards29) drnnGRUreluRewardsList.append(drnnGRUreluRewards30) drnnGRUreluRewardsList.append(drnnGRUreluRewards31) drnnGRUreluRewardsList.append(drnnGRUreluRewards32) drnnGRUreluRewardsList.append(drnnGRUreluRewards33) drnnGRUreluRewardsList.append(drnnGRUreluRewards34) drnnGRUreluRewardsList.append(drnnGRUreluRewards35) drnnGRUreluRewardsList.append(drnnGRUreluRewards36) drnnGRUreluRewardsList.append(drnnGRUreluRewards37) drnnGRUreluRewardsList.append(drnnGRUreluRewards38) drnnGRUreluRewardsList.append(drnnGRUreluRewards39) drnnGRUreluRewardsList.append(drnnGRUreluRewards40) drnnGRUreluRewardsList.append(drnnGRUreluRewards41) drnnGRUreluRewardsList.append(drnnGRUreluRewards42) drnnGRUreluRewardsList.append(drnnGRUreluRewards43) drnnGRUreluRewardsList.append(drnnGRUreluRewards44) drnnGRUreluRewardsList.append(drnnGRUreluRewards45) drnnGRUreluRewardsList.append(drnnGRUreluRewards46) drnnGRUreluRewardsList.append(drnnGRUreluRewards47) drnnGRUreluRewardsList.append(drnnGRUreluRewards48) drnnGRUreluRewardsList.append(drnnGRUreluRewards49) for vector in drnnGRUtanhMakespanList: for element in vector: drnnGRUtanhMakespanValues.append(element) for vector in drnnGRUtanhRewardsList: for element in vector: drnnGRUtanhRewardsValues.append(element) ################## for vector in drnnGRUreluMakespanList: for element in vector: drnnGRUreluMakespanValues.append(element) for vector in drnnGRUreluRewardsList: for element in vector: drnnGRUreluRewardsValues.append(element) ##################### smoothGRUtanhMakespanValues = pd.Series(drnnGRUtanhMakespanValues).rolling(12).mean() plt.plot(smoothGRUtanhMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU") plt.show() smoothGRUtanhRewardsValues = pd.Series(drnnGRUtanhRewardsValues).rolling(12).mean() plt.plot(smoothGRUtanhRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU") plt.show() ##################### smoothGRUreluMakespanValues = pd.Series(drnnGRUreluMakespanValues).rolling(12).mean() plt.plot(smoothGRUreluMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU y ReLU") plt.show() smoothGRUreluRewardsValues = pd.Series(drnnGRUreluRewardsValues).rolling(12).mean() plt.plot(smoothGRUreluRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU y ReLU") plt.show() ################### plt.plot(smoothGRUtanhMakespanValues, color='blue', label='tanh') plt.plot(smoothGRUreluMakespanValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa GRU") plt.legend() plt.show() ################### plt.plot(smoothGRUtanhRewardsValues, color='blue', label='tanh') plt.plot(smoothGRUreluRewardsValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa GRU") plt.legend() plt.show() ################### drnnLSTMtanhMakespan = [] drnnLSTMtanhRewards = [] drnnLSTMtanhMakespanList = [] drnnLSTMtanhRewardsList = [] drnnLSTMtanhMakespanValues = [] drnnLSTMtanhRewardsValues = [] drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan0)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan1)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan2)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan3)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan4)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan5)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan6)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan7)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan8)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan9)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan10)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan11)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan12)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan13)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan14)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan15)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan16)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan17)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan18)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan19)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan20)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan21)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan22)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan23)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan24)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan25)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan26)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan27)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan28)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan29)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan30)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan31)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan32)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan33)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan34)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan35)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan36)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan37)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan38)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan39)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan40)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan41)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan42)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan43)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan44)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan45)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan46)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan47)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan48)) drnnLSTMtanhMakespan.append(np.mean(drnnLSTMtanhMakespan49)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards0)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards1)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards2)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards3)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards4)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards5)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards6)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards7)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards8)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards9)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards10)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards11)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards12)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards13)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards14)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards15)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards16)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards17)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards18)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards19)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards20)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards21)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards22)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards23)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards24)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards25)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards26)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards27)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards28)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards29)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards30)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards31)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards32)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards33)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards34)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards35)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards36)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards37)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards38)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards39)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards40)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards41)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards42)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards43)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards44)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards45)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards46)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards47)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards48)) drnnLSTMtanhRewards.append(np.mean(drnnLSTMtanhRewards49)) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan0) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan1) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan2) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan3) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan4) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan5) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan6) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan7) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan8) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan9) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan10) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan11) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan12) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan13) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan14) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan15) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan16) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan17) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan18) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan19) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan20) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan21) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan22) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan23) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan24) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan25) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan26) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan27) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan28) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan29) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan30) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan31) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan32) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan33) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan34) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan35) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan36) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan37) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan38) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan39) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan40) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan41) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan42) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan43) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan44) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan45) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan46) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan47) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan48) drnnLSTMtanhMakespanList.append(drnnLSTMtanhMakespan49) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards0) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards1) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards2) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards3) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards4) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards5) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards6) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards7) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards8) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards9) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards10) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards11) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards12) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards13) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards14) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards15) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards16) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards17) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards18) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards19) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards20) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards21) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards22) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards23) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards24) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards25) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards26) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards27) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards28) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards29) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards30) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards31) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards32) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards33) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards34) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards35) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards36) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards37) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards38) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards39) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards40) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards41) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards42) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards43) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards44) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards45) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards46) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards47) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards48) drnnLSTMtanhRewardsList.append(drnnLSTMtanhRewards49) for vector in drnnLSTMtanhMakespanList: for element in vector: drnnLSTMtanhMakespanValues.append(element) for vector in drnnLSTMtanhRewardsList: for element in vector: drnnLSTMtanhRewardsValues.append(element) smoothLSTMtanhMakespanValues = pd.Series(drnnLSTMtanhMakespanValues).rolling(12).mean() plt.plot(smoothLSTMtanhMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' utilizando LSTM con tanh") plt.show() smoothLSTMtanhRewardsValues = pd.Series(drnnLSTMtanhRewardsValues).rolling(12).mean() plt.plot(smoothLSTMtanhRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' utilizando LSTM con tanh") plt.show() #################### drnnLSTMreluMakespan = [] drnnLSTMreluRewards = [] drnnLSTMreluMakespanList = [] drnnLSTMreluRewardsList = [] drnnLSTMreluMakespanValues = [] drnnLSTMreluRewardsValues = [] drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan0)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan1)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan2)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan3)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan4)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan5)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan6)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan7)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan8)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan9)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan10)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan11)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan12)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan13)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan14)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan15)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan16)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan17)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan18)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan19)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan20)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan21)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan22)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan23)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan24)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan25)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan26)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan27)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan28)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan29)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan30)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan31)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan32)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan33)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan34)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan35)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan36)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan37)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan38)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan39)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan40)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan41)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan42)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan43)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan44)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan45)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan46)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan47)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan48)) drnnLSTMreluMakespan.append(np.mean(drnnLSTMreluMakespan49)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards0)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards1)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards2)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards3)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards4)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards5)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards6)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards7)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards8)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards9)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards10)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards11)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards12)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards13)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards14)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards15)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards16)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards17)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards18)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards19)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards20)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards21)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards22)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards23)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards24)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards25)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards26)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards27)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards28)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards29)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards30)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards31)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards32)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards33)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards34)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards35)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards36)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards37)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards38)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards39)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards40)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards41)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards42)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards43)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards44)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards45)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards46)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards47)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards48)) drnnLSTMreluRewards.append(np.mean(drnnLSTMreluRewards49)) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan0) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan1) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan2) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan3) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan4) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan5) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan6) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan7) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan8) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan9) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan10) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan11) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan12) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan13) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan14) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan15) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan16) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan17) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan18) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan19) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan20) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan21) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan22) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan23) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan24) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan25) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan26) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan27) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan28) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan29) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan30) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan31) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan32) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan33) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan34) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan35) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan36) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan37) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan38) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan39) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan40) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan41) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan42) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan43) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan44) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan45) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan46) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan47) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan48) drnnLSTMreluMakespanList.append(drnnLSTMreluMakespan49) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards0) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards1) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards2) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards3) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards4) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards5) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards6) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards7) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards8) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards9) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards10) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards11) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards12) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards13) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards14) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards15) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards16) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards17) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards18) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards19) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards20) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards21) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards22) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards23) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards24) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards25) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards26) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards27) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards28) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards29) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards30) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards31) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards32) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards33) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards34) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards35) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards36) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards37) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards38) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards39) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards40) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards41) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards42) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards43) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards44) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards45) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards46) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards47) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards48) drnnLSTMreluRewardsList.append(drnnLSTMreluRewards49) for vector in drnnLSTMreluMakespanList: for element in vector: drnnLSTMreluMakespanValues.append(element) for vector in drnnLSTMreluRewardsList: for element in vector: drnnLSTMreluRewardsValues.append(element) smoothLSTMreluMakespanValues = pd.Series(drnnLSTMreluMakespanValues).rolling(12).mean() plt.plot(smoothLSTMreluMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' utilizando LSTM con relu") plt.show() smoothLSTMreluRewardsValues = pd.Series(drnnLSTMreluRewardsValues).rolling(12).mean() plt.plot(smoothLSTMreluRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' utilizando LSTM con relu") plt.show() ################## plt.plot(smoothLSTMtanhMakespanValues, color='blue', label='tanh') plt.plot(smoothLSTMreluMakespanValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' con red neuronal profunda que incluye 1 capa LSTM") plt.legend() plt.show() ################## plt.plot(smoothLSTMtanhRewardsValues, color='blue', label='tanh') plt.plot(smoothLSTMreluRewardsValues, color='orange', label='relu') plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' con red neuronal profunda que incluye 1 capa LSTM") plt.legend() plt.show() ################## ################## ################## drlTanhMakespan = [] drlTanhRewards = [] drlTanhMakespanList = [] drlTanhRewardsList = [] drlTanhMakespanValues = [] drlTanhRewardsValues = [] drlTanhMakespan.append(np.mean(drlTanhMakespan0)) drlTanhMakespan.append(np.mean(drlTanhMakespan1)) drlTanhMakespan.append(np.mean(drlTanhMakespan2)) drlTanhMakespan.append(np.mean(drlTanhMakespan3)) drlTanhMakespan.append(np.mean(drlTanhMakespan4)) drlTanhMakespan.append(np.mean(drlTanhMakespan5)) drlTanhMakespan.append(np.mean(drlTanhMakespan6)) drlTanhMakespan.append(np.mean(drlTanhMakespan7)) drlTanhMakespan.append(np.mean(drlTanhMakespan8)) drlTanhMakespan.append(np.mean(drlTanhMakespan9)) drlTanhMakespan.append(np.mean(drlTanhMakespan10)) drlTanhMakespan.append(np.mean(drlTanhMakespan11)) drlTanhMakespan.append(np.mean(drlTanhMakespan12)) drlTanhMakespan.append(np.mean(drlTanhMakespan13)) drlTanhMakespan.append(np.mean(drlTanhMakespan14)) drlTanhMakespan.append(np.mean(drlTanhMakespan15)) drlTanhMakespan.append(np.mean(drlTanhMakespan16)) drlTanhMakespan.append(np.mean(drlTanhMakespan17)) drlTanhMakespan.append(np.mean(drlTanhMakespan18)) drlTanhMakespan.append(np.mean(drlTanhMakespan19)) drlTanhMakespan.append(np.mean(drlTanhMakespan20)) drlTanhMakespan.append(np.mean(drlTanhMakespan21)) drlTanhMakespan.append(np.mean(drlTanhMakespan22)) drlTanhMakespan.append(np.mean(drlTanhMakespan23)) drlTanhMakespan.append(np.mean(drlTanhMakespan24)) drlTanhMakespan.append(np.mean(drlTanhMakespan25)) drlTanhMakespan.append(np.mean(drlTanhMakespan26)) drlTanhMakespan.append(np.mean(drlTanhMakespan27)) drlTanhMakespan.append(np.mean(drlTanhMakespan28)) drlTanhMakespan.append(np.mean(drlTanhMakespan29)) drlTanhMakespan.append(np.mean(drlTanhMakespan30)) drlTanhMakespan.append(np.mean(drlTanhMakespan31)) drlTanhMakespan.append(np.mean(drlTanhMakespan32)) drlTanhMakespan.append(np.mean(drlTanhMakespan33)) drlTanhMakespan.append(np.mean(drlTanhMakespan34)) drlTanhMakespan.append(np.mean(drlTanhMakespan35)) drlTanhMakespan.append(np.mean(drlTanhMakespan36)) drlTanhMakespan.append(np.mean(drlTanhMakespan37)) drlTanhMakespan.append(np.mean(drlTanhMakespan38)) drlTanhMakespan.append(np.mean(drlTanhMakespan39)) drlTanhMakespan.append(np.mean(drlTanhMakespan40)) drlTanhMakespan.append(np.mean(drlTanhMakespan41)) drlTanhMakespan.append(np.mean(drlTanhMakespan42)) drlTanhMakespan.append(np.mean(drlTanhMakespan43)) drlTanhMakespan.append(np.mean(drlTanhMakespan44)) drlTanhMakespan.append(np.mean(drlTanhMakespan45)) drlTanhMakespan.append(np.mean(drlTanhMakespan46)) drlTanhMakespan.append(np.mean(drlTanhMakespan47)) drlTanhMakespan.append(np.mean(drlTanhMakespan48)) drlTanhMakespan.append(np.mean(drlTanhMakespan49)) drlTanhRewards.append(np.mean(drlTanhRewards0)) drlTanhRewards.append(np.mean(drlTanhRewards1)) drlTanhRewards.append(np.mean(drlTanhRewards2)) drlTanhRewards.append(np.mean(drlTanhRewards3)) drlTanhRewards.append(np.mean(drlTanhRewards4)) drlTanhRewards.append(np.mean(drlTanhRewards5)) drlTanhRewards.append(np.mean(drlTanhRewards6)) drlTanhRewards.append(np.mean(drlTanhRewards7)) drlTanhRewards.append(np.mean(drlTanhRewards8)) drlTanhRewards.append(np.mean(drlTanhRewards9)) drlTanhRewards.append(np.mean(drlTanhRewards10)) drlTanhRewards.append(np.mean(drlTanhRewards11)) drlTanhRewards.append(np.mean(drlTanhRewards12)) drlTanhRewards.append(np.mean(drlTanhRewards13)) drlTanhRewards.append(np.mean(drlTanhRewards14)) drlTanhRewards.append(np.mean(drlTanhRewards15)) drlTanhRewards.append(np.mean(drlTanhRewards16)) drlTanhRewards.append(np.mean(drlTanhRewards17)) drlTanhRewards.append(np.mean(drlTanhRewards18)) drlTanhRewards.append(np.mean(drlTanhRewards19)) drlTanhRewards.append(np.mean(drlTanhRewards20)) drlTanhRewards.append(np.mean(drlTanhRewards21)) drlTanhRewards.append(np.mean(drlTanhRewards22)) drlTanhRewards.append(np.mean(drlTanhRewards23)) drlTanhRewards.append(np.mean(drlTanhRewards24)) drlTanhRewards.append(np.mean(drlTanhRewards25)) drlTanhRewards.append(np.mean(drlTanhRewards26)) drlTanhRewards.append(np.mean(drlTanhRewards27)) drlTanhRewards.append(np.mean(drlTanhRewards28)) drlTanhRewards.append(np.mean(drlTanhRewards29)) drlTanhRewards.append(np.mean(drlTanhRewards30)) drlTanhRewards.append(np.mean(drlTanhRewards31)) drlTanhRewards.append(np.mean(drlTanhRewards32)) drlTanhRewards.append(np.mean(drlTanhRewards33)) drlTanhRewards.append(np.mean(drlTanhRewards34)) drlTanhRewards.append(np.mean(drlTanhRewards35)) drlTanhRewards.append(np.mean(drlTanhRewards36)) drlTanhRewards.append(np.mean(drlTanhRewards37)) drlTanhRewards.append(np.mean(drlTanhRewards38)) drlTanhRewards.append(np.mean(drlTanhRewards39)) drlTanhRewards.append(np.mean(drlTanhRewards40)) drlTanhRewards.append(np.mean(drlTanhRewards41)) drlTanhRewards.append(np.mean(drlTanhRewards42)) drlTanhRewards.append(np.mean(drlTanhRewards43)) drlTanhRewards.append(np.mean(drlTanhRewards44)) drlTanhRewards.append(np.mean(drlTanhRewards45)) drlTanhRewards.append(np.mean(drlTanhRewards46)) drlTanhRewards.append(np.mean(drlTanhRewards47)) drlTanhRewards.append(np.mean(drlTanhRewards48)) drlTanhRewards.append(np.mean(drlTanhRewards49)) drlTanhMakespanList.append(drlTanhMakespan0) drlTanhMakespanList.append(drlTanhMakespan1) drlTanhMakespanList.append(drlTanhMakespan2) drlTanhMakespanList.append(drlTanhMakespan3) drlTanhMakespanList.append(drlTanhMakespan4) drlTanhMakespanList.append(drlTanhMakespan5) drlTanhMakespanList.append(drlTanhMakespan6) drlTanhMakespanList.append(drlTanhMakespan7) drlTanhMakespanList.append(drlTanhMakespan8) drlTanhMakespanList.append(drlTanhMakespan9) drlTanhMakespanList.append(drlTanhMakespan10) drlTanhMakespanList.append(drlTanhMakespan11) drlTanhMakespanList.append(drlTanhMakespan12) drlTanhMakespanList.append(drlTanhMakespan13) drlTanhMakespanList.append(drlTanhMakespan14) drlTanhMakespanList.append(drlTanhMakespan15) drlTanhMakespanList.append(drlTanhMakespan16) drlTanhMakespanList.append(drlTanhMakespan17) drlTanhMakespanList.append(drlTanhMakespan18) drlTanhMakespanList.append(drlTanhMakespan19) drlTanhMakespanList.append(drlTanhMakespan20) drlTanhMakespanList.append(drlTanhMakespan21) drlTanhMakespanList.append(drlTanhMakespan22) drlTanhMakespanList.append(drlTanhMakespan23) drlTanhMakespanList.append(drlTanhMakespan24) drlTanhMakespanList.append(drlTanhMakespan25) drlTanhMakespanList.append(drlTanhMakespan26) drlTanhMakespanList.append(drlTanhMakespan27) drlTanhMakespanList.append(drlTanhMakespan28) drlTanhMakespanList.append(drlTanhMakespan29) drlTanhMakespanList.append(drlTanhMakespan30) drlTanhMakespanList.append(drlTanhMakespan31) drlTanhMakespanList.append(drlTanhMakespan32) drlTanhMakespanList.append(drlTanhMakespan33) drlTanhMakespanList.append(drlTanhMakespan34) drlTanhMakespanList.append(drlTanhMakespan35) drlTanhMakespanList.append(drlTanhMakespan36) drlTanhMakespanList.append(drlTanhMakespan37) drlTanhMakespanList.append(drlTanhMakespan38) drlTanhMakespanList.append(drlTanhMakespan39) drlTanhMakespanList.append(drlTanhMakespan40) drlTanhMakespanList.append(drlTanhMakespan41) drlTanhMakespanList.append(drlTanhMakespan42) drlTanhMakespanList.append(drlTanhMakespan43) drlTanhMakespanList.append(drlTanhMakespan44) drlTanhMakespanList.append(drlTanhMakespan45) drlTanhMakespanList.append(drlTanhMakespan46) drlTanhMakespanList.append(drlTanhMakespan47) drlTanhMakespanList.append(drlTanhMakespan48) drlTanhMakespanList.append(drlTanhMakespan49) drlTanhRewardsList.append(drlTanhRewards0) drlTanhRewardsList.append(drlTanhRewards1) drlTanhRewardsList.append(drlTanhRewards2) drlTanhRewardsList.append(drlTanhRewards3) drlTanhRewardsList.append(drlTanhRewards4) drlTanhRewardsList.append(drlTanhRewards5) drlTanhRewardsList.append(drlTanhRewards6) drlTanhRewardsList.append(drlTanhRewards7) drlTanhRewardsList.append(drlTanhRewards8) drlTanhRewardsList.append(drlTanhRewards9) drlTanhRewardsList.append(drlTanhRewards10) drlTanhRewardsList.append(drlTanhRewards11) drlTanhRewardsList.append(drlTanhRewards12) drlTanhRewardsList.append(drlTanhRewards13) drlTanhRewardsList.append(drlTanhRewards14) drlTanhRewardsList.append(drlTanhRewards15) drlTanhRewardsList.append(drlTanhRewards16) drlTanhRewardsList.append(drlTanhRewards17) drlTanhRewardsList.append(drlTanhRewards18) drlTanhRewardsList.append(drlTanhRewards19) drlTanhRewardsList.append(drlTanhRewards20) drlTanhRewardsList.append(drlTanhRewards21) drlTanhRewardsList.append(drlTanhRewards22) drlTanhRewardsList.append(drlTanhRewards23) drlTanhRewardsList.append(drlTanhRewards24) drlTanhRewardsList.append(drlTanhRewards25) drlTanhRewardsList.append(drlTanhRewards26) drlTanhRewardsList.append(drlTanhRewards27) drlTanhRewardsList.append(drlTanhRewards28) drlTanhRewardsList.append(drlTanhRewards29) drlTanhRewardsList.append(drlTanhRewards30) drlTanhRewardsList.append(drlTanhRewards31) drlTanhRewardsList.append(drlTanhRewards32) drlTanhRewardsList.append(drlTanhRewards33) drlTanhRewardsList.append(drlTanhRewards34) drlTanhRewardsList.append(drlTanhRewards35) drlTanhRewardsList.append(drlTanhRewards36) drlTanhRewardsList.append(drlTanhRewards37) drlTanhRewardsList.append(drlTanhRewards38) drlTanhRewardsList.append(drlTanhRewards39) drlTanhRewardsList.append(drlTanhRewards40) drlTanhRewardsList.append(drlTanhRewards41) drlTanhRewardsList.append(drlTanhRewards42) drlTanhRewardsList.append(drlTanhRewards43) drlTanhRewardsList.append(drlTanhRewards44) drlTanhRewardsList.append(drlTanhRewards45) drlTanhRewardsList.append(drlTanhRewards46) drlTanhRewardsList.append(drlTanhRewards47) drlTanhRewardsList.append(drlTanhRewards48) drlTanhRewardsList.append(drlTanhRewards49) for vector in drlTanhMakespanList: for element in vector: drlTanhMakespanValues.append(element) for vector in drlTanhRewardsList: for element in vector: drlTanhRewardsValues.append(element) smoothdrlTanhMakespanValues = pd.Series(drlTanhMakespanValues).rolling(12).mean() plt.plot(smoothdrlTanhMakespanValues) plt.xlabel("Episodios") plt.ylabel("Segundos") plt.title("'Makespan' utilizando feedforward con tanh") plt.show() smoothdrlTanhRewardsValues = pd.Series(drlTanhRewardsValues).rolling(12).mean() plt.plot(smoothdrlTanhRewardsValues) plt.xlabel("Episodios") plt.ylabel("Premio") plt.title("'Reward' utilizando feedforward con tanh") plt.show() #################### drlReluMakespan = [] drlReluRewards = [] drlReluMakespanList = [] drlReluRewardsList = [] drlReluMakespanValues = [] drlReluRewardsValues = [] drlReluMakespan.append(np.mean(drlReluMakespan0)) drlReluMakespan.append(np.mean(drlReluMakespan1)) drlReluMakespan.append(np.mean(drlReluMakespan2)) drlReluMakespan.append(np.mean(drlReluMakespan3)) drlReluMakespan.append(np.mean(drlReluMakespan4)) drlReluMakespan.append(np.mean(drlReluMakespan5)) drlReluMakespan.append(np.mean(drlReluMakespan6)) drlReluMakespan.append(np.mean(drlReluMakespan7)) drlReluMakespan.append(np.mean(drlReluMakespan8)) drlReluMakespan.append(np.mean(drlReluMakespan9)) drlReluMakespan.append(np.mean(drlReluMakespan10)) drlReluMakespan.append(np.mean(drlReluMakespan11)) drlReluMakespan.append(np.mean(drlReluMakespan12)) drlReluMakespan.append(np.mean(drlReluMakespan13)) drlReluMakespan.append(np.mean(drlReluMakespan14)) drlReluMakespan.append(np.mean(drlReluMakespan15)) drlReluMakespan.append(np.mean(drlReluMakespan16)) drlReluMakespan.append(np.mean(drlReluMakespan17)) drlReluMakespan.append(np.mean(drlReluMakespan18)) drlReluMakespan.append(np.mean(drlReluMakespan19)) drlReluMakespan.append(np.mean(drlReluMakespan20)) drlReluMakespan.append(np.mean(drlReluMakespan21)) drlReluMakespan.append(np.mean(drlReluMakespan22)) drlReluMakespan.append(
np.mean(drlReluMakespan23)
numpy.mean
import pickle import numpy as np import pandas as pd # Separating out AUC and specificity from pickle object def auc_lst(test_nos, dset_lst): metric_lst = [] auc_lst = [] spec_lst = [] for i, num in enumerate(test_nos): with open(f'../results/logs/{num}/log_Test{num}_roc_plt_lst.pkl', 'rb') as f: metric_lst.append(pickle.load(f)) for set_i, set_name in enumerate(dset_lst): for i, roc in enumerate(metric_lst): for index, thruple in enumerate(roc[set_i:set_i + 1]): # for conf_i,_ in enumerate(conf_lst): _, _, a_u_c, _, specificity = thruple auc_lst.append(a_u_c) spec_lst.append(specificity) return auc_lst, spec_lst if __name__ == '__main__': # Surgical markings # Getting AUC values for each random seed of each model type (replace test numbers as necessary) AUC_baseline, spec_baseline = auc_lst([249, 253, 257, 261, 265, 269], ['Heid_Blank', 'Heid_Marked']) AUC_LNTL, spec_LNTL = auc_lst([228, 254, 258, 262, 266, 270], ['Heid_Blank', 'Heid_Marked']) AUC_TABE, spec_TABE = auc_lst([229, 255, 259, 263, 267, 271], ['Heid_Blank', 'Heid_Marked']) AUC_CLGR, spec_CLGR = auc_lst([230, 256, 260, 264, 268, 272], ['Heid_Blank', 'Heid_Marked']) # Getting mean and standard deviation of AUC and specificity for baseline, LNTL, TABE and CLGR models # Tested on unbiased images df_plain = pd.DataFrame([[np.mean(AUC_baseline[0:6]), np.std(AUC_baseline[0:6]), np.mean(spec_baseline[0:6]), np.std(spec_baseline[0:6])], [np.mean(AUC_LNTL[0:6]), np.std(AUC_LNTL[0:6]), np.mean(spec_LNTL[0:6]), np.std(spec_LNTL[0:6])], [np.mean(AUC_TABE[0:6]), np.std(AUC_TABE[0:6]), np.mean(spec_TABE[0:6]), np.std(spec_TABE[0:6])], [np.mean(AUC_CLGR[0:6]), np.std(AUC_CLGR[0:6]), np.mean(spec_CLGR[0:6]), np.std(spec_CLGR[0:6])]], columns=['AUC_mean', 'AUC_std', 'specificity_mean', 'specificity_std']) df_plain['test'] = 'plain' # tested on biased images (marked) df_marked = pd.DataFrame([[np.mean(AUC_baseline[6:]), np.std(AUC_baseline[6:]), np.mean(spec_baseline[6:]), np.std(spec_baseline[6:])], [np.mean(AUC_LNTL[6:]), np.std(AUC_LNTL[6:]), np.mean(spec_LNTL[6:]), np.std(spec_LNTL[6:])], [np.mean(AUC_TABE[6:]), np.std(AUC_TABE[6:]), np.mean(spec_TABE[6:]), np.std(spec_TABE[6:])], [np.mean(AUC_CLGR[6:]), np.std(AUC_CLGR[6:]),
np.mean(spec_CLGR[6:])
numpy.mean
################################################################################ # Copyright (C) 2013-2014 <NAME> # # This file is licensed under the MIT License. ################################################################################ """ Unit tests for gaussian_markov_chain module. """ import numpy as np from ..gaussian_markov_chain import GaussianMarkovChain from ..gaussian_markov_chain import VaryingGaussianMarkovChain from ..gaussian import Gaussian, GaussianMoments from ..gaussian import GaussianARD from ..gaussian import GaussianGamma from ..wishart import Wishart, WishartMoments from ..gamma import Gamma, GammaMoments from bayespy.utils import random from bayespy.utils import linalg from bayespy.utils import misc from bayespy.utils.misc import TestCase def kalman_filter(y, U, A, V, mu0, Cov0, out=None): """ Perform Kalman filtering to obtain filtered mean and covariance. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values. Parameters ---------- y : (N,D) array "Normalized" noisy observations of the states, that is, the observations multiplied by the precision matrix U (and possibly other transformation matrices). U : (N,D,D) array or N-list of (D,D) arrays Precision matrix (i.e., inverse covariance matrix) of the observation noise for each time instance. A : (N-1,D,D) array or (N-1)-list of (D,D) arrays Dynamic matrix for each time instance. V : (N-1,D,D) array or (N-1)-list of (D,D) arrays Covariance matrix of the innovation noise for each time instance. Returns ------- mu : array Filtered mean of the states. Cov : array Filtered covariance of the states. See also -------- rts_smoother """ mu = mu0 Cov = Cov0 # Allocate memory for the results (N,D) = np.shape(y) X = np.empty((N,D)) CovX = np.empty((N,D,D)) # Update step for t=0 M = np.dot(np.dot(Cov, U[0]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov,y[0]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) X[0,:] = mu CovX[0,:,:] = Cov #for (yn, Un, An, Vn) in zip(y, U, A, V): for n in range(len(y)-1): #(yn, Un, An, Vn) in zip(y, U, A, V): # Prediction step mu = np.dot(A[n], mu) Cov = np.dot(np.dot(A[n], Cov), A[n].T) + V[n] # Update step M = np.dot(np.dot(Cov, U[n+1]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov,y[n+1]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) # Force symmetric covariance (for numeric inaccuracy) Cov = 0.5*Cov + 0.5*Cov.T # Store results X[n+1,:] = mu CovX[n+1,:,:] = Cov return (X, CovX) def rts_smoother(mu, Cov, A, V, removethis=None): """ Perform Rauch-Tung-Striebel smoothing to obtain the posterior. The function returns the posterior mean and covariance of each state. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values. Parameters ---------- mu : (N,D) array Mean of the states from Kalman filter. Cov : (N,D,D) array Covariance of the states from Kalman filter. A : (N-1,D,D) array or (N-1)-list of (D,D) arrays Dynamic matrix for each time instance. V : (N-1,D,D) array or (N-1)-list of (D,D) arrays Covariance matrix of the innovation noise for each time instance. Returns ------- mu : array Posterior mean of the states. Cov : array Posterior covariance of the states. See also -------- kalman_filter """ N = len(mu) #n = N-1 # Start from the last time instance and smoothen backwards x = mu[-1,:] Covx = Cov[-1,:,:] for n in reversed(range(N-1)):#(An, Vn) in zip(reversed(A), reversed(V)): #n = n - 1 #if n <= 0: # break # The predicted value of n x_p = np.dot(A[n], mu[n,:]) Cov_p = np.dot(np.dot(A[n], Cov[n,:,:]), A[n].T) + V[n] # Temporary variable S = np.linalg.solve(Cov_p, np.dot(A[n], Cov[n,:,:])) # Smoothed value of n x = mu[n,:] + np.dot(S.T, x-x_p) Covx = Cov[n,:,:] + np.dot(np.dot(S.T, Covx-Cov_p), S) # Force symmetric covariance (for numeric inaccuracy) Covx = 0.5*Covx + 0.5*Covx.T # Store results mu[n,:] = x Cov[n,:] = Covx return (mu, Cov) class TestGaussianMarkovChain(TestCase): def create_model(self, N, D): # Construct the model Mu = Gaussian(np.random.randn(D), np.identity(D)) Lambda = Wishart(D, random.covariance(D)) A = Gaussian(np.random.randn(D,D), np.identity(D)) V = Gamma(D, np.random.rand(D)) X = GaussianMarkovChain(Mu, Lambda, A, V, n=N) Y = Gaussian(X, np.identity(D)) return (Y, X, Mu, Lambda, A, V) def test_plates(self): """ Test that plates are handled correctly. """ def test_message_to_mu0(self): pass def test_message_to_Lambda0(self): pass def test_message_to_A(self): pass def test_message_to_v(self): pass def test_message_to_parents(self): """ Check gradient passed to inputs parent node """ N = 3 D = 2 Mu = Gaussian(np.random.randn(D), random.covariance(D)) Lambda = Wishart(D, random.covariance(D)) A = Gaussian(np.random.randn(D,D), random.covariance(D)) V = Gamma(D, np.random.rand(D)) X = GaussianMarkovChain(Mu, Lambda, A, V, n=N+1) Y = Gaussian(X, random.covariance(D)) self.assert_moments( X, postprocess=lambda u: [ u[0], u[1] + linalg.transpose(u[1], ndim=1), u[2] ] ) Y.observe(np.random.randn(N+1, D)) self.assert_message_to_parent(X, Mu, eps=1e-8) self.assert_message_to_parent( X, Lambda, eps=1e-8, postprocess=lambda u: [ u[0] + linalg.transpose(u[0], ndim=1), u[1], ] ) self.assert_message_to_parent(X, A) self.assert_message_to_parent(X, V, eps=1e-10, atol=1e-5) pass def test_message_to_parents_with_inputs(self): """ Check gradient passed to inputs parent node """ def check(Mu, Lambda, A, V, U): X = GaussianMarkovChain(Mu, Lambda, A, V, inputs=U) Y = Gaussian(X, random.covariance(D)) # Check moments self.assert_moments( X, postprocess=lambda u: [ u[0], u[1] + linalg.transpose(u[1], ndim=1), u[2] ] ) Y.observe(np.random.randn(N+1, D)) X.update() # Check gradient messages to parents self.assert_message_to_parent(X, Mu) self.assert_message_to_parent( X, Lambda, postprocess=lambda phi: [ phi[0] + linalg.transpose(phi[0], ndim=1), phi[1] ] ) self.assert_message_to_parent( X, A, postprocess=lambda phi: [ phi[0], phi[1] + linalg.transpose(phi[1], ndim=1), ] ) self.assert_message_to_parent(X, V) self.assert_message_to_parent(X, U) N = 4 D = 2 K = 3 check( Gaussian( np.random.randn(D), random.covariance(D) ), Wishart( D, random.covariance(D) ), Gaussian( np.random.randn(D,D+K), random.covariance(D+K) ), Gamma( D, np.random.rand(D) ), Gaussian( np.random.randn(N,K), random.covariance(K) ) ) check( Gaussian( np.random.randn(D), random.covariance(D) ), Wishart( D, random.covariance(D) ), GaussianGamma( np.random.randn(D,D+K), random.covariance(D+K), D, np.random.rand(D), ndim=1 ), Gamma( D, np.random.rand(D) ), Gaussian( np.random.randn(N,K), random.covariance(K) ) ) pass def test_message_to_child(self): """ Test the updating of GaussianMarkovChain. Check that the moments and the lower bound contribution are computed correctly. """ # TODO: Add plates and missing values! # Dimensionalities D = 3 N = 5 (Y, X, Mu, Lambda, A, V) = self.create_model(N, D) # Inference with arbitrary observations y = np.random.randn(N,D) Y.observe(y) X.update() (x_vb, xnxn_vb, xpxn_vb) = X.get_moments() # Get parameter moments (mu0, mumu0) = Mu.get_moments() (icov0, logdet0) = Lambda.get_moments() (a, aa) = A.get_moments() (icov_x, logdetx) = V.get_moments() icov_x = np.diag(icov_x) # Prior precision Z = np.einsum('...kij,...kk->...ij', aa, icov_x) U_diag = [icov0+Z] + (N-2)*[icov_x+Z] + [icov_x] U_super = (N-1) * [-np.dot(a.T, icov_x)] U = misc.block_banded(U_diag, U_super) # Prior mean mu_prior = np.zeros(D*N) mu_prior[:D] = np.dot(icov0,mu0) # Data Cov = np.linalg.inv(U + np.identity(D*N)) mu = np.dot(Cov, mu_prior + y.flatten()) # Moments xx = mu[:,np.newaxis]*mu[np.newaxis,:] + Cov mu = np.reshape(mu, (N,D)) xx = np.reshape(xx, (N,D,N,D)) # Check results self.assertAllClose(x_vb, mu, msg="Incorrect mean") for n in range(N): self.assertAllClose(xnxn_vb[n,:,:], xx[n,:,n,:], msg="Incorrect second moment") for n in range(N-1): self.assertAllClose(xpxn_vb[n,:,:], xx[n,:,n+1,:], msg="Incorrect lagged second moment") # Compute the entropy H(X) ldet = linalg.logdet_cov(Cov) H = random.gaussian_entropy(-ldet, N*D) # Compute <log p(X|...)> xx = np.reshape(xx, (N*D, N*D)) mu = np.reshape(mu, (N*D,)) ldet = -logdet0 - np.sum(np.ones((N-1,D))*logdetx) P = random.gaussian_logpdf(np.einsum('...ij,...ij', xx, U), np.einsum('...i,...i', mu, mu_prior), np.einsum('...ij,...ij', mumu0, icov0), -ldet, N*D) # The VB bound from the net l = X.lower_bound_contribution() self.assertAllClose(l, H+P) # Compute the true bound <log p(X|...)> + H(X) # # Simple tests # def check(N, D, plates=None, mu=None, Lambda=None, A=None, V=None): if mu is None: mu = np.random.randn(D) if Lambda is None: Lambda = random.covariance(D) if A is None: A = np.random.randn(D,D) if V is None: V = np.random.rand(D) X = GaussianMarkovChain(mu, Lambda, A, V, plates=plates, n=N) (u0, u1, u2) = X._message_to_child() (mu, mumu) = Gaussian._ensure_moments(mu, GaussianMoments, ndim=1).get_moments() (Lambda, _) = Wishart._ensure_moments(Lambda, WishartMoments, ndim=1).get_moments() (a, aa) = Gaussian._ensure_moments(A, GaussianMoments, ndim=1).get_moments() a = a * np.ones((N-1,D,D)) # explicit broadcasting for simplicity aa = aa * np.ones((N-1,D,D,D)) # explicit broadcasting for simplicity (v, _) = Gamma._ensure_moments(V, GammaMoments).get_moments() v = v * np.ones((N-1,D)) plates_C = X.plates plates_mu = X.plates C = np.zeros(plates_C + (N,D,N,D)) plates_mu = np.shape(mu)[:-1] m = np.zeros(plates_mu + (N,D)) m[...,0,:] = np.einsum('...ij,...j->...i', Lambda, mu) C[...,0,:,0,:] = Lambda + np.einsum('...dij,...d->...ij', aa[...,0,:,:,:], v[...,0,:]) for n in range(1,N-1): C[...,n,:,n,:] = (np.einsum('...dij,...d->...ij', aa[...,n,:,:,:], v[...,n,:]) + v[...,n,:,None] * np.identity(D)) for n in range(N-1): C[...,n,:,n+1,:] = -np.einsum('...di,...d->...id', a[...,n,:,:], v[...,n,:]) C[...,n+1,:,n,:] = -np.einsum('...di,...d->...di', a[...,n,:,:], v[...,n,:]) C[...,-1,:,-1,:] = v[...,-1,:,None]*np.identity(D) C = np.reshape(C, plates_C+(N*D,N*D)) Cov = np.linalg.inv(C) Cov = np.reshape(Cov, plates_C+(N,D,N,D)) m0 = np.einsum('...minj,...nj->...mi', Cov, m) m1 = np.zeros(plates_C+(N,D,D)) m2 = np.zeros(plates_C+(N-1,D,D)) for n in range(N): m1[...,n,:,:] = Cov[...,n,:,n,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n,:]) for n in range(N-1): m2[...,n,:,:] = Cov[...,n,:,n+1,:] + np.einsum('...i,...j->...ij', m0[...,n,:], m0[...,n+1,:]) self.assertAllClose(m0, u0*np.ones(np.shape(m0))) self.assertAllClose(m1, u1*np.ones(np.shape(m1))) self.assertAllClose(m2, u2*np.ones(np.shape(m2))) pass check(4,1) check(4,3) # # Test mu # # Simple check(4,3, mu=Gaussian(np.random.randn(3), random.covariance(3))) # Plates check(4,3, mu=Gaussian(np.random.randn(5,6,3), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3, mu=Gaussian(np.random.randn(3), random.covariance(3), plates=(5,))) check(4,3, mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3, plates=(5,), mu=Gaussian(np.random.randn(3), random.covariance(3), plates=())) check(4,3, plates=(5,), mu=Gaussian(np.random.randn(1,3), random.covariance(3), plates=(1,))) # # Test Lambda # # Simple check(4,3, Lambda=Wishart(10+np.random.rand(), random.covariance(3))) # Plates check(4,3, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,6))) # Plates with moments broadcasted over plates check(4,3, Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(5,))) check(4,3, Lambda=Wishart(10+np.random.rand(1), random.covariance(3), plates=(5,))) # Plates broadcasting check(4,3, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=())) check(4,3, plates=(5,), Lambda=Wishart(10+np.random.rand(), random.covariance(3), plates=(1,))) # # Test A # # Simple check(4,3, A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(3,))) # Plates on time axis check(5,3, A=GaussianARD(np.random.randn(4,3,3), np.random.rand(4,3,3), shape=(3,), plates=(4,3))) # Plates on time axis with broadcasted moments check(5,3, A=GaussianARD(np.random.randn(1,3,3), np.random.rand(1,3,3), shape=(3,), plates=(4,3))) check(5,3, A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(4,3))) # Plates check(4,3, A=GaussianARD(np.random.randn(5,6,1,3,3), np.random.rand(5,6,1,3,3), shape=(3,), plates=(5,6,1,3))) # Plates with moments broadcasted over plates check(4,3, A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(5,1,3))) check(4,3, A=GaussianARD(np.random.randn(1,1,3,3), np.random.rand(1,1,3,3), shape=(3,), plates=(5,1,3))) # Plates broadcasting check(4,3, plates=(5,), A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(3,))) check(4,3, plates=(5,), A=GaussianARD(np.random.randn(3,3), np.random.rand(3,3), shape=(3,), plates=(1,1,3))) # # Test v # # Simple check(4,3, V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(1,3))) check(4,3, V=Gamma(np.random.rand(3), np.random.rand(3), plates=(3,))) # Plates check(4,3, V=Gamma(np.random.rand(5,6,1,3), np.random.rand(5,6,1,3), plates=(5,6,1,3))) # Plates with moments broadcasted over plates check(4,3, V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(5,1,3))) check(4,3, V=Gamma(np.random.rand(1,1,3), np.random.rand(1,1,3), plates=(5,1,3))) # Plates broadcasting check(4,3, plates=(5,), V=Gamma(np.random.rand(1,3), np.random.rand(1,3), plates=(1,3))) check(4,3, plates=(5,), V=Gamma(np.random.rand(1,1,3), np.random.rand(1,1,3), plates=(1,1,3))) # # Check with input signals # mu = 2 Lambda = 3 A = 4 B = 5 v = 6 inputs = [[-2], [3]] X = GaussianMarkovChain([mu], [[Lambda]], [[A,B]], [v], inputs=inputs) V = (np.array([[v*A**2, -v*A, 0], [-v*A, v*A**2, -v*A], [0, -v*A, 0]]) + np.array([[Lambda, 0, 0], [0, v, 0], [0, 0, v]])) m = (np.array([Lambda*mu, 0, 0]) + np.array([0, v*B*inputs[0][0], v*B*inputs[1][0]]) - np.array([v*A*B*inputs[0][0], v*A*B*inputs[1][0], 0])) Cov = np.linalg.inv(V) mean = np.dot(Cov, m) X.update() u = X.get_moments() self.assertAllClose(u[0], mean[:,None]) self.assertAllClose(u[1] - u[0][...,None,:]*u[0][...,:,None], Cov[(0,1,2),(0,1,2),None,None]) self.assertAllClose(u[2] - u[0][...,:-1,:,None]*u[0][...,1:,None,:], Cov[(0,1),(1,2),None,None]) pass def test_smoothing(self): """ Test the posterior estimation of GaussianMarkovChain. Create time-variant dynamics and compare the results of BayesPy VB inference and standard Kalman filtering & smoothing. This is not that useful anymore, because the moments are checked much better in another test method. """ # # Set up an artificial system # # Dimensions N = 500 D = 2 # Dynamics (time varying) A0 = np.array([[.9, -.4], [.4, .9]]) A1 = np.array([[.98, -.1], [.1, .98]]) l = np.linspace(0, 1, N-1).reshape((-1,1,1)) A = (1-l)*A0 + l*A1 # Innovation covariance matrix (time varying) v = np.random.rand(D) V = np.diag(v) # Observation noise covariance matrix C = np.identity(D) # # Simulate data # X = np.empty((N,D)) Y = np.empty((N,D)) x = np.array([0.5, -0.5]) X[0,:] = x Y[0,:] = x + np.random.multivariate_normal(np.zeros(D), C) for n in range(N-1): x = np.dot(A[n,:,:],x) + np.random.multivariate_normal(np.zeros(D), V) X[n+1,:] = x Y[n+1,:] = x + np.random.multivariate_normal(np.zeros(D), C) # # BayesPy inference # # Construct VB model Xh = GaussianMarkovChain(np.zeros(D), np.identity(D), A, 1/v, n=N) Yh = Gaussian(Xh, np.identity(D), plates=(N,)) # Put data Yh.observe(Y) # Run inference Xh.update() # Store results Xh_vb = Xh.u[0] CovXh_vb = Xh.u[1] - Xh_vb[...,np.newaxis,:] * Xh_vb[...,:,np.newaxis] # # "The ground truth" using standard Kalman filter and RTS smoother # V = N*(V,) UY = Y U = N*(C,) (Xh, CovXh) = kalman_filter(UY, U, A, V, np.zeros(D), np.identity(D)) (Xh, CovXh) = rts_smoother(Xh, CovXh, A, V) # # Check results # self.assertTrue(np.allclose(Xh_vb, Xh)) self.assertTrue(np.allclose(CovXh_vb, CovXh)) class TestVaryingGaussianMarkovChain(TestCase): def test_plates_from_parents(self): """ Test that VaryingGaussianMarkovChain deduces plates correctly """ def check(plates_X, plates_mu=(), plates_Lambda=(), plates_B=(), plates_S=(), plates_v=()): D = 3 K = 2 N = 4 np.random.seed(42) mu = Gaussian(np.random.randn(*(plates_mu+(D,))), random.covariance(D)) Lambda = Wishart(D+np.ones(plates_Lambda), random.covariance(D)) B = GaussianARD(np.random.randn(*(plates_B+(D,D,K))), 1+np.random.rand(*(plates_B+(D,D,K))), shape=(D,K), plates=plates_B+(D,)) S = GaussianARD(np.random.randn(*(plates_S+(N,K))), 1+np.random.rand(*(plates_S+(N,K))), shape=(K,), plates=plates_S+(N,)) v = Gamma(1+np.random.rand(*(plates_v+(1,D))), 1+np.random.rand(*(plates_v+(1,D)))) X = VaryingGaussianMarkovChain(mu, Lambda, B, S, v, name="X") self.assertEqual(plates_X, X.plates, msg="Incorrect plates deduced") pass check(()) check((2,3), plates_mu=(2,3)) check((6,7), plates_Lambda=(6,7)) check((2,3), plates_B=(2,3)) check((2,3), plates_S=(2,3)) check((2,3), plates_v=(2,3)) pass def test_message_to_child(self): # A very simple check before the more complex ones: # 1-D process, k=1, fixed constant parameters m = 1.0 l = 4.0 b = 2.0 s = [3.0, 8.0] v = 5.0 X = VaryingGaussianMarkovChain([m], [[l]], [[[b]]], [[s[0]],[s[1]]], [v]) (u0, u1, u2) = X._message_to_child() C = np.array([[l+b**2*s[0]**2*v, -b*s[0]*v, 0], [ -b*s[0]*v, v+b**2*s[1]**2*v, -b*s[1]*v], [ 0, -b*s[1]*v, v]]) Cov = np.linalg.inv(C) m0 = np.dot(Cov, [[l*m], [0], [0]]) m1 = np.diag(Cov)[:,None,None] + m0[:,:,None]**2 m2 = np.diag(Cov, k=1)[:,None,None] + m0[1:,:,None]*m0[:-1,:,None] self.assertAllClose(m0, u0) self.assertAllClose(m1, u1) self.assertAllClose(m2, u2) def check(N, D, K, plates=None, mu=None, Lambda=None, B=None, S=None, V=None): if mu is None: mu = np.random.randn(D) if Lambda is None: Lambda = random.covariance(D) if B is None: B = np.random.randn(D,D,K) if S is None: S =
np.random.randn(N-1,K)
numpy.random.randn
#-*- coding: utf-8 -*- from __future__ import (print_function, division, absolute_import, unicode_literals) from cellularautomata2d import CellAutomata2D import numpy as np from matplotlib import pyplot as plt from matplotlib import colors as colors from matplotlib import animation class Sandpiles(CellAutomata2D): def __init__(self, xlen, ylen, pbc=False, maxheight=4, cmap="Reds"): CellAutomata2D.__init__(self, xlen, ylen, pbc=pbc, dtype=int) self.maxheight = int(maxheight) # Create auxiliar lattices # Stores the modifications in the last step self._auxlatt = np.zeros((self._ylen_bc, self._xlen_bc), dtype=self.dtype) # Stores the cells bigger than maxheight in the last step self._collapse = np.zeros((self._ylen_bc, self._xlen_bc), dtype=self.dtype) # Create colormap for plots self.vmincolor = 0 - 0.5 self.vmaxcolor = 2*maxheight + 0.5 bounds = np.arange(0, 2*maxheight, 2*maxheight + 1) - 0.5 self.cnorm = colors.BoundaryNorm(bounds, 256) self.cmap = plt.cm.get_cmap(cmap, 9) def randomfill(self, minval=0, maxval=None): """Fill the lattice randomly with values in the given range. """ if maxval == None: maxval = self.maxheight for idx, height in np.ndenumerate(self.latt): self.latt[idx] = np.random.randint(minval, maxval) return def randomfill_mass(self, mass): """Fill the lattice randomly up to a given total mass. """ for i in range(mass): flat_idx = np.random.randint(0, self.size-1) self.latt.flat[flat_idx] += 1 return # def mass(self): # """Return the value of the total mass of the system. # # """ # lattmass = self.latt.sum() # return lattmass def _evolvestep(self): """Evolve the system one step. Returns ------- is_active : bool True if the lattice have moved and False otherwise. """ self._auxlatt.fill(0) self._collapse[self._latt_idx] = (self.latt > self.maxheight).astype(int) self._auxlatt -= self.maxheight*self._collapse self._auxlatt += np.roll(self._collapse, 1, axis=0) self._auxlatt += np.roll(self._collapse, -1, axis=0) self._auxlatt +=
np.roll(self._collapse, 1, axis=1)
numpy.roll
from __future__ import unicode_literals from django.db import models from django.contrib.auth.models import User import datetime as dt from tinymce.models import HTMLField from django.dispatch import receiver from django.db.models.signals import post_save from django.urls import reverse from django.template.defaultfilters import slugify from django.conf import settings from django.db.models import Avg, Max, Min import numpy as np def post_save_user_model(sender,instance,created,*args,**kwargs): if created: try: Profile.objects.create(user = instance) except: pass post_save.connect(post_save_user_model,sender=settings.AUTH_USER_MODEL) class Profile(models.Model): profile_image = models.ImageField(blank=True,upload_to='profiles/') bio = models.TextField() user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='profile') def save_profile(self): self.save() @classmethod def get_by_id(cls, id): profile = Profile.objects.get(user = id) return profile def filter_by_id(cls, id): profile = Profile.objects.filter(user = id).first() return profile def get_absolute_url(self): return reverse('user_profile') def __str__(self): return self.user class Project(models.Model): """ This is the class we will use to create images """ image_url = models.ImageField(upload_to = "images/") title = models.CharField(max_length = 30) description = HTMLField() poster = models.ForeignKey(User,related_name='images') date = models.DateTimeField(auto_now_add = True,null = True) url = models.URLField(max_length = 100) def average_design(self): design_ratings = list(map(lambda x: x.design_rating, self.reviews.all())) return np.mean(design_ratings) def average_usability(self): usability_ratings = list(map(lambda x: x.usability_rating, self.reviews.all())) return
np.mean(usability_ratings)
numpy.mean
from __future__ import division import copy import numpy as np from ellipse.geometry import Geometry, DEFAULT_EPS, DEFAULT_STEP, PHI_MIN from ellipse.integrator import integrators, BI_LINEAR DEFAULT_SCLIP = 3. class Sample(object): def __init__(self, image, sma, x0=None, y0=None, astep=DEFAULT_STEP, eps=DEFAULT_EPS, position_angle=0.0, sclip=DEFAULT_SCLIP, nclip=0, linear_growth=False, integrmode=BI_LINEAR, geometry=None): ''' A Sample instance describes an elliptical path over the image, over which intensities can be extracted using a selection of integration algorithms. The Sample instance contains a 'geometry' attribute that describes its geometry. Parameters ---------- :param image: numpy 2-d array pixels :param sma: float the semi-major axis length in pixels :param x0: float, default=None the X coordinate of the ellipse center :param y0: foat, default=None the Y coordinate of the ellipse center :param astep: float, default=0.1 step value for growing/shrinking the semi- major axis. It can be expressed either in pixels (when 'linear_growth'=True) or in relative value (when 'linear_growth=False') :param eps: ellipticity, default=0.2 ellipticity :param pa: float, default=0.0 position angle of ellipse in relation to the +X axis of the image array (rotating towards the +Y axis). :param sclip: float, default=3.0 sigma-clip value :param nclip: int, default=0 number of sigma-clip interations. If 0, skip sigma-clipping. :param linear_growth: boolean, default=False semi-major axis growing/shrinking mode :param integrmode: string, default=BI_LINEAR area integration mode, as defined in module integrator.py :param geometry: Geometry instance, default=None the geometry that describes the ellipse. This can be used in lieu of the explicit specification of parameters 'sma', 'x0', 'y0', 'eps', etc. In any case, the Geometry instance becomes an attribute of the Sample object. Attributes ---------- :param values: 2-d numpy array sampled values as a 2-d numpy array with the following structure: values[0] = 1-d array with angles values[1] = 1-d array with radii values[2] = 1-d array with intensity :param mean: float the mean intensity along the elliptical path :param gradient: float the local radial intensity gradient :param gradient_error: float the error associated with the local radial intensity gradient :param gradient_relative_error: float the relative error associated with the local radial intensity gradient :param sector_area: float the average area of the sectors along the elliptical path where the sample values were integrated from. :param total_points: int the total number of sample values that would cover the entire elliptical path :param actual_points: int the actual number of sample values that were taken from the image. It can be smaller than total_points when the ellipse encompasses regions outside the image, or when signa-clipping removed some of the points. ''' self.image = image self.integrmode = integrmode if geometry: # when the geometry is inherited from somewhere else, # its 'sma' attribute must be replaced by the value # explicitly passed to the constructor. self.geometry = copy.deepcopy(geometry) self.geometry.sma = sma else: # if no center was specified, assume it's roughly # coincident with the image center _x0 = x0 _y0 = y0 if not _x0 or not _y0: _x0 = image.shape[0] / 2 _y0 = image.shape[1] / 2 self.geometry = Geometry(_x0, _y0, sma, eps, position_angle, astep, linear_growth) # sigma-clip parameters self.sclip = sclip self.nclip = nclip # extracted values associated with this sample. self.values = None self.mean = None self.gradient = None self.gradient_error = None self.gradient_relative_error = None self.sector_area = None # total_points reports the total number of pairs angle-radius that # were attempted. actual_points reports the actual number of sampled # pairs angle-radius that resulted in valid values. self.total_points = 0 self.actual_points = 0 def extract(self): ''' Build sample by scanning elliptical path over image array :return: numpy 2-d array contains three elements. Each element is a 1-d array containing respectively angles, radii, and extracted intensity values. ''' # the sample values themselves are kept cached to prevent # multiple calls to the integrator code. if self.values is not None: return self.values else: s = self._extract() self.values = s return s def _extract(self): # Here the actual sampling takes place. This is called only once # during the life of a Sample instance, because it's an expensive # calculation. This method should not be called from external code. # If one wants to force it to re-run, then do: # # sample.values = None # # before calling sample.extract() # individual extracted sample points will be stored in here angles = [] radii = [] intensities = [] sector_areas = [] # reset counters self.total_points = 0 self.actual_points = 0 # build integrator integrator = integrators[self.integrmode](self.image, self.geometry, angles, radii, intensities) # initialize walk along elliptical path radius = self.geometry.initial_polar_radius phi = self.geometry.initial_polar_angle # In case of an area integrator, ask the integrator to deliver a hint of how much # area the sectors will have. In case of too small areas, tests showed that the # area integrators (mean, median) won't perform properly. In that case, we override # the caller's selection and use the bi-linear integrator regardless. if integrator.is_area(): integrator.integrate(radius, phi) area = integrator.get_sector_area() # this integration that just took place messes up with the storage # arrays and the constructors. We have to build a new integrator # instance from scratch, even if it is the same kind as originally # selected by the caller. angles = [] radii = [] intensities = [] if area < 1.0: integrator = integrators[BI_LINEAR](self.image, self.geometry, angles, radii, intensities) else: integrator = integrators[self.integrmode](self.image, self.geometry, angles, radii, intensities) # walk along elliptical path, integrating at specified # places defined by polar vector. Need to go a bit beyond # full circle to ensure full coverage. while (phi <= np.pi*2.+PHI_MIN): # do the integration at phi-radius position, and append # results to the angles, radii, and intensities lists. integrator.integrate(radius, phi) # store sector area locally sector_areas.append(integrator.get_sector_area()) # update total number of points self.total_points += 1 # update angle and radius to be used to define # next polar vector along the elliptical path phistep_ = integrator.get_polar_angle_step() phi += min(phistep_, 0.5) radius = self.geometry.radius(phi) # average sector area is calculated after the integrator had # the opportunity to step over the entire elliptical path. self.sector_area = np.mean(np.array(sector_areas)) # apply sigma-clipping. angles, radii, intensities = self._sigma_clip(angles, radii, intensities) # actual number of sampled points, after sigma-clip removed outliers. self.actual_points = len(angles) # pack results in 2-d array result = np.array([np.array(angles), np.array(radii), np.array(intensities)]) return result def _sigma_clip(self, angles, radii, intensities): if self.nclip > 0: for iter in range(self.nclip): angles, radii, intensities = self._iter_sigma_clip(angles.copy(), radii.copy(), intensities.copy()) return np.array(angles), np.array(radii), np.array(intensities) def _iter_sigma_clip(self, angles, radii, intensities): # Can't use scipy or astropy tools because they use masked arrays. # Also, they operate on a single array, and we need to operate on # three arrays simultaneously. We need something that physically # removes the clipped points from the arrays, since that is what # the remaining of the 'ellipse' code expects. r_angles = [] r_radii = [] r_intensities = [] values = np.array(intensities) mean = np.mean(values) sig = np.std(values) lower = mean - self.sclip * sig upper = mean + self.sclip * sig count = 0 for k in range(len(intensities)): if intensities[k] >= lower and intensities[k] < upper: r_angles.append(angles[k]) r_radii.append(radii[k]) r_intensities.append(intensities[k]) count += 1 return r_angles, r_radii, r_intensities def update(self): ''' Update this Sample instance with the mean intensity and local gradient values. ''' step = self.geometry.astep # Update the mean value first, using extraction from main sample. s = self.extract() self.mean = np.mean(s[2]) # Get sample with same geometry but at a different distance from # center. Estimate gradient from there. gradient, gradient_error = self._get_gradient(step) # Check for meaningful gradient. If no meaningful gradient, try # another sample, this time using larger radius. Meaningful # gradient means something shallower, but still close to within # a factor 3 from previous gradient estimate. If no previous # estimate is available, guess it. previous_gradient = self.gradient if not previous_gradient: previous_gradient = -0.05 # good enough, based on usage if gradient >= (previous_gradient / 3.): # gradient is negative! gradient, gradient_error = self._get_gradient(2 * step) # If still no meaningful gradient can be measured, try with previous # one, slightly shallower. A factor 0.8 is not too far from what is # expected from geometrical sampling steps of 10-20% and a # deVaucouleurs law or an exponential disk (at least at its inner parts, # r <~ 5 req). Gradient error is meaningless in this case. if gradient >= (previous_gradient / 3.): gradient = previous_gradient * 0.8 gradient_error = None self.gradient = gradient self.gradient_error = gradient_error if gradient_error: self.gradient_relative_error = gradient_error / np.abs(gradient) else: self.gradient_relative_error = None def _get_gradient(self, step): gradient_sma = (1. + step) * self.geometry.sma gradient_sample = Sample(self.image, gradient_sma, x0=self.geometry.x0, y0=self.geometry.y0, astep=self.geometry.astep, sclip=self.sclip, nclip=self.nclip, eps=self.geometry.eps, position_angle=self.geometry.pa, linear_growth=self.geometry.linear_growth, integrmode=self.integrmode) sg = gradient_sample.extract() mean_g = np.mean(sg[2]) gradient = (mean_g - self.mean) / self.geometry.sma / step s = self.extract() sigma = np.std(s[2]) sigma_g = np.std(sg[2]) gradient_error = np.sqrt(sigma**2 / len(s[2]) + sigma_g**2 / len(sg[2])) / self.geometry.sma / step return gradient, gradient_error def coordinates(self): ''' Returns the X-Y coordinates associated with each sampled point. :return: 1-D numpy arrays two arrays with the X and Y coordinates, respectively ''' angles = self.values[0] radii = self.values[1] x = np.zeros(len(angles)) y = np.zeros(len(angles)) for i in range(len(x)): x[i] = radii[i] * np.cos(angles[i] + self.geometry.pa) + self.geometry.x0 y[i] = radii[i] *
np.sin(angles[i] + self.geometry.pa)
numpy.sin
# -*- coding: utf-8 -*- """Orientation models.""" import numpy as np from .closures import compute_closure def jeffery_ode(a, t, xi, L, closure="IBOF", **kwargs): """ODE describing Jeffery's model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME> 'The motion of ellipsoidal particles immersed in a viscous fluid', Proceedings of the Royal Society A, 1922. https://doi.org/10.1098/rspa.1922.0078 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) return dadt.ravel() def folgar_tucker_ode(a, t, xi, L, Ci=0.0, closure="IBOF", **kwargs): """ODE describing the Folgar-Tucker model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME> III, 'Orientation behavior of fibers in concentrated suspensions', Journal of Reinforced Plastic Composites 3, 98-119, 1984. https://doi.org/10.1177%2F073168448400300201 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) + 2 * Ci * G * (delta - 3 * a) ) return dadt.ravel() def maier_saupe_ode(a, t, xi, L, Ci=0.0, U0=0.0, closure="IBOF", **kwargs): """ODE using Folgar-Tucker constant and Maier-Saupe potential. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.1). U0 : float Maier-Saupe Potential (in 3D stable for y U0 < 8 Ci). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>, <NAME>, <NAME>, 'Comparative numerical study of two concentrated fiber suspension models', Journal of Non-Newtonian Fluid Mechanics 165, 764-781, 2010. https://doi.org/10.1016/j.jnnfm.2010.04.001 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) dadt = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) + 2 * G * ( Ci * (delta - 3 * a) + U0 * (np.einsum("ik,kj->ij", a, a) - np.einsum("ijkl,kl->ij", A, a)) ) ) return dadt.ravel() def iard_ode(a, t, xi, L, Ci=0.0, Cm=0.0, closure="IBOF", **kwargs): """ODE describing iARD model. Parameters ---------- a : 9x1 numpy array Flattened fiber orientation tensor. t : float Time of evaluation. xi : float Shape factor computed from aspect ratio. L : function handle Function to compute velocity gradient at time t. Ci : float Fiber interaction constant (typically 0 < Ci < 0.05). Cm : float Anisotropy factor (0 < Cm < 1). closure: str Name of closure to be used. Returns ------- 9x1 numpy array Orientation tensor rate. References ---------- .. [1] <NAME>; <NAME>; <NAME>, 'An objective tensor to predict anisotropic fiber orientation in concentrated suspensions', Journal of Rheology 60, 215, 2016. https://doi.org/10.1122/1.4939098 """ a = np.reshape(a, (3, 3)) A = compute_closure(a, closure) D = 0.5 * (L(t) + np.transpose(L(t))) W = 0.5 * (L(t) - np.transpose(L(t))) G = np.sqrt(2.0 * np.einsum("ij,ij", D, D)) delta = np.eye(3) D2 = np.einsum("ik,kj->ij", D, D) D2_norm = np.sqrt(1.0 / 2.0 * np.einsum("ij,ij", D2, D2)) Dr = Ci * (delta - Cm * D2 / D2_norm) dadt_HD = ( np.einsum("ik,kj->ij", W, a) - np.einsum("ik,kj->ij", a, W) + xi * ( np.einsum("ik,kj->ij", D, a) + np.einsum("ik,kj->ij", a, D) - 2 * np.einsum("ijkl,kl->ij", A, D) ) ) dadt_iard = G * ( 2 * Dr - 2 * np.trace(Dr) * a - 5 * np.einsum("ik,kj->ij", Dr, a) - 5 * np.einsum("ik,kj->ij", a, Dr) + 10 *
np.einsum("ijkl,kl->ij", A, Dr)
numpy.einsum
# Licensed under a 3-clause BSD style license - see LICENSE.rst # pylint: disable=invalid-name import unittest.mock as mk from math import cos, sin import numpy as np import pytest from numpy.testing import assert_allclose import astropy.units as u from astropy.modeling import models, rotations from astropy.tests.helper import assert_quantity_allclose from astropy.wcs import wcs @pytest.mark.parametrize(('inp'), [(0, 0), (4000, -20.56), (-2001.5, 45.9), (0, 90), (0, -90), (np.mgrid[:4, :6]), ([[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]), ([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]], [[[25, 26, 27, 28], [29, 30, 31, 32], [33, 34, 35, 36]], [[37, 38, 39, 40], [41, 42, 43, 44], [45, 46, 47, 48]]])]) def test_against_wcslib(inp): w = wcs.WCS() crval = [202.4823228, 47.17511893] w.wcs.crval = crval w.wcs.ctype = ['RA---TAN', 'DEC--TAN'] lonpole = 180 tan = models.Pix2Sky_TAN() n2c = models.RotateNative2Celestial(crval[0], crval[1], lonpole) c2n = models.RotateCelestial2Native(crval[0], crval[1], lonpole) m = tan | n2c minv = c2n | tan.inverse radec = w.wcs_pix2world(inp[0], inp[1], 1) xy = w.wcs_world2pix(radec[0], radec[1], 1) assert_allclose(m(*inp), radec, atol=1e-12) assert_allclose(minv(*radec), xy, atol=1e-12) @pytest.mark.parametrize(('inp'), [(1e-5, 1e-4), (40, -20.56), (21.5, 45.9), ([[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]), ([[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]], [[[25, 26, 27, 28], [29, 30, 31, 32], [33, 34, 35, 36]], [[37, 38, 39, 40], [41, 42, 43, 44], [45, 46, 47, 48]]])]) def test_roundtrip_sky_rotation(inp): lon, lat, lon_pole = 42, 43, 44 n2c = models.RotateNative2Celestial(lon, lat, lon_pole) c2n = models.RotateCelestial2Native(lon, lat, lon_pole) assert_allclose(n2c.inverse(*n2c(*inp)), inp, atol=1e-13) assert_allclose(c2n.inverse(*c2n(*inp)), inp, atol=1e-13) def test_native_celestial_lat90(): n2c = models.RotateNative2Celestial(1, 90, 0) alpha, delta = n2c(1, 1) assert_allclose(delta, 1) assert_allclose(alpha, 182) def test_Rotation2D(): model = models.Rotation2D(angle=90) x, y = model(1, 0) assert_allclose([x, y], [0, 1], atol=1e-10) def test_Rotation2D_quantity(): model = models.Rotation2D(angle=90*u.deg) x, y = model(1*u.deg, 0*u.arcsec) assert_quantity_allclose([x, y], [0, 1]*u.deg, atol=1e-10*u.deg) def test_Rotation2D_inverse(): model = models.Rotation2D(angle=234.23494) x, y = model.inverse(*model(1, 0)) assert_allclose([x, y], [1, 0], atol=1e-10) def test_Rotation2D_errors(): model = models.Rotation2D(angle=90*u.deg) # Bad evaluation input shapes x = np.array([1, 2]) y =
np.array([1, 2, 3])
numpy.array
import numpy as np from PIL import Image, ImageChops from matplotlib.animation import FFMpegWriter import matplotlib.pyplot as plt from pathlib import Path BACKGROUND_COLOUR = "#000000FF" FRAME_RATE = 60 static_street_frames = FRAME_RATE fade_to_background_frames = 5 * FRAME_RATE static_wire_frames = FRAME_RATE fade_to_foreground_frames = 5 * FRAME_RATE fade_to_background_indices =
np.linspace(1, 2001, fade_to_background_frames, dtype=np.int64)
numpy.linspace
# PrufPlantAnalysis # # This class defines key analytical routines for the PRUF/WRA Benchmarking # standard operational assessment. # # The PrufPlantAnalysis object is a factory which instantiates either the Pandas, Dask, or Spark # implementation depending on what the user prefers. # # The resulting object is loaded as a plugin into each PlantData object. import random import numpy as np import pandas as pd import statsmodels.api as sm from tqdm import tqdm from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold from operational_analysis.toolkits import met_data_processing as mt from operational_analysis.toolkits import timeseries as tm from operational_analysis.toolkits.machine_learning_setup import MachineLearningSetup from operational_analysis.toolkits import unit_conversion as un from operational_analysis.toolkits import filters from operational_analysis.types import timeseries_table from operational_analysis import logged_method_call from operational_analysis import logging logger = logging.getLogger(__name__) class MonteCarloAEP(object): """ A serial (Pandas-driven) implementation of the benchmark PRUF operational analysis implementation. This module collects standard processing and analysis methods for estimating plant level operational AEP and uncertainty. The preprocessing should run in this order: 1. Process revenue meter energy - creates monthly/daily data frame, gets revenue meter on monthly/daily basis, and adds data flag 2. Process loss estimates - add monthly/daily curtailment and availabilty losses to monthly/daily data frame 3. Process reanalysis data - add monthly/daily density-corrected wind speeds, temperature (if used) and wind direction (if used) from several reanalysis products to the monthly data frame 4. Set up Monte Carlo - create the necessary Monte Carlo inputs to the OA process 5. Run AEP Monte Carlo - run the OA process iteratively to get distribution of AEP results The end result is a distribution of AEP results which we use to assess expected AEP and associated uncertainty """ @logged_method_call def __init__(self, plant, reanal_products=["merra2", "ncep2", "erai","era5"], uncertainty_meter=0.005, uncertainty_losses=0.05, uncertainty_windiness=(10, 20), uncertainty_loss_max=(10, 20), uncertainty_nan_energy=0.01, time_resolution = 'M', reg_model = 'lin', ml_setup_kwargs={}, reg_temperature = False, reg_winddirection = False): """ Initialize APE_MC analysis with data and parameters. Args: plant(:obj:`PlantData object`): PlantData object from which PlantAnalysis should draw data. reanal_products(obj:`list`) : List of reanalysis products to use for Monte Carlo sampling. Defaults to ["merra2", "ncep2", "erai"]. uncertainty_meter(:obj:`float`): uncertainty on revenue meter data uncertainty_losses(:obj:`float`): uncertainty on long-term losses uncertainty_windiness(:obj:`tuple`): number of years to use for the windiness correction uncertainty_loss_max(:obj:`tuple`): threshold for the combined availabilty and curtailment monthly loss threshold uncertainty_nan_energy(:obj:`float`): threshold to flag days/months based on NaNs time_resolution(:obj:`string`): whether to perform the AEP calculation at monthly ('M') or daily ('D') time resolution reg_model(:obj:`string`): which model to use for the regression ('lin' for linear, 'gam', 'gbm', 'etr'). At monthly time resolution only linear regression is allowed because of the reduced number of data points. ml_setup_kwargs(:obj:`kwargs`): keyword arguments to MachineLearningSetup class reg_temperature(:obj:`bool`): whether to include temperature (True) or not (False) as regression input reg_winddirection(:obj:`bool`): whether to include wind direction (True) or not (False) as regression input """ logger.info("Initializing MonteCarloAEP Analysis Object") self._aggregate = timeseries_table.TimeseriesTable.factory(plant._engine) self._plant = plant # defined at runtime self._reanal_products = reanal_products # set of reanalysis products to use # Memo dictionaries help speed up computation self.outlier_filtering = {} # Combinations of outlier filter results self.long_term_sampling = {} # Combinations of long-term reanalysis data sampling self.opt_model = {} # Optimized ML model hyperparameters for each reanalysis product # Define relevant uncertainties, data ranges and max thresholds to be applied in Monte Carlo sampling self.uncertainty_meter = np.float64(uncertainty_meter) self.uncertainty_losses = np.float64(uncertainty_losses) self.uncertainty_windiness = np.array(uncertainty_windiness, dtype=np.float64) self.uncertainty_loss_max = np.array(uncertainty_loss_max, dtype=np.float64) self.uncertainty_nan_energy = np.float64(uncertainty_nan_energy) # Check that selected time resolution is allowed if time_resolution not in ['M','D']: raise ValueError("time_res has to either be M (monthly, default) or D (daily)") self.time_resolution = time_resolution self._resample_freq = {"M": 'MS', "D": 'D'}[self.time_resolution] self._hours_in_res = {"M": 30*24, "D": 1*24}[self.time_resolution] self._calendar_samples = {"M": 12, "D": 365.25}[self.time_resolution] self.num_days_lt = (31, 28.25, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31) # Check that choices for regression inputs are allowed if reg_temperature not in [True, False]: raise ValueError("reg_temperature has to either be True (if temperature is considered in the regression), or False (if temperature is omitted") if reg_winddirection not in [True, False]: raise ValueError("reg_winddirection has to either be True (if wind direction is considered in the regression), or False (if wind direction is omitted") self.reg_winddirection = reg_winddirection self.reg_temperature = reg_temperature # Build list of regression variables self._rean_vars = [] if self.reg_temperature: self._rean_vars += ["temperature_K"] if self.reg_winddirection: self._rean_vars += ["u_ms", "v_ms"] # Check that selected regression model is allowed if reg_model not in ['lin', 'gbm','etr','gam']: raise ValueError("reg_model has to either be lin (Linear regression, default), gbm (Gradient boosting model), etr (Extra trees regressor) or gam (Generalized additive model)") self.reg_model = reg_model self.ml_setup_kwargs = ml_setup_kwargs # Monthly data can only use robust linear regression because of limited number of data if (time_resolution == 'M') & (reg_model != 'lin'): raise ValueError("For monthly time resolution, only linear regression is allowed!") # Run preprocessing step self.calculate_aggregate_dataframe() # Store start and end of period of record self._start_por = self._aggregate.df.index.min() self._end_por = self._aggregate.df.index.max() # Create a data frame to store monthly/daily reanalysis data over plant period of record self._reanalysis_por = self._aggregate.df.loc[(self._aggregate.df.index >= self._start_por) & \ (self._aggregate.df.index <= self._end_por)] @logged_method_call def run(self, num_sim, reanal_subset=None): """ Perform pre-processing of data into an internal representation for which the analysis can run more quickly. Args: reanal_subset(:obj:`list`): list of str data indicating which reanalysis products to use in OA num_sim(:obj:`int`): number of simulations to perform Returns: None """ self.num_sim = num_sim if reanal_subset is None: self.reanal_subset = self._reanal_products else: self.reanal_subset = reanal_subset # Write parameters of run to the log file logged_self_params = ["uncertainty_meter", "uncertainty_losses", "uncertainty_loss_max", "uncertainty_windiness", "uncertainty_nan_energy", "num_sim", "reanal_subset"] logged_params = {name: getattr(self, name) for name in logged_self_params} logger.info("Running with parameters: {}".format(logged_params)) # Start the computation self.calculate_long_term_losses() self.setup_monte_carlo_inputs() self.results = self.run_AEP_monte_carlo() # Log the completion of the run logger.info("Run completed") def plot_reanalysis_normalized_rolling_monthly_windspeed(self): """ Make a plot of annual average wind speeds from reanalysis data to show general trends for each Highlight the period of record for plant data Returns: matplotlib.pyplot object """ import matplotlib.pyplot as plt project = self._plant # Define parameters needed for plot min_val = 1 # Default parameter providing y-axis minimum for shaded plant POR region max_val = 1 # Default parameter providing y-axis maximum for shaded plant POR region por_start = self._aggregate.df.index[0] # Start of plant POR por_end = self._aggregate.df.index[-1] # End of plant POR plt.figure(figsize=(14, 6)) for key in self._reanal_products: rean_df = project._reanalysis._product[key].df # Set reanalysis product ann_mo_ws = rean_df.resample('MS')['ws_dens_corr'].mean().to_frame() # Take monthly average wind speed ann_roll = ann_mo_ws.rolling(12).mean() # Calculate rolling 12-month average ann_roll_norm = ann_roll['ws_dens_corr'] / ann_roll[ 'ws_dens_corr'].mean() # Normalize rolling 12-month average # Update min_val and max_val depending on range of data if ann_roll_norm.min() < min_val: min_val = ann_roll_norm.min() if ann_roll_norm.max() > max_val: max_val = ann_roll_norm.max() # Plot wind speed plt.plot(ann_roll_norm, label=key) # Plot dotted line at y=1 (i.e. average wind speed) plt.plot((ann_roll.index[0], ann_roll.index[-1]), (1, 1), 'k--') # Fill in plant POR region plt.fill_between([por_start, por_end], [min_val, min_val], [max_val, max_val], alpha=0.1, label='Plant POR') # Final touches to plot plt.xlabel('Year') plt.ylabel('Normalized wind speed') plt.legend() plt.tight_layout() return plt def plot_reanalysis_gross_energy_data(self, outlier_thres): """ Make a plot of normalized 30-day gross energy vs wind speed for each reanalysis product, include R2 measure Args: outlier_thres (float): outlier threshold (typical range of 1 to 4) which adjusts outlier sensitivity detection Returns: matplotlib.pyplot object """ import matplotlib.pyplot as plt valid_aggregate = self._aggregate.df plt.figure(figsize=(9, 9)) # Loop through each reanalysis product and make a scatterplot of monthly wind speed vs plant energy for p in np.arange(0, len(list(self._reanal_products))): col_name = self._reanal_products[p] # Reanalysis column in monthly data frame x = sm.add_constant(valid_aggregate[col_name]) # Define 'x'-values (constant needed for regression function) if self.time_resolution == 'M': y = valid_aggregate['gross_energy_gwh'] * 30 / valid_aggregate[ 'num_days_expected'] # Normalize energy data to 30-days elif self.time_resolution == 'D': y = valid_aggregate['gross_energy_gwh'] rlm = sm.RLM(y, x, M=sm.robust.norms.HuberT( t=outlier_thres)) # Robust linear regression with HuberT algorithm (threshold equal to 2) rlm_results = rlm.fit() r2 = np.corrcoef(x.loc[rlm_results.weights == 1, col_name], y[rlm_results.weights == 1])[ 0, 1] # Get R2 from valid data # Plot results plt.subplot(2, 2, p + 1) plt.plot(x.loc[rlm_results.weights != 1, col_name], y[rlm_results.weights != 1], 'rx', label='Outlier') plt.plot(x.loc[rlm_results.weights == 1, col_name], y[rlm_results.weights == 1], '.', label='Valid data') plt.title(col_name + ', R2=' + str(np.round(r2, 3))) plt.xlabel('Wind speed (m/s)') if self.time_resolution == 'M': plt.ylabel('30-day normalized gross energy (GWh)') elif self.time_resolution == 'D': plt.ylabel('Daily gross energy (GWh)') plt.tight_layout() return plt def plot_result_aep_distributions(self): """ Plot a distribution of AEP values from the Monte-Carlo OA method Returns: matplotlib.pyplot object """ import matplotlib.pyplot as plt fig = plt.figure(figsize=(14, 12)) sim_results = self.results ax = fig.add_subplot(2, 2, 1) ax.hist(sim_results['aep_GWh'], 40, density=1) ax.text(0.05, 0.9, 'AEP mean = ' + str(np.round(sim_results['aep_GWh'].mean(), 1)) + ' GWh/yr', transform=ax.transAxes) ax.text(0.05, 0.8, 'AEP unc = ' + str( np.round(sim_results['aep_GWh'].std() / sim_results['aep_GWh'].mean() * 100, 1)) + "%", transform=ax.transAxes) plt.xlabel('AEP (GWh/yr)') ax = fig.add_subplot(2, 2, 2) ax.hist(sim_results['avail_pct'] * 100, 40, density=1) ax.text(0.05, 0.9, 'Mean = ' + str(np.round((sim_results['avail_pct'].mean()) * 100, 1)) + ' %', transform=ax.transAxes) plt.xlabel('Availability Loss (%)') ax = fig.add_subplot(2, 2, 3) ax.hist(sim_results['curt_pct'] * 100, 40, density=1) ax.text(0.05, 0.9, 'Mean: ' + str(np.round((sim_results['curt_pct'].mean()) * 100, 2)) + ' %', transform=ax.transAxes) plt.xlabel('Curtailment Loss (%)') plt.tight_layout() return plt def plot_aep_boxplot(self, param, lab): """ Plot box plots of AEP results sliced by a specified Monte Carlo parameter Args: param(:obj:`list`): The Monte Carlo parameter on which to split the AEP results lab(:obj:`str`): The name to use for the parameter when producing the figure Returns: (none) """ import matplotlib.pyplot as plt sim_results = self.results tmp_df=pd.DataFrame(data={'aep': sim_results.aep_GWh, 'param': param}) tmp_df.boxplot(column='aep',by='param',figsize=(8,6)) plt.ylabel('AEP (GWh/yr)') plt.xlabel(lab) plt.title('AEP estimates by %s' % lab) plt.suptitle("") plt.tight_layout() return plt def plot_aggregate_plant_data_timeseries(self): """ Plot timeseries of monthly/daily gross energy, availability and curtailment Returns: matplotlib.pyplot object """ import matplotlib.pyplot as plt valid_aggregate = self._aggregate.df plt.figure(figsize=(12, 9)) # Gross energy plt.subplot(2, 1, 1) plt.plot(valid_aggregate.gross_energy_gwh, '.-') plt.grid('on') plt.xlabel('Year') plt.ylabel('Gross energy (GWh)') # Availability and curtailment plt.subplot(2, 1, 2) plt.plot(valid_aggregate.availability_pct * 100, '.-', label='Availability') plt.plot(valid_aggregate.curtailment_pct * 100, '.-', label='Curtailment') plt.grid('on') plt.xlabel('Year') plt.ylabel('Loss (%)') plt.legend() plt.tight_layout() return plt @logged_method_call def groupby_time_res(self, df): """ Group pandas dataframe based on the time resolution chosen in the calculation. Args: df(:obj:`dataframe`): dataframe that needs to be grouped based on time resolution used Returns: None """ if self.time_resolution == 'M': df_grouped = df.groupby(df.index.month).mean() elif self.time_resolution == 'D': df_grouped = df.groupby([(df.index.month),(df.index.day)]).mean() return df_grouped @logged_method_call def calculate_aggregate_dataframe(self): """ Perform pre-processing of the plant data to produce a monthly/daily data frame to be used in AEP analysis. Args: (None) Returns: (None) """ # Average to monthly/daily, quantify NaN data self.process_revenue_meter_energy() # Average to monthly/daily, quantify NaN data, merge with revenue meter energy data self.process_loss_estimates() # Density correct wind speeds, process temperature and wind direction, average to monthly/daily self.process_reanalysis_data() # Remove first and last reporting months if only partial month reported # (only for monthly time resolution calculations) if self.time_resolution == 'M': self.trim_monthly_df() # Drop any data that have NaN gross energy values or NaN reanalysis data self._aggregate.df = self._aggregate.df.dropna(subset=['gross_energy_gwh'] +[product for product in self._reanal_products]) @logged_method_call def process_revenue_meter_energy(self): """ Initial creation of monthly data frame: 1. Populate monthly/daily data frame with energy data summed from 10-min QC'd data 2. For each monthly/daily value, find percentage of NaN data used in creating it and flag if percentage is greater than 0 Args: (None) Returns: (None) """ df = getattr(self._plant, 'meter').df # Get the meter data frame # Create the monthly/daily data frame by summing meter energy self._aggregate.df = (df.resample(self._resample_freq)['energy_kwh'].sum() / 1e6).to_frame() # Get monthly energy values in GWh self._aggregate.df.rename(columns={"energy_kwh": "energy_gwh"}, inplace=True) # Rename kWh to MWh # Determine how much 10-min data was missing for each year-month/daily energy value. Flag accordigly if any is missing self._aggregate.df['energy_nan_perc'] = df.resample(self._resample_freq)['energy_kwh'].apply( tm.percent_nan) # Get percentage of meter data that were NaN when summing to monthly/daily if self.time_resolution == 'M': # Create a column with expected number of days per month (to be used when normalizing to 30-days for regression) days_per_month = (pd.Series(self._aggregate.df.index)).dt.daysinmonth days_per_month.index = self._aggregate.df.index self._aggregate.df['num_days_expected'] = days_per_month # Get actual number of days per month in the raw data # (used when trimming beginning and end of monthly data frame) # If meter data has higher resolution than monthly if (self._plant._meter_freq == '1MS') | (self._plant._meter_freq == '1M'): self._aggregate.df['num_days_actual'] = self._aggregate.df['num_days_expected'] else: self._aggregate.df['num_days_actual'] = df.resample('MS')['energy_kwh'].apply(tm.num_days) @logged_method_call def process_loss_estimates(self): """ Append availability and curtailment losses to monthly data frame Args: (None) Returns: (None) """ df = getattr(self._plant, 'curtail').df curt_aggregate = np.divide(df.resample(self._resample_freq)[['availability_kwh', 'curtailment_kwh']].sum(), 1e6) # Get sum of avail and curt losses in GWh curt_aggregate.rename(columns={'availability_kwh': 'availability_gwh', 'curtailment_kwh': 'curtailment_gwh'}, inplace=True) # Merge with revenue meter monthly/daily data self._aggregate.df = self._aggregate.df.join(curt_aggregate) # Add gross energy field self._aggregate.df['gross_energy_gwh'] = un.compute_gross_energy(self._aggregate.df['energy_gwh'], self._aggregate.df['availability_gwh'], self._aggregate.df['curtailment_gwh'], 'energy', 'energy') # Calculate percentage-based losses self._aggregate.df['availability_pct'] = np.divide(self._aggregate.df['availability_gwh'], self._aggregate.df['gross_energy_gwh']) self._aggregate.df['curtailment_pct'] = np.divide(self._aggregate.df['curtailment_gwh'], self._aggregate.df['gross_energy_gwh']) self._aggregate.df['avail_nan_perc'] = df.resample(self._resample_freq)['availability_kwh'].apply( tm.percent_nan) # Get percentage of 10-min meter data that were NaN when summing to monthly/daily self._aggregate.df['curt_nan_perc'] = df.resample(self._resample_freq)['curtailment_kwh'].apply( tm.percent_nan) # Get percentage of 10-min meter data that were NaN when summing to monthly/daily self._aggregate.df['nan_flag'] = False # Set flag to false by default self._aggregate.df.loc[(self._aggregate.df['energy_nan_perc'] > self.uncertainty_nan_energy) | (self._aggregate.df['avail_nan_perc'] > self.uncertainty_nan_energy) | (self._aggregate.df['curt_nan_perc'] > self.uncertainty_nan_energy), 'nan_flag'] \ = True # If more than 1% of data are NaN, set flag to True # By default, assume all reported losses are representative of long-term operational self._aggregate.df['availability_typical'] = True self._aggregate.df['curtailment_typical'] = True # By default, assume combined availability and curtailment losses are below the threshold to be considered valid self._aggregate.df['combined_loss_valid'] = True @logged_method_call def process_reanalysis_data(self): """ Process reanalysis data for use in PRUF plant analysis: - calculate density-corrected wind speed and wind components - get monthly/daily average wind speeds and components - calculate monthly/daily average wind direction - calculate monthly/daily average temperature - append monthly/daily averages to monthly/daily energy data frame Args: (None) Returns: (None) """ # Define empty data frame that spans past our period of interest self._reanalysis_aggregate = pd.DataFrame(index=pd.date_range(start='1997-01-01', end='2019-12-31', freq=self._resample_freq), dtype=float) # Now loop through the different reanalysis products, density-correct wind speeds, and take monthly averages for key in self._reanal_products: rean_df = self._plant._reanalysis._product[key].df rean_df['ws_dens_corr'] = mt.air_density_adjusted_wind_speed(rean_df['windspeed_ms'], rean_df['rho_kgm-3']) # Density correct wind speeds self._reanalysis_aggregate[key] = rean_df.resample(self._resample_freq)['ws_dens_corr'].mean() # .to_frame() # Get average wind speed by year-month if self.reg_winddirection | self.reg_temperature: namescol = [key + '_' + var for var in self._rean_vars] self._reanalysis_aggregate[namescol] = rean_df[self._rean_vars].resample(self._resample_freq).mean() if self.reg_winddirection: # if wind direction is considered as regression variable self._reanalysis_aggregate[key + '_wd'] = np.rad2deg(np.pi-(np.arctan2(-self._reanalysis_aggregate[key + '_u_ms'],self._reanalysis_aggregate[key + '_v_ms']))) # Calculate wind direction self._aggregate.df = self._aggregate.df.join( self._reanalysis_aggregate) # Merge monthly reanalysis data to monthly energy data frame @logged_method_call def trim_monthly_df(self): """ Remove first and/or last month of data if the raw data had an incomplete number of days Args: (None) Returns: (None) """ for p in self._aggregate.df.index[[0, -1]]: # Loop through 1st and last data entry if self._aggregate.df.loc[p, 'num_days_expected'] != self._aggregate.df.loc[p, 'num_days_actual']: self._aggregate.df.drop(p, inplace=True) # Drop the row from data frame @logged_method_call def calculate_long_term_losses(self): """ This function calculates long-term availability and curtailment losses based on the reported data grouped by the time resolution, filtering for those data that are deemed representative of average plant performance. Args: (None) Returns: (None) """ df = self._aggregate.df # isolate availabilty and curtailment values that are representative of average plant performance avail_valid = df.loc[df['availability_typical'],'availability_pct'].to_frame() curt_valid = df.loc[df['curtailment_typical'],'curtailment_pct'].to_frame() # Now get average percentage losses by month or day avail_long_term = self.groupby_time_res(avail_valid)['availability_pct'] curt_long_term = self.groupby_time_res(curt_valid)['curtailment_pct'] # Ensure there are 12 or 365 data points in long-term average. If not, throw an exception: if (avail_long_term.shape[0] < int(self._calendar_samples)): raise Exception('Not all calendar days/months represented in long-term availability calculation') if (curt_long_term.shape[0] < int(self._calendar_samples)): raise Exception('Not all calendar days/months represented in long-term curtailment calculation') self.long_term_losses = (avail_long_term, curt_long_term) def setup_monte_carlo_inputs(self): """ Create and populate the data frame defining the simulation parameters. This data frame is stored as self._inputs Args: (None) Returns: (None) """ # Create extra long list of renanalysis product names to sample from reanal_list = list(np.repeat(self.reanal_subset, self.num_sim)) inputs = { "reanalysis_product": np.asarray(random.sample(reanal_list, self.num_sim)), "metered_energy_fraction": np.random.normal(1, self.uncertainty_meter, self.num_sim), "loss_fraction": np.random.normal(1, self.uncertainty_losses, self.num_sim), "num_years_windiness": np.random.randint(self.uncertainty_windiness[0],self.uncertainty_windiness[1] + 1, self.num_sim), "loss_threshold":np.random.randint(self.uncertainty_loss_max[0], self.uncertainty_loss_max[1] + 1, self.num_sim) / 100., } self._inputs = pd.DataFrame(inputs) @logged_method_call def filter_outliers(self, n): """ This function filters outliers based on a combination of range filter, unresponsive sensor filter, and window filter. We use a memoized funciton to store the regression data in a dictionary for each combination as it comes up in the Monte Carlo simulation. This saves significant computational time in not having to run robust linear regression for each Monte Carlo iteration Args: n(:obj:`float`): Monte Carlo iteration Returns: :obj:`pandas.DataFrame`: Filtered monthly/daily data ready for linear regression """ reanal = self._run.reanalysis_product # Check if valid data has already been calculated and stored. If so, just return it if (reanal, self._run.loss_threshold) in self.outlier_filtering: valid_data = self.outlier_filtering[(reanal, self._run.loss_threshold)] return valid_data # If valid data hasn't yet been stored in dictionary, determine the valid data df = self._aggregate.df # First set of filters checking combined losses and if the Nan data flag was on df_sub = df.loc[ ((df['availability_pct'] + df['curtailment_pct']) < self._run.loss_threshold) & (df['nan_flag'] == False),:] # Set maximum range for using bin-filter, convert from MW to GWh plant_capac = self._plant._plant_capacity/1000. * self._hours_in_res # Apply range filter to wind speed df_sub = df_sub.assign(flag_range=filters.range_flag(df_sub[reanal], below = 0, above = 40)) # Apply frozen/unresponsive sensor filter df_sub.loc[:,'flag_frozen'] = filters.unresponsive_flag(df_sub[reanal], threshold = 3) # Apply window range filter df_sub.loc[:,'flag_window'] = filters.window_range_flag(window_col = df_sub[reanal], window_start = 5., window_end = 40, value_col = df_sub['energy_gwh'], value_min = 0.02*plant_capac, value_max = 1.2*plant_capac) # Create a 'final' flag which is true if any of the previous flags are true df_sub.loc[:,'flag_final'] = (df_sub.loc[:, 'flag_range']) | (df_sub.loc[:, 'flag_frozen']) | \ (df_sub.loc[:, 'flag_window']) # Define valid data valid_data = df_sub.loc[df_sub.loc[:, 'flag_final'] == False, [reanal, 'energy_gwh', 'availability_gwh', 'curtailment_gwh']] if self.reg_winddirection: valid_data_to_add = df_sub.loc[df_sub.loc[:, 'flag_final'] == False, [reanal + '_wd', reanal + '_u_ms', reanal + '_v_ms']] valid_data = pd.concat([valid_data, valid_data_to_add], axis=1) if self.reg_temperature: valid_data_to_add = df_sub.loc[df_sub.loc[:, 'flag_final'] == False, [reanal + '_temperature_K']] valid_data = pd.concat([valid_data, valid_data_to_add], axis=1) if self.time_resolution == 'M': valid_data_to_add = df_sub.loc[df_sub.loc[:, 'flag_final'] == False, ['num_days_expected']] valid_data = pd.concat([valid_data, valid_data_to_add], axis=1) # Update the dictionary self.outlier_filtering[(reanal, self._run.loss_threshold)] = valid_data # Return result return valid_data @logged_method_call def set_regression_data(self, n): """ This will be called for each iteration of the Monte Carlo simulation and will do the following: 1. Randomly sample monthly/daily revenue meter, availabilty, and curtailment data based on specified uncertainties and correlations 2. Randomly choose one reanalysis product 3. Calculate gross energy from randomzied energy data 4. Normalize gross energy to 30-day months 5. Filter results to remove months/days with NaN data and with combined losses that exceed the Monte Carlo sampled max threhold 6. Return the wind speed and normalized gross energy to be used in the regression relationship Args: n(:obj:`int`): The Monte Carlo iteration number Returns: :obj:`pandas.Series`: Monte-Carlo sampled wind speeds and other variables (temperature, wind direction) if used in the regression :obj:`pandas.Series`: Monte-Carlo sampled normalized gross energy """ # Get data to use in regression based on filtering result reg_data = self.filter_outliers(n) # Now monte carlo sample the data mc_energy = reg_data['energy_gwh'] * self._run.metered_energy_fraction # Create new Monte-Carlo sampled data frame and sample energy data mc_availability = reg_data['availability_gwh'] * self._run.loss_fraction # Calculate MC-generated availability mc_curtailment = reg_data['curtailment_gwh'] * self._run.loss_fraction # Calculate MC-generated curtailment # Calculate gorss energy and normalize to 30-days mc_gross_energy = mc_energy + mc_availability + mc_curtailment if self.time_resolution == 'M': num_days_expected = reg_data['num_days_expected'] mc_gross_norm = mc_gross_energy * 30 / num_days_expected # Normalize gross energy to 30-day months elif self.time_resolution == 'D': mc_gross_norm = mc_gross_energy # Set reanalysis product reg_inputs = reg_data[self._run.reanalysis_product] # Copy wind speed data to Monte Carlo data frame if self.reg_temperature: # if temperature is considered as regression variable mc_temperature = reg_data[self._run.reanalysis_product + "_temperature_K"] # Copy temperature data to Monte Carlo data frame reg_inputs = pd.concat([reg_inputs,mc_temperature], axis = 1) if self.reg_winddirection: # if wind direction is considered as regression variable mc_wind_direction = reg_data[self._run.reanalysis_product + "_wd"] # Copy wind direction data to Monte Carlo data frame reg_inputs = pd.concat([reg_inputs,np.sin(np.deg2rad(mc_wind_direction))], axis = 1) reg_inputs = pd.concat([reg_inputs,np.cos(np.deg2rad(mc_wind_direction))], axis = 1) reg_inputs = pd.concat([reg_inputs,mc_gross_norm], axis = 1) # Return values needed for regression return reg_inputs # Return randomly sampled wind speed, wind direction, temperature and normalized gross energy @logged_method_call def run_regression(self, n): """ Run robust linear regression between Monte-Carlo generated monthly/daily gross energy, wind speed, temperature and wind direction (if used) Args: n(:obj:`int`): The Monte Carlo iteration number Returns: :obj:`?`: trained regression model """ reg_data = self.set_regression_data(n) # Get regression data # Bootstrap input data to incorporate some regression uncertainty reg_data = np.array(reg_data.sample(frac = 1.0, replace = True)) # Update Monte Carlo tracker fields self._mc_num_points[n] = np.shape(reg_data)[0] # Run regression. Note, the last column of reg_data is the target variable for the regression # Linear regression if self.reg_model == 'lin': reg = LinearRegression().fit(np.array(reg_data[:,0:-1]), reg_data[:,-1]) predicted_y = reg.predict(np.array(reg_data[:,0:-1])) self._mc_slope[n,:] = reg.coef_ self._mc_intercept[n] = np.float(reg.intercept_) self._r2_score[n] = r2_score(reg_data[:,-1], predicted_y) self._mse_score[n] = mean_squared_error(reg_data[:,-1], predicted_y) return reg # Machine learning models else: ml = MachineLearningSetup(self.reg_model, **self.ml_setup_kwargs) # Memoized approach for optimized hyperparameters if self._run.reanalysis_product in self.opt_model: self.opt_model[(self._run.reanalysis_product)].fit(
np.array(reg_data[:,0:-1])
numpy.array
""" Unit tests for opt_probs.py""" # Author: <NAME> # License: BSD 3 clause try: import mlrose_hiive except: import sys sys.path.append("..") import unittest import numpy as np from mlrose_hiive import OneMax, DiscreteOpt, ContinuousOpt, TSPOpt, OnePointCrossOver # The following functions/classes are not automatically imported at # initialization, so must be imported explicitly from neural.py, # activation.py and opt_probs.py from mlrose_hiive.neural import NetworkWeights from mlrose_hiive.neural.activation import identity from mlrose_hiive.opt_probs._opt_prob import _OptProb as OptProb class TestOptProb(unittest.TestCase): """Tests for _OptProb class.""" @staticmethod def test_set_state_max(): """Test set_state method for a maximization problem""" problem = OptProb(5, OneMax(), maximize=True) x = np.array([0, 1, 2, 3, 4]) problem.set_state(x) assert (np.array_equal(problem.get_state(), x) and problem.get_fitness() == 10) @staticmethod def test_set_state_min(): """Test set_state method for a minimization problem""" problem = OptProb(5, OneMax(), maximize=False) x = np.array([0, 1, 2, 3, 4]) problem.set_state(x) assert (np.array_equal(problem.get_state(), x) and problem.get_fitness() == -10) @staticmethod def test_set_population_max(): """Test set_population method for a maximization problem""" problem = OptProb(5, OneMax(), maximize=True) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [100, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, -50]]) pop_fit = np.array([1, 3, 4, 2, 100, 0, 5, -50]) problem.set_population(pop) assert (np.array_equal(problem.get_population(), pop) and np.array_equal(problem.get_pop_fitness(), pop_fit)) @staticmethod def test_set_population_min(): """Test set_population method for a minimization problem""" problem = OptProb(5, OneMax(), maximize=False) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [100, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, -50]]) pop_fit = -1.0*np.array([1, 3, 4, 2, 100, 0, 5, -50]) problem.set_population(pop) assert (np.array_equal(problem.get_population(), pop) and np.array_equal(problem.get_pop_fitness(), pop_fit)) @staticmethod def test_best_child_max(): """Test best_child method for a maximization problem""" problem = OptProb(5, OneMax(), maximize=True) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [100, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, -50]]) problem.set_population(pop) x = problem.best_child() assert np.array_equal(x, np.array([100, 0, 0, 0, 0])) @staticmethod def test_best_child_min(): """Test best_child method for a minimization problem""" problem = OptProb(5, OneMax(), maximize=False) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [100, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, -50]]) problem.set_population(pop) x = problem.best_child() assert np.array_equal(x, np.array([0, 0, 0, 0, -50])) @staticmethod def test_best_neighbor_max(): """Test best_neighbor method for a maximization problem""" problem = OptProb(5, OneMax(), maximize=True) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [100, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, -50]]) problem.neighbors = pop x = problem.best_neighbor() assert np.array_equal(x, np.array([100, 0, 0, 0, 0])) @staticmethod def test_best_neighbor_min(): """Test best_neighbor method for a minimization problem""" problem = OptProb(5, OneMax(), maximize=False) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [100, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, -50]]) problem.neighbors = pop x = problem.best_neighbor() assert np.array_equal(x, np.array([0, 0, 0, 0, -50])) @staticmethod def test_eval_fitness_max(): """Test eval_fitness method for a maximization problem""" problem = OptProb(5, OneMax(), maximize=True) x = np.array([0, 1, 2, 3, 4]) fitness = problem.eval_fitness(x) assert fitness == 10 @staticmethod def test_eval_fitness_min(): """Test eval_fitness method for a minimization problem""" problem = OptProb(5, OneMax(), maximize=False) x = np.array([0, 1, 2, 3, 4]) fitness = problem.eval_fitness(x) assert fitness == -10 @staticmethod def test_eval_mate_probs(): """Test eval_mate_probs method""" problem = OptProb(5, OneMax(), maximize=True) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1]]) problem.set_population(pop) problem.eval_mate_probs() probs = np.array([0.06667, 0.2, 0.26667, 0.13333, 0, 0.33333]) assert np.allclose(problem.get_mate_probs(), probs, atol=0.00001) @staticmethod def test_eval_mate_probs_maximize_false(): """Test eval_mate_probs method""" problem = OptProb(5, OneMax(), maximize=False) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1]]) problem.set_population(pop) problem.eval_mate_probs() probs = np.array([0.26667, 0.13333, 0.06667, 0.2, 0.33333, 0]) assert np.allclose(problem.get_mate_probs(), probs, atol=0.00001) @staticmethod def test_eval_mate_probs_all_zero(): """Test eval_mate_probs method when all states have zero fitness""" problem = OptProb(5, OneMax(), maximize=True) pop = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) problem.set_population(pop) problem.eval_mate_probs() probs = np.array([0.16667, 0.16667, 0.16667, 0.16667, 0.16667, 0.16667]) assert np.allclose(problem.get_mate_probs(), probs, atol=0.00001) class TestDiscreteOpt(unittest.TestCase): """Tests for DiscreteOpt class.""" @staticmethod def test_eval_node_probs(): """Test eval_node_probs method""" problem = DiscreteOpt(5, OneMax(), maximize=True) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1]]) problem.keep_sample = pop problem.eval_node_probs() parent = np.array([2, 0, 1, 0]) probs = np.array([[[0.33333, 0.66667], [0.33333, 0.66667]], [[1.0, 0.0], [0.33333, 0.66667]], [[1.0, 0.0], [0.25, 0.75]], [[1.0, 0.0], [0.0, 1.0]], [[0.5, 0.5], [0.25, 0.75]]]) assert (np.allclose(problem.node_probs, probs, atol=0.00001) and np.array_equal(problem.parent_nodes, parent)) @staticmethod def test_find_neighbors_max2(): """Test find_neighbors method when max_val is equal to 2""" problem = DiscreteOpt(5, OneMax(), maximize=True, max_val=2) x = np.array([0, 1, 0, 1, 0]) problem.set_state(x) problem.find_neighbors() neigh = np.array([[1, 1, 0, 1, 0], [0, 0, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 0, 0], [0, 1, 0, 1, 1]]) assert np.array_equal(np.array(problem.neighbors), neigh) @staticmethod def test_find_neighbors_max_gt2(): """Test find_neighbors method when max_val is greater than 2""" problem = DiscreteOpt(5, OneMax(), maximize=True, max_val=3) x = np.array([0, 1, 2, 1, 0]) problem.set_state(x) problem.find_neighbors() neigh = np.array([[1, 1, 2, 1, 0], [2, 1, 2, 1, 0], [0, 0, 2, 1, 0], [0, 2, 2, 1, 0], [0, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 2, 2, 0], [0, 1, 2, 1, 1], [0, 1, 2, 1, 2]]) assert np.array_equal(np.array(problem.neighbors), neigh) @staticmethod def test_find_sample_order(): """Test find_sample_order method""" problem = DiscreteOpt(5, OneMax(), maximize=True) problem.parent_nodes = np.array([2, 0, 1, 0]) order = np.array([0, 2, 4, 1, 3]) problem.find_sample_order() assert np.array_equal(np.array(problem.sample_order), order) @staticmethod def test_find_top_pct_max(): """Test find_top_pct method for a maximization problem""" problem = DiscreteOpt(5, OneMax(), maximize=True) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [100, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, -50]]) problem.set_population(pop) problem.find_top_pct(keep_pct=0.25) x = np.array([[100, 0, 0, 0, 0], [1, 1, 1, 1, 1]]) assert np.array_equal(problem.get_keep_sample(), x) @staticmethod def test_find_top_pct_min(): """Test find_top_pct method for a minimization problem""" problem = DiscreteOpt(5, OneMax(), maximize=False) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [100, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, -50]]) problem.set_population(pop) problem.find_top_pct(keep_pct=0.25) x = np.array([[0, 0, 0, 0, 0], [0, 0, 0, 0, -50]]) assert np.array_equal(problem.get_keep_sample(), x) @staticmethod def test_random(): """Test random method""" problem = DiscreteOpt(5, OneMax(), maximize=True, max_val=5) rand = problem.random() assert (len(rand) == 5 and max(rand) >= 0 and min(rand) <= 4) @staticmethod def test_random_neighbor_max2(): """Test random_neighbor method when max_val is equal to 2""" problem = DiscreteOpt(5, OneMax(), maximize=True) x = np.array([0, 0, 1, 1, 1]) problem.set_state(x) neigh = problem.random_neighbor() sum_diff = np.sum(np.abs(x - neigh)) assert (len(neigh) == 5 and sum_diff == 1) @staticmethod def test_random_neighbor_max_gt2(): """Test random_neighbor method when max_val is greater than 2""" problem = DiscreteOpt(5, OneMax(), maximize=True, max_val=5) x = np.array([0, 1, 2, 3, 4]) problem.set_state(x) neigh = problem.random_neighbor() abs_diff = np.abs(x - neigh) abs_diff[abs_diff > 0] = 1 sum_diff = np.sum(abs_diff) assert (len(neigh) == 5 and sum_diff == 1) @staticmethod def test_random_pop(): """Test random_pop method""" problem = DiscreteOpt(5, OneMax(), maximize=True) problem.random_pop(100) pop = problem.get_population() pop_fitness = problem.get_pop_fitness() assert (np.shape(pop)[0] == 100 and np.shape(pop)[1] == 5 and np.sum(pop) > 0 and np.sum(pop) < 500 and len(pop_fitness) == 100) @staticmethod def test_reproduce_mut0(): """Test reproduce method when mutation_prob is 0""" problem = DiscreteOpt(5, OneMax(), maximize=True) father = np.array([0, 0, 0, 0, 0]) mother = np.array([1, 1, 1, 1, 1]) child = problem.reproduce(father, mother, mutation_prob=0) assert (len(child) == 5 and sum(child) >= 0 and sum(child) <= 5) @staticmethod def test_reproduce_mut1_max2(): """Test reproduce method when mutation_prob is 1 and max_val is 2""" problem = DiscreteOpt(5, OneMax(), maximize=True) father = np.array([0, 0, 0, 0, 0]) mother = np.array([1, 1, 1, 1, 1]) child = problem.reproduce(father, mother, mutation_prob=1) assert (len(child) == 5 and sum(child) >= 0 and sum(child) <= 5) @staticmethod def test_reproduce_mut1_max_gt2(): """Test reproduce method when mutation_prob is 1 and max_val is greater than 2""" problem = DiscreteOpt(5, OneMax(), maximize=True, max_val=3) problem._crossover = OnePointCrossOver(problem) father = np.array([0, 0, 0, 0, 0]) mother = np.array([2, 2, 2, 2, 2]) child = problem.reproduce(father, mother, mutation_prob=1) assert (len(child) == 5 and sum(child) > 0 and sum(child) < 10) @staticmethod def test_sample_pop(): """Test sample_pop method""" problem = DiscreteOpt(5, OneMax(), maximize=True) pop = np.array([[0, 0, 0, 0, 1], [1, 0, 1, 0, 1], [1, 1, 1, 1, 0], [1, 0, 0, 0, 1], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1]]) problem.keep_sample = pop problem.eval_node_probs() sample = problem.sample_pop(100) assert (np.shape(sample)[0] == 100 and np.shape(sample)[1] == 5 and np.sum(sample) > 0 and np.sum(sample) < 500) class TestContinuousOpt(unittest.TestCase): """Tests for ContinuousOpt class.""" @staticmethod def test_calculate_updates(): """Test calculate_updates method""" X = np.array([[0, 1, 0, 1], [0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 0]]) y = np.reshape(np.array([1, 1, 0, 0, 1, 1]), [6, 1]) nodes = [4, 2, 1] fitness = NetworkWeights(X, y, nodes, activation=identity, bias=False, is_classifier=False, learning_rate=1) a = list(np.arange(8) + 1) b = list(0.01*(np.arange(2) + 1)) weights = a + b fitness.evaluate(weights) problem = ContinuousOpt(10, fitness, maximize=False) updates = problem.calculate_updates() update1 = np.array([[-0.0017, -0.0034], [-0.0046, -0.0092], [-0.0052, -0.0104], [0.0014, 0.0028]]) update2 = np.array([[-3.17], [-4.18]]) assert (np.allclose(updates[0], update1, atol=0.001) and np.allclose(updates[1], update2, atol=0.001)) @staticmethod def test_find_neighbors_range_eq_step(): """Test find_neighbors method when range equals step size""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=1, step=1) x = np.array([0, 1, 0, 1, 0]) problem.set_state(x) problem.find_neighbors() neigh = np.array([[1, 1, 0, 1, 0], [0, 0, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 0, 0], [0, 1, 0, 1, 1]]) assert np.array_equal(np.array(problem.neighbors), neigh) @staticmethod def test_find_neighbors_range_gt_step(): """Test find_neighbors method when range greater than step size""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=2, step=1) x = np.array([0, 1, 2, 1, 0]) problem.set_state(x) problem.find_neighbors() neigh = np.array([[1, 1, 2, 1, 0], [0, 0, 2, 1, 0], [0, 2, 2, 1, 0], [0, 1, 1, 1, 0], [0, 1, 2, 0, 0], [0, 1, 2, 2, 0], [0, 1, 2, 1, 1]]) assert np.array_equal(np.array(problem.neighbors), neigh) @staticmethod def test_random(): """Test random method""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=4) rand = problem.random() assert (len(rand) == 5 and max(rand) >= 0 and min(rand) <= 4) @staticmethod def test_random_neighbor_range_eq_step(): """Test random_neighbor method when range equals step size""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=1, step=1) x = np.array([0, 0, 1, 1, 1]) problem.set_state(x) neigh = problem.random_neighbor() sum_diff = np.sum(np.abs(x - neigh)) assert (len(neigh) == 5 and sum_diff == 1) @staticmethod def test_random_neighbor_range_gt_step(): """Test random_neighbor method when range greater than step size""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=2, step=1) x = np.array([0, 1, 2, 3, 4]) problem.set_state(x) neigh = problem.random_neighbor() abs_diff = np.abs(x - neigh) abs_diff[abs_diff > 0] = 1 sum_diff = np.sum(abs_diff) assert (len(neigh) == 5 and sum_diff == 1) @staticmethod def test_random_pop(): """Test random_pop method""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=1, step=1) problem.random_pop(100) pop = problem.get_population() pop_fitness = problem.get_pop_fitness() assert (np.shape(pop)[0] == 100 and np.shape(pop)[1] == 5 and np.sum(pop) > 0 and np.sum(pop) < 500 and len(pop_fitness) == 100) @staticmethod def test_reproduce_mut0(): """Test reproduce method when mutation_prob is 0""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=1, step=1) father = np.array([0, 0, 0, 0, 0]) mother = np.array([1, 1, 1, 1, 1]) child = problem.reproduce(father, mother, mutation_prob=0) assert (len(child) == 5 and sum(child) > 0 and sum(child) < 5) @staticmethod def test_reproduce_mut1_range_eq_step(): """Test reproduce method when mutation_prob is 1 and range equals step size""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=1, step=1) father = np.array([0, 0, 0, 0, 0]) mother = np.array([1, 1, 1, 1, 1]) child = problem.reproduce(father, mother, mutation_prob=1) assert (len(child) == 5 and sum(child) > 0 and sum(child) < 5) @staticmethod def test_reproduce_mut1_range_gt_step(): """Test reproduce method when mutation_prob is 1 and range is greater than step size""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=2, step=1) father = np.array([0, 0, 0, 0, 0]) mother = np.array([2, 2, 2, 2, 2]) child = problem.reproduce(father, mother, mutation_prob=1) assert (len(child) == 5 and sum(child) > 0 and sum(child) < 10) @staticmethod def test_update_state_in_range(): """Test update_state method where all updated values are within the tolerated range""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=20, step=1) x = np.array([0, 1, 2, 3, 4]) problem.set_state(x) y = np.array([2, 4, 6, 8, 10]) updated = problem.update_state(y) assert np.array_equal(updated, (x + y)) @staticmethod def test_update_state_outside_range(): """Test update_state method where some updated values are outside the tolerated range""" problem = ContinuousOpt(5, OneMax(), maximize=True, min_val=0, max_val=5, step=1) x = np.array([0, 1, 2, 3, 4]) problem.set_state(x) y = np.array([2, -4, 6, -8, 10]) updated = problem.update_state(y) z = np.array([2, 0, 5, 0, 5]) assert np.array_equal(updated, z) class TestTSPOpt(unittest.TestCase): """Tests for TSPOpt class.""" @staticmethod def test_adjust_probs_all_zero(): """Test adjust_probs method when all elements in input vector sum to zero.""" dists = [(0, 1, 3), (0, 2, 5), (0, 3, 1), (0, 4, 7), (1, 3, 6), (4, 1, 9), (2, 3, 8), (2, 4, 2), (3, 2, 8), (3, 4, 4)] problem = TSPOpt(5, distances=dists) probs = np.zeros(5) assert np.array_equal(problem.adjust_probs(probs), np.zeros(5)) @staticmethod def test_adjust_probs_non_zero(): """Test adjust_probs method when all elements in input vector sum to some value other than zero.""" dists = [(0, 1, 3), (0, 2, 5), (0, 3, 1), (0, 4, 7), (1, 3, 6), (4, 1, 9), (2, 3, 8), (2, 4, 2), (3, 2, 8), (3, 4, 4)] problem = TSPOpt(5, distances=dists) probs = np.array([0.1, 0.2, 0, 0, 0.5]) x = np.array([0.125, 0.25, 0, 0, 0.625]) assert np.array_equal(problem.adjust_probs(probs), x) @staticmethod def test_find_neighbors(): """Test find_neighbors method""" dists = [(0, 1, 3), (0, 2, 5), (0, 3, 1), (0, 4, 7), (1, 3, 6), (4, 1, 9), (2, 3, 8), (2, 4, 2), (3, 2, 8), (3, 4, 4)] problem = TSPOpt(5, distances=dists) x = np.array([0, 1, 2, 3, 4]) problem.set_state(x) problem.find_neighbors() neigh = np.array([[1, 0, 2, 3, 4], [2, 1, 0, 3, 4], [3, 1, 2, 0, 4], [4, 1, 2, 3, 0], [0, 2, 1, 3, 4], [0, 3, 2, 1, 4], [0, 4, 2, 3, 1], [0, 1, 3, 2, 4], [0, 1, 4, 3, 2], [0, 1, 2, 4, 3]]) assert np.array_equal(np.array(problem.neighbors), neigh) @staticmethod def test_random(): """Test random method""" dists = [(0, 1, 3), (0, 2, 5), (0, 3, 1), (0, 4, 7), (1, 3, 6), (4, 1, 9), (2, 3, 8), (2, 4, 2), (3, 2, 8), (3, 4, 4)] problem = TSPOpt(5, distances=dists) rand = problem.random() assert (len(rand) == 5 and len(set(rand)) == 5) @staticmethod def test_random_mimic(): """Test random_mimic method""" dists = [(0, 1, 3), (0, 2, 5), (0, 3, 1), (0, 4, 7), (1, 3, 6), (4, 1, 9), (2, 3, 8), (2, 4, 2), (3, 2, 8), (3, 4, 4)] pop = np.array([[1, 0, 3, 2, 4], [0, 2, 1, 3, 4], [0, 2, 4, 3, 1], [4, 1, 3, 2, 0], [3, 4, 0, 2, 1], [2, 4, 0, 3, 1]]) problem = TSPOpt(5, distances=dists) problem.keep_sample = pop problem.eval_node_probs() problem.find_sample_order() rand = problem.random_mimic() assert (len(rand) == 5 and len(set(rand)) == 5) @staticmethod def test_random_neighbor(): """Test random_neighbor method""" dists = [(0, 1, 3), (0, 2, 5), (0, 3, 1), (0, 4, 7), (1, 3, 6), (4, 1, 9), (2, 3, 8), (2, 4, 2), (3, 2, 8), (3, 4, 4)] problem = TSPOpt(5, distances=dists) x = np.array([0, 1, 2, 3, 4]) problem.set_state(x) neigh = problem.random_neighbor() abs_diff = np.abs(x - neigh) abs_diff[abs_diff > 0] = 1 sum_diff = np.sum(abs_diff) assert (len(neigh) == 5 and sum_diff == 2 and len(set(neigh)) == 5) @staticmethod def test_reproduce_mut0(): """Test reproduce method when mutation_prob is 0""" dists = [(0, 1, 3), (0, 2, 5), (0, 3, 1), (0, 4, 7), (1, 3, 6), (4, 1, 9), (2, 3, 8), (2, 4, 2), (3, 2, 8), (3, 4, 4)] problem = TSPOpt(5, distances=dists) father = np.array([0, 1, 2, 3, 4]) mother = np.array([0, 4, 3, 2, 1]) child = problem.reproduce(father, mother, mutation_prob=0) assert (len(child) == 5 and len(set(child)) == 5) @staticmethod def test_reproduce_mut1(): """Test reproduce method when mutation_prob is 1""" dists = [(0, 1, 3), (0, 2, 5), (0, 3, 1), (0, 4, 7), (1, 3, 6), (4, 1, 9), (2, 3, 8), (2, 4, 2), (3, 2, 8), (3, 4, 4)] problem = TSPOpt(5, distances=dists) father = np.array([0, 1, 2, 3, 4]) mother = np.array([4, 3, 2, 1, 0]) child = problem.reproduce(father, mother, mutation_prob=1) assert (len(child) == 5 and len(set(child)) == 5) @staticmethod def test_sample_pop(): """Test sample_pop method""" dists = [(0, 1, 3), (0, 2, 5), (0, 3, 1), (0, 4, 7), (1, 3, 6), (4, 1, 9), (2, 3, 8), (2, 4, 2), (3, 2, 8), (3, 4, 4)] pop = np.array([[1, 0, 3, 2, 4], [0, 2, 1, 3, 4], [0, 2, 4, 3, 1], [4, 1, 3, 2, 0], [3, 4, 0, 2, 1], [2, 4, 0, 3, 1]]) problem = TSPOpt(5, distances=dists) problem.keep_sample = pop problem.eval_node_probs() sample = problem.sample_pop(100) row_sums = np.sum(sample, axis=1) assert (
np.shape(sample)
numpy.shape
# -*- coding: utf-8 -*- """ Created on Mon Aug 17 13:48:58 2015 @author: bcolsen """ from __future__ import division, print_function import numpy as np import pylab as plt from .kde import kde from scipy import stats import sys from io import BytesIO import tempfile #from gradient_bar import gbar class ash: def __init__(self, data, bin_num=None, shift_num=50, normed=True, force_scott = False, rule = 'scott'): self.data_min = min(data) self.data_max = max(data) self.shift_num = shift_num self.data = data self.data_len = len(self.data) self.normed=normed ##If None use KDE to autobin if bin_num == None: kde_result = kde(self.data) if len(self.data) >= 50 and not force_scott and kde_result: self.bw,self.kde_mesh,self.kde_den = kde_result self.bins_from_bw() self.bw2,self.kde_mesh,self.kde_den = kde(self.data, None, self.ash_mesh.min(), self.ash_mesh.max()) elif rule=='fd': #print("Using FD rule") kernel = stats.gaussian_kde(self.data) self.bin_width = 2*(stats.iqr(self.data)/(len(self.data)**(1/3))) self.bw_from_bin_width() kernel.set_bandwidth(self.bw) self.bins_from_bw() self.kde_mesh = self.ash_mesh self.kde_den = kernel(self.kde_mesh) else: #print("Using Scott's rule") kernel = stats.gaussian_kde(self.data) kernel.set_bandwidth(rule) self.bw = kernel.factor * self.data.std() # kde factor is bandwidth scaled by sigma self.bins_from_bw() self.kde_mesh = self.ash_mesh self.kde_den = kernel(self.kde_mesh) else: #print("Using bin number: ", bin_num) self.set_bins(bin_num) kernel = stats.gaussian_kde(self.data) kernel.set_bandwidth(self.bw) self.kde_mesh = self.ash_mesh self.kde_den = kernel(self.kde_mesh) #self.kde_mesh,self.kde_den ## KDE on same range as ASH def set_bins(self,bin_num): self.bin_num = bin_num self.bin_width = (self.data_max-self.data_min)/self.bin_num self.MIN = self.data_min - self.bin_width self.MAX = self.data_max + self.bin_width self.SHIFT = self.bin_width/self.shift_num self.bw_from_bin_width() self.calc_ash_den(self.normed) self.calc_ash_unc() def bins_from_bw(self): self.bin_width = self.bw * np.sqrt(2*np.pi) #bin with full width half max of band width self.bin_num = np.ceil(((self.data_max - self.data_min)/self.bin_width)) self.MIN = self.data_min - self.bin_width self.MAX = self.data_min + self.bin_width*(self.bin_num + 1) self.SHIFT = self.bin_width/self.shift_num self.calc_ash_den(self.normed) self.calc_ash_unc()#window at which 68.2% of the area is covered def bw_from_bin_width(self): self.bw = self.bin_width / np.sqrt(2*np.pi) def calc_ash_den(self, normed=True): self.ash_mesh = np.linspace(self.MIN,self.MAX,(self.bin_num+2)*self.shift_num) self.ash_den = np.zeros_like(self.ash_mesh) for i in range(self.shift_num): hist_range = (self.MIN+i*self.SHIFT,self.MAX+i*self.SHIFT- self.bin_width) hist, self.bin_edges = np.histogram(self.data,self.bin_num+1,range=hist_range,normed=normed) #print(self.bin_edges[1]-self.bin_edges[0]) hist_mesh = np.ravel(np.meshgrid(hist,np.zeros(self.shift_num))[0],order='F') self.ash_den = self.ash_den + np.r_[[0]*i,hist_mesh,[0]*(self.shift_num-i)] #pad hist_mesh with zeros and add #print(ash_den) self.ash_den = self.ash_den/self.shift_num #take the average ash_den_index = np.where(self.ash_den > 0) self.ash_mesh = self.ash_mesh[ash_den_index] self.ash_den = self.ash_den[ash_den_index] def calc_ash_unc(self): '''window at which 68.2% of the area is covered''' tot_area =
np.trapz(self.ash_den,self.ash_mesh)
numpy.trapz
import os os.environ["OMP_NUM_THREADS"] = "4" import numpy as np import matplotlib.pyplot as plt from sklearn.manifold import TSNE from sklearn.decomposition import PCA from sklearn import svm from sklearn.metrics import accuracy_score import gzip def make_tensor(data_xy): data_x, data_y = data_xy data_x = np.array(data_x, dtype=np.float32) data_y = np.array(data_y, dtype=np.int32) return data_x, data_y def load_pickle(f): try: import cPickle as thepickle except ImportError: import _pickle as thepickle try: ret = thepickle.load(f, encoding='latin1') except TypeError: ret = thepickle.load(f) return ret def load_data(data_file): print('loading data ...') f = gzip.open(data_file, 'rb') train_set, valid_set, test_set = load_pickle(f) f.close() train_set_x, train_set_y = make_tensor(train_set) # (50000, 784) (50000,) valid_set_x, valid_set_y = make_tensor(valid_set) # (10000, 784) (10000,) test_set_x, test_set_y = make_tensor(test_set) # (10000, 784) (10000,) return train_set_x, train_set_y, valid_set_x, valid_set_y, test_set_x, test_set_y class CCA: def __init__(self, n_components=1, r1=1e-4, r2=1e-4): self.n_components = n_components self.r1 = r1 self.r2 = r2 self.w = [None, None] self.m = [None, None] def fit(self, X1, X2): N = X1.shape[0] f1 = X1.shape[1] f2 = X2.shape[1] self.m[0] = np.mean(X1, axis=0, keepdims=True) # [1, f1] self.m[1] = np.mean(X2, axis=0, keepdims=True) H1bar = X1 - self.m[0] H2bar = X2 - self.m[1] SigmaHat12 = (1.0 / (N - 1)) * np.dot(H1bar.T, H2bar) SigmaHat11 = (1.0 / (N - 1)) * np.dot(H1bar.T, H1bar) + self.r1 * np.identity(f1) SigmaHat22 = (1.0 / (N - 1)) * np.dot(H2bar.T, H2bar) + self.r2 * np.identity(f2) [D1, V1] = np.linalg.eigh(SigmaHat11) [D2, V2] = np.linalg.eigh(SigmaHat22) SigmaHat11RootInv = np.dot(np.dot(V1, np.diag(D1 ** -0.5)), V1.T) SigmaHat22RootInv = np.dot(np.dot(V2,
np.diag(D2 ** -0.5)
numpy.diag
#!/usr/bin/env python # -*- coding: utf8 -*- # ***************************************************************** # ** PTS -- Python Toolkit for working with SKIRT ** # ** © Astronomical Observatory, Ghent University ** # ***************************************************************** ## \package pts.magic.sky.skysubtractor Contains the SkySubtractor class. # ----------------------------------------------------------------- # Ensure Python 3 functionality from __future__ import absolute_import, division, print_function # Import standard modules import io import imageio import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab from scipy.interpolate import CloughTocher2DInterpolator as intp from scipy.interpolate import SmoothBivariateSpline # Test # from sklearn.preprocessing import PolynomialFeatures # from sklearn.linear_model import LinearRegression # from sklearn.pipeline import Pipeline # Import astronomical modules from photutils.background import Background from astropy.modeling import models from astropy.modeling.fitting import LevMarLSQFitter from astropy import stats # Import the relevant PTS classes and modules from ..core.frame import Frame from ..basics.mask import Mask from ..core.source import Source from ..basics.geometry import Coordinate, Circle, Composite from ..basics.region import Region from ..basics.skyregion import SkyRegion from ..tools import plotting, statistics, fitting, plotting from ...core.basics.configurable import OldConfigurable from ...core.tools.logging import log from ...core.basics.distribution import Distribution # ----------------------------------------------------------------- class SkySubtractor(OldConfigurable): """ This class ... """ def __init__(self, config=None): """ The constructor ... :param config: :return: """ # Call the constructor of the base class super(SkySubtractor, self).__init__(config, "magic") # -- Attributes -- # The image frame self.frame = None # The mask of sources self.sources_mask = None # The extra mask self.extra_mask = None # The principal shape self.principal_shape = None # The region of saturated stars self.saturation_region = None # The animation self.animation = None # The sky region self.region = None # The output mask (combined input + bad mask + galaxy annulus mask + expanded saturation mask + sigma-clipping mask) self.mask = None # The estimated sky (a single floating point value or a Frame, depending on the estimation method) self.sky = None # The estimated sky noise self.noise = None # Relevant for when estimation method is 'photutils' self.phot_sky = None self.phot_rms = None # Relevant for when estimation method is 'pts' self.apertures_frame = None self.apertures_mean_frame = None self.apertures_noise_frame = None # ----------------------------------------------------------------- @classmethod def from_arguments(cls, arguments): """ This function ... :param arguments: :return: """ # Create a new SkySubtractor instance if arguments.config is not None: subtractor = cls(arguments.config) elif arguments.settings is not None: subtractor = cls(arguments.settings) else: subtractor = cls() # Return the new instance return subtractor # ----------------------------------------------------------------- def run(self, frame, principal_shape, sources_mask, extra_mask=None, saturation_region=None, animation=None): """ This function ... :param frame: :param principal_shape: :param sources_mask: :param extra_mask: :param saturation_region: :param animation: :return: """ # 1. Call the setup function self.setup(frame, principal_shape, sources_mask, extra_mask, saturation_region, animation) # 2. Create the sky region self.create_region() # 3. Create mask self.create_mask() # 4. Do an extra sigma-clipping step on the data if self.config.sigma_clip_mask: self.sigma_clip() # 5. Estimate the sky (and sky noise) self.estimate() # 6. Subtract the sky self.subtract() # 7. Set the frame to zero outside of the principal galaxy if self.config.set_zero_outside: self.set_zero_outside() # 8. Eliminate negative values from the frame, set them to zero if self.config.eliminate_negatives: self.eliminate_negatives() # ----------------------------------------------------------------- def clear(self): """ This function ... :return: """ # Inform the user log.info("Clearing the sky subtractor ...") # Set default values for all attributes self.frame = None self.sources_mask = None self.extra_mask = None self.principal_shape = None self.saturation_region = None self.animation = None self.mask = None self.sky = None self.noise = None self.phot_sky = None self.phot_rms = None self.apertures_frame = None self.apertures_mean_frame = None self.apertures_noise_frame = None # ----------------------------------------------------------------- def setup(self, frame, principal_shape, sources_mask, extra_mask=None, saturation_region=None, animation=None): """ This function ... :param frame: :param principal_shape: :param sources_mask: :param extra_mask: :param saturation_region: :param animation: :return: """ # Call the setup function of the base class super(SkySubtractor, self).setup() # Make a local reference to the image frame self.frame = frame # Make a reference to the principal shape self.principal_shape = principal_shape # Set the masks self.sources_mask = sources_mask self.extra_mask = extra_mask # Set the saturation_region self.saturation_region = saturation_region # Make a reference to the animation self.animation = animation # ----------------------------------------------------------------- def create_region(self): """ This function ... :return: """ # Inform the user log.info("Creating the sky region ...") # If the sky region has to be loaded from file if self.config.sky_region is not None: sky_region = SkyRegion.from_file(self.config.sky_region) self.region = sky_region.to_pixel(self.frame.wcs) # If no region file is given by the user, create an annulus from the principal ellipse else: # Create the sky annulus annulus_outer_factor = self.config.mask.annulus_outer_factor annulus_inner_factor = self.config.mask.annulus_inner_factor inner_shape = self.principal_shape * annulus_inner_factor outer_shape = self.principal_shape * annulus_outer_factor # Create the annulus annulus = Composite(outer_shape, inner_shape) # Create the sky region consisting of only the annulus self.region = Region() self.region.append(annulus) # ----------------------------------------------------------------- def create_mask(self): """ This function ... :return: """ # Inform the user log.info("Creating the sky mask ...") # Create a mask from the pixels outside of the sky region outside_mask = self.region.to_mask(self.frame.xsize, self.frame.ysize).inverse() # Create a mask from the principal shape principal_mask = self.principal_shape.to_mask(self.frame.xsize, self.frame.ysize) #plotting.plot_mask(outside_mask, title="outside mask") #plotting.plot_mask(principal_mask, title="principal mask") #plotting.plot_mask(self.sources_mask, title="sources mask") # Set the mask, make a copy of the input mask initially self.mask = self.sources_mask + outside_mask + principal_mask # Add the extra mask (if specified) if self.extra_mask is not None: self.mask += self.extra_mask # Check whether saturation contours are defined if self.saturation_region is not None: # Expand all contours expanded_region = self.saturation_region * 1.5 # Create the saturation mask saturation_mask = expanded_region.to_mask(self.frame.xsize, self.frame.ysize) self.mask += saturation_mask # ----------------------------------------------------------------- def sigma_clip(self): """ This function ... :return: """ # Inform the user log.info("Performing sigma-clipping on the pixel values ...") ### TEMPORARY: WRITE OUT MASK BEFORE CLIPPING # Create a frame where the objects are masked #frame = copy.deepcopy(self.frame) #frame[self.mask] = float(self.config.writing.mask_value) # Save the masked frame #frame.save("masked_sky_frame_notclipped.fits") ### # Create the sigma-clipped mask self.mask = statistics.sigma_clip_mask(self.frame, self.config.sigma_clipping.sigma_level, self.mask) # ----------------------------------------------------------------- def estimate(self): """ This function ... :return: """ # Inform the user log.info("Estimating the sky ...") # Estimate the sky by taking the mean value of all pixels that are not masked if self.config.estimation.method == "mean": self.estimate_sky_mean() # Estimate the sky by taking the median value of all pixels that are not masked elif self.config.estimation.method == "median": self.estimate_sky_median() # The sky should be estimated by fitting a polynomial function to the pixels elif self.config.estimation.method == "polynomial": self.estimate_sky_polynomial() # Use photutils to estimate the sky and sky noise elif self.config.estimation.method == "photutils": self.estimate_sky_photutils() # Use our own method to estimate the sky and sky noise elif self.config.estimation.method == "pts": self.estimate_sky_pts() # Unkown sky estimation method else: raise ValueError("Unknown sky estimation method") # ----------------------------------------------------------------- def estimate_sky_mean(self): """ This function ... :return: """ # Inform the user log.info("Estimating the sky by calculating the mean value of all non-masked pixels ...") # Create a frame filled with the mean value self.sky = self.mean # ----------------------------------------------------------------- def estimate_sky_median(self): """ This function ... :return: """ # Inform the user log.info("Estimating the sky by calculating the median value of all non-masked pixels ...") # Create a frame filled with the median value self.sky = self.median # ----------------------------------------------------------------- def estimate_sky_polynomial(self): """ This function ... :return: """ # Inform the user log.info("Estimating the sky by fitting a polynomial function to all non-masked pixels ...") polynomial = fitting.fit_polynomial(self.frame, 3, mask=self.mask) # Evaluate the polynomial data = fitting.evaluate_model(polynomial, 0, self.frame.xsize, 0, self.frame.ysize) #plotting.plot_box(data, title="estimated sky") # Create sky map # data, wcs=None, name=None, description=None, unit=None, zero_point=None, filter=None, sky_subtracted=False, fwhm=None self.sky = Frame(data, wcs=self.frame.wcs, name="sky", description="estimated sky", unit=self.frame.unit, zero_point=self.frame.zero_point, filter=self.frame.filter, sky_subtracted=False, fwhm=self.frame.fwhm) # ----------------------------------------------------------------- def estimate_sky_photutils(self): """ This function ... :return: """ # Inform the user log.info("Estimating the sky and sky noise by using photutils ...") bkg = Background(self.frame, (50, 50), filter_shape=(3, 3), filter_threshold=None, mask=self.mask, method="sextractor", backfunc=None, interp_order=3, sigclip_sigma=3.0, sigclip_iters=10) # Masked background masked_background = np.ma.masked_array(bkg.background, mask=self.mask) #plotting.plot_box(masked_background, title="masked background") mean_sky = np.ma.mean(masked_background) median_sky = np.median(masked_background.compressed()) # data, wcs=None, name=None, description=None, unit=None, zero_point=None, filter=None, sky_subtracted=False, fwhm=None self.phot_sky = Frame(bkg.background, wcs=self.frame.wcs, name="phot_sky", description="photutils background", unit=self.frame.unit, zero_point=self.frame.zero_point, filter=self.frame.filter, sky_subtracted=False, fwhm=self.frame.fwhm) # data, wcs=None, name=None, description=None, unit=None, zero_point=None, filter=None, sky_subtracted=False, fwhm=None self.phot_rms = Frame(bkg.background_rms, wcs=self.frame.wcs, name="phot_rms", description="photutils rms", unit=self.frame.unit, zero_point=self.frame.zero_point, filter=self.frame.filter, sky_subtracted=False, fwhm=self.frame.fwhm) # Set sky level self.sky = median_sky # ----------------------------------------------------------------- def estimate_sky_pts(self): """ This function ... :return: """ # Inform the user log.info("Estimating the sky and sky noise by using or own procedures ...") # Check whether the FWHM is defined for the frame if self.frame.fwhm is None: raise RuntimeError("The FWHM of the frame is not defined: sky apertures cannot be generated") # Determine the aperture radius aperture_radius = self.determine_aperture_radius() # Determine the number of apertures to use napertures = self.determine_number_of_apertures(aperture_radius) # Generate the apertures aperture_centers, aperture_means, aperture_stddevs = self.generate_apertures(aperture_radius, napertures) # Remove outliers aperture_centers, aperture_means, aperture_stddevs = self.remove_aperture_outliers(aperture_centers, aperture_means, aperture_stddevs) # Calculate the large-scale variation level large_scale_variations_error = aperture_means.std() # Calculate the mean pixel-by-pixel noise over all apertures pixel_to_pixel_noise = np.mean(aperture_stddevs) # Determine the median sky level self.sky = np.median(aperture_means) # Determine the noise by quadratically adding the large scale variation and the mean pixel-by-pixel noise self.noise = np.sqrt(large_scale_variations_error**2 + pixel_to_pixel_noise**2) # Debugging log.debug("The estimated sky level is " + str(self.sky)) log.debug("The estimated sky noise level is " + str(self.noise)) # Create aperture frames self.create_aperture_frames(aperture_centers, aperture_means, aperture_stddevs, aperture_radius) # Finishing step if self.config.estimation.finishing_step is None: pass elif self.config.estimation.finishing_step == "polynomial": self.fit_polynomial_to_apertures(aperture_centers, aperture_means) elif self.config.estimation.finishing_step == "interpolation": self.interpolate_apertures(aperture_centers, aperture_means) else: raise ValueError("Invalid finishing step") #self.plot_interpolated(aperture_centers, aperture_means) #self.try_to_interpolate_smart(aperture_centers, aperture_means) # ----------------------------------------------------------------- def determine_aperture_radius(self): """ This function ... :return: """ # Determine the radius for the sky apertures fwhm_pix = self.frame.fwhm_pix radius = 4.0 * fwhm_pix # Debugging log.debug("Using sky apertures with a radius of " + str(radius) + " pixels") # Return the aperture radius return radius # ----------------------------------------------------------------- def determine_number_of_apertures(self, radius): """ This function ... :param radius: :return: """ npixels = np.sum(self.mask.inverse()) # Assuming optimal hexagonal packing, get an estimate of the maximum number of circles of given radius # can fit in the area covered by the pixels that are not masked. This is obviously a significant overestimation # especially in the case where the radius becomes of the same order of magnitude as the radius of the # galaxy annulus (the hexagonal packing assumes a rectangular area or at least rectangular-like edges) # With perfect hexagonal packing, the area of the rectangle that will be covered by the circles is π/(2√3), # which is approximately equal to 0.907 # See: https://www.quora.com/How-many-3-75-inch-circles-will-fit-inside-a-17-inch-square coverable_area = 0.907 * npixels circle_area = np.pi * radius ** 2 optimal_number_of_apertures = coverable_area / circle_area # Debugging log.debug("The upper limit to the number of apertures that fit in the part of the frame that is not masked " "(assuming hexagonal packing) is " + str(optimal_number_of_apertures)) # Determine the number of apertures that are going to be used, take a third of the upper limit napertures = int(optimal_number_of_apertures / 3.) # Debugging log.debug("A total of " + str(napertures) + " apertures are going to be used to estimate the sky ...") # Return the number of apertures return napertures # ----------------------------------------------------------------- def generate_apertures(self, radius, napertures): """ This function ... :param radius: :param napertures: :return: """ circle_area = np.pi * radius ** 2 # Get arrays of the coordinates of all pixels that are not masked pixels_y, pixels_x = np.where(self.mask.inverse()) # Get the number of pixels that are not masked (also the area of the frame not masked) npixels = pixels_x.size # Create a mask that tags all pixels that have been covered by one of the apertures apertures_mask = Mask.empty_like(self.frame) # Counter to keep track of the number of 'succesful' apertures that have been used current_napertures = 0 # Initialize lists to contain the mean sky levels and noise levels in each of the apertures aperture_centers = [] aperture_means = [] aperture_stddevs = [] # Draw 100 random coordinates while True: # Draw a random pixel index index = np.random.randint(npixels) # Get the x and y coordinate of the pixel x = pixels_x[index] y = pixels_y[index] # Create a coordinate for the center of the aperture center = Coordinate(x, y) # Create a circular aperture circle = Circle(center, radius) # Create a Source from the frame source = Source.from_shape(self.frame, circle, 1.3) # Get a mask of the pixels that overlap with the sky mask sky_mask_cutout = self.mask[source.y_slice, source.x_slice] overlapping = sky_mask_cutout * source.mask # Calculate the overlap fraction with the sky mask number_of_overlapping_pixels = np.sum(overlapping) overlap_fraction = number_of_overlapping_pixels / circle_area # If the overlap fraction is larger than 50% for this aperture, skip it if overlap_fraction >= 0.5: log.debug( "For this aperture, an overlap fraction of more than 50% was found with the sky mask, skipping ...") continue # Get a mask of the pixels that overlap with the apertures mask apertures_mask_cutout = apertures_mask[source.y_slice, source.x_slice] overlapping = apertures_mask_cutout * source.mask # Calculate the overlap fraction with the apertures mask number_of_overlapping_pixels = np.sum(overlapping) overlap_fraction = number_of_overlapping_pixels / circle_area # If the overlap fraction is larger than 10% for this aperture, skip it if overlap_fraction >= 0.1: log.debug( "For this aperture, an overlap fraction of more than 10% was found with other apertures, skipping ...") # Add the aperture area to the mask apertures_mask[source.y_slice, source.x_slice] += source.mask # Debugging log.debug("Placed aperture " + str(current_napertures+1) + " of " + str(napertures) + " ({0:.2f}%)".format((current_napertures+1)/napertures*100.)) if self.animation is not None: plt.figure() plt.imshow(apertures_mask, origin="lower") plt.title("Aperture mask") buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) im = imageio.imread(buf) buf.close() self.animation.add_frame(im) # Calculate the mean sky value in this aperture masked_array_cutout = np.ma.MaskedArray(source.cutout, mask=sky_mask_cutout + source.background_mask) # plotting.plot_box(masked_array_cutout) aperture_mean = np.ma.mean(masked_array_cutout) #aperture_median = np.ma.median(masked_array_cutout) # aperture_median2 = np.median(masked_array_cutout.compressed()) # same result, but unnecessary compressed step aperture_stddev = np.std(masked_array_cutout) # print("aperture mean:", aperture_mean) # print("aperture median:", aperture_median, aperture_median2) # print("aperture stddev:", aperture_std) aperture_centers.append(center) aperture_means.append(aperture_mean) aperture_stddevs.append(aperture_stddev) # Another succesful aperture current_napertures += 1 # Stop when we have reached the desired number of apertures if current_napertures == napertures: break # Create Numpy arrays from the aperture means and standard deviations aperture_means = np.array(aperture_means) aperture_stddevs =
np.array(aperture_stddevs)
numpy.array
# -*- coding: utf-8 -*- """Models module.""" import re from abc import ABC, abstractmethod from copy import copy from typing import Any, Tuple, Iterable, Optional from inspect import signature import numpy as np import pandas as pd import sklearn from scipy.sparse import issparse import matplotlib as mpl import matplotlib.cm as cm import matplotlib.colors as mcolors import matplotlib.pyplot as plt import anndata from cellrank.tools._utils import save_fig from cellrank.utils._utils import _minmax from cellrank.tools._lineage import Lineage from cellrank.tools._constants import LinKey _dup_spaces = re.compile(r" +") class Model(ABC): """ Base class for other model classes. Params ------ adata : :class:`anndata.AnnData` Annotated data object. model Underlying model. weight_name Name of the weight argument for :paramref:`model`. """ def __init__( self, adata: anndata.AnnData, model: Any, weight_name: Optional[str] = None ): self._adata = adata self._model = model self.weight_name = weight_name self._x_all = None self._y_all = None self._w_all = None self._x = None self._y = None self._w = None self._x_test = None self._y_test = None self._x_hat = None self._y_hat = None self._conf_int = None self._dtype = np.float32 @property def adata(self) -> anndata.AnnData: """Annotated data object.""" return self._adata @property def model(self) -> Any: """Underlying model.""" return self._model @property def x_all(self) -> np.ndarray: """Original independent variables.""" return self._x_all @property def y_all(self) -> np.ndarray: """Original dependent variables.""" return self._y_all @property def w_all(self) -> np.ndarray: """Original weights.""" return self._w_all @property def x(self) -> np.ndarray: """Independent variables used for model fitting.""" return self._x @property def y(self) -> np.ndarray: """Dependent variables used for model fitting.""" return self._y @property def w(self) -> np.ndarray: """Weights of independent variables used for model fitting.""" return self._w @property def x_test(self) -> np.ndarray: """Independent variables used for prediction.""" return self._x_test @property def y_test(self) -> np.ndarray: """Predicted values.""" return self._y_test @property def x_hat(self) -> np.ndarray: """Independent variables used when calculating default confidence interval.""" return self._x_hat @property def y_hat(self) -> np.ndarray: """Dependent variables used when calculating default confidence interval.""" return self._y_hat @property def conf_int(self) -> np.ndarray: """Confidence interval.""" return self._conf_int @abstractmethod def __copy__(self) -> "Model": pass def prepare( self, gene: str, lineage_name: str, data_key: str = "X", final: bool = True, time_key: str = "latent_time", start_lineage: Optional[str] = None, end_lineage: Optional[str] = None, threshold: Optional[float] = None, weight_threshold: float = 0.02, weight_scale: float = 1, filter_data: float = False, n_test_points: int = 200, ) -> "Model": """ Prepare the model to be ready for fitting. Params ------ gene Gene in :paramref:`adata` `.var_names`. lineage_name Name of a lineage in :paramref:`adata` `.uns`:paramref:`lineage_key`. data_key Key in :attr:`paramref.adata` `.layers` or `'X'` for :paramref:`adata` `.X` final Whether to consider cells going to final states or vice versa. time_key Key in :paramref:`adata` `.obs` where the pseudotime is stored. start_lineage Lineage from which to select cells with lowest pseudotime as starting points. If specified, the trends start at the earliest pseudotime within that lineage, otherwise they start from time `0`. end_lineage Lineage from which to select cells with highest pseudotime as endpoints. If specified, the trends end at the latest pseudotime within that lineage, otherwise, it is determined automatically. threshold Consider only cells with :paramref:`weights` > :paramref:`threshold` when estimating the testing endpoint. If `None`, use median of :paramref:`w`. weight_threshold Set all weights below this to :paramref:`weight_scale` * :paramref:`weight_threshold`. weight_scale Weight threshold scale, see :paramref:`weight_threshold`. filter_data Use only testing points for fitting. n_test_points Number or test points. if `None`, use the original points based on :paramref:`threshold`. Returns ------- None Nothing, but updates the following fields: - :paramref:`x` - :paramref:`y` - :paramref:`w` - :paramref:`x_test` """ if data_key not in ["X", "obs"] + list(self.adata.layers.keys()): raise KeyError( f"Data key must be a key of `adata.layers`: `{list(self.adata.layers.keys())}`, '`obs`' or `'X'`." ) if time_key not in self.adata.obs: raise KeyError(f"Time key `{time_key!r}` not found in `adata.obs`.") if data_key != "obs": if gene not in self.adata.var_names: raise KeyError(f"Gene `{gene!r}` not found in `adata.var_names`.") else: if gene not in self.adata.obs: raise KeyError(f"Unable to find key `{gene!r}` in `adata.obs`.") lineage_key = str(LinKey.FORWARD if final else LinKey.BACKWARD) if lineage_key not in self.adata.obsm: raise KeyError(f"Lineage key `{lineage_key!r}` not found in `adata.obsm`.") if not isinstance(self.adata.obsm[lineage_key], Lineage): raise TypeError( f"Expected `adata.obsm[{lineage_key!r}]` to be of type `cellrank.tl.Lineage`, " f"found `{type(self.adata.obsm[lineage_key]).__name__}`." ) if lineage_name is not None: _ = self.adata.obsm[lineage_key][lineage_name] if start_lineage is not None: if start_lineage not in self.adata.obsm[lineage_key].names: raise KeyError( f"Start lineage `{start_lineage!r}` not found in `adata.obsm[{lineage_key!r}].names`." ) if end_lineage is not None: if end_lineage not in self.adata.obsm[lineage_key].names: raise KeyError( f"End lineage `{end_lineage!r}` not found in `adata.obsm[{lineage_key!r}].names`." ) x = np.array(self.adata.obs[time_key]).astype(np.float64) gene_ix = np.where(self.adata.var_names == gene)[0] if data_key == "X": y = self.adata.X[:, gene_ix] elif data_key == "obs": y = self.adata.obs[gene].values elif data_key in self.adata.layers: y = self.adata.layers[data_key][:, gene_ix] else: raise NotImplementedError( f"Data key `{data_key!r}` is not yet implemented." ) if issparse(y): y = np.asarray(y.todense()) y = np.squeeze(y).astype(np.float64) if lineage_name is not None: w = ( np.array(self.adata.obsm[lineage_key][lineage_name]) .astype(self._dtype) .squeeze() ) w[w < weight_threshold] = np.clip(weight_threshold * weight_scale, 0, 1) else: w = np.ones_like(x) self._x_all, self._y_all, self._w_all = x[:], y[:], w[:] x, ixs = np.unique(x, return_index=True) y = y[ixs] w = w[ixs] ixs = np.argsort(x) x, y, w = x[ixs], y[ixs], w[ixs] if start_lineage is None or (start_lineage == lineage_name): val_start = np.min(self.adata.obs[time_key]) else: from_key = "_".join(lineage_key.split("_")[1:]) val_start = np.nanmin( self.adata.obs[time_key][self.adata.obs[from_key] == start_lineage] ) if end_lineage is None or (end_lineage == lineage_name): if threshold is None: threshold = np.nanmedian(w) w_test = w[w > threshold] tmp = np.convolve(w_test, np.ones(8) / 8, mode="same") val_end = x[w > threshold][np.nanargmax(tmp)] else: to_key = "_".join(lineage_key.split("_")[1:]) val_end = np.nanmax( self.adata.obs[time_key][self.adata.obs[to_key] == end_lineage] ) if val_start > val_end: val_start, val_end = val_end, val_start x_test = ( np.linspace(val_start, val_end, n_test_points) if n_test_points is not None else x[(x >= val_start) & (x <= val_end)] ) if filter_data: fil = (x >= val_start) & (x <= val_end) x, y, w = x[fil], y[fil], w[fil] self._x, self._y, self._w = ( self._convert(x[:]), self._convert(y[:]), self._convert(w[:]).squeeze(-1), ) self._x_test = self._convert(x_test[:]) return self def _convert(self, value: np.ndarray) -> np.ndarray: was_1d = value.ndim == 1 value =
np.atleast_2d(value)
numpy.atleast_2d
""" Author: <NAME> Email: <EMAIL> This is a collection of plotting functions for plotting the input/output data from a 3DLIM run. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import pandas as pd import netCDF4 from scipy.optimize import curve_fit from matplotlib import colors from matplotlib import patches from matplotlib import ticker # Some plot properties to make them a bit nicer. plt.ion() #plt.rcParams['font.family'] = 'serif' fontsize = 12 ms = 2 lw = 5 tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the tableau20 RGBs to numbers between (0,1) since this is how mpl accepts them. for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b / 255.) class LimPlots: """ Class object to store data and plotting routines for a 3DLIM run. """ def __init__(self, ncpath, combine_repeat_runs=True): """ Just intialize with the netCDF file. Will assume the lim and dat file are in the same folder. ncpath: Path to the NetCDF file. combine_repeat_runs: Combine the NERODS3 arrays from multiple repeat runs together for improved statistics. This assumes the following naming convention: ncfile, ncfile2, ncfile3, ... """ # Save the repeat runs flags for later. self.combine_repeat_runs = combine_repeat_runs self.ncpath = ncpath # Just a default file for testing. if ncpath == 'test': ncpath = 'colprobe-z1-001e.nc' # Load in netcdf file. self.nc = netCDF4.Dataset(ncpath) # Load in the lim file. limpath = ncpath[:-2] + 'lim' with open(limpath) as f: self.lim = f.read() # load in the dat file. datpath = ncpath[:-2] + 'dat' with open(datpath) as f: self.dat = f.read() # Save file name. self.file = ncpath.split('/')[-1][:-3] # Save case name. self.case = '' for b in self.nc.variables['TITLE'][:].data: self.case = self.case + b.decode('UTF-8') def __repr__(self): message = 'LimPlots Object\n' + \ ' Case: ' + self.case + '\n' + \ ' File: ' + self.file + '\n' return message def summary(self): # Output dictionary to print out results easier. output = dict() # Case info. output['Case'] = self.case output['File'] = self.file # Time for run in hours. time = int(self.dat.split('TOTAL CPU TIME USED (S)')[1].split('\n')[0]) output['Time'] = str(time) + 's (' + format(time/3600, '.2f') + ' hours)' # Number of impurities followed. num = int(self.dat.split('NO OF IMPURITY IONS TO FOLLOW')[1].split('\n')[0]) output['Ions Followed'] = "{:,}".format(num) # Find longest output for formatting. pad = 0 for val in output.values(): if len(str(val)) > pad: pad = len(str(val)) # Printing commands. num_stars = 2 + 15 + 2 + pad print("\n" + "*" * num_stars) for key, val in output.items(): print("* {:15}{:<{pad}} *".format(key, val, pad=pad)) print("*" * num_stars) def get_dep_array(self, num_runs=399): """ Load the deposition arrays for the collector probes. To-Do - Add option to combine the arrays of multiple repeat runs. """ # Only load it once. Keep track if it's already been loaded by trying # to see if it's been defined yet. try: self.dep_arr # Not defined, so load it. except AttributeError: if self.combine_repeat_runs: # Try and get the dep_arr from the base case. If it doesn't exist, # that means nothing landed on the probe and 3DLIM won't save # and array of all zeros apparently. So just create the dep_arr # of all zeros. try: dep_arr = np.array(self.nc.variables['NERODS3'][0] * -1) except: dep_arr = np.zeros((6, 2*self.nc.variables['MAXNPS'][:]+1, self.nc.variables['MAXOS'][:])) print(" No NERODS3.") # Add on contributions from repeat runs. for i in range(1, num_runs): try: ncpath_add = self.ncpath.split('.nc')[0] + str(i) + '.nc' #print('Looking for {}...'.format(ncpath_add)) nc = netCDF4.Dataset(ncpath_add) print("Found additional run: {}".format(ncpath_add)) try: dep_arr = dep_arr + np.array(nc.variables['NERODS3'][0] * -1) except KeyError: print(" No NERODS3.") except: pass else: # Create the deposition array for the initial file. dep_arr = np.array(self.nc.variables['NERODS3'][0] * -1) # Define dep_arr so next time you won't have to choose all the file # locations. self.dep_arr = dep_arr return self.dep_arr def centerline(self, log=False, fit_exp=False, plotnum=0, show_plot=True): """ Plot the ITF and OTF deposition along the centerlines on the same plot. log: Option to make y axis a log scale. fit_exp: Do an exponential fit onto the data and get the lambdas. To-Do - Add option so ITF/OTF is only over, say, first 5 cm. """ #The deposition array. dep_arr = self.get_dep_array() # Location of each P bin, and its width. ps = np.array(self.nc.variables['PS'][:].data) pwids = np.array(self.nc.variables['PWIDS'][:].data) # Array of poloidal locations (i.e. the center of each P bin). pol_locs = ps - pwids/2.0 # Distance cell centers along surface (i.e. the radial locations). rad_locs = np.array(self.nc.variables['ODOUTS'][:].data) # Get the centerline index (or closest to it). cline = np.abs(pol_locs).min() # Index the deposition array at the centerline for plotting. itf_x = rad_locs[np.where(rad_locs > 0.0)[0]] itf_y = dep_arr[np.where(pol_locs == cline)[0], np.where(rad_locs > 0.0)[0]] otf_x = rad_locs[np.where(rad_locs < 0.0)[0]] * -1 otf_y = dep_arr[np.where(pol_locs == cline)[0], np.where(rad_locs < 0.0)[0]] # Plotting commands. if plotnum == 0: if show_plot: fig = plt.figure() ax = fig.add_subplot(111) else: ax = self.master_fig.axes[plotnum-1] # Option for a log axis. if show_plot: if log: ax.semilogy(itf_x*100, itf_y, '-', label='ITF', ms=ms, color=tableau20[6]) ax.semilogy(otf_x*100, otf_y, '-', label='OTF', ms=ms, color=tableau20[8]) else: ax.plot(itf_x*100, itf_y, '-', label='ITF', ms=ms, color=tableau20[6]) ax.plot(otf_x*100, otf_y, '-', label='OTF', ms=ms, color=tableau20[8]) # The tips of the probes can have spuriously high data points, so set the # may for the ylim just the second highest number in the datasets. ymax = sorted(np.concatenate((otf_y, itf_y)))[-2] ax.legend(fontsize=fontsize) ax.set_xlabel('Distance along probe (cm)', fontsize=fontsize) ax.set_ylabel('Deposition (arbitrary units)', fontsize=fontsize) #ax.set_xlim([0, 10]) #ax.set_ylim([0, ymax]) # Option to perform an exponential fit to the data. if fit_exp: def exp_fit(x, a, b): return a * np.exp(-b * x) popt_itf, pcov_itf = curve_fit(exp_fit, itf_x, itf_y, maxfev=5000) popt_otf, pcov_otf = curve_fit(exp_fit, otf_x, otf_y, maxfev=5000) fitx = np.linspace(0, 0.1, 100) fity_itf = exp_fit(fitx, *popt_itf) fity_otf = exp_fit(fitx, *popt_otf) if show_plot: if log: ax.semilogy(fitx*100, fity_itf, '--', ms=ms, color=tableau20[6]) ax.semilogy(fitx*100, fity_otf, '--', ms=ms, color=tableau20[8]) else: ax.plot(fitx*100, fity_itf, '--', ms=ms, color=tableau20[6]) ax.plot(fitx*100, fity_otf, '--', ms=ms, color=tableau20[8]) print("Lambdas") print(" ITF = {:.2f}".format(1/popt_itf[1]*100)) print(" OTF = {:.2f}".format(1/popt_otf[1]*100)) if plotnum ==0: if show_plot: fig.tight_layout() fig.show() print("Center ITF/OTF: {:.2f}".format(itf_y.sum()/otf_y.sum())) return {'itf_x':itf_x, 'itf_y':itf_y, 'otf_x':otf_x, 'otf_y':otf_y} def deposition_contour(self, side, probe_width=0.015, rad_cutoff=0.05, plotnum=0, vmax=None, print_ratio=True): """ Plot the 2D tungsten distribution across the face. side: Either 'ITF' or 'OTF'. probe_width: The half-width of the collector probe (the variable CPCO). A = 0.015, B = 0.005, C = 0.0025 rad_cutoff: Only plot data from the tip down to rad_cutoff. Useful if we want to compare to LAMS since those scans only go down a certain length of the probe. *** To-Do *** - Instead of entering the width, pull out CPCO(?) from the netcdf file. Need to figure out the points being deposited outside the expected probe width first though. - Print out the ITF/OTF ratio from this analysis. """ #The deposition array. dep_arr = self.get_dep_array() # Location of each P bin, and its width. Currently they all have the same width, # but it may end up such that there are custom widths so we leave it like this. ps = np.array(self.nc.variables['PS'][:].data) pwids = np.array(self.nc.variables['PWIDS'][:].data) # Array of poloidal locations (i.e. the center of each P bin). pol_locs = ps - pwids/2.0 # Distance cell centers along surface (i.e. the radial locations). rad_locs = np.array(self.nc.variables['ODOUTS'][:].data) # Remove data beyond rad_cutoff. idx = np.where(np.abs(rad_locs)<rad_cutoff)[0] rad_locs = rad_locs[idx] dep_arr = dep_arr[:, idx] # Seems a junk number can sneak into PS and PWIDS. Clean that up. idx = np.where(ps < 9999)[0] pol_locs = pol_locs[idx] dep_arr = dep_arr[idx] # Get only positive values of rad_locs for ITF... idx = np.where(rad_locs > 0.0)[0] X_itf, Y_itf = np.meshgrid(rad_locs[idx], pol_locs) Z_itf = dep_arr[:, idx] # ... negative for OTF. idx = np.where(rad_locs < 0.0)[0] X_otf, Y_otf = np.meshgrid(np.abs(rad_locs[idx][::-1]), pol_locs) Z_otf = dep_arr[:, idx][:, ::-1] # Make the levels for the contour plot out of whichever side has the max deposition. if vmax == None: if Z_itf.max() > Z_otf.max(): levels = np.linspace(0, Z_itf.max(), 15) else: levels = np.linspace(0, Z_otf.max(), 15) else: levels = np.linspace(0, vmax, 15) # Plotting commands. if side == 'ITF': X = X_itf; Y = Y_itf; Z = Z_itf else: X = X_otf; Y = Y_otf; Z = Z_otf if plotnum == 0: fig = plt.figure() ax = fig.add_subplot(111) else: ax = self.master_fig.axes[plotnum-1] ax.contourf(X*100, Y*100, Z, levels=levels, cmap='Reds') ax.set_xlabel('Distance along probe (cm)', fontsize=fontsize) ax.set_ylabel('Z location (cm)', fontsize=fontsize) ax.set_ylim([-probe_width*100, probe_width*100]) props = dict(facecolor='white') ax.text(0.75, 0.85, side, bbox=props, fontsize=fontsize*1.5, transform=ax.transAxes) if plotnum == 0: fig.tight_layout() fig.show() if print_ratio: print('Total ITF/OTF (0-{} cm): {:.2f}'.format(rad_cutoff*100, Z_itf.sum()/Z_otf.sum())) def avg_pol_profiles(self, probe_width=0.015, rad_cutoff=0.5, plotnum=0): """ Plot the average poloidal profiles for each side. Mainly to see if deposition peaks on the edges. probe_width: The half-width of the collector probe (the variable CPCO). A = 0.015, B = 0.005, C = 0.0025 rad_cutoff: Only plot data from the tip down to rad_cutoff. Useful if we want to compare to LAMS since those scans only go down a certain length of the probe. """ # Code copied from above function, deposition_contour. See for comments. dep_arr = np.array(self.nc.variables['NERODS3'][0] * -1) ps = np.array(self.nc.variables['PS'][:].data) pwids = np.array(self.nc.variables['PWIDS'][:].data) pol_locs = ps - pwids/2.0 dep_arr = dep_arr[:-1, :] pol_locs = pol_locs[:-1] rad_locs = np.array(self.nc.variables['ODOUTS'][:].data) idx = np.where(np.abs(rad_locs)<rad_cutoff)[0] rad_locs = rad_locs[idx] dep_arr = dep_arr[:, idx] idx = np.where(rad_locs > 0.0)[0] X_itf, Y_itf = np.meshgrid(rad_locs[idx], pol_locs) Z_itf = dep_arr[:, idx] idx = np.where(rad_locs < 0.0)[0] X_otf, Y_otf = np.meshgrid(
np.abs(rad_locs[idx][::-1])
numpy.abs
import os import sys from difflib import SequenceMatcher from pyproj import Proj, transform import numpy as np import pandas as pd def similar(a, b): return SequenceMatcher(None, a, b).ratio() def extract_loc(t_array, gps_data): _xy = gps_data[[0, -1]] pct = ((t_array * 1.0) / np.max(t_array))[:, np.newaxis] pos = pct * (_xy[1] - _xy[0])[np.newaxis, :] + _xy[0] return pos def proc_detection(c_angle, view_extend_dist, f_lpr, f_traj, f_gps): # get walking trajectory WGS = Proj(init="epsg:4326") utm_11 = Proj(init="epsg:26911") df = pd.read_csv(f_lpr) df_loc = pd.read_csv(f_gps, names=['lat', 'lon']) xy = df_loc.apply(lambda r: transform(WGS, utm_11, r['lon'], r['lat']), axis=1) df_loc['x'] = xy.apply(lambda x: x[0]) df_loc['y'] = xy.apply(lambda x: x[1]) gps = df_loc[['x', 'y']].values ts = df['time'].values pos_intp = extract_loc(ts, gps) # get camera location for each video frame image traj = np.apply_along_axis(lambda x: transform(utm_11, WGS, x[0], x[1]), 1, np.unique(pos_intp, axis=0)) traj[:, [0, 1]] = traj[:, [1, 0]] traj = traj[::-1] traj = np.append(traj, np.unique(ts)[:, np.newaxis], axis=1) traj = pd.DataFrame(traj, columns=['lat', 'lon', 't_vid']) with open(f_traj, 'w') as wrt: str_l = [] for row in traj.values: str_l.append("%f,%f" % (row[1], row[0])) wrt.write("%s" % ';'.join(str_l)) # get vehical location for each image unit = pos_intp[-1] - pos_intp[0] unit = unit[:, np.newaxis] unit = unit / np.linalg.norm(unit) dist = df['dist'].values dist[dist == -1.0] = np.nan dist += view_extend_dist th = np.radians(c_angle) rot_M = np.array([[np.cos(th), -np.sin(th)], [
np.sin(th)
numpy.sin
import pandas as pd import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import Perceptron from sklearn.metrics import accuracy_score from matplotlib.colors import ListedColormap import matplotlib.pyplot as plt class LogisticRegressionGD: """Gradient descent-based logistic regression classifier. Parameters ------------ eta : float Learning rate (between 0.0 and 1.0) n_iter : int Passes over the training dataset. random_state : int Random number generator seed for random weight initialization. Attributes ----------- w_ : 1d-array Weights after training. b_ : Scalar Bias unit after fitting. losses_ : list Mean squared error loss function values in each epoch. """ def __init__(self, eta=0.01, n_iter=50, random_state=1): self.eta = eta self.n_iter = n_iter self.random_state = random_state def fit(self, X, y): """ Fit training data. Parameters ---------- X : {array-like}, shape = [n_examples, n_features] Training vectors, where n_examples is the number of examples and n_features is the number of features. y : array-like, shape = [n_examples] Target values. Returns ------- self : Instance of LogisticRegressionGD """ rgen =
np.random.RandomState(self.random_state)
numpy.random.RandomState
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras metrics functions.""" import copy import json import math import os from absl.testing import parameterized from keras import backend from keras import combinations from keras import keras_parameterized from keras import layers from keras import metrics from keras import Model from keras import testing_utils from keras.engine import base_layer from keras.engine import training as training_module import numpy as np import tensorflow.compat.v2 as tf @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class KerasSumTest(tf.test.TestCase, parameterized.TestCase): def test_sum(self): with self.test_session(): m = metrics.Sum(name='my_sum') # check config self.assertEqual(m.name, 'my_sum') self.assertTrue(m.stateful) self.assertEqual(m.dtype, tf.float32) self.assertLen(m.variables, 1) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) # check initial state self.assertEqual(self.evaluate(m.total), 0) # check __call__() self.assertEqual(self.evaluate(m(100)), 100) self.assertEqual(self.evaluate(m.total), 100) # check update_state() and result() + state accumulation + tensor input update_op = m.update_state(tf.convert_to_tensor([1, 5])) self.evaluate(update_op) self.assertAlmostEqual(self.evaluate(m.result()), 106) self.assertEqual(self.evaluate(m.total), 106) # 100 + 1 + 5 # check reset_state() m.reset_state() self.assertEqual(self.evaluate(m.total), 0) def test_sum_with_sample_weight(self): m = metrics.Sum(dtype=tf.float64) self.assertEqual(m.dtype, tf.float64) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) # check scalar weight result_t = m(100, sample_weight=0.5) self.assertEqual(self.evaluate(result_t), 50) self.assertEqual(self.evaluate(m.total), 50) # check weights not scalar and weights rank matches values rank result_t = m([1, 5], sample_weight=[1, 0.2]) result = self.evaluate(result_t) self.assertAlmostEqual(result, 52., 4) # 50 + 1 + 5 * 0.2 self.assertAlmostEqual(self.evaluate(m.total), 52., 4) # check weights broadcast result_t = m([1, 2], sample_weight=0.5) self.assertAlmostEqual(self.evaluate(result_t), 53.5, 1) # 52 + 0.5 + 1 self.assertAlmostEqual(self.evaluate(m.total), 53.5, 1) # check weights squeeze result_t = m([1, 5], sample_weight=[[1], [0.2]]) self.assertAlmostEqual(self.evaluate(result_t), 55.5, 1) # 53.5 + 1 + 1 self.assertAlmostEqual(self.evaluate(m.total), 55.5, 1) # check weights expand result_t = m([[1], [5]], sample_weight=[1, 0.2]) self.assertAlmostEqual(self.evaluate(result_t), 57.5, 2) # 55.5 + 1 + 1 self.assertAlmostEqual(self.evaluate(m.total), 57.5, 1) # check values reduced to the dimensions of weight result_t = m([[[1., 2.], [3., 2.], [0.5, 4.]]], sample_weight=[0.5]) result = np.round(self.evaluate(result_t), decimals=2) # result = (prev: 57.5) + 0.5 + 1 + 1.5 + 1 + 0.25 + 2 self.assertAlmostEqual(result, 63.75, 2) self.assertAlmostEqual(self.evaluate(m.total), 63.75, 2) def test_sum_graph_with_placeholder(self): with tf.compat.v1.get_default_graph().as_default(), self.cached_session() as sess: m = metrics.Sum() v = tf.compat.v1.placeholder(tf.float32) w = tf.compat.v1.placeholder(tf.float32) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) # check __call__() result_t = m(v, sample_weight=w) result = sess.run(result_t, feed_dict=({v: 100, w: 0.5})) self.assertEqual(result, 50) self.assertEqual(self.evaluate(m.total), 50) # check update_state() and result() result = sess.run(result_t, feed_dict=({v: [1, 5], w: [1, 0.2]})) self.assertAlmostEqual(result, 52., 2) # 50 + 1 + 5 * 0.2 self.assertAlmostEqual(self.evaluate(m.total), 52., 2) def test_save_restore(self): with self.test_session(): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, 'ckpt') m = metrics.Sum() checkpoint = tf.train.Checkpoint(sum=m) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) # update state self.evaluate(m(100.)) self.evaluate(m(200.)) # save checkpoint and then add an update save_path = checkpoint.save(checkpoint_prefix) self.evaluate(m(1000.)) # restore to the same checkpoint sum object (= 300) checkpoint.restore(save_path).assert_consumed().run_restore_ops() self.evaluate(m(300.)) self.assertEqual(600., self.evaluate(m.result())) # restore to a different checkpoint sum object restore_sum = metrics.Sum() restore_checkpoint = tf.train.Checkpoint(sum=restore_sum) status = restore_checkpoint.restore(save_path) restore_update = restore_sum(300.) status.assert_consumed().run_restore_ops() self.evaluate(restore_update) self.assertEqual(600., self.evaluate(restore_sum.result())) class MeanTest(keras_parameterized.TestCase): # TODO(b/120949004): Re-enable garbage collection check # @test_util.run_in_graph_and_eager_modes(assert_no_eager_garbage=True) @keras_parameterized.run_all_keras_modes def test_mean(self): m = metrics.Mean(name='my_mean') # check config self.assertEqual(m.name, 'my_mean') self.assertTrue(m.stateful) self.assertEqual(m.dtype, tf.float32) self.assertEqual(len(m.variables), 2) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) # check initial state self.assertEqual(self.evaluate(m.total), 0) self.assertEqual(self.evaluate(m.count), 0) # check __call__() self.assertEqual(self.evaluate(m(100)), 100) self.assertEqual(self.evaluate(m.total), 100) self.assertEqual(self.evaluate(m.count), 1) # check update_state() and result() + state accumulation + tensor input update_op = m.update_state([ tf.convert_to_tensor(1), tf.convert_to_tensor(5) ]) self.evaluate(update_op) self.assertAlmostEqual(self.evaluate(m.result()), 106 / 3, 2) self.assertEqual(self.evaluate(m.total), 106) # 100 + 1 + 5 self.assertEqual(self.evaluate(m.count), 3) # check reset_state() m.reset_state() self.assertEqual(self.evaluate(m.total), 0) self.assertEqual(self.evaluate(m.count), 0) # Check save and restore config m2 = metrics.Mean.from_config(m.get_config()) self.assertEqual(m2.name, 'my_mean') self.assertTrue(m2.stateful) self.assertEqual(m2.dtype, tf.float32) self.assertEqual(len(m2.variables), 2) @testing_utils.run_v2_only def test_function_wrapped_reset_state(self): m = metrics.Mean(name='my_mean') # check reset_state in function. @tf.function def reset_in_fn(): m.reset_state() return m.update_state(100) for _ in range(5): self.evaluate(reset_in_fn()) self.assertEqual(self.evaluate(m.count), 1) @keras_parameterized.run_all_keras_modes def test_mean_with_sample_weight(self): m = metrics.Mean(dtype=tf.float64) self.assertEqual(m.dtype, tf.float64) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) # check scalar weight result_t = m(100, sample_weight=0.5) self.assertEqual(self.evaluate(result_t), 50 / 0.5) self.assertEqual(self.evaluate(m.total), 50) self.assertEqual(self.evaluate(m.count), 0.5) # check weights not scalar and weights rank matches values rank result_t = m([1, 5], sample_weight=[1, 0.2]) result = self.evaluate(result_t) self.assertAlmostEqual(result, 52 / 1.7, 2) self.assertAlmostEqual(self.evaluate(m.total), 52, 2) # 50 + 1 + 5 * 0.2 self.assertAlmostEqual(self.evaluate(m.count), 1.7, 2) # 0.5 + 1.2 # check weights broadcast result_t = m([1, 2], sample_weight=0.5) self.assertAlmostEqual(self.evaluate(result_t), 53.5 / 2.7, 2) self.assertAlmostEqual(self.evaluate(m.total), 53.5, 2) # 52 + 0.5 + 1 self.assertAlmostEqual(self.evaluate(m.count), 2.7, 2) # 1.7 + 0.5 + 0.5 # check weights squeeze result_t = m([1, 5], sample_weight=[[1], [0.2]]) self.assertAlmostEqual(self.evaluate(result_t), 55.5 / 3.9, 2) self.assertAlmostEqual(self.evaluate(m.total), 55.5, 2) # 53.5 + 1 + 1 self.assertAlmostEqual(self.evaluate(m.count), 3.9, 2) # 2.7 + 1.2 # check weights expand result_t = m([[1], [5]], sample_weight=[1, 0.2]) self.assertAlmostEqual(self.evaluate(result_t), 57.5 / 5.1, 2) self.assertAlmostEqual(self.evaluate(m.total), 57.5, 2) # 55.5 + 1 + 1 self.assertAlmostEqual(self.evaluate(m.count), 5.1, 2) # 3.9 + 1.2 # check values reduced to the dimensions of weight result_t = m([[[1., 2.], [3., 2.], [0.5, 4.]]], sample_weight=[0.5]) result = np.round(self.evaluate(result_t), decimals=2) # 58.5 / 5.6 self.assertEqual(result, 10.45) self.assertEqual(np.round(self.evaluate(m.total), decimals=2), 58.54) self.assertEqual(np.round(self.evaluate(m.count), decimals=2), 5.6) @keras_parameterized.run_all_keras_modes def test_mean_graph_with_placeholder(self): with tf.compat.v1.get_default_graph().as_default(), self.cached_session() as sess: m = metrics.Mean() v = tf.compat.v1.placeholder(tf.float32) w = tf.compat.v1.placeholder(tf.float32) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) # check __call__() result_t = m(v, sample_weight=w) result = sess.run(result_t, feed_dict=({v: 100, w: 0.5})) self.assertEqual(self.evaluate(m.total), 50) self.assertEqual(self.evaluate(m.count), 0.5) self.assertEqual(result, 50 / 0.5) # check update_state() and result() result = sess.run(result_t, feed_dict=({v: [1, 5], w: [1, 0.2]})) self.assertAlmostEqual(self.evaluate(m.total), 52, 2) # 50 + 1 + 5 * 0.2 self.assertAlmostEqual(self.evaluate(m.count), 1.7, 2) # 0.5 + 1.2 self.assertAlmostEqual(result, 52 / 1.7, 2) @keras_parameterized.run_all_keras_modes def test_save_restore(self): checkpoint_directory = self.get_temp_dir() checkpoint_prefix = os.path.join(checkpoint_directory, 'ckpt') m = metrics.Mean() checkpoint = tf.train.Checkpoint(mean=m) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) # update state self.evaluate(m(100.)) self.evaluate(m(200.)) # save checkpoint and then add an update save_path = checkpoint.save(checkpoint_prefix) self.evaluate(m(1000.)) # restore to the same checkpoint mean object checkpoint.restore(save_path).assert_consumed().run_restore_ops() self.evaluate(m(300.)) self.assertEqual(200., self.evaluate(m.result())) # restore to a different checkpoint mean object restore_mean = metrics.Mean() restore_checkpoint = tf.train.Checkpoint(mean=restore_mean) status = restore_checkpoint.restore(save_path) restore_update = restore_mean(300.) status.assert_consumed().run_restore_ops() self.evaluate(restore_update) self.assertEqual(200., self.evaluate(restore_mean.result())) self.assertEqual(3, self.evaluate(restore_mean.count)) @keras_parameterized.run_all_keras_modes def test_multiple_instances(self): m = metrics.Mean() m2 = metrics.Mean() self.assertEqual(m.name, 'mean') self.assertEqual(m2.name, 'mean') self.assertEqual([v.name for v in m.variables], testing_utils.get_expected_metric_variable_names( ['total', 'count'])) self.assertEqual([v.name for v in m2.variables], testing_utils.get_expected_metric_variable_names( ['total', 'count'], name_suffix='_1')) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) self.evaluate(tf.compat.v1.variables_initializer(m2.variables)) # check initial state self.assertEqual(self.evaluate(m.total), 0) self.assertEqual(self.evaluate(m.count), 0) self.assertEqual(self.evaluate(m2.total), 0) self.assertEqual(self.evaluate(m2.count), 0) # check __call__() self.assertEqual(self.evaluate(m(100)), 100) self.assertEqual(self.evaluate(m.total), 100) self.assertEqual(self.evaluate(m.count), 1) self.assertEqual(self.evaluate(m2.total), 0) self.assertEqual(self.evaluate(m2.count), 0) self.assertEqual(self.evaluate(m2([63, 10])), 36.5) self.assertEqual(self.evaluate(m2.total), 73) self.assertEqual(self.evaluate(m2.count), 2) self.assertEqual(self.evaluate(m.result()), 100) self.assertEqual(self.evaluate(m.total), 100) self.assertEqual(self.evaluate(m.count), 1) @testing_utils.run_v2_only def test_deepcopy_of_metrics(self): m = metrics.Mean(name='my_mean') m.reset_state() m.update_state(100) m_copied = copy.deepcopy(m) m_copied.update_state(200) self.assertEqual(self.evaluate(m.result()), 100) self.assertEqual(self.evaluate(m_copied.result()), 150) m.reset_state() self.assertEqual(self.evaluate(m.result()), 0) self.assertEqual(self.evaluate(m_copied.result()), 150) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class KerasAccuracyTest(tf.test.TestCase): def test_accuracy(self): acc_obj = metrics.Accuracy(name='my_acc') # check config self.assertEqual(acc_obj.name, 'my_acc') self.assertTrue(acc_obj.stateful) self.assertEqual(len(acc_obj.variables), 2) self.assertEqual(acc_obj.dtype, tf.float32) self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) # verify that correct value is returned update_op = acc_obj.update_state([[1], [2], [3], [4]], [[1], [2], [3], [4]]) self.evaluate(update_op) result = self.evaluate(acc_obj.result()) self.assertEqual(result, 1) # 2/2 # Check save and restore config a2 = metrics.Accuracy.from_config(acc_obj.get_config()) self.assertEqual(a2.name, 'my_acc') self.assertTrue(a2.stateful) self.assertEqual(len(a2.variables), 2) self.assertEqual(a2.dtype, tf.float32) # check with sample_weight result_t = acc_obj([[2], [1]], [[2], [0]], sample_weight=[[0.5], [0.2]]) result = self.evaluate(result_t) self.assertAlmostEqual(result, 0.96, 2) # 4.5/4.7 def test_accuracy_ragged(self): acc_obj = metrics.Accuracy(name='my_acc') self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) # verify that correct value is returned rt1 = tf.ragged.constant([[1], [2], [3], [4]]) rt2 = tf.ragged.constant([[1], [2], [3], [4]]) update_op = acc_obj.update_state(rt1, rt2) self.evaluate(update_op) result = self.evaluate(acc_obj.result()) self.assertEqual(result, 1) # 2/2 # check with sample_weight rt1 = tf.ragged.constant([[2], [1]]) rt2 = tf.ragged.constant([[2], [0]]) sw_ragged = tf.ragged.constant([[0.5], [0.2]]) result_t = acc_obj(rt1, rt2, sample_weight=sw_ragged) result = self.evaluate(result_t) self.assertAlmostEqual(result, 0.96, 2) # 4.5/4.7 def test_binary_accuracy(self): acc_obj = metrics.BinaryAccuracy(name='my_acc') # check config self.assertEqual(acc_obj.name, 'my_acc') self.assertTrue(acc_obj.stateful) self.assertEqual(len(acc_obj.variables), 2) self.assertEqual(acc_obj.dtype, tf.float32) self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) # verify that correct value is returned update_op = acc_obj.update_state([[1], [0]], [[1], [0]]) self.evaluate(update_op) result = self.evaluate(acc_obj.result()) self.assertEqual(result, 1) # 2/2 # check y_pred squeeze update_op = acc_obj.update_state([[1], [1]], [[[1]], [[0]]]) self.evaluate(update_op) result = self.evaluate(acc_obj.result()) self.assertAlmostEqual(result, 0.75, 2) # 3/4 # check y_true squeeze result_t = acc_obj([[[1]], [[1]]], [[1], [0]]) result = self.evaluate(result_t) self.assertAlmostEqual(result, 0.67, 2) # 4/6 # check with sample_weight result_t = acc_obj([[1], [1]], [[1], [0]], [[0.5], [0.2]]) result = self.evaluate(result_t) self.assertAlmostEqual(result, 0.67, 2) # 4.5/6.7 def test_binary_accuracy_ragged(self): acc_obj = metrics.BinaryAccuracy(name='my_acc') self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) # verify that correct value is returned rt1 = tf.ragged.constant([[1], [0]]) rt2 = tf.ragged.constant([[1], [0]]) update_op = acc_obj.update_state(rt1, rt2) self.evaluate(update_op) result = self.evaluate(acc_obj.result()) self.assertEqual(result, 1) # 2/2 # check y_true squeeze only supported for dense tensors and is # not supported by ragged tensor (different ranks). --> error rt1 = tf.ragged.constant([[[1], [1]]]) rt2 = tf.ragged.constant([[1], [0]]) with self.assertRaises(ValueError): result_t = acc_obj(rt1, rt2) result = self.evaluate(result_t) def test_binary_accuracy_threshold(self): acc_obj = metrics.BinaryAccuracy(threshold=0.7) self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) result_t = acc_obj([[1], [1], [0], [0]], [[0.9], [0.6], [0.4], [0.8]]) result = self.evaluate(result_t) self.assertAlmostEqual(result, 0.5, 2) def test_binary_accuracy_threshold_ragged(self): acc_obj = metrics.BinaryAccuracy(threshold=0.7) self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) rt1 = tf.ragged.constant([[1], [1], [0], [0]]) rt2 = tf.ragged.constant([[0.9], [0.6], [0.4], [0.8]]) result_t = acc_obj(rt1, rt2) result = self.evaluate(result_t) self.assertAlmostEqual(result, 0.5, 2) def test_categorical_accuracy(self): acc_obj = metrics.CategoricalAccuracy(name='my_acc') # check config self.assertEqual(acc_obj.name, 'my_acc') self.assertTrue(acc_obj.stateful) self.assertEqual(len(acc_obj.variables), 2) self.assertEqual(acc_obj.dtype, tf.float32) self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) # verify that correct value is returned update_op = acc_obj.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.1, 0.8], [0.05, 0.95, 0]]) self.evaluate(update_op) result = self.evaluate(acc_obj.result()) self.assertEqual(result, 1) # 2/2 # check with sample_weight result_t = acc_obj([[0, 0, 1], [0, 1, 0]], [[0.1, 0.1, 0.8], [0.05, 0, 0.95]], [[0.5], [0.2]]) result = self.evaluate(result_t) self.assertAlmostEqual(result, 0.93, 2) # 2.5/2.7 def test_categorical_accuracy_ragged(self): acc_obj = metrics.CategoricalAccuracy(name='my_acc') self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) # verify that correct value is returned rt1 = tf.ragged.constant([[0, 0, 1], [0, 1, 0]]) rt2 = tf.ragged.constant([[0.1, 0.1, 0.8], [0.05, 0.95, 0]]) update_op = acc_obj.update_state(rt1, rt2) self.evaluate(update_op) result = self.evaluate(acc_obj.result()) self.assertEqual(result, 1) # 2/2 # check with sample_weight rt1 = tf.ragged.constant([[0, 0, 1], [0, 1, 0]]) rt2 = tf.ragged.constant([[0.1, 0.1, 0.8], [0.05, 0, 0.95]]) sample_weight = tf.ragged.constant([[0.5], [0.2]]) with self.assertRaises(tf.errors.InvalidArgumentError): result_t = acc_obj(rt1, rt2, sample_weight) result = self.evaluate(result_t) def test_sparse_categorical_accuracy(self): acc_obj = metrics.SparseCategoricalAccuracy(name='my_acc') # check config self.assertEqual(acc_obj.name, 'my_acc') self.assertTrue(acc_obj.stateful) self.assertEqual(len(acc_obj.variables), 2) self.assertEqual(acc_obj.dtype, tf.float32) self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) # verify that correct value is returned update_op = acc_obj.update_state([[2], [1]], [[0.1, 0.1, 0.8], [0.05, 0.95, 0]]) self.evaluate(update_op) result = self.evaluate(acc_obj.result()) self.assertEqual(result, 1) # 2/2 # check with sample_weight result_t = acc_obj([[2], [1]], [[0.1, 0.1, 0.8], [0.05, 0, 0.95]], [[0.5], [0.2]]) result = self.evaluate(result_t) self.assertAlmostEqual(result, 0.93, 2) # 2.5/2.7 def test_sparse_categorical_accuracy_ragged(self): acc_obj = metrics.SparseCategoricalAccuracy(name='my_acc') # verify that correct value is returned rt1 = tf.ragged.constant([[2], [1]]) rt2 = tf.ragged.constant([[0.1, 0.1, 0.8], [0.05, 0.95, 0]]) with self.assertRaises(tf.errors.InvalidArgumentError): # sparse_categorical_accuracy is not supported for composite/ragged # tensors. update_op = acc_obj.update_state(rt1, rt2) self.evaluate(update_op) def test_sparse_categorical_accuracy_mismatched_dims(self): acc_obj = metrics.SparseCategoricalAccuracy(name='my_acc') # check config self.assertEqual(acc_obj.name, 'my_acc') self.assertTrue(acc_obj.stateful) self.assertEqual(len(acc_obj.variables), 2) self.assertEqual(acc_obj.dtype, tf.float32) self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) # verify that correct value is returned update_op = acc_obj.update_state([2, 1], [[0.1, 0.1, 0.8], [0.05, 0.95, 0]]) self.evaluate(update_op) result = self.evaluate(acc_obj.result()) self.assertEqual(result, 1) # 2/2 # check with sample_weight result_t = acc_obj([2, 1], [[0.1, 0.1, 0.8], [0.05, 0, 0.95]], [[0.5], [0.2]]) result = self.evaluate(result_t) self.assertAlmostEqual(result, 0.93, 2) # 2.5/2.7 def test_sparse_categorical_accuracy_mismatched_dims_dynamic(self): with tf.compat.v1.get_default_graph().as_default(), self.cached_session() as sess: acc_obj = metrics.SparseCategoricalAccuracy(name='my_acc') self.evaluate(tf.compat.v1.variables_initializer(acc_obj.variables)) t = tf.compat.v1.placeholder(tf.float32) p = tf.compat.v1.placeholder(tf.float32) w = tf.compat.v1.placeholder(tf.float32) result_t = acc_obj(t, p, w) result = sess.run( result_t, feed_dict=({ t: [2, 1], p: [[0.1, 0.1, 0.8], [0.05, 0, 0.95]], w: [[0.5], [0.2]] })) self.assertAlmostEqual(result, 0.71, 2) # 2.5/2.7 def test_get_acc(self): acc_fn = metrics.get('acc') self.assertEqual(acc_fn, metrics.accuracy) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class CosineSimilarityTest(tf.test.TestCase): def l2_norm(self, x, axis): epsilon = 1e-12 square_sum = np.sum(np.square(x), axis=axis, keepdims=True) x_inv_norm = 1 / np.sqrt(np.maximum(square_sum, epsilon)) return np.multiply(x, x_inv_norm) def setup(self, axis=1): self.np_y_true = np.asarray([[1, 9, 2], [-5, -2, 6]], dtype=np.float32) self.np_y_pred = np.asarray([[4, 8, 12], [8, 1, 3]], dtype=np.float32) y_true = self.l2_norm(self.np_y_true, axis) y_pred = self.l2_norm(self.np_y_pred, axis) self.expected_loss = np.sum(np.multiply(y_true, y_pred), axis=(axis,)) self.y_true = tf.constant(self.np_y_true) self.y_pred = tf.constant(self.np_y_pred) def test_config(self): cosine_obj = metrics.CosineSimilarity( axis=2, name='my_cos', dtype=tf.int32) self.assertEqual(cosine_obj.name, 'my_cos') self.assertEqual(cosine_obj._dtype, tf.int32) # Check save and restore config cosine_obj2 = metrics.CosineSimilarity.from_config(cosine_obj.get_config()) self.assertEqual(cosine_obj2.name, 'my_cos') self.assertEqual(cosine_obj2._dtype, tf.int32) def test_unweighted(self): self.setup() cosine_obj = metrics.CosineSimilarity() self.evaluate(tf.compat.v1.variables_initializer(cosine_obj.variables)) loss = cosine_obj(self.y_true, self.y_pred) expected_loss = np.mean(self.expected_loss) self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) def test_weighted(self): self.setup() cosine_obj = metrics.CosineSimilarity() self.evaluate(tf.compat.v1.variables_initializer(cosine_obj.variables)) sample_weight = np.asarray([1.2, 3.4]) loss = cosine_obj( self.y_true, self.y_pred, sample_weight=tf.constant(sample_weight)) expected_loss = np.sum( self.expected_loss * sample_weight) / np.sum(sample_weight) self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) def test_axis(self): self.setup(axis=1) cosine_obj = metrics.CosineSimilarity(axis=1) self.evaluate(tf.compat.v1.variables_initializer(cosine_obj.variables)) loss = cosine_obj(self.y_true, self.y_pred) expected_loss = np.mean(self.expected_loss) self.assertAlmostEqual(self.evaluate(loss), expected_loss, 3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class MeanAbsoluteErrorTest(tf.test.TestCase): def test_config(self): mae_obj = metrics.MeanAbsoluteError(name='my_mae', dtype=tf.int32) self.assertEqual(mae_obj.name, 'my_mae') self.assertEqual(mae_obj._dtype, tf.int32) # Check save and restore config mae_obj2 = metrics.MeanAbsoluteError.from_config(mae_obj.get_config()) self.assertEqual(mae_obj2.name, 'my_mae') self.assertEqual(mae_obj2._dtype, tf.int32) def test_unweighted(self): mae_obj = metrics.MeanAbsoluteError() self.evaluate(tf.compat.v1.variables_initializer(mae_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) update_op = mae_obj.update_state(y_true, y_pred) self.evaluate(update_op) result = mae_obj.result() self.assertAllClose(0.5, result, atol=1e-5) def test_weighted(self): mae_obj = metrics.MeanAbsoluteError() self.evaluate(tf.compat.v1.variables_initializer(mae_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) sample_weight = tf.constant((1., 1.5, 2., 2.5)) result = mae_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(0.54285, self.evaluate(result), atol=1e-5) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class MeanAbsolutePercentageErrorTest(tf.test.TestCase): def test_config(self): mape_obj = metrics.MeanAbsolutePercentageError( name='my_mape', dtype=tf.int32) self.assertEqual(mape_obj.name, 'my_mape') self.assertEqual(mape_obj._dtype, tf.int32) # Check save and restore config mape_obj2 = metrics.MeanAbsolutePercentageError.from_config( mape_obj.get_config()) self.assertEqual(mape_obj2.name, 'my_mape') self.assertEqual(mape_obj2._dtype, tf.int32) def test_unweighted(self): mape_obj = metrics.MeanAbsolutePercentageError() self.evaluate(tf.compat.v1.variables_initializer(mape_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) update_op = mape_obj.update_state(y_true, y_pred) self.evaluate(update_op) result = mape_obj.result() self.assertAllClose(35e7, result, atol=1e-5) def test_weighted(self): mape_obj = metrics.MeanAbsolutePercentageError() self.evaluate(tf.compat.v1.variables_initializer(mape_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) sample_weight = tf.constant((1., 1.5, 2., 2.5)) result = mape_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(40e7, self.evaluate(result), atol=1e-5) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class MeanSquaredErrorTest(tf.test.TestCase): def test_config(self): mse_obj = metrics.MeanSquaredError(name='my_mse', dtype=tf.int32) self.assertEqual(mse_obj.name, 'my_mse') self.assertEqual(mse_obj._dtype, tf.int32) # Check save and restore config mse_obj2 = metrics.MeanSquaredError.from_config(mse_obj.get_config()) self.assertEqual(mse_obj2.name, 'my_mse') self.assertEqual(mse_obj2._dtype, tf.int32) def test_unweighted(self): mse_obj = metrics.MeanSquaredError() self.evaluate(tf.compat.v1.variables_initializer(mse_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) update_op = mse_obj.update_state(y_true, y_pred) self.evaluate(update_op) result = mse_obj.result() self.assertAllClose(0.5, result, atol=1e-5) def test_weighted(self): mse_obj = metrics.MeanSquaredError() self.evaluate(tf.compat.v1.variables_initializer(mse_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) sample_weight = tf.constant((1., 1.5, 2., 2.5)) result = mse_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(0.54285, self.evaluate(result), atol=1e-5) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class MeanSquaredLogarithmicErrorTest(tf.test.TestCase): def test_config(self): msle_obj = metrics.MeanSquaredLogarithmicError( name='my_msle', dtype=tf.int32) self.assertEqual(msle_obj.name, 'my_msle') self.assertEqual(msle_obj._dtype, tf.int32) # Check save and restore config msle_obj2 = metrics.MeanSquaredLogarithmicError.from_config( msle_obj.get_config()) self.assertEqual(msle_obj2.name, 'my_msle') self.assertEqual(msle_obj2._dtype, tf.int32) def test_unweighted(self): msle_obj = metrics.MeanSquaredLogarithmicError() self.evaluate(tf.compat.v1.variables_initializer(msle_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) update_op = msle_obj.update_state(y_true, y_pred) self.evaluate(update_op) result = msle_obj.result() self.assertAllClose(0.24022, result, atol=1e-5) def test_weighted(self): msle_obj = metrics.MeanSquaredLogarithmicError() self.evaluate(tf.compat.v1.variables_initializer(msle_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) sample_weight = tf.constant((1., 1.5, 2., 2.5)) result = msle_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(0.26082, self.evaluate(result), atol=1e-5) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class HingeTest(tf.test.TestCase): def test_config(self): hinge_obj = metrics.Hinge(name='hinge', dtype=tf.int32) self.assertEqual(hinge_obj.name, 'hinge') self.assertEqual(hinge_obj._dtype, tf.int32) # Check save and restore config hinge_obj2 = metrics.Hinge.from_config(hinge_obj.get_config()) self.assertEqual(hinge_obj2.name, 'hinge') self.assertEqual(hinge_obj2._dtype, tf.int32) def test_unweighted(self): hinge_obj = metrics.Hinge() self.evaluate(tf.compat.v1.variables_initializer(hinge_obj.variables)) y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1., 0.5, 0.6]]) # metric = max(0, 1-y_true * y_pred), where y_true is -1/1 # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] # metric = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4] # = [0.6, 0.4125] # reduced metric = (0.6 + 0.4125) / 2 update_op = hinge_obj.update_state(y_true, y_pred) self.evaluate(update_op) result = hinge_obj.result() self.assertAllClose(0.506, result, atol=1e-3) def test_weighted(self): hinge_obj = metrics.Hinge() self.evaluate(tf.compat.v1.variables_initializer(hinge_obj.variables)) y_true = tf.constant([[-1, 1, -1, 1], [-1, -1, 1, 1]]) y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1., 0.5, 0.6]]) sample_weight = tf.constant([1.5, 2.]) # metric = max(0, 1-y_true * y_pred), where y_true is -1/1 # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] # metric = [(0.7 + 0.8 + 0.9 + 0) / 4, (0.75 + 0 + 0.5 + 0.4) / 4] # = [0.6, 0.4125] # weighted metric = [0.6 * 1.5, 0.4125 * 2] # reduced metric = (0.6 * 1.5 + 0.4125 * 2) / (1.5 + 2) result = hinge_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(0.493, self.evaluate(result), atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class SquaredHingeTest(tf.test.TestCase): def test_config(self): sq_hinge_obj = metrics.SquaredHinge(name='sq_hinge', dtype=tf.int32) self.assertEqual(sq_hinge_obj.name, 'sq_hinge') self.assertEqual(sq_hinge_obj._dtype, tf.int32) # Check save and restore config sq_hinge_obj2 = metrics.SquaredHinge.from_config(sq_hinge_obj.get_config()) self.assertEqual(sq_hinge_obj2.name, 'sq_hinge') self.assertEqual(sq_hinge_obj2._dtype, tf.int32) def test_unweighted(self): sq_hinge_obj = metrics.SquaredHinge() self.evaluate(tf.compat.v1.variables_initializer(sq_hinge_obj.variables)) y_true = tf.constant([[0, 1, 0, 1], [0, 0, 1, 1]]) y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1., 0.5, 0.6]]) # metric = max(0, 1-y_true * y_pred), where y_true is -1/1 # y_true = [[-1, 1, -1, 1], [-1, -1, 1, 1]] # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] # max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, 0.4]] # squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0], # [0.5625, 0, 0.25, 0.16]] # metric = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / 4] # = [0.485, 0.2431] # reduced metric = (0.485 + 0.2431) / 2 update_op = sq_hinge_obj.update_state(y_true, y_pred) self.evaluate(update_op) result = sq_hinge_obj.result() self.assertAllClose(0.364, result, atol=1e-3) def test_weighted(self): sq_hinge_obj = metrics.SquaredHinge() self.evaluate(tf.compat.v1.variables_initializer(sq_hinge_obj.variables)) y_true = tf.constant([[-1, 1, -1, 1], [-1, -1, 1, 1]]) y_pred = tf.constant([[-0.3, 0.2, -0.1, 1.6], [-0.25, -1., 0.5, 0.6]]) sample_weight = tf.constant([1.5, 2.]) # metric = max(0, 1-y_true * y_pred), where y_true is -1/1 # y_true * y_pred = [[0.3, 0.2, 0.1, 1.6], [0.25, 1, 0.5, 0.6]] # 1 - y_true * y_pred = [[0.7, 0.8, 0.9, -0.6], [0.75, 0, 0.5, 0.4]] # max(0, 1 - y_true * y_pred) = [[0.7, 0.8, 0.9, 0], [0.75, 0, 0.5, 0.4]] # squared(max(0, 1 - y_true * y_pred)) = [[0.49, 0.64, 0.81, 0], # [0.5625, 0, 0.25, 0.16]] # metric = [(0.49 + 0.64 + 0.81 + 0) / 4, (0.5625 + 0 + 0.25 + 0.16) / 4] # = [0.485, 0.2431] # weighted metric = [0.485 * 1.5, 0.2431 * 2] # reduced metric = (0.485 * 1.5 + 0.2431 * 2) / (1.5 + 2) result = sq_hinge_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(0.347, self.evaluate(result), atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class CategoricalHingeTest(tf.test.TestCase): def test_config(self): cat_hinge_obj = metrics.CategoricalHinge( name='cat_hinge', dtype=tf.int32) self.assertEqual(cat_hinge_obj.name, 'cat_hinge') self.assertEqual(cat_hinge_obj._dtype, tf.int32) # Check save and restore config cat_hinge_obj2 = metrics.CategoricalHinge.from_config( cat_hinge_obj.get_config()) self.assertEqual(cat_hinge_obj2.name, 'cat_hinge') self.assertEqual(cat_hinge_obj2._dtype, tf.int32) def test_unweighted(self): cat_hinge_obj = metrics.CategoricalHinge() self.evaluate(tf.compat.v1.variables_initializer(cat_hinge_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) update_op = cat_hinge_obj.update_state(y_true, y_pred) self.evaluate(update_op) result = cat_hinge_obj.result() self.assertAllClose(0.5, result, atol=1e-5) def test_weighted(self): cat_hinge_obj = metrics.CategoricalHinge() self.evaluate(tf.compat.v1.variables_initializer(cat_hinge_obj.variables)) y_true = tf.constant(((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1))) y_pred = tf.constant(((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1))) sample_weight = tf.constant((1., 1.5, 2., 2.5)) result = cat_hinge_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(0.5, self.evaluate(result), atol=1e-5) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class RootMeanSquaredErrorTest(tf.test.TestCase): def test_config(self): rmse_obj = metrics.RootMeanSquaredError(name='rmse', dtype=tf.int32) self.assertEqual(rmse_obj.name, 'rmse') self.assertEqual(rmse_obj._dtype, tf.int32) rmse_obj2 = metrics.RootMeanSquaredError.from_config(rmse_obj.get_config()) self.assertEqual(rmse_obj2.name, 'rmse') self.assertEqual(rmse_obj2._dtype, tf.int32) def test_unweighted(self): rmse_obj = metrics.RootMeanSquaredError() self.evaluate(tf.compat.v1.variables_initializer(rmse_obj.variables)) y_true = tf.constant((2, 4, 6)) y_pred = tf.constant((1, 3, 2)) update_op = rmse_obj.update_state(y_true, y_pred) self.evaluate(update_op) result = rmse_obj.result() # error = [-1, -1, -4], square(error) = [1, 1, 16], mean = 18/3 = 6 self.assertAllClose(math.sqrt(6), result, atol=1e-3) def test_weighted(self): rmse_obj = metrics.RootMeanSquaredError() self.evaluate(tf.compat.v1.variables_initializer(rmse_obj.variables)) y_true = tf.constant((2, 4, 6, 8)) y_pred = tf.constant((1, 3, 2, 3)) sample_weight = tf.constant((0, 1, 0, 1)) result = rmse_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(math.sqrt(13), self.evaluate(result), atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class TopKCategoricalAccuracyTest(tf.test.TestCase): def test_config(self): a_obj = metrics.TopKCategoricalAccuracy(name='topkca', dtype=tf.int32) self.assertEqual(a_obj.name, 'topkca') self.assertEqual(a_obj._dtype, tf.int32) a_obj2 = metrics.TopKCategoricalAccuracy.from_config(a_obj.get_config()) self.assertEqual(a_obj2.name, 'topkca') self.assertEqual(a_obj2._dtype, tf.int32) def test_correctness(self): a_obj = metrics.TopKCategoricalAccuracy() self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) y_true = tf.constant([[0, 0, 1], [0, 1, 0]]) y_pred = tf.constant([[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) result = a_obj(y_true, y_pred) self.assertEqual(1, self.evaluate(result)) # both the samples match # With `k` < 5. a_obj = metrics.TopKCategoricalAccuracy(k=1) self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) result = a_obj(y_true, y_pred) self.assertEqual(0.5, self.evaluate(result)) # only sample #2 matches # With `k` > 5. y_true = tf.constant([[0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0]]) y_pred = tf.constant([[0.5, 0.9, 0.1, 0.7, 0.6, 0.5, 0.4], [0.05, 0.95, 0, 0, 0, 0, 0]]) a_obj = metrics.TopKCategoricalAccuracy(k=6) self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) result = a_obj(y_true, y_pred) self.assertEqual(0.5, self.evaluate(result)) # only 1 sample matches. def test_weighted(self): a_obj = metrics.TopKCategoricalAccuracy(k=2) self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) y_true = tf.constant([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) y_pred = tf.constant([[0, 0.9, 0.1], [0, 0.9, 0.1], [0, 0.9, 0.1]]) sample_weight = tf.constant((1.0, 0.0, 1.0)) result = a_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(1.0, self.evaluate(result), atol=1e-5) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class SparseTopKCategoricalAccuracyTest(tf.test.TestCase): def test_config(self): a_obj = metrics.SparseTopKCategoricalAccuracy( name='stopkca', dtype=tf.int32) self.assertEqual(a_obj.name, 'stopkca') self.assertEqual(a_obj._dtype, tf.int32) a_obj2 = metrics.SparseTopKCategoricalAccuracy.from_config( a_obj.get_config()) self.assertEqual(a_obj2.name, 'stopkca') self.assertEqual(a_obj2._dtype, tf.int32) def test_correctness(self): a_obj = metrics.SparseTopKCategoricalAccuracy() self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) y_true = tf.constant([2, 1]) y_pred = tf.constant([[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) result = a_obj(y_true, y_pred) self.assertEqual(1, self.evaluate(result)) # both the samples match # With `k` < 5. a_obj = metrics.SparseTopKCategoricalAccuracy(k=1) self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) result = a_obj(y_true, y_pred) self.assertEqual(0.5, self.evaluate(result)) # only sample #2 matches # With `k` > 5. y_pred = tf.constant([[0.5, 0.9, 0.1, 0.7, 0.6, 0.5, 0.4], [0.05, 0.95, 0, 0, 0, 0, 0]]) a_obj = metrics.SparseTopKCategoricalAccuracy(k=6) self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) result = a_obj(y_true, y_pred) self.assertEqual(0.5, self.evaluate(result)) # only 1 sample matches. def test_weighted(self): a_obj = metrics.SparseTopKCategoricalAccuracy(k=2) self.evaluate(tf.compat.v1.variables_initializer(a_obj.variables)) y_true = tf.constant([1, 0, 2]) y_pred = tf.constant([[0, 0.9, 0.1], [0, 0.9, 0.1], [0, 0.9, 0.1]]) sample_weight = tf.constant((1.0, 0.0, 1.0)) result = a_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(1.0, self.evaluate(result), atol=1e-5) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class LogCoshErrorTest(tf.test.TestCase): def setup(self): y_pred = np.asarray([1, 9, 2, -5, -2, 6]).reshape((2, 3)) y_true = np.asarray([4, 8, 12, 8, 1, 3]).reshape((2, 3)) self.batch_size = 6 error = y_pred - y_true self.expected_results = np.log((np.exp(error) + np.exp(-error)) / 2) self.y_pred = tf.constant(y_pred, dtype=tf.float32) self.y_true = tf.constant(y_true) def test_config(self): logcosh_obj = metrics.LogCoshError(name='logcosh', dtype=tf.int32) self.assertEqual(logcosh_obj.name, 'logcosh') self.assertEqual(logcosh_obj._dtype, tf.int32) def test_unweighted(self): self.setup() logcosh_obj = metrics.LogCoshError() self.evaluate(tf.compat.v1.variables_initializer(logcosh_obj.variables)) update_op = logcosh_obj.update_state(self.y_true, self.y_pred) self.evaluate(update_op) result = logcosh_obj.result() expected_result = np.sum(self.expected_results) / self.batch_size self.assertAllClose(result, expected_result, atol=1e-3) def test_weighted(self): self.setup() logcosh_obj = metrics.LogCoshError() self.evaluate(tf.compat.v1.variables_initializer(logcosh_obj.variables)) sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) result = logcosh_obj(self.y_true, self.y_pred, sample_weight=sample_weight) sample_weight = np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3)) expected_result = np.multiply(self.expected_results, sample_weight) expected_result = np.sum(expected_result) / np.sum(sample_weight) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class PoissonTest(tf.test.TestCase): def setup(self): y_pred = np.asarray([1, 9, 2, 5, 2, 6]).reshape((2, 3)) y_true = np.asarray([4, 8, 12, 8, 1, 3]).reshape((2, 3)) self.batch_size = 6 self.expected_results = y_pred - np.multiply(y_true, np.log(y_pred)) self.y_pred = tf.constant(y_pred, dtype=tf.float32) self.y_true = tf.constant(y_true) def test_config(self): poisson_obj = metrics.Poisson(name='poisson', dtype=tf.int32) self.assertEqual(poisson_obj.name, 'poisson') self.assertEqual(poisson_obj._dtype, tf.int32) poisson_obj2 = metrics.Poisson.from_config(poisson_obj.get_config()) self.assertEqual(poisson_obj2.name, 'poisson') self.assertEqual(poisson_obj2._dtype, tf.int32) def test_unweighted(self): self.setup() poisson_obj = metrics.Poisson() self.evaluate(tf.compat.v1.variables_initializer(poisson_obj.variables)) update_op = poisson_obj.update_state(self.y_true, self.y_pred) self.evaluate(update_op) result = poisson_obj.result() expected_result = np.sum(self.expected_results) / self.batch_size self.assertAllClose(result, expected_result, atol=1e-3) def test_weighted(self): self.setup() poisson_obj = metrics.Poisson() self.evaluate(tf.compat.v1.variables_initializer(poisson_obj.variables)) sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) result = poisson_obj(self.y_true, self.y_pred, sample_weight=sample_weight) sample_weight = np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3)) expected_result = np.multiply(self.expected_results, sample_weight) expected_result = np.sum(expected_result) / np.sum(sample_weight) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class KLDivergenceTest(tf.test.TestCase): def setup(self): y_pred = np.asarray([.4, .9, .12, .36, .3, .4]).reshape((2, 3)) y_true = np.asarray([.5, .8, .12, .7, .43, .8]).reshape((2, 3)) self.batch_size = 2 self.expected_results = np.multiply(y_true, np.log(y_true / y_pred)) self.y_pred = tf.constant(y_pred, dtype=tf.float32) self.y_true = tf.constant(y_true) def test_config(self): k_obj = metrics.KLDivergence(name='kld', dtype=tf.int32) self.assertEqual(k_obj.name, 'kld') self.assertEqual(k_obj._dtype, tf.int32) k_obj2 = metrics.KLDivergence.from_config(k_obj.get_config()) self.assertEqual(k_obj2.name, 'kld') self.assertEqual(k_obj2._dtype, tf.int32) def test_unweighted(self): self.setup() k_obj = metrics.KLDivergence() self.evaluate(tf.compat.v1.variables_initializer(k_obj.variables)) update_op = k_obj.update_state(self.y_true, self.y_pred) self.evaluate(update_op) result = k_obj.result() expected_result = np.sum(self.expected_results) / self.batch_size self.assertAllClose(result, expected_result, atol=1e-3) def test_weighted(self): self.setup() k_obj = metrics.KLDivergence() self.evaluate(tf.compat.v1.variables_initializer(k_obj.variables)) sample_weight = tf.constant([1.2, 3.4], shape=(2, 1)) result = k_obj(self.y_true, self.y_pred, sample_weight=sample_weight) sample_weight = np.asarray([1.2, 1.2, 1.2, 3.4, 3.4, 3.4]).reshape((2, 3)) expected_result = np.multiply(self.expected_results, sample_weight) expected_result = np.sum(expected_result) / (1.2 + 3.4) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class MeanRelativeErrorTest(tf.test.TestCase): def test_config(self): normalizer = tf.constant([1, 3], dtype=tf.float32) mre_obj = metrics.MeanRelativeError(normalizer=normalizer, name='mre') self.assertEqual(mre_obj.name, 'mre') self.assertArrayNear(self.evaluate(mre_obj.normalizer), [1, 3], 1e-1) mre_obj2 = metrics.MeanRelativeError.from_config(mre_obj.get_config()) self.assertEqual(mre_obj2.name, 'mre') self.assertArrayNear(self.evaluate(mre_obj2.normalizer), [1, 3], 1e-1) def test_unweighted(self): np_y_pred = np.asarray([2, 4, 6, 8], dtype=np.float32) np_y_true = np.asarray([1, 3, 2, 3], dtype=np.float32) expected_error = np.mean( np.divide(np.absolute(np_y_pred - np_y_true), np_y_true)) y_pred = tf.constant(np_y_pred, shape=(1, 4), dtype=tf.float32) y_true = tf.constant(np_y_true, shape=(1, 4)) mre_obj = metrics.MeanRelativeError(normalizer=y_true) self.evaluate(tf.compat.v1.variables_initializer(mre_obj.variables)) result = mre_obj(y_true, y_pred) self.assertAllClose(self.evaluate(result), expected_error, atol=1e-3) def test_weighted(self): np_y_pred = np.asarray([2, 4, 6, 8], dtype=np.float32) np_y_true = np.asarray([1, 3, 2, 3], dtype=np.float32) sample_weight = np.asarray([0.2, 0.3, 0.5, 0], dtype=np.float32) rel_errors = np.divide(np.absolute(np_y_pred - np_y_true), np_y_true) expected_error = np.sum(rel_errors * sample_weight) y_pred = tf.constant(np_y_pred, dtype=tf.float32) y_true = tf.constant(np_y_true) mre_obj = metrics.MeanRelativeError(normalizer=y_true) self.evaluate(tf.compat.v1.variables_initializer(mre_obj.variables)) result = mre_obj( y_true, y_pred, sample_weight=tf.constant(sample_weight)) self.assertAllClose(self.evaluate(result), expected_error, atol=1e-3) def test_zero_normalizer(self): y_pred = tf.constant([2, 4], dtype=tf.float32) y_true = tf.constant([1, 3]) mre_obj = metrics.MeanRelativeError(normalizer=tf.zeros_like(y_true)) self.evaluate(tf.compat.v1.variables_initializer(mre_obj.variables)) result = mre_obj(y_true, y_pred) self.assertEqual(self.evaluate(result), 0) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class IoUTest(tf.test.TestCase): def test_config(self): obj = metrics.IoU( num_classes=2, target_class_ids=[1, 0], name='iou_class_1_0') self.assertEqual(obj.name, 'iou_class_1_0') self.assertEqual(obj.num_classes, 2) self.assertEqual(obj.target_class_ids, [1, 0]) obj2 = metrics.IoU.from_config(obj.get_config()) self.assertEqual(obj2.name, 'iou_class_1_0') self.assertEqual(obj2.num_classes, 2) self.assertEqual(obj2.target_class_ids, [1, 0]) def test_unweighted(self): y_pred = [0, 1, 0, 1] y_true = [0, 0, 1, 1] obj = metrics.IoU(num_classes=2, target_class_ids=[0, 1]) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred) # cm = [[1, 1], # [1, 1]] # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_weighted(self): y_pred = tf.constant([0, 1, 0, 1], dtype=tf.float32) y_true = tf.constant([0, 0, 1, 1]) sample_weight = tf.constant([0.2, 0.3, 0.4, 0.1]) obj = metrics.IoU(num_classes=2, target_class_ids=[1, 0]) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred, sample_weight=sample_weight) # cm = [[0.2, 0.3], # [0.4, 0.1]] # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, 0.1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0.1 / (0.4 + 0.5 - 0.1) + 0.2 / (0.6 + 0.5 - 0.2)) / 2 self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_multi_dim_input(self): y_pred = tf.constant([[0, 1], [0, 1]], dtype=tf.float32) y_true = tf.constant([[0, 0], [1, 1]]) sample_weight = tf.constant([[0.2, 0.3], [0.4, 0.1]]) obj = metrics.IoU(num_classes=2, target_class_ids=[0, 1]) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred, sample_weight=sample_weight) # cm = [[0.2, 0.3], # [0.4, 0.1]] # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, 0.1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0.2 / (0.6 + 0.5 - 0.2) + 0.1 / (0.4 + 0.5 - 0.1)) / 2 self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_zero_valid_entries(self): obj = metrics.IoU(num_classes=2, target_class_ids=[0, 1]) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) self.assertAllClose( self.evaluate(obj.result()), 0, atol=1e-3) def test_zero_and_non_zero_entries(self): y_pred = tf.constant([1], dtype=tf.float32) y_true = tf.constant([1]) obj = metrics.IoU(num_classes=2, target_class_ids=[0, 1]) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred) # cm = [[0, 0], # [0, 1]] # sum_row = [0, 1], sum_col = [0, 1], true_positives = [0, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (1 / (1 + 1 - 1)) / 1 self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class BinaryIoUTest(tf.test.TestCase): def test_config(self): obj = metrics.BinaryIoU( target_class_ids=[1, 0], threshold=0.1, name='iou_class_1_0') self.assertEqual(obj.name, 'iou_class_1_0') self.assertAlmostEqual(obj.threshold, 0.1) self.assertEqual(obj.target_class_ids, [1, 0]) obj2 = metrics.BinaryIoU.from_config(obj.get_config()) self.assertEqual(obj.name, 'iou_class_1_0') self.assertAlmostEqual(obj2.threshold, 0.1) self.assertEqual(obj.target_class_ids, [1, 0]) def test_different_thresholds_weighted(self): y_true = [0, 1, 0, 1] y_pred = [0.1, 0.2, 0.4, 0.7] sample_weight = tf.constant([0.2, 0.3, 0.4, 0.1]) # with threshold = 0.3, y_pred will be converted to [0, 0, 1, 1] # cm = [[0.2, 0.4], # [0.3, 0.1]] # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, 0.1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0.2 / (0.6 + 0.5 - 0.2) + 0.1 / (0.4 + 0.5 - 0.1)) / 2 obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=0.3) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) sample_weight = tf.constant([0.1, 0.2, 0.4, 0.3]) # with threshold = 0.5, y_pred will be converted to [0, 0, 0, 1] # cm = [[0.1+0.4, 0], # [0.2, 0.3]] # sum_row = [0.5, 0.5], sum_col = [0.7, 0.3], true_positives = [0.5, 0.3] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0.5 / (0.5 + 0.7 - 0.5) + 0.3 / (0.5 + 0.3 - 0.3)) / 2 obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=0.5) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_different_thresholds_unweighted(self): y_true = [0, 1, 0, 1] y_pred = [0.1, 0.2, 0.4, 0.7] # with threshold = 0.3, y_pred will be converted to [0, 0, 1, 1] # cm = [[1, 1], # [1, 1]] # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=0.3) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) # with threshold = 0.5, y_pred will be converted to [0, 0, 0, 1] # cm = [[2, 0], # [1, 1]] # sum_row = [2, 2], sum_col = [3, 1], true_positives = [2, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (2 / (2 + 3 - 2) + 1 / (2 + 1 - 1)) / 2 obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=0.5) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_multi_dim_input(self): y_true = tf.constant([[0, 1], [0, 1]], dtype=tf.float32) y_pred = tf.constant([[0.1, 0.7], [0.9, 0.3]]) threshold = 0.4 # y_pred will become [[0, 1], [1, 0]] sample_weight = tf.constant([[0.2, 0.3], [0.4, 0.1]]) # cm = [[0.2, 0.4], # [0.1, 0.3]] # sum_row = [0.6, 0.4], sum_col = [0.3, 0.7], true_positives = [0.2, 0.3] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0.2 / (0.6 + 0.3 - 0.2) + 0.3 / (0.4 + 0.7 - 0.3)) / 2 obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=threshold) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_zero_valid_entries(self): obj = metrics.BinaryIoU(target_class_ids=[0, 1]) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) self.assertAllClose( self.evaluate(obj.result()), 0, atol=1e-3) def test_zero_and_non_zero_entries(self): y_pred = tf.constant([0.6], dtype=tf.float32) threshold = 0.5 y_true = tf.constant([1]) obj = metrics.BinaryIoU(target_class_ids=[0, 1], threshold=threshold) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred) # cm = [[0, 0], # [0, 1]] # sum_row = [0, 1], sum_col = [0, 1], true_positives = [0, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = 1 / (1 + 1 - 1) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class MeanIoUTest(tf.test.TestCase): def test_config(self): m_obj = metrics.MeanIoU(num_classes=2, name='mean_iou') self.assertEqual(m_obj.name, 'mean_iou') self.assertEqual(m_obj.num_classes, 2) m_obj2 = metrics.MeanIoU.from_config(m_obj.get_config()) self.assertEqual(m_obj2.name, 'mean_iou') self.assertEqual(m_obj2.num_classes, 2) def test_unweighted(self): y_pred = [0, 1, 0, 1] y_true = [0, 0, 1, 1] m_obj = metrics.MeanIoU(num_classes=2) self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) result = m_obj(y_true, y_pred) # cm = [[1, 1], # [1, 1]] # sum_row = [2, 2], sum_col = [2, 2], true_positives = [1, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (1 / (2 + 2 - 1) + 1 / (2 + 2 - 1)) / 2 self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_weighted(self): y_pred = tf.constant([0, 1, 0, 1], dtype=tf.float32) y_true = tf.constant([0, 0, 1, 1]) sample_weight = tf.constant([0.2, 0.3, 0.4, 0.1]) m_obj = metrics.MeanIoU(num_classes=2) self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) result = m_obj(y_true, y_pred, sample_weight=sample_weight) # cm = [[0.2, 0.3], # [0.4, 0.1]] # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, 0.1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0.2 / (0.6 + 0.5 - 0.2) + 0.1 / (0.4 + 0.5 - 0.1)) / 2 self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_multi_dim_input(self): y_pred = tf.constant([[0, 1], [0, 1]], dtype=tf.float32) y_true = tf.constant([[0, 0], [1, 1]]) sample_weight = tf.constant([[0.2, 0.3], [0.4, 0.1]]) m_obj = metrics.MeanIoU(num_classes=2) self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) result = m_obj(y_true, y_pred, sample_weight=sample_weight) # cm = [[0.2, 0.3], # [0.4, 0.1]] # sum_row = [0.6, 0.4], sum_col = [0.5, 0.5], true_positives = [0.2, 0.1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0.2 / (0.6 + 0.5 - 0.2) + 0.1 / (0.4 + 0.5 - 0.1)) / 2 self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_zero_valid_entries(self): m_obj = metrics.MeanIoU(num_classes=2) self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) self.assertAllClose(self.evaluate(m_obj.result()), 0, atol=1e-3) def test_zero_and_non_zero_entries(self): y_pred = tf.constant([1], dtype=tf.float32) y_true = tf.constant([1]) m_obj = metrics.MeanIoU(num_classes=2) self.evaluate(tf.compat.v1.variables_initializer(m_obj.variables)) result = m_obj(y_true, y_pred) # cm = [[0, 0], # [0, 1]] # sum_row = [0, 1], sum_col = [0, 1], true_positives = [0, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0 + 1 / (1 + 1 - 1)) / 1 self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class OneHotIoUTest(tf.test.TestCase): def test_unweighted(self): y_true = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]]) # y_true will be converted to [2, 0, 1, 0] y_pred = tf.constant([[0.2, 0.3, 0.5], [0.1, 0.2, 0.7], [0.5, 0.3, 0.1], [0.1, 0.4, 0.5]]) # y_pred will be converted to [2, 2, 0, 2] # cm = [[0, 0, 2], # [1, 0, 0], # [0, 0, 1] # sum_row = [1, 0, 3], sum_col = [2, 1, 1], true_positives = [0, 0, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0 / (1 + 2 - 0) + 1 / (3 + 1 - 1)) / 2 obj = metrics.OneHotIoU(num_classes=3, target_class_ids=[0, 2]) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_weighted(self): y_true = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]]) # y_true will be converted to [2, 0, 1, 0] y_pred = tf.constant([[0.2, 0.3, 0.5], [0.1, 0.2, 0.7], [0.5, 0.3, 0.1], [0.1, 0.4, 0.5]]) # y_pred will be converted to [2, 2, 0, 2] sample_weight = [0.1, 0.2, 0.3, 0.4] # cm = [[0, 0, 0.2+0.4], # [0.3, 0, 0], # [0, 0, 0.1]] # sum_row = [0.3, 0, 0.7], sum_col = [0.6, 0.3, 0.1] # true_positives = [0, 0, 0.1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0 / (0.3 + 0.6 - 0) + 0.1 / (0.7 + 0.1 - 0.1)) / 2 obj = metrics.OneHotIoU(num_classes=3, target_class_ids=[0, 2]) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class OneHotMeanIoUTest(tf.test.TestCase): def test_unweighted(self): y_true = tf.constant([[0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0]]) # y_true will be converted to [2, 0, 1, 0] y_pred = tf.constant([[0.2, 0.3, 0.5], [0.1, 0.2, 0.7], [0.5, 0.3, 0.1], [0.1, 0.4, 0.5]]) # y_pred will be converted to [2, 2, 0, 2] # cm = [[0, 0, 2], # [1, 0, 0], # [0, 0, 1] # sum_row = [1, 0, 3], sum_col = [2, 1, 1], true_positives = [0, 0, 1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0 + 0 + 1 / (3 + 1 - 1)) / 3 obj = metrics.OneHotMeanIoU(num_classes=3) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) def test_weighted(self): y_true = tf.constant([ [0, 0, 1], [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], ]) # y_true will be converted to [2, 0, 1, 0, 0] y_pred = tf.constant([ [0.2, 0.3, 0.5], [0.1, 0.2, 0.7], [0.5, 0.3, 0.1], [0.1, 0.4, 0.5], [0.6, 0.2, 0.2], ]) # y_pred will be converted to [2, 2, 0, 2, 0] sample_weight = [0.1, 0.2, 0.3, 0.3, 0.1] # cm = [[0.1, 0, 0.2+0.3], # [0.3, 0, 0], # [0, 0, 0.1]] # sum_row = [0.4, 0, 0.6], sum_col = [0.6, 0.3, 0.1] # true_positives = [0.1, 0, 0.1] # iou = true_positives / (sum_row + sum_col - true_positives)) expected_result = (0.1 / (0.4 + 0.6 - 0.1) + 0 + 0.1 / (0.6 + 0.1 - 0.1)) / 3 obj = metrics.OneHotMeanIoU(num_classes=3) self.evaluate(tf.compat.v1.variables_initializer(obj.variables)) result = obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(self.evaluate(result), expected_result, atol=1e-3) class MeanTensorTest(tf.test.TestCase, parameterized.TestCase): @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_config(self): with self.test_session(): m = metrics.MeanTensor(name='mean_by_element') # check config self.assertEqual(m.name, 'mean_by_element') self.assertTrue(m.stateful) self.assertEqual(m.dtype, tf.float32) self.assertEmpty(m.variables) with self.assertRaisesRegex(ValueError, 'does not have any value yet'): m.result() self.evaluate(m([[3], [5], [3]])) self.assertAllEqual(m._shape, [3, 1]) m2 = metrics.MeanTensor.from_config(m.get_config()) self.assertEqual(m2.name, 'mean_by_element') self.assertTrue(m2.stateful) self.assertEqual(m2.dtype, tf.float32) self.assertEmpty(m2.variables) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_unweighted(self): with self.test_session(): m = metrics.MeanTensor(dtype=tf.float64) # check __call__() self.assertAllClose(self.evaluate(m([100, 40])), [100, 40]) self.assertAllClose(self.evaluate(m.total), [100, 40]) self.assertAllClose(self.evaluate(m.count), [1, 1]) # check update_state() and result() + state accumulation + tensor input update_op = m.update_state([ tf.convert_to_tensor(1), tf.convert_to_tensor(5) ]) self.evaluate(update_op) self.assertAllClose(self.evaluate(m.result()), [50.5, 22.5]) self.assertAllClose(self.evaluate(m.total), [101, 45]) self.assertAllClose(self.evaluate(m.count), [2, 2]) # check reset_state() m.reset_state() self.assertAllClose(self.evaluate(m.total), [0, 0]) self.assertAllClose(self.evaluate(m.count), [0, 0]) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_weighted(self): with self.test_session(): m = metrics.MeanTensor(dtype=tf.float64) self.assertEqual(m.dtype, tf.float64) # check scalar weight result_t = m([100, 30], sample_weight=0.5) self.assertAllClose(self.evaluate(result_t), [100, 30]) self.assertAllClose(self.evaluate(m.total), [50, 15]) self.assertAllClose(self.evaluate(m.count), [0.5, 0.5]) # check weights not scalar and weights rank matches values rank result_t = m([1, 5], sample_weight=[1, 0.2]) result = self.evaluate(result_t) self.assertAllClose(result, [51 / 1.5, 16 / 0.7], 2) self.assertAllClose(self.evaluate(m.total), [51, 16]) self.assertAllClose(self.evaluate(m.count), [1.5, 0.7]) # check weights broadcast result_t = m([1, 2], sample_weight=0.5) self.assertAllClose(self.evaluate(result_t), [51.5 / 2, 17 / 1.2]) self.assertAllClose(self.evaluate(m.total), [51.5, 17]) self.assertAllClose(self.evaluate(m.count), [2, 1.2]) # check weights squeeze result_t = m([1, 5], sample_weight=[[1], [0.2]]) self.assertAllClose(self.evaluate(result_t), [52.5 / 3, 18 / 1.4]) self.assertAllClose(self.evaluate(m.total), [52.5, 18]) self.assertAllClose(self.evaluate(m.count), [3, 1.4]) # check weights expand m = metrics.MeanTensor(dtype=tf.float64) self.evaluate(tf.compat.v1.variables_initializer(m.variables)) result_t = m([[1], [5]], sample_weight=[1, 0.2]) self.assertAllClose(self.evaluate(result_t), [[1], [5]]) self.assertAllClose(self.evaluate(m.total), [[1], [1]]) self.assertAllClose(self.evaluate(m.count), [[1], [0.2]]) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_invalid_value_shape(self): m = metrics.MeanTensor(dtype=tf.float64) m([1]) with self.assertRaisesRegex( ValueError, 'MeanTensor input values must always have the same shape'): m([1, 5]) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) def test_build_in_tf_function(self): """Ensure that variables are created correctly in a tf function.""" m = metrics.MeanTensor(dtype=tf.float64) @tf.function def call_metric(x): return m(x) with self.test_session(): self.assertAllClose(self.evaluate(call_metric([100, 40])), [100, 40]) self.assertAllClose(self.evaluate(m.total), [100, 40]) self.assertAllClose(self.evaluate(m.count), [1, 1]) self.assertAllClose(self.evaluate(call_metric([20, 2])), [60, 21]) @combinations.generate(combinations.combine(mode=['eager'])) def test_in_keras_model(self): class ModelWithMetric(Model): def __init__(self): super(ModelWithMetric, self).__init__() self.dense1 = layers.Dense( 3, activation='relu', kernel_initializer='ones') self.dense2 = layers.Dense( 1, activation='sigmoid', kernel_initializer='ones') self.mean_tensor = metrics.MeanTensor() def call(self, x): x = self.dense1(x) x = self.dense2(x) self.mean_tensor(self.dense1.kernel) return x model = ModelWithMetric() model.compile( loss='mae', optimizer='rmsprop', run_eagerly=True) x = np.ones((100, 4)) y = np.zeros((100, 1)) model.evaluate(x, y, batch_size=50) self.assertAllClose(self.evaluate(model.mean_tensor.result()), np.ones((4, 3))) self.assertAllClose(self.evaluate(model.mean_tensor.total), np.full((4, 3), 2)) self.assertAllClose(self.evaluate(model.mean_tensor.count), np.full((4, 3), 2)) model.evaluate(x, y, batch_size=25) self.assertAllClose(self.evaluate(model.mean_tensor.result()), np.ones((4, 3))) self.assertAllClose(self.evaluate(model.mean_tensor.total), np.full((4, 3), 4)) self.assertAllClose(self.evaluate(model.mean_tensor.count), np.full((4, 3), 4)) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class BinaryCrossentropyTest(tf.test.TestCase): def test_config(self): bce_obj = metrics.BinaryCrossentropy( name='bce', dtype=tf.int32, label_smoothing=0.2) self.assertEqual(bce_obj.name, 'bce') self.assertEqual(bce_obj._dtype, tf.int32) old_config = bce_obj.get_config() self.assertAllClose(old_config['label_smoothing'], 0.2, 1e-3) # Check save and restore config bce_obj2 = metrics.BinaryCrossentropy.from_config(old_config) self.assertEqual(bce_obj2.name, 'bce') self.assertEqual(bce_obj2._dtype, tf.int32) new_config = bce_obj2.get_config() self.assertDictEqual(old_config, new_config) def test_unweighted(self): bce_obj = metrics.BinaryCrossentropy() self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2]) result = bce_obj(y_true, y_pred) # EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999 # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) # y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON] # Metric = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON)) # = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON), # -log(Y_MAX + EPSILON), -log(1)] # = [(0 + 15.33) / 2, (0 + 0) / 2] # Reduced metric = 7.665 / 2 self.assertAllClose(self.evaluate(result), 3.833, atol=1e-3) def test_unweighted_with_logits(self): bce_obj = metrics.BinaryCrossentropy(from_logits=True) self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) y_true = tf.constant([[1, 0, 1], [0, 1, 1]]) y_pred = tf.constant([[100.0, -100.0, 100.0], [100.0, 100.0, -100.0]]) result = bce_obj(y_true, y_pred) # Metric = max(x, 0) - x * z + log(1 + exp(-abs(x))) # (where x = logits and z = y_true) # = [((100 - 100 * 1 + log(1 + exp(-100))) + # (0 + 100 * 0 + log(1 + exp(-100))) + # (100 - 100 * 1 + log(1 + exp(-100))), # ((100 - 100 * 0 + log(1 + exp(-100))) + # (100 - 100 * 1 + log(1 + exp(-100))) + # (0 + 100 * 1 + log(1 + exp(-100))))] # = [(0 + 0 + 0) / 3, 200 / 3] # Reduced metric = (0 + 66.666) / 2 self.assertAllClose(self.evaluate(result), 33.333, atol=1e-3) def test_weighted(self): bce_obj = metrics.BinaryCrossentropy() self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) y_true = np.asarray([1, 0, 1, 0]).reshape([2, 2]) y_pred = np.asarray([1, 1, 1, 0], dtype=np.float32).reshape([2, 2]) sample_weight = tf.constant([1.5, 2.]) result = bce_obj(y_true, y_pred, sample_weight=sample_weight) # EPSILON = 1e-7, y = y_true, y` = y_pred, Y_MAX = 0.9999999 # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) # y` = [Y_MAX, Y_MAX, Y_MAX, EPSILON] # Metric = -(y log(y` + EPSILON) + (1 - y) log(1 - y` + EPSILON)) # = [-log(Y_MAX + EPSILON), -log(1 - Y_MAX + EPSILON), # -log(Y_MAX + EPSILON), -log(1)] # = [(0 + 15.33) / 2, (0 + 0) / 2] # Weighted metric = [7.665 * 1.5, 0] # Reduced metric = 7.665 * 1.5 / (1.5 + 2) self.assertAllClose(self.evaluate(result), 3.285, atol=1e-3) def test_weighted_from_logits(self): bce_obj = metrics.BinaryCrossentropy(from_logits=True) self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) y_true = tf.constant([[1, 0, 1], [0, 1, 1]]) y_pred = tf.constant([[100.0, -100.0, 100.0], [100.0, 100.0, -100.0]]) sample_weight = tf.constant([2., 2.5]) result = bce_obj(y_true, y_pred, sample_weight=sample_weight) # Metric = max(x, 0) - x * z + log(1 + exp(-abs(x))) # (where x = logits and z = y_true) # = [(0 + 0 + 0) / 3, 200 / 3] # Weighted metric = [0, 66.666 * 2.5] # Reduced metric = 66.666 * 2.5 / (2 + 2.5) self.assertAllClose(self.evaluate(result), 37.037, atol=1e-3) def test_label_smoothing(self): logits = tf.constant(((100., -100., -100.))) y_true = tf.constant(((1, 0, 1))) label_smoothing = 0.1 # Metric: max(x, 0) - x * z + log(1 + exp(-abs(x))) # (where x = logits and z = y_true) # Label smoothing: z' = z * (1 - L) + 0.5L # After label smoothing, label 1 becomes 1 - 0.5L # label 0 becomes 0.5L # Applying the above two fns to the given input: # (100 - 100 * (1 - 0.5 L) + 0 + # 0 + 100 * (0.5 L) + 0 + # 0 + 100 * (1 - 0.5 L) + 0) * (1/3) # = (100 + 50L) * 1/3 bce_obj = metrics.BinaryCrossentropy( from_logits=True, label_smoothing=label_smoothing) self.evaluate(tf.compat.v1.variables_initializer(bce_obj.variables)) result = bce_obj(y_true, logits) expected_value = (100.0 + 50.0 * label_smoothing) / 3.0 self.assertAllClose(expected_value, self.evaluate(result), atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class CategoricalCrossentropyTest(tf.test.TestCase): def test_config(self): cce_obj = metrics.CategoricalCrossentropy( name='cce', dtype=tf.int32, label_smoothing=0.2) self.assertEqual(cce_obj.name, 'cce') self.assertEqual(cce_obj._dtype, tf.int32) old_config = cce_obj.get_config() self.assertAllClose(old_config['label_smoothing'], 0.2, 1e-3) # Check save and restore config cce_obj2 = metrics.CategoricalCrossentropy.from_config(old_config) self.assertEqual(cce_obj2.name, 'cce') self.assertEqual(cce_obj2._dtype, tf.int32) new_config = cce_obj2.get_config() self.assertDictEqual(old_config, new_config) def test_unweighted(self): cce_obj = metrics.CategoricalCrossentropy() self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) result = cce_obj(y_true, y_pred) # EPSILON = 1e-7, y = y_true, y` = y_pred # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] # Metric = -sum(y * log(y'), axis = -1) # = -((log 0.95), (log 0.1)) # = [0.051, 2.302] # Reduced metric = (0.051 + 2.302) / 2 self.assertAllClose(self.evaluate(result), 1.176, atol=1e-3) def test_unweighted_from_logits(self): cce_obj = metrics.CategoricalCrossentropy(from_logits=True) self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) result = cce_obj(y_true, logits) # softmax = exp(logits) / sum(exp(logits), axis=-1) # xent = -sum(labels * log(softmax), 1) # exp(logits) = [[2.718, 8103.084, 1], [2.718, 2980.958, 2.718]] # sum(exp(logits), axis=-1) = [8106.802, 2986.394] # softmax = [[0.00033, 0.99954, 0.00012], [0.00091, 0.99817, 0.00091]] # log(softmax) = [[-8.00045, -0.00045, -9.00045], # [-7.00182, -0.00182, -7.00182]] # labels * log(softmax) = [[0, -0.00045, 0], [0, 0, -7.00182]] # xent = [0.00045, 7.00182] # Reduced xent = (0.00045 + 7.00182) / 2 self.assertAllClose(self.evaluate(result), 3.5011, atol=1e-3) def test_weighted(self): cce_obj = metrics.CategoricalCrossentropy() self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) sample_weight = tf.constant([1.5, 2.]) result = cce_obj(y_true, y_pred, sample_weight=sample_weight) # EPSILON = 1e-7, y = y_true, y` = y_pred # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] # Metric = -sum(y * log(y'), axis = -1) # = -((log 0.95), (log 0.1)) # = [0.051, 2.302] # Weighted metric = [0.051 * 1.5, 2.302 * 2.] # Reduced metric = (0.051 * 1.5 + 2.302 * 2.) / 3.5 self.assertAllClose(self.evaluate(result), 1.338, atol=1e-3) def test_weighted_from_logits(self): cce_obj = metrics.CategoricalCrossentropy(from_logits=True) self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) sample_weight = tf.constant([1.5, 2.]) result = cce_obj(y_true, logits, sample_weight=sample_weight) # softmax = exp(logits) / sum(exp(logits), axis=-1) # xent = -sum(labels * log(softmax), 1) # xent = [0.00045, 7.00182] # weighted xent = [0.000675, 14.00364] # Reduced xent = (0.000675 + 14.00364) / (1.5 + 2) self.assertAllClose(self.evaluate(result), 4.0012, atol=1e-3) def test_label_smoothing(self): y_true = np.asarray([[0, 1, 0], [0, 0, 1]]) logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) label_smoothing = 0.1 # Label smoothing: z' = z * (1 - L) + L/n, # where L = label smoothing value and n = num classes # Label value 1 becomes: 1 - L + L/n # Label value 0 becomes: L/n # y_true with label_smoothing = [[0.0333, 0.9333, 0.0333], # [0.0333, 0.0333, 0.9333]] # softmax = exp(logits) / sum(exp(logits), axis=-1) # xent = -sum(labels * log(softmax), 1) # log(softmax) = [[-8.00045, -0.00045, -9.00045], # [-7.00182, -0.00182, -7.00182]] # labels * log(softmax) = [[-0.26641, -0.00042, -0.29971], # [-0.23316, -0.00006, -6.53479]] # xent = [0.56654, 6.76801] # Reduced xent = (0.56654 + 6.76801) / 2 cce_obj = metrics.CategoricalCrossentropy( from_logits=True, label_smoothing=label_smoothing) self.evaluate(tf.compat.v1.variables_initializer(cce_obj.variables)) loss = cce_obj(y_true, logits) self.assertAllClose(self.evaluate(loss), 3.667, atol=1e-3) @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class SparseCategoricalCrossentropyTest(tf.test.TestCase): def test_config(self): scce_obj = metrics.SparseCategoricalCrossentropy( name='scce', dtype=tf.int32) self.assertEqual(scce_obj.name, 'scce') self.assertEqual(scce_obj.dtype, tf.int32) old_config = scce_obj.get_config() self.assertDictEqual(old_config, json.loads(json.dumps(old_config))) # Check save and restore config scce_obj2 = metrics.SparseCategoricalCrossentropy.from_config(old_config) self.assertEqual(scce_obj2.name, 'scce') self.assertEqual(scce_obj2.dtype, tf.int32) new_config = scce_obj2.get_config() self.assertDictEqual(old_config, new_config) def test_unweighted(self): scce_obj = metrics.SparseCategoricalCrossentropy() self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) y_true = np.asarray([1, 2]) y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) result = scce_obj(y_true, y_pred) # EPSILON = 1e-7, y = y_true, y` = y_pred # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] # logits = log(y`) = [[-2.9957, -0.0513, -16.1181], # [-2.3026, -0.2231, -2.3026]] # softmax = exp(logits) / sum(exp(logits), axis=-1) # y = one_hot(y) = [[0, 1, 0], [0, 0, 1]] # xent = -sum(y * log(softmax), 1) # exp(logits) = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] # sum(exp(logits), axis=-1) = [1, 1] # softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] # log(softmax) = [[-2.9957, -0.0513, -16.1181], # [-2.3026, -0.2231, -2.3026]] # y * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]] # xent = [0.0513, 2.3026] # Reduced xent = (0.0513 + 2.3026) / 2 self.assertAllClose(self.evaluate(result), 1.176, atol=1e-3) def test_unweighted_from_logits(self): scce_obj = metrics.SparseCategoricalCrossentropy(from_logits=True) self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) y_true = np.asarray([1, 2]) logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) result = scce_obj(y_true, logits) # softmax = exp(logits) / sum(exp(logits), axis=-1) # y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]] # xent = -sum(y_true * log(softmax), 1) # exp(logits) = [[2.718, 8103.084, 1], [2.718, 2980.958, 2.718]] # sum(exp(logits), axis=-1) = [8106.802, 2986.394] # softmax = [[0.00033, 0.99954, 0.00012], [0.00091, 0.99817, 0.00091]] # log(softmax) = [[-8.00045, -0.00045, -9.00045], # [-7.00182, -0.00182, -7.00182]] # y_true * log(softmax) = [[0, -0.00045, 0], [0, 0, -7.00182]] # xent = [0.00045, 7.00182] # Reduced xent = (0.00045 + 7.00182) / 2 self.assertAllClose(self.evaluate(result), 3.5011, atol=1e-3) def test_weighted(self): scce_obj = metrics.SparseCategoricalCrossentropy() self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) y_true = np.asarray([1, 2]) y_pred = np.asarray([[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) sample_weight = tf.constant([1.5, 2.]) result = scce_obj(y_true, y_pred, sample_weight=sample_weight) # EPSILON = 1e-7, y = y_true, y` = y_pred # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] # logits = log(y`) = [[-2.9957, -0.0513, -16.1181], # [-2.3026, -0.2231, -2.3026]] # softmax = exp(logits) / sum(exp(logits), axis=-1) # y = one_hot(y) = [[0, 1, 0], [0, 0, 1]] # xent = -sum(y * log(softmax), 1) # exp(logits) = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] # sum(exp(logits), axis=-1) = [1, 1] # softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] # log(softmax) = [[-2.9957, -0.0513, -16.1181], # [-2.3026, -0.2231, -2.3026]] # y * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]] # xent = [0.0513, 2.3026] # Weighted xent = [0.051 * 1.5, 2.302 * 2.] # Reduced xent = (0.051 * 1.5 + 2.302 * 2.) / 3.5 self.assertAllClose(self.evaluate(result), 1.338, atol=1e-3) def test_weighted_from_logits(self): scce_obj = metrics.SparseCategoricalCrossentropy(from_logits=True) self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) y_true = np.asarray([1, 2]) logits = np.asarray([[1, 9, 0], [1, 8, 1]], dtype=np.float32) sample_weight = tf.constant([1.5, 2.]) result = scce_obj(y_true, logits, sample_weight=sample_weight) # softmax = exp(logits) / sum(exp(logits), axis=-1) # y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]] # xent = -sum(y_true * log(softmax), 1) # xent = [0.00045, 7.00182] # weighted xent = [0.000675, 14.00364] # Reduced xent = (0.000675 + 14.00364) / (1.5 + 2) self.assertAllClose(self.evaluate(result), 4.0012, atol=1e-3) def test_axis(self): scce_obj = metrics.SparseCategoricalCrossentropy(axis=0) self.evaluate(tf.compat.v1.variables_initializer(scce_obj.variables)) y_true = np.asarray([1, 2]) y_pred = np.asarray([[0.05, 0.1], [0.95, 0.8], [0, 0.1]]) result = scce_obj(y_true, y_pred) # EPSILON = 1e-7, y = y_true, y` = y_pred # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) # y` = [[0.05, 0.1], [0.95, 0.8], [EPSILON, 0.1]] # logits = log(y`) = [[-2.9957, -2.3026], # [-0.0513, -0.2231], # [-16.1181, -2.3026]] # softmax = exp(logits) / sum(exp(logits), axis=-1) # y = one_hot(y) = [[0, 0], [1, 0], [0, 1]] # xent = -sum(y * log(softmax), 1) # exp(logits) = [[0.05, 0.1], [0.95, 0.8], [EPSILON, 0.1]] # sum(exp(logits)) = [1, 1] # softmax = [[0.05, 0.1], [0.95, 0.8], [EPSILON, 0.1]] # log(softmax) = [[-2.9957, -2.3026], # [-0.0513, -0.2231], # [-16.1181, -2.3026]] # y * log(softmax) = [[0, 0], [-0.0513, 0], [0, -2.3026]] # xent = [0.0513, 2.3026] # Reduced xent = (0.0513 + 2.3026) / 2 self.assertAllClose(self.evaluate(result), 1.176, atol=1e-3) class BinaryTruePositives(metrics.Metric): def __init__(self, name='binary_true_positives', **kwargs): super(BinaryTruePositives, self).__init__(name=name, **kwargs) self.true_positives = self.add_weight(name='tp', initializer='zeros') def update_state(self, y_true, y_pred, sample_weight=None): y_true = tf.cast(y_true, tf.bool) y_pred = tf.cast(y_pred, tf.bool) values = tf.logical_and( tf.equal(y_true, True), tf.equal(y_pred, True)) values = tf.cast(values, self.dtype) if sample_weight is not None: sample_weight = tf.cast(sample_weight, dtype=self.dtype) sample_weight = tf.__internal__.ops.broadcast_weights( sample_weight, values) values = tf.multiply(values, sample_weight) self.true_positives.assign_add(tf.reduce_sum(values)) def result(self): return self.true_positives class BinaryTruePositivesViaControlFlow(metrics.Metric): def __init__(self, name='binary_true_positives', **kwargs): super(BinaryTruePositivesViaControlFlow, self).__init__(name=name, **kwargs) self.true_positives = self.add_weight(name='tp', initializer='zeros') def update_state(self, y_true, y_pred, sample_weight=None): y_true = tf.cast(y_true, tf.bool) y_pred = tf.cast(y_pred, tf.bool) for i in range(len(y_true)): for j in range(len(y_true[i])): if y_true[i][j] and y_pred[i][j]: if sample_weight is None: self.true_positives.assign_add(1) else: self.true_positives.assign_add(sample_weight[i][0]) def result(self): if tf.constant(True): return self.true_positives return 0.0 @combinations.generate(combinations.combine(mode=['graph', 'eager'])) class CustomMetricsTest(tf.test.TestCase): def test_config(self): btp_obj = BinaryTruePositives(name='btp', dtype=tf.int32) self.assertEqual(btp_obj.name, 'btp') self.assertEqual(btp_obj.dtype, tf.int32) # Check save and restore config btp_obj2 = BinaryTruePositives.from_config(btp_obj.get_config()) self.assertEqual(btp_obj2.name, 'btp') self.assertEqual(btp_obj2.dtype, tf.int32) def test_unweighted(self): btp_obj = BinaryTruePositives() self.evaluate(tf.compat.v1.variables_initializer(btp_obj.variables)) y_true = tf.constant([[0, 0.9, 0, 1, 0], [0, 0, 1, 1, 1], [1, 1, 1, 1, 0], [0, 0, 0, 0, 1.5]]) y_pred = tf.constant([[0, 0, 1, 5, 0], [1, 1, 1, 1, 1], [0, 1, 0, 1, 0], [1, 10, 1, 1, 1]]) update_op = btp_obj.update_state(y_true, y_pred) # pylint: disable=assignment-from-no-return self.evaluate(update_op) result = btp_obj.result() self.assertEqual(7, self.evaluate(result)) def test_weighted(self): btp_obj = BinaryTruePositives() self.evaluate(tf.compat.v1.variables_initializer(btp_obj.variables)) y_true = tf.constant([[0, 0.9, 0, 1, 0], [0, 0, 1, 1, 1], [1, 1, 1, 1, 0], [0, 0, 0, 0, 1.5]]) y_pred = tf.constant([[0, 0, 1, 5, 0], [1, 1, 1, 1, 1], [0, 1, 0, 1, 0], [1, 10, 1, 1, 1]]) sample_weight = tf.constant([[1.], [1.5], [2.], [2.5]]) result = btp_obj(y_true, y_pred, sample_weight=sample_weight) self.assertEqual(12, self.evaluate(result)) def test_autograph(self): metric = BinaryTruePositivesViaControlFlow() self.evaluate(tf.compat.v1.variables_initializer(metric.variables)) y_true = tf.constant([[0, 0.9, 0, 1, 0], [0, 0, 1, 1, 1], [1, 1, 1, 1, 0], [0, 0, 0, 0, 1.5]]) y_pred = tf.constant([[0, 0, 1, 5, 0], [1, 1, 1, 1, 1], [0, 1, 0, 1, 0], [1, 10, 1, 1, 1]]) sample_weight = tf.constant([[1.], [1.5], [2.], [2.5]]) @tf.function def compute_metric(y_true, y_pred, sample_weight): metric(y_true, y_pred, sample_weight) return metric.result() result = compute_metric(y_true, y_pred, sample_weight) self.assertEqual(12, self.evaluate(result)) def test_metric_wrappers_autograph(self): def metric_fn(y_true, y_pred): x = tf.constant(0.0) for i in range(len(y_true)): for j in range(len(y_true[i])): if tf.equal(y_true[i][j], y_pred[i][j]) and y_true[i][j] > 0: x += 1.0 return x mean_metric = metrics.MeanMetricWrapper(metric_fn) sum_metric = metrics.SumOverBatchSizeMetricWrapper(metric_fn) self.evaluate(tf.compat.v1.variables_initializer(mean_metric.variables)) self.evaluate(tf.compat.v1.variables_initializer(sum_metric.variables)) y_true = tf.constant([[0, 0, 0, 1, 0], [0, 0, 1, 1, 1], [1, 1, 1, 1, 0], [1, 1, 1, 0, 1]]) y_pred = tf.constant([[0, 0, 1, 1, 0], [1, 1, 1, 1, 1], [0, 1, 0, 1, 0], [1, 1, 1, 1, 1]]) @tf.function def tf_functioned_metric_fn(metric, y_true, y_pred): return metric(y_true, y_pred) metric_result = tf_functioned_metric_fn(mean_metric, y_true, y_pred) self.assertAllClose(self.evaluate(metric_result), 10, 1e-2) metric_result = tf_functioned_metric_fn(sum_metric, y_true, y_pred) self.assertAllClose(self.evaluate(metric_result), 10, 1e-2) def test_metric_not_tracked_as_sublayer_in_layer(self): class MyLayer(base_layer.Layer): def __init__(self, **kwargs): super(MyLayer, self).__init__(**kwargs) self.mean_obj = metrics.Mean(name='my_mean_obj') def call(self, x): self.add_metric( tf.reduce_sum(x), aggregation='mean', name='my_mean_tensor') self.add_metric(self.mean_obj(x)) return x layer = MyLayer() x = np.ones((1, 1)) layer(x) self.assertLen(list(layer._flatten_layers(include_self=False)), 0) self.assertLen(layer.metrics, 2) def test_metric_not_tracked_as_sublayer_in_model(self): class MyModel(training_module.Model): def __init__(self, **kwargs): super(MyModel, self).__init__(**kwargs) self.mean_obj = metrics.Mean(name='my_mean_obj') def call(self, x): self.add_metric( tf.reduce_sum(x), aggregation='mean', name='my_mean_tensor') self.add_metric(self.mean_obj(x)) return x model = MyModel() x = np.ones((1, 1)) model(x) self.assertLen(list(model._flatten_layers(include_self=False)), 0) self.assertLen(model.layers, 0) self.assertLen(model.metrics, 2) def test_invalid_custom_metric_class_error_msg(self): x = layers.Input(shape=(2,)) y = layers.Dense(3)(x) model = training_module.Model(x, y) class BadMetric(metrics.Metric): def update_state(self, y_true, y_pred, sample_weight=None): return def result(self): return with self.assertRaisesRegex(RuntimeError, 'can only be a single'): model.compile('sgd', 'mse', metrics=[BadMetric()]) model.fit(np.ones((10, 2)), np.ones((10, 3))) def test_invalid_custom_metric_fn_error_msg(self): x = layers.Input(shape=(2,)) y = layers.Dense(3)(x) model = training_module.Model(x, y) def bad_metric(y_true, y_pred, sample_weight=None): # pylint: disable=unused-argument return None def dict_metric(y_true, y_pred, sample_weight=None): # pylint: disable=unused-argument return {'value': 0.} with self.assertRaisesRegex(RuntimeError, 'The output of a metric function can only be'): model.compile('sgd', 'mse', metrics=[bad_metric]) model.fit(np.ones((10, 2)), np.ones((10, 3))) with self.assertRaisesRegex(RuntimeError, 'To return a dict of values, implement'): model.compile('sgd', 'mse', metrics=[dict_metric]) model.fit(np.ones((10, 2)), np.ones((10, 3))) def _get_model(compile_metrics): model_layers = [ layers.Dense(3, activation='relu', kernel_initializer='ones'), layers.Dense(1, activation='sigmoid', kernel_initializer='ones')] model = testing_utils.get_model_from_layers(model_layers, input_shape=(4,)) model.compile( loss='mae', metrics=compile_metrics, optimizer='rmsprop', run_eagerly=testing_utils.should_run_eagerly()) return model @keras_parameterized.run_with_all_model_types @keras_parameterized.run_all_keras_modes class ResetStatesTest(keras_parameterized.TestCase): def test_reset_state_false_positives(self): fp_obj = metrics.FalsePositives() model = _get_model([fp_obj]) x = np.ones((100, 4)) y = np.zeros((100, 1)) model.evaluate(x, y) self.assertEqual(self.evaluate(fp_obj.accumulator), 100.) model.evaluate(x, y) self.assertEqual(self.evaluate(fp_obj.accumulator), 100.) def test_reset_state_false_negatives(self): fn_obj = metrics.FalseNegatives() model = _get_model([fn_obj]) x = np.zeros((100, 4)) y = np.ones((100, 1)) model.evaluate(x, y) self.assertEqual(self.evaluate(fn_obj.accumulator), 100.) model.evaluate(x, y) self.assertEqual(self.evaluate(fn_obj.accumulator), 100.) def test_reset_state_true_negatives(self): tn_obj = metrics.TrueNegatives() model = _get_model([tn_obj]) x = np.zeros((100, 4)) y = np.zeros((100, 1)) model.evaluate(x, y) self.assertEqual(self.evaluate(tn_obj.accumulator), 100.) model.evaluate(x, y) self.assertEqual(self.evaluate(tn_obj.accumulator), 100.) def test_reset_state_true_positives(self): tp_obj = metrics.TruePositives() model = _get_model([tp_obj]) x = np.ones((100, 4)) y = np.ones((100, 1)) model.evaluate(x, y) self.assertEqual(self.evaluate(tp_obj.accumulator), 100.) model.evaluate(x, y) self.assertEqual(self.evaluate(tp_obj.accumulator), 100.) def test_reset_state_precision(self): p_obj = metrics.Precision() model = _get_model([p_obj]) x = np.concatenate((np.ones((50, 4)), np.ones((50, 4)))) y = np.concatenate((np.ones((50, 1)), np.zeros((50, 1)))) model.evaluate(x, y) self.assertEqual(self.evaluate(p_obj.true_positives), 50.) self.assertEqual(self.evaluate(p_obj.false_positives), 50.) model.evaluate(x, y) self.assertEqual(self.evaluate(p_obj.true_positives), 50.) self.assertEqual(self.evaluate(p_obj.false_positives), 50.) def test_reset_state_recall(self): r_obj = metrics.Recall() model = _get_model([r_obj]) x = np.concatenate((np.ones((50, 4)), np.zeros((50, 4)))) y = np.concatenate((np.ones((50, 1)), np.ones((50, 1)))) model.evaluate(x, y) self.assertEqual(self.evaluate(r_obj.true_positives), 50.) self.assertEqual(self.evaluate(r_obj.false_negatives), 50.) model.evaluate(x, y) self.assertEqual(self.evaluate(r_obj.true_positives), 50.) self.assertEqual(self.evaluate(r_obj.false_negatives), 50.) def test_reset_state_sensitivity_at_specificity(self): s_obj = metrics.SensitivityAtSpecificity(0.5, num_thresholds=1) model = _get_model([s_obj]) x = np.concatenate((np.ones((25, 4)), np.zeros((25, 4)), np.zeros((25, 4)), np.ones((25, 4)))) y = np.concatenate((np.ones((25, 1)), np.zeros((25, 1)), np.ones((25, 1)), np.zeros((25, 1)))) for _ in range(2): model.evaluate(x, y) self.assertEqual(self.evaluate(s_obj.true_positives), 25.) self.assertEqual(self.evaluate(s_obj.false_positives), 25.) self.assertEqual(self.evaluate(s_obj.false_negatives), 25.) self.assertEqual(self.evaluate(s_obj.true_negatives), 25.) def test_reset_state_specificity_at_sensitivity(self): s_obj = metrics.SpecificityAtSensitivity(0.5, num_thresholds=1) model = _get_model([s_obj]) x = np.concatenate((np.ones((25, 4)), np.zeros((25, 4)), np.zeros((25, 4)), np.ones((25, 4)))) y = np.concatenate((np.ones((25, 1)), np.zeros((25, 1)), np.ones((25, 1)), np.zeros((25, 1)))) for _ in range(2): model.evaluate(x, y) self.assertEqual(self.evaluate(s_obj.true_positives), 25.) self.assertEqual(self.evaluate(s_obj.false_positives), 25.) self.assertEqual(self.evaluate(s_obj.false_negatives), 25.) self.assertEqual(self.evaluate(s_obj.true_negatives), 25.) def test_reset_state_precision_at_recall(self): s_obj = metrics.PrecisionAtRecall(recall=0.5, num_thresholds=1) model = _get_model([s_obj]) x = np.concatenate((np.ones((25, 4)), np.zeros((25, 4)), np.zeros((25, 4)), np.ones((25, 4)))) y = np.concatenate((np.ones((25, 1)), np.zeros((25, 1)), np.ones((25, 1)), np.zeros((25, 1)))) for _ in range(2): model.evaluate(x, y) self.assertEqual(self.evaluate(s_obj.true_positives), 25.) self.assertEqual(self.evaluate(s_obj.false_positives), 25.) self.assertEqual(self.evaluate(s_obj.false_negatives), 25.) self.assertEqual(self.evaluate(s_obj.true_negatives), 25.) def test_reset_state_recall_at_precision(self): s_obj = metrics.RecallAtPrecision(precision=0.5, num_thresholds=1) model = _get_model([s_obj]) x = np.concatenate((
np.ones((25, 4))
numpy.ones
"""Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" """Evaluates the network.""" from __future__ import division from __future__ import print_function import tensorflow as tf import plus_input_data import numpy as np from plus_model import tf_model from collections import defaultdict from scipy.spatial import distance def fill_eval_feed_dict(data_set, placeholder, FLAGS, rel): r_idx, t1_idx, t2_idx, labels = data_set.eval_batch() t1x, t1mask, t1length= plus_input_data.prepare_data(t1_idx) t2x, t2mask, t2length = plus_input_data.prepare_data(t2_idx) relmsk = plus_input_data.rel_msk(r_idx, rel) # define identity matrix # t = np.zeros((r_idx.shape[0],FLAGS.embed_dim,FLAGS.embed_dim)) # t = np.asarray([1.0 if i == j else 0.0 for k in range(t.shape[0]) for i in range(t.shape[1]) for j in range(t.shape[2])], np.float32) # t = t.reshape(r_idx.shape[0],FLAGS.embed_dim,FLAGS.embed_dim) feed_dict = { placeholder['t1_idx_placeholder']: t1x, placeholder['t1_msk_placeholder']: t1mask, placeholder['t1_length_placeholder']: t1length, placeholder['t2_idx_placeholder']: t2x, placeholder['t2_msk_placeholder']: t2mask, placeholder['t2_length_placeholder']: t2length, placeholder['rel_placeholder']: r_idx, placeholder['label_placeholder']: labels, placeholder['rel_msk_placeholder']: relmsk, } return feed_dict def fill_feed_dict(data_set, placeholder, FLAGS, rel): r_idx, t1_idx, t2_idx, labels = data_set.eval_batch() t1x, t1mask, t1length= plus_input_data.prepare_data(t1_idx) t2x, t2mask, t2length = plus_input_data.prepare_data(t2_idx) # print('r_idx', r_idx.shape) relmsk = plus_input_data.rel_msk(r_idx, rel) #random find negative examples from the same batch # nr_idx, nt1_idx, nt2_idx, nlabels = plus_input_data.find_neg(r_idx, t1_idx, t2_idx, labels) # nt1x, nt1mask, nt1length= plus_input_data.prepare_data(nt1_idx) # nt2x, nt2mask, nt2length = plus_input_data.prepare_data(nt2_idx) # nrelmsk = plus_input_data.rel_msk(nr_idx, rel) # define identity matrix #t = np.zeros((r_idx.shape[0],FLAGS.embed_dim,FLAGS.embed_dim)) #t = np.asarray([1.0 if i == j else 0.0 for k in range(t.shape[0]) for i in range(t.shape[1]) for j in range(t.shape[2])], np.float32) #t = t.reshape(r_idx.shape[0],FLAGS.embed_dim,FLAGS.embed_dim) # iden = tf.Variable(t) feed_dict = { placeholder['t1_idx_placeholder']: t1x, placeholder['t1_msk_placeholder']: t1mask, placeholder['t1_length_placeholder']: t1length, placeholder['t2_idx_placeholder']: t2x, placeholder['t2_msk_placeholder']: t2mask, placeholder['t2_length_placeholder']: t2length, # placeholder['nt1_idx_placeholder']: nt1x, # placeholder['nt1_msk_placeholder']: nt1mask, # placeholder['nt1_length_placeholder']: nt1length, # placeholder['nt2_idx_placeholder']: nt2x, # placeholder['nt2_msk_placeholder']: nt2mask, # placeholder['nt2_length_placeholder']: nt2length, placeholder['rel_placeholder']: r_idx, # placeholder['nrel_placeholder']: nr_idx, placeholder['label_placeholder']: labels, # placeholder['nlabel_placeholder']: nlabels, placeholder['rel_msk_placeholder']: relmsk, # placeholder['nrel_msk_placeholder']: nrelmsk, } return feed_dict def best_threshold(errs, target, outfile): indices = np.argsort(errs) sortedErrors = errs[indices] sortedTarget = target[indices] tp = np.cumsum(sortedTarget) invSortedTarget = (sortedTarget == 0).astype('float32') Nneg = invSortedTarget.sum() fp = np.cumsum(invSortedTarget) tn = fp * -1 + Nneg accuracies = (tp + tn) / sortedTarget.shape[0] i = accuracies.argmax() # print('errors', sortedErrors[:]) # print('target', invSortedTarget[:]) print("Accuracy for Dev:", accuracies[i], file = outfile) # calculate recall precision and F1 Npos = sortedTarget.sum() fn = tp * -1 + Npos # print('tp',tp) # print('fp',fp) precision = tp/(tp + fp) recall = tp/(tp + fn) # print(precision[i]) # print(recall[i]) # print(tp[i]) # print(fp[i]) # print(tp[i]+tn[i]) f1 = (2*precision[i]*recall[i])/(precision[i]+recall[i]) # print("Precision, Recall and F1 are %.5f %.5f %.5f" % (precision[i], recall[i], f1), file = outfile) print("Precision, Recall and F1 are %.5f %.5f %.5f" % (precision[i], recall[i], f1)) # print("Number of positives, negatives, tp, tn: %f %f %f %f" % (target.sum(), Nneg, tp[i], tn[i])) return sortedErrors[i], accuracies[i] def wordnet_train_eval(sess,h_error, placeholder,data_set, num, FLAGS, rel): feed_dict = fill_eval_feed_dict(data_set, placeholder, FLAGS, rel) true_label = feed_dict[placeholder['label_placeholder']] he_error = sess.run(h_error, feed_dict = feed_dict) _, acc = best_threshold(he_error, true_label) return acc def do_eval(sess,h_error,placeholder,data_set, devtest,test, num, curr_best, FLAGS,error_file_name,outfile, rel, words): feed_dict = fill_eval_feed_dict(data_set, placeholder, FLAGS, rel) true_label = feed_dict[placeholder['label_placeholder']] he_error = sess.run(h_error, feed_dict = feed_dict) thresh, _ = best_threshold(he_error, true_label, outfile) #evaluat devtest feed_dict_devtest = fill_eval_feed_dict(devtest, placeholder, FLAGS, rel) true_label_devtest = feed_dict_devtest[placeholder['label_placeholder']] devtest_he_error = sess.run(h_error, feed_dict = feed_dict_devtest) pred = devtest_he_error <= thresh correct = (pred == true_label_devtest) accuracy = float(correct.astype('float32').mean()) wrong_indices = np.logical_not(correct).nonzero()[0] wrong_preds = pred[wrong_indices] #evaluate test feed_dict_test = fill_eval_feed_dict(test, placeholder, FLAGS, rel) true_label_test = feed_dict_test[placeholder['label_placeholder']] test_he_error = sess.run(h_error, feed_dict = feed_dict_test) test_pred = test_he_error <= thresh test_correct = (test_pred == true_label_test) test_accuracy = float(test_correct.astype('float32').mean()) test_wrong_indices = np.logical_not(test_correct).nonzero()[0] test_wrong_preds = test_pred[test_wrong_indices] if accuracy>curr_best: # #evaluat devtest error_file = open(error_file_name+"_test.txt",'wt') if FLAGS.rel_acc: rel_acc_checker(feed_dict_devtest, placeholder, correct, data_set, error_file, rel) if FLAGS.error_analysis: err_analysis(data_set, wrong_indices, feed_dict_devtest, placeholder, error_file, rel, words) return accuracy,test_accuracy, wrong_indices, wrong_preds def do_train_eval(sess,h_error,nh_error, placeholder,data_set, num, neg_data, curr_best, FLAGS, error_file_name, outfile, rel, words): feed_dict = fill_feed_dict(data_set, placeholder, FLAGS, rel) # concatenate the true and false labels true_label = feed_dict[placeholder['label_placeholder']] false_label = np.zeros(true_label.shape) labels = np.concatenate((true_label, false_label), axis = 0) # print("type of true labels",type(true_label)) he_error = sess.run(h_error, feed_dict = feed_dict) nhe_error = sess.run(nh_error, feed_dict = feed_dict) errors = np.concatenate((he_error, nhe_error), axis = 0) # print("type of errors",type(he_error)) thresh, acc = best_threshold(errors, labels, outfile) if acc > curr_best: error_file = open(error_file_name+"_train.txt",'wt') pred = he_error <= thresh correct = (pred == true_label) accuracy = float(correct.astype('float32').mean()) wrong_indices =
np.logical_not(correct)
numpy.logical_not
from __future__ import division from __future__ import print_function from __future__ import absolute_import from builtins import str from builtins import zip from builtins import range from sys import stdout import multiprocessing as mp import numpy as np from vsm.split import split_documents from vsm.model.ldafunctions import load_lda from vsm.model.ldacgsseq import * from vsm.model._cgs_update import cgs_update import cython import platform # For Windows comaptability import itertools from progressbar import ProgressBar, Percentage, Bar __all__ = [ 'LdaCgsMulti' ] class LdaCgsMulti(LdaCgsSeq): """ An implementation of LDA using collapsed Gibbs sampling with multi-processing. On Windows platforms, LdaCgsMulti is not supported. A NotImplementedError will be raised notifying the user to use the LdaCgsSeq package. Users desiring a platform-independent fallback should use LDA(multiprocess=True) to initialize the object, which will return either a LdaCgsMulti or a LdaCgsSeq instance, depending on the platform, while raising a RuntimeWarning. """ def __init__(self, corpus=None, context_type=None, K=20, V=0, alpha=[], beta=[], n_proc=2, seeds=None): """ Initialize LdaCgsMulti. :param corpus: Source of observed data. :type corpus: `Corpus` :param context_type: Name of tokenization stored in `corpus` whose tokens will be treated as documents. :type context_type: string, optional :param K: Number of topics. Default is `20`. :type K: int, optional :param alpha: Context priors. Default is a flat prior of 0.01 for all contexts. :type alpha: list, optional :param beta: Topic priors. Default is 0.01 for all topics. :type beta: list, optional :param n_proc: Number of processors used for training. Default is 2. :type n_proc: int, optional :param seeds: List of random seeds, one for each thread. The length of the list should be same as `n_proc`. Default is `None`. :type seeds: list of integers, optional """ if platform.system() == 'Windows': raise NotImplementedError("""LdaCgsMulti is not implemented on Windows. Please use LdaCgsSeq.""") self._read_globals = False self._write_globals = False self.n_proc = n_proc # set random seeds if unspecified if seeds is None: maxint = np.iinfo(np.int32).max seeds = [np.random.randint(0, maxint) for n in range(n_proc)] # check number of seeds == n_proc if len(seeds) != n_proc: raise ValueError("Number of seeds must equal number of processors " + str(n_proc)) # initialize random states self.seeds = seeds self._mtrand_states = [np.random.RandomState(seed).get_state() for seed in self.seeds] super(LdaCgsMulti, self).__init__(corpus=corpus, context_type=context_type, K=K, V=V, alpha=alpha, beta=beta) if corpus is not None: self.dtype = corpus.corpus.dtype # delete LdaCgsSeq seed and state del self.seed del self._mtrand_state def _move_globals_to_locals(self): self._write_globals = False self.K = self.K self.V = self.V self.corpus = self.corpus self.Z = self.Z self.word_top = self.word_top self.inv_top_sums = self.inv_top_sums self.top_doc = self.top_doc self.iteration = self.iteration self._read_globals = False global _K, _V, _corpus, _Z, _word_top, _inv_top_sums global _top_doc, _iteration del (_K, _V, _corpus, _Z, _word_top, _inv_top_sums, _top_doc, _iteration) def _move_locals_to_globals(self): self._write_globals = True self.K = self.K self.V = self.V self.corpus = self.corpus self.Z = self.Z self.word_top = self.word_top self.inv_top_sums = self.inv_top_sums self.top_doc = self.top_doc self.iteration = self.iteration self._read_globals = True del (self._K_local, self._V_local, self._corpus_local, self._Z_local, self._word_top_local, self._inv_top_sums_local, self._top_doc_local, self._iteration_local) @property def word_top(self): if self._read_globals: return np.frombuffer(_word_top, np.float32).reshape(self.V, self.K) return self._word_top_local @word_top.setter def word_top(self, a): if self._write_globals: global _word_top if not '_word_top' in globals(): _word_top = mp.Array('f', self.V * self.K, lock=False) _word_top[:] = a.reshape(-1,) else: self._word_top_local = a @property def inv_top_sums(self): if self._read_globals: return np.frombuffer(_inv_top_sums, np.float32) return self._inv_top_sums_local @inv_top_sums.setter def inv_top_sums(self, a): if self._write_globals: global _inv_top_sums if not '_inv_top_sums' in globals(): _inv_top_sums = mp.Array('f', self.K, lock=False) _inv_top_sums[:] = a else: self._inv_top_sums_local = a @property def top_doc(self): if self._read_globals: top_doc = np.frombuffer(_top_doc, np.float32) return top_doc.reshape(self.K, len(self.indices)) return self._top_doc_local @top_doc.setter def top_doc(self, a): if self._write_globals: global _top_doc if not '_top_doc' in globals(): _top_doc = mp.Array('f', self.K * len(self.indices), lock=False) _top_doc[:] = a.reshape(-1,) else: self._top_doc_local = a @property def corpus(self): if self._read_globals: return np.frombuffer(_corpus, self.dtype) return self._corpus_local @corpus.setter def corpus(self, a): if self._write_globals: global _corpus if not '_corpus' in globals(): if self.corpus.dtype == 'uint16': dtype = 'H' elif self.corpus.dtype == 'uint32': dtype = 'I' else: raise NotImplementedError _corpus = mp.Array(dtype, len(a), lock=False) _corpus[:] = a else: self._corpus_local = a @property def Z(self): if self._read_globals: if self.K < 2 ** 8: Ktype = np.uint8 elif self.K < 2 ** 16: Ktype = np.uint16 else: raise NotImplementedError("Invalid Ktype. k={}".format(self.K)) return np.frombuffer(_Z, Ktype) return self._Z_local @Z.setter def Z(self, a): if self._write_globals: global _Z if not '_Z' in globals(): if self.K < 2 ** 8: Ktype = 'B' elif self.K < 2 ** 16: Ktype = 'H' else: raise NotImplementedError _Z = mp.Array(Ktype, len(a), lock=False) _Z[:] = a else: self._Z_local = a @property def K(self): if self._read_globals: return _K.value return self._K_local @K.setter def K(self, K): if self._write_globals: global _K if not '_K' in globals(): _K = mp.Value('i') _K.value = K else: self._K_local = K @property def V(self): if self._read_globals: return _V.value return self._V_local @V.setter def V(self, V): if self._write_globals: global _V if not '_V' in globals(): _V = mp.Value('i') _V.value = V else: self._V_local = V @property def iteration(self): if self._read_globals: return _iteration.value return self._iteration_local @iteration.setter def iteration(self, iteration): if self._write_globals: global _iteration if not '_iteration' in globals(): _iteration = mp.Value('i') _iteration.value = iteration else: self._iteration_local = iteration def train(self, n_iterations=500, verbose=1): """ Takes an optional argument, `n_iterations` and updates the model `n_iterations` times. :param n_iterations: Number of iterations. Default is 500. :type n_iterations: int, optional :param verbose: If `True`, current number of iterations are printed out to notify the user. Default is `True`. :type verbose: boolean, optional """ if mp.cpu_count() < self.n_proc: raise RuntimeError("Model seeded with more cores than available." + " Requires {0} cores.".format(self.n_proc)) self._move_locals_to_globals() docs = split_documents(self.corpus, self.indices, self.n_proc) doc_indices = [(0, len(docs[0]))] for i in range(len(docs)-1): doc_indices.append((doc_indices[i][1], doc_indices[i][1] + len(docs[i+1]))) p = mp.Pool(len(docs)) if verbose == 1: pbar = ProgressBar(widgets=[Percentage(), Bar()], maxval=n_iterations).start() n_iterations += self.iteration iteration = 0 while self.iteration < n_iterations: if verbose == 2: stdout.write('\rIteration %d: mapping ' % self.iteration) stdout.flush() data = list(zip(docs, doc_indices, self._mtrand_states, itertools.repeat(self.dtype))) # For debugging # results = map(update, data) if platform.system() == 'Windows': raise NotImplementedError("""LdaCgsMulti is not implemented on Windows. Please use LdaCgsSeq.""") else: results = p.map(update, data) if verbose == 2: stdout.write('\rIteration %d: reducing ' % self.iteration) stdout.flush() if verbose == 1: #print("Self iteration", self.iteration) pbar.update(iteration) (Z_ls, top_doc_ls, word_top_ls, logp_ls, mtrand_str_ls, mtrand_keys_ls, mtrand_pos_ls, mtrand_has_gauss_ls, mtrand_cached_gaussian_ls) = list(zip(*results)) self._mtrand_states = list(zip(mtrand_str_ls, mtrand_keys_ls, mtrand_pos_ls, mtrand_has_gauss_ls, mtrand_cached_gaussian_ls)) for t in range(len(results)): start, stop = docs[t][0][0], docs[t][-1][1] self.Z[start:stop] = Z_ls[t] self.top_doc[:, doc_indices[t][0]:doc_indices[t][1]] = top_doc_ls[t] self.word_top = self.word_top + np.sum(word_top_ls, axis=0) self.inv_top_sums = 1. / self.word_top.sum(0) lp = np.sum(logp_ls, dtype=np.float32) self.log_probs.append((self.iteration, lp)) if verbose == 2: stdout.write('\rIteration %d: log_prob=' % self.iteration) stdout.flush() print('%f' % lp) iteration += 1 self.iteration += 1 if verbose == 1: pbar.finish() p.close() self._move_globals_to_locals() @staticmethod def load(filename): """ A static method for loading a saved LdaCgsMulti model. :param filename: Name of a saved model to be loaded. :type filename: string :returns: m : LdaCgsMulti object :See Also: :class:`numpy.load` """ if platform.system() == 'Windows': raise NotImplementedError("""LdaCgsMulti is not implemented on Windows. Please use LdaCgsSeq.""") return load_lda(filename, LdaCgsMulti) def update(args): """ For LdaCgsMulti """ (docs, doc_indices, mtrand_state, dtype) = args start, stop = docs[0][0], docs[-1][1] global Ktype if _K.value < 2 ** 8: Ktype = np.uint8 elif _K.value < 2 ** 16: Ktype = np.uint16 else: raise NotImplementedError("Invalid Ktype. k={}".format(_K)) corpus =
np.frombuffer(_corpus, dtype=dtype)
numpy.frombuffer
""" The microstructure module provide elementary classes to describe a crystallographic granular microstructure such as mostly present in metallic materials. It contains several classes which are used to describe a microstructure composed of several grains, each one having its own crystallographic orientation: * :py:class:`~pymicro.crystal.microstructure.Microstructure` * :py:class:`~pymicro.crystal.microstructure.Grain` * :py:class:`~pymicro.crystal.microstructure.Orientation` """ import numpy as np import os import vtk import h5py import math from pathlib import Path from scipy import ndimage from matplotlib import pyplot as plt, colors from pymicro.crystal.lattice import Lattice, Symmetry, CrystallinePhase, Crystal from pymicro.crystal.quaternion import Quaternion from pymicro.core.samples import SampleData import tables from math import atan2, pi class Orientation: """Crystallographic orientation class. This follows the passive rotation definition which means that it brings the sample coordinate system into coincidence with the crystal coordinate system. Then one may express a vector :math:`V_c` in the crystal coordinate system from the vector in the sample coordinate system :math:`V_s` by: .. math:: V_c = g.V_s and inversely (because :math:`g^{-1}=g^T`): .. math:: V_s = g^T.V_c Most of the code to handle rotations has been written to comply with the conventions laid in :cite:`Rowenhorst2015`. """ def __init__(self, matrix): """Initialization from the 9 components of the orientation matrix.""" g = np.array(matrix, dtype=np.float64).reshape((3, 3)) self._matrix = g self.euler = Orientation.OrientationMatrix2Euler(g) self.rod = Orientation.OrientationMatrix2Rodrigues(g) self.quat = Orientation.OrientationMatrix2Quaternion(g, P=1) def orientation_matrix(self): """Returns the orientation matrix in the form of a 3x3 numpy array.""" return self._matrix def __repr__(self): """Provide a string representation of the class.""" s = 'Crystal Orientation \n-------------------' s += '\norientation matrix = \n %s' % self._matrix.view() s += '\nEuler angles (degrees) = (%8.3f,%8.3f,%8.3f)' % (self.phi1(), self.Phi(), self.phi2()) s += '\nRodrigues vector = %s' % self.OrientationMatrix2Rodrigues(self._matrix) s += '\nQuaternion = %s' % self.OrientationMatrix2Quaternion(self._matrix, P=1) return s def to_crystal(self, v): """Transform a vector or a matrix from the sample frame to the crystal frame. :param ndarray v: a 3 component vector or a 3x3 array expressed in the sample frame. :return: the vector or matrix expressed in the crystal frame. """ if v.size not in [3, 9]: raise ValueError('input arg must be a 3 components vector ' 'or a 3x3 matrix, got %d vlaues' % v.size) g = self.orientation_matrix() if v.size == 3: # input is vector return np.dot(g, v) else: # input is 3x3 matrix return np.dot(g, np.got(v, g.T)) def to_sample(self, v): """Transform a vector or a matrix from the crystal frame to the sample frame. :param ndarray v: a 3 component vector or a 3x3 array expressed in the crystal frame. :return: the vector or matrix expressed in the sample frame. """ if v.size not in [3, 9]: raise ValueError('input arg must be a 3 components vector ' 'or a 3x3 matrix, got %d vlaues' % v.size) g = self.orientation_matrix() if v.size == 3: # input is vector return np.dot(g.T, v) else: # input is 3x3 matrix return np.dot(g.T, np.got(v, g)) @staticmethod def cube(): """Create the particular crystal orientation called Cube and which corresponds to euler angle (0, 0, 0).""" return Orientation.from_euler((0., 0., 0.)) @staticmethod def brass(): """Create the particular crystal orientation called Brass and which corresponds to euler angle (35.264, 45, 0).""" return Orientation.from_euler((35.264, 45., 0.)) @staticmethod def copper(): """Create the particular crystal orientation called Copper and which corresponds to euler angle (90, 35.264, 45).""" return Orientation.from_euler((90., 35.264, 45.)) @staticmethod def s3(): """Create the particular crystal orientation called S3 and which corresponds to euler angle (59, 37, 63).""" return Orientation.from_euler((58.980, 36.699, 63.435)) @staticmethod def goss(): """Create the particular crystal orientation called Goss and which corresponds to euler angle (0, 45, 0).""" return Orientation.from_euler((0., 45., 0.)) @staticmethod def shear(): """Create the particular crystal orientation called shear and which corresponds to euler angle (45, 0, 0).""" return Orientation.from_euler((45., 0., 0.)) @staticmethod def random(): """Create a random crystal orientation.""" from random import random from math import acos phi1 = random() * 360. Phi = 180. * acos(2 * random() - 1) / np.pi phi2 = random() * 360. return Orientation.from_euler([phi1, Phi, phi2]) def ipf_color(self, axis=np.array([0., 0., 1.]), symmetry=Symmetry.cubic, saturate=True): """Compute the IPF (inverse pole figure) colour for this orientation. This method has bee adapted from the DCT code. .. note:: This method coexist with the `get_ipf_colour` for the moment. :param ndarray axis: the direction to use to compute the IPF colour. :param Symmetry symmetry: the symmetry operator to use. :return bool saturate: a flag to saturate the RGB values. """ axis /= np.linalg.norm(axis) Vc = np.dot(self.orientation_matrix(), axis) # get the symmetry operators syms = symmetry.symmetry_operators() syms = np.concatenate((syms, -syms)) Vc_syms = np.dot(syms, Vc) # phi: rotation around 001 axis, from 100 axis to Vc vector, projected on (100,010) plane Vc_phi = np.arctan2(Vc_syms[:, 1], Vc_syms[:, 0]) * 180 / pi # chi: rotation around 010 axis, from 001 axis to Vc vector, projected on (100,001) plane Vc_chi = np.arctan2(Vc_syms[:, 0], Vc_syms[:, 2]) * 180 / pi # psi : angle from 001 axis to Vc vector Vc_psi = np.arccos(Vc_syms[:, 2]) * 180 / pi if symmetry is Symmetry.cubic: angleR = 45 - Vc_chi # red color proportional to (45 - chi) minAngleR = 0 maxAngleR = 45 angleB = Vc_phi # blue color proportional to phi minAngleB = 0 maxAngleB = 45 elif symmetry is Symmetry.hexagonal: angleR = 90 - Vc_psi # red color proportional to (90 - psi) minAngleR = 0 maxAngleR = 90 angleB = Vc_phi # blue color proportional to phi minAngleB = 0 maxAngleB = 30 else: raise(ValueError('unsupported crystal symmetry to compute IPF color')) # find the axis lying in the fundamental zone fz_list = ((angleR >= minAngleR) & (angleR < maxAngleR) & (angleB >= minAngleB) & (angleB < maxAngleB)).tolist() if not fz_list.count(True) == 1: raise(ValueError('problem moving to the fundamental zone')) return None i_SST = fz_list.index(True) r = angleR[i_SST] / maxAngleR g = (maxAngleR - angleR[i_SST]) / maxAngleR * (maxAngleB - angleB[i_SST]) / maxAngleB b = (maxAngleR - angleR[i_SST]) / maxAngleR * angleB[i_SST] / maxAngleB rgb = np.array([r, g, b]) if saturate: rgb = rgb / rgb.max() return rgb def get_ipf_colour(self, axis=np.array([0., 0., 1.]), symmetry=Symmetry.cubic): """Compute the IPF (inverse pole figure) colour for this orientation. Given a particular axis expressed in the laboratory coordinate system, one can compute the so called IPF colour based on that direction expressed in the crystal coordinate system as :math:`[x_c,y_c,z_c]`. There is only one tuple (u,v,w) such that: .. math:: [x_c,y_c,z_c]=u.[0,0,1]+v.[0,1,1]+w.[1,1,1] and it is used to assign the RGB colour. :param ndarray axis: the direction to use to compute the IPF colour. :param Symmetry symmetry: the symmetry operator to use. :return tuple: a tuple contining the RGB values. """ axis /= np.linalg.norm(axis) # find the axis lying in the fundamental zone for sym in symmetry.symmetry_operators(): Osym = np.dot(sym, self.orientation_matrix()) Vc = np.dot(Osym, axis) if Vc[2] < 0: Vc *= -1. # using the upward direction uvw = np.array([Vc[2] - Vc[1], Vc[1] - Vc[0], Vc[0]]) uvw /= np.linalg.norm(uvw) uvw /= max(uvw) if (uvw[0] >= 0. and uvw[0] <= 1.0) and (uvw[1] >= 0. and uvw[1] <= 1.0) and ( uvw[2] >= 0. and uvw[2] <= 1.0): # print('found sym for sst') break return uvw @staticmethod def compute_mean_orientation(rods, symmetry=Symmetry.cubic): """Compute the mean orientation. This function computes a mean orientation from several data points representing orientations. Each orientation is first moved to the fundamental zone, then the corresponding Rodrigues vectors can be averaged to compute the mean orientation. :param ndarray rods: a (n, 3) shaped array containing the Rodrigues vectors of the orientations. :param `Symmetry` symmetry: the symmetry used to move orientations to their fundamental zone (cubic by default) :returns: the mean orientation as an `Orientation` instance. """ rods_fz = np.empty_like(rods) for i in range(len(rods)): g = Orientation.from_rodrigues(rods[i]).orientation_matrix() g_fz = symmetry.move_rotation_to_FZ(g, verbose=False) o_fz = Orientation(g_fz) rods_fz[i] = o_fz.rod mean_orientation = Orientation.from_rodrigues(np.mean(rods_fz, axis=0)) return mean_orientation @staticmethod def fzDihedral(rod, n): """check if the given Rodrigues vector is in the fundamental zone. After book from Morawiec :cite`Morawiec_2004`: .. pull_quote:: The asymmetric domain is a prism with 2n-sided polygons (at the distance $h_n$ from 0) as prism bases, and $2n$ square prism faces at the distance $h_2 = 1$. The bases are perpendicular to the n-fold axis and the faces are perpendicular to the twofold axes. """ # top and bottom face at +/-tan(pi/2n) t = np.tan(np.pi / (2 * n)) if abs(rod[2]) > t: return False # 2n faces distance 1 from origin # y <= ((2+sqrt(2))*t - (1+sqrt(2))) * x + (1+sqrt(2))*(1-t) y, x = sorted([abs(rod[0]), abs(rod[1])]) if x > 1: return False return { 2: True, 3: y / (1 + math.sqrt(2)) + (1 - math.sqrt(2 / 3)) * x < 1 - 1 / math.sqrt(3), 4: y + x < math.sqrt(2), 6: y / (1 + math.sqrt(2)) + (1 - 2 * math.sqrt(2) + math.sqrt(6)) * x < math.sqrt(3) - 1 }[n] def inFZ(self, symmetry=Symmetry.cubic): """Check if the given Orientation lies within the fundamental zone. For a given crystal symmetry, several rotations can describe the same physcial crystllographic arangement. The Rodrigues fundamental zone (also called the asymmetric domain) restricts the orientation space accordingly. :param symmetry: the `Symmetry` to use. :return bool: True if this orientation is in the fundamental zone, False otherwise. """ r = self.rod if symmetry == Symmetry.cubic: inFZT23 = np.abs(r).sum() <= 1.0 # in the cubic symmetry, each component must be < 2 ** 0.5 - 1 inFZ = inFZT23 and np.abs(r).max() <= 2 ** 0.5 - 1 elif symmetry == Symmetry.hexagonal: inFZ = Orientation.fzDihedral(r, 6) else: raise (ValueError('unsupported crystal symmetry: %s' % symmetry)) return inFZ def move_to_FZ(self, symmetry=Symmetry.cubic, verbose=False): """ Compute the equivalent crystal orientation in the Fundamental Zone of a given symmetry. :param Symmetry symmetry: an instance of the `Symmetry` class. :param verbose: flag for verbose mode. :return: a new Orientation instance which lies in the fundamental zone. """ om = symmetry.move_rotation_to_FZ(self.orientation_matrix(), verbose=verbose) return Orientation(om) @staticmethod def misorientation_MacKenzie(psi): """Return the fraction of the misorientations corresponding to the given :math:`\\psi` angle in the reference solution derived By MacKenzie in his 1958 paper :cite:`MacKenzie_1958`. :param psi: the misorientation angle in radians. :returns: the value in the cummulative distribution corresponding to psi. """ from math import sqrt, sin, cos, tan, pi, acos psidg = 180 * psi / pi if 0 <= psidg <= 45: p = 2. / 15 * (1 - cos(psi)) elif 45 < psidg <= 60: p = 2. / 15 * (3 * (sqrt(2) - 1) * sin(psi) - 2 * (1 - cos(psi))) elif 60 < psidg <= 60.72: p = 2. / 15 * ((3 * (sqrt(2) - 1) + 4. / sqrt(3)) * sin(psi) - 6. * (1 - cos(psi))) elif 60.72 < psidg <= 62.8: X = (sqrt(2) - 1) / (1 - (sqrt(2) - 1) ** 2 / tan(0.5 * psi) ** 2) ** 0.5 Y = (sqrt(2) - 1) ** 2 / ((3 - 1 / tan(0.5 * psi) ** 2) ** 0.5) p = (2. / 15) * ((3 * (sqrt(2) - 1) + 4 / sqrt(3)) * sin(psi) - 6 * (1 - cos(psi))) \ - 8. / (5 * pi) * (2 * (sqrt(2) - 1) * acos(X / tan(0.5 * psi)) + 1. / sqrt(3) * acos(Y / tan(0.5 * psi))) \ * sin(psi) + 8. / (5 * pi) * (2 *acos((sqrt(2) + 1) * X / sqrt(2)) + acos((sqrt(2) + 1) * Y / sqrt(2))) * (1 - cos(psi)) else: p = 0. return p @staticmethod def misorientation_axis_from_delta(delta): """Compute the misorientation axis from the misorientation matrix. :param delta: The 3x3 misorientation matrix. :returns: the misorientation axis (normalised vector). """ n = np.array([delta[1, 2] - delta[2, 1], delta[2, 0] - delta[0, 2], delta[0, 1] - delta[1, 0]]) n /= np.sqrt((delta[1, 2] - delta[2, 1]) ** 2 + (delta[2, 0] - delta[0, 2]) ** 2 + (delta[0, 1] - delta[1, 0]) ** 2) return n def misorientation_axis(self, orientation): """Compute the misorientation axis with another crystal orientation. This vector is by definition common to both crystalline orientations. :param orientation: an instance of :py:class:`~pymicro.crystal.microstructure.Orientation` class. :returns: the misorientation axis (normalised vector). """ delta = np.dot(self.orientation_matrix(), orientation.orientation_matrix().T) return Orientation.misorientation_axis_from_delta(delta) @staticmethod def misorientation_angle_from_delta(delta): """Compute the misorientation angle from the misorientation matrix. Compute the angle associated with this misorientation matrix :math:`\\Delta g`. It is defined as :math:`\\omega = \\arccos(\\text{trace}(\\Delta g)/2-1)`. To avoid float rounding error, the argument is rounded to 1.0 if it is within 1 and 1 plus 32 bits floating point precison. .. note:: This does not account for the crystal symmetries. If you want to find the disorientation between two orientations, use the :py:meth:`~pymicro.crystal.microstructure.Orientation.disorientation` method. :param delta: The 3x3 misorientation matrix. :returns float: the misorientation angle in radians. """ cw = 0.5 * (delta.trace() - 1) if cw > 1. and cw - 1. < 10 * np.finfo('float32').eps: # print('cw=%.20f, rounding to 1.' % cw) cw = 1. omega = np.arccos(cw) return omega def disorientation(self, orientation, crystal_structure=Symmetry.triclinic): """Compute the disorientation another crystal orientation. Considering all the possible crystal symmetries, the disorientation is defined as the combination of the minimum misorientation angle and the misorientation axis lying in the fundamental zone, which can be used to bring the two lattices into coincidence. .. note:: Both orientations are supposed to have the same symmetry. This is not necessarily the case in multi-phase materials. :param orientation: an instance of :py:class:`~pymicro.crystal.microstructure.Orientation` class describing the other crystal orientation from which to compute the angle. :param crystal_structure: an instance of the `Symmetry` class describing the crystal symmetry, triclinic (no symmetry) by default. :returns tuple: the misorientation angle in radians, the axis as a numpy vector (crystal coordinates), the axis as a numpy vector (sample coordinates). """ the_angle = np.pi symmetries = crystal_structure.symmetry_operators() (gA, gB) = (self.orientation_matrix(), orientation.orientation_matrix()) # nicknames for (g1, g2) in [(gA, gB), (gB, gA)]: for j in range(symmetries.shape[0]): sym_j = symmetries[j] oj = np.dot(sym_j, g1) # the crystal symmetry operator is left applied for i in range(symmetries.shape[0]): sym_i = symmetries[i] oi = np.dot(sym_i, g2) delta = np.dot(oi, oj.T) mis_angle = Orientation.misorientation_angle_from_delta(delta) if mis_angle < the_angle: # now compute the misorientation axis, should check if it lies in the fundamental zone mis_axis = Orientation.misorientation_axis_from_delta(delta) # here we have np.dot(oi.T, mis_axis) = np.dot(oj.T, mis_axis) # print(mis_axis, mis_angle*180/np.pi, np.dot(oj.T, mis_axis)) the_angle = mis_angle the_axis = mis_axis the_axis_xyz = np.dot(oi.T, the_axis) return the_angle, the_axis, the_axis_xyz def phi1(self): """Convenience methode to expose the first Euler angle.""" return self.euler[0] def Phi(self): """Convenience methode to expose the second Euler angle.""" return self.euler[1] def phi2(self): """Convenience methode to expose the third Euler angle.""" return self.euler[2] def compute_XG_angle(self, hkl, omega, verbose=False): """Compute the angle between the scattering vector :math:`\mathbf{G_{l}}` and :math:`\mathbf{-X}` the X-ray unit vector at a given angular position :math:`\\omega`. A given hkl plane defines the scattering vector :math:`\mathbf{G_{hkl}}` by the miller indices in the reciprocal space. It is expressed in the cartesian coordinate system by :math:`\mathbf{B}.\mathbf{G_{hkl}}` and in the laboratory coordinate system accounting for the crystal orientation by :math:`\mathbf{g}^{-1}.\mathbf{B}.\mathbf{G_{hkl}}`. The crystal is assumed to be placed on a rotation stage around the laboratory vertical axis. The scattering vector can finally be written as :math:`\mathbf{G_l}=\mathbf{\\Omega}.\mathbf{g}^{-1}.\mathbf{B}.\mathbf{G_{hkl}}`. The X-rays unit vector is :math:`\mathbf{X}=[1, 0, 0]`. So the computed angle is :math:`\\alpha=acos(-\mathbf{X}.\mathbf{G_l}/||\mathbf{G_l}||` The Bragg condition is fulfilled when :math:`\\alpha=\pi/2-\\theta_{Bragg}` :param hkl: the hkl plane, an instance of :py:class:`~pymicro.crystal.lattice.HklPlane` :param omega: the angle of rotation of the crystal around the laboratory vertical axis. :param bool verbose: activate verbose mode (False by default). :return float: the angle between :math:`-\mathbf{X}` and :math:`\mathbf{G_{l}}` in degrees. """ X = np.array([1., 0., 0.]) gt = self.orientation_matrix().transpose() Gc = hkl.scattering_vector() Gs = gt.dot(Gc) # in the cartesian sample CS omegar = omega * np.pi / 180 R = np.array([[np.cos(omegar), -np.sin(omegar), 0], [np.sin(omegar), np.cos(omegar), 0], [0, 0, 1]]) Gl = R.dot(Gs) alpha = np.arccos(np.dot(-X, Gl) / np.linalg.norm(Gl)) * 180 / np.pi if verbose: print('scattering vector in the crystal CS', Gc) print('scattering vector in the sample CS', Gs) print('scattering vector in the laboratory CS (including Omega rotation)', Gl) print('angle (deg) between -X and G', alpha) return alpha @staticmethod def solve_trig_equation(A, B, C, verbose=False): """Solve the trigonometric equation in the form of: .. math:: A\cos\\theta + B\sin\\theta = C :param float A: the A constant in the equation. :param float B: the B constant in the equation. :param float C: the C constant in the equation. :return tuple: the two solutions angular values in degrees. """ Delta = 4 * (A ** 2 + B ** 2 - C ** 2) if Delta < 0: raise ValueError('Delta < 0 (%f)' % Delta) if verbose: print('A={0:.3f}, B={1:.3f}, C={2:.3f}, Delta={3:.1f}'.format(A, B, C, Delta)) theta_1 = 2 * np.arctan2(B - 0.5 * np.sqrt(Delta), A + C) * 180. / np.pi % 360 theta_2 = 2 * np.arctan2(B + 0.5 * np.sqrt(Delta), A + C) * 180. / np.pi % 360 return theta_1, theta_2 def dct_omega_angles(self, hkl, lambda_keV, verbose=False): """Compute the two omega angles which satisfy the Bragg condition. For a given crystal orientation sitting on a vertical rotation axis, there is exactly two :math:`\omega` positions in :math:`[0, 2\pi]` for which a particular :math:`(hkl)` reflexion will fulfil Bragg's law. According to the Bragg's law, a crystallographic plane of a given grain will be in diffracting condition if: .. math:: \sin\\theta=-[\mathbf{\Omega}.\mathbf{g}^{-1}\mathbf{G_c}]_1 with :math:`\mathbf{\Omega}` the matrix associated with the rotation axis: .. math:: \mathbf{\Omega}=\\begin{pmatrix} \cos\omega & -\sin\omega & 0 \\\\ \sin\omega & \cos\omega & 0 \\\\ 0 & 0 & 1 \\\\ \end{pmatrix} This method solves the associated second order equation to return the two corresponding omega angles. :param hkl: The given cristallographic plane :py:class:`~pymicro.crystal.lattice.HklPlane` :param float lambda_keV: The X-rays energy expressed in keV :param bool verbose: Verbose mode (False by default) :returns tuple: :math:`(\omega_1, \omega_2)` the two values of the \ rotation angle around the vertical axis (in degrees). """ (h, k, l) = hkl.miller_indices() theta = hkl.bragg_angle(lambda_keV, verbose=verbose) lambda_nm = 1.2398 / lambda_keV gt = self.orientation_matrix().T # gt = g^{-1} in Poulsen 2004 Gc = hkl.scattering_vector() A = np.dot(Gc, gt[0]) B = - np.dot(Gc, gt[1]) # A = h / a * gt[0, 0] + k / b * gt[0, 1] + l / c * gt[0, 2] # B = -h / a * gt[1, 0] - k / b * gt[1, 1] - l / c * gt[1, 2] C = -2 * np.sin(theta) ** 2 / lambda_nm # the minus sign comes from the main equation omega_1, omega_2 = Orientation.solve_trig_equation(A, B, C, verbose=verbose) if verbose: print('the two omega values in degrees fulfilling the Bragg condition are (%.1f, %.1f)' % ( omega_1, omega_2)) return omega_1, omega_2 def rotating_crystal(self, hkl, lambda_keV, omega_step=0.5, display=True, verbose=False): from pymicro.xray.xray_utils import lambda_keV_to_nm lambda_nm = lambda_keV_to_nm(lambda_keV) X = np.array([1., 0., 0.]) / lambda_nm print('magnitude of X', np.linalg.norm(X)) gt = self.orientation_matrix().transpose() (h, k, l) = hkl.miller_indices() theta = hkl.bragg_angle(lambda_keV) * 180. / np.pi print('bragg angle for %d%d%d reflection is %.1f' % (h, k, l, theta)) Gc = hkl.scattering_vector() Gs = gt.dot(Gc) alphas = [] twothetas = [] magnitude_K = [] omegas = np.linspace(0.0, 360.0, num=360.0 / omega_step, endpoint=False) for omega in omegas: print('\n** COMPUTING AT OMEGA=%03.1f deg' % omega) # prepare rotation matrix omegar = omega * np.pi / 180 R = np.array([[np.cos(omegar), -np.sin(omegar), 0], [np.sin(omegar), np.cos(omegar), 0], [0, 0, 1]]) # R = R.dot(Rlt).dot(Rut) # with tilts Gl = R.dot(Gs) print('scattering vector in laboratory CS', Gl) n = R.dot(gt.dot(hkl.normal())) print('plane normal:', hkl.normal()) print(R) print('rotated plane normal:', n, ' with a norm of', np.linalg.norm(n)) G = n / hkl.interplanar_spacing() # here G == N print('G vector:', G, ' with a norm of', np.linalg.norm(G)) K = X + G print('X + G vector', K) magnitude_K.append(np.linalg.norm(K)) print('magnitude of K', np.linalg.norm(K)) alpha = np.arccos(np.dot(-X, G) / (np.linalg.norm(-X) * np.linalg.norm(G))) * 180 / np.pi print('angle between -X and G', alpha) alphas.append(alpha) twotheta = np.arccos(np.dot(K, X) / (np.linalg.norm(K) * np.linalg.norm(X))) * 180 / np.pi print('angle (deg) between K and X', twotheta) twothetas.append(twotheta) print('min alpha angle is ', min(alphas)) # compute omega_1 and omega_2 to verify graphically (w1, w2) = self.dct_omega_angles(hkl, lambda_keV, verbose=False) # gather the results in a single figure fig = plt.figure(figsize=(12, 10)) fig.add_subplot(311) plt.title('Looking for (%d%d%d) Bragg reflexions' % (h, k, l)) plt.plot(omegas, alphas, 'k-') plt.xlim(0, 360) plt.ylim(0, 180) plt.xticks(np.arange(0, 390, 30)) # add bragg condition plt.axhline(90 - theta, xmin=0, xmax=360, linewidth=2) plt.annotate('$\pi/2-\\theta_{Bragg}$', xycoords='data', xy=(360, 90 - theta), horizontalalignment='left', verticalalignment='center', fontsize=16) # add omega solutions plt.axvline(w1 + 180, ymin=0, ymax=180, linewidth=2, linestyle='dashed', color='gray') plt.axvline(w2 + 180, ymin=0, ymax=180, linewidth=2, linestyle='dashed', color='gray') plt.annotate('$\\omega_1$', xycoords='data', xy=(w1 + 180, 0), horizontalalignment='center', verticalalignment='bottom', fontsize=16) plt.annotate('$\\omega_2$', xycoords='data', xy=(w2 + 180, 0), horizontalalignment='center', verticalalignment='bottom', fontsize=16) plt.ylabel(r'Angle between $-X$ and $\mathbf{G}$') fig.add_subplot(312) plt.plot(omegas, twothetas, 'k-') plt.xlim(0, 360) # plt.ylim(0,180) plt.xticks(np.arange(0, 390, 30)) plt.axhline(2 * theta, xmin=0, xmax=360, linewidth=2) plt.annotate('$2\\theta_{Bragg}$', xycoords='data', xy=(360, 2 * theta), horizontalalignment='left', verticalalignment='center', fontsize=16) plt.axvline(w1 + 180, linewidth=2, linestyle='dashed', color='gray') plt.axvline(w2 + 180, linewidth=2, linestyle='dashed', color='gray') plt.ylabel('Angle between $X$ and $K$') fig.add_subplot(313) plt.plot(omegas, magnitude_K, 'k-') plt.xlim(0, 360) plt.axhline(np.linalg.norm(X), xmin=0, xmax=360, linewidth=2) plt.annotate('$1/\\lambda$', xycoords='data', xy=(360, 1 / lambda_nm), horizontalalignment='left', verticalalignment='center', fontsize=16) plt.axvline(w1 + 180, linewidth=2, linestyle='dashed', color='gray') plt.axvline(w2 + 180, linewidth=2, linestyle='dashed', color='gray') plt.xlabel(r'Angle of rotation $\omega$') plt.ylabel(r'Magnitude of $X+G$ (nm$^{-1}$)') plt.subplots_adjust(top=0.925, bottom=0.05, left=0.1, right=0.9) if display: plt.show() else: plt.savefig('rotating_crystal_plot_%d%d%d.pdf' % (h, k, l)) @staticmethod def compute_instrument_transformation_matrix(rx_offset, ry_offset, rz_offset): """Compute instrument transformation matrix for given rotation offset. This function compute a 3x3 rotation matrix (passive convention) that transforms the sample coordinate system by rotating around the 3 cartesian axes in this order: rotation around X is applied first, then around Y and finally around Z. A sample vector :math:`V_s` is consequently transformed into :math:`V'_s` as: .. math:: V'_s = T^T.V_s :param double rx_offset: value to apply for the rotation around X. :param double ry_offset: value to apply for the rotation around Y. :param double rz_offset: value to apply for the rotation around Z. :return: a 3x3 rotation matrix describing the transformation applied by the diffractometer. """ angle_zr = np.radians(rz_offset) angle_yr = np.radians(ry_offset) angle_xr = np.radians(rx_offset) Rz = np.array([[np.cos(angle_zr), -np.sin(angle_zr), 0], [np.sin(angle_zr), np.cos(angle_zr), 0], [0, 0, 1]]) Ry = np.array([[np.cos(angle_yr), 0, np.sin(angle_yr)], [0, 1, 0], [-np.sin(angle_yr), 0, np.cos(angle_yr)]]) Rx = np.array([[1, 0, 0], [0, np.cos(angle_xr), -np.sin(angle_xr)], [0, np.sin(angle_xr), np.cos(angle_xr)]]) T = Rz.dot(np.dot(Ry, Rx)) return T def topotomo_tilts(self, hkl, T=None, verbose=False): """Compute the tilts for topotomography alignment. :param hkl: the hkl plane, an instance of :py:class:`~pymicro.crystal.lattice.HklPlane` :param ndarray T: transformation matrix representing the diffractometer direction at omega=0. :param bool verbose: activate verbose mode (False by default). :returns tuple: (ut, lt) the two values of tilts to apply (in radians). """ if T is None: T = np.eye(3) # identity be default gt = self.orientation_matrix().transpose() Gc = hkl.scattering_vector() Gs = gt.dot(Gc) # in the cartesian sample CS # apply instrument specific settings Gs = np.dot(T.T, Gs) # find topotomo tilts ut = np.arctan(Gs[1] / Gs[2]) lt = np.arctan(-Gs[0] / (Gs[1] * np.sin(ut) + Gs[2] * np.cos(ut))) if verbose: print('up tilt (samrx) should be %.3f' % (ut * 180 / np.pi)) print('low tilt (samry) should be %.3f' % (lt * 180 / np.pi)) return ut, lt @staticmethod def from_euler(euler, convention='Bunge'): """Rotation matrix from Euler angles. This is the classical method to obtain an orientation matrix by 3 successive rotations. The result depends on the convention used (how the successive rotation axes are chosen). In the Bunge convention, the first rotation is around Z, the second around the new X and the third one around the new Z. In the Roe convention, the second one is around Y. """ if convention == 'Roe': (phi1, phi, phi2) = (euler[0] + 90, euler[1], euler[2] - 90) else: (phi1, phi, phi2) = euler g = Orientation.Euler2OrientationMatrix((phi1, phi, phi2)) o = Orientation(g) return o @staticmethod def from_rodrigues(rod): g = Orientation.Rodrigues2OrientationMatrix(rod) o = Orientation(g) return o @staticmethod def from_Quaternion(q): g = Orientation.Quaternion2OrientationMatrix(q) o = Orientation(g) return o @staticmethod def Zrot2OrientationMatrix(x1=None, x2=None, x3=None): """Compute the orientation matrix from the rotated coordinates given in the .inp file for Zebulon's computations. The function needs two of the three base vectors, the third one is computed using a cross product. .. note:: Still need some tests to validate this function. :param x1: the first basis vector. :param x2: the second basis vector. :param x3: the third basis vector. :return: the corresponding 3x3 orientation matrix. """ if x1 is None and x2 is None: raise NameError('Need at least two vectors to compute the matrix') elif x1 is None and x3 is None: raise NameError('Need at least two vectors to compute the matrix') elif x3 is None and x2 is None: raise NameError('Need at least two vectors to compute the matrix') if x1 is None: x1 = np.cross(x2, x3) elif x2 is None: x2 = np.cross(x3, x1) elif x3 is None: x3 = np.cross(x1, x2) x1 = x1 / np.linalg.norm(x1) x2 = x2 / np.linalg.norm(x2) x3 = x3 / np.linalg.norm(x3) g = np.array([x1, x2, x3]).transpose() return g @staticmethod def OrientationMatrix2EulerSF(g): """ Compute the Euler angles (in degrees) from the orientation matrix in a similar way as done in Mandel_crystal.c """ tol = 0.1 r = np.zeros(9, dtype=np.float64) # double precision here # Z-set order for tensor is 11 22 33 12 23 13 21 32 31 r[0] = g[0, 0] r[1] = g[1, 1] r[2] = g[2, 2] r[3] = g[0, 1] r[4] = g[1, 2] r[5] = g[0, 2] r[6] = g[1, 0] r[7] = g[2, 1] r[8] = g[2, 0] phi = np.arccos(r[2]) if phi == 0.: phi2 = 0. phi1 = np.arcsin(r[6]) if abs(np.cos(phi1) - r[0]) > tol: phi1 = np.pi - phi1 else: x2 = r[5] / np.sin(phi) x1 = r[8] / np.sin(phi); if x1 > 1.: x1 = 1. if x2 > 1.: x2 = 1. if x1 < -1.: x1 = -1. if x2 < -1.: x2 = -1. phi2 = np.arcsin(x2) phi1 = np.arcsin(x1) if abs(np.cos(phi2) * np.sin(phi) - r[7]) > tol: phi2 = np.pi - phi2 if abs(np.cos(phi1) * np.sin(phi) + r[4]) > tol: phi1 = np.pi - phi1 return np.degrees(np.array([phi1, phi, phi2])) @staticmethod def OrientationMatrix2Euler(g): """ Compute the Euler angles from the orientation matrix. This conversion follows the paper of Rowenhorst et al. :cite:`Rowenhorst2015`. In particular when :math:`g_{33} = 1` within the machine precision, there is no way to determine the values of :math:`\phi_1` and :math:`\phi_2` (only their sum is defined). The convention is to attribute the entire angle to :math:`\phi_1` and set :math:`\phi_2` to zero. :param g: The 3x3 orientation matrix :return: The 3 euler angles in degrees. """ eps = np.finfo('float').eps (phi1, Phi, phi2) = (0.0, 0.0, 0.0) # treat special case where g[2, 2] = 1 if np.abs(g[2, 2]) >= 1 - eps: if g[2, 2] > 0.0: phi1 = np.arctan2(g[0][1], g[0][0]) else: phi1 = -np.arctan2(-g[0][1], g[0][0]) Phi = np.pi else: Phi = np.arccos(g[2][2]) zeta = 1.0 / np.sqrt(1.0 - g[2][2] ** 2) phi1 = np.arctan2(g[2][0] * zeta, -g[2][1] * zeta) phi2 = np.arctan2(g[0][2] * zeta, g[1][2] * zeta) # ensure angles are in the range [0, 2*pi] if phi1 < 0.0: phi1 += 2 * np.pi if Phi < 0.0: Phi += 2 * np.pi if phi2 < 0.0: phi2 += 2 * np.pi return np.degrees([phi1, Phi, phi2]) @staticmethod def OrientationMatrix2Rodrigues(g): """ Compute the rodrigues vector from the orientation matrix. :param g: The 3x3 orientation matrix representing the rotation. :returns: The Rodrigues vector as a 3 components array. """ t = g.trace() + 1 if np.abs(t) < np.finfo(g.dtype).eps: print('warning, returning [0., 0., 0.], consider using axis, angle ' 'representation instead') return np.zeros(3) else: r1 = (g[1, 2] - g[2, 1]) / t r2 = (g[2, 0] - g[0, 2]) / t r3 = (g[0, 1] - g[1, 0]) / t return np.array([r1, r2, r3]) @staticmethod def OrientationMatrix2Quaternion(g, P=1): q0 = 0.5 * np.sqrt(1 + g[0, 0] + g[1, 1] + g[2, 2]) q1 = P * 0.5 * np.sqrt(1 + g[0, 0] - g[1, 1] - g[2, 2]) q2 = P * 0.5 * np.sqrt(1 - g[0, 0] + g[1, 1] - g[2, 2]) q3 = P * 0.5 * np.sqrt(1 - g[0, 0] - g[1, 1] + g[2, 2]) if g[2, 1] < g[1, 2]: q1 = q1 * -1 elif g[0, 2] < g[2, 0]: q2 = q2 * -1 elif g[1, 0] < g[0, 1]: q3 = q3 * -1 q = Quaternion(np.array([q0, q1, q2, q3]), convention=P) return q.quat @staticmethod def Rodrigues2OrientationMatrix(rod): """ Compute the orientation matrix from the Rodrigues vector. :param rod: The Rodrigues vector as a 3 components array. :returns: The 3x3 orientation matrix representing the rotation. """ r = np.linalg.norm(rod) I = np.diagflat(np.ones(3)) if r < np.finfo(r.dtype).eps: # the rodrigues vector is zero, return the identity matrix return I theta = 2 * np.arctan(r) n = rod / r omega = np.array([[0.0, n[2], -n[1]], [-n[2], 0.0, n[0]], [n[1], -n[0], 0.0]]) g = I + np.sin(theta) * omega + (1 - np.cos(theta)) * omega.dot(omega) return g @staticmethod def Rodrigues2Axis(rod): """ Compute the axis/angle representation from the Rodrigues vector. :param rod: The Rodrigues vector as a 3 components array. :returns: A tuple in the (axis, angle) form. """ r = np.linalg.norm(rod) axis = rod / r angle = 2 * np.arctan(r) return axis, angle @staticmethod def Axis2OrientationMatrix(axis, angle): """ Compute the (passive) orientation matrix associated the rotation defined by the given (axis, angle) pair. :param axis: the rotation axis. :param angle: the rotation angle (degrees). :returns: the 3x3 orientation matrix. """ omega = np.radians(angle) c = np.cos(omega) s = np.sin(omega) g = np.array([[c + (1 - c) * axis[0] ** 2, (1 - c) * axis[0] * axis[1] + s * axis[2], (1 - c) * axis[0] * axis[2] - s * axis[1]], [(1 - c) * axis[0] * axis[1] - s * axis[2], c + (1 - c) * axis[1] ** 2, (1 - c) * axis[1] * axis[2] + s * axis[0]], [(1 - c) * axis[0] * axis[2] + s * axis[1], (1 - c) * axis[1] * axis[2] - s * axis[0], c + (1 - c) * axis[2] ** 2]]) return g @staticmethod def Euler2Axis(euler): """Compute the (axis, angle) representation associated to this (passive) rotation expressed by the Euler angles. :param euler: 3 euler angles (in degrees). :returns: a tuple containing the axis (a vector) and the angle (in radians). """ (phi1, Phi, phi2) = np.radians(euler) t = np.tan(0.5 * Phi) s = 0.5 * (phi1 + phi2) d = 0.5 * (phi1 - phi2) tau = np.sqrt(t ** 2 + np.sin(s) ** 2) alpha = 2 * np.arctan2(tau, np.cos(s)) if alpha > np.pi: axis = np.array([-t / tau * np.cos(d), -t / tau * np.sin(d), -1 / tau * np.sin(s)]) angle = 2 * np.pi - alpha else: axis = np.array([t / tau * np.cos(d), t / tau * np.sin(d), 1 / tau * np.sin(s)]) angle = alpha return axis, angle @staticmethod def Euler2Quaternion(euler, P=1): """Compute the quaternion from the 3 euler angles (in degrees). :param tuple euler: the 3 euler angles in degrees. :param int P: +1 to compute an active quaternion (default), -1 for a passive quaternion. :return: a `Quaternion` instance representing the rotation. """ (phi1, Phi, phi2) = np.radians(euler) q0 = np.cos(0.5 * (phi1 + phi2)) * np.cos(0.5 * Phi) q1 = np.cos(0.5 * (phi1 - phi2)) * np.sin(0.5 * Phi) q2 = np.sin(0.5 * (phi1 - phi2)) * np.sin(0.5 * Phi) q3 = np.sin(0.5 * (phi1 + phi2)) * np.cos(0.5 * Phi) q = Quaternion(np.array([q0, -P * q1, -P * q2, -P * q3]), convention=P) if q0 < 0: # the scalar part must be positive q.quat = q.quat * -1 return q @staticmethod def Euler2Rodrigues(euler): """Compute the rodrigues vector from the 3 euler angles (in degrees). :param euler: the 3 Euler angles (in degrees). :return: the rodrigues vector as a 3 components numpy array. """ (phi1, Phi, phi2) = np.radians(euler) a = 0.5 * (phi1 - phi2) b = 0.5 * (phi1 + phi2) r1 = np.tan(0.5 * Phi) * np.cos(a) / np.cos(b) r2 = np.tan(0.5 * Phi) * np.sin(a) / np.cos(b) r3 = np.tan(b) return np.array([r1, r2, r3]) @staticmethod def eu2ro(euler): """Transform a series of euler angles into rodrigues vectors. :param ndarray euler: the (n, 3) shaped array of Euler angles (radians). :returns: a (n, 3) array with the rodrigues vectors. """ if euler.ndim != 2 or euler.shape[1] != 3: raise ValueError('Wrong shape for the euler array: %s -> should be (n, 3)' % euler.shape) phi1, Phi, phi2 = np.squeeze(np.split(euler, 3, axis=1)) a = 0.5 * (phi1 - phi2) b = 0.5 * (phi1 + phi2) r1 = np.tan(0.5 * Phi) * np.cos(a) / np.cos(b) r2 = np.tan(0.5 * Phi) * np.sin(a) / np.cos(b) r3 = np.tan(b) return np.array([r1, r2, r3]).T @staticmethod def Euler2OrientationMatrix(euler): """Compute the orientation matrix :math:`\mathbf{g}` associated with the 3 Euler angles :math:`(\phi_1, \Phi, \phi_2)`. The matrix is calculated via (see the `euler_angles` recipe in the cookbook for a detailed example): .. math:: \mathbf{g}=\\begin{pmatrix} \cos\phi_1\cos\phi_2 - \sin\phi_1\sin\phi_2\cos\Phi & \sin\phi_1\cos\phi_2 + \cos\phi_1\sin\phi_2\cos\Phi & \sin\phi_2\sin\Phi \\\\ -\cos\phi_1\sin\phi_2 - \sin\phi_1\cos\phi_2\cos\Phi & -\sin\phi_1\sin\phi_2 + \cos\phi_1\cos\phi_2\cos\Phi & \cos\phi_2\sin\Phi \\\\ \sin\phi_1\sin\Phi & -\cos\phi_1\sin\Phi & \cos\Phi \\\\ \end{pmatrix} :param euler: The triplet of the Euler angles (in degrees). :return g: The 3x3 orientation matrix. """ (rphi1, rPhi, rphi2) = np.radians(euler) c1 = np.cos(rphi1) s1 = np.sin(rphi1) c = np.cos(rPhi) s = np.sin(rPhi) c2 = np.cos(rphi2) s2 = np.sin(rphi2) # rotation matrix g g11 = c1 * c2 - s1 * s2 * c g12 = s1 * c2 + c1 * s2 * c g13 = s2 * s g21 = -c1 * s2 - s1 * c2 * c g22 = -s1 * s2 + c1 * c2 * c g23 = c2 * s g31 = s1 * s g32 = -c1 * s g33 = c g = np.array([[g11, g12, g13], [g21, g22, g23], [g31, g32, g33]]) return g @staticmethod def Quaternion2Euler(q): """ Compute Euler angles from a Quaternion :param q: Quaternion :return: Euler angles (in degrees, Bunge convention) """ P = q.convention (q0, q1, q2, q3) = q.quat q03 = q0 ** 2 + q3 ** 2 q12 = q1 ** 2 + q2 ** 2 chi = np.sqrt(q03 * q12) if chi == 0.: if q12 == 0.: phi_1 = atan2(-2 * P * q0 * q3, q0 ** 2 - q3 ** 2) Phi = 0. else: phi_1 = atan2(-2 * q1 * q2, q1 ** 2 - q2 ** 2) Phi = pi phi_2 = 0. else: phi_1 = atan2((q1 * q3 - P * q0 * q2) / chi, (-P * q0 * q1 - q2 * q3) / chi) Phi = atan2(2 * chi, q03 - q12) phi_2 = atan2((P * q0 * q2 + q1 * q3) / chi, (q2 * q3 - P * q0 * q1) / chi) return np.degrees([phi_1, Phi, phi_2]) @staticmethod def Quaternion2OrientationMatrix(q): P = q.convention (q0, q1, q2, q3) = q.quat qbar = q0 ** 2 - q1 ** 2 - q2 ** 2 - q3 ** 2 g = np.array([[qbar + 2 * q1 ** 2, 2 * (q1 * q2 - P * q0 * q3), 2 * (q1 * q3 + P * q0 * q2)], [2 * (q1 * q2 + P * q0 * q3), qbar + 2 * q2 ** 2, 2 * (q2 * q3 - P * q0 * q1)], [2 * (q1 * q3 - P * q0 * q2), 2 * (q2 * q3 + P * q0 * q1), qbar + 2 * q3 ** 2]]) return g @staticmethod def read_euler_txt(txt_path): """ Read a set of euler angles from an ascii file. This method is deprecated, please use `read_orientations`. :param str txt_path: path to the text file containing the euler angles. :returns dict: a dictionary with the line number and the corresponding orientation. """ return Orientation.read_orientations(txt_path) @staticmethod def read_orientations(txt_path, data_type='euler', **kwargs): """ Read a set of grain orientations from a text file. The text file must be organised in 3 columns (the other are ignored), corresponding to either the three euler angles or the three rodrigues vector components, depending on the data_type). Internally the ascii file is read by the genfromtxt function of numpy, to which additional keyworks (such as the delimiter) can be passed to via the kwargs dictionnary. :param str txt_path: path to the text file containing the orientations. :param str data_type: 'euler' (default) or 'rodrigues'. :param dict kwargs: additional parameters passed to genfromtxt. :returns dict: a dictionary with the line number and the corresponding orientation. """ data = np.genfromtxt(txt_path, **kwargs) size = len(data) orientations = [] for i in range(size): angles = np.array([float(data[i, 0]), float(data[i, 1]), float(data[i, 2])]) if data_type == 'euler': orientations.append([i + 1, Orientation.from_euler(angles)]) elif data_type == 'rodrigues': orientations.append([i + 1, Orientation.from_rodrigues(angles)]) return dict(orientations) @staticmethod def read_euler_from_zset_inp(inp_path): """Read a set of grain orientations from a z-set input file. In z-set input files, the orientation data may be specified either using the rotation of two vector, euler angles or rodrigues components directly. For instance the following lines are extracted from a polycrystalline calculation file using the rotation keyword: :: **elset elset1 *file au.mat *integration theta_method_a 1.0 1.e-9 150 *rotation x1 0.438886 -1.028805 0.197933 x3 1.038339 0.893172 1.003888 **elset elset2 *file au.mat *integration theta_method_a 1.0 1.e-9 150 *rotation x1 0.178825 -0.716937 1.043300 x3 0.954345 0.879145 1.153101 **elset elset3 *file au.mat *integration theta_method_a 1.0 1.e-9 150 *rotation x1 -0.540479 -0.827319 1.534062 x3 1.261700 1.284318 1.004174 **elset elset4 *file au.mat *integration theta_method_a 1.0 1.e-9 150 *rotation x1 -0.941278 0.700996 0.034552 x3 1.000816 1.006824 0.885212 **elset elset5 *file au.mat *integration theta_method_a 1.0 1.e-9 150 *rotation x1 -2.383786 0.479058 -0.488336 x3 0.899545 0.806075 0.984268 :param str inp_path: the path to the ascii file to read. :returns dict: a dictionary of the orientations associated with the elset names. """ inp = open(inp_path) lines = inp.readlines() for i, line in enumerate(lines): if line.lstrip().startswith('***material'): break euler_lines = [] for j, line in enumerate(lines[i + 1:]): # read until next *** block if line.lstrip().startswith('***'): break if not line.lstrip().startswith('%') and line.find('**elset') >= 0: euler_lines.append(line) euler = [] for l in euler_lines: tokens = l.split() elset = tokens[tokens.index('**elset') + 1] irot = tokens.index('*rotation') if tokens[irot + 1] == 'x1': x1 = np.empty(3, dtype=float) x1[0] = float(tokens[irot + 2]) x1[1] = float(tokens[irot + 3]) x1[2] = float(tokens[irot + 4]) x3 = np.empty(3, dtype=float) x3[0] = float(tokens[irot + 6]) x3[1] = float(tokens[irot + 7]) x3[2] = float(tokens[irot + 8]) euler.append([elset, Orientation.Zrot2OrientationMatrix(x1=x1, x3=x3)]) else: # euler angles phi1 = tokens[irot + 1] Phi = tokens[irot + 2] phi2 = tokens[irot + 3] angles = np.array([float(phi1), float(Phi), float(phi2)]) euler.append([elset, Orientation.from_euler(angles)]) return dict(euler) def slip_system_orientation_tensor(self, s): """Compute the orientation strain tensor m^s for this :py:class:`~pymicro.crystal.microstructure.Orientation` and the given slip system. :param s: an instance of :py:class:`~pymicro.crystal.lattice.SlipSystem` .. math:: M^s_{ij} = \left(l^s_i.n^s_j) """ gt = self.orientation_matrix().transpose() plane = s.get_slip_plane() n_rot = np.dot(gt, plane.normal()) slip = s.get_slip_direction() l_rot = np.dot(gt, slip.direction()) return np.outer(l_rot, n_rot) def slip_system_orientation_strain_tensor(self, s): """Compute the orientation strain tensor m^s for this :py:class:`~pymicro.crystal.microstructure.Orientation` and the given slip system. :param s: an instance of :py:class:`~pymicro.crystal.lattice.SlipSystem` .. math:: m^s_{ij} = \\frac{1}{2}\left(l^s_i.n^s_j + l^s_j.n^s_i) """ gt = self.orientation_matrix().transpose() plane = s.get_slip_plane() n_rot = np.dot(gt, plane.normal()) slip = s.get_slip_direction() l_rot = np.dot(gt, slip.direction()) m = 0.5 * (np.outer(l_rot, n_rot) + np.outer(n_rot, l_rot)) return m def slip_system_orientation_rotation_tensor(self, s): """Compute the orientation rotation tensor q^s for this :py:class:`~pymicro.crystal.microstructure.Orientation` and the given slip system. :param s: an instance of :py:class:`~pymicro.crystal.lattice.SlipSystem` .. math:: q^s_{ij} = \\frac{1}{2}\left(l^s_i.n^s_j - l^s_j.n^s_i) """ gt = self.orientation_matrix().transpose() plane = s.get_slip_plane() n_rot = np.dot(gt, plane.normal()) slip = s.get_slip_direction() l_rot = np.dot(gt, slip.direction()) q = 0.5 * (np.outer(l_rot, n_rot) - np.outer(n_rot, l_rot)) return q def schmid_factor(self, slip_system, load_direction=[0., 0., 1]): """Compute the Schmid factor for this crystal orientation and the given slip system. :param slip_system: a `SlipSystem` instance. :param load_direction: a unit vector describing the loading direction (default: vertical axis [0, 0, 1]). :return float: a number between 0 ad 0.5. """ plane = slip_system.get_slip_plane() gt = self.orientation_matrix().transpose() n_rot = np.dot(gt, plane.normal()) # plane.normal() is a unit vector slip = slip_system.get_slip_direction().direction() slip_rot = np.dot(gt, slip) schmid_factor = np.abs(np.dot(n_rot, load_direction) * np.dot(slip_rot, load_direction)) return schmid_factor def compute_all_schmid_factors(self, slip_systems, load_direction=[0., 0., 1], verbose=False): """Compute all Schmid factors for this crystal orientation and the given list of slip systems. :param slip_systems: a list of the slip systems from which to compute the Schmid factor values. :param load_direction: a unit vector describing the loading direction (default: vertical axis [0, 0, 1]). :param bool verbose: activate verbose mode. :return list: a list of the schmid factors. """ schmid_factor_list = [] for ss in slip_systems: sf = self.schmid_factor(ss, load_direction) if verbose: print('Slip system: %s, Schmid factor is %.3f' % (ss, sf)) schmid_factor_list.append(sf) return schmid_factor_list @staticmethod def compute_m_factor(o1, ss1, o2, ss2): """Compute the m factor with another slip system. :param Orientation o1: the orientation the first grain. :param SlipSystem ss1: the slip system in the first grain. :param Orientation o2: the orientation the second grain. :param SlipSystem ss2: the slip system in the second grain. :returns: the m factor as a float number < 1 """ # orientation matrices gt1 = o1.orientation_matrix().T gt2 = o2.orientation_matrix().T # slip plane normal in sample local frame n1 = np.dot(gt1, ss1.get_slip_plane().normal()) n2 = np.dot(gt2, ss2.get_slip_plane().normal()) # slip direction in sample local frame l1 = np.dot(gt1, ss1.get_slip_direction().direction()) l2 = np.dot(gt2, ss2.get_slip_direction().direction()) # m factor calculation m = abs(np.dot(n1, n2) * np.dot(l1, l2)) return m class Grain: """ Class defining a crystallographic grain. A grain has a constant crystallographic `Orientation` and a grain id. The center attribute is the center of mass of the grain in world coordinates. The volume of the grain is expressed in pixel/voxel unit. """ def __init__(self, grain_id, grain_orientation): self.id = grain_id self.orientation = grain_orientation self.center = np.array([0., 0., 0.]) self.volume = 0 self.vtkmesh = None self.hkl_planes = [] def __repr__(self): """Provide a string representation of the class.""" s = '%s\n * id = %d\n' % (self.__class__.__name__, self.id) s += ' * %s\n' % (self.orientation) s += ' * center %s\n' % np.array_str(self.center) s += ' * has vtk mesh ? %s\n' % (self.vtkmesh != None) return s def get_volume(self): return self.volume def get_volume_fraction(self, total_volume=None): """Compute the grain volume fraction. :param float total_volume: the total volume value to use. :return float: the grain volume fraction as a number in the range [0, 1]. """ if not total_volume: return 1. else: return self.volume / total_volume def schmid_factor(self, slip_system, load_direction=[0., 0., 1]): """Compute the Schmid factor of this grain for the given slip system and loading direction. :param slip_system: a `SlipSystem` instance. :param load_direction: a unit vector describing the loading direction (default: vertical axis [0, 0, 1]). :return float: a number between 0 ad 0.5. """ return self.orientation.schmid_factor(slip_system, load_direction) def SetVtkMesh(self, mesh): """Set the VTK mesh of this grain. :param mesh: the grain mesh in VTK format. """ self.vtkmesh = mesh def add_vtk_mesh(self, array, contour=True, verbose=False): """Add a mesh to this grain. This method process a labeled array to extract the geometry of the grain. The grain shape is defined by the pixels with a value of the grain id. A vtkUniformGrid object is created and thresholded or contoured depending on the value of the flag `contour`. The resulting mesh is returned, centered on the center of mass of the grain. :param ndarray array: a numpy array from which to extract the grain shape. :param bool contour: a flag to use contour mode for the shape. :param bool verbose: activate verbose mode. """ label = self.id # we use the grain id here... # create vtk structure from scipy import ndimage from vtk.util import numpy_support grain_size = np.shape(array) array_bin = (array == label).astype(np.uint8) local_com = ndimage.measurements.center_of_mass(array_bin, array) vtk_data_array = numpy_support.numpy_to_vtk(np.ravel(array_bin, order='F'), deep=1) grid = vtk.vtkUniformGrid() grid.SetOrigin(-local_com[0], -local_com[1], -local_com[2]) grid.SetSpacing(1, 1, 1) if vtk.vtkVersion().GetVTKMajorVersion() > 5: grid.SetScalarType(vtk.VTK_UNSIGNED_CHAR, vtk.vtkInformation()) else: grid.SetScalarType(vtk.VTK_UNSIGNED_CHAR) if contour: grid.SetExtent(0, grain_size[0] - 1, 0, grain_size[1] - 1, 0, grain_size[2] - 1) grid.GetPointData().SetScalars(vtk_data_array) # contouring selected grain contour = vtk.vtkContourFilter() if vtk.vtkVersion().GetVTKMajorVersion() > 5: contour.SetInputData(grid) else: contour.SetInput(grid) contour.SetValue(0, 0.5) contour.Update() if verbose: print(contour.GetOutput()) self.SetVtkMesh(contour.GetOutput()) else: grid.SetExtent(0, grain_size[0], 0, grain_size[1], 0, grain_size[2]) grid.GetCellData().SetScalars(vtk_data_array) # threshold selected grain thresh = vtk.vtkThreshold() thresh.ThresholdBetween(0.5, 1.5) # thresh.ThresholdBetween(label-0.5, label+0.5) if vtk.vtkVersion().GetVTKMajorVersion() > 5: thresh.SetInputData(grid) else: thresh.SetInput(grid) thresh.Update() if verbose: print('thresholding label: %d' % label) print(thresh.GetOutput()) self.SetVtkMesh(thresh.GetOutput()) def vtk_file_name(self): return 'grain_%d.vtu' % self.id def save_vtk_repr(self, file_name=None): import vtk if not file_name: file_name = self.vtk_file_name() print('writting ' + file_name) writer = vtk.vtkXMLUnstructuredGridWriter() writer.SetFileName(file_name) if vtk.vtkVersion().GetVTKMajorVersion() > 5: writer.SetInputData(self.vtkmesh) else: writer.SetInput(self.vtkmesh) writer.Write() def load_vtk_repr(self, file_name, verbose=False): import vtk if verbose: print('reading ' + file_name) reader = vtk.vtkXMLUnstructuredGridReader() reader.SetFileName(file_name) reader.Update() self.vtkmesh = reader.GetOutput() def orientation_matrix(self): """A method to access the grain orientation matrix. :return: the grain 3x3 orientation matrix. """ return self.orientation.orientation_matrix() def dct_omega_angles(self, hkl, lambda_keV, verbose=False): """Compute the two omega angles which satisfy the Bragg condition. For a grain with a given crystal orientation sitting on a vertical rotation axis, there is exactly two omega positions in [0, 2pi] for which a particular hkl reflexion will fulfil Bragg's law. See :py:func:`~pymicro.crystal.microstructure.Orientation.dct_omega_angles` of the :py:class:`~pymicro.crystal.microstructure.Orientation` class. :param hkl: The given cristallographic :py:class:`~pymicro.crystal.lattice.HklPlane` :param float lambda_keV: The X-rays energy expressed in keV :param bool verbose: Verbose mode (False by default) :return tuple: (w1, w2) the two values of the omega angle. """ return self.orientation.dct_omega_angles(hkl, lambda_keV, verbose) @staticmethod def from_dct(label=1, data_dir='.'): """Create a `Grain` instance from a DCT grain file. :param int label: the grain id. :param str data_dir: the data root from where to fetch data files. :return: a new grain instance. """ grain_path = os.path.join(data_dir, '4_grains', 'phase_01', 'grain_%04d.mat' % label) grain_info = h5py.File(grain_path) g = Grain(label, Orientation.from_rodrigues(grain_info['R_vector'].value)) g.center = grain_info['center'].value # add spatial representation of the grain if reconstruction is available grain_map_path = os.path.join(data_dir, '5_reconstruction', 'phase_01_vol.mat') if os.path.exists(grain_map_path): with h5py.File(grain_map_path, 'r') as f: # because how matlab writes the data, we need to swap X and Z axes in the DCT volume vol = f['vol'].value.transpose(2, 1, 0) from scipy import ndimage grain_data = vol[ndimage.find_objects(vol == label)[0]] g.volume = ndimage.measurements.sum(vol == label) # create the vtk representation of the grain g.add_vtk_mesh(grain_data, contour=False) return g class GrainData(tables.IsDescription): """ Description class specifying structured storage of grain data in Microstructure Class, in HDF5 node /GrainData/GrainDataTable """ # grain identity number idnumber = tables.Int32Col() # Signed 32-bit integer # grain volume volume = tables.Float32Col() # float # grain center of mass coordinates center = tables.Float32Col(shape=(3,)) # float (double-precision) # Rodrigues vector defining grain orientation orientation = tables.Float32Col(shape=(3,)) # float (double-precision) # Grain Bounding box bounding_box = tables.Int32Col(shape=(3, 2)) # Signed 64-bit integer class Microstructure(SampleData): """ Class used to manipulate a full microstructure derived from the `SampleData` class. As SampleData, this class is a data container for a mechanical sample and its microstructure, synchronized with a HDF5 file and a XML file Microstructure implements a hdf5 data model specific to polycrystalline sample data. The dataset maintains a `GrainData` instance which inherits from tables.IsDescription and acts as a structured array containing the grain attributes such as id, orientations (in form of rodrigues vectors), volume and bounding box. A crystal `Lattice` is also associated to the microstructure and used in all crystallography calculations. """ def __init__(self, filename=None, name='micro', description='empty', verbose=False, overwrite_hdf5=False, phase=None, autodelete=False): if filename is None: # only add '_' if not present at the end of name filename = name + (not name.endswith('_')) * '_' + 'data' # prepare arguments for after file open after_file_open_args = {'phase':phase} # call SampleData constructor SampleData.__init__(self, filename=filename, sample_name=name, sample_description=description, verbose=verbose, overwrite_hdf5=overwrite_hdf5, autodelete=autodelete, after_file_open_args=after_file_open_args) return def _after_file_open(self, phase=None, **kwargs): """Initialization code to run after opening a Sample Data file.""" self.grains = self.get_node('GrainDataTable') if self._file_exist: self.active_grain_map = self.get_attribute('active_grain_map', 'CellData') if self.active_grain_map is None: self.set_active_grain_map() self._init_phase(phase) if not hasattr(self, 'active_phase_id'): self.active_phase_id = 1 else: self.set_active_grain_map() self._init_phase(phase) self.active_phase_id = 1 return def __repr__(self): """Provide a string representation of the class.""" s = '%s\n' % self.__class__.__name__ s += '* name: %s\n' % self.get_sample_name() # TODO print phases here s += '* lattice: %s\n' % self.get_lattice() s += '\n' # if self._verbose: # for g in self.grains: # s += '* %s' % g.__repr__ s += SampleData.__repr__(self) return s def minimal_data_model(self): """Data model for a polycrystalline microstructure. Specify the minimal contents of the hdf5 (Group names, paths and group types) in the form of a dictionary {content: location}. This extends `~pymicro.core.SampleData.minimal_data_model` method. :return: a tuple containing the two dictionnaries. """ minimal_content_index_dic = {'Image_data': '/CellData', 'grain_map': '/CellData/grain_map', 'phase_map': '/CellData/phase_map', 'mask': '/CellData/mask', 'Mesh_data': '/MeshData', 'Grain_data': '/GrainData', 'GrainDataTable': ('/GrainData/' 'GrainDataTable'), 'Phase_data': '/PhaseData'} minimal_content_type_dic = {'Image_data': '3DImage', 'grain_map': 'field_array', 'phase_map': 'field_array', 'mask': 'field_array', 'Mesh_data': 'Mesh', 'Grain_data': 'Group', 'GrainDataTable': GrainData, 'Phase_data': 'Group'} return minimal_content_index_dic, minimal_content_type_dic def _init_phase(self, phase): self._phases = [] if phase is None: # create a default crystalline phase phase = CrystallinePhase() # if the h5 file does not exist yet, store the phase as metadata if not self._file_exist: #FIXME is this useful? self.add_phase(phase) else: self.sync_phases() # if no phase is there, create one if len(self.get_phase_ids_list()) == 0: print('no phase was found in this dataset, adding a defualt one') self.add_phase(phase) return def sync_phases(self): """This method sync the _phases attribute with the content of the hdf5 file. """ self._phases = [] # loop on the phases present in the group /PhaseData phase_group = self.get_node('/PhaseData') for child in phase_group._v_children: d = self.get_dic_from_attributes('/PhaseData/%s' % child) #print(d) phase = CrystallinePhase.from_dict(d) self._phases.append(phase) #print('%d phases found in the data set' % len(self._phases)) def set_phase(self, phase): """Set a phase for the given `phase_id`. If the phase id does not correspond to one of the existing phase, nothing is done. :param CrystallinePhase phase: the phase to use. :param int phase_id: """ if phase.phase_id > self.get_number_of_phases(): print('the phase_id given (%d) does not correspond to any existing ' 'phase, the phase list has not been modified.') return d = phase.to_dict() print('setting phase %d with %s' % (phase.phase_id, phase.name)) self.add_attributes(d, '/PhaseData/phase_%02d' % phase.phase_id) self.sync_phases() def set_phases(self, phase_list): """Set a list of phases for this microstructure. The different phases in the list are added in that order. :param list phase_list: the list of phases to use. """ # delete all node in the phase_group self.remove_node('/PhaseData', recursive=True) self.add_group('PhaseData', location='/', indexname='Phase_data') self.sync_phases() # add each phase for phase in phase_list: self.add_phase(phase) def get_number_of_phases(self): """Return the number of phases in this microstructure. Each crystal phase is stored in a list attribute: `_phases`. Note that it may be different (although it should not) from the different phase ids in the phase_map array. :return int: the number of phases in the microstructure. """ return len(self._phases) def get_number_of_grains(self, from_grain_map=False): """Return the number of grains in this microstructure. :return: the number of grains in the microstructure. """ if from_grain_map: return len(np.unique(self.get_grain_map())) else: return self.grains.nrows def add_phase(self, phase): """Add a new phase to this microstructure. Before adding this phase, the phase id is set to the corresponding id. :param CrystallinePhase phase: the phase to add. """ # this phase should have id self.get_number_of_phases() + 1 new_phase_id = self.get_number_of_phases() + 1 if not phase.phase_id == new_phase_id: print('warning, adding phase with phase_id = %d (was %d)' % (new_phase_id, phase.phase_id)) phase.phase_id = new_phase_id self._phases.append(phase) self.add_group('phase_%02d' % new_phase_id, location='/PhaseData', indexname='phase_%02d' % new_phase_id, replace=True) d = phase.to_dict() self.add_attributes(d, '/PhaseData/phase_%02d' % new_phase_id) print('new phase added: %s' % phase.name) def get_phase_ids_list(self): """Return the list of the phase ids.""" return [phase.phase_id for phase in self._phases] def get_phase(self, phase_id=None): """Get a crystalline phase. If no phase_id is given, the active phase is returned. :param int phase_id: the id of the phase to return. :return: the `CrystallinePhase` corresponding to the id. """ if phase_id is None: phase_id = self.active_phase_id index = self.get_phase_ids_list().index(phase_id) return self._phases[index] def get_lattice(self, phase_id=None): """Get the crystallographic lattice associated with this microstructure. If no phase_id is given, the `Lattice` of the active phase is returned. :return: an instance of the `Lattice class`. """ return self.get_phase(phase_id).get_lattice() def get_grain_map(self, as_numpy=True): grain_map = self.get_field(self.active_grain_map) if self._is_empty(self.active_grain_map): grain_map = None elif grain_map.ndim == 2: # reshape to 3D new_dim = self.get_attribute('dimension', 'CellData') if len(new_dim) == 3: grain_map = grain_map.reshape((new_dim)) else: grain_map = grain_map.reshape((grain_map.shape[0], grain_map.shape[1], 1)) return grain_map def get_phase_map(self, as_numpy=True): phase_map = self.get_field('phase_map') if self._is_empty('phase_map'): phase_map = None elif phase_map.ndim == 2: # reshape to 3D new_dim = self.get_attribute('dimension', 'CellData') if len(new_dim) == 3: phase_map = phase_map.reshape((new_dim)) else: phase_map = phase_map.reshape((phase_map.shape[0], phase_map.shape[1], 1)) return phase_map def get_mask(self, as_numpy=False): mask = self.get_field('mask') if self._is_empty('mask'): mask = None elif mask.ndim == 2: # reshape to 3D new_dim = self.get_attribute('dimension', 'CellData') if len(new_dim) == 3: mask = mask.reshape((new_dim)) else: mask = mask.reshape((mask.shape[0], mask.shape[1], 1)) return mask def get_ids_from_grain_map(self): """Return the list of grain ids found in the grain map. By convention, only positive values are taken into account, 0 is reserved for the background and -1 for overlap regions. :return: a 1D numpy array containing the grain ids. """ grain_map = self.get_node('grain_map') grains_id = np.unique(grain_map) grains_id = grains_id[grains_id > 0] return grains_id def get_grain_ids(self): """Return the grain ids found in the GrainDataTable. :return: a 1D numpy array containing the grain ids. """ return self.get_tablecol('GrainDataTable', 'idnumber') @staticmethod def id_list_to_condition(id_list): """Convert a list of id to a condition to filter the grain table. The condition will be interpreted using Numexpr typically using a `read_where` call on the grain data table. :param list id_list: a non empty list of the grain ids. :return: the condition as a string . """ if not len(id_list) > 0: raise ValueError('the list of grain ids must not be empty') condition = "\'(idnumber == %d)" % id_list[0] for grain_id in id_list[1:]: condition += " | (idnumber == %d)" % grain_id condition += "\'" return condition def get_grain_volumes(self, id_list=None): """Get the grain volumes. The grain data table is queried and the volumes of the grains are returned in a single array. An optional list of grain ids can be used to restrict the grains, by default all the grain volumes are returned. :param list id_list: a non empty list of the grain ids. :return: a numpy array containing the grain volumes. """ if id_list: condition = Microstructure.id_list_to_condition(id_list) return self.grains.read_where(eval(condition))['volume'] else: return self.get_tablecol('GrainDataTable', 'volume') def get_grain_centers(self, id_list=None): """Get the grain centers. The grain data table is queried and the centers of the grains are returned in a single array. An optional list of grain ids can be used to restrict the grains, by default all the grain centers are returned. :param list id_list: a non empty list of the grain ids. :return: a numpy array containing the grain centers. """ if id_list: condition = Microstructure.id_list_to_condition(id_list) return self.grains.read_where(eval(condition))['center'] else: return self.get_tablecol('GrainDataTable', 'center') def get_grain_rodrigues(self, id_list=None): """Get the grain rodrigues vectors. The grain data table is queried and the rodrigues vectors of the grains are returned in a single array. An optional list of grain ids can be used to restrict the grains, by default all the grain rodrigues vectors are returned. :param list id_list: a non empty list of the grain ids. :return: a numpy array containing the grain rodrigues vectors. """ if id_list: condition = Microstructure.id_list_to_condition(id_list) return self.grains.read_where(eval(condition))['orientation'] else: return self.get_tablecol('GrainDataTable', 'orientation') def get_grain_orientations(self, id_list=None): """Get a list of the grain orientations. The grain data table is queried to retreiv the rodrigues vectors. An optional list of grain ids can be used to restrict the grains. A list of `Orientation` instances is then created and returned. :param list id_list: a non empty list of the grain ids. :return: a list of the grain orientations. """ rods = self.get_grain_rodrigues(id_list) orientations = [Orientation.from_rodrigues(rod) for rod in rods] return orientations def get_grain_bounding_boxes(self, id_list=None): """Get the grain bounding boxes. The grain data table is queried and the bounding boxes of the grains are returned in a single array. An optional list of grain ids can be used to restrict the grains, by default all the grain bounding boxes are returned. :param list id_list: a non empty list of the grain ids. :return: a numpy array containing the grain bounding boxes. """ if id_list: condition = Microstructure.id_list_to_condition(id_list) return self.grains.read_where(eval(condition))['bounding_box'] else: return self.get_tablecol('GrainDataTable', 'bounding_box') def get_voxel_size(self): """Get the voxel size for image data of the microstructure. If this instance of `Microstructure` has no image data, None is returned. """ try: return self.get_attribute(attrname='spacing', nodename='/CellData')[0] except: return None def get_grain(self, gid): """Get a particular grain given its id. This method browses the microstructure and return the grain corresponding to the given id. If the grain is not found, the method raises a `ValueError`. :param int gid: the grain id. :return: The method return a new `Grain` instance with the corresponding id. """ try: gr = self.grains.read_where('(idnumber == gid)')[0] except: raise ValueError('grain %d not found in the microstructure' % gid) grain = Grain(gr['idnumber'], Orientation.from_rodrigues(gr['orientation'])) grain.center = gr['center'] grain.volume = gr['volume'] return grain def get_all_grains(self): """Build a list of `Grain` instances for all grains in this `Microstructure`. :return: a list of the grains. """ grains_list = [self.get_grain(gid) for gid in self.get_tablecol('GrainDataTable', 'idnumber')] return grains_list def get_grain_positions(self): """Return all the grain positions as a numpy array of shape (n, 3) where n is the number of grains. :return: a numpy array of shape (n, 3) of the grain positions. """ return self.grains[:]['center'] def get_grain_volume_fractions(self): """Compute all grains volume fractions. :return: a 1D numpy array with all grain volume fractions. """ total_volume = np.sum(self.grains[:]['volume']) return self.grains[:]['volume'] / total_volume def get_grain_volume_fraction(self, gid, use_total_volume_value=None): """Compute the volume fraction of this grain. :param int gid: the grain id. :param float use_total_volume_value: the total volume value to use. :return float: the grain volume fraction as a number in the range [0, 1]. """ # compute the total volume if use_total_volume_value: total_volume = use_total_volume_value else: # sum all the grain volume to compute the total volume total_volume = np.sum(self.get_grain_volumes()) volume_fraction = self.get_grain_volumes(id_list=[gid])[0] / total_volume return volume_fraction def set_orientations(self, orientations): """ Store grain orientations array in GrainDataTable orientation : (Ngrains, 3) array of rodrigues orientation vectors """ self.set_tablecol('GrainDataTable', 'orientation', column=orientations) return def set_centers(self, centers): """ Store grain centers array in GrainDataTable centers : (Ngrains, 3) array of grain centers of mass """ self.set_tablecol('GrainDataTable', 'center', column=centers) return def set_bounding_boxes(self, bounding_boxes): """ Store grain bounding boxes array in GrainDataTable """ self.set_tablecol('GrainDataTable', 'bounding_box', column=bounding_boxes) return def set_volumes(self, volumes): """ Store grain volumes array in GrainDataTable """ self.set_tablecol('GrainDataTable', 'volume', column=volumes) return def set_lattice(self, lattice, phase_id=None): """Set the crystallographic lattice associated with this microstructure. If no `phase_id` is specified, the lattice will be set for the active phase. :param Lattice lattice: an instance of the `Lattice class`. :param int phase_id: the id of the phase to set the lattice. """ if phase_id is None: phase_id = self.active_phase_id self.get_phase(phase_id)._lattice = lattice def set_active_grain_map(self, map_name='grain_map'): """Set the active grain map name to inputed string. The active_grain_map string is used as Name to get the grain_map field in the dataset through the SampleData "get_field" method. """ self.active_grain_map = map_name self.add_attributes({'active_grain_map':map_name}, 'CellData') return def set_grain_map(self, grain_map, voxel_size=None, map_name='grain_map'): """Set the grain map for this microstructure. :param ndarray grain_map: a 2D or 3D numpy array. :param float voxel_size: the size of the voxels in mm unit. Used only if the CellData image Node must be created. """ # TODO: ad compression_options create_image = True if self.__contains__('CellData'): empty = self.get_attribute(attrname='empty', nodename='CellData') if not empty: create_image = False if create_image: if (voxel_size is None): msg = 'Please specify voxel size for CellData image' raise ValueError(msg) if np.isscalar(voxel_size): dim = len(grain_map.shape) spacing_array = voxel_size*np.ones((dim,)) else: if len(voxel_size) != len(grain_map.shape): raise ValueError('voxel_size array must have a length ' 'equal to grain_map shape') spacing_array = voxel_size self.add_image_from_field(field_array=grain_map, fieldname=map_name, imagename='CellData', location='/', spacing=spacing_array, replace=True) else: # Handle case of a 2D Microstrucutre: squeeze grain map to # ensure (Nx,Ny,1) array will be stored as (Nx,Ny) if self._get_group_type('CellData') == '2DImage': grain_map = grain_map.squeeze() self.add_field(gridname='CellData', fieldname=map_name, array=grain_map, replace=True) self.set_active_grain_map(map_name) return def set_phase_map(self, phase_map, voxel_size=None): """Set the phase map for this microstructure. :param ndarray phase_map: a 2D or 3D numpy array. :param float voxel_size: the size of the voxels in mm unit. Used only if the CellData image Node must be created. """ # TODO: add compression_options create_image = True if self.__contains__('CellData'): empty = self.get_attribute(attrname='empty', nodename='CellData') if not empty: create_image = False if create_image: if voxel_size is None: msg = 'Please specify voxel size for CellData image' raise ValueError(msg) if np.isscalar(voxel_size): dim = len(phase_map.shape) spacing_array = voxel_size*np.ones((dim,)) else: if len(voxel_size) != len(phase_map.shape): raise ValueError('voxel_size array must have a length ' 'equal to grain_map shape') spacing_array = voxel_size self.add_image_from_field(phase_map, 'phase_map', imagename='CellData', location='/', spacing=spacing_array, replace=True) else: self.add_field(gridname='CellData', fieldname='phase_map', array=phase_map, replace=True, indexname='phase_map') def set_mask(self, mask, voxel_size=None): """Set the mask for this microstructure. :param ndarray mask: a 2D or 3D numpy array. :param float voxel_size: the size of the voxels in mm unit. Used only if the CellData image Node must be created. """ # TODO: add compression_options create_image = True if self.__contains__('CellData'): empty = self.get_attribute(attrname='empty', nodename='CellData') if not (empty): create_image = False if create_image: if (voxel_size is None): msg = 'Please specify voxel size for CellData image' raise ValueError(msg) if np.isscalar(voxel_size): dim = len(mask.shape) spacing_array = voxel_size*np.ones((dim,)) else: if len(voxel_size) != len(mask.shape): raise ValueError('voxel_size array must have a length ' 'equal to grain_map shape') spacing_array = voxel_size self.add_image_from_field(mask, 'mask', imagename='CellData', location='/', spacing=spacing_array, replace=True) else: self.add_field(gridname='CellData', fieldname='mask', array=mask, replace=True, indexname='mask') return def set_random_orientations(self): """ Set random orientations for all grains in GrainDataTable """ for grain in self.grains: o = Orientation.random() grain['orientation'] = o.rod grain.update() self.grains.flush() return def remove_grains_not_in_map(self): """Remove from GrainDataTable grains that are not in the grain map.""" _,not_in_map,_ = self.compute_grains_map_table_intersection() self.remove_grains_from_table(not_in_map) return def remove_small_grains(self, min_volume=1.0, sync_table=False, new_grain_map_name=None): """Remove from grain_map and grain data table small volume grains. Removed grains in grain map will be replaced by background ID (0). To be sure that the method acts consistently with the current grain map, activate sync_table options. :param float min_volume: Grains whose volume is under or equal to this value willl be suppressed from grain_map and grain data table. :param bool sync_table: If `True`, synchronize gran data table with grain map before removing grains. :param str new_grain_map_name: If provided, store the new grain map with removed grain with this new name. If not, overright the current active grain map """ if sync_table and not self._is_empty('grain_map'): self.sync_grain_table_with_grain_map(sync_geometry=True) condition = f"(volume <= {min_volume})" id_list = self.grains.read_where(condition)['idnumber'] if not self._is_empty('grain_map'): # Remove grains from grain map grain_map = self.get_grain_map() grain_map[np.where(np.isin(grain_map,id_list))] = 0 if new_grain_map_name is not None: map_name = new_grain_map_name else: map_name = self.active_grain_map self.set_grain_map(grain_map.squeeze(), map_name=map_name) # Remove grains from table self.remove_grains_from_table(id_list) return def remove_grains_from_table(self, ids): """Remove from GrainDataTable the grains with given ids. :param ids: Array of grain ids to remove from GrainDataTable :type ids: list """ for Id in ids: where = self.grains.get_where_list('idnumber == Id')[:] self.grains.remove_row(int(where)) return def add_grains(self, euler_list, grain_ids=None): """A a list of grains to this microstructure. This function adds a list of grains represented by a list of Euler angles triplets, to the microstructure. If provided, the `grain_ids` list will be used for the grain ids. :param list euler_list: the list of euler angles (Bunge passive convention). :param list grain_ids: an optional list for the ids of the new grains. """ grain = self.grains.row # build a list of grain ids if it is not given if grain_ids is None: if self.get_number_of_grains() > 0: min_id = max(self.get_grain_ids()) else: min_id = 0 grain_ids = range(min_id, min_id + len(euler_list)) print('adding %d grains to the microstructure' % len(grain_ids)) for gid, euler in zip(grain_ids, euler_list): grain['idnumber'] = gid grain['orientation'] = Orientation.Euler2Rodrigues(euler) grain.append() self.grains.flush() def add_grains_in_map(self): """Add to GrainDataTable the grains in grain map missing in table. The grains are added with a random orientation by convention. """ _, _, not_in_table = self.compute_grains_map_table_intersection() # remove ID <0 from list (reserved to background) not_in_table = np.delete(not_in_table, np.where(not_in_table <= 0)) # generate random eule r angles phi1 = np.random.rand(len(not_in_table),1) * 360. Phi = 180. * np.arccos(2 * np.random.rand(len(not_in_table),1)- 1) / np.pi phi2 = np.random.rand(len(not_in_table),1) * 360. euler_list = np.concatenate((phi1,Phi,phi2), axis=1) self.add_grains(euler_list, grain_ids=not_in_table) return @staticmethod def random_texture(n=100): """Generate a random texture microstructure. **parameters:** *n* The number of grain orientations in the microstructure. """ m = Microstructure(name='random_texture', overwrite_hdf5=True) grain = m.grains.row for i in range(n): grain['idnumber'] = i + 1 o = Orientation.random() grain['orientation'] = o.rod grain.append() m.grains.flush() return m def set_mesh(self, mesh_object=None, file=None, meshname='micro_mesh'): """Add a mesh of the microstructure to the dataset. Mesh can be inputed as a BasicTools mesh object or as a mesh file. Handled file format for now only include .geof (Zset software fmt). """ self.add_mesh(mesh_object=mesh_object, meshname=meshname, location='/MeshData', replace=True, file=file) return def create_grain_ids_field(self, meshname=None, store=True): """Create a grain Id field of grain orientations on the input mesh. Creates a element wise field from the microsctructure mesh provided, adding to each element the value of the Rodrigues vector of the local grain element set, as it is and if it is referenced in the `GrainDataTable` node. :param str mesh: Name, Path or index name of the mesh on which an orientation map element field must be constructed :param bool store: If `True`, store the orientation map in `CellData` image group, with name `orientation_map` """ # TODO : adapt data model to include microstructure mesh and adapt # routine arugments and code to the new data model # input a mesh_object or a mesh group ? # check if mesh is provided if meshname is None: raise ValueError('meshname do not refer to an existing mesh') if not(self._is_mesh(meshname)) or self._is_empty(meshname): raise ValueError('meshname do not refer to a non empty mesh' 'group') # create empty element vector field Nelements = int(self.get_attribute('Number_of_elements',meshname)) mesh = self.get_node(meshname) El_tag_path = os.path.join(mesh._v_pathname,'Geometry','ElementsTags') ID_field = np.zeros((Nelements,1),dtype=float) grainIds = self.get_grain_ids() # if mesh is provided for i in range(len(grainIds)): set_name = 'ET_grain_'+str(grainIds[i]).strip() elset_path = os.path.join(El_tag_path, set_name) element_ids = self.get_node(elset_path, as_numpy=True) ID_field[element_ids] = grainIds[i] if store: self.add_field(gridname=meshname, fieldname='grain_ids', array=ID_field) return ID_field def create_orientation_field(self, meshname=None, store=True): """Create a vector field of grain orientations on the inputed mesh. Creates a element wise field from the microsctructure mesh provided, adding to each element the value of the Rodrigues vector of the local grain element set, as it is and if it is referenced in the `GrainDataTable` node. :param str mesh: Name, Path or index name of the mesh on which an orientation map element field must be constructed :param bool store: If `True`, store the orientation map in `CellData` image group, with name `orientation_map` """ # TODO : adapt data model to include microstructure mesh and adapt # routine arugments and code to the new data model # input a mesh_object or a mesh group ? # check if mesh is provided if meshname is None: raise ValueError('meshname do not refer to an existing mesh') if not(self._is_mesh(meshname)) or self._is_empty(meshname): raise ValueError('meshname do not refer to a non empty mesh' 'group') # create empty element vector field Nelements = int(self.get_attribute('Number_of_elements',meshname)) mesh = self.get_node(meshname) El_tag_path = os.path.join(mesh._v_pathname,'Geometry','ElementsTags') orientation_field = np.zeros((Nelements,3),dtype=float) grainIds = self.get_grain_ids() grain_orientations = self.get_grain_rodrigues() # if mesh is provided for i in range(len(grainIds)): set_name = 'ET_grain_'+str(grainIds[i]).strip() elset_path = os.path.join(El_tag_path, set_name) element_ids = self.get_node(elset_path, as_numpy=True) orientation_field[element_ids,:] = grain_orientations[i,:] if store: self.add_field(gridname=meshname, fieldname='grain_orientations', array=orientation_field) return orientation_field def create_orientation_map(self, store=True): """Create a vector field in CellData of grain orientations. Creates a (Nx, Ny, Nz, 3) or (Nx, Ny, 3) field from the microsctructure `grain_map`, adding to each voxel the value of the Rodrigues vector of the local grain Id, as it is and if it is referenced in the `GrainDataTable` node. :param bool store: If `True`, store the orientation map in `CellData` image group, with name `orientation_map` """ # safety check if self._is_empty('grain_map'): raise RuntimeError('The microstructure instance has an empty' '`grain_map` node. Cannot create orientation' ' map') grain_map = self.get_grain_map().squeeze() grainIds = self.get_grain_ids() grain_orientations = self.get_grain_rodrigues() # safety check 2 grain_list = np.unique(grain_map) # remove -1 and 0 from the list of grains in grain map (Ids reserved # for background and overlaps in non-dilated reconstructed grain maps) grain_list = np.delete(grain_list, np.isin(grain_list, [-1, 0])) if not np.all(np.isin(grain_list, grainIds)): raise ValueError('Some grain Ids in `grain_map` are not referenced' ' in the `GrainDataTable` array. Cannot create' ' orientation map.') # create empty orientation map with right dimensions im_dim = self.get_attribute('dimension', 'CellData') shape_orientation_map = np.empty(shape=(len(im_dim)+1), dtype='int32') shape_orientation_map[:-1] = im_dim shape_orientation_map[-1] = 3 orientation_map = np.zeros(shape=shape_orientation_map, dtype=float) omap_X = orientation_map[..., 0] omap_Y = orientation_map[..., 1] omap_Z = orientation_map[..., 2] for i in range(len(grainIds)): slc = np.where(grain_map == grainIds[i]) omap_X[slc] = grain_orientations[i, 0] omap_Y[slc] = grain_orientations[i, 1] omap_Z[slc] = grain_orientations[i, 2] if store: self.add_field(gridname='CellData', fieldname='orientation_map', array=orientation_map, replace=True, location='CellData') return orientation_map def add_IPF_maps(self): """Add IPF maps to the data set. IPF colors are computed for the 3 cartesian directions and stored into the h5 file in the `CellData` image group, with names `ipf_map_100`, `ipf_map_010`, `ipf_map_001`. """ ipf100 = self.create_IPF_map(axis=np.array([1., 0., 0.])) self.add_field(gridname='CellData', fieldname='ipf_map_100', array=ipf100, replace=True) ipf010 = self.create_IPF_map(axis=np.array([0., 1., 0.])) self.add_field(gridname='CellData', fieldname='ipf_map_010', array=ipf010, replace=True) ipf001 = self.create_IPF_map(axis=np.array([0., 0., 1.])) self.add_field(gridname='CellData', fieldname='ipf_map_001', array=ipf001, replace=True) del ipf100, ipf010, ipf001 def create_IPF_map(self, axis=np.array([0., 0., 1.])): """Create a vector field in CellData to store the IPF colors. Creates a (Nx, Ny, Nz, 3) field with the IPF color for each voxel. Note that this function assumes a single orientation per grain. :param axis: the unit vector for the load direction to compute IPF colors. """ dims = list(self.get_grain_map().shape) grain_ids = self.get_grain_ids() shape_ipf_map = list(dims) + [3] ipf_map = np.zeros(shape=shape_ipf_map, dtype=float) for i in range(len(grain_ids)): gid = grain_ids[i] # use the bounding box for this grain bb = self.grains.read_where('idnumber == %d' % gid)['bounding_box'][0] grain_map = self.get_grain_map()[bb[0][0]:bb[0][1], bb[1][0]:bb[1][1], bb[2][0]:bb[2][1]] o = self.get_grain(gid).orientation ipf_map[bb[0][0]:bb[0][1], bb[1][0]:bb[1][1], bb[2][0]:bb[2][1]][grain_map == gid] = o.ipf_color(axis, symmetry=self.get_lattice( ).get_symmetry(), saturate=True) progress = 100 * (1 + i) / len(grain_ids) print('computing IPF map: {0:.2f} %'.format(progress), end='\r') return ipf_map.squeeze() def view_slice(self, slice=None, color='random', show_mask=True, show_grain_ids=False, highlight_ids=None, slip_system=None, axis=[0., 0., 1], show_slip_traces=False, hkl_planes=None, display=True): """A simple utility method to show one microstructure slice. The microstructure can be colored using different fields such as a random color (default), the grain ids, the Schmid factor or the grain orientation using IPF coloring. The plot can be customized in several ways. Annotations can be added in the grains (ids, lattice plane traces) and the list of grains where annotations are shown can be controled using the `highlight_ids` argument. By default, if present, the mask will be shown. :param int slice: the slice number :param str color: a string to chose the colormap from ('random', 'grain_ids', 'schmid', 'ipf') :param bool show_mask: a flag to show the mask by transparency. :param bool show_grain_ids: a flag to annotate the plot with the grain ids. :param list highlight_ids: a list of grain ids to restrict the annotations (by default all grains are annotated). :param slip_system: an instance (or a list of instances) of the class SlipSystem to compute the Schmid factor. :param axis: the unit vector for the load direction to compute the Schmid factor or to display IPF coloring. :param bool show_slip_traces: activate slip traces plot in each grain. :param list hkl_planes: the list of planes to plot the slip traces. :param bool display: if True, the show method is called, otherwise, the figure is simply returned. """ if self._is_empty('grain_map'): print('Microstructure instance mush have a grain_map field to use ' 'this method') return grain_map = self.get_grain_map(as_numpy=True) if slice is None or slice > grain_map.shape[2] - 1 or slice < 0: slice = grain_map.shape[2] // 2 print('using slice value %d' % slice) grains_slice = grain_map[:, :, slice] gids = np.intersect1d(np.unique(grains_slice), self.get_grain_ids()) fig, ax = plt.subplots() if color == 'random': grain_cmap = Microstructure.rand_cmap(first_is_black=True) ax.imshow(grains_slice.T, cmap=grain_cmap, vmin=0, interpolation='nearest') elif color == 'grain_ids': ax.imshow(grains_slice.T, cmap='viridis', vmin=0, interpolation='nearest') elif color == 'schmid': # construct a Schmid factor image schmid_image = np.zeros_like(grains_slice, dtype=float) for gid in gids: o = self.get_grain(gid).orientation if type(slip_system) == list: # compute max Schmid factor sf = max(o.compute_all_schmid_factors( slip_systems=slip_system, load_direction=axis)) else: sf = o.schmid_factor(slip_system, axis) schmid_image[grains_slice == gid] = sf from matplotlib import cm plt.imshow(schmid_image.T, cmap=cm.gray, vmin=0, vmax=0.5, interpolation='nearest') cb = plt.colorbar() cb.set_label('Schmid factor') elif color == 'ipf': # build IPF image ipf_image = np.zeros((*grains_slice.shape, 3), dtype=float) for gid in gids: o = self.get_grain(gid).orientation try: c = o.ipf_color(axis, symmetry=self.get_lattice().get_symmetry(), saturate=True) except ValueError: print('problem moving to the fundamental zone for rodrigues vector {}'.format(o.rod)) c = np.array([0., 0., 0.]) ipf_image[grains_slice == gid] = c plt.imshow(ipf_image.transpose(1, 0, 2), interpolation='nearest') else: print('unknown color scheme requested, please chose between {random, ' 'grain_ids, schmid, ipf}, returning') return ax.xaxis.set_label_position('top') plt.xlabel('X') plt.ylabel('Y') if not self._is_empty('mask') and show_mask: from pymicro.view.vol_utils import alpha_cmap mask = self.get_mask() plt.imshow(mask[:, :, slice].T, cmap=alpha_cmap(opacity=0.3)) # compute the center of mass of each grain of interest in this slice if show_grain_ids or show_slip_traces: centers = np.zeros((len(gids), 2)) sizes = np.zeros(len(gids)) for i, gid in enumerate(gids): if highlight_ids and gid not in highlight_ids: continue sizes[i] = np.sum(grains_slice == gid) centers[i] = ndimage.measurements.center_of_mass( grains_slice == gid, grains_slice) # grain id labels if show_grain_ids: for i, gid in enumerate(gids): if highlight_ids and gid not in highlight_ids: continue plt.annotate('%d' % gids[i], xycoords='data', xy=(centers[i, 0], centers[i, 1]), horizontalalignment='center', verticalalignment='center', color='k', fontsize=12) # slip traces on this slice for a set of lattice planes if show_slip_traces and hkl_planes: for i, gid in enumerate(gids): if highlight_ids and gid not in highlight_ids: continue g = self.get_grain(gid) for hkl in hkl_planes: trace = hkl.slip_trace(g.orientation, n_int=[0, 0, 1], view_up=[0, -1, 0], trace_size=0.8 * np.sqrt(sizes[i]), verbose=False) color = 'k' x = centers[i][0] + np.array([-trace[0] / 2, trace[0] / 2]) y = centers[i][1] + np.array([-trace[1] / 2, trace[1] / 2]) #plt.plot(centers[i][0], centers[i][1], 'o', color=color) plt.plot(x, y, '-', linewidth=1, color=color) extent = (-self.get_voxel_size() * grains_slice.shape[0] / 2, self.get_voxel_size() * grains_slice.shape[0] / 2, self.get_voxel_size() * grains_slice.shape[1] / 2, -self.get_voxel_size() * grains_slice.shape[1] / 2) plt.axis([0, grains_slice.shape[0], grains_slice.shape[1], 0]) if display: plt.show() return fig, ax @staticmethod def rand_cmap(n=4096, first_is_black=False, seed=13): """Creates a random color map to color the grains. The first color can be enforced to black and usually figure out the background. The random seed is fixed to consistently produce the same colormap. :param int n: the number of colors in the list. :param bool first_is_black: set black as the first color of the list. :param int seed: the random seed. :return: a matplotlib colormap. """ np.random.seed(seed) rand_colors = np.random.rand(n, 3) if first_is_black: rand_colors[0] = [0., 0., 0.] # enforce black background (value 0) return colors.ListedColormap(rand_colors) def ipf_cmap(self): """ Return a colormap with ipf colors. .. warning:: This function works only for a microstructure with the cubic symmetry due to current limitation in the `Orientation` get_ipf_colour method. :return: a color map that can be directly used in pyplot. """ ipf_colors = np.zeros((4096, 3)) for grain in self.grains: o = Orientation.from_rodrigues(grain['orientation']) ipf_colors[grain['idnumber'], :] = o.get_ipf_colour() return colors.ListedColormap(ipf_colors) @staticmethod def from_grain_file(grain_file_path, col_id=0, col_phi1=1, col_phi=2, col_phi2=3, col_x=4, col_y=5, col_z=None, col_volume=None, autodelete=True): """Create a `Microstructure` reading grain infos from a file. This file is typically created using EBSD. the usual pattern is: grain_id, phi1, phi, phi2, x, y, volume. The column number are tunable using the function arguments. """ # get the file name without extension name = os.path.splitext(os.path.basename(grain_file_path))[0] print('creating microstructure %s' % name) micro = Microstructure(name=name, overwrite_hdf5=True, autodelete=autodelete) grain = micro.grains.row # read grain infos from the grain file grains_EBSD = np.genfromtxt(grain_file_path) for i in range(len(grains_EBSD)): o = Orientation.from_euler([grains_EBSD[i, col_phi1], grains_EBSD[i, col_phi], grains_EBSD[i, col_phi2]]) grain['idnumber'] = int(grains_EBSD[i, col_id]) grain['orientation'] = o.rod z = grains_EBSD[i, col_z] if col_z else 0. grain['center'] = np.array([grains_EBSD[i, col_x], grains_EBSD[i, col_y], z]) if col_volume: grain['volume'] = grains_EBSD[i, col_volume] grain.append() micro.grains.flush() return micro def print_grains_info(self, grain_list=None, as_string=False): """ Print informations on the grains in the microstructure""" s = '' if grain_list is None: grain_list = self.get_tablecol(tablename='GrainDataTable', colname='idnumber') for row in self.grains: if row['idnumber'] in grain_list: o = Orientation.from_rodrigues(row['orientation']) s = 'Grain %d\n' % (row['idnumber']) s += ' * %s\n' % (o) s += ' * center %s\n' % np.array_str(row['center']) s += ' * volume %f\n' % (row['volume']) if not (as_string): print(s) return s @staticmethod def match_grains(micro1, micro2, use_grain_ids=None, verbose=False): return micro1.match_grains(micro2, use_grain_ids=use_grain_ids, verbose=verbose) def match_grains(self, micro2, mis_tol=1, use_grain_ids=None, verbose=False): """Match grains from a second microstructure to this microstructure. This function try to find pair of grains based on their orientations. .. warning:: This function works only for microstructures with the same symmetry. :param micro2: the second instance of `Microstructure` from which to match the grains. :param float mis_tol: the tolerance is misorientation to use to detect matches (in degrees). :param list use_grain_ids: a list of ids to restrict the grains in which to search for matches. :param bool verbose: activate verbose mode. :raise ValueError: if the microstructures do not have the same symmetry. :return tuple: a tuple of three lists holding respectively the matches, the candidates for each match and the grains that were unmatched. """ # TODO : Test if not (self.get_lattice().get_symmetry() == micro2.get_lattice().get_symmetry()): raise ValueError('warning, microstructure should have the same ' 'symmetry, got: {} and {}'.format( self.get_lattice().get_symmetry(), micro2.get_lattice().get_symmetry())) candidates = [] matched = [] unmatched = [] # grain that were not matched within the given tolerance # restrict the grain ids to match if needed sym = self.get_lattice().get_symmetry() if use_grain_ids is None: grains_to_match = self.get_tablecol(tablename='GrainDataTable', colname='idnumber') else: grains_to_match = use_grain_ids # look at each grain for i, g1 in enumerate(self.grains): if not (g1['idnumber'] in grains_to_match): continue cands_for_g1 = [] best_mis = mis_tol best_match = -1 o1 = Orientation.from_rodrigues(g1['orientation']) for g2 in micro2.grains: o2 = Orientation.from_rodrigues(g2['orientation']) # compute disorientation mis, _, _ = o1.disorientation(o2, crystal_structure=sym) misd = np.degrees(mis) if misd < mis_tol: if verbose: print('grain %3d -- candidate: %3d, misorientation:' ' %.2f deg' % (g1['idnumber'], g2['idnumber'], misd)) # add this grain to the list of candidates cands_for_g1.append(g2['idnumber']) if misd < best_mis: best_mis = misd best_match = g2['idnumber'] # add our best match or mark this grain as unmatched if best_match > 0: matched.append([g1['idnumber'], best_match]) else: unmatched.append(g1['idnumber']) candidates.append(cands_for_g1) if verbose: print('done with matching') print('%d/%d grains were matched ' % (len(matched), len(grains_to_match))) return matched, candidates, unmatched def match_orientation(self, orientation, use_grain_ids=None): """Find the best match between an orientation and the grains from this microstructure. :param orientation: an instance of `Orientation` to match the grains. :param list use_grain_ids: a list of ids to restrict the grains in which to search for matches. :return tuple: the grain id of the best match and the misorientation. """ sym = self.get_lattice().get_symmetry() if use_grain_ids is None: grains_to_match = self.get_tablecol(tablename='GrainDataTable', colname='idnumber') else: grains_to_match = use_grain_ids best_mis = 180. for g in self.grains: if not (g['idnumber'] in grains_to_match): continue o = Orientation.from_rodrigues(g['orientation']) # compute disorientation mis, _, _ = o.disorientation(orientation, crystal_structure=sym) mis_deg = np.degrees(mis) if mis_deg < best_mis: best_mis = mis_deg best_match = g['idnumber'] return best_match, best_mis def find_neighbors(self, grain_id, distance=1): """Find the neighbor ids of a given grain. This function find the ids of the neighboring grains. A mask is constructed by dilating the grain to encompass the immediate neighborhood of the grain. The ids can then be determined using numpy unique function. :param int grain_id: the grain id from which the neighbors need to be determined. :param int distance: the distance to use for the dilation (default is 1 voxel). :return: a list (possibly empty) of the neighboring grain ids. """ # get the bounding box around the grain bb = self.grains.read_where('idnumber == %d' % grain_id)['bounding_box'][0] grain_map = self.get_grain_map()[bb[0][0]:bb[0][1], bb[1][0]:bb[1][1], bb[2][0]:bb[2][1]] if grain_map is None: return [] grain_data = (grain_map == grain_id) grain_data_dil = ndimage.binary_dilation(grain_data, iterations=distance).astype( np.uint8) neighbor_ids = np.unique(grain_map[grain_data_dil - grain_data == 1]) return neighbor_ids.tolist() def dilate_grain(self, grain_id, dilation_steps=1, use_mask=False): """Dilate a single grain overwriting the neighbors. :param int grain_id: the grain id to dilate. :param int dilation_steps: the number of dilation steps to apply. :param bool use_mask: if True and that this microstructure has a mask, the dilation will be limited by it. """ grain_map = self.get_grain_map(as_numpy=True) grain_volume_init = (grain_map == grain_id).sum() grain_data = grain_map == grain_id grain_data = ndimage.binary_dilation(grain_data, iterations=dilation_steps).astype(np.uint8) if use_mask and not self._is_empty('mask'): grain_data *= self.get_mask(as_numpy=True) grain_map[grain_data == 1] = grain_id grain_volume_final = (grain_map == grain_id).sum() print('grain %s was dilated by %d voxels' % (grain_id, grain_volume_final - grain_volume_init)) self.set_grain_map(grain_map, self.get_voxel_size(), map_name=self.active_grain_map) self.sync() @staticmethod def dilate_labels(array, dilation_steps=1, mask=None, dilation_ids=None, struct=None): """Dilate labels isotropically to fill the gap between them. This code is based on the gtDilateGrains function from the DCT code. It has been extended to handle both 2D and 3D cases. :param ndarray array: the numpy array to dilate. :param int dilation_steps: the number of dilation steps to apply. :param ndarray mask: a msk to constrain the dilation (None by default). :param list dilation_ids: a list to restrict the dilation to the given ids. :param ndarray struct: the structuring element to use (strong connectivity by default). :return: the dilated array. """ from scipy import ndimage if struct is None: struct = ndimage.morphology.generate_binary_structure(array.ndim, 1) assert struct.ndim == array.ndim # carry out dilation in iterative steps step = 0 while True: if dilation_ids: grains = np.isin(array, dilation_ids) else: grains = (array > 0).astype(np.uint8) grains_dil = ndimage.morphology.binary_dilation(grains, structure=struct).astype(np.uint8) if mask is not None: # only dilate within the mask grains_dil *= mask.astype(np.uint8) todo = (grains_dil - grains) # get the list of voxel for this dilation step if array.ndim == 2: X, Y = np.where(todo) else: X, Y, Z = np.where(todo) xstart = X - 1 xend = X + 1 ystart = Y - 1 yend = Y + 1 # check bounds xstart[xstart < 0] = 0 ystart[ystart < 0] = 0 xend[xend > array.shape[0] - 1] = array.shape[0] - 1 yend[yend > array.shape[1] - 1] = array.shape[1] - 1 if array.ndim == 3: zstart = Z - 1 zend = Z + 1 zstart[zstart < 0] = 0 zend[zend > array.shape[2] - 1] = array.shape[2] - 1 dilation = np.zeros_like(X).astype(np.int16) print('%d voxels to replace' % len(X)) for i in range(len(X)): if array.ndim == 2: neighbours = array[xstart[i]:xend[i] + 1, ystart[i]:yend[i] + 1] else: neighbours = array[xstart[i]:xend[i] + 1, ystart[i]:yend[i] + 1, zstart[i]:zend[i] + 1] if np.any(neighbours): # at least one neighboring voxel is non zero counts = np.bincount(neighbours.flatten())[1:] # do not consider zero # find the most frequent value dilation[i] = np.argmax(counts) + 1 #dilation[i] = min(neighbours[neighbours > 0]) if array.ndim == 2: array[X, Y] = dilation else: array[X, Y, Z] = dilation print('dilation step %d done' % (step + 1)) step = step + 1 if step == dilation_steps: break if dilation_steps == -1: if not np.any(array == 0): break return array def dilate_grains(self, dilation_steps=1, dilation_ids=None, new_map_name='dilated_grain_map'): """Dilate grains to fill the gap between them. This function calls `dilate_labels` with the grain map of the microstructure. :param int dilation_steps: the number of dilation steps to apply. :param list dilation_ids: a list to restrict the dilation to the given ids. """ if not self.__contains__('grain_map'): raise ValueError('microstructure %s must have an associated ' 'grain_map ' % self.get_sample_name()) return grain_map = self.get_grain_map(as_numpy=True).copy() # get rid of overlap regions flaged by -1 grain_map[grain_map == -1] = 0 if not self._is_empty('mask'): grain_map = Microstructure.dilate_labels(grain_map, dilation_steps=dilation_steps, mask=self.get_mask(as_numpy=True), dilation_ids=dilation_ids) else: grain_map = Microstructure.dilate_labels(grain_map, dilation_steps=dilation_steps, dilation_ids=dilation_ids) # finally assign the dilated grain map to the microstructure self.set_grain_map(grain_map, map_name=new_map_name) def clean_grain_map(self, new_map_name='grain_map_clean'): """Apply a morphological cleaning treatment to the active grain map. A Matlab morphological cleaner is called to smooth the morphology of the different IDs in the grain map. This cleaning treatment is typically used to improve the quality of a mesh produced from the grain_map, or improved image based mechanical modelisation techniques results, such as FFT-based computational homogenization of the polycrystalline microstructure. ..Warning:: This method relies on the code of the 'core.utils' and on Matlab code developed by <NAME> at the 'Centre des Matériaux, Mines Paris'. These tools and codes must be installed and referenced in the PATH of your workstation for this method to work. For more details, see the 'utils' package. """ from pymicro.core.utils.SDZsetUtils.SDmeshers import SDImageMesher Mesher = SDImageMesher(data=self) Mesher.morphological_image_cleaner( target_image_field=self.active_grain_map, clean_fieldname=new_map_name, replace=True) del Mesher self.set_active_grain_map(new_map_name) return def mesh_grain_map(self, mesher_opts=dict(), print_output=False): """ Create a 2D or 3D conformal mesh from the grain map. A Matlab multiphase_image mesher is called to create a conformal mesh of the grain map that is stored as a SampleData Mesh group in the MeshData Group of the Microstructure dataset. The mesh data will contain an element set per grain in the grain map. ..Warning:: This method relies on the code of the 'core.utils', on Matlab code developed by <NAME> at the 'Centre des Matériaux, Mines Paris', on the Zset software and the Mesh GMS software. These tools and codes must be installed and referenced in the PATH of your workstation for this method to work. For more details, see the 'utils' package. """ from pymicro.core.utils.SDZsetUtils.SDmeshers import SDImageMesher Mesher = SDImageMesher(data=self) Mesher.multi_phase_mesher( multiphase_image_name=self.active_grain_map, meshname='MeshData', location='/', replace=True, bin_fields_from_sets=False, mesher_opts=mesher_opts, elset_id_field=True, print_output=print_output) del Mesher return def crop(self, x_start=None, x_end=None, y_start=None, y_end=None, z_start=None, z_end=None, crop_name=None, autodelete=False, recompute_geometry=True, verbose=False): """Crop the microstructure to create a new one. This method crops the CellData image group to a new microstructure, and adapts the GrainDataTable to the crop. :param int x_start: start value for slicing the first axis. :param int x_end: end value for slicing the first axis. :param int y_start: start value for slicing the second axis. :param int y_end: end value for slicing the second axis. :param int z_start: start value for slicing the third axis. :param int z_end: end value for slicing the third axis. :param str crop name: the name for the cropped microstructure (the default is to append '_crop' to the initial name). :param bool autodelete: a flag to delete the microstructure files on the disk when it is not needed anymore. :param bool recompute_geometry: If `True` (defaults), recompute the grain centers, volumes, and bounding boxes in the croped micro. Use `False` when using a crop that do not cut grains, for instance when cropping a microstructure within the mask, to avoid the heavy computational cost of the grain geometry data update. :return: a new `Microstructure` instance with the cropped grain map. """ # TODO: add phase transfer to new microstructure if self._is_empty('grain_map'): print('warning: needs a grain map to crop the microstructure') return # input default values for bounds if not specified if not x_start: x_start = 0 if not y_start: y_start = 0 if not z_start: z_start = 0 if not x_end: x_end = self.get_grain_map().shape[0] if not y_end: y_end = self.get_grain_map().shape[1] if not z_end: z_end = self.get_grain_map().shape[2] if not crop_name: crop_name = self.get_sample_name() + \ (not self.get_sample_name().endswith('_')) * '_' + 'crop' # create new microstructure dataset micro_crop = Microstructure(name=crop_name, overwrite_hdf5=True, autodelete=autodelete) micro_crop.set_lattice(self.get_lattice()) print('cropping microstructure to %s' % micro_crop.h5_file) # crop CellData fields image_group = self.get_node('CellData') FIndex_path = os.path.join(image_group._v_pathname,'Field_index') field_list = self.get_node(FIndex_path) for name in field_list: fieldname = name.decode('utf-8') spacing_array = self.get_attribute('spacing','CellData') print('cropping field %s' % fieldname) field = self.get_field(fieldname) if not self._is_empty(fieldname): if self._get_group_type('CellData') == '2DImage': field_crop = field[x_start:x_end,y_start:y_end, ...] else: field_crop = field[x_start:x_end,y_start:y_end, z_start:z_end, ...] empty = micro_crop.get_attribute(attrname='empty', nodename='CellData') if empty: micro_crop.add_image_from_field( field_array=field_crop, fieldname=fieldname, imagename='CellData', location='/', spacing=spacing_array, replace=True) else: micro_crop.add_field(gridname='CellData', fieldname=fieldname, array=field_crop, replace=True) if verbose: print('Cropped dataset:') print(micro_crop) micro_crop.set_active_grain_map(self.active_grain_map) grain_ids = np.unique(micro_crop.get_grain_map(as_numpy=True)) for gid in grain_ids: if not gid > 0: continue grain = self.grains.read_where('idnumber == gid') micro_crop.grains.append(grain) print('%d grains in cropped microstructure' % micro_crop.grains.nrows) micro_crop.grains.flush() # recompute the grain geometry if recompute_geometry: print('updating grain geometry') micro_crop.recompute_grain_bounding_boxes(verbose) micro_crop.recompute_grain_centers(verbose) micro_crop.recompute_grain_volumes(verbose) return micro_crop def sync_grain_table_with_grain_map(self, sync_geometry=False): """Update GrainDataTable with only grain IDs from active grain map. :param bool sync_geometry: If `True`, recomputes the geometrical parameters of the grains in the GrainDataTable from active grain map. """ # Remove grains that are not in grain map from GrainDataTable self.remove_grains_not_in_map() # Add grains that are in grain map but not in GrainDataTable self.add_grains_in_map() if sync_geometry: self.recompute_grain_bounding_boxes() self.recompute_grain_centers() self.recompute_grain_volumes() return def renumber_grains(self, sort_by_size=False, new_map_name=None, only_grain_map=False): """Renumber the grains in the microstructure. Renumber the grains from 1 to n, with n the total number of grains that are found in the active grain map array, so that the numbering is consecutive. Only positive grain ids are taken into account (the id 0 is reserved for the background). :param bool sort_by_size: use the grain volume to sort the grain ids (the larger grain will become grain 1, etc). :param bool overwrite_active_map: if 'True', overwrites the active grain map with the renumbered map. If 'False', the active grain map is kept and a 'renumbered_grain_map' is added to CellData. :param str new_map_name: Used as name for the renumbered grain map field if is not None and overwrite_active_map is False. :param bool only_grain_map: If `True`, do not modify the grain map and GrainDataTable in dataset, but return the renumbered grain_map as a numpy array. """ if self._is_empty('grain_map'): print('warning: a grain map is needed to renumber the grains') return self.sync_grain_table_with_grain_map() # At this point, the table and the map have the same grain Ids grain_map = self.get_grain_map(as_numpy=True) grain_map_renum = grain_map.copy() if sort_by_size: print('sorting ids by grain size') sizes = self.get_grain_volumes() new_ids = self.get_grain_ids()[np.argsort(sizes)][::-1] else: new_ids = range(1, len(np.unique(grain_map)) + 1) for i, g in enumerate(self.grains): gid = g['idnumber'] if not gid > 0: # only renumber positive grain ids continue new_id = new_ids[i] grain_map_renum[grain_map == gid] = new_id if not only_grain_map: g['idnumber'] = new_id g.update() print('maxium grain id is now %d' % max(new_ids)) if only_grain_map: return grain_map_renum # assign the renumbered grain_map to the microstructure if new_map_name is None: map_name = self.active_grain_map else: map_name = new_map_name self.set_grain_map(grain_map_renum, self.get_voxel_size(), map_name=map_name) return def compute_grain_volume(self, gid): """Compute the volume of the grain given its id. The total number of voxels with the given id is computed. The value is converted to mm unit using the `voxel_size`. The unit will be squared mm for a 2D grain map or cubed mm for a 3D grain map. .. warning:: This function assume the grain bounding box is correct, call `recompute_grain_bounding_boxes()` if this is not the case. :param int gid: the grain id to consider. :return: the volume of the grain. """ bb = self.grains.read_where('idnumber == %d' % gid)['bounding_box'][0] grain_map = self.get_grain_map()[bb[0][0]:bb[0][1], bb[1][0]:bb[1][1], bb[2][0]:bb[2][1]] voxel_size = self.get_attribute('spacing', 'CellData') volume_vx = np.sum(grain_map == np.array(gid)) return volume_vx * np.prod(voxel_size) def compute_grain_center(self, gid): """Compute the center of masses of a grain given its id. .. warning:: This function assume the grain bounding box is correct, call `recompute_grain_bounding_boxes()` if this is not the case. :param int gid: the grain id to consider. :return: a tuple with the center of mass in mm units (or voxel if the voxel_size is not specified). """ # isolate the grain within the complete grain map bb = self.grains.read_where('idnumber == %d' % gid)['bounding_box'][0] grain_map = self.get_grain_map()[bb[0][0]:bb[0][1], bb[1][0]:bb[1][1], bb[2][0]:bb[2][1]] voxel_size = self.get_attribute('spacing', 'CellData') if len(voxel_size) == 2: voxel_size = np.concatenate((voxel_size,np.array([0])), axis=0) offset = bb[:, 0] grain_data_bin = (grain_map == gid).astype(np.uint8) local_com = ndimage.measurements.center_of_mass(grain_data_bin) \ + np.array([0.5, 0.5, 0.5]) # account for first voxel coordinates com = voxel_size * (offset + local_com - 0.5 * np.array(self.get_grain_map().shape)) return com def compute_grain_bounding_box(self, gid, as_slice=False): """Compute the grain bounding box indices in the grain map. :param int gid: the id of the grain. :param bool as_slice: a flag to return the grain bounding box as a slice. :return: the bounding box coordinates. """ slices = ndimage.find_objects(self.get_grain_map() == np.array(gid))[0] if as_slice: return slices x_indices = (slices[0].start, slices[0].stop) y_indices = (slices[1].start, slices[1].stop) z_indices = (slices[2].start, slices[2].stop) return x_indices, y_indices, z_indices def compute_grain_equivalent_diameters(self, id_list=None): """Compute the equivalent diameter for a list of grains. :param list id_list: the list of the grain ids to include (compute for all grains by default). :return: a 1D numpy array of the grain diameters. """ grain_equivalent_diameters = 2 * (3 * self.get_grain_volumes(id_list) / 4 / np.pi) ** (1 / 3) return grain_equivalent_diameters def compute_grain_sphericities(self, id_list=None): """Compute the equivalent diameter for a list of grains. The sphericity measures how close to a sphere is a given grain. It can be computed by the ratio between the surface area of a sphere with the same volume and the actual surface area of that grain. .. math:: \psi = \dfrac{\pi^{1/3}(6V)^{2/3}}{A} :param list id_list: the list of the grain ids to include (compute for all grains by default). :return: a 1D numpy array of the grain diameters. """ volumes = self.get_grain_volumes(id_list) if not id_list: id_list = self.get_grain_ids() grain_map = self.get_grain_map(as_numpy=True) if len(grain_map.shape) < 3: raise ValueError('Cannot compute grain sphericities on a non' ' tridimensional grain map.') surface_areas = np.empty_like(volumes) for i, grain_id in enumerate(id_list): grain_data = (grain_map == grain_id) surface_areas[i] = np.sum(grain_data - ndimage.morphology.binary_erosion(grain_data)) sphericities = np.pi ** (1 / 3) * (6 * volumes) ** (2 / 3) / surface_areas return sphericities def compute_grain_aspect_ratios(self, id_list=None): """Compute the aspect ratio for a list of grains. The aspect ratio is defined by the ratio between the major and minor axes of the equivalent ellipsoid of each grain. :param list id_list: the list of the grain ids to include (compute for all grains by default). :return: a 1D numpy array of the grain aspect ratios. """ from skimage.measure import regionprops props = regionprops(self.get_grain_map(as_numpy=True)) grain_aspect_ratios = np.array([prop.major_axis_length / prop.minor_axis_length for prop in props]) return grain_aspect_ratios def recompute_grain_volumes(self, verbose=False): """Compute the volume of all grains in the microstructure. Each grain volume is computed using the grain map. The value is assigned to the volume column of the GrainDataTable node. If the voxel size is specified, the grain centers will be in mm unit, if not in voxel unit. .. note:: A grain map need to be associated with this microstructure instance for the method to run. :param bool verbose: flag for verbose mode. :return: a 1D array with all grain volumes. """ if self._is_empty('grain_map'): print('warning: needs a grain map to recompute the volumes ' 'of the grains') return for g in self.grains: try: vol = self.compute_grain_volume(g['idnumber']) except ValueError: print('skipping grain %d' % g['idnumber']) continue if verbose: print('grain {}, computed volume is {}'.format(g['idnumber'], vol)) g['volume'] = vol g.update() self.grains.flush() return self.get_grain_volumes() def recompute_grain_centers(self, verbose=False): """Compute and assign the center of all grains in the microstructure. Each grain center is computed using its center of mass. The value is assigned to the grain.center attribute. If the voxel size is specified, the grain centers will be in mm unit, if not in voxel unit. .. note:: A grain map need to be associated with this microstructure instance for the method to run. :param bool verbose: flag for verbose mode. :return: a 1D array with all grain centers. """ if self._is_empty('grain_map'): print('warning: need a grain map to recompute the center of mass' ' of the grains') return for g in self.grains: try: com = self.compute_grain_center(g['idnumber']) except ValueError: print('skipping grain %d' % g['idnumber']) continue if verbose: print('grain %d center: %.3f, %.3f, %.3f' % (g['idnumber'], com[0], com[1], com[2])) g['center'] = com g.update() self.grains.flush() return self.get_grain_centers() def recompute_grain_bounding_boxes(self, verbose=False): """Compute and assign the center of all grains in the microstructure. Each grain center is computed using its center of mass. The value is assigned to the grain.center attribute. If the voxel size is specified, the grain centers will be in mm unit, if not in voxel unit. .. note:: A grain map need to be associated with this microstructure instance for the method to run. :param bool verbose: flag for verbose mode. """ if self._is_empty('grain_map'): print('warning: need a grain map to recompute the bounding boxes' ' of the grains') return # find_objects will return a list of N slices with N being the max grain id slices = ndimage.find_objects(self.get_grain_map(as_numpy=True)) for g in self.grains: try: g_slice = slices[g['idnumber'] - 1] x_indices = (g_slice[0].start, g_slice[0].stop) y_indices = (g_slice[1].start, g_slice[1].stop) z_indices = (g_slice[2].start, g_slice[2].stop) bbox = x_indices, y_indices, z_indices except (ValueError, TypeError): print('skipping grain %d' % g['idnumber']) continue if verbose: print('grain %d bounding box: [%d:%d, %d:%d, %d:%d]' % (g['idnumber'], bbox[0][0], bbox[0][1], bbox[1][0], bbox[1][1], bbox[2][0], bbox[2][1])) g['bounding_box'] = bbox g.update() self.grains.flush() return self.get_grain_bounding_boxes() def compute_grains_geometry(self, overwrite_table=False): """ Compute grain centers, volume and bounding box from grain_map """ #TODO revisit this method as we now rely on the grain bounding boxes to compute the geometry grains_id = self.get_ids_from_grain_map() if self.grains.nrows > 0 and overwrite_table: self.grains.remove_rows(start=0) for i in grains_id: gidx = self.grains.get_where_list('(idnumber == i)') if len(gidx) > 0: gr = self.grains[gidx] else: gr = np.zeros((1,), dtype=self.grains.dtype) gr['bounding_box'] = self.compute_grain_bounding_box(i) gr['center'] = self.compute_grain_center(i) gr['volume'] = self.compute_grain_volume(i) if len(gidx) > 0: self.grains[gidx] = gr else: self.grains.append(gr) self.grains.flush() return def compute_grains_map_table_intersection(self, verbose=False): """Return grains that are both in grain map and grain table. The method also returns the grains that are in the grain map but not in the grain table, and the grains that are in the grain table, but not in the grain map. :return array intersection: array of grain ids that are in both grain map and grain data table. :return array not_in_map: array of grain ids that are in grain data table but not in grain map. :return array not_in_table: array of grain ids that are in grain map but not in grain data table. """ if self._is_empty('grain_map'): print('warning: a grain map is needed to compute grains map' '/table intersection.') return grain_map = self.get_grain_map(as_numpy=True) map_ids = np.unique(grain_map) # only positive integer values are considered as valid grain ids, remove everything else: map_ids = np.delete(map_ids, range(0, np.where(map_ids > 0)[0][0])) table_ids = self.get_grain_ids() intersection = np.intersect1d(map_ids, table_ids) not_in_map = table_ids[np.isin(table_ids, map_ids, invert=True, assume_unique=True)] not_in_table = map_ids[np.isin(map_ids, table_ids, invert=True, assume_unique=True)] if verbose: print('Grains IDs both in grain map and GrainDataTable:') print(str(intersection).strip('[]')) print('Grains IDs in GrainDataTable but not in grain map:') print(str(not_in_map).strip('[]')) print('Grains IDs in grain map but not in GrainDataTable :') print(str(not_in_table).strip('[]')) return intersection, not_in_map, not_in_table def build_grain_table_from_grain_map(self): """Synchronizes and recomputes GrainDataTable from active grain map.""" # First step: synchronize table with grain map self.sync_grain_table_with_grain_map() # Second step, recompute grain geometry # TODO: use recompute_grain_geometry when method is corrected self.recompute_grain_bounding_boxes() self.recompute_grain_centers() self.recompute_grain_volumes() return @staticmethod def voronoi(self, shape=(256, 256), n_grain=50): """Simple voronoi tesselation to create a grain map. The method works both in 2 and 3 dimensions. The grains are labeled from 1 to `n_grains` (included). :param tuple shape: grain map shape in 2 or 3 dimensions. :param int n_grains: number of grains to generate. :return: a numpy array grain_map """ if len(shape) not in [2, 3]: raise ValueError('specified shape must be either 2D or 3D') grain_map = np.zeros(shape) nx, ny = shape[0], shape[1] x = np.linspace(-0.5, 0.5, nx, endpoint=True) y = np.linspace(-0.5, 0.5, ny, endpoint=True) if len(shape) == 3: nz = shape[2] z = np.linspace(-0.5, 0.5, nz, endpoint=True) XX, YY = np.meshgrid(x, y) seeds = Dx * np.random.rand(n_grains, 2) distance = np.zeros(shape=(nx, ny, n_grains)) XX, YY, ZZ = np.meshgrid(x, y, z) # TODO finish this... return grain_map def to_amitex_fftp(self, binary=True, mat_file=True, elasaniso_path='', add_grips=False, grip_size=10, grip_constants=(104100., 49440.), add_exterior=False, exterior_size=10, use_mask=False): """Write orientation data to ascii files to prepare for FFT computation. AMITEX_FFTP can be used to compute the elastoplastic response of polycrystalline microstructures. The calculation needs orientation data for each grain written in the form of the coordinates of the first two basis vectors expressed in the crystal local frame which is given by the first two rows of the orientation matrix. The values are written in 6 files N1X.txt, N1Y.txt, N1Z.txt, N2X.txt, N2Y.txt, N2Z.txt, each containing n values with n the number of grains. The data is written either in BINARY or in ASCII form. Additional options exist to pad the grain map with two constant regions. One region called grips can be added on the top and bottom (third axis). The second region is around the sample (first and second axes). :param bool binary: flag to write the files in binary or ascii format. :param bool mat_file: flag to write the material file for Amitex. :param str elasaniso_path: path for the libUmatAmitex.so in the Amitex_FFTP installation. :param bool add_grips: add a constant region at the beginning and the end of the third axis. :param int grip_size: thickness of the region. :param tuple grip_constants: elasticity values for the grip (lambda, mu). :param bool add_exterior: add a constant region around the sample at the beginning and the end of the first two axes. :param int exterior_size: thickness of the exterior region. :param bool use_mask: use mask to define exterior material, and use mask to extrude grips with same shapes as microstructure top and bottom surfaces. """ n_phases = self.get_number_of_phases() ext = 'bin' if binary else 'txt' grip_id = n_phases # material id for the grips ext_id = n_phases + 1 if add_grips else n_phases # material id for the exterior n1x = open('N1X.%s' % ext, 'w') n1y = open('N1Y.%s' % ext, 'w') n1z = open('N1Z.%s' % ext, 'w') n2x = open('N2X.%s' % ext, 'w') n2y = open('N2Y.%s' % ext, 'w') n2z = open('N2Z.%s' % ext, 'w') files = [n1x, n1y, n1z, n2x, n2y, n2z] if binary: import struct for f in files: f.write('%d \ndouble \n' % self.get_number_of_grains()) f.close() n1x = open('N1X.%s' % ext, 'ab') n1y = open('N1Y.%s' % ext, 'ab') n1z = open('N1Z.%s' % ext, 'ab') n2x = open('N2X.%s' % ext, 'ab') n2y = open('N2Y.%s' % ext, 'ab') n2z = open('N2Z.%s' % ext, 'ab') for g in self.grains: o = Orientation.from_rodrigues(g['orientation']) g = o.orientation_matrix() n1 = g[0] # first row n2 = g[1] # second row n1x.write(struct.pack('>d', n1[0])) n1y.write(struct.pack('>d', n1[1])) n1z.write(struct.pack('>d', n1[2])) n2x.write(struct.pack('>d', n2[0])) n2y.write(struct.pack('>d', n2[1])) n2z.write(struct.pack('>d', n2[2])) else: for g in self.grains: o = Orientation.from_rodrigues(g['orientation']) g = o.orientation_matrix() n1 = g[0] # first row n2 = g[1] # second row n1x.write('%f\n' % n1[0]) n1y.write('%f\n' % n1[1]) n1z.write('%f\n' % n1[2]) n2x.write('%f\n' % n2[0]) n2y.write('%f\n' % n2[1]) n2z.write('%f\n' % n2[2]) n1x.close() n1y.close() n1z.close() n2x.close() n2y.close() n2z.close() print('orientation data written for AMITEX_FFTP') # if required, write the material file for Amitex if mat_file: from lxml import etree, builder root = etree.Element('Materials') root.append(etree.Element('Reference_Material', Lambda0='90000.0', Mu0='31000.0')) # add each phase as a material for Amitex phase_ids = self.get_phase_ids_list() phase_ids.sort() # here phase_ids needs to be equal to [1, ..., n_phases] if not phase_ids == list(range(1, n_phases + 1)): raise ValueError('inconsistent phase numbering (should be from ' '1 to n_phases): {}'.format(phase_ids)) for phase_id in phase_ids: mat = etree.Element('Material', numM=str(phase_id), Lib=os.path.join(elasaniso_path, 'libUmatAmitex.so'), Law='elasaniso') # get the C_IJ values phase = self.get_phase(phase_id) C = phase.get_symmetry().stiffness_matrix(phase.elastic_constants) ''' Note that Amitex uses a different reduced number: (1, 2, 3, 4, 5, 6) = (11, 22, 33, 12, 13, 23) Because of this indices 4 and 6 are inverted with respect to the Voigt convention. ''' mat.append(etree.Element(_tag='Coeff', Index='1', Type='Constant', Value=str(C[0, 0]))) # C11 mat.append(etree.Element(_tag='Coeff', Index='2', Type='Constant', Value=str(C[0, 1]))) # C12 mat.append(etree.Element(_tag='Coeff', Index='3', Type='Constant', Value=str(C[0, 2]))) # C13 mat.append(etree.Element(_tag='Coeff', Index='4', Type='Constant', Value=str(C[1, 1]))) # C22 mat.append(etree.Element(_tag='Coeff', Index='5', Type='Constant', Value=str(C[1, 2]))) # C23 mat.append(etree.Element(_tag='Coeff', Index='6', Type='Constant', Value=str(C[2, 2]))) # C33 mat.append(etree.Element(_tag='Coeff', Index='7', Type='Constant', Value=str(C[5, 5]))) # C66 mat.append(etree.Element(_tag='Coeff', Index='8', Type='Constant', Value=str(C[4, 4]))) # C55 mat.append(etree.Element(_tag='Coeff', Index='9', Type='Constant', Value=str(C[3, 3]))) # C44 fmt = "binary" if binary else "ascii" mat.append(etree.Element(_tag='Coeff', Index="10", Type="Constant_Zone", File="N1X.bin", Format=fmt)) mat.append(etree.Element(_tag='Coeff', Index="11", Type="Constant_Zone", File="N1Y.bin", Format=fmt)) mat.append(etree.Element(_tag='Coeff', Index="12", Type="Constant_Zone", File="N1Z.bin", Format=fmt)) mat.append(etree.Element(_tag='Coeff', Index="13", Type="Constant_Zone", File="N2X.bin", Format=fmt)) mat.append(etree.Element(_tag='Coeff', Index="14", Type="Constant_Zone", File="N2Y.bin", Format=fmt)) mat.append(etree.Element(_tag='Coeff', Index="15", Type="Constant_Zone", File="N2Z.bin", Format=fmt)) root.append(mat) # add a material for top and bottom layers if add_grips: grips = etree.Element('Material', numM=str(grip_id + 1), Lib=os.path.join(elasaniso_path, 'libUmatAmitex.so'), Law='elasiso') grips.append(etree.Element(_tag='Coeff', Index='1', Type='Constant', Value=str(grip_constants[0]))) grips.append(etree.Element(_tag='Coeff', Index='2', Type='Constant', Value=str(grip_constants[1]))) root.append(grips) # add a material for external buffer if add_exterior or use_mask: exterior = etree.Element('Material', numM=str(ext_id + 1), Lib=os.path.join(elasaniso_path, 'libUmatAmitex.so'), Law='elasiso') exterior.append(etree.Element(_tag='Coeff', Index='1', Type='Constant', Value='0.')) exterior.append(etree.Element(_tag='Coeff', Index='2', Type='Constant', Value='0.')) root.append(exterior) tree = etree.ElementTree(root) tree.write('mat.xml', xml_declaration=True, pretty_print=True, encoding='UTF-8') print('material file written in mat.xml') # if possible, write the vtk file to run the computation if self.__contains__('grain_map'): # convert the grain map to vtk file from vtk.util import numpy_support #TODO adapt to 2D grain maps #TODO build a continuous grain map for amitex # grain_ids = self.get_grain_map(as_numpy=True) grain_ids = self.renumber_grains(only_grain_map=True) if not self._is_empty('phase_map'): # use the phase map for the material ids material_ids = self.get_phase_map(as_numpy=True) elif use_mask: material_ids = self.get_mask(as_numpy=True).astype( grain_ids.dtype) else: material_ids = np.ones_like(grain_ids) if add_grips: # add a layer of new_id (the value must actually be the first # grain id) above and below the sample. grain_ids = np.pad(grain_ids, ((0, 0), (0, 0), (grip_size, grip_size)), mode='constant', constant_values=1) if use_mask: # create top and bottom mask extrusions mask_top = material_ids[:,:,[-1]] mask_bot = material_ids[:,:,[0]] top_grip = np.tile(mask_top, (1,1,grip_size)) bot_grip = np.tile(mask_top, (1,1,grip_size)) # add grip layers to unit cell matID material_ids = np.concatenate( ((grip_id+1)*bot_grip, material_ids, (grip_id+1)*top_grip), axis=2) else: material_ids = np.pad( material_ids, ((0, 0), (0, 0), (grip_size, grip_size)), mode='constant', constant_values=grip_id+1) if add_exterior and not use_mask: # add a layer of new_id around the first two dimensions grain_ids = np.pad(grain_ids, ((exterior_size, exterior_size), (exterior_size, exterior_size), (0, 0)), mode='constant', constant_values=1) material_ids = np.pad(material_ids, ((exterior_size, exterior_size), (exterior_size, exterior_size), (0, 0)), mode='constant', constant_values=ext_id+1) if use_mask: grain_ids[np.where(grain_ids == 0)] = 1 material_ids[np.where(material_ids == 0)] = ext_id + 1 # write both arrays as VTK files for amitex voxel_size = self.get_voxel_size() for array, array_name in zip([grain_ids, material_ids], ['grain_ids', 'material_ids']): print('array name:', array_name, 'array type:', array.dtype) vtk_data_array = numpy_support.numpy_to_vtk(np.ravel(array, order='F'), deep=1) vtk_data_array.SetName(array_name) grid = vtk.vtkImageData() size = array.shape grid.SetExtent(0, size[0], 0, size[1], 0, size[2]) grid.GetCellData().SetScalars(vtk_data_array) grid.SetSpacing(voxel_size, voxel_size, voxel_size) writer = vtk.vtkStructuredPointsWriter() writer.SetFileName('%s_%s.vtk' % (self.get_sample_name(), array_name)) if binary: writer.SetFileTypeToBinary() writer.SetInputData(grid) writer.Write() print('%s array written in legacy vtk form for AMITEX_FFTP' % array_name) def from_amitex_fftp(self, results_basename, grip_size=0, ext_size=0, grip_dim=2, sim_prefix='Amitex', int_var_names=dict(), finite_strain=False, load_fields=True, compression_options=dict()): """Read output of a Amitex_fftp simulation and stores in dataset. Read a Amitex_fftp result directory containing a mechanical simulation of the microstructure. See method 'to_amitex_fftp' to generate input files for such simulation of Microstructure instances. The results are stored as fields of the CellData group by default. If generated by the simulation, the strain and stress tensor fields are stored, as well as the internal variables fields. Mechanical fields and macroscopical curves are stored. The latter is stored in the data group '/Mechanical_simulation' as a structured array. .. Warning 1:: For now, this methods can store the results of several snapshots but without writing them as a xdmf time serie. This feature will be implemented in the future. .. Warning 2:: For now, results are only stored on CellData group. Method will be modified in the future to allow to specify a new image data group to store de results (created if needed). :param results_basename: Basename of Amitex .std, .vtk output files to load in dataset. :type results_basename: str :param grip_size: Thickness of the grips added to simulation unit cell by the method 'to_amitex_fftp' of this class, defaults to 0. This value corresponds to a number of voxels on both ends of the cell. :type grip_size: int, optional :param grip_dim: Dimension along which the tension test has been simulated (0:x, 1:y, 2:z) :type grip_dim: int, optional :param ext_size: Thickness of the exterior region added to simulation unit cell by the method 'to_amitex_fftp' of this class, defaults to 0. This value corresponds to a number of voxels on both ends of the cell. :type ext_size: int, optional :param sim_prefix: Prefix of the name of the fields that will be stored on the CellData group from simulation results. :type sim_prefix: str, optional :param int_var_names: Dictionnary whose keys are the names of internal variables stored in Amitex output files (varInt1, varInt2...) and values are corresponding names for these variables in the dataset. :type int_var_names: dict, optional """ # TODO: add grain map to all time steps from pymicro.core.utils.SDAmitexUtils import SDAmitexIO # Get std file result p_mstd = Path(str(results_basename)).absolute().with_suffix('.mstd') # safety check if not p_mstd.exists(): raise ValueError('results not found, "results_basename" argument' ' not associated with Amitex_fftp simulation' ' results.') # load .mstd results --> only lines of microstructure material mean # values step = 1 if grip_size > 0: step += 1 if ext_size >0 : step += 1 elif not self._is_empty('mask'): # if mask used as exterior in computation but exterior size = 0 # still eed to add 1 to step as .mstd will have three lines per # increment if np.any(self['mask'] == 0): step += 1 std_res = SDAmitexIO.load_std(p_mstd, step=step) # load .zstd results p_zstd = Path(str(results_basename)+'_1').with_suffix('.zstd') if p_zstd.exists(): zstd_res = SDAmitexIO.load_std(p_zstd, Int_var_names=int_var_names) # Store macro data in specific group self.add_group(groupname=f'{sim_prefix}_Results', location='/', indexname='fft_sim', replace=True) # std_res is a numpy structured array whose fields depend on # the type of output (finite strain ou infinitesimal strain sim.) # ==> we load it into the dataset as a structured table data item. self.add_table(location='fft_sim', name='Standard_output', indexname=f'{sim_prefix}_std', description=std_res.dtype, data=std_res) # idem for zstd --> Add as Mechanical Grain Data Table if p_zstd.exists(): self.add_table(location='GrainData', name='MechanicalGrainDataTable', indexname='Mech_Grain_Data', description=zstd_res.dtype, data=zstd_res) grainIDs = self.get_grain_ids() N_zone_times = int(zstd_res.shape[0]/ len(grainIDs)) dtype_col = np.dtype([('grain_ID', np.int)]) IDs = np.tile(grainIDs, N_zone_times).astype(dtype_col) self.add_tablecols(tablename='MechanicalGrainDataTable', description=IDs.dtype, data=IDs) # End of macroscopic data loading. Check if field data must be loaded. if not load_fields: return # Get vtk files results Stress, Strain, VarInt, Incr_list = SDAmitexIO.load_amitex_output_fields( results_basename, grip_size=grip_size, ext_size=ext_size, grip_dim=2) ## Loop over time steps: create group to store results self.add_group(groupname=f'{sim_prefix}_fields', location='/CellData', indexname='fft_fields', replace=True) # Create CellData temporal subgrids for each time value with a vtk # field output time_values = std_res['time'][Incr_list].squeeze() if len(time_values) == 0: time_values = [0.] self.add_grid_time('CellData', time_values) # Add fields to CellData grid collections for incr in Stress: Time = std_res['time'][incr].squeeze() fieldname = f'{sim_prefix}_stress' self.add_field(gridname='CellData', fieldname=fieldname, array=Stress[incr], location='fft_fields', time=Time, compression_options=compression_options) for incr in Strain: Time = std_res['time'][incr].squeeze() fieldname = f'{sim_prefix}_strain' self.add_field(gridname='CellData', fieldname=fieldname, array=Strain[incr], location='fft_fields', time=Time, compression_options=compression_options) for mat in VarInt: for incr in VarInt[mat]: Time = std_res['time'][incr].squeeze() for var in VarInt[mat][incr]: varname = var if int_var_names.__contains__(var): varname = int_var_names[var] fieldname = f'{sim_prefix}_mat{mat}_{varname}' self.add_field(gridname='CellData', fieldname=fieldname, array=VarInt[mat][incr][var], location='fft_fields', time=Time, compression_options=compression_options) return def print_zset_material_block(self, mat_file, grain_prefix='_ELSET'): """ Outputs the material block corresponding to this microstructure for a finite element calculation with z-set. :param str mat_file: The name of the file where the material behaviour is located :param str grain_prefix: The grain prefix used to name the elsets corresponding to the different grains """ f = open('elset_list.txt', 'w') # TODO : test for g in self.grains: o = Orientation.from_rodrigues(g['orientation']) f.write(' **elset %s%d *file %s *integration ' 'theta_method_a 1.0 1.e-9 150 *rotation ' '%7.3f %7.3f %7.3f\n' % (grain_prefix, g['idnumber'], mat_file, o.phi1(), o.Phi(), o.phi2())) f.close() return def to_dream3d(self): """Write the microstructure as a hdf5 file compatible with DREAM3D.""" import time f = h5py.File('%s.h5' % self.get_sample_name(), 'w') f.attrs['FileVersion'] = np.string_('7.0') f.attrs['DREAM3D Version'] = np.string_('6.1.77.d28a796') f.attrs['HDF5_Version'] = h5py.version.hdf5_version f.attrs['h5py_version'] = h5py.version.version f.attrs['file_time'] = time.time() # pipeline group (empty here) pipeline = f.create_group('Pipeline') pipeline.attrs['Number_Filters'] = np.int32(0) # create the data container group data_containers = f.create_group('DataContainers') m = data_containers.create_group('DataContainer') # ensemble data ed = m.create_group('EnsembleData') ed.attrs['AttributeMatrixType'] = np.uint32(11) ed.attrs['TupleDimensions'] = np.uint64(2) cryst_structure = ed.create_dataset('CrystalStructures', data=np.array([[999], [1]], dtype=np.uint32)) cryst_structure.attrs['ComponentDimensions'] = np.uint64(1) cryst_structure.attrs['DataArrayVersion'] = np.int32(2) cryst_structure.attrs['ObjectType'] = np.string_('DataArray<uint32_t>') cryst_structure.attrs['Tuple Axis Dimensions'] = np.string_('x=2') cryst_structure.attrs['TupleDimensions'] = np.uint64(2) mat_name = ed.create_dataset('MaterialName', data=[a.encode('utf8') for a in ['Invalid Phase', 'Unknown']]) mat_name.attrs['ComponentDimensions'] = np.uint64(1) mat_name.attrs['DataArrayVersion'] = np.int32(2) mat_name.attrs['ObjectType'] = np.string_('StringDataArray') mat_name.attrs['Tuple Axis Dimensions'] = np.string_('x=2') mat_name.attrs['TupleDimensions'] = np.uint64(2) # feature data fd = m.create_group('FeatureData') fd.attrs['AttributeMatrixType'] = np.uint32(7) fd.attrs['TupleDimensions'] = np.uint64(self.grains.nrows) Euler = np.array([Orientation.from_rodrigues(g['orientation']) for g in self.grains], dtype=np.float32) avg_euler = fd.create_dataset('AvgEulerAngles', data=Euler) avg_euler.attrs['ComponentDimensions'] = np.uint64(3) avg_euler.attrs['DataArrayVersion'] = np.int32(2) avg_euler.attrs['ObjectType'] = np.string_('DataArray<float>') avg_euler.attrs['Tuple Axis Dimensions'] = np.string_('x=%d' % self.grains.nrows) avg_euler.attrs['TupleDimensions'] = np.uint64(self.grains.nrows) # geometry geom = m.create_group('_SIMPL_GEOMETRY') geom.attrs['GeometryType'] = np.uint32(999) geom.attrs['GeometryTypeName'] = np.string_('UnkownGeometry') # create the data container bundles group f.create_group('DataContainerBundles') f.close() @staticmethod def from_dream3d(file_path, main_key='DataContainers', data_container='DataContainer', grain_data='FeatureData', grain_orientations='AvgEulerAngles', orientation_type='euler', grain_centroid='Centroids'): """Read a microstructure from a hdf5 file. :param str file_path: the path to the hdf5 file to read. :param str main_key: the string describing the root key. :param str data_container: the string describing the data container group in the hdf5 file. :param str grain_data: the string describing the grain data group in the hdf5 file. :param str grain_orientations: the string describing the average grain orientations in the hdf5 file. :param str orientation_type: the string describing the descriptor used for orientation data. :param str grain_centroid: the string describing the grain centroid in the hdf5 file. :return: a `Microstructure` instance created from the hdf5 file. """ head, tail = os.path.split(file_path) micro = Microstructure(name=tail, file_path=head, overwrite_hdf5=True) with h5py.File(file_path, 'r') as f: grain_data_path = '%s/%s/%s' % (main_key, data_container, grain_data) orientations = f[grain_data_path][grain_orientations].value if grain_centroid: centroids = f[grain_data_path][grain_centroid].value offset = 0 if len(centroids) < len(orientations): offset = 1 # if grain 0 has not a centroid grain = micro.grains.row for i in range(len(orientations)): grain['idnumber'] = i if orientations[i, 0] == 0. and orientations[i, 1] == 0. and \ orientations[i, 2] == 0.: # skip grain 0 which is always (0., 0., 0.) print('skipping (0., 0., 0.)') continue if orientation_type == 'euler': grain['orientation'] = Orientation.from_euler( orientations[i] * 180 / np.pi).rod elif orientation_type == 'rodrigues': grain['orientation'] = Orientation.from_rodrigues( orientations[i]).rod if grain_centroid: grain['center'] = centroids[i - offset] grain.append() micro.grains.flush() return micro @staticmethod def copy_sample(src_micro_file, dst_micro_file, overwrite=False, get_object=False, dst_name=None, autodelete=False): """ Initiate a new SampleData object and files from existing one""" SampleData.copy_sample(src_micro_file, dst_micro_file, overwrite, new_sample_name=dst_name) if get_object: return Microstructure(filename=dst_micro_file, autodelete=autodelete) else: return @staticmethod def from_neper(neper_file_path): """Create a microstructure from a neper tesselation. Neper is an open source program to generate polycristalline microstructure using voronoi tesselations. It is available at https://neper.info :param str neper_file_path: the path to the tesselation file generated by Neper. :return: a pymicro `Microstructure` instance. """ neper_file = neper_file_path.split(os.sep)[-1] neper_dir = os.path.dirname(neper_file_path) print('creating microstructure from Neper tesselation %s' % neper_file) name, ext = os.path.splitext(neper_file) print(name, ext) filename = os.path.join(neper_dir, name) assert ext == '.tesr' # assuming raster tesselation micro = Microstructure(name=name, filename=filename, overwrite_hdf5=True) with open(neper_file_path, 'r', encoding='latin-1') as f: line = f.readline() # ***tesr # look for **general while True: line = f.readline().strip() # get rid of unnecessary spaces if line.startswith('**general'): break dim = f.readline().strip() print(dim) dims = np.array(f.readline().split()).astype(int).tolist() print(dims) voxel_size = np.array(f.readline().split()).astype(float).tolist() print(voxel_size) # look for **cell while True: line = f.readline().strip() if line.startswith('**cell'): break n = int(f.readline().strip()) print('microstructure contains %d grains' % n) f.readline() # *id grain_ids = [] # look for *ori while True: line = f.readline().strip() if line.startswith('*ori'): break else: grain_ids.extend(np.array(line.split()).astype(int).tolist()) print('grain ids are:', grain_ids) oridescriptor = f.readline().strip() # must be euler-bunge:passive if oridescriptor != 'euler-bunge:passive': print('Wrong orientation descriptor: %s, must be ' 'euler-bunge:passive' % oridescriptor) grain = micro.grains.row for i in range(n): euler_angles = np.array(f.readline().split()).astype(float).tolist() print('adding grain %d' % grain_ids[i]) grain['idnumber'] = grain_ids[i] grain['orientation'] = Orientation.from_euler(euler_angles).rod grain.append() micro.grains.flush() # look for **data and handle *group if present phase_ids = None while True: line = f.readline().strip() if line.startswith('*group'): print('multi phase sample') phase_ids = [] while True: line = f.readline().strip() if line.startswith('**data'): break else: phase_ids.extend(np.array(line.split()).astype(int).tolist()) print('phase ids are:', phase_ids) if line.startswith('**data'): break print(f.tell()) print('reading data from byte %d' % f.tell()) data = np.fromfile(f, dtype=np.uint16)[:-4] # leave out the last 4 values print(data.shape) assert np.prod(dims) == data.shape[0] micro.set_grain_map(data.reshape(dims[::-1]).transpose(2, 1, 0), voxel_size=voxel_size[0]) # swap X/Z axes print('updating grain geometry') micro.recompute_grain_bounding_boxes() micro.recompute_grain_centers() micro.recompute_grain_volumes() # if necessary set the phase_map if phase_ids: grain_map = micro.get_grain_map(as_numpy=True) phase_map = np.zeros_like(grain_map) for grain_id, phase_id in zip(grain_ids, phase_ids): # ignore phase id == 1 as this corresponds to phase_map == 0 if phase_id > 1: phase_map[grain_map == grain_id] = phase_id - 1 micro.set_phase_map(phase_map) print('done') return micro @staticmethod def from_labdct(labdct_file, data_dir='.', include_IPF_map=False, include_rodrigues_map=False): """Create a microstructure from a DCT reconstruction. :param str labdct_file: the name of the file containing the labDCT data. :param str data_dir: the path to the folder containing the HDF5 reconstruction file. :param bool include_IPF_map: if True, the IPF maps will be included in the microstructure fields. :param bool include_rodrigues_map: if True, the rodrigues map will be included in the microstructure fields. :return: a `Microstructure` instance created from the labDCT reconstruction file. """ file_path = os.path.join(data_dir, labdct_file) print('creating microstructure for labDCT scan %s' % file_path) name, ext = os.path.splitext(labdct_file) # get the phase data with h5py.File(file_path, 'r') as f: #TODO handle multiple phases phase01 = f['PhaseInfo']['Phase01'] phase_name = phase01['Name'][0].decode('utf-8') parameters = phase01['UnitCell'][()] # length unit is angstrom a, b, c = parameters[:3] / 10 # use nm unit alpha, beta, gamma = parameters[3:] print(parameters) sym = Lattice.guess_symmetry_from_parameters(a, b, c, alpha, beta, gamma) print('found %s symmetry' % sym) lattice = Lattice.from_parameters(a, b, c, alpha, beta, gamma, symmetry=sym) phase = CrystallinePhase(phase_id=1, name=phase_name, lattice=lattice) # create the microstructure with the phase infos micro = Microstructure(name=name, path=data_dir, overwrite_hdf5=True, phase=phase) # load cell data with h5py.File(file_path, 'r') as f: spacing = f['LabDCT']['Spacing'][0] rodrigues_map = f['LabDCT']['Data']['Rodrigues'][()].transpose(2, 1, 0, 3) grain_map = f['LabDCT']['Data']['GrainId'][()].transpose(2, 1, 0) print('adding cell data with shape {}'.format(grain_map.shape)) micro.set_grain_map(grain_map, voxel_size=spacing) mask = f['LabDCT']['Data']['Mask'][()].transpose(2, 1, 0) micro.set_mask(mask, voxel_size=spacing) phase_map = f['LabDCT']['Data']['PhaseId'][()].transpose(2, 1, 0) micro.set_phase_map(phase_map, voxel_size=spacing) if include_IPF_map: IPF001_map = f['LabDCT']['Data']['IPF001'][()].transpose(2, 1, 0, 3) micro.add_field(gridname='CellData', fieldname='IPF001_map', array=IPF001_map) IPF010_map = f['LabDCT']['Data']['IPF010'][()].transpose(2, 1, 0, 3) micro.add_field(gridname='CellData', fieldname='IPF010_map', array=IPF010_map) IPF100_map = f['LabDCT']['Data']['IPF100'][()].transpose(2, 1, 0, 3) micro.add_field(gridname='CellData', fieldname='IPF100_map', array=IPF100_map) if include_rodrigues_map: micro.add_field(gridname='CellData', fieldname='rodrigues_map', array=rodrigues_map) # create grain data table infos grain_ids = np.unique(grain_map) print(grain_ids) micro.build_grain_table_from_grain_map() # now get each grain orientation from the rodrigues map for i, g in enumerate(micro.grains): gid = g['idnumber'] progress = (1 + i) / len(micro.grains) print('adding grains: {0:.2f} %'.format(progress), end='\r') x, y, z = np.where(micro.get_grain_map() == gid) orientation = rodrigues_map[x[0], y[0], z[0]] # assign orientation to this grain g['orientation'] = orientation g.update() micro.grains.flush() return micro @staticmethod def from_dct(data_dir='.', grain_file='index.mat', vol_file='phase_01_vol.mat', mask_file='volume_mask.mat', use_dct_path=True, verbose=True): """Create a microstructure from a DCT reconstruction. DCT reconstructions are stored in several files. The indexed grain informations are stored in a matlab file in the '4_grains/phase_01' folder. Then, the reconstructed volume file (labeled image) is stored in the '5_reconstruction' folder as an hdf5 file, possibly stored alongside a mask file coming from the absorption reconstruction. :param str data_dir: the path to the folder containing the reconstruction data. :param str grain_file: the name of the file containing grains info. :param str vol_file: the name of the volume file. :param str mask_file: the name of the mask file. :param bool use_dct_path: if True, the grain_file should be located in 4_grains/phase_01 folder and the vol_file and mask_file in the 5_reconstruction folder. :param bool verbose: activate verbose mode. :return: a `Microstructure` instance created from the DCT reconstruction. """ if data_dir == '.': data_dir = os.getcwd() if data_dir.endswith(os.sep): data_dir = data_dir[:-1] scan = data_dir.split(os.sep)[-1] print('creating microstructure for DCT scan %s' % scan) filename = os.path.join(data_dir,scan) micro = Microstructure(filename=filename, overwrite_hdf5=True) micro.data_dir = data_dir if use_dct_path: index_path = os.path.join(data_dir, '4_grains', 'phase_01', grain_file) else: index_path = os.path.join(data_dir, grain_file) print(index_path) if not os.path.exists(index_path): raise ValueError('%s not found, please specify a valid path to the' ' grain file.' % index_path) return None from scipy.io import loadmat index = loadmat(index_path) #TODO fetch pixel size from detgeo instead voxel_size = index['cryst'][0][0][25][0][0] # grab the crystal lattice lattice_params = index['cryst'][0][0][3][0] sym = Symmetry.from_string(index['cryst'][0][0][7][0]) print('creating crystal lattice {} ({}) with parameters {}' ''.format(index['cryst'][0][0][0][0], sym, lattice_params)) lattice_params[:3] /= 10 # angstrom to nm lattice = Lattice.from_parameters(*lattice_params, symmetry=sym) micro.set_lattice(lattice) # add all grains to the microstructure grain = micro.grains.row for i in range(len(index['grain'][0])): grain['idnumber'] = index['grain'][0][i][0][0][0][0][0] grain['orientation'] = index['grain'][0][i][0][0][3][0] grain['center'] = index['grain'][0][i][0][0][15][0] grain.append() micro.grains.flush() # load the grain map if available if use_dct_path: grain_map_path = os.path.join(data_dir, '5_reconstruction', vol_file) else: grain_map_path = os.path.join(data_dir, vol_file) if os.path.exists(grain_map_path): with h5py.File(grain_map_path, 'r') as f: # because how matlab writes the data, we need to swap X and Z # axes in the DCT volume micro.set_grain_map(f['vol'][()].transpose(2, 1, 0), voxel_size) if verbose: print('loaded grain ids volume with shape: {}' ''.format(micro.get_grain_map().shape)) # load the mask if available if use_dct_path: mask_path = os.path.join(data_dir, '5_reconstruction', mask_file) else: mask_path = os.path.join(data_dir, mask_file) if os.path.exists(mask_path): try: with h5py.File(mask_path, 'r') as f: mask = f['vol'][()].transpose(2, 1, 0).astype(np.uint8) # check if mask shape needs to be zero padded if not mask.shape == micro.get_grain_map().shape: offset = np.array(micro.get_grain_map().shape) - np.array(mask.shape) padding = [(o // 2, o // 2) for o in offset] print('mask padding is {}'.format(padding)) mask = np.pad(mask, padding, mode='constant') print('now mask shape is {}'.format(mask.shape)) micro.set_mask(mask, voxel_size) except: # fallback on matlab format micro.set_mask(loadmat(mask_path)['vol'], voxel_size) if verbose: print('loaded mask volume with shape: {}'.format(micro.get_mask().shape)) return micro @staticmethod def from_legacy_h5(file_path, filename=None): """read a microstructure object from a HDF5 file created by pymicro until version 0.4.5. :param str file_path: the path to the file to read. :return: the new `Microstructure` instance created from the file. """ with h5py.File(file_path, 'r') as f: if filename is None: filename = f.attrs['microstructure_name'] micro = Microstructure(name=filename, overwrite_hdf5=True) if 'symmetry' in f['EnsembleData/CrystalStructure'].attrs: sym = f['EnsembleData/CrystalStructure'].attrs['symmetry'] parameters = f['EnsembleData/CrystalStructure/LatticeParameters'][()] micro.set_lattice(Lattice.from_symmetry(Symmetry.from_string(sym), parameters)) if 'data_dir' in f.attrs: micro.data_dir = f.attrs['data_dir'] # load feature data if 'R_vectors' in f['FeatureData']: print('some grains') avg_rods = f['FeatureData/R_vectors'][()] print(avg_rods.shape) if 'grain_ids' in f['FeatureData']: grain_ids = f['FeatureData/grain_ids'][()] else: grain_ids = range(1, 1 + avg_rods.shape[0]) if 'centers' in f['FeatureData']: centers = f['FeatureData/centers'][()] else: centers = np.zeros_like(avg_rods) # add all grains to the microstructure grain = micro.grains.row for i in range(avg_rods.shape[0]): grain['idnumber'] = grain_ids[i] grain['orientation'] = avg_rods[i, :] grain['center'] = centers[i] grain.append() micro.grains.flush() # load cell data if 'grain_ids' in f['CellData']: micro.set_grain_map(f['CellData/grain_ids'][()], f['CellData/grain_ids'].attrs['voxel_size']) micro.recompute_grain_bounding_boxes() micro.recompute_grain_volumes() if 'mask' in f['CellData']: micro.set_mask(f['CellData/mask'][()], f['CellData/mask'].attrs['voxel_size']) return micro @staticmethod def from_ebsd(file_path, roi=None, tol=5., min_ci=0.2): """"Create a microstructure from an EBSD scan. :param str file_path: the path to the file to read. :param list roi: a list of 4 integers in the form [x1, x2, y1, y2] to crop the EBSD scan. :param float tol: the misorientation angle tolerance to segment the grains (default is 5 degrees). :param float min_ci: minimum confidence index for a pixel to be a valid EBSD measurement. :return: a new instance of `Microstructure`. """ # Get name of file and create microstructure instance name = os.path.splitext(os.path.basename(file_path))[0] micro = Microstructure(name=name, autodelete=False, overwrite_hdf5=True) from pymicro.crystal.ebsd import OimScan # Read raw EBSD .h5 data file from OIM scan = OimScan.from_file(file_path) micro.set_phases(scan.phase_list) if roi: print('importing data from region {}'.format(roi)) scan.cols = roi[1] - roi[0] scan.rows = roi[3] - roi[2] scan.iq = scan.iq[roi[0]:roi[1], roi[2]:roi[3]] scan.ci = scan.ci[roi[0]:roi[1], roi[2]:roi[3]] scan.euler = scan.euler[roi[0]:roi[1], roi[2]:roi[3], :] # change the orientation reference frame to XYZ scan.change_orientation_reference_frame() iq = scan.iq ci = scan.ci euler = scan.euler mask = np.ones_like(iq) # segment the grains grain_ids = scan.segment_grains(tol=tol, min_ci=min_ci) voxel_size = np.array([scan.xStep, scan.yStep]) micro.set_grain_map(grain_ids, voxel_size) # add each array to the data file to the CellData image Group micro.add_field(gridname='CellData', fieldname='mask', array=mask, replace=True) micro.add_field(gridname='CellData', fieldname='iq', array=iq, replace=True) micro.add_field(gridname='CellData', fieldname='ci', array=ci, replace=True) micro.add_field(gridname='CellData', fieldname='euler', array=euler, replace=True) # Fill GrainDataTable grains = micro.grains.row grain_ids_list = np.unique(grain_ids).tolist() for gid in grain_ids_list: if gid == 0: continue progress = 100 * (1 + grain_ids_list.index(gid)) / len(grain_ids_list) print('creating new grains [{:.2f} %]: adding grain {:d}'.format( progress, gid), end='\r') # get the symmetry for this grain phase_grain = scan.phase[np.where(grain_ids == 1)] assert len(np.unique(phase_grain)) == 1 # all pixel of this grain must have the same phase id by # construction grain_phase_id = phase_grain[0] sym = scan.phase_list[grain_phase_id].get_symmetry() # compute the mean orientation for this grain euler_grain = scan.euler[
np.where(grain_ids == gid)
numpy.where
import numpy as np class Spectrum(object): """A useful container for nuclear engineering applications. This description will be updated in the future.""" def __init__(self, edges, values, error, form='int', floor=0): """Create a spectrum object and its associated values. Also calculates some useful things.""" # check array inputs assert type(edges) in (list, tuple, np.ndarray), "Bin edges must be of type list, tuple, or ndarray." assert type(values) in (list, tuple, np.ndarray), "Values must be of type list, tuple, or ndarray." assert type(error) in (int, list, tuple, np.ndarray), "Error must be of type int, list, tuple, or ndarray." assert type(floor) in (int, float), "Floor must be either int or float." # check spectrum form message = "Spectrum form option must be literal in ('int', 'integral', 'dif', 'diff', 'differential')." assert form in ('int', 'integral', 'dif', 'diff', 'differential'), message # allow error to be input as 0, which implies that all error is zero if type(error) is int: assert error is 0, "Error integer input only allows 0." # then rewrite error error = np.zeros(len(values)) # check val and err lengths message = "Values and error must have same length." assert len(values) == len(error), message # check edges and val lengths message = "Inconsistency in number of edges/values." assert len(edges) in (len(values), len(values) + 1), message # guarantee that bin edges are unique and increasing or decreasing message = "Bin edge values must be unique and strictly increasing or decreasing." assert all(x < y for x, y in zip(edges, edges[1:])) or all(x > y for x, y in zip(edges, edges[1:])), message # convert all data types to numpy arrays values = np.array(values) error = np.array(error) # special handling for different size edges if len(edges) == len(values): edges = np.concatenate((np.array([floor]), np.array(edges))) elif len(edges) == len(values) + 1: edges = np.array(edges) # calculate midpoints and bin edges self.widths = edges[1:] - edges[:-1] self.midpoints = (edges[1:] + edges[:-1]) / 2 # store other primary values self.edges = edges # store values and error in differential and integral forms if form in ('int', 'integral'): self.int = values self.int_error = error self.diff = self.int / self.widths self.diff_error = self.int_error / self.widths elif form in ('dif', 'diff', 'differential'): self.diff = values self.diff_error = error self.int = self.diff * self.widths self.int_error = self.diff_error * self.widths return def __add__(self): raise NotImplementedError def __radd__(self): raise NotImplementedError def __sub__(self): raise NotImplementedError def __rsub__(self): raise NotImplementedError def __mul__(self): raise NotImplementedError def __rmul__(self): raise NotImplementedError def __div__(self): raise NotImplementedError def __rdiv__(self): raise NotImplementedError def plot(self, plot_type, form): """This function will return the arguments necessary for plotting the data with both plt.plot and plt.errorbar in both integral and differential form.""" # check inputs message = "Plot type must be literal of either plot or errorbar." assert plot_type in ('plot', 'errorbar'), message message = "Spectrum form option must be literal in ('int', 'integral', 'dif', 'diff', 'differential')." assert form in ('int', 'integral', 'dif', 'diff', 'differential'), message # step looking data on a plt.plot if plot_type == 'plot': # create doubles of bin edges X = np.array([[xx, xx] for xx in np.array(self.edges)]).flatten()[1:-1] # plotting the integral form if form in ('int', 'integral'): Y = np.array([[yy, yy] for yy in np.array(self.int)]).flatten() # plotting the differential form elif form in ('dif', 'diff', 'differential'): Y = np.array([[yy, yy] for yy in np.array(self.diff)]).flatten() # return the x and y points return X, Y # for errorbars in the appropriate locations elif plot_type == 'errorbar': # errorbars on the integral form if form in ('int', 'integral'): return self.midpoints, self.int, self.int_error # errorbars on the differential form elif form in ('dif', 'diff', 'differential'): return self.midpoints, self.diff, self.diff_error class Spectrum2D(object): """A useful container for nuclear engineering applications. This description will be updated in the future.""" def __init__(self, xedges, yedges, values, error, form='int', floor=(0, 0)): """Create a 2D verion of the spectrum object and its associated values. Also calculates some useful things.""" # check array inputs assert type(xedges) in (list, tuple, np.ndarray), "Bin edges must be of type list, tuple, or ndarray." assert type(yedges) in (list, tuple, np.ndarray), "Bin edges must be of type list, tuple, or ndarray." assert type(values) in (list, tuple, np.ndarray), "Values must be of type list, tuple, or ndarray." assert type(error) in (int, list, tuple, np.ndarray), "Error must be of type int, list, tuple, or ndarray." assert type(floor) in (list, list, tuple, np.ndarray), "Floor must be either int or float." # check spectrum form message = "Spectrum form option must be literal in ('int', 'integral', 'dif', 'diff', 'differential')." assert form in ('int', 'integral', 'dif', 'diff', 'differential'), message # allow error to be input as 0, which implies that all error is zero if type(error) is int: assert error is 0, "Error integer input only allows 0." # then rewrite error error = np.zeros((len(values), len(values[0]))) # check if type(values) in (list, tuple): message = "Issue with shape of values." assert all([len(values[i]) == len(values[i + 1]) for i in range(len(values) - 1)]), message # check val and err shapes message = "Values and error must have same shape." assert len(values) == len(error), message assert len(values[0]) == len(error[0]), message # check edges and val shapes message = "Inconsistency in number of x edges/values." assert len(xedges) in (len(values), len(values) + 1), message message = "Inconsistency in number of y edges/values." assert len(yedges) in (len(values[0]), len(values[0]) + 1), message # guarantee that bin edges are unique and increasing or decreasing message = "Bin edge values must be unique and strictly increasing or decreasing." assert all(x < y for x, y in zip(xedges, xedges[1:])) or all(x > y for x, y in zip(xedges, xedges[1:])), message assert all(x < y for x, y in zip(yedges, yedges[1:])) or all(x > y for x, y in zip(yedges, yedges[1:])), message # convert all data types to numpy arrays values = np.array(values) error = np.array(error) # special handling for different size edges if len(xedges) == values.shape[0]: xedges = np.concatenate((np.array([floor[0]]), np.array(xedges))) elif len(xedges) == len(values) + 1: xedges = np.array(xedges) # do the same for y edges if len(yedges) == values.shape[1]: yedges = np.concatenate((
np.array([floor[1]])
numpy.array
import pytest import brightwind as bw import pandas as pd import numpy as np import datetime wndspd = 8 wndspd_df = pd.DataFrame([2, 13, np.NaN, 5, 8]) wndspd_series = pd.Series([2, 13, np.NaN, 5, 8]) current_slope = 0.045 current_offset = 0.235 new_slope = 0.046 new_offset = 0.236 wndspd_adj = 8.173555555555556 wndspd_adj_df = pd.DataFrame([2.0402222222222224, 13.284666666666668, np.NaN, 5.106888888888888, 8.173555555555556]) wndspd_adj_series = pd.Series([2.0402222222222224, 13.284666666666668, np.NaN, 5.106888888888888, 8.173555555555556]) DATA = bw.load_campbell_scientific(bw.demo_datasets.demo_campbell_scientific_data) DATA_CLND = bw.apply_cleaning(DATA, bw.demo_datasets.demo_cleaning_file) STATION = bw.MeasurementStation(bw.demo_datasets.demo_wra_data_model) DATA_ADJUSTED = bw.load_csv(bw.demo_datasets.demo_data_adjusted_for_testing) WSPD_COLS = ['Spd80mN', 'Spd80mS', 'Spd60mN', 'Spd60mS', 'Spd40mN', 'Spd40mS'] WDIR_COLS = ['Dir78mS', 'Dir58mS', 'Dir38mS'] MERRA2 = bw.load_csv(bw.demo_datasets.demo_merra2_NE) def np_array_equal(a, b): # nan's don't compare so use this instead try: np.testing.assert_equal(a, b) except AssertionError: return False return True def test_selective_avg(): date_today = datetime.datetime(2019, 6, 1) days = pd.date_range(date_today, date_today + datetime.timedelta(24), freq='D') data = pd.DataFrame({'DTM': days}) data = data.set_index('DTM') data['Spd1'] = [1, np.NaN, 1, 1, 1, 1, 1, 1, 1, np.NaN, 1, 1, 1, 1, np.NaN, 1, 1, np.NaN, 1, 1, 1, 1, np.NaN, 1, 1] data['Spd2'] = [2, 2, np.NaN, 2, 2, 2, 2, 2, np.NaN, 2, 2, 2, 2, np.NaN, 2, 2, 2, np.NaN, 2, 2, 2, 2, 2, np.NaN, 2] data['Dir'] = [0, 15, 30, 45, np.NaN, 75, 90, 105, 120, 135, 150, 165, 180, 195, 210, 225, 240, 255, 270, 285, 300, 315, np.NaN, 345, 360] # Test Case 1: Neither boom is near 0-360 crossover result = np.array([1.5, 2, 1, 1.5, 1.5, 1.5, 1.5, 2, 1, 2, 2, 2, 1.5, 1, 2, 1.5, 1.5, np.NaN, 1.5, 1, 1, 1, 2, 1, 1.5]) bw.selective_avg(data[['Spd1']], data[['Spd2']], data[['Dir']], boom_dir_1=315, boom_dir_2=135, sector_width=60) sel_avg = np.array(bw.selective_avg(data.Spd1, data.Spd2, data.Dir, boom_dir_1=315, boom_dir_2=135, sector_width=60)) assert np_array_equal(sel_avg, result) # Test Case 2: Boom 1 is near 0-360 crossover result = np.array([1.0, 2.0, 1.0, 1.0, 1.5, 1.5, 1.5, 1.5, 1.0, 2.0, 1.5, 1.5, 2.0, 1.0, 2.0, 2.0, 1.5, np.NaN, 1.5, 1.5, 1.5, 1.5, 2.0, 1.0, 1.0]) sel_avg = np.array(bw.selective_avg(data.Spd1, data.Spd2, data.Dir, boom_dir_1=20, boom_dir_2=200, sector_width=60)) assert np_array_equal(sel_avg, result) # Test Case 3: Boom 2 is near 0-360 crossover result = np.array([2.0, 2.0, 1.0, 1.5, 1.5, 1.5, 1.5, 1.5, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 2.0, 1.5, 1.5, np.NaN, 1.5, 1.5, 1.5, 1.5, 2.0, 1.0, 2.0]) sel_avg = np.array(bw.selective_avg(data.Spd1, data.Spd2, data.Dir, boom_dir_1=175, boom_dir_2=355, sector_width=60)) assert np_array_equal(sel_avg, result) # Test Case 4: Booms at 90 deg to each other result = np.array([1.0, 2.0, 1.0, 1.5, 1.5, 2.0, 2.0, 2.0, 1.0, 2.0, 1.5, 1.5, 1.5, 1.0, 2.0, 1.5, 1.5, np.NaN, 1.5, 1.5, 1.5, 1.5, 2.0, 1.0, 1.0]) sel_avg = np.array(bw.selective_avg(data.Spd1, data.Spd2, data.Dir, boom_dir_1=270, boom_dir_2=180, sector_width=60)) assert np_array_equal(sel_avg, result) # Test Case 5: Sectors overlap error msg with pytest.raises(ValueError) as except_info: bw.selective_avg(data.Spd1, data.Spd2, data.Dir, boom_dir_1=180, boom_dir_2=185, sector_width=60) assert str(except_info.value) == "Sectors overlap! Please check your inputs or reduce the size of " \ "your 'sector_width'." def test_adjust_slope_offset_single_value(): assert wndspd_adj == bw.adjust_slope_offset(wndspd, current_slope, current_offset, new_slope, new_offset) def test_adjust_slope_offset_df(): assert wndspd_adj_df.equals(bw.adjust_slope_offset(wndspd_df, current_slope, current_offset, new_slope, new_offset)) def test_adjust_slope_offset_series(): assert wndspd_adj_series.equals(bw.adjust_slope_offset(wndspd_series, current_slope, current_offset, new_slope, new_offset)) def test_adjust_slope_offset_arg_str(): # check error msg if a string is sent as one of the slope or offset arguments with pytest.raises(TypeError) as except_info: bw.adjust_slope_offset(wndspd, current_slope, current_offset, '0.046', new_offset) assert str(except_info.value) == "argument '0.046' is not of data type number" def test_adjust_slope_offset_arg_wndspd_str(): # check error msg if a string is sent as the wind speed argument with pytest.raises(TypeError) as except_info: bw.adjust_slope_offset('8', current_slope, current_offset, new_slope, new_offset) assert str(except_info.value) == "wspd argument is not of data type number" def test_adjust_slope_offset_arg_wndspd_list(): # check error msg if a list is sent as the wind speed argument with pytest.raises(TypeError) as except_info: bw.adjust_slope_offset([2, 3, 4, 5], current_slope, current_offset, new_slope, new_offset) assert str(except_info.value) == "wspd argument is not of data type number" def test_adjust_slope_offset_arg_wndspd_df_str(): # check error msg if a string is an element in the pandas DataFrame with pytest.raises(TypeError) as except_info: bw.adjust_slope_offset(pd.DataFrame([2, 3, '4', 5]), current_slope, current_offset, new_slope, new_offset) assert str(except_info.value) == "some values in the DataFrame are not of data type number" def test_adjust_slope_offset_arg_wndspd_series_str(): # check error msg if a string is an element in the pandas DataFrame with pytest.raises(TypeError) as except_info: bw.adjust_slope_offset(pd.Series([2, 3, '4', 5]), current_slope, current_offset, new_slope, new_offset) assert str(except_info.value) == "some values in the Series are not of data type number" def test_apply_wspd_slope_offset_adj(): data = bw.apply_wspd_slope_offset_adj(DATA, STATION.measurements) assert((DATA_ADJUSTED[WSPD_COLS].fillna(0).round(5) == data[WSPD_COLS].fillna(0).round(5)).all()).all() wspd_cols_that_work = ['Spd80mN', 'Spd80mS', 'Spd60mN', 'Spd40mN'] data2 = bw.apply_wspd_slope_offset_adj(DATA[wspd_cols_that_work], STATION.measurements) assert((DATA_ADJUSTED[wspd_cols_that_work].fillna(0).round(5) == data2[wspd_cols_that_work].fillna(0).round(5)).all()).all() data1 = bw.apply_wspd_slope_offset_adj(DATA['Spd60mS'], STATION.measurements['Spd60mS']) assert (data1.fillna(0).round(10) == DATA_ADJUSTED['Spd60mS'].fillna(0).round(10)).all() def test_offset_wind_direction_float(): wdir_offset = float(5) assert wdir_offset == bw.offset_wind_direction(float(20), 345) def test_offset_wind_direction_df(): wdir_df_offset = pd.DataFrame([355, 15, np.NaN, 25, 335]) assert wdir_df_offset.equals(bw.offset_wind_direction(pd.DataFrame([10, 30, np.NaN, 40, 350]), 345)) def test_offset_wind_direction_series(): wdir_series_offset = pd.Series([355, 15, np.NaN, 25, 335]) assert wdir_series_offset.equals(bw.offset_wind_direction(pd.Series([10, 30, np.NaN, 40, 350]), 345)) def test_apply_wind_vane_dead_band_offset(): data1 = bw.apply_wind_vane_deadband_offset(DATA['Dir78mS'], STATION.measurements) data = bw.apply_wind_vane_deadband_offset(DATA, STATION.measurements) assert((DATA_ADJUSTED[WDIR_COLS].fillna(0).round(10) == data[WDIR_COLS].fillna(0).round(10)).all()).all() assert (data1.fillna(0).round(10) == data['Dir78mS'].fillna(0).round(10)).all() def test_freq_str_to_timedelta(): periods = ['1min', '5min', '10min', '15min', '1H', '3H', '6H', '1D', '7D', '1W', '2W', '1MS', '1M', '3M', '6MS', '1AS', '1A', '3A'] results = [60.0, 300.0, 600.0, 900.0, 3600.0, 10800.0, 21600.0, 86400.0, 604800.0, 604800.0, 1209600.0, 2629746.0, 2629746.0, 7889238.0, 15778476.0, 31536000.0, 31536000.0, 94608000.0] for idx, period in enumerate(periods): assert bw.transform.transform._freq_str_to_timedelta(period).total_seconds() == results[idx] def test_round_timestamp_down_to_averaging_prd(): timestamp = pd.Timestamp('2016-01-09 11:21:11') avg_periods = ['10min', '15min', '1H', '3H', '6H', '1D', '7D', '1W', '1MS', '1AS'] avg_period_start_timestamps = ['2016-1-9 11:20:00', '2016-1-9 11:15:00', '2016-1-9 11:00:00', '2016-1-9 9:00:00', '2016-1-9 6:00:00', '2016-1-9', '2016-1-9', '2016-1-9', '2016-1', '2016'] for idx, avg_period in enumerate(avg_periods): assert avg_period_start_timestamps[idx] == \ bw.transform.transform._round_timestamp_down_to_averaging_prd(timestamp, avg_period) def test_get_data_resolution(): import warnings series1 = DATA['Spd80mS'].index assert bw.transform.transform._get_data_resolution(series1).seconds == 600 series2 = pd.date_range('2010-01-01', periods=150, freq='H') assert bw.transform.transform._get_data_resolution(series2).seconds == 3600 series1 = bw.average_data_by_period(DATA['Spd80mN'], period='1M', coverage_threshold=0, return_coverage=False) assert bw.transform.transform._get_data_resolution(series1.index) == pd.Timedelta(1, unit='M') series1 = bw.average_data_by_period(DATA['Spd80mN'], period='1AS', coverage_threshold=0, return_coverage=False) assert bw.transform.transform._get_data_resolution(series1.index) == pd.Timedelta(365, unit='D') # hourly series with one instance where difference between adjacent timestamps is 10 min series3 = pd.date_range('2010-04-15', '2010-05-01', freq='H').union(pd.date_range('2010-05-01 00:10:00', periods=20, freq='H')) with warnings.catch_warnings(record=True) as w: assert bw.transform.transform._get_data_resolution(series3).seconds == 3600 assert len(w) == 1 def test_offset_timestamps(): series1 = DATA['2016-01-10 00:00:00':] # sending index with no start end bw.offset_timestamps(series1.index, offset='90min') # sending index with start end op = bw.offset_timestamps(series1.index, offset='2min', date_from='2016-01-10 00:10:00') assert op[0] == pd.to_datetime('2016-01-10 00:00:00') assert op[1] == pd.to_datetime('2016-01-10 00:12:00') op = bw.offset_timestamps(series1.index, '2min', date_to='2016-01-10 00:30:00') assert op[3] == pd.to_datetime('2016-01-10 00:32:00') assert op[4] == pd.to_datetime('2016-01-10 00:40:00') op = bw.offset_timestamps(series1.index, '3min', date_from='2016-01-10 00:10:00', date_to='2016-01-10 00:30:00') assert op[0] == pd.to_datetime('2016-01-10 00:00:00') assert op[1] == pd.to_datetime('2016-01-10 00:13:00') assert op[5] == pd.to_datetime('2016-01-10 00:50:00') op = bw.offset_timestamps(series1.index, '10min', date_from='2016-01-10 00:10:00', date_to='2016-01-10 00:30:00') assert op[0] == series1.index[0] assert op[1] == series1.index[2] # sending DataFrame with datetime index op = bw.offset_timestamps(series1, offset='-10min', date_from='2016-01-10 00:20:00') assert (op.iloc[1] == series1.iloc[1]).all() assert len(op) + 1 == len(series1) assert (op.loc['2016-01-10 00:40:00'] == series1.loc['2016-01-10 00:50:00']).all() op = bw.offset_timestamps(series1, offset='-10min', date_from='2016-01-10 00:20:00', overwrite=True) assert (op.loc['2016-01-10 00:10:00'] == series1.loc['2016-01-10 00:20:00']).all() op = bw.offset_timestamps(series1, '10min', date_from='2016-01-10 00:10:00', date_to='2016-01-10 00:30:00') assert (op.loc['2016-01-10 00:20:00'] == series1.loc['2016-01-10 00:10:00']).all() assert (op.loc['2016-01-10 00:40:00'] == series1.loc['2016-01-10 00:40:00']).all() assert len(op) + 1 == len(series1) op = bw.offset_timestamps(series1, '10min', date_from='2016-01-10 00:10:00', date_to='2016-01-10 00:30:00', overwrite=True) assert (op.loc['2016-01-10 00:40:00'] == series1.loc['2016-01-10 00:30:00']).all() assert len(op) + 1 == len(series1) # sending Series with datetime index op = bw.offset_timestamps(series1.Spd60mN, offset='-10min', date_from='2016-01-10 00:20:00') assert (op.iloc[1] == series1.Spd60mN.iloc[1]).all() assert len(op) + 1 == len(series1.Spd60mN) assert (op.loc['2016-01-10 00:40:00'] == series1.Spd60mN.loc['2016-01-10 00:50:00']).all() op = bw.offset_timestamps(series1.Spd60mN, offset='-10min', date_from='2016-01-10 00:20:00', overwrite=True) assert (op.loc['2016-01-10 00:10:00'] == series1.Spd60mN.loc['2016-01-10 00:20:00']).all() op = bw.offset_timestamps(series1.Spd60mN, '10min', date_from='2016-01-10 00:10:00', date_to='2016-01-10 00:30:00') assert (op.loc['2016-01-10 00:20:00'] == series1.Spd60mN.loc['2016-01-10 00:10:00']).all() assert (op.loc['2016-01-10 00:40:00'] == series1.Spd60mN.loc['2016-01-10 00:40:00']).all() assert len(op) + 1 == len(series1.Spd60mN) op = bw.offset_timestamps(series1.Spd60mN, '10min', date_from='2016-01-10 00:10:00', date_to='2016-01-10 00:30:00', overwrite=True) assert (op.loc['2016-01-10 00:40:00'] == series1.Spd60mN.loc['2016-01-10 00:30:00']).all() assert len(op) + 1 == len(series1.Spd60mN) def test_average_wdirs(): wdirs = np.array([350, 10]) assert bw.average_wdirs(wdirs) == 0.0 wdirs = np.array([0, 180]) assert bw.average_wdirs(wdirs) is np.NaN wdirs =
np.array([90, 270])
numpy.array
# ------------------------------------------------------------------------------ # Global imports # ------------------------------------------------------------------------------ from typing import List from typing import Optional from pathlib import Path import torch as pt import numpy as np from mpath.layer import Retina from mpath.layer import Dense class Network: """ A stateful network consisting of a sensor layer and one or more deeper layers. """ def __init__( self, _layer_sizes: List[int], _layer_tau: Optional[List[float]] = None, _learn: bool = True, _min_weight: float = -1.0, _max_weight: float = 1.0, _learning_rate: float = 0.05, _keep_activations: bool = False, _keep_weights: bool = False, ): """ Initialise a network with a retinal layer and a number of deeper layers. """ assert _layer_tau is None or len(_layer_tau) == len( _layer_sizes ), f"==[ Error: You have to provide either all or none of the membrane time constants." # Create the retina self.retina = Retina( _size=_layer_sizes[0], _tau=_layer_tau[0] if _layer_tau else None, _activation_history=_keep_activations, ) # Create layers. # Retinal layers have ON and OFF cells, so they are actually twice the size of the input variables. self.layers = [] input_size = 2 * _layer_sizes[0] for idx, layer_size in enumerate(_layer_sizes[1:]): self.layers.append( Dense( size=layer_size, input_size=input_size, tau=None if _layer_tau is None else _layer_tau[idx], min_weight=_min_weight, max_weight=_max_weight, learn=_learn, learning_rate=_learning_rate, activation_history=_keep_activations, weight_history=_keep_weights, ) ) input_size = layer_size # Indicate if we want the network to learn self.learn: bool = _learn # Learning rate self.learning_rate: float = _learning_rate # Input history self.input_history: Optional[List] = [] if _keep_activations else None # Weight history self.weight_history: Optional[pt.Tensor] = ( _keep_weights if _keep_weights else None ) def integrate( self, _input_signals: pt.Tensor, ): """ Integrate input signals and propagate activations through the network. """ if self.input_history is not None: self.input_history.append(_input_signals.squeeze_().numpy()) # Capture inputs with the retina self.retina.integrate(_input_signals) _input_signals = self.retina.activations # Propagate the inputs through the layers for layer in self.layers: layer.integrate(_input_signals) _input_signals = layer.activations def freeze(self): """ Stop learning. """ for layer in self.layers: layer.learn = False def unfreeze(self): """ Resume learning. """ for layer in self.layers: layer.learn = True def _params(self): """ Get the network parameters. """ params = {} params[f"lr"] = np.array([self.learning_rate]) params[f"tau_ret"] = self.retina.tau.numpy() params[f"size_ret"] =
np.array(self.retina.activations.shape)
numpy.array
from pnuml.learner.base_learner import BaseLearner import numpy as np import pprint class Regression(BaseLearner): def __init__(self, weight, activation, **kwargs): """ configure regression model param weight : weight **w** of the model param activation : can be ReLU or Sigmoid or TanH """ super().__init__() self.weight = weight self.activation = activation def train_on_batch(self, batch_loader, epoch, lr=1e-2, lr_decay=1e-9): """ train weight parameter of the model with given dataset generator. learing rate can be decayed with given lr_decay arguments. whole training process iterated with count epoch. """ if self.weight.shape[-1] != batch_loader.x_shape[-1] + 1: raise ValueError("weight and input x shape + pad(1) must matched\n" "Weight shape {}, input x shape {}".format( self.weight.shape, batch_loader.x_shape)) loss = [] for _ in range(epoch): for (x, y) in batch_loader: x = np.pad(x, ((0, 0), (1, 0)), 'constant', constant_values=1) g = np.matmul(self.weight, x.T) h_w = self.activation.forward(g) loss.append(np.sum(y * np.log(h_w) + (1. - y) * np.log(1. - h_w))) self.weight = self.weight + lr * (y - h_w) * x lr -= lr * lr_decay return loss def predict_on_batch(self, batch_loader): """ make prediction with trained weight value to the given test dataset generator. return prediction probabilities. """ prediction = [] for (x, y) in batch_loader: x = np.pad(x, ((0, 0), (1, 0)), 'constant', constant_values=1) g =
np.matmul(self.weight, x.T)
numpy.matmul
# -*- coding: utf-8 -*- """Siamese Network for performing training of a Deep Convolutional Network for Face Verification on the Olivetti and LFW Faces datasets. Dependencies: python 3.4+, numpy>=1.10.4, sklearn>=0.17, scipy>=0.17.0, theano>=0.7.0, lasagne>=0.1, cv2, dlib>=18.18 (only required if using the 'trees' crop mode). Part of the package siamese_net: siamese_net/ siamese_net/faces.py siamese_net/datasets.py siamese_net/normalization.py siamese_net/siamese_net.py Copyright 2016 Kadenze, Inc. Kadenze(R) and Kannu(R) are Registered Trademarks of Kadenze, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ """ import sys import pickle import os # base_compiledir = os.path.expandvars("$HOME/.theano/slot-%d" % (os.getpid())) # os.environ['THEANO_FLAGS'] = "base_compiledir=%s" % base_compiledir import matplotlib.pyplot as plt import numpy as np import theano import theano.tensor as T import time import lasagne # For training the final output network from sklearn import cross_validation from sklearn import metrics from sklearn.linear_model import LogisticRegression # Custom code for parsing datasets and normalizing images from datasets import Datasets from normalization import LCN, ZCA # plt.style.use('ggplot') theano.config.floatX = 'float32' def montage(x): if x.shape[1] == 1 or x.shape[1] == 3: num_img = x.shape[0] num_img_per_dim = np.ceil(np.sqrt(num_img)).astype(int) montage_img = np.zeros(( num_img_per_dim * x.shape[3], num_img_per_dim * x.shape[2], x.shape[1])) else: num_img_per_dim = np.ceil(np.sqrt(x.shape[1])).astype(int) montage_img = np.zeros(( num_img_per_dim * x.shape[3], num_img_per_dim * x.shape[2])) num_img = x.shape[1] for img_i in range(num_img_per_dim): for img_j in range(num_img_per_dim): if img_i * num_img_per_dim + img_j < num_img: if x.shape[0] == 1: montage_img[ img_i * x.shape[3]: (img_i + 1) * x.shape[2], img_j * x.shape[3]: (img_j + 1) * x.shape[2] ] = np.squeeze(np.squeeze( x[0, img_i * num_img_per_dim + img_j, ...] ) / (np.max(x[0, img_i * num_img_per_dim + img_j, ...] ) + 1e-15)) else: montage_img[ img_i * x.shape[3]: (img_i + 1) * x.shape[2], img_j * x.shape[3]: (img_j + 1) * x.shape[2], : ] = np.swapaxes(np.squeeze( x[img_i * num_img_per_dim + img_j, ...] ) / (np.max(x[img_i * num_img_per_dim + img_j, ...] ) + 1e-15), 0, 2) return montage_img def get_image_manifold(images, features, res=64, n_neighbors=5): '''Creates a montage of the images based on a TSNE manifold of the associated image features. ''' from sklearn import manifold mapper = manifold.SpectralEmbedding() transform = mapper.fit_transform(features) nx = int(np.ceil(np.sqrt(len(transform)))) ny = int(np.ceil(np.sqrt(len(transform)))) montage_img = np.zeros((res * nx, res * ny, 3)) from sklearn.neighbors import NearestNeighbors nn = NearestNeighbors() nn.fit(transform) min_x = np.mean(transform[:, 0]) - np.std(transform[:, 0]) * 3.0 max_x = np.mean(transform[:, 0]) + np.std(transform[:, 0]) * 3.0 min_y = np.mean(transform[:, 1]) - np.std(transform[:, 1]) * 3.0 max_y = np.mean(transform[:, 1]) + np.std(transform[:, 1]) * 3.0 for n_i in range(nx): for n_j in range(ny): x = min_x + (max_x - min_x) / nx * n_i y = min_y + (max_y - min_y) / ny * n_j idx = nn.kneighbors([x, y], n_neighbors=n_neighbors)[1][0][:] for neighbor_i in idx: montage_img[ n_i * res: (n_i + 1) * res, n_j * res: (n_j + 1) * res, :] += images[neighbor_i] montage_img[ n_i * res: (n_i + 1) * res, n_j * res: (n_j + 1) * res, :] /= float(len(idx)) montage_img = montage_img / np.max(montage_img) return montage_img def make_image_pairs(X, y, unique_labels): '''For each person in unique_labels (P people): 1. combine all matched pairs the images of that person (N images): N_matched = (P choose 2) * (N choose 2) 2. combine all imposter pairs. N_unmatched = (P choose 2) * (N * N) Returns an array of matched and unmatched images and their targets ------------------------------------------------------------------ X_matched, y_matched, X_unmatched, y_unmatched where the dimensions of the Xs are (with 2 being each image in the pair): [(N_matched + N_unmatched) x 2 x W x H] and ys are ---------- [(N_matched + N_unmatched),] Args ---- X : TYPE Description y : TYPE Description unique_labels : TYPE Description Deleted Parameters ------------------ X (TYPE) : Description y (TYPE) : Description unique_labels (TYPE) : Description ''' from itertools import combinations X_pairs_matched = list() y_pairs_matched = list() # Iterate over all actual pairs # 32 choose 2 = 496 people pairs. 496 * (10 images choose 2) = 496 * 45 = # 1440 for person in unique_labels: # Find images of those people im_idx = np.where(person == y)[0] for el in combinations(im_idx, 2): X_pairs_matched.append( np.concatenate((X[el[0], ...], X[el[1], ...]), axis=0)[np.newaxis, ...]) y_pairs_matched.append(1) X_pairs_unmatched = list() y_pairs_unmatched = list() # Iterate over all imposter pairs of people # (32 choose 2 = 496 people pairs. 496 * 10 * 10 image pairs = # 49600 imposter pairs) # (157 * 0.4 = 63), 63 choose 2 = 1953, 1953 * 100 = 195300 for pair in combinations(unique_labels, 2): # Find images of those people im1_idx = np.where(pair[0] == y)[0] im2_idx = np.where(pair[1] == y)[0] for im1_idx_it in im1_idx: for im2_idx_it in im2_idx: X_pairs_unmatched.append(np.concatenate( (X[im1_idx_it, ...], X[im2_idx_it, ...]), axis=0)[np.newaxis, ...]) y_pairs_unmatched.append(0) return (np.concatenate(X_pairs_matched), np.array(y_pairs_matched), np.concatenate(X_pairs_unmatched), np.array(y_pairs_unmatched)) def make_image_pair_idxs(y, unique_labels): '''For each person in unique_labels (P people): 1. combine all matched pairs the images of that person (N images): N_matched = (P choose 2) * (N choose 2) 2. combine all imposter pairs. N_unmatched = (P choose 2) * (N * N) Returns an array of matched and unmatched images and their targets ------------------------------------------------------------------ X_matched, y_matched, X_unmatched, y_unmatched where the dimensions of the Xs are [(N_matched + N_unmatched) x 2] (with 2 being the index into X defining the image in the pair), and ys are [(N_matched + N_unmatched),] Args ---- y : TYPE Description unique_labels : TYPE Description Deleted Parameters ------------------ y (TYPE) : Description unique_labels (TYPE) : Description ''' from itertools import combinations X_pairs_matched = list() y_pairs_matched = list() # Iterate over all actual pairs # 32 choose 2 = 496 people pairs. 496 * (10 images choose 2) = 496 * 45 = # 1440 for person in unique_labels: # Find images of those people im_idx = np.where(person == y)[0] for el in combinations(im_idx, 2): X_pairs_matched.append(np.array([el[0], el[1]])[np.newaxis, ...]) y_pairs_matched.append(1) X_pairs_unmatched = list() y_pairs_unmatched = list() # Iterate over all imposter pairs of people # (32 choose 2 = 496 people pairs. 496 * 10 * 10 image pairs = 49600 imposter pairs) # (157 * 0.4 = 63), 63 choose 2 = 1953, 1953 * 100 = 195300 for pair_i, pair in enumerate(combinations(unique_labels, 2)): # Find images of those people im1_idx = np.where(pair[0] == y)[0] im2_idx =
np.where(pair[1] == y)
numpy.where
from typing import List, Tuple, Dict import argparse from scipy.ndimage import fourier_shift, shift from skimage.feature import register_translation, masked_register_translation from skimage.transform import rescale from skimage import io from shutil import move from tqdm import tqdm from parseConfig import parseConfig import torch import random import pandas as pd import numpy as np import glob import os import gc import logging logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO) DEBUG = 0 # Set the data data directory # Download data at https://kelvins.esa.int/proba-v-super-resolution/data/ DATA_BANK_DIRECTORY = '/home/mark/DataBank/probav_data/' DATA_BANK_DIRECTORY_PREPROCESSING_CHKPT = '/home/mark/DataBank/PROBA-V-CHKPT' LOSS_CROP_BORDER = 3 def parser(): parser = argparse.ArgumentParser() parser.add_argument('--cfg', default='cfg/p16t9c85r12.cfg', type=str) parser.add_argument('--band', default='NIR', type=str) parser.add_argument('--dir', type=str, default='/home/mark/DataBank/probav_data/') parser.add_argument('--ckptdir', default='/home/mark/DataBank/PROBA-V-CHKPT', type=str) parser.add_argument('--numTopClearest', type=int, default=9) parser.add_argument('--patchSizeLR', type=int, default=16) # base patch size is 32 parser.add_argument('--patchStrideLR', type=int, default=16) parser.add_argument('--clarityThresholdLR', type=float, default=0.85) parser.add_argument('--clarityThresholdHR', type=float, default=0.85) parser.add_argument('--numPermute', type=int, default=19) parser.add_argument('--toPad', type=bool, default=True) parser.add_argument('--ckpt', type=int, nargs='+', default=[1, 2, 3, 4, 5]) opt = parser.parse_args() return opt def main(config): rawDataDir = opt.dir cleanDataDir = opt.ckptdir band = opt.band arrayDir = os.path.join(cleanDataDir, 'arrayDir') trimmedArrayDir = os.path.join(cleanDataDir, 'trimmedArrayDir') patchesDir = os.path.join(cleanDataDir, 'patchesDir') trimmedPatchesDir = os.path.join(cleanDataDir, 'trimmedPatchesDir') augmentedPatchesDir = os.path.join(cleanDataDir, 'augmentedPatchesDir') # Check validity of directories if not os.path.exists(arrayDir): os.makedirs(arrayDir) if not os.path.exists(trimmedArrayDir): os.makedirs(trimmedArrayDir) if not os.path.exists(patchesDir): os.makedirs(patchesDir) if not os.path.exists(trimmedPatchesDir): os.makedirs(trimmedPatchesDir) if not os.path.exists(augmentedPatchesDir): os.makedirs(augmentedPatchesDir) # CHECKPOINT 1 - RAW DATA LOAD AND SAVE if 1 in opt.ckpt: # Train logging.info('Loading and dumping raw data...') loadAndSaveRawData(rawDataDir, arrayDir, 'NIR', isGrayScale=True, isTrainData=True) loadAndSaveRawData(rawDataDir, arrayDir, 'RED', isGrayScale=True, isTrainData=True) # Test loadAndSaveRawData(rawDataDir, arrayDir, 'NIR', isGrayScale=True, isTrainData=False) loadAndSaveRawData(rawDataDir, arrayDir, 'RED', isGrayScale=True, isTrainData=False) # CHECKPOINT 2 - IMAGE REGISTRATION AND CORRUPTED IMAGE SET REMOVAL if 2 in opt.ckpt: # Load dataset logging.info(f'Loading {band} dataset...') TRAIN, TEST = loadData(arrayDir, band) # Process the train dataset logging.info(f'Processing {band} train dataset...') allImgLR, allMskLR, allImgHR, allMskHR = TRAIN allImgMskLR = registerImages(allImgLR, allMskLR) # np.ma.masked_array allImgMskHR = convertToMaskedArray(allImgHR, allMskHR) # np.ma.masked_array trmImgMskLR, trmImgMskHR = removeCorruptedTrainImageSets( allImgMskLR, allImgMskHR, clarityThreshold=opt.clarityThresholdLR) trmImgMskLR = pickClearLRImgsPerImgSet( trmImgMskLR, numImgToPick=opt.numTopClearest, clarityThreshold=opt.clarityThresholdLR) # Process the test dataset logging.info(f'Processing {band} test dataset...') allImgLRTest, allMskLRTest = TEST allImgMskLRTest = registerImages(allImgLRTest, allMskLRTest) # np.ma.masked_array trmImgMskLRTest = removeCorruptedTestImageSets(allImgMskLRTest, clarityThreshold=opt.clarityThresholdLR) trmImgMskLRTest = pickClearLRImgsPerImgSet( trmImgMskLRTest, numImgToPick=opt.numTopClearest, clarityThreshold=opt.clarityThresholdLR) logging.info(f'Saving {band} trimmed dataset...') if not os.path.exists(trimmedArrayDir): os.makedirs(trimmedArrayDir) trmImgMskLR.dump(os.path.join(trimmedArrayDir, f'TRAINimgLR_{band}.npy')) trmImgMskHR.dump(os.path.join(trimmedArrayDir, f'TRAINimgHR_{band}.npy')) trmImgMskLRTest.dump(os.path.join(trimmedArrayDir, f'TESTimgLR_{band}.npy')) # CHECKPOINT 3 - PATCH GENERATION if 3 in opt.ckpt: # Generate patches logging.info(f'Loading TEST {band} LR patch dataset...') trmImgMskLRTest = np.load(os.path.join(trimmedArrayDir, f'TESTimgLR_{band}.npy'), allow_pickle=True) logging.info(f'Generating TEST {band} LR Patches...') numImgSet, numImgPerImgSet, C, _, _ = trmImgMskLRTest.shape # padding with size of Loss Crop cropBorder if opt.toPad: paddings = [[0, 0], [0, 0], [0, 0], [LOSS_CROP_BORDER, LOSS_CROP_BORDER], [LOSS_CROP_BORDER, LOSS_CROP_BORDER]] trmImgLRTest = np.pad(trmImgMskLRTest, paddings, 'reflect') trmMskLRTest = np.pad(trmImgMskLRTest.mask, paddings, 'reflect') trmImgMskLRTest = np.ma.masked_array(trmImgLRTest, mask=trmMskLRTest) MAX_SHIFT = 2 * LOSS_CROP_BORDER else: MAX_SHIFT = 0 patchesLR = generatePatches(trmImgMskLRTest, patchSize=opt.patchSizeLR + MAX_SHIFT, stride=opt.patchSizeLR) patchesLR = patchesLR.reshape((numImgSet, -1, numImgPerImgSet, C, opt.patchSizeLR + MAX_SHIFT, opt.patchSizeLR + MAX_SHIFT)) logging.info(f'Saving {band} LR Patches...') patchesLR.dump(os.path.join(patchesDir, f'TESTpatchesLR_{band}.npy'), protocol=4) del trmImgMskLRTest del patchesLR gc.collect() logging.info(f'Loading TRAIN {band} LR patch dataset...') trmImgMskLR = np.load(os.path.join(trimmedArrayDir, f'TRAINimgLR_{band}.npy'), allow_pickle=True) logging.info(f'Generating TRAIN {band} LR Patches...') numImgSet, numImgPerImgSet, C, H, W = trmImgMskLR.shape if opt.toPad: paddings = [[0, 0], [0, 0], [0, 0], [LOSS_CROP_BORDER, LOSS_CROP_BORDER], [LOSS_CROP_BORDER, LOSS_CROP_BORDER]] trmImgLR = np.pad(trmImgMskLR, paddings, 'reflect') trmMskLR = np.pad(trmImgMskLR.mask, paddings, 'reflect') trmImgMskLR = np.ma.masked_array(trmImgLR, mask=trmMskLR) MAX_SHIFT = 2 * LOSS_CROP_BORDER else: MAX_SHIFT = 0 patchesLR = generatePatches(trmImgMskLR, patchSize=opt.patchSizeLR + MAX_SHIFT, stride=opt.patchStrideLR) patchesLR = patchesLR.reshape((numImgSet, -1, numImgPerImgSet, C, opt.patchSizeLR + MAX_SHIFT, opt.patchSizeLR + MAX_SHIFT)) logging.info(f'Saving {band} LR Patches...') patchesLR.dump(os.path.join(patchesDir, f'TRAINpatchesLR_{band}.npy'), protocol=4) del trmImgMskLR del patchesLR gc.collect() logging.info(f'Loading TRAIN {band} HR patch dataset...') trmImgMskHR = np.load(os.path.join(trimmedArrayDir, f'TRAINimgHR_{band}.npy'), allow_pickle=True) logging.info(f'Generating TRAIN {band} HR Patches...') numImgSet, numImgPerImgSet, C, Hhr, Whr = trmImgMskHR.shape # Compute upsampleScale upsampleScale = Hhr // H patchesHR = generatePatches(trmImgMskHR, patchSize=opt.patchSizeLR * upsampleScale, stride=opt.patchStrideLR * upsampleScale) patchesHR = patchesHR.reshape((numImgSet, -1, numImgPerImgSet, C, opt.patchSizeLR * upsampleScale, opt.patchSizeLR * upsampleScale)) logging.info(f'Saving {band} HR Patches...') patchesHR.dump(os.path.join(patchesDir, f'TRAINpatchesHR_{band}.npy'), protocol=4) del trmImgMskHR del patchesHR gc.collect() # CHECKPOINT 4 - CLEANING PATCHES if 4 in opt.ckpt: logging.info(f'Loading {band} train LR Patches...') patchesLR = np.load(os.path.join(patchesDir, f'TRAINpatchesLR_{band}.npy'), allow_pickle=True) logging.info(f'Loading {band} train HR Patches...') patchesHR = np.load(os.path.join(patchesDir, f'TRAINpatchesHR_{band}.npy'), allow_pickle=True) logging.info(f'Remove corrupted train {band} Patch sets...') trmPatchesLR, trmPatchesHR = removeCorruptedTrainPatchSets( patchesLR, patchesHR, clarityThreshold=opt.clarityThresholdHR) logging.info(f'Deleting {band} train HR patches that has below {opt.clarityThresholdHR} clarity...') trmPatchesLR, trmPatchesHR = pickClearPatches( trmPatchesLR, trmPatchesHR, clarityThreshold=opt.clarityThresholdHR) # Reshape to [N, C, D, H, W] for PyTorch training logging.info(f'Reshaping {band} train patches...') trmPatchesLR = trmPatchesLR.transpose((0, 3, 4, 1, 2)) # shape is (numImgSet, H, W, numLRImg, C) trmPatchesHR = trmPatchesHR.transpose((0, 3, 4, 1, 2)) trmPatchesHR = trmPatchesHR.squeeze(4) # (numImgSet, H, W, C) logging.info(f'Saving {band} train patches...') trmPatchesLR.dump(os.path.join(trimmedPatchesDir, f'TRAINpatchesLR_{band}.npy'), protocol=4) trmPatchesHR.dump(os.path.join(trimmedPatchesDir, f'TRAINpatchesHR_{band}.npy'), protocol=4) # CHECKPOINT 5 - AUGMENTING PATCHES if 5 in opt.ckpt: logging.info(f'Loading {band} train LR Patches...') augmentedPatchesLR = np.load(os.path.join(trimmedPatchesDir, f'TRAINpatchesLR_{band}.npy'), allow_pickle=True) logging.info(f'Augmenting by permuting {band} train HR Patches... Input: {augmentedPatchesLR.shape}') augmentedPatchesLR = augmentByShufflingLRImgs(augmentedPatchesLR, numPermute=opt.numPermute) logging.info(f'Augmenting by flipping {band} train LR Patches... Input: {augmentedPatchesLR.shape}') #augmentedPatchesLR = augmentByFlipping(augmentedPatchesLR) logging.info(f'Saving {band} train LR Patches... Final shape: {augmentedPatchesLR.shape}') augmentedPatchesLR.dump(os.path.join(augmentedPatchesDir, f'TRAINpatchesLR_{band}.npy'), protocol=4) del augmentedPatchesLR gc.collect() logging.info(f'Loading {band} train HR Patches...') augmentedPatchesHR = np.load(os.path.join(trimmedPatchesDir, f'TRAINpatchesHR_{band}.npy'), allow_pickle=True) logging.info(f'Augmenting by permuting {band} train HR Patches... Input: {augmentedPatchesHR.shape}') augmentedPatchesHR = np.tile(augmentedPatchesHR, (opt.numPermute + 1, 1, 1, 1)) logging.info(f'Augmenting by flipping {band} train HR Patches... Input: {augmentedPatchesHR.shape}') #augmentedPatchesHR = augmentByFlipping(augmentedPatchesHR) logging.info(f'Saving {band} train HR Patches... Final shape: {augmentedPatchesHR.shape}') augmentedPatchesHR.dump(os.path.join(augmentedPatchesDir, f'TRAINpatchesHR_{band}.npy'), protocol=4) del augmentedPatchesHR gc.collect() def augmentByRICAP(): pass def augmentByShufflingLRImgs(patchLR: np.ma.masked_array, numPermute=9): # shape is (numImgSet, H, W, numLRImg, C) # (numImgSet, H, W, C) if numPermute == 0: return patchLR numImgSet, H, W, numLRImg, C = patchLR.shape cacheLR = [patchLR] for _ in range(numPermute): idx = np.random.permutation(np.arange(numLRImg)) shuffled = patchLR[:, :, :, idx, :] cacheLR.append(shuffled) patchLR = np.concatenate(cacheLR) return patchLR def augmentByFlipping(patches: np.ma.masked_array): img90 = np.rot90(patches, k=1, axes=(1, 2)) img180 = np.rot90(patches, k=2, axes=(1, 2)) img270 = np.rot90(patches, k=3, axes=(1, 2)) imgFlipV = np.flip(patches, axis=(1)) imgFlipH = np.flip(patches, axis=(2)) imgFlipVH = np.flip(patches, axis=(1, 2)) allImgMsk = np.concatenate((patches, img90, img180, img270, imgFlipV, imgFlipH, imgFlipVH)) return allImgMsk def pickClearPatches(patchesLR: np.ma.masked_array, patchesHR: np.ma.masked_array, clarityThreshold: float) -> List[np.ma.masked_array]: ''' Input: patchesLR: np.ma.masked_array[numImgSet, numPatches, numLowResImg, C, H, W] patchesHR: np.ma.masked_array[numImgSet, numPatches, 1, C, H, W] clarityThreshold: float Output: cleanPatchesLR: np.ma.masked_array[numImgSet*newNumPatches, numLowResImg, C, H, W] cleanPatchesHR: np.ma.masked_array[numImgSet*newNumPatches, 1, C, H, W] where newNumPatches <= numPatches ''' desc = '[ INFO ] Cleaning train patches ' numImgSet, numPatches, numLowResImg, C, HLR, WLR = patchesLR.shape reshapeLR = patchesLR.reshape((-1, numLowResImg, C, HLR, WLR)) _, _, numHighResImg, C, HHR, WHR = patchesHR.shape reshapeHR = patchesHR.reshape((-1, numHighResImg, C, HHR, WHR)) booleanMask = np.array([isPatchNotCorrupted(patch, clarityThreshold) for patch in tqdm(reshapeHR, desc=desc)]) trimmedPatchesLR = reshapeLR[booleanMask] trimmedPathcesHR = reshapeHR[booleanMask] return (trimmedPatchesLR, trimmedPathcesHR) def pickClearPatchesV2(patchesLR: np.ma.masked_array, patchesHR: np.ma.masked_array, clarityThreshold: float) -> np.array: ''' Input: patchesLR: np.ma.masked_array[numImgSet, numPatches, numLowResImg, C, H, W] patchesHR: np.ma.masked_array[numImgSet, numPatches, 1, C, H, W] clarityThreshold: float Output: cleanPatchesLR: np.ma.masked_array[numImgSet, newNumPatches, numLowResImg, C, H, W] cleanPatchesHR: np.ma.masked_array[numImgSet, newNumPatches, 1, C, H, W] where newNumPatches <= numPatches ''' desc = '[ INFO ] Cleaning train patches ' trmPatchesLR, trmPatchesHR = [], [] for patchSetLR, patchSetHR in tqdm(zip(patchesLR, patchesHR), desc=desc, total=len(patchesLR)): trmPatchSetLR, trmPatchSetHR = explorePatchSet(patchSetLR, patchSetHR, clarityThreshold) trmPatchesLR.append(trmPatchSetLR) trmPatchesHR.append(trmPatchSetHR) return (np.array(trmPatchesLR), np.array(trmPatchesHR)) def explorePatchSet(patchSetLR: np.ma.masked_array, patchSetHR: np.ma.masked_array, clarityThreshold: float) -> List[np.ma.array]: ''' Explores a patch set and removes patches that do not have enough clarity. Input: patchSetLR: np.ma.masked_array[numPatches, numLowResImg, C, H, W], patchSetHR: np.ma.masked_array[numPatches, 1, C, H, W], clarityThreshold: float ''' booleanMask = np.array([isPatchNotCorrupted(patch, clarityThreshold) for patch in patchSetHR]) trmPatchSetLR = patchSetLR[booleanMask] trmPatchSetHR = patchSetHR[booleanMask] return trmPatchSetLR, trmPatchSetHR def isPatchNotCorrupted(patch: np.ma.masked_array, clarityThreshold: float) -> bool: ''' Determine if an HR patch passes the threshold Input: patchSet: np.ma.masked_array[1, C, H, W] clarityThreshold: float Output: boolean that answers the question is Patch good enough? ''' # totalPixels = imgSet.shape[2] * imgSet.shape[3] # width * height isPatchClearEnough = np.count_nonzero(patch.mask)/(patch.shape[2] * patch.shape[3]) < (1-clarityThreshold) return isPatchClearEnough def removeCorruptedTrainPatchSets(patchesLR: np.ma.masked_array, patchesHR: np.ma.masked_array, clarityThreshold: float) -> List[np.ma.masked_array]: ''' Input: patchesLR: np.ma.masked_array[numImgSet, numPatches, numLowResImg, C, H, W] patchesHR: np.ma.masked_array[numImgSet, numPatches, 1, C, H, W] clarityThreshold: float Output: cleanPatchesLR: np.ma.masked_array[numImgSet, newNumPatches, numLowResImg, C, H, W] cleanPatchesHR: np.ma.masked_array[numImgSet, newNumPatches, 1, C, H, W] where newNumPatches <= numPatches ''' # '[ INFO ] Loading LR masks and dumping ' desc = '[ INFO ] Removing corrupted train sets ' booleanMask = np.array([isPatchSetNotCorrupted(patchSet, clarityThreshold) for patchSet in tqdm(patchesHR, desc=desc)]) trimmedPatchesLR = patchesLR[booleanMask] trimmedPathcesHR = patchesHR[booleanMask] return (trimmedPatchesLR, trimmedPathcesHR) def removeCorruptedTestPatchSets(patchesLR: np.ma.masked_array, clarityThreshold: float) -> np.ma.masked_array: ''' Input: patchesLR: np.ma.masked_array[numImgSet, numPatches, numLowResImg, C, H, W] clarityThreshold: float Output: cleanPatchesLR: np.ma.masked_array[numImgSet, newNumPatches, numLowResImg, C, H, W] where newNumPatches <= numPatches ''' desc = '[ INFO ] Removing corrupted test sets ' booleanMask = np.array([isPatchSetNotCorrupted(patchSet, clarityThreshold) for patchSet in tqdm(patchesHR, desc=desc)]) trimmedPatchesLR = patchesLR[booleanMask] return trimmedPatchesLR def isPatchSetNotCorrupted(patchSet: np.ma.masked_array, clarityThreshold: float) -> bool: ''' Determine if all the LR images are not clear enough. Return False if ALL LR image clarity is below threshold. Input: patchSet: np.ma.masked_array[numPatches, numLowResImg, C, H, W] clarityThreshold: float Output: boolean that answers the question is PatchSet not Corrupted? ''' # totalPixels = imgSet.shape[2] * imgSet.shape[3] # width * height isPatchClearEnough = np.array([np.count_nonzero(patch.mask)/(patch.shape[-1]*patch.shape[-2]) < (1-clarityThreshold) for patch in patchSet]) return np.sum(isPatchClearEnough) != 0 def generatePatches(imgSets: np.ma.masked_array, patchSize: int, stride: int) -> np.ma.masked_array: ''' Input: images: np.ma.masked_array[numImgSet, numImgPerImgSet, channels, height, width] patchSize: int stride: int Output: np.ma.masked_array[numImgSet, numImgPerImgSet * numPatches, channels, patchSize, patchSize] ''' desc = f'[ INFO ] Generating patches (k={patchSize}, s={stride})' if imgSets.dtype != 'float32': imgSets = imgSets.astype(np.float32) return np.ma.array([generatePatchesPerImgSet(imgSet, patchSize, stride) for imgSet in tqdm(imgSets, desc=desc)]) def generatePatchesPerImgSet(images: np.ma.masked_array, patchSize: int, stride: int) -> np.ma.masked_array: ''' Generate patches of images systematically. Input: images: np.ma.masked_array[numImgPerImgSet, channels, height, width] patchSize: int stride: int Output: np.ma.masked_array[numImgPerImgSet * numPatches, channels, patchSize, patchSize] ''' tensorImg = torch.tensor(images) tensorMsk = torch.tensor(images.mask) numMskPerImgSet, channels, height, width = images.shape patchesImg = tensorImg.unfold(0, numMskPerImgSet, numMskPerImgSet).unfold( 1, channels, channels).unfold(2, patchSize, stride).unfold(3, patchSize, stride) patchesImg = patchesImg.reshape(-1, channels, patchSize, patchSize) # [numImgPerImgSet * numPatches, C, H, W] patchesImg = patchesImg.numpy() patchesMsk = tensorMsk.unfold(0, numMskPerImgSet, numMskPerImgSet).unfold( 2, patchSize, stride).unfold(3, patchSize, stride) patchesMsk = patchesMsk.reshape(-1, channels, patchSize, patchSize) patchesMsk = patchesMsk.numpy() return np.ma.masked_array(patchesImg, mask=patchesMsk) def registerImages(allImgLR: np.ndarray, allMskLR: np.ndarray) -> np.ma.masked_array: ''' For each imgset, align all its imgs into one coordinate system. The reference image will be the clearest one. (ie the one withe highest QM accumalitive sum) Input: allImgLR: np.ndarray[numImgSet, numImgPerImgSet, channel, height, width] allMskLR: np.ndarray[numImgSet, numMskPerImgSet, channel, height, width] Output: output: np.ma.masked_array with the same dimension ''' # '[ INFO ] Loading LR masks and dumping ' desc = '[ INFO ] Registering LR images ' return np.ma.array([registerImagesInSet(allImgLR[i], allMskLR[i]) for i in tqdm(range(allImgLR.shape[0]), desc=desc)]) def registerImagesInSet(imgLR: np.ndarray, mskLR: np.ndarray) -> np.ma.masked_array: ''' Takes in an imgset LR masks and images. Sorts it and picks a reference, then register. Input: imgLR: np.ndarray[numImgPerImgSet, channel, height, width] mskLR: np.ndarray[numMskPerImgSet, channel, height, width] Output regImgMskLR: np.ma.masked_array[numMskPerImgSet, channel, height, width] This array has a property mask where in if used, returns a boolean array with the same dimension as the data. https://docs.scipy.org/doc/numpy-1.15.0/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray.data ''' sortedIdx = np.argsort([-np.count_nonzero(msk) for msk in mskLR]) clearestToDirtiestImg = imgLR[sortedIdx] clearestToDirtiestMsk = mskLR[sortedIdx] referImg = clearestToDirtiestImg[0] for i, (img, msk) in enumerate(zip(clearestToDirtiestImg, clearestToDirtiestMsk)): if i == 0: regImgMskLR = np.expand_dims(np.ma.masked_array(img, mask=~msk), axis=0) else: regImg, regMsk = registerFrame(img, msk.astype(bool), referImg) mskdArray = np.expand_dims(np.ma.masked_array(regImg, mask=~(regMsk > 0)), axis=0) regImgMskLR = np.ma.concatenate((regImgMskLR, mskdArray)) return regImgMskLR def registerFrame(img: np.ndarray, msk: np.ndarray, referenceImg: np.ndarray, tech='freq') -> Tuple[np.ndarray, np.ndarray]: ''' Input: img: np.ndarray[channel, height, width] msk: np.ndarray[channel, height, width] referenceImg: np.ndarray[channel, height, width] Output: Tuple(regImg, regMsk) regImg: np.ndarray[channel, height, width] regMsk: np.ndarray[channel, height, width] ''' if tech == 'time': shiftArray = masked_register_translation(referenceImg, img, msk) regImg = shift(img, shiftArray, mode='reflect') regMsk = shift(msk, shiftArray, mode='constant', cval=0) if tech == 'freq': shiftArray, _, _ = register_translation(referenceImg, img) regImg = fourier_shift(np.fft.fftn(img), shiftArray) regImg = np.fft.ifftn(regImg) regImg = regImg.real regMsk = fourier_shift(np.fft.fftn(msk), shiftArray) regMsk = np.fft.ifftn(regMsk) regMsk = regMsk.real return (regImg, regMsk) def convertToMaskedArray(imgSets: np.ndarray, mskSets: np.ndarray) -> np.ma.masked_array: ''' Convert Image and Mask array pair to a masked array. Especially made for HR images. Input: imgSets: np.ndarray[numImgSet, numImgPerImgSet, channel, height, width] mskSets: np.ndarray[numImgSet, numImgPerImgSet, channel, height, width] Output: imgMskSets: np.ma.masked_array[numImgSet, numImgPerImgSet, channel, height, width] ''' imgSets = np.squeeze(imgSets, axis=1) # [numImgSet, channel, height, width] mskSets = np.squeeze(mskSets, axis=1) # [numImgSet, channel, height, width] imgMskSets = np.ma.array([np.ma.masked_array(img, mask=~msk) for img, msk in zip(imgSets, mskSets)]) # [numImgSet, channel, height, width] imgMskSets = np.expand_dims(imgMskSets, axis=1) # [numImgSet, 1, channel, height, width] return imgMskSets def removeCorruptedTrainImageSets(imgMskLR: np.ma.masked_array, imgMskHR: np.ma.masked_array, clarityThreshold: float) -> Tuple[np.ma.masked_array, np.ma.masked_array]: ''' Remove imageset if ALL its LR frames is less than the given clarity threshold. Input: imgMskLR: np.ma.masked_array[numImgSet, numImgPerImgSet, channel, height, width] imgMskHR: np.ma.masked_array[numImgSet, 1, channel, height, width] clarityThreshold: float Output: trimmedImgMskLR: np.ma.masked_array[newNumImgSet, numImgPerImgSet, channel, height, width] trimmedImgMskHR: np.ma.masked_array[newNumImgSet, 1, channel, height, width] where newNumImgSet <= numImgSet ''' desc = '[ INFO ] Removing corrupted ImageSets ' booleanMask = np.array([isImageSetNotCorrupted(imgSet, clarityThreshold) for imgSet in tqdm(imgMskLR, desc=desc)]) trimmedImgMskLR = imgMskLR[booleanMask] trimmedImgMskHR = imgMskHR[booleanMask] return (trimmedImgMskLR, trimmedImgMskHR) def removeCorruptedTestImageSets(imgMskLR: np.ma.masked_array, clarityThreshold: float) -> np.ma.masked_array: ''' Remove imageset if ALL its LR frames is less than the given clarity threshold. Input: imgMskLR: np.ma.masked_array[numImgSet, numImgPerImgSet, channel, height, width] clarityThreshold: float Output: trimmedImgMskLR: np.ma.masked_array[newNumImgSet, numImgPerImgSet, channel, height, width] where newNumImgSet <= numImgSet ''' desc = '[ INFO ] Removing corrupted ImageSets ' booleanMask = np.array([isImageSetNotCorrupted(imgSet, clarityThreshold) for imgSet in tqdm(imgMskLR, desc=desc)]) trimmedImgMskLR = imgMskLR[booleanMask] return trimmedImgMskLR def isImageSetNotCorrupted(imgSet: np.ma.masked_array, clarityThreshold: float) -> bool: ''' Determine if all the LR images are not clear enough. Return False if ALL LR image clarity is below threshold. Input: imgSet: np.ma.masked_array[numImgPerImgSet, channel, height, width] clarityThreshold: float Output: boolean that answers the question is ImageSet not Corrupted? ''' # totalPixels = imgSet.shape[2] * imgSet.shape[3] # width * height isImageClearEnough = np.array([np.count_nonzero(img.mask)/(img.shape[1] * img.shape[2]) < (1-clarityThreshold) for img in imgSet]) return np.sum(isImageClearEnough) != 0 def pickClearLRImgsPerImgSet(imgMskLR: np.ma.masked_array, numImgToPick: int, clarityThreshold: float) -> np.ma.masked_array: ''' Pick clearest frames per ImgSet. Before picking, we remove all frames that don't satisfy the clarity threshold. After removing the said frames, in the event that the remaining LR frames is less than the number of img to pick, we randomly pick among the clear frames to satisfy number of frames. (This might be a form of regularization...) Input: imgMskLR: np.ma.masked_array[newNumImgSet, numImgPerImgSet, channel, height, width] numImgToPick: int Output: trimmedImgMskLR: np.ma.masked_array[newNumImgSet, numImgToPick, channel, height, width] where numImgToPick <= numImgPerImgSet ''' desc = f'[ INFO ] Picking top {numImgToPick} clearest images ' return np.ma.array([pickClearImg(filterImgMskSet(imgMsk, clarityThreshold), numImgToPick=numImgToPick) for imgMsk in tqdm(imgMskLR, desc=desc)]) def pickClearImg(imgMsk: np.ma.masked_array, numImgToPick: int) -> np.ma.masked_array: ''' Pick clearest low resolution images! Input: imgMsk: np.ma.masked_array[numImgPerImgSet, channel, height, width] numImgToPick: int Ouput: trimmedImgMsk: np.ma.masked_array[newNumImgPerImgSet, channel, height, width] where newNumImgPerImgSet <= numImgPerImgSet might not hold. ''' sortedIndices = np.argsort(-(np.sum(imgMsk.mask, axis=(1, 2, 3)))) sortedImgMskArray = imgMsk[sortedIndices] if numImgToPick < len(imgMsk): trimmedImgMsk = sortedImgMskArray[:numImgToPick] else: trimmedImgMsk = np.copy(sortedImgMskArray) while len(trimmedImgMsk) < numImgToPick: print('Short on data!') shuffledIndices = np.random.choice(sortedIndices, size=len(sortedIndices), replace=False) toAppend = imgMsk[shuffledIndices] trimmedImgMsk = np.ma.concatenate((trimmedImgMsk, toAppend)) trimmedImgMsk = trimmedImgMsk[:numImgToPick] return trimmedImgMsk def filterImgMskSet(imgSet: np.ma.masked_array, clarityThreshold: float) -> np.ma.masked_array: ''' This function is the same as isImageSetNotCorrupted. except that the out put is a masked version of its array input. Input: imgSet: np.ma.masked_array[numImgPerImgSet, channel, height, width] clarityThreshold: float Output: filteredImgSet: np.ma.masked_array[newNumImgPerImgSet, channel, height, width] where newNumImgPerImgSet <= numImgPerImgSet ''' # totalPixels = imgSet.shape[2] * imgSet.shape[3] # width * height isImageClearEnough = np.array([np.count_nonzero(img.mask)/(img.shape[1] * img.shape[2]) < (1-clarityThreshold) for img in imgSet]) # boolean mask filteredImgSet = imgSet[isImageClearEnough] return filteredImgSet def loadData(arrayDir: str, band: str): ''' Input: arrayDir: str -> the path folder for which you saved .npy files band: str -> 'NIR' or 'RED' isTrainData: bool -> set to true if dealing with the train dataset Output: List[Tuple(train data), Tuple(test data)] ''' # Check input dir validity if not os.path.exists(arrayDir): raise Exception("[ ERROR ] Folder path does not exists...") if not os.listdir(arrayDir): raise Exception("[ ERROR ] No files in the provided directory...") TRAINimgLR = np.load(os.path.join(arrayDir, f'TRAINimgLR_{band}.npy'), allow_pickle=True) TRAINimgHR = np.load(os.path.join(arrayDir, f'TRAINimgHR_{band}.npy'), allow_pickle=True) TRAINmskLR = np.load(os.path.join(arrayDir, f'TRAINmskLR_{band}.npy'), allow_pickle=True) TRAINmskHR = np.load(os.path.join(arrayDir, f'TRAINmskHR_{band}.npy'), allow_pickle=True) TESTimgLR = np.load(os.path.join(arrayDir, f'TESTimgLR_{band}.npy'), allow_pickle=True) TESTmskLR = np.load(os.path.join(arrayDir, f'TESTmskLR_{band}.npy'), allow_pickle=True) TRAIN = (TRAINimgLR, TRAINmskLR, TRAINimgHR, TRAINmskHR) TEST = (TESTimgLR, TESTmskLR) return TRAIN, TEST def loadAndSaveRawData(rawDataDir: str, arrayDir: str, band: str, isGrayScale=True, isTrainData=True): ''' This function loads every imageset and dumps it into one giant array. We do this because of memory constraints... If you have about 64 GB of ram and about 72~128GB of swap space, you might opt not using this function. Input: rawDataDir: str -> downloaded raw data directory arrayDir: str -> the directory to which you will dump the numpy array band: str -> 'NIR' or 'RED' isGrayScale: bool -> Set to true if you are dealing with grayscale image Output: Array file with dimensions [numImgSet, numImgPerImgSet, channel, height, width] ''' # Check if arrayDir exist, build if not. if not os.path.exists(arrayDir): os.makedirs(arrayDir) # Is train data? key = 'TRAIN' if isTrainData else 'TEST' # Get directories (OS agnostic) trainDir = os.path.join(rawDataDir, key.lower(), band) dirList = sorted(glob.glob(os.path.join(trainDir, 'imgset*'))) # Load all low resolution images in a massive array and dump! # The resulting numpy array has dimensions [numImgSet, numLowResImgPerImgSet, channel, height, width] descForImgLR = '[ INFO ] Loading LR images and dumping ' imgLR = np.array([np.array([io.imread(fName).transpose((2, 0, 1)) if not isGrayScale else np.expand_dims(io.imread(fName), axis=0) for fName in sorted(glob.glob(os.path.join(dirName, 'LR*.png')))]) for dirName in tqdm(dirList, desc=descForImgLR)]) imgLR.dump(os.path.join(arrayDir, f'{key}imgLR_{band}.npy')) # Load all low resolution masks in a massive array and dump! # The resulting numpy array has dimensions [numImgSet, numLowResMaskPerImgSet, channel, height, width] descForMaskLR = '[ INFO ] Loading LR masks and dumping ' mskLR = np.array([np.array([io.imread(fName).transpose((2, 0, 1)) if not isGrayScale else np.expand_dims(io.imread(fName), axis=0) for fName in sorted(glob.glob(os.path.join(dirName, 'QM*.png')))]) for dirName in tqdm(dirList, desc=descForMaskLR)]) mskLR.dump(os.path.join(arrayDir, f'{key}mskLR_{band}.npy')) if isTrainData: # Load all high resolution images in a massive array and dump! # The resulting numpy array has dimensions [numImgSet, 1, channel, height, width] descForImgHR = '[ INFO ] Loading HR images and dumping ' imgHR = np.array([io.imread(os.path.join(dirName, 'HR.png')).transpose((2, 0, 1)) if not isGrayScale else np.expand_dims(io.imread(os.path.join(dirName, 'HR.png')), axis=0) for dirName in tqdm(dirList, desc=descForImgHR)]) # For count of HR pics which is 1. imgHR = np.expand_dims(imgHR, axis=1) imgHR.dump(os.path.join(arrayDir, f'{key}imgHR_{band}.npy')) # Load all high resolution images in a massive array and dump! # The resulting numpy array has dimensions [numImgSet, 1, channel, height, width] descForMaskHR = '[ INFO ] Loading HR masks and dumping ' mskHR = np.array([io.imread(os.path.join(dirName, 'SM.png')).transpose((2, 0, 1)) if not isGrayScale else np.expand_dims(io.imread(os.path.join(dirName, 'SM.png')), axis=0) for dirName in tqdm(dirList, desc=descForMaskHR)]) # For count of HR pics which is 1. mskHR = np.expand_dims(mskHR, axis=1) mskHR.dump(os.path.join(arrayDir, f'{key}mskHR_{band}.npy')) def saveArrays(inputDictionary: Dict, parentDir: str, band: str): ''' Saves numpy arrays per imageset. This method serves as an intermediate checkpoint for low memry users. inputDictionary = { 'imgLRSetsUpscaled': [], 'imgLRSets': [], 'imgHRSets': [], 'maskLRSetsUpscaled': [], 'maskLRSets': [], 'maskHRSets': [], 'names': []} ''' # Define directory dirToSave = os.path.join(parentDir, 'numpyArrays', band) if not os.path.exists(dirToSave): os.mkdir(dirToSave) # Iterate through imageset arays and save them numSets = len(inputDictionary['names']) for i in tqdm(range(numSets), desc='[ INFO ] Saving numpy arrays '): np.save(os.path.join(dirToSave, 'imgLRSetsUpscaled_{}.npy'.format(inputDictionary['names'][i])), inputDictionary['imgLRSetsUpscaled'][i], allow_pickle=True) np.save(os.path.join(dirToSave, 'imgLRSets_{}.npy'.format(inputDictionary['names'][i])), inputDictionary['imgLRSets'][i], allow_pickle=True) np.save(os.path.join(dirToSave, 'imgHRSets_{}.npy'.format(inputDictionary['names'][i])), inputDictionary['imgHRSets'][i], allow_pickle=True) np.save(os.path.join(dirToSave, 'maskLRSetsUpscaled_{}.npy'.format(inputDictionary['names'][i])), inputDictionary['maskLRSetsUpscaled'][i], allow_pickle=True) np.save(os.path.join(dirToSave, 'maskLRSets_{}.npy'.format(inputDictionary['names'][i])), inputDictionary['maskLRSets'][i], allow_pickle=True) np.save(os.path.join(dirToSave, 'maskHRSets_{}.npy'.format(inputDictionary['names'][i])), inputDictionary['maskHRSets'][i], allow_pickle=True) def imageSetToNumpyArrayHelper(imageSetsUpscaled: Dict, imageSets: Dict, isGrayScale: bool, isNHWC: bool): ''' Helper function for imageSetToNumpyArray function. Iterates thru all the elemetns in the dictionary and applies the imageSetToNumpyArray function ''' # Initialize Output dictionary output = {'imgLRSetsUpscaled': [], 'imgLRSets': [], 'imgHRSets': [], 'maskLRSetsUpscaled': [], 'maskLRSets': [], 'maskHRSets': [], 'names': []} names = [] for name in tqdm(imageSets.keys(), desc='[ INFO ] Converting imageSets into numpy arrays'): currSetUpscaled = imageSetsUpscaled[name] ioImgPairUpscaled, ioMaskPairUpscaled = imageSetToNumpyArray(imageSet=currSetUpscaled, isGrayScale=isGrayScale, isNWHC=isNHWC) lrImgUpscaled, hrImg = ioImgPairUpscaled lrMaskUpscaled, hrMask = ioMaskPairUpscaled currSet = imageSets[name] ioImgPair, ioMaskPair = imageSetToNumpyArray(imageSet=currSet, isGrayScale=isGrayScale, isNWHC=isNHWC) lrImg, _ = ioImgPairUpscaled lrMask, _ = ioMaskPairUpscaled output['imgLRSetsUpscaled'].append(lrImgUpscaled) output['maskLRSetsUpscaled'].append(lrMaskUpscaled) output['imgLRSets'].append(lrImg) output['imgHRSets'].append(hrImg) output['maskLRSets'].append(lrMask) output['maskHRSets'].append(hrMask) output['names'].append(name) return output def generatePatchDatasetFromSavedFile(srcFolder: str, dstFolder: str, names: List[str], useUpsample: bool, patchSize: int, thresholdPatchesPerImgSet: int, thresholdClarityLR: float, thresholdClarityHR: float): ''' Sample patches from the low res image. Patches are considered good at it is atleast n% cleared. Input: inputDictionary: Dict -> a dictionary containing the LR images and its upscaled versions, the HR images, upsampleScale, names, shifts, and respective masks. patchSize: int -> size of patch to sample thresholdPatchesPerImgSet: int Output: patchesPerImgSet: Dict ''' # Safety checks if not os.path.exists(dstFolder): os.mkdir(dstFolder) # Set maximum number of trials to get a viable Patches MAX_TRIAL = 100000 PATCH_PER_SET = 9 # Initialize outputDict outputDict = {} # Do we use the upsampled images? isUpsample = '' scale = 3 if useUpsample: isUpsample = 'Upscaled' scale = 1 # Extract constants numSets = len(names) sampleFname = os.path.join(srcFolder, 'imgLRSets{}_{}.npy'.format(isUpsample, names[0])) sampleArray = np.load(sampleFname) shapeUpscaled = list(sampleArray[0][0].shape)[1:] totalNumPixInPatch = patchSize * patchSize # Iterate thru all sets for i in tqdm(range(numSets), desc='[ INFO ] Finding patches '): # Extract relevant arrays from the inputDictionary currImgSetLR = loadAndRemove(os.path.join(srcFolder, 'imgLRSets{}_{}.npy'.format(isUpsample, names[i]))) currMaskSetLR = loadAndRemove(os.path.join(srcFolder, 'maskLRSets{}_{}.npy'.format(isUpsample, names[i]))) currImgSetHR = np.load(os.path.join(srcFolder, 'imgHRSets_{}.npy'.format(names[i]))) currMaskSetHR = np.load(os.path.join(srcFolder, 'maskHRSets_{}.npy'.format(names[i]))) # Initialize accumulators currTrial = 0 currNumPatches = 0 coordinatesForTheSet = [] imgLRPatches, imgHRPatches = [], [] maskLRPatches, maskHRPatches = [], [] coordinates = [] shiftsPatch = [] # Trials to SUCCESS while True: # Define stopping condition: MAX_TRIAL is exceeded or thresholdPatchesPerImgSet is satisfied if currNumPatches >= thresholdPatchesPerImgSet or currTrial >= MAX_TRIAL: if imgLRPatches: np.save(os.path.join(dstFolder, 'imgLRPatches_{}.npy'.format(names[i])), np.stack(imgLRPatches), allow_pickle=True) np.save(os.path.join(dstFolder, 'imgHRPatches_{}.npy'.format(names[i])), np.stack(imgHRPatches), allow_pickle=True) np.save(os.path.join(dstFolder, 'maskLRPatches_{}.npy'.format(names[i])), np.stack(maskLRPatches), allow_pickle=True) np.save(os.path.join(dstFolder, 'maskHRPatches_{}.npy'.format(names[i])), np.stack(maskHRPatches), allow_pickle=True) np.save(os.path.join(dstFolder, 'shifts_{}.npy'.format(names[i])), np.stack(shiftsPatch), allow_pickle=True) break # Sample topleft and bottomright ccoordinates for a patch topLeft, btmRight = sampleCoordinates(imgSize=shapeUpscaled, patchSize=[patchSize, patchSize]) xZero, yZero = topLeft xOne, yOne = btmRight # Extract patches using the sampled coordinates patchImgLR = currImgSetLR[:, :, yZero: yOne, xZero: xOne] # [numSamples, channels, height, width] patchImgHR = currImgSetHR[:, :, yZero*scale: yOne*scale, xZero*scale: xOne*scale] patchMaskLR = currMaskSetLR[:, :, yZero: yOne, xZero: xOne] > 0 # [numSamples, channels, height, width] patchMaskHR = currMaskSetHR[:, :, yZero*scale: yOne*scale, xZero*scale: xOne*scale] > 0 # Check clarity of the low resulution patches clearPercentageArrayLR = np.sum(patchMaskLR, axis=(1, 2, 3)) / totalNumPixInPatch isSampleClearLR = clearPercentageArrayLR > thresholdClarityLR isSampleGoodLR = np.sum(isSampleClearLR) > PATCH_PER_SET clearPercentageArrayHR = np.sum(patchMaskHR, axis=(1, 2, 3)) / totalNumPixInPatch isSampleClearHR = clearPercentageArrayHR > thresholdClarityHR isSampleGoodHR = np.sum(isSampleClearHR) if isSampleGoodLR and isSampleGoodHR: imgLRPatches.append(patchImgLR) imgHRPatches.append(patchImgHR) maskLRPatches.append(patchMaskLR) maskHRPatches.append(patchMaskHR) coordinatesForTheSet.append((topLeft, btmRight)) shiftsPatch.append(shift[i]) currNumPatches += 1 currTrial += 1 outputDict[names[i]] = coordinatesForTheSet return outputDict def loadAndRemove(filePath): loadedFile =
np.load(filePath, allow_pickle=True)
numpy.load
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import warnings from typing import Union, Dict, List, Optional, Tuple import numpy as np import plotly.graph_objs as go from ax.core.experiment import Experiment from ax.core.objective import MultiObjective from ax.core.optimization_config import ( MultiObjectiveOptimizationConfig, OptimizationConfig, ) from ax.core.outcome_constraint import ObjectiveThreshold from ax.exceptions.core import UserInputError from ax.plot.base import CI_OPACITY, DECIMALS, AxPlotConfig, AxPlotTypes from ax.plot.color import COLORS, rgba, DISCRETE_COLOR_SCALE from ax.plot.helper import extend_range, _format_CI, _format_dict from ax.plot.pareto_utils import ParetoFrontierResults from ax.utils.common.typeutils import checked_cast, not_none from scipy.stats import norm DEFAULT_CI_LEVEL: float = 0.9 VALID_CONSTRAINT_OP_NAMES = {"GEQ", "LEQ"} def _make_label( mean: float, sem: float, name: str, is_relative: bool, Z: Optional[float] ) -> str: estimate = str(round(mean, DECIMALS)) perc = "%" if is_relative else "" ci = ( "" if (Z is None or np.isnan(sem)) else _format_CI(estimate=mean, sd=sem, relative=is_relative, zval=Z) ) return f"{name}: {estimate}{perc} {ci}<br>" def _filter_outliers(Y: np.ndarray, m: float = 2.0) -> np.ndarray: std_filter = abs(Y - np.median(Y, axis=0)) < m * np.std(Y, axis=0) return Y[np.all(abs(std_filter), axis=1)] def scatter_plot_with_pareto_frontier_plotly( Y: np.ndarray, Y_pareto: Optional[np.ndarray], metric_x: Optional[str], metric_y: Optional[str], reference_point: Optional[Tuple[float, float]], minimize: Optional[Union[bool, Tuple[bool, bool]]] = True, ) -> go.Figure: """Plots a scatter of all points in ``Y`` for ``metric_x`` and ``metric_y`` with a reference point and Pareto frontier from ``Y_pareto``. Points in the scatter are colored in a gradient representing their trial index, with metric_x on x-axis and metric_y on y-axis. Reference point is represented as a star and Pareto frontier –– as a line. The frontier connects to the reference point via projection lines. NOTE: Both metrics should have the same minimization setting, passed as `minimize`. Args: Y: Array of outcomes, of which the first two will be plotted. Y_pareto: Array of Pareto-optimal points, first two outcomes in which will be plotted. metric_x: Name of first outcome in ``Y``. metric_Y: Name of second outcome in ``Y``. reference_point: Reference point for ``metric_x`` and ``metric_y``. minimize: Whether the two metrics in the plot are being minimized or maximized. """ title = "Observed metric values" if isinstance(minimize, bool): minimize = (minimize, minimize) Xs = Y[:, 0] Ys = Y[:, 1] experimental_points_scatter = [ go.Scatter( x=Xs, y=Ys, mode="markers", marker={ "color": np.linspace(0, 100, int(len(Xs) * 1.05)), "colorscale": "magma", "colorbar": { "tickvals": [0, 50, 100], "ticktext": [ 1, "iteration", len(Xs), ], }, }, name="Experimental points", ) ] if Y_pareto is not None: title += " with Pareto frontier" if reference_point: if minimize is None: minimize = tuple( reference_point[i] >= max(Y_pareto[:, i]) for i in range(2) ) reference_point_star = [ go.Scatter( x=[reference_point[0]], y=[reference_point[1]], mode="markers", marker={ "color": rgba(COLORS.STEELBLUE.value), "size": 25, "symbol": "star", }, ) ] extra_point_x = min(Y_pareto[:, 0]) if minimize[0] else max(Y_pareto[:, 0]) reference_point_line_1 = go.Scatter( x=[extra_point_x, reference_point[0]], y=[reference_point[1], reference_point[1]], mode="lines", marker={"color": rgba(COLORS.STEELBLUE.value)}, ) extra_point_y = min(Y_pareto[:, 1]) if minimize[1] else max(Y_pareto[:, 1]) reference_point_line_2 = go.Scatter( x=[reference_point[0], reference_point[0]], y=[extra_point_y, reference_point[1]], mode="lines", marker={"color": rgba(COLORS.STEELBLUE.value)}, ) reference_point_lines = [reference_point_line_1, reference_point_line_2] Y_pareto_with_extra = np.concatenate( ( [[extra_point_x, reference_point[1]]], Y_pareto, [[reference_point[0], extra_point_y]], ), axis=0, ) pareto_step = [ go.Scatter( x=Y_pareto_with_extra[:, 0], y=Y_pareto_with_extra[:, 1], mode="lines", line_shape="hv", marker={"color": rgba(COLORS.STEELBLUE.value)}, ) ] range_x = ( extend_range(lower=min(Y_pareto[:, 0]), upper=reference_point[0]) if minimize[0] else extend_range(lower=reference_point[0], upper=max(Y_pareto[:, 0])) ) range_y = ( extend_range(lower=min(Y_pareto[:, 1]), upper=reference_point[1]) if minimize[1] else extend_range(lower=reference_point[1], upper=max(Y_pareto[:, 1])) ) else: # Reference point was not specified pareto_step = [ go.Scatter( x=Y_pareto[:, 0], y=Y_pareto[:, 1], mode="lines", line_shape="hv", marker={"color": rgba(COLORS.STEELBLUE.value)}, ) ] reference_point_lines = reference_point_star = [] range_x = extend_range(lower=min(Y_pareto[:, 0]), upper=max(Y_pareto[:, 0])) range_y = extend_range(lower=min(Y_pareto[:, 1]), upper=max(Y_pareto[:, 1])) else: # `Y_pareto` input was not specified range_x = extend_range(lower=min(Y[:, 0]), upper=max(Y[:, 0])) range_y = extend_range(lower=min(Y[:, 1]), upper=max(Y[:, 1])) pareto_step = reference_point_lines = reference_point_star = [] layout = go.Layout( title=title, showlegend=False, xaxis={"title": metric_x or "", "range": range_x}, yaxis={"title": metric_y or "", "range": range_y}, ) return go.Figure( layout=layout, data=pareto_step + reference_point_lines + experimental_points_scatter + reference_point_star, ) def scatter_plot_with_pareto_frontier( Y: np.ndarray, Y_pareto: np.ndarray, metric_x: str, metric_y: str, reference_point: Tuple[float, float], minimize: bool = True, ) -> AxPlotConfig: return AxPlotConfig( data=scatter_plot_with_pareto_frontier_plotly( Y=Y, Y_pareto=Y_pareto, metric_x=metric_x, metric_y=metric_y, reference_point=reference_point, ), plot_type=AxPlotTypes.GENERIC, ) def _get_single_pareto_trace( frontier: ParetoFrontierResults, CI_level: float, legend_label: str = "mean", trace_color: Tuple[int] = COLORS.STEELBLUE.value, show_parameterization_on_hover: bool = True, ) -> go.Scatter: primary_means = frontier.means[frontier.primary_metric] primary_sems = frontier.sems[frontier.primary_metric] secondary_means = frontier.means[frontier.secondary_metric] secondary_sems = frontier.sems[frontier.secondary_metric] absolute_metrics = frontier.absolute_metrics all_metrics = frontier.means.keys() if frontier.arm_names is None: arm_names = [f"Parameterization {i}" for i in range(len(frontier.param_dicts))] else: arm_names = [f"Arm {name}" for name in frontier.arm_names] if CI_level is not None: Z = 0.5 * norm.ppf(1 - (1 - CI_level) / 2) else: Z = None labels = [] for i, param_dict in enumerate(frontier.param_dicts): label = f"<b>{arm_names[i]}</b><br>" for metric in all_metrics: metric_lab = _make_label( mean=frontier.means[metric][i], sem=frontier.sems[metric][i], name=metric, is_relative=metric not in absolute_metrics, Z=Z, ) label += metric_lab parameterization = ( _format_dict(param_dict, "Parameterization") if show_parameterization_on_hover else "" ) label += parameterization labels.append(label) return go.Scatter( name=legend_label, legendgroup=legend_label, x=secondary_means, y=primary_means, error_x={ "type": "data", "array": Z * np.array(secondary_sems), "thickness": 2, "color": rgba(trace_color, CI_OPACITY), }, error_y={ "type": "data", "array": Z *
np.array(primary_sems)
numpy.array
import numpy as np def get_data(path): with open(path) as f: content = f.readlines() X = np.array(content) Y = [] for i in range(60): A = X[i].split(' ') A = A[1:] k = 0 while (k < len(A)): if ((A[k] == '') or (A[k] == ' ')): del A[k] continue A[k] = float(A[k].strip()) k += 1 Y.append(A) for i in range(len(Y)): Y[i] = np.array(Y[i]) Y = np.array(Y) return Y[:, :-1], Y[:, -1] def normalize_and_add_ones(X): X = np.array(X) X_max = np.array([[np.amax(X[:, column_id]) for column_id in range(X.shape[1])] for _ in range(X.shape[0])]) X_min = np.array([[
np.amin(X[:, column_id])
numpy.amin
import numpy as np import pandas as pd from collections import OrderedDict import os import json import shutil import warnings import subprocess def nest(l, depth=1, reps=1): """create a nested list of depth 'depth' and with 'reps' repititions""" if depth == 0: return(None) elif depth == 1: return(l) else: return([nest(l, depth-1, reps)] * reps) def unnest(l): """unnest a nested list l""" return([x for y in l for x in mlist(y)]) def constant_array(constant, *args): """create an array filled with the 'constant' of shape *args""" if len(args) == 0: return(constant) else: return(np.array([constant_array(constant, *args[1:])]*args[0])) def zeros(*args): """create a constant array of shape *args""" return(constant_array(0.0, *args)) def ones(*args): """create a constant array of shape *args""" return(constant_array(1.0, *args)) def mlist(x): """make sure x is a list""" if isinstance(x, list): return(x) else: return([x]) def idict(list_): """create an ordered dict of i -> 'list_'[i]""" return(OrderedDict(zip(range(len(list_)), list_))) def ridict(list_): """create an ordered dict of 'list_'[i] -> i""" return(OrderedDict({v:k for k, v in idict(list_).items()})) def ilist(dict_): return(list(dict_.values())) def rilist(dict_): return(list(dict_.keys())) def sort_dict(dict_): return([(k, v) for k, v in sorted(list(dict_.items()), key= lambda x: x[0])]) class HyperFrame: """ A numpy array with dimension labels and named indices of each dimension for storage and access to high-dimensional data. Attributes: dimension_labels (list[string]): dimension labels index_labels (OrderedDict[string, list[string]]): dimension label -> index labels dim_labels (OrderedDict[int, string]): index -> dimension label rdim_labels (OrderedDict[string, int]): dimension label -> index val_labels (OrderedDict[string, OrderedDict[int, string]]): dimension label -> index -> index label rval_labels (OrderedDict[string, OrderedDict[string, int]]): dimension label -> index label -> index data (np.array): data shape (set): shape of the data """ def __init__(self, dimension_labels, index_labels, data=None): """ The constructor of the HyperFrame class. Parameters: dimension_labels (list[string]): dimension labels index_labels (dict[string, list[int | string]]): dimension_label -> index labels data (np.array): data """ index_labels = OrderedDict(index_labels) self.dimension_labels = dimension_labels self.dim_labels = idict(dimension_labels) self.rdim_labels = ridict(dimension_labels) self.index_labels = index_labels self.val_labels = OrderedDict({k: idict(v) for k, v in index_labels.items()}) self.rval_labels = OrderedDict({k: ridict(v) for k, v in index_labels.items()}) if data is None: data = zeros(*[len(self.val_labels[dim_label]) for _, dim_label in self.dim_labels.items()]) self.data = data self.shape = data.shape HyperFrame._validate_hyperframe(self) def len(self, *args): return([self.shape[self.rdim_labels[a]] for a in args]) def sum(self, *args): return(self.apply_f1(np.sum, *args)) def mean(self, *args): return(self.apply_f1(np.mean, *args)) def min(self, *args): return(self.apply_f1(np.min, *args)) def max(self, *args): return(self.apply_f1(np.max, *args)) def apply_f1(self, f, *args): if len(args) == 0: args = self.dimension_labels assert np.all([a in self.dimension_labels for a in args]) dims = sorted([self.rdim_labels[a] for a in args]) ndata = self.data for i, dim in enumerate(dims): ndata = f(ndata, dim-i) if isinstance(ndata, type(np.array([0]))): new_dimension_labels = [d for d in self.dimension_labels if d not in args] new_index_labels = OrderedDict([(k, v) for k, v in self.index_labels.items() if k not in args]) return(HyperFrame(new_dimension_labels, new_index_labels, ndata)) else: assert np.issubdtype(type(ndata), np.number) return(ndata) def copy(self): """ copy this HyperFrame Returns: HyperFrame: a new HyperFrame with the same data """ return(HyperFrame( self.dimension_labels, OrderedDict(self.index_labels) , self.data.copy())) def iget(self, *args, **kwargs): """ Get a subset of the dataframe by EITHER args or kwargs Parameters: *args (list[string]): values on each dimension by which the data should be subset, dimensions that should not be subset should have a value not in the dimension index **kwargs (dict[string, int | string | list[int] | list[string]]): dimension labels -> value or values to subset by return_type (string) (in kwargs): in ["hyperframe", "pandas", "numpy"] Returns: HyperFrame | pd.DataFrame | pd.Series | np.array: subset of original data """ return_type = kwargs.pop("return_type", "hyperframe") kwargs = self._build_kwargs(args, kwargs) ndim_labels = [(i, v) for i, v in self.dim_labels.items() if v not in kwargs.keys() or len(kwargs[v]) > 1] ndim_labels = [x[1] for x in sorted(ndim_labels, key=lambda y: y[0])] nval_labels = {k: kwargs.get(k, v) for k, v in self.val_labels.items() if len(kwargs.get(k, v)) > 1} nval_labels = {k: (mlist(v) if not isinstance(v, dict) else list(v.values())) for k, v in nval_labels.items()} indices = self._construct_indices(kwargs, self.data.shape) ndata = self.data[np.ix_(*indices)] ndata = ndata.reshape(*[x for x in ndata.shape if x > 1]) subset = HyperFrame(ndim_labels, nval_labels, ndata) return(HyperFrame._cast_return_value(subset, return_type)) @staticmethod def _cast_return_value(hyperframe, return_type): """'cast' a hyperframe to a pandas or numpy object, or return unaltered""" if return_type == "pandas": return(HyperFrame._get_pandas_object(hyperframe)) elif return_type == "numpy": return(hyperframe.data) elif return_type == "hyperframe": return(hyperframe) else: warnings.warn("return_type must be in ['hyperframe', 'pandas', 'numpy']") @staticmethod def _get_pandas_object(hyperframe): """ Turn a HyperFrame of dimensionality <= into a pandas object Paramters: hyperframe (HyperFrame) Returns: pd.DataFrame | pd.Series """ indices = [[v2 for k2, v2 in sort_dict(hyperframe.val_labels[v])] for k, v in sort_dict(hyperframe.dim_labels)] assert len(indices) > 0, "pandas objects must have at least one dimension" assert len(indices) <= 2, "pandas objects cannot have {} dimensions".format(len(indices)) if len(indices) == 1: return(pd.Series(hyperframe.data, index=indices[0])) else: return(pd.DataFrame(hyperframe.data, index=indices[0], columns = indices[1])) def iget0(self, *args, return_type=None): """ Return data for the dimensions in *args by subsetting the other dimensions to the first index label Parameters: *args (list[string]): the dimensions to be preserved in full return_type (string) (in kwargs): in ["hyperframe", "pandas", "numpy"] Returns: HyperFrame | pd.DataFrame | pd.Series | np.array: subset of original data """ assert len(args) > 0 and len(args) <= 2 assert np.all([a in self.dimension_labels for a in args]) kwargs = {v: self.val_labels[v][0] for i, v in self.dim_labels.items() if v not in args} print(kwargs) subset = self.iget(**kwargs) return(HyperFrame._cast_return_value(subset, return_type)) def iset(self, new_data, *args, **kwargs): """ Replace a subset of the data with 'new_data' Parameters: new_data (np.array): new data *args (list[string]): values on each dimension by which the data should be subset, dimensions that should not be subset should have a value not in the dimension index **kwargs (dict[string, int | string | list[int] | list[string]]): dimension labels -> value or values to subset by Returns: HyperFrame: HyperFrame with changed data """ kwargs = self._build_kwargs(args, kwargs) assert np.issubdtype(type(new_data), np.number) or ( isinstance(new_data, type(
np.array([0])
numpy.array
#====================================Like.py===================================# # Created by <NAME> 2021 # Contains functions for interfacing with the fortran code in src/like # the fortran likelihood code needs to be compiled first by running the make # file in src/like #==============================================================================# from __future__ import print_function from numpy import pi, sqrt, exp, zeros, size, shape, array, append, flipud, gradient from numpy import trapz, interp, loadtxt, log10, log, savetxt, vstack, transpose from numpy import ravel,tile,mean,inf,nan,amin,amax from scipy.ndimage.filters import gaussian_filter1d from scipy.integrate import cumtrapz from numpy.linalg import norm from scipy.special import gammaln from Params import * import LabFuncs import NeutrinoFuncs import WIMPFuncs import shlex import subprocess import pprint def Floor_2D(data,filt=True,filt_width=3,Ex_crit=1e10): sig = data[1:,0] m = data[0,1:] n = size(m) ns = size(sig) Ex = flipud(transpose(data[1:,1:].T)) Ex[Ex>Ex_crit] = nan Exmin = amin(Ex[Ex>0]) Ex[Ex==0] = Exmin DY = zeros(shape=shape(Ex)) for j in range(0,n): y = log10(Ex[:,j]) if filt: y = gaussian_filter1d(gaussian_filter1d(y,sigma=3),filt_width) dy = gradient(y,log10(sig[2])-log10(sig[1])) dy = gaussian_filter1d(dy,filt_width) else: dy = gradient(y,log10(sig[2])-log10(sig[1])) DY[:,j] = dy NUFLOOR = zeros(shape=n) #for j in range(0,n): # DY[:,j] = gaussian_filter1d(DY[:,j],filt_width) for j in range(0,n): for i in range(0,ns): if DY[ns-1-i,j]<=-2.0: i0 = ns-1-i i1 = i0+10 NUFLOOR[j] = 10.0**interp(-2,DY[i0:i1+1,j],log10(sig[i0:i1+1])) DY[ns-1-i:-1,j] = nan break DY = -DY DY[DY<2] = 2 return m,sig,NUFLOOR,DY def NuFloor_1event(mvals,Nuc,nths=100): # Load neutrino fluxes Names,solar,E_nu_all,Flux_all,Flux_norm,Flux_err = NeutrinoFuncs.GetNuFluxes(0.0) n_nu = shape(Flux_all)[0] E_ths = logspace(log10(0.0001),log10(100.0),nths) t = 0 R =
zeros(shape=nths)
numpy.zeros
import pythreejs as three import numpy as np from time import time, sleep from .Colors import colors from ..utils import Observer, ColorMap import threading import copy class DrawableMesh(Observer): def __init__(self, geometry, mesh_color = None, reactive = False): super(DrawableMesh, self).__init__() self._external_color = colors.teal self._internal_color = colors.orange self._color_map = None self._metric_string = None self._c_map_string = None self._label_colors = None self.geometry = geometry if reactive: self.geometry.attach(self) self.geometry_color = self.__initialize_geometry_color(mesh_color) self.mesh = self.__initialize_mesh() self.wireframe = self.__initialize_wireframe() self.threejs_items = [self.mesh, self.wireframe] self.updating = False self.queue = False def __initialize_geometry_color(self, mesh_color, geometry = None): if geometry is None: geometry = self.geometry if mesh_color is None: color = np.repeat(self._external_color.reshape(1, 3), geometry.num_triangles*3, axis=0 ) if hasattr(self.geometry, "internals"): internal_color = geometry.internal_triangles_idx() color[internal_color] = self._internal_color return color def update_wireframe_color(self, new_color): self.wireframe.material.color = new_color def update_wireframe_opacity(self, new_opacity): self.wireframe.material.opacity = new_opacity def update_internal_color(self, new_color, geometry = None): if geometry is None: geometry = self.geometry self._internal_color = np.array(new_color) if hasattr(geometry, "internals"): internal_color = geometry.internal_triangles_idx() self.geometry_color[internal_color] = new_color colors = geometry._as_threejs_colors() new_colors = self.geometry_color[colors] tris, vtx_normals = geometry._as_threejs_triangle_soup() interleaved = np.concatenate((tris, new_colors, vtx_normals), axis=1) self.mesh.geometry.attributes['color'].data.array = interleaved def update_external_color(self, new_color, geometry = None): if geometry is None: geometry = self.geometry self._external_color = np.array(new_color) if hasattr(geometry, "internals"): internal_color = geometry.internal_triangles_idx() self.geometry_color[np.logical_not(internal_color)] = new_color else: self.geometry_color[:] = new_color colors = geometry._as_threejs_colors() new_colors = self.geometry_color[colors] tris, vtx_normals = geometry._as_threejs_triangle_soup() interleaved = np.concatenate((tris, new_colors, vtx_normals), axis=1) self.mesh.geometry.attributes['color'].data.array = interleaved def update_color_map(self, new_colors, geometry = None): if geometry is None: geometry = self.geometry self.geometry_color[:] = geometry._as_threejs_colors(colors= new_colors) colors = geometry._as_threejs_colors() new_colors = self.geometry_color[colors] tris, vtx_normals = geometry._as_threejs_triangle_soup() interleaved = np.concatenate((tris, new_colors, vtx_normals), axis=1) self.mesh.geometry.attributes['color'].data.array = interleaved def compute_color_map(self, metric_string, c_map_string, geometry=None): if geometry is None: geometry = self.geometry self._metric_string = metric_string self._c_map_string = c_map_string (min_range, max_range), metric = self.geometry.simplex_metrics[metric_string] c_map = ColorMap.color_maps[c_map_string] if min_range is None or max_range is None: min_range = np.min(metric) max_range = np.max(metric) if (
np.abs(max_range-min_range)
numpy.abs
import sys import numpy as np import pandas as pd # Constant lRate = 0.05 iterTime = 3000 def sigmoid(z): return 1 / (1 + np.exp(-z)) def readFile(filename): return pd.read_csv(filename).as_matrix().astype('float') I = [0, 1, 3, 4, 5] def regulate(X): return np.concatenate((X, X[:, I] ** 2, X[:, I] ** 3, X[:, I] ** 4, X[:, I] ** 5, np.log(X[:, I] + 1e-10), (X[:, 0] * X[:, 3]).reshape(X.shape[0], 1), (X[:, 0] * X[:, 5]).reshape(X.shape[0], 1), (X[:, 0] * X[:, 5]).reshape(X.shape[0], 1) ** 2, (X[:, 3] * X[:, 5]).reshape(X.shape[0], 1), X[:, 6:] * X[:, 5].reshape(X.shape[0], 1), (X[:, 3] - X[:, 4]).reshape(X.shape[0], 1), (X[:, 3] - X[:, 4]).reshape(X.shape[0], 1) ** 3), axis = 1) X_train, Y_train, X_test = readFile(sys.argv[1]), readFile(sys.argv[2]), readFile(sys.argv[3]) X_train, X_test = regulate(X_train), regulate(X_test) NUM = 6000 X_train, Y_train = X_train[:-NUM], Y_train[:-NUM] valid = (X_train[-NUM:], Y_train[-NUM:]) meanX, stdX = np.mean(X_train, axis = 0), np.std(X_train, axis = 0) def cost(X, y, w): pred = sigmoid(np.dot(X, w)) return -np.mean(y * np.log(pred + 1e-20) + (1 - y) * np.log((1 - pred + 1e-20))) def scale(X, mean, std): return (X - mean) / (std + 1e-20) def evaluate(X, y, w): p = sigmoid(
np.dot(X, w)
numpy.dot
from collections import Counter import pytest import numpy as np from numpy.testing import (assert_allclose, assert_almost_equal, assert_, assert_equal, assert_array_almost_equal, assert_array_equal) from scipy.stats import shapiro from scipy.stats._sobol import _test_find_index from scipy.stats import qmc from scipy.stats._qmc import (van_der_corput, n_primes, primes_from_2_to, update_discrepancy, QMCEngine, check_random_state) class TestUtils: def test_scale(self): # 1d scalar space = [[0], [1], [0.5]] out = [[-2], [6], [2]] scaled_space = qmc.scale(space, l_bounds=-2, u_bounds=6) assert_allclose(scaled_space, out) # 2d space space = [[0, 0], [1, 1], [0.5, 0.5]] bounds = np.array([[-2, 0], [6, 5]]) out = [[-2, 0], [6, 5], [2, 2.5]] scaled_space = qmc.scale(space, l_bounds=bounds[0], u_bounds=bounds[1]) assert_allclose(scaled_space, out) scaled_back_space = qmc.scale(scaled_space, l_bounds=bounds[0], u_bounds=bounds[1], reverse=True) assert_allclose(scaled_back_space, space) # broadcast space = [[0, 0, 0], [1, 1, 1], [0.5, 0.5, 0.5]] l_bounds, u_bounds = 0, [6, 5, 3] out = [[0, 0, 0], [6, 5, 3], [3, 2.5, 1.5]] scaled_space = qmc.scale(space, l_bounds=l_bounds, u_bounds=u_bounds) assert_allclose(scaled_space, out) def test_scale_random(self): np.random.seed(0) sample = np.random.rand(30, 10) a = -np.random.rand(10) * 10 b = np.random.rand(10) * 10 scaled = qmc.scale(sample, a, b, reverse=False) unscaled = qmc.scale(scaled, a, b, reverse=True) assert_allclose(unscaled, sample) def test_scale_errors(self): with pytest.raises(ValueError, match=r"Sample is not a 2D array"): space = [0, 1, 0.5] qmc.scale(space, l_bounds=-2, u_bounds=6) with pytest.raises(ValueError, match=r"Bounds are not consistent" r" a < b"): space = [[0, 0], [1, 1], [0.5, 0.5]] bounds = np.array([[-2, 6], [6, 5]]) qmc.scale(space, l_bounds=bounds[0], u_bounds=bounds[1]) with pytest.raises(ValueError, match=r"shape mismatch: objects cannot " r"be broadcast to a " r"single shape"): space = [[0, 0], [1, 1], [0.5, 0.5]] l_bounds, u_bounds = [-2, 0, 2], [6, 5] qmc.scale(space, l_bounds=l_bounds, u_bounds=u_bounds) with pytest.raises(ValueError, match=r"Sample dimension is different " r"than bounds dimension"): space = [[0, 0], [1, 1], [0.5, 0.5]] bounds = np.array([[-2, 0, 2], [6, 5, 5]]) qmc.scale(space, l_bounds=bounds[0], u_bounds=bounds[1]) with pytest.raises(ValueError, match=r"Sample is not in unit " r"hypercube"): space = [[0, 0], [1, 1.5], [0.5, 0.5]] bounds = np.array([[-2, 0], [6, 5]]) qmc.scale(space, l_bounds=bounds[0], u_bounds=bounds[1]) with pytest.raises(ValueError, match=r"Sample is out of bounds"): out = [[-2, 0], [6, 5], [8, 2.5]] bounds = np.array([[-2, 0], [6, 5]]) qmc.scale(out, l_bounds=bounds[0], u_bounds=bounds[1], reverse=True) def test_discrepancy(self): space_1 = np.array([[1, 3], [2, 6], [3, 2], [4, 5], [5, 1], [6, 4]]) space_1 = (2.0 * space_1 - 1.0) / (2.0 * 6.0) space_2 = np.array([[1, 5], [2, 4], [3, 3], [4, 2], [5, 1], [6, 6]]) space_2 = (2.0 * space_2 - 1.0) / (2.0 * 6.0) # From Fang et al. Design and modeling for computer experiments, 2006 assert_allclose(qmc.discrepancy(space_1), 0.0081, atol=1e-4) assert_allclose(qmc.discrepancy(space_2), 0.0105, atol=1e-4) # From <NAME>. et al. Mixture discrepancy for quasi-random point # sets. Journal of Complexity, 29 (3-4), pp. 283-301, 2013. # Example 4 on Page 298 sample = np.array([[2, 1, 1, 2, 2, 2], [1, 2, 2, 2, 2, 2], [2, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 2], [1, 2, 2, 2, 1, 1], [2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 2, 2]]) sample = (2.0 * sample - 1.0) / (2.0 * 2.0) assert_allclose(qmc.discrepancy(sample, method='MD'), 2.5000, atol=1e-4) assert_allclose(qmc.discrepancy(sample, method='WD'), 1.3680, atol=1e-4) assert_allclose(qmc.discrepancy(sample, method='CD'), 0.3172, atol=1e-4) # From <NAME> al. Minimizing the L2 and Linf star discrepancies # of a single point in the unit hypercube. JCAM, 2005 # Table 1 on Page 283 for dim in [2, 4, 8, 16, 32, 64]: ref = np.sqrt(3**(-dim)) assert_allclose(qmc.discrepancy(np.array([[1]*dim]), method='L2-star'), ref) def test_discrepancy_errors(self): sample = np.array([[1, 3], [2, 6], [3, 2], [4, 5], [5, 1], [6, 4]]) with pytest.raises(ValueError, match=r"Sample is not in unit " r"hypercube"): qmc.discrepancy(sample) with pytest.raises(ValueError, match=r"Sample is not a 2D array"): qmc.discrepancy([1, 3]) sample = [[0, 0], [1, 1], [0.5, 0.5]] with pytest.raises(ValueError, match=r"toto is not a valid method."): qmc.discrepancy(sample, method='toto') def test_update_discrepancy(self): space_1 = np.array([[1, 3], [2, 6], [3, 2], [4, 5], [5, 1], [6, 4]]) space_1 = (2.0 * space_1 - 1.0) / (2.0 * 6.0) disc_init = qmc.discrepancy(space_1[:-1], iterative=True) disc_iter = update_discrepancy(space_1[-1], space_1[:-1], disc_init) assert_allclose(disc_iter, 0.0081, atol=1e-4) # errors with pytest.raises(ValueError, match=r"Sample is not in unit " r"hypercube"): update_discrepancy(space_1[-1], space_1[:-1] + 1, disc_init) with pytest.raises(ValueError, match=r"Sample is not a 2D array"): update_discrepancy(space_1[-1], space_1[0], disc_init) x_new = [1, 3] with pytest.raises(ValueError, match=r"x_new is not in unit " r"hypercube"): update_discrepancy(x_new, space_1[:-1], disc_init) x_new = [[0.5, 0.5]] with pytest.raises(ValueError, match=r"x_new is not a 1D array"): update_discrepancy(x_new, space_1[:-1], disc_init) def test_discrepancy_alternative_implementation(self): """Alternative definitions from <NAME>.""" def disc_c2(x): n, s = x.shape xij = x disc1 = np.sum(np.prod((1 + 1/2*np.abs(xij-0.5) - 1/2*np.abs(xij-0.5)**2), axis=1)) xij = x[None, :, :] xkj = x[:, None, :] disc2 = np.sum(np.sum(np.prod(1 + 1/2*np.abs(xij - 0.5) + 1/2*np.abs(xkj - 0.5) - 1/2*np.abs(xij - xkj), axis = 2), axis=0)) return (13/12)**s - 2/n * disc1 + 1/n**2*disc2 def disc_wd(x): n, s = x.shape xij = x[None, :, :] xkj = x[:, None, :] disc = np.sum(np.sum(np.prod(3/2 - np.abs(xij - xkj) + np.abs(xij - xkj)**2, axis = 2), axis=0)) return -(4/3)**s + 1/n**2 * disc def disc_md(x): n, s = x.shape xij = x disc1 = np.sum(np.prod((5/3 - 1/4*np.abs(xij-0.5) - 1/4*np.abs(xij-0.5)**2), axis=1)) xij = x[None, :, :] xkj = x[:, None, :] disc2 = np.sum(np.sum(np.prod(15/8 - 1/4*np.abs(xij - 0.5) - 1/4*np.abs(xkj - 0.5) - 3/4*np.abs(xij - xkj) + 1/2*np.abs(xij - xkj)**2, axis = 2), axis=0)) return (19/12)**s - 2/n * disc1 + 1/n**2*disc2 def disc_star_l2(x): n, s = x.shape return np.sqrt( 3 ** (-s) - 2 ** (1 - s) / n * np.sum(np.prod(1 - x ** 2, axis=1)) + np.sum([ np.prod(1 - np.maximum(x[k, :], x[j, :])) for k in range(n) for j in range(n) ]) / n ** 2 ) np.random.seed(0) sample = np.random.rand(30, 10) disc_curr = qmc.discrepancy(sample, method='CD') disc_alt = disc_c2(sample) assert_allclose(disc_curr, disc_alt) disc_curr = qmc.discrepancy(sample, method='WD') disc_alt = disc_wd(sample) assert_allclose(disc_curr, disc_alt) disc_curr = qmc.discrepancy(sample, method='MD') disc_alt = disc_md(sample) assert_allclose(disc_curr, disc_alt) disc_curr = qmc.discrepancy(sample, method='L2-star') disc_alt = disc_star_l2(sample) assert_allclose(disc_curr, disc_alt) def test_n_primes(self): primes = n_primes(10) assert primes[-1] == 29 primes = n_primes(168) assert primes[-1] == 997 primes = n_primes(350) assert primes[-1] == 2357 def test_primes(self): primes = primes_from_2_to(50) out = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] assert_allclose(primes, out) class TestVDC: def test_van_der_corput(self): seed = np.random.RandomState(12345) sample = van_der_corput(10, seed=seed) out = [0., 0.5, 0.25, 0.75, 0.125, 0.625, 0.375, 0.875, 0.0625, 0.5625] assert_almost_equal(sample, out) sample = van_der_corput(7, start_index=3, seed=seed) assert_almost_equal(sample, out[3:]) def test_van_der_corput_scramble(self): seed = np.random.RandomState(123456) out = van_der_corput(10, scramble=True, seed=seed) seed = np.random.RandomState(123456) sample = van_der_corput(7, start_index=3, scramble=True, seed=seed) assert_almost_equal(sample, out[3:]) class RandomEngine(qmc.QMCEngine): def __init__(self, d, seed): super().__init__(d=d, seed=seed) def random(self, n=1): self.num_generated += n try: sample = self.rng.random((n, self.d)) except AttributeError: sample = self.rng.random_sample((n, self.d)) return sample def test_subclassing_QMCEngine(): seed = np.random.RandomState(123456) engine = RandomEngine(2, seed=seed) sample_1 = engine.random(n=5) sample_2 = engine.random(n=7) assert engine.num_generated == 12 # reset and re-sample engine.reset() assert engine.num_generated == 0 sample_1_test = engine.random(n=5) assert_equal(sample_1, sample_1_test) # repeat reset and fast forward engine.reset() engine.fast_forward(n=5) sample_2_test = engine.random(n=7) assert_equal(sample_2, sample_2_test) assert engine.num_generated == 12 class QMCEngineTests: """Generic tests for QMC engines.""" qmce = NotImplemented can_scramble = NotImplemented unscramble_nd = NotImplemented scramble_nd = NotImplemented scramble = [True, False] ids = ["Scrambled", "Unscrambled"] def engine(self, scramble: bool, **kwargs) -> QMCEngine: seed = np.random.RandomState(123456) if self.can_scramble: return self.qmce(scramble=scramble, seed=seed, **kwargs) else: if scramble: pytest.skip() else: return self.qmce(seed=seed, **kwargs) def reference(self, scramble: bool) -> np.ndarray: return self.scramble_nd if scramble else self.unscramble_nd @pytest.mark.parametrize("scramble", scramble, ids=ids) def test_0dim(self, scramble): engine = self.engine(d=0, scramble=scramble) sample = engine.random(4) assert_array_equal(np.empty((4, 0)), sample) @pytest.mark.parametrize("scramble", scramble, ids=ids) def test_0sample(self, scramble): engine = self.engine(d=2, scramble=scramble) sample = engine.random(0) assert_array_equal(np.empty((0, 2)), sample) @pytest.mark.parametrize("scramble", scramble, ids=ids) def test_1sample(self, scramble): engine = self.engine(d=2, scramble=scramble) sample = engine.random(1) assert (1, 2) == sample.shape @pytest.mark.parametrize("scramble", scramble, ids=ids) def test_bounds(self, scramble): engine = self.engine(d=100, scramble=scramble) sample = engine.random(512) assert_(np.all(sample >= 0)) assert_(np.all(sample <= 1)) @pytest.mark.parametrize("scramble", scramble, ids=ids) def test_sample(self, scramble): ref_sample = self.reference(scramble=scramble) engine = self.engine(d=2, scramble=scramble) sample = engine.random(n=len(ref_sample)) assert_almost_equal(sample, ref_sample, decimal=1) assert engine.num_generated == len(ref_sample) @pytest.mark.parametrize("scramble", scramble, ids=ids) def test_continuing(self, scramble): ref_sample = self.reference(scramble=scramble) engine = self.engine(d=2, scramble=scramble) n_half = len(ref_sample) // 2 _ = engine.random(n=n_half) sample = engine.random(n=n_half) assert_almost_equal(sample, ref_sample[n_half:], decimal=1) @pytest.mark.parametrize("scramble", scramble, ids=ids) def test_reset(self, scramble): engine = self.engine(d=2, scramble=scramble) ref_sample = engine.random(n=8) engine.reset() assert engine.num_generated == 0 sample = engine.random(n=8) assert_allclose(sample, ref_sample) @pytest.mark.parametrize("scramble", scramble, ids=ids) def test_fast_forward(self, scramble): ref_sample = self.reference(scramble=scramble) engine = self.engine(d=2, scramble=scramble) engine.fast_forward(4) sample = engine.random(n=4) assert_almost_equal(sample, ref_sample[4:], decimal=1) # alternate fast forwarding with sampling engine.reset() even_draws = [] for i in range(8): if i % 2 == 0: even_draws.append(engine.random()) else: engine.fast_forward(1) assert_almost_equal( ref_sample[[i for i in range(8) if i % 2 == 0]], np.concatenate(even_draws), decimal=5 ) @pytest.mark.parametrize("scramble", [True]) def test_distribution(self, scramble): d = 50 engine = self.engine(d=d, scramble=scramble) sample = engine.random(1024) assert_array_almost_equal( np.mean(sample, axis=0), np.repeat(0.5, d), decimal=2 ) assert_array_almost_equal( np.percentile(sample, 25, axis=0), np.repeat(0.25, d), decimal=2 ) assert_array_almost_equal( np.percentile(sample, 75, axis=0), np.repeat(0.75, d), decimal=2 ) class TestHalton(QMCEngineTests): qmce = qmc.Halton can_scramble = True # theoretical values known from <NAME> unscramble_nd = np.array([[0, 0], [1 / 2, 1 / 3], [1 / 4, 2 / 3], [3 / 4, 1 / 9], [1 / 8, 4 / 9], [5 / 8, 7 / 9], [3 / 8, 2 / 9], [7 / 8, 5 / 9]]) # theoretical values unknown: convergence properties checked scramble_nd = np.array([[0.34229571, 0.89178423], [0.84229571, 0.07696942], [0.21729571, 0.41030275], [0.71729571, 0.74363609], [0.46729571, 0.18808053], [0.96729571, 0.52141386], [0.06104571, 0.8547472], [0.56104571, 0.29919164]]) class TestLHS(QMCEngineTests): qmce = qmc.LatinHypercube can_scramble = False def test_continuing(self, *args): pytest.skip("Not applicable: not a sequence.") def test_fast_forward(self, *args): pytest.skip("Not applicable: not a sequence.") def test_sample(self, *args): pytest.skip("Not applicable: the value of reference sample is implementation dependent.") def test_sample_stratified(self): d, n = 4, 20 expected1d = (np.arange(n) + 0.5) / n expected = np.broadcast_to(expected1d, (d, n)).T engine = self.engine(d=d, scramble=False, centered=True) sample = engine.random(n=n) sorted_sample = np.sort(sample, axis=0) assert_equal(sorted_sample, expected) assert np.any(sample != expected) engine = self.engine(d=d, scramble=False, centered=False) sample = engine.random(n=n) sorted_sample = np.sort(sample, axis=0) assert_allclose(sorted_sample, expected, atol=0.5 / n) assert np.any(sample - expected > 0.5 / n) class TestSobol(QMCEngineTests): qmce = qmc.Sobol can_scramble = True # theoretical values from Joe Kuo2010 unscramble_nd = np.array([[0., 0.], [0.5, 0.5], [0.75, 0.25], [0.25, 0.75], [0.375, 0.375], [0.875, 0.875], [0.625, 0.125], [0.125, 0.625]]) # theoretical values unknown: convergence properties checked scramble_nd = np.array([[0.50860737, 0.29320504], [0.07116939, 0.89594537], [0.49354145, 0.11524881], [0.93097717, 0.70244044], [0.87266153, 0.23887917], [0.31021884, 0.57600391], [0.13687253, 0.42054182], [0.69931293, 0.77336788]]) def test_warning(self): with pytest.warns(UserWarning, match=r"The balance properties of " r"Sobol' points"): seed = np.random.RandomState(12345) engine = qmc.Sobol(1, seed=seed) engine.random(10) def test_random_base2(self): seed = np.random.RandomState(12345) engine = qmc.Sobol(2, scramble=False, seed=seed) sample = engine.random_base2(2) assert_array_equal(self.unscramble_nd[:4], sample) # resampling still having N=2**n sample = engine.random_base2(2) assert_array_equal(self.unscramble_nd[4:8], sample) # resampling again but leading to N!=2**n with pytest.raises(ValueError, match=r"The balance properties of " r"Sobol' points"): engine.random_base2(2) def test_raise(self): with pytest.raises(ValueError, match=r"Maximum supported " r"dimensionality"): qmc.Sobol(qmc.Sobol.MAXDIM + 1) def test_high_dim(self): seed = np.random.RandomState(12345) engine = qmc.Sobol(1111, scramble=False, seed=seed) count1 = Counter(engine.random().flatten().tolist()) count2 = Counter(engine.random().flatten().tolist()) assert_equal(count1, Counter({0.0: 1111})) assert_equal(count2, Counter({0.5: 1111})) class TestMultinomialQMC: def test_MultinomialNegativePs(self): p = np.array([0.12, 0.26, -0.05, 0.35, 0.22]) with pytest.raises(ValueError, match=r"Elements of pvals must " r"be non-negative."): qmc.MultinomialQMC(p) def test_MultinomialSumOfPTooLarge(self): p = np.array([0.12, 0.26, 0.1, 0.35, 0.22]) with pytest.raises(ValueError, match=r"Elements of pvals must sum " r"to 1."): qmc.MultinomialQMC(p) @pytest.mark.filterwarnings('ignore::UserWarning') def test_MultinomialBasicDraw(self): seed = np.random.RandomState(12345) p = np.array([0.12, 0.26, 0.05, 0.35, 0.22]) expected = np.array([12, 25, 6, 35, 22]) engine = qmc.MultinomialQMC(p, seed=seed) assert_array_equal(engine.random(100), expected) def test_MultinomialDistribution(self): seed = np.random.RandomState(12345) p = np.array([0.12, 0.26, 0.05, 0.35, 0.22]) engine = qmc.MultinomialQMC(p, seed=seed) draws = engine.random(8192) assert_array_almost_equal(draws / np.sum(draws), p, decimal=4) def test_FindIndex(self): p_cumulative = np.array([0.1, 0.4, 0.45, 0.6, 0.75, 0.9, 0.99, 1.0]) size = len(p_cumulative) assert_equal(_test_find_index(p_cumulative, size, 0.0), 0) assert_equal(_test_find_index(p_cumulative, size, 0.4), 2) assert_equal(_test_find_index(p_cumulative, size, 0.44999), 2) assert_equal(_test_find_index(p_cumulative, size, 0.45001), 3) assert_equal(_test_find_index(p_cumulative, size, 1.0), size - 1) @pytest.mark.filterwarnings('ignore::UserWarning') def test_other_engine(self): # same as test_MultinomialBasicDraw with different engine seed = np.random.RandomState(12345) p = np.array([0.12, 0.26, 0.05, 0.35, 0.22]) expected = np.array([12, 25, 6, 35, 22]) base_engine = qmc.Sobol(1, scramble=True, seed=seed) engine = qmc.MultinomialQMC(p, engine=base_engine, seed=seed) assert_array_equal(engine.random(100), expected) def test_reset(self): p = np.array([0.12, 0.26, 0.05, 0.35, 0.22]) seed = np.random.RandomState(12345) engine = qmc.MultinomialQMC(p, seed=seed) samples = engine.random(2) engine.reset() samples_reset = engine.random(2) assert_array_equal(samples, samples_reset) class TestNormalQMC: def test_NormalQMC(self): # d = 1 seed = np.random.RandomState(123456) engine = qmc.MultivariateNormalQMC(mean=np.zeros(1), seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 1)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 1)) # d = 2 engine = qmc.MultivariateNormalQMC(mean=np.zeros(2), seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 2)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 2)) def test_NormalQMCInvTransform(self): # d = 1 seed = np.random.RandomState(123456) engine = qmc.MultivariateNormalQMC( mean=np.zeros(1), inv_transform=True, seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 1)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 1)) # d = 2 engine = qmc.MultivariateNormalQMC( mean=np.zeros(2), inv_transform=True, seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 2)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 2)) def test_other_engine(self): seed = np.random.RandomState(123456) base_engine = qmc.Sobol(d=2, scramble=False, seed=seed) engine = qmc.MultivariateNormalQMC(mean=np.zeros(2), engine=base_engine, inv_transform=True, seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 2)) def test_NormalQMCSeeded(self): # test even dimension seed = np.random.RandomState(12345) engine = qmc.MultivariateNormalQMC( mean=np.zeros(2), inv_transform=False, seed=seed) samples = engine.random(n=2) samples_expected = np.array( [[-0.943472, 0.405116], [-0.63099602, -1.32950772]] ) assert_array_almost_equal(samples, samples_expected) # test odd dimension seed = np.random.RandomState(12345) engine = qmc.MultivariateNormalQMC( mean=np.zeros(3), inv_transform=False, seed=seed) samples = engine.random(n=2) samples_expected = np.array( [ [-0.943472, 0.405116, 0.268828], [1.83169884, -1.40473647, 0.24334828], ] ) assert_array_almost_equal(samples, samples_expected) def test_NormalQMCSeededInvTransform(self): # test even dimension seed = np.random.RandomState(12345) engine = qmc.MultivariateNormalQMC( mean=np.zeros(2), seed=seed, inv_transform=True) samples = engine.random(n=2) samples_expected = np.array( [[0.228309, -0.162516], [-0.41622922, 0.46622792]] ) assert_array_almost_equal(samples, samples_expected) # test odd dimension seed = np.random.RandomState(12345) engine = qmc.MultivariateNormalQMC( mean=np.zeros(3), seed=seed, inv_transform=True) samples = engine.random(n=2) samples_expected = np.array( [ [0.228309, -0.162516, 0.167352], [-1.40525266, 1.37652443, -0.8519666], ] ) assert_array_almost_equal(samples, samples_expected) def test_NormalQMCShapiro(self): seed = np.random.RandomState(12345) engine = qmc.MultivariateNormalQMC(mean=np.zeros(2), seed=seed) samples = engine.random(n=256) assert_(all(np.abs(samples.mean(axis=0)) < 1e-2)) assert_(all(np.abs(samples.std(axis=0) - 1) < 1e-2)) # perform Shapiro-Wilk test for normality for i in (0, 1): _, pval = shapiro(samples[:, i]) assert_(pval > 0.9) # make sure samples are uncorrelated cov = np.cov(samples.transpose()) assert_(np.abs(cov[0, 1]) < 1e-2) def test_NormalQMCShapiroInvTransform(self): seed = np.random.RandomState(12345) engine = qmc.MultivariateNormalQMC( mean=np.zeros(2), seed=seed, inv_transform=True) samples = engine.random(n=256) assert_(all(np.abs(samples.mean(axis=0)) < 1e-2)) assert_(all(np.abs(samples.std(axis=0) - 1) < 1e-2)) # perform Shapiro-Wilk test for normality for i in (0, 1): _, pval = shapiro(samples[:, i]) assert_(pval > 0.9) # make sure samples are uncorrelated cov = np.cov(samples.transpose()) assert_(np.abs(cov[0, 1]) < 1e-2) def test_reset(self): seed = np.random.RandomState(12345) engine = qmc.MultivariateNormalQMC(mean=np.zeros(1), seed=seed) samples = engine.random(2) engine.reset() samples_reset = engine.random(2) assert_array_equal(samples, samples_reset) class TestMultivariateNormalQMC: def test_MultivariateNormalQMCNonPSD(self): # try with non-psd, non-pd cov and expect an assertion error with pytest.raises(ValueError, match=r"Covariance matrix not PSD."): seed = np.random.RandomState(123456) qmc.MultivariateNormalQMC([0, 0], [[1, 2], [2, 1]], seed=seed) def test_MultivariateNormalQMCNonPD(self): # try with non-pd but psd cov; should work seed = np.random.RandomState(123456) engine = qmc.MultivariateNormalQMC( [0, 0, 0], [[1, 0, 1], [0, 1, 1], [1, 1, 2]], seed=seed ) assert_(engine._corr_matrix is not None) def test_MultivariateNormalQMCSymmetric(self): # try with non-symmetric cov and expect an error with pytest.raises(ValueError, match=r"Covariance matrix is not " r"symmetric."): seed = np.random.RandomState(123456) qmc.MultivariateNormalQMC([0, 0], [[1, 0], [2, 1]], seed=seed) def test_MultivariateNormalQMCDim(self): # incompatible dimension of mean/cov with pytest.raises(ValueError, match=r"Dimension mismatch between " r"mean and covariance."): seed = np.random.RandomState(123456) qmc.MultivariateNormalQMC([0], [[1, 0], [0, 1]], seed=seed) def test_MultivariateNormalQMC(self): # d = 1 scalar seed = np.random.RandomState(123456) engine = qmc.MultivariateNormalQMC(mean=0, cov=5, seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 1)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 1)) # d = 2 list engine = qmc.MultivariateNormalQMC(mean=[0, 1], cov=[[1, 0], [0, 1]], seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 2)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 2)) # d = 3 np.array mean = np.array([0, 1, 2]) cov = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) engine = qmc.MultivariateNormalQMC(mean, cov, seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 3)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 3)) def test_MultivariateNormalQMCInvTransform(self): # d = 1 scalar seed = np.random.RandomState(123456) engine = qmc.MultivariateNormalQMC(mean=0, cov=5, inv_transform=True, seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 1)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 1)) # d = 2 list engine = qmc.MultivariateNormalQMC( mean=[0, 1], cov=[[1, 0], [0, 1]], inv_transform=True, seed=seed ) samples = engine.random() assert_equal(samples.shape, (1, 2)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 2)) # d = 3 np.array mean = np.array([0, 1, 2]) cov = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) engine = qmc.MultivariateNormalQMC(mean, cov, inv_transform=True, seed=seed) samples = engine.random() assert_equal(samples.shape, (1, 3)) samples = engine.random(n=5) assert_equal(samples.shape, (5, 3)) def test_MultivariateNormalQMCSeeded(self): # test even dimension seed = np.random.RandomState(12345) np.random.seed(54321) a = np.random.randn(2, 2) A = a @ a.transpose() + np.diag(np.random.rand(2)) engine = qmc.MultivariateNormalQMC(np.array([0, 0]), A, inv_transform=False, seed=seed) samples = engine.random(n=2) samples_expected = np.array( [[-1.010703, -0.324223], [-0.67595995, -2.27437872]] ) assert_array_almost_equal(samples, samples_expected) # test odd dimension seed = np.random.RandomState(12345) np.random.seed(54321) a =
np.random.randn(3, 3)
numpy.random.randn
"""Wrapper for semi-empirical QM energies with XTB. """ __all__ = ["XTBEnergy", "XTBBridge"] import warnings import torch import numpy as np from .base import _BridgeEnergy, _Bridge class XTBBridge(_Bridge): """Wrapper around XTB for semi-empirical QM energy calculations. Parameters ---------- numbers : np.ndarray Atomic numbers temperature : float Temperature in Kelvin. method : str The semi-empirical method that is used to compute energies. solvent : str The solvent. If empty string, perform a vacuum calculation. verbosity : int 0 (muted), 1 (minimal), 2 (full) err_handling : str How to deal with exceptions inside XTB. One of `["ignore", "warning", "error"]` Attributes ---------- n_atoms : int The number of atoms in this molecules. available_solvents : List[str] The solvent models that are available for computations in xtb. available_methods : List[str] The semiempirical methods that are available for computations in xtb. Examples -------- Setting up an XTB energy for a small peptide from bgmol >>> from bgmol.systems import MiniPeptide >>> from bgflow import XTBEnergy, XTBBridge >>> import numpy as np >>> import torch >>> system = MiniPeptide("G") >>> numbers = np.array([atom.element.number for atom in system.mdtraj_topology.atoms]) >>> target = XTBEnergy(XTBBridge(numbers=numbers, temperature=300, solvent="water")) >>> xyz = torch.tensor(system.positions) >>> energy = target.energy(xyz) Notes ----- Requires the xtb-python program (installable with `conda install -c conda-forge xtb-python`). """ def __init__( self, numbers: np.ndarray, temperature: float, method: str = "GFN2-xTB", solvent: str = "", verbosity: int = 0, err_handling: str = "warning" ): self.numbers = numbers self.temperature = temperature self.method = method self.solvent = solvent self.verbosity = verbosity self.err_handling = err_handling super().__init__() @property def n_atoms(self): return len(self.numbers) @property def available_solvents(self): from xtb.utils import _solvents return list(_solvents.keys()) @property def available_methods(self): from xtb.utils import _methods return list(_methods.keys()) def _evaluate_single( self, positions: torch.Tensor, evaluate_force=True, evaluate_energy=True, ): from xtb.interface import Calculator, XTBException from xtb.utils import get_method, get_solvent positions = _nm2bohr(positions) energy, force = None, None try: calc = Calculator(get_method(self.method), self.numbers, positions) calc.set_solvent(get_solvent(self.solvent)) calc.set_verbosity(self.verbosity) calc.set_electronic_temperature(self.temperature) try: res = calc.singlepoint() except XTBException: # Try with higher temperature calc.set_electronic_temperature(10 * self.temperature) res = calc.singlepoint() calc.set_electronic_temperature(self.temperature) res = calc.singlepoint(res) if evaluate_energy: energy = _hartree2kbt(res.get_energy(), self.temperature) if evaluate_force: force = _hartree_per_bohr2kbt_per_nm( -res.get_gradient(), self.temperature ) assert not np.isnan(energy) assert not np.isnan(force).any() except XTBException as e: if self.err_handling == "error": raise e elif self.err_handling == "warning": warnings.warn( f"Caught exception in xtb. " f"Returning infinite energy and zero force. " f"Original exception: {e}" ) force = np.zeros_like(positions) energy = np.infty elif self.err_handling == "ignore": force = np.zeros_like(positions) energy = np.infty except AssertionError: force[
np.isnan(force)
numpy.isnan
import os import unittest import tempfile import shutil import numpy as np import darr from darr.array import asarray, create_array, create_datadir, Array, \ numtypesdescr, truncate_array, delete_array, AppendDataError, \ numtypedescriptiontxt from darr.utils import tempdir, tempdirfile # TODO clean up overwrite parameters, not necessary anymore class DarrTestCase(unittest.TestCase): def assertArrayIdentical(self, x, y): self.assertEqual(x.dtype, y.dtype) self.assertEqual(x.shape, y.shape) self.assertEqual(np.sum((x-y)**2), 0) class AsArray(DarrTestCase): def setUp(self): self.tempdirname1 = tempfile.mkdtemp() self.tempdirname2 = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tempdirname1) shutil.rmtree(self.tempdirname2) def check_arrayequaltoasarray(self, ndarray): """Tests if asarray creates an array of same shape and dtype and same contents as input.""" dar = asarray(path=self.tempdirname1, array=ndarray, overwrite=True) ndarray = np.asarray(ndarray) # could be list or tuple self.assertArrayIdentical(dar[:], ndarray) self.assertEqual(dar.dtype, ndarray.dtype) self.assertEqual(dar.shape, ndarray.shape) def test_asarraynumberint(self): dar = asarray(path=self.tempdirname1, array=1, overwrite=True) self.assertEqual(dar[0], 1) def test_asarraynumberfloat(self): dar = asarray(path=self.tempdirname1, array=1.0, overwrite=True) self.assertEqual(dar[0], 1.0) def test_asarrayonedimensionalndarray(self): ndarray = np.arange(24) self.check_arrayequaltoasarray(ndarray) def test_asarraytwodimensionalndarray(self): ndarray = np.arange(24).reshape(12, 2) self.check_arrayequaltoasarray(ndarray) def test_asarraythreedimensionalndarray(self): ndarray = np.arange(24).reshape(4, 2, 3) self.check_arrayequaltoasarray(ndarray) def test_asarrayonedimensionallist(self): ndarray = [1, 2, 3, 4] self.check_arrayequaltoasarray(ndarray) def test_asarraytwodimensionallist(self): ndarray = [[1, 2, 3, 4], [1, 2, 3, 4]] self.check_arrayequaltoasarray(ndarray) def test_asarraythreedimensionallist(self): ndarray = [[[1, 2, 3, 4], [1, 2, 3, 4]], [[1, 2, 3, 4], [1, 2, 3, 4]]] self.check_arrayequaltoasarray(ndarray) def test_asarraynumericdtypes(self): dtypes = numtypesdescr.keys() for dtype in dtypes: with self.subTest(dtype=dtype): ndarray = np.arange(24, dtype=dtype) self.check_arrayequaltoasarray(ndarray) def test_asarrayfortranorder(self): ndarray = np.asarray(np.arange(24, dtype='float64'), order='F') self.check_arrayequaltoasarray(ndarray) def test_asarraycorder(self): ndarray = np.asarray(np.arange(24, dtype='float64'), order='C') self.check_arrayequaltoasarray(ndarray) def test_asarraylittleendian(self): ndarray = np.arange(24, dtype='<f4') self.check_arrayequaltoasarray(ndarray) def test_asarraybigendian(self): ndarray = np.arange(24, dtype='>f4') self.check_arrayequaltoasarray(ndarray) def test_asarrayoverwrite(self): a = np.zeros((5,), dtype='float64') _ = asarray(path=self.tempdirname1, array=a, overwrite=True) b = np.ones((4,2), dtype='uint8') dar = asarray(path=self.tempdirname1, array=b, overwrite=True) self.assertArrayIdentical(dar[:], b) def test_asarraysequencesmallchunklen(self): a = [1, 2, 3, 4, 5] dar = asarray(path=self.tempdirname1, array=a, chunklen=3, overwrite=True) self.assertArrayIdentical(np.array(a), dar[:]) def test_asarraywritingsmallerchunks(self): a = np.arange(1024, dtype='int64').reshape(2,-1) dar = asarray(path=self.tempdirname1, array=a, chunklen=4, overwrite=True) self.assertArrayIdentical(a, dar[:]) dar = asarray(path=self.tempdirname1, array=a, chunklen=5, overwrite=True) self.assertArrayIdentical(a, dar[:]) def test_asarraywritinglargerthanlenchunks(self): a = np.arange(1024, dtype='int64').reshape(2, -1) dar = asarray(path=self.tempdirname1, array=a, chunklen=4096, overwrite=True) self.assertArrayIdentical(a, dar[:]) def test_asarrayarray(self): a =
np.arange(1024, dtype='int64')
numpy.arange
#!/usr/bin/env python """ The script converts the .dat files from afphot to .nc files for M2 pipeline. Before running this script, afphot should be ran (usually in muscat-abc) and its results copied to /ut2/muscat/reduction/muscat/DATE. To convert .dat to .nc, this script does the following. 1. read the .dat files in /ut2/muscat/reduction/muscat/DATE/TARGET_N/PHOTDIR/radXX.0 where DATE: observation date (e.g. 191029) TARGET_N: e.g. TOI516_0, TOI516_1, TOI516_2 for g-,r-,z-band produced by afphot PHOTDIR: either apphot_mapping or apphot_centroid radXX.0: radius containing .dat files 2. convert JD to BJD_TDB, although M2 pipeline uses MJD_TDB 3. construct xarrays assuming: fwhm as proxy to object entropy (eobj) sky as proxy to sky median (msky) peak as proxy to sky entropy (esky) 3. save xarrays dataset into .nc files for each band """ import os import re from glob import glob import pandas as pd from astropy.time import Time from tqdm import tqdm import numpy as np from astropy.io import fits from astropy import units as u from astropy.coordinates import SkyCoord from astropy.coordinates import EarthLocation import xarray as xa import matplotlib.pyplot as pl from astroplan.plots import plot_finder_image from astropy.visualization import ZScaleInterval interval = ZScaleInterval(contrast=0.5) from muscat2ph.phdata import PhotometryData # import sys # sys.path.append('/home/muscat/muscat2/') # from toi_functions import get_toi #http://www.oao.nao.ac.jp/en/telescope/abouttel188/ oao = EarthLocation.from_geodetic(lat='34:34:37.47', lon='133:35:38.24', height=372*u.m) muscat_fov = 6.8 #arcsec in diagonal fov_rad = muscat_fov*u.arcmin interval = ZScaleInterval() def binned(a, binsize, fun=np.mean): a_b = [] for i in range(0, a.shape[0], binsize): a_b.append(fun(a[i:i+binsize], axis=0)) return a_b class DatReader: def __init__(self, obsdate, objname, objcoord, bands=['g','r','z_s'], nstars=None, ref_frame=0, ref_band='r', photdir='apphot_mapping', datadir= '/ut2/muscat/reduction/muscat', verbose=True, overwrite=False): """initialize """ if 'z' in bands: raise ValueError('use z_s instead of z') self.obsdate = obsdate self.objname = objname self.bands = bands self.ref_band = ref_band self.ref_frame = ref_frame self.nstars = nstars self.photdir = photdir self.datadir = datadir self.objcoord = self._get_obj_coord(objcoord) self.paths = self._get_paths() self.airmasses = None self.exptimes = None self.data = self._load_dat_files() self.radii = {band: sorted(self.data[band].keys()) for band in self.bands} self.jds = {band: sorted(self.data[band][self.radii[band][0]].keys()) for band in self.bands} self.mjds = None self.bjds = None #tdb self.use_barycorrpy = False self._convert_to_bjd_tdb() #populate mjds and bjds attributes self.verbose = verbose self.overwrite = overwrite def _get_obj_coord(self, objcoord): """Define coord used in bjd_tdb conversion """ objcoord = SkyCoord(ra=objcoord[0], dec=objcoord[1], unit='deg') return objcoord def _get_paths(self): """get path to each data directory per band """ paths = {} nradii = {} loc = f'{self.datadir}/{self.obsdate}' if not os.path.exists(loc): raise FileNotFoundError(f'afphot files not found in {loc}') for n,band in enumerate(self.bands): path = f'{loc}/{self.objname}_{n}/{self.photdir}' radius_dirs = glob(path+'/rad*') errmsg = f'{path} is empty' assert len(radius_dirs)>0, errmsg paths[band] = radius_dirs nradii[band] = (len(radius_dirs)) errmsg = f'nradii: {nradii} have unequal number of radius directories' assert len(set(nradii.values()))==1, errmsg return paths def _load_dat_files(self): """get data per band per aperture radius per cadence; aperture radius is parsed from the directory produced by afphot Note: aperture radius in afphot is chosen arbitrarily, whereas M2 pipeline uses 9 radii: (4,8,12,16,20,25,30,40,50) pix TODO: when a .dat file is corrupted, it is better to populate the entry with a dataframe of null/NaN values; currrently it is simpler to omit/skip using the entire radius directory """ data = {} exptimes = {} airmasses = {} for band in tqdm(self.bands, desc='reading .dat files'): radius_dirs = self.paths[band] apertures = {} for radius_dir in radius_dirs: #parse radius from directory name radius = float(radius_dir.split('/')[-1][3:]) #get dat files inside aperture radius directory dat_files = glob(radius_dir+'/*') dat_files.sort() #specify column names based written in .dat file column_names = 'ID xcen ycen nflux flux err sky sky_sdev SNR nbadpix fwhm peak'.split() cadences = {} exptime = [] airmass = [] nrows, ncols = [], [] for i,dat_file in enumerate(dat_files): try: #parse lines 0, 18, 20 which contains gjd, exptime, and airmass d = pd.read_csv(dat_file, header=None) time = float(d.iloc[0].str.split('=').values[0][1]) #gjd - 2450000 time+=2450000 exptime.append(float(d.iloc[18].str.split('=').values[0][1])) airmass.append(float(d.iloc[20].str.split('=').values[0][1])) except Exception as e: #some afphot dat files may be corrupted errmsg = f'{dat_file} seems corrupted.\n\n' errmsg+='You can temporarily delete the radius directory in each band:\n' for n,_ in enumerate(self.bands): p = f'{self.datadir}/{self.obsdate}/{self.objname}_{n}/{self.photdir}/rad{radius}\n' errmsg+=f'$ rm -rf {p}' raise IOError(errmsg) # parse succeeding lines as dataframe d = pd.read_csv(dat_file, delim_whitespace=True, comment='#', names=column_names) nrows.append(d.shape[0]) ncols.append(d.shape[1]) # in cases when data is bad, the number of stars detected # in some frames is less than nstars used in afphot; if (self.nstars is not None) and self.nstars < len(d): # trim to fewer stars d = d.iloc[:self.nstars] # check if each .dat file has same shape as the rest nrow = int(np.median(nrows)) ncol = int(np.median(ncols)) if i>1: errmsg =f'{dat_file} has shape {d.shape} instead of {(nrow,ncol)}\n\n' errmsg+=f'You can set nstars<={d.shape[0]}, or\n\n' errmsg+='You can temporarily delete the radius directory in each band:\n' for n,_ in enumerate(self.bands): p = f'{self.datadir}/{self.obsdate}/{self.objname}_{n}/{self.photdir}/rad{radius}\n' errmsg+=f'$ rm -rf {p}' assert (nrow,ncol)==d.shape, errmsg assert len(d)>0, f'{dat_file} seems empty' cadences[time]=d #save each data frame corresponding to each cadence/ exposure sequence assert len(cadences)>0, f'{cadences} seems empty' apertures[radius] = cadences assert len(apertures)>0, f'{apertures} seems empty' data[band] = apertures airmasses[band] = airmass #not band-dependent but differs in length per band exptimes[band] = exptime #set attributes self.exptimes = exptimes self.airmasses = airmasses return data def _convert_to_bjd_tdb(self): """convert jd to bjd format and tdb time scale """ mjds = {} bjds = {} for band in self.bands: radius = self.radii[band][0] #any radius will do d = self.data[band][radius] #because time per radius is identical jd = Time(list(d.keys()), format='jd', scale='utc', location=oao) #mjd time format mjds[band] = jd.mjd if self.use_barycorrpy: #https://arxiv.org/pdf/1801.01634.pdf try: from barycorrpy import utc_tdb except: raise ImportError("pip install barycorrpy") #convert jd to bjd_tdb result = utc_tdb.JDUTC_to_BJDTDB(jd, ra=self.objcoord.ra.deg, dec=self.objcoord.dec.deg, lat=oao.lat.deg, longi=oao.lon.deg, alt=oao.height.value) bjds[band] = result[0] else: #BJD time format in TDB time scale bjds[band] = (jd.tdb + jd.light_travel_time(self.objcoord)).value #check difference between two time scales (should be < 8 mins!) diff=bjds[band]-2400000.5-mjds[band] diff_in_minutes = np.median(diff)*24*60 assert diff_in_minutes < 8.4, f'{band}: {diff_in_minutes:.2} min' self.mjds = mjds self.bjds = bjds #return mjds, bjds def show_ref_table(self): """return dat file table corresponding to ref_frame """ radius = self.radii[self.ref_band][0] #any radius will do jds = self.jds[self.ref_band] df = self.data[self.ref_band][radius][jds[self.ref_frame]] return df def create_cpix_xarray(self, dummy_value=None): """pixel centroids of each star in a given reference frame and band Note that cpix is the same for all bands """ ref_jd = self.jds[self.ref_band][self.ref_frame] radius = self.radii[self.ref_band][0] #any radius will do d = self.data[self.ref_band][radius][ref_jd] if dummy_value is None: cen = d[['xcen','ycen']] else: cen = np.full(d[['xcen','ycen']].shape, dummy_value) cpix = xa.DataArray(cen, name='centroids_pix', dims='star centroid_pix'.split(), coords={'centroid_pix': ['x', 'y'], 'star': d['ID']}) return cpix def create_csky_xarray(self): """just place-holder for sky centroids since not available in afphot (or as if astrometry.net failed in M2 pipeline) """ cpix = self.create_cpix_xarray() ca = np.full_like(np.array(cpix), np.nan) csky = xa.DataArray(ca, name='centroids_sky', dims='star centroid_sky'.split(), coords={'centroid_sky': ['ra', 'dec'], 'star': cpix.star.data}) return csky def create_flux_xarray(self, band, dummy_value=None): """flux with shape (time,napertures,nstars) """ d = self.data[band] r = self.radii[band][0] jd = self.jds[band][0] stars = d[r][jd]['ID'].values nstars = len(stars) apers = self.radii[band] napers = len(apers) ncadences = len(self.jds[band]) # populate if dummy_value is None: fluxes = np.zeros((ncadences,napers,nstars)) for n,jd in enumerate(self.jds[band]): for m,r in enumerate(self.radii[band]): fluxes[n,m] = d[r][jd]['flux'].values else: fluxes = np.full((ncadences,napers,nstars), dummy_value) #reshape fluxes = fluxes.reshape(-1,nstars,napers) # fluxes.shape # construct flux = xa.DataArray(fluxes, name='flux', dims='mjd star aperture'.split(), coords={'mjd': self.mjds[band], 'aperture': apers, 'star': stars }) return flux def create_eobj_xarray(self, band, dummy_value=None): """fwhm as proxy to object entropy (eobj) Note that entropy e in M2 pipeline is defined as: z = (a - a.min() + 1e-10)/ a.sum() e = -(z*log(z)).sum() """ d = self.data[band] r = self.radii[band][0] #any radius will do jd = self.jds[band][0] stars = d[r][jd]['ID'].values nstars = len(stars) apers = self.radii[band] napers = len(apers) ncadences = len(self.jds[band]) # populate if dummy_value is None: eobjs = np.zeros((ncadences,napers,nstars)) for n,jd in enumerate(self.jds[band]): for m,r in enumerate(self.radii[band]): eobjs[n,m] = d[r][jd]['fwhm'].values else: eobjs = np.full((ncadences,napers,nstars), dummy_value) #reshape eobjs = eobjs.reshape(-1,nstars,napers) # construct eobj = xa.DataArray(eobjs, name='eobj', dims='mjd star aperture'.split(), coords={'mjd': self.mjds[band], 'aperture': apers, 'star': stars }) return eobj def create_msky_xarray(self, band, dummy_value=None): """sky as proxy to sky median (msky) """ d = self.data[band] r = self.radii[band][0] jd = self.jds[band][0] stars = d[r][jd]['ID'].values nstars = len(stars) cadences = self.jds[band] ncadences = len(cadences) # populate if dummy_value is None: mskys = np.zeros((ncadences,nstars)) for n,jd in enumerate(cadences): for m,star in enumerate(stars): mskys[n,m] = d[r][jd].iloc[m]['sky'] else: mskys = np.full((ncadences,nstars), dummy_value) # construct msky = xa.DataArray(mskys, name='msky', dims='mjd star'.split(), coords={'mjd': self.mjds[band], 'star': stars }) return msky def create_esky_xarray(self, band, dummy_value=None): """sky_sdev as proxy to sky entropy (esky) """ d = self.data[band] r = self.radii[band][0] jd = self.jds[band][0] stars = d[r][jd]['ID'].values nstars = len(stars) cadences = self.jds[band] ncadences = len(cadences) # populate if dummy_value is None: eskys = np.zeros((ncadences,nstars)) for n,jd in enumerate(cadences): for m,star in enumerate(stars): eskys[n,m] = d[r][jd].iloc[m]['sky_sdev'] else: eskys =
np.full((ncadences,nstars), dummy_value)
numpy.full
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 20 2020 @author: <NAME> <EMAIL> @author: <NAME> <EMAIL> """ from scipy.integrate import solve_ivp, odeint from scipy import optimize from scipy.integrate import odeint from scipy.optimize import least_squares import numpy as np import warnings warnings.filterwarnings('ignore') class compartimental_models: def __init__(self): pass def r0(self): return self.beta/self.gamma #define least square errors def sir_least_squares_error_ode(self,par, time_exp, f_exp, fitting_model, initial_conditions): args = par time = (time_exp.min(), time_exp.max()) y_model = fitting_model(initial_conditions, time, *args) simulated_time = y_model.t simulated_ode_solution = y_model.y _, simulated_qoi, _ = simulated_ode_solution residual = f_exp - simulated_qoi return
np.sum(residual ** 2.0)
numpy.sum
from collections import namedtuple import matplotlib.pyplot as plt import numpy as np from numpy import sum as npsum from numpy import zeros, diag, eye, sqrt, tile from numpy.linalg import solve, cholesky from numpy.random import rand from scipy.stats import chi2, f plt.style.use('seaborn') from DimRedScenariosNormal import DimRedScenariosNormal from NormalScenarios import NormalScenarios def Tscenarios(nu, mu, sig2, j_, optionT=None, method='Riccati', d=None): # This function generates student t simulations whose # moments match the theoretical moments mu_, nu/(nu-2)@sigma2_, either from # radial or stochastic representation and through dimension reduction. # INPUTS # nu : [scalar] degrees of freedom # mu : [vector] (n_ x 1) vector of means # sigma2 : [matrix] (n_ x n_) dispersion matrix # j_ : [scalar] (even) number of simulations # optionT : [struct] with fields (defaults values are 0 for both fields) # optionT.dim_red : [scalar] number of factors to be used for normal # scenario generation with dimension reduction. If it is set to 0, normal # scenarios are generated without dimension reduction. # optionT.stoc_rep : [scalar] Set it to 1 to generate t scenarios through # stochastic representation via normal and chi-square scenarios. # method : [string] Riccati (default), CPCA, PCA, LDL-Cholesky, # Gram-Schmidt, Chol # d : [matrix] (k_ x n_) full rank constraints matrix for CPCA # OPS # X : [matrix] (n_ x j_) matrix of scenarios drawn from a # Student t distribution t(nu,mu,sig2). # # # NOTE: Use always a large number of simulations j_ >> n_ to ensure that # NormalScenarios works properly. Also we reccommend a low number of # factors k_<< n_ # For details on the exercise, see here . ## Code if optionT is None: optionT = namedtuple('option', ['dim_red', 'stoc_rep']) optionT.dim_red = 0 optionT.stoc_rep = 0 n_ = len(mu) k_ = optionT.dim_red if optionT.stoc_rep == 0: # Step 1. Radial scenarios R = sqrt(n_ * f.ppf(rand(j_, 1), n_, nu)) # Step 2. Correlation rho2 = np.diagflat(diag(sig2) ** (-1 / 2)) @ sig2 @ np.diagflat(diag(sig2) ** (-1 / 2)) # Step 3. Normal scenarios if optionT.dim_red > 0: N, beta = DimRedScenariosNormal(zeros((n_, 1)), rho2, k_, j_, method, d) else: N, _ = NormalScenarios(zeros((n_, 1)), rho2, j_, method, d) # Step 4. Inverse if optionT.dim_red > 0: delta2 = diag(eye(n_) - beta @ beta.T) omega2 = np.diagflat(1 / delta2) rho2_inv = omega2 - omega2 @ beta / (beta.T @ omega2 @ beta + eye((k_))) @ beta.T @ omega2 else: rho2_inv = solve(rho2, eye(rho2.shape[0])) # Step 5. Cholesky rho_inv = cholesky(rho2_inv) # Step 6. Normalizer M = sqrt(npsum((rho_inv @ N) ** 2, axis=0)) # Step 7. Output if optionT.stoc_rep == 0: # Elliptical representation X = tile(mu, (1, j_)) + np.diagflat(sqrt(diag(sig2))) @ N @ np.diagflat(1 / M) @ np.diagflat(R) else: # Stochastic representation v = chi2.ppf(rand(j_, 1), nu) / nu X = tile(mu, (1, j_)) + np.diagflat(sqrt(
diag(sig2)
numpy.diag
import numpy as np from pyfibre.model.tools.analysis import ( tensor_analysis, angle_analysis ) from pyfibre.tests.pyfibre_test_case import PyFibreTestCase class TestAnalysis(PyFibreTestCase): def setUp(self): self.tensor = np.ones((3, 3, 2, 2)) self.tensor[0, 0, 0, 1] = 2 self.tensor[0, 0, 1, 0] = 2 self.tensor[1, 1, 1] *= 4 def test_tensor_analysis(self): tensor = np.array([[1, 0], [0, 1]]) tot_coher, tot_angle, tot_energy = tensor_analysis(tensor) self.assertArrayAlmostEqual(np.array([0]), tot_coher) self.assertArrayAlmostEqual(np.array([0]), tot_angle) self.assertArrayAlmostEqual(np.array([2]), tot_energy) tensor = np.array([[1, 0], [0, -1]]) tot_coher, tot_angle, tot_energy = tensor_analysis(tensor) self.assertArrayAlmostEqual(np.array([0]), tot_coher) self.assertArrayAlmostEqual(np.array([90]), tot_angle) self.assertArrayAlmostEqual(np.array([2]), tot_energy) tensor = np.array([[1, 0], [0, 0]]) tot_coher, tot_angle, tot_energy = tensor_analysis(tensor) self.assertArrayAlmostEqual(
np.array([1])
numpy.array
import numpy as np def get_epipole(F): ''' Epipole is the eigenvector associated with smallest eigenvalue of F ''' evalue, evector = np.linalg.eig(F) # normalized evector index = np.argmin(evalue) epipole = evector[:, index] return epipole def get_rotation_axis(d): # d_i to make image plane parallel # intersection line axis = np.array([-d[1], d[0], 0]) return axis def get_angle(epipole, axis): return np.arctan(epipole[2] / (axis[1] * epipole[0] - axis[0] * epipole[1])) def get_plane_rotation_matrix(axis, angle): cos_angle =
np.cos(angle)
numpy.cos
#!/usr/bin/python3 import numpy,hashlib,appdirs,os.path,os from .. import helpers import re cacheDir = appdirs.user_cache_dir('XpyY',appauthor='<NAME>') try: os.mkdir(cacheDir) except FileExistsError: pass digitre=re.compile(rb'\d') def parse(infile): ''' returns an array of the given LVMs data caches data for big files >1MB''' try: infile.read except AttributeError: infile = open(infile,'rb') try: fsize = os.stat(infile.fileno()).st_size except OSError: pass else: if fsize > 1e6: dataHash = helpers.hash(infile) cache = os.path.join(cacheDir,dataHash.hexdigest()) try: return numpy.load(cache) except FileNotFoundError: print('uncached') pass # will not be reached if loaded from cache infile.seek(0) chanCount=0 for line in infile: try: chanCount = int(re.search(b'Channels\t(\d+)',line).group(1)) except AttributeError: chanCount = max((chanCount, len(line.split(b'\t'))-1)) else: break infile.seek(0) # we may have consumed the whole infile befor for chanCount result = [] for line in infile: if digitre.match(line): result.extend(map(float,line.split(b'\t'))) result =
numpy.array(result)
numpy.array
import os import sys import six import time import math import socket import contextlib import numpy as np from paddle import fluid from paddle.io import BatchSampler from paddle.fluid.layers import collective from paddle.distributed import ParallelEnv from paddle.fluid.dygraph.parallel import ParallelStrategy _parallel_context_initialized = False class DistributedBatchSampler(BatchSampler): def __init__(self, dataset, batch_size, shuffle=False, drop_last=False): self.dataset = dataset assert isinstance(batch_size, int) and batch_size > 0, \ "batch_size should be a positive integer" self.batch_size = batch_size assert isinstance(shuffle, bool), \ "shuffle should be a boolean value" self.shuffle = shuffle assert isinstance(drop_last, bool), \ "drop_last should be a boolean number" self.drop_last = drop_last self.nranks = ParallelEnv().nranks self.local_rank = ParallelEnv().local_rank self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.nranks)) self.total_size = self.num_samples * self.nranks def __iter__(self): num_samples = len(self.dataset) indices = np.arange(num_samples).tolist() indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size if self.shuffle:
np.random.RandomState(self.epoch)
numpy.random.RandomState
import os import pickle import _pickle as cPickle import numpy as np import math from PIL import Image def parse_anno(filename): objects = [] f=open(filename,'r') line = f.readline() while line: line=line.split(' ') obj_struct = {} name=line[0] cen_x = line[1] cen_y = line[2] obj_struct['centroid']=[cen_x,cen_y] name_file=name obj_struct['imagename'] = [name_file] obj_struct['det'] = False obj_struct['det_name']='' objects.append(obj_struct) line = f.readline() f.close() imagesetfile = 'train.txt' with open(imagesetfile, 'r') as f: lines = f.readlines() imagenames = [x.strip() for x in lines] class_recs = {} npos = 0 for name in imagenames: imagename=name npos=npos+1 class_recs[imagename]= [obj for obj in objects if obj['imagename'][0]==imagename] print (npos) return class_recs if __name__=='__main__': dithresh = 32 width = 48 # read the gt test_anno_file = 'anno_train_14.txt' class_recs = parse_anno(test_anno_file) # read segmentation with open('output/segmentation.txt','r') as f: lines = f.readlines() splitlines = [x.strip().split() for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) #sort by confidence sorted_ind = np.argsort(-confidence) sorted_scores = np.sort(-confidence) BB=BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] nd = len(image_ids) #number of detections tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): #for every detected bbs if image_ids[d] not in class_recs: print (image_ids[d]) else: R = class_recs[image_ids[d]] print (image_ids[d]) BBGT =[x['centroid'] for x in R] BBGT = np.transpose(np.array(BBGT).astype(float)) distmin = np.inf bb = BB[d, :].astype(float) bb_x = (bb[0] + bb[2])/2 bb_y = (bb[1] + bb[3])/2 if BBGT.size > 0: dist = np.sqrt(
np.square(BBGT[0]-bb_x)
numpy.square
#!/usr/bin/env python # coding: utf-8 import os # if MTA database already exisits, delete to avoid duplicating data if os.path.exists('mta_data.db'): os.remove('mta_data.db') # get MTA data from same year as satellite image os.system('python get_mta.py "18"') # import SQLAlchemy from sqlalchemy import create_engine, inspect # import data analysis, plotting packages import matplotlib.pyplot as plt import numpy as np import pandas as pd # set default plot params plt.rcParams['ytick.labelsize'] = 14 plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['axes.labelsize'] = 16 plt.rcParams['axes.titlesize'] = 20 plt.rcParams['figure.titlesize'] = 22 plt.rcParams['lines.linewidth'] = 2 plt.rcParams["font.sans-serif"] = 'Tahoma' def insert_table_from_csv(csv_list, engine): """ Adds a .csv as a table in an SQL database """ for file in csv_list: with open(file, 'r') as f: data = pd.read_csv(f) data.columns = data.columns.str.strip() data.to_sql(os.path.splitext(file)[0], con=engine, index=False, if_exists='replace') def check_missing_coord(df): n_missing = max(len(df[np.isnan(df['LAT'])]), len(df[np.isnan(df['LON'])])) if n_missing != 0: print(f"\n{n_missing} stations are missing spatial coordinates:") print(df[np.isnan(df['LAT']) | np.isnan(df['LON'])]) print('\n') else: print('\nNo stations are missing spatial coordinates!\n') # create SQL database engine mta_data_engine = create_engine("sqlite:///mta_data.db") # add the geocoded station locations as a table in the MTA database insert_table_from_csv(['geocoded.csv'], mta_data_engine) # make sure that the geocoded table was added insp = inspect(mta_data_engine) print('\nTables in database:', insp.get_table_names(), '\n') # rename column 'C/A' in the mta_data table to 'BOOTH' for consistency with the # geocoded table pd.read_sql(''' ALTER TABLE mta_data RENAME COLUMN "C/A" TO "BOOTH"; ''', mta_data_engine); # join mta_data and geocoded tables on the booth and unit numbers # select turnstile-level information, include entries and exits, date, time, # latitude, longitude # add 'SYSTEM' to differentiate turstiles in the PATH vs. MTA systems # -- note: many PATH systems are missing lat/lon coordinates, so will likely # need to drop them later # keep only summer (June, July, August) data and 'REGULAR' scheduled audit # events, not 'RECOVR AUD' entries to avoid duplicates mta_df_read = pd.read_sql(''' SELECT a.booth, a.unit, a.scp, a.station, a.linename, a.division, a.date, a.time, (a.date || ' ' || a.time) AS DATE_TIME, a.entries, a.exits, b.lat AS LAT, b.lon AS LON, (CASE WHEN b.booth LIKE '%PTH%' THEN 'PATH' ELSE 'MTA' END) AS SYSTEM FROM mta_data a LEFT JOIN geocoded b ON a.booth = b.booth AND a.unit = b.unit WHERE a.date >= '06/01/2018' AND a.date <= '08/31/2018' AND a.desc = 'REGULAR'; ''', mta_data_engine) mta_df = mta_df_read.copy(deep=True) # convert 'DATE_TIME' column to datetime format mta_df['DATE_TIME'] = pd.to_datetime(mta_df.DATE_TIME, format = '%m/%d/%Y %H:%M:%S') # sort linenames mta_df['LINENAME'] = mta_df['LINENAME'].apply(lambda x: ''.join(sorted(x))) mta_df.sort_values('DATE_TIME', ascending=True, inplace=True) # new columns with the datetime of the previous measurement, and entries # measurement at the previous measurement mta_df[['PREV_DATE_TIME', 'PREV_ENTRIES']] = mta_df.groupby(['BOOTH', 'UNIT', 'SCP', 'STATION'])[['DATE_TIME', 'ENTRIES']].shift(1) # drop the rows for the first measurement in the df because there is no # 'PREV_DATE_TIME', and reset the index mta_df.dropna(subset=['PREV_DATE_TIME'], axis=0, inplace=True) mta_df.reset_index(drop=True, inplace=True) # calculate the amount of time (in seconds) between measurements mta_df['DELTA_DATE_TIME_SEC'] = np.abs(mta_df['DATE_TIME'] - mta_df['PREV_DATE_TIME']) / pd.Timedelta(seconds=1) # to deal with turnstiles that are counting in reverse, always take the abs # value of the difference between current entries and previous entries # for hourly entries that are very high, as an upper limit, use 3 people per # turnstile per second pps = 3 mta_df['HOURLY_ENTRIES'] = [np.abs(entries - mta_df['PREV_ENTRIES'][i]) \ if (np.abs(entries - mta_df['PREV_ENTRIES'][i]) < pps*mta_df['DELTA_DATE_TIME_SEC'][i]) \ else (pps*mta_df['DELTA_DATE_TIME_SEC'][i]) \ for i,entries in enumerate(mta_df['ENTRIES'])] # group unique stations (some stations have the same name, but are on different # lines) # sum the hourly entries to get the total number of entries over the time period # sort by net entries station_df = mta_df.groupby(['STATION','LINENAME'], as_index=False).agg({'LAT':'first', 'LON':'first', 'SYSTEM':'first', 'HOURLY_ENTRIES':'sum'}).sort_values('HOURLY_ENTRIES', ascending=False) # rename the 'HOURLY_ENTRIES' column to 'NET_ENTRIES' station_df.rename(columns={'HOURLY_ENTRIES': 'NET_ENTRIES'}, inplace=True) # check which stations are missing lat/lon coordinates check_missing_coord(station_df) # drop the few stations that are missing lat/lon coordinates, ONLY IF they # are also PATH stations station_df = station_df[~((np.isnan(station_df['LAT']) | np.isnan(station_df['LON'])) & (station_df['SYSTEM'] == 'PATH'))] # make sure there are no remaining stations that are missing lat/lon coordinates check_missing_coord(station_df) # reset index so that index corresponds to ranked net entries station_df.reset_index(drop=True, inplace=True) # create 'CROWD_INDEX' min_entries = np.min(station_df['NET_ENTRIES']) max_entries =
np.max(station_df['NET_ENTRIES'])
numpy.max
#!/usr/bin/env python from __future__ import print_function import math import numpy import matplotlib matplotlib.use("PDF") fig_size = [8.3,11.7] # din A4 params = {'backend': 'pdf', 'axes.labelsize': 10, 'text.fontsize': 10, 'legend.fontsize': 10, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'text.usetex': True, 'figure.figsize': fig_size} matplotlib.rcParams.update(params) matplotlib.rc('font',**{'family':'serif','serif':['Computer Modern']}) import pylab import scipy import scipy.interpolate import scipy.integrate nm=1. m=1. wlens=numpy.array( [290.*nm, 310.*nm, 330.*nm, 350.*nm, 370.*nm, 390.*nm, 410.*nm, 430.*nm, 450.*nm, 470.*nm, 490.*nm, 510.*nm, 530.*nm, 550.*nm, 570.*nm, 590.*nm, 610.*nm] ) scatLength=[16.67194612*m, 20.24988356*m, 23.828246*m, 27.60753133*m, 31.54474622*m, 35.6150723*m, 39.79782704*m, 44.07227854*m, 48.42615012*m, 52.84574328*m, 57.31644409*m, 61.83527084*m, 66.38783775*m, 70.97232079*m, 75.58007709*m, 80.20532563*m, 84.84642797*m] refIndex=[1.374123775, 1.368496907, 1.364102384, 1.360596772, 1.357746292, 1.355388160, 1.353406686, 1.351718123, 1.350260806, 1.348988618, 1.347866574, 1.346867782, 1.345971300, 1.345160644, 1.344422686, 1.343746868, 1.343124618] # very old model, do not use! absLength=[4.750413286*m, 7.004812306*m, 9.259259259*m, 14.92537313*m, 20.00000000*m, 26.31578947*m, 34.48275862*m, 43.47826087*m, 50.00000000*m, 62.50000000*m, 58.82352941*m, 50.00000000*m, 29.41176471*m, 17.85714286*m, 16.12903226*m, 8.849557522*m, 4.504504505*m] # taken from Geasim (used by km3 by default) # original comment says: # "mix from Antares and Smith-Baker (smallest value for each bin)" absCoeffGeasim=[0.2890,0.2440,0.1570,0.1080,0.0799,0.0708 ,0.0638,0.0558,0.0507,0.0477,0.0357,0.0257,0.0196 ,0.0182,0.0182,0.0191,0.0200,0.0218,0.0237,0.0255 ,0.0291,0.0325,0.0363,0.0415,0.0473,0.0528,0.0629 ,0.0710,0.0792,0.0946,0.1090,0.1390,0.215] wlenGeasim= [610., 600., 590., 580., 570., 560., 550., 540., 530., 520., 510., 500., 490., 480., 470., 460., 450., 440., 430., 420., 410., 400., 390., 380., 370., 360., 350., 340., 330., 320., 310., 300., 290.] interpolatedAbsorptionCoeffsGeasim = scipy.interpolate.interp1d(wlenGeasim[::-1], absCoeffGeasim[::-1], bounds_error=False) AbsorptionCoeffsSmithBaker = numpy.loadtxt("ExistingData/AbsorptionCoefficients_SmithBaker.txt", unpack=True) interpolatedAbsorptionCoeffsSmithBaker = scipy.interpolate.interp1d(AbsorptionCoeffsSmithBaker[0], AbsorptionCoeffsSmithBaker[1]) AbsorptionCoeffsPopeFry = numpy.loadtxt("ExistingData/AbsorptionCoefficients_PopeFry.txt", unpack=True) interpolatedAbsorptionCoeffsPopeFry = scipy.interpolate.interp1d(AbsorptionCoeffsPopeFry[0], AbsorptionCoeffsPopeFry[1],bounds_error=False) AbsorptionAntaresMeasurement = numpy.loadtxt("ExistingData/ANTARES_measured_absorption.txt", unpack=True) AbsorptionAntaresMeasurement_Test3_Saclay =
numpy.loadtxt("ExistingData/ANTARES_measured_absorption_Test3_Saclay.txt", unpack=True)
numpy.loadtxt
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]), 'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]), 'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]), 'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]), 'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]), 'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]), 'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]), 'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]), 'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]), 'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]), 'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]), 'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]), 'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&75': np.array([0.0, 0.4756207622944677]), 'versicolor&1&76': np.array([0.0, 0.4854334805210761]), 'versicolor&1&77': np.array([0.0, 0.16885577975809635]), 'versicolor&1&78': np.array([0.0, 0.395805885538554]), 'versicolor&1&79': np.array([0.0, 0.2538072707138344]), 'versicolor&1&80': np.array([0.0, 0.4854334805210761]), 'versicolor&1&81': np.array([0.0, 0.7613919530844643]), 'versicolor&1&82': np.array([0.0, 0.6668230985485095]), 'versicolor&1&83': np.array([0.0, 0.4904755652105692]), 'versicolor&1&84': np.array([0.0, 0.8121046082359693]), 'versicolor&1&85': np.array([0.0, 0.6855766903749089]), 'versicolor&1&86': np.array([0.0, 0.5008471974438506]), 'versicolor&1&87': np.array([0.0, 0.16885577975809635]), 'versicolor&1&88': np.array([0.0, 0.16885577975809635]), 'versicolor&1&89': np.array([0.0, 0.395805885538554]), 'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]), 'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]), 'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]), 'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]), 'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]), 'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]), 'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]), 'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]), 'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]), 'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]), 'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]), 'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]), 'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&294': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&295': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&296': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&306': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&307': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&309': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&310': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&2': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&3': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&6': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&7': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&9': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&10': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&12': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&13': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&14': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&17': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&18': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&21': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&22': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&24': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&25': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&27': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&28': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&29': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&32': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&33': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&36': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&37': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&39': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&40': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&42': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&43': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&44': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&45': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&46': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&50': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&51': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&52': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&53': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&54': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&55': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&56': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&61': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&65': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&66': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&67': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&68': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&69': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&70': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&71': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&75': np.array([0.0, 0.47562425924289314]), 'versicolor&2&76': np.array([0.0, 0.4854368956593117]), 'versicolor&2&77': np.array([0.0, -0.7348263896003956]), 'versicolor&2&78': np.array([0.0, -0.7920887571493729]), 'versicolor&2&79': np.array([0.0, -0.507614207038711]), 'versicolor&2&80': np.array([0.0, 0.4854368956593117]), 'versicolor&2&81': np.array([0.0, -0.3982542883933272]), 'versicolor&2&82': np.array([0.0, -0.08633733326458487]), 'versicolor&2&83': np.array([0.0, 0.4039238345412103]), 'versicolor&2&84': np.array([0.0, -0.38897705551367706]), 'versicolor&2&85': np.array([0.0, -0.06915310813754129]), 'versicolor&2&86': np.array([0.0, 0.41580041887839214]), 'versicolor&2&87': np.array([0.0, -0.7348263896003956]), 'versicolor&2&88': np.array([0.0, -0.7348263896003956]), 'versicolor&2&89': np.array([0.0, -0.7920887571493729]), 'versicolor&2&90': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&91': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&92': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&93': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&94': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&95': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&96': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&97': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&98': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&99': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&100': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&101': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&102': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&103': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&104': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&105': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&106': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&107': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&108': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&109': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&110': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&111': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&112': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&113': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&114': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&115': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&116': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&117': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&118': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&119': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&120': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&121': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&122': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&123': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&124': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&125': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&126': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&127': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&128': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&129': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&130': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&131': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&132': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&133': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&134': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&135': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&136': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&137': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&138': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&139': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&140': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&141': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&142': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&143': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&144': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&145': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&146': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&147': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&148': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&149': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&150': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&151': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&152': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&153': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&154': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&155': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&156': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&157': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&158': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&159': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&160': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&161': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&162': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&163': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&164': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&165': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&166': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&167': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&168': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&169': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&170': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&171': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&172': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&173': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&174': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&175': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&176': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&177': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&178': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&179': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&180': np.array([-0.7638917827493686, 0.868015757634957]), 'versicolor&2&181': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&182': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&183': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&184': np.array([-0.32941440381886555, -0.4173178729969913]), 'versicolor&2&185': np.array([-0.8001553485824509, 0.9049358162753539]), 'versicolor&2&186': np.array([-0.18291442454393395, -0.2654898014002494]), 'versicolor&2&187': np.array([-0.5797728557269727, 0.3163189837954924]), 'versicolor&2&188': np.array([-0.7579323596667402, 0.8054136823046655]), 'versicolor&2&189': np.array([-0.1948624323669993, -0.23753953755286383]), 'versicolor&2&190': np.array([-0.6437698977881832, 0.3909540110317858]), 'versicolor&2&191': np.array([-0.7963046521980063, 0.846536369471985]), 'versicolor&2&192': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&193': np.array([-0.26179245521040034, -0.7067672760776678]), 'versicolor&2&194': np.array([-0.14690789675963867, -0.7352367260447958]), 'versicolor&2&195': np.array([-0.3219660907491514, 0.7482043503408669]), 'versicolor&2&196': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&197': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&198': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&199': np.array([0.2626914501948546, -0.5596191134224637]), 'versicolor&2&200': np.array([-0.43839553940476644, 0.8642446918440131]), 'versicolor&2&201': np.array([0.4734444929420575, -0.6150974537943872]), 'versicolor&2&202': np.array([0.5369392542176313, -0.430867927332838]), 'versicolor&2&203': np.array([-0.19892251970509112, 0.5718543863753405]), 'versicolor&2&204': np.array([0.5071047612208237, -0.6507546896558788]), 'versicolor&2&205': np.array([0.5629877361048359, -0.4485515113017818]), 'versicolor&2&206': np.array([-0.3047657227470458, 0.6788631774846587]), 'versicolor&2&207': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&208': np.array([-0.05474251929945989, -0.7566498134597841]), 'versicolor&2&209': np.array([0.17291299562995102, -0.7651995812779756]), 'versicolor&2&210': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&211': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&212': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&213': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&214': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&215': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&216': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&217': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&218': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&219': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&220': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&221': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&222': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&223': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&224': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&225': np.array([-0.5775629083348267, 0.7118687782288384]), 'versicolor&2&226': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&227': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&228': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&229': np.array([-0.25603689955471853, -0.451727980232351]), 'versicolor&2&230': np.array([-0.6016445709024666, 0.7366089009875252]), 'versicolor&2&231': np.array([-0.1269405801024398, -0.34161216844748166]), 'versicolor&2&232': np.array([-0.33176333807327857, 0.09538228407203546]), 'versicolor&2&233': np.array([-0.564696311454556, 0.6421194512020755]), 'versicolor&2&234': np.array([-0.12669523681593967, -0.32786313310034665]), 'versicolor&2&235': np.array([-0.35960845047491363, 0.1335988694092619]), 'versicolor&2&236': np.array([-0.589572650064144, 0.6697478899606418]), 'versicolor&2&237': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&238': np.array([-0.28356111726513855, -0.739741315226852]), 'versicolor&2&239': np.array([-0.0917622729715107, -0.7645776302158537]), 'versicolor&2&240': np.array([0.05667262840030629, 0.4335746514880877]), 'versicolor&2&241': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&242': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&243': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&244': np.array([0.3463149754241171, -0.5568366400939154]), 'versicolor&2&245': np.array([0.0202211257171063, 0.470123810164804]), 'versicolor&2&246': np.array([0.4022739113634462, -0.4700171786183992]), 'versicolor&2&247': np.array([0.5046771347249378, -0.33609610934748635]), 'versicolor&2&248': np.array([0.1370187510624256, 0.30303755274337163]), 'versicolor&2&249': np.array([0.41683021879255133, -0.4812793747667524]), 'versicolor&2&250': np.array([0.5150371666265885, -0.33852139184639396]), 'versicolor&2&251': np.array([0.10611499646955676, 0.33589829339460586]), 'versicolor&2&252': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&253': np.array([-0.052990507284891984, -0.7625494034929868]), 'versicolor&2&254': np.array([0.22461127196921116, -0.7375780139111495]), 'versicolor&2&255': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&256': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&257': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&258': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&259': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&260': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&261': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&262': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&263': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&264': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&265': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&266': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&267': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&268': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&269': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&270': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&271': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&275': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&276': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&277': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&278': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&279': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&280': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&281': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&285': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&286': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&290': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&291': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&292': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&293': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&294': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&295': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&296': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&300': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&301': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&305': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&306': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&307': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&308': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&309': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&310': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&311': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'virginica&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&2': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&3': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&6': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&7': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&9': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&10': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&12': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&13': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&14': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&17': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&18': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&21': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&22': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&24': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&25': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&27': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&28': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&29': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&32': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&33': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&36': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&37': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&39': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&40': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&42': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&43': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&44': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&45': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&46': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&47': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&48': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&49': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&50': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&51': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&52': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&53': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&54': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&55': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&56': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&57': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&58': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&59': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'virginica&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&62': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&63': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'virginica&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'virginica&0&66': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&67': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'virginica&0&69': np.array([0.009595083643662688, -0.5643652067423869]), 'virginica&0&70': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'virginica&0&72': np.array([0.13694026920485936, -0.36331091829858003]), 'virginica&0&73': np.array([0.11200181312407695, -0.5330612470996793]), 'virginica&0&74': np.array([0.19998284600732558, -0.3489062419702088]), 'virginica&0&75': np.array([0.0, -0.95124502153736]), 'virginica&0&76': np.array([0.0, -0.9708703761803881]), 'virginica&0&77': np.array([0.0, -0.5659706098422994]), 'virginica&0&78': np.array([0.0, -0.3962828716108186]), 'virginica&0&79': np.array([0.0, 0.2538069363248767]), 'virginica&0&80': np.array([0.0, -0.9708703761803881]), 'virginica&0&81': np.array([0.0, -0.5659706098422994]), 'virginica&0&82': np.array([0.0, -0.3962828716108186]), 'virginica&0&83': np.array([0.0, -0.8943993997517804]), 'virginica&0&84': np.array([0.0, -0.5659706098422994]), 'virginica&0&85': np.array([0.0, -0.3962828716108186]), 'virginica&0&86': np.array([0.0, -0.9166476163222441]), 'virginica&0&87': np.array([0.0, -0.3962828716108186]), 'virginica&0&88': np.array([0.0, -0.5466925844560601]), 'virginica&0&89': np.array([0.0, -0.38529908946531777]), 'virginica&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&92': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&93': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&96': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&97': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&99': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&100': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&102': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&103': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&104': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&107': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&108': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&111': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&112': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&114': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&115': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&117': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&118': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&119': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&120': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&121': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&122': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&123': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&124': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&125': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&126': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&127': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&128': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&129': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&130': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&131': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&132': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&133': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&134': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&137': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&138': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&141': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&142': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&144': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&145': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&147': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&148': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&149': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&152': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&153': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&156': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&157': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&159': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&160': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&162': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&163': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&164': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&167': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&168': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&171': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&172': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&174': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&175': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&177': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&178': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&179': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&180': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&181': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&182': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&183': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&184': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&185': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&186': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&187': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&188': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&189': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&190': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&191': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&192': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&193': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&194': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'virginica&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&197': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&198': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'virginica&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'virginica&0&201': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&202': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'virginica&0&204': np.array([-0.6782037543706109, -0.29560073676989834]), 'virginica&0&205': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'virginica&0&207': np.array([-0.7694171988675237, -0.276633135028249]), 'virginica&0&208': np.array([-0.6898990333725056, -0.2534947697713122]), 'virginica&0&209': np.array([-0.769491694075929, -0.22884642137519118]), 'virginica&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'virginica&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&212': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&213': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'virginica&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'virginica&0&216': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&217': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'virginica&0&219': np.array([-0.9550700362273441, -0.025428672111930138]), 'virginica&0&220': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'virginica&0&222': np.array([-0.9672121512728677, -0.012993005706020504]), 'virginica&0&223': np.array([-0.9569238464170641, -0.02354905845282574]), 'virginica&0&224': np.array([-0.9677320606992984, -0.012432557482778654]), 'virginica&0&225': np.array([-0.05031696218434577, -0.929227611211748]), 'virginica&0&226': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&227': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&228': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&229': np.array([-0.4656481363306145, 0.007982539480288167]), 'virginica&0&230': np.array([-0.017148644765919676, -0.9632117581295891]), 'virginica&0&231': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&232': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&233': np.array([-0.14241819268815753, -0.8424615476000691]), 'virginica&0&234': np.array([-0.061515713893900315, -0.524561199322281]), 'virginica&0&235': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&236': np.array([-0.1140907502997574, -0.8737800276630269]), 'virginica&0&237': np.array([-0.4329463382004908, -0.057167210150691136]), 'virginica&0&238': np.array([-0.14198277461566922, -0.4577720226157396]), 'virginica&0&239': np.array([-0.4385442121294165, -0.05333645823279597]), 'virginica&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'virginica&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&242': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&243': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'virginica&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'virginica&0&246': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&247': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'virginica&0&249': np.array([-0.5276460255602035, -0.28992233541586077]), 'virginica&0&250': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'virginica&0&252': np.array([-0.6392402874163683, -0.24114611970435948]), 'virginica&0&253': np.array([-0.544626974647221, -0.24972982107967573]), 'virginica&0&254': np.array([-0.6426355680762406, -0.20016519137103667]), 'virginica&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'virginica&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&257': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&258': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'virginica&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'virginica&0&261': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&262': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'virginica&0&264': np.array([-0.7770298852793477, -0.029443430477147373]), 'virginica&0&265': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'virginica&0&267': np.array([-0.7936433456054744, -0.012583752076496493]), 'virginica&0&268': np.array([-0.7799744386472778, -0.026476616324402506]), 'virginica&0&269': np.array([-0.7942342242967624, -0.0119572163963601]), 'virginica&0&270': np.array([-0.04201361383207032, -0.9372571358382161]), 'virginica&0&271': np.array([-0.014237661899709955, -0.9660323357290304]), 'virginica&0&272': np.array([-0.04813346258022244, -0.5416229439456887]), 'virginica&0&273': np.array([-0.3109532939139045, -0.22759134703604383]), 'virginica&0&274':
np.array([-0.4167677904879879, 0.22207334821665425])
numpy.array
import numpy as np import pandas as pd import mxnet as mx import logging # set to 0 to train on all available data VALIDATION_SIZE = 1000 # create the training dataset = pd.read_csv("./train.csv") target = dataset[[0]].values.ravel() train = dataset.iloc[:,1:].values def get_lenet(): data = mx.symbol.Variable('data') # first conv conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=20) tanh1 = mx.symbol.Activation(data=conv1, act_type="tanh") pool1 = mx.symbol.Pooling(data=tanh1, pool_type="max", kernel=(3,3), stride=(2,2)) # second conv conv2 = mx.symbol.Convolution(data=pool1, kernel=(3,3), num_filter=50) tanh2 = mx.symbol.Activation(data=conv2, act_type="tanh") pool2 = mx.symbol.Pooling(data=tanh2, pool_type="max", kernel=(3,3), stride=(2,2)) # first fullc flatten = mx.symbol.Flatten(data=pool2) fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500) tanh3 = mx.symbol.Activation(data=fc1, act_type="tanh") # second fullc fc2 = mx.symbol.FullyConnected(data=tanh3, num_hidden=10) # loss lenet = mx.symbol.SoftmaxOutput(data=fc2, name='softmax') return lenet # split dataset val_data = train[:VALIDATION_SIZE].astype('float32') val_label = target[:VALIDATION_SIZE] train_data = train[VALIDATION_SIZE: , :].astype('float32') train_label = target[VALIDATION_SIZE:] train_data =
np.array(train_data)
numpy.array
import numpy as np from gym import spaces from agents import SimpleAgentClass # Create agents for the CMA-ES, NEAT and WANN agents # defined in the weight-agnostic paper repo: # https://github.com/google/brain-tokyo-workshop/tree/master/WANNRelease/ # ------------------------------------------------------------------- # Here begins copy/paste from WANNRelease code linked above def weightedRandom(weights): """Returns random index, with each choices chance weighted Args: weights - (np_array) - weighting of each choice [N X 1] Returns: i - (int) - chosen index """ minVal = np.min(weights) weights = weights - minVal # handle negative vals cumVal = np.cumsum(weights) pick = np.random.uniform(0, cumVal[-1]) for i in range(len(weights)): if cumVal[i] >= pick: return i def selectAct(action, actSelect): """Selects action based on vector of actions Single Action: - Hard: a single action is chosen based on the highest index - Prob: a single action is chosen probablistically with higher values more likely to be chosen We aren't selecting a single action: - Softmax: a softmax normalized distribution of values is returned - Default: all actions are returned Args: action - (np_array) - vector weighting each possible action [N X 1] Returns: i - (int) or (np_array) - chosen index [N X 1] """ if actSelect == 'softmax': action = softmax(action) elif actSelect == 'prob': action = weightedRandom(np.sum(action,axis=0)) else: action = action.flatten() return action def act(weights, aVec, nInput, nOutput, inPattern): """Returns FFANN output given a single input pattern If the variable weights is a vector it is turned into a square weight matrix. Allows the network to return the result of several samples at once if given a matrix instead of a vector of inputs: Dim 0 : individual samples Dim 1 : dimensionality of pattern (# of inputs) Args: weights - (np_array) - ordered weight matrix or vector [N X N] or [N**2] aVec - (np_array) - activation function of each node [N X 1] - stored as ints (see applyAct in ann.py) nInput - (int) - number of input nodes nOutput - (int) - number of output nodes inPattern - (np_array) - input activation [1 X nInput] or [nSamples X nInput] Returns: output - (np_array) - output activation [1 X nOutput] or [nSamples X nOutput] """ # Turn weight vector into weight matrix if np.ndim(weights) < 2: nNodes = int(np.sqrt(np.shape(weights)[0])) wMat = np.reshape(weights, (nNodes, nNodes)) else: nNodes = np.shape(weights)[0] wMat = weights wMat[np.isnan(wMat)]=0 # Vectorize input if np.ndim(inPattern) > 1: nSamples = np.shape(inPattern)[0] else: nSamples = 1 # Run input pattern through ANN nodeAct = np.zeros((nSamples,nNodes)) nodeAct[:,0] = 1 # Bias activation nodeAct[:,1:nInput+1] = inPattern # Propagate signal through hidden to output nodes iNode = nInput+1 for iNode in range(nInput+1,nNodes): rawAct = np.dot(nodeAct, wMat[:,iNode]).squeeze() nodeAct[:,iNode] = applyAct(aVec[iNode], rawAct) #print(nodeAct) output = nodeAct[:,-nOutput:] return output def applyAct(actId, x): """Returns value after an activation function is applied Lookup table to allow activations to be stored in numpy arrays case 1 -- Linear case 2 -- Unsigned Step Function case 3 -- Sin case 4 -- Gausian with mean 0 and sigma 1 case 5 -- Hyperbolic Tangent [tanh] (signed) case 6 -- Sigmoid unsigned [1 / (1 + exp(-x))] case 7 -- Inverse case 8 -- Absolute Value case 9 -- Relu case 10 -- Cosine case 11 -- Squared Args: actId - (int) - key to look up table x - (???) - value to be input into activation [? X ?] - any type or dimensionality Returns: output - (float) - value after activation is applied [? X ?] - same dimensionality as input """ if actId == 1: # Linear value = x if actId == 2: # Unsigned Step Function value = 1.0*(x>0.0) #value = (np.tanh(50*x/2.0) + 1.0)/2.0 elif actId == 3: # Sin value = np.sin(np.pi*x) elif actId == 4: # Gaussian with mean 0 and sigma 1 value = np.exp(-np.multiply(x, x) / 2.0) elif actId == 5: # Hyperbolic Tangent (signed) value = np.tanh(x) elif actId == 6: # Sigmoid (unsigned) value = (
np.tanh(x/2.0)
numpy.tanh
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import glob import imageio import numpy as np import SimpleITK as sitk import transformations as T import tensorflow as tf import sys sys.path.append('/vol/medic01/users/bh1511/_build/geomstats-farrell/') from geomstats.special_orthogonal_group import SpecialOrthogonalGroup ############################################################################### # Tensorflow feature wrapper def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _float_feature(value): return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) ############################################################################### # Dataset Locations NIFTI_ROOT = '/vol/medic01/users/bh1511/DATA_RAW/AliceBrainReconsAligned/test/' SAVE_DIR = '' n_rotations = 2000 n_offsets = 16 max_z = 40 ############################################################################### # Data Generation SO3_GROUP = SpecialOrthogonalGroup(3) database = glob.glob(NIFTI_ROOT+'/*.nii.gz') for fetal_brain in database: print('Parsing:', fetal_brain) fixed_image_sitk_tmp = sitk.ReadImage(fetal_brain, sitk.sitkFloat32) fixed_image_sitk = sitk.GetImageFromArray(sitk.GetArrayFromImage(fixed_image_sitk_tmp)) fixed_image_sitk = sitk.RescaleIntensity(fixed_image_sitk, 0, 1) writer = tf.python_io.TFRecordWriter(SAVE_DIR + os.path.basename(fetal_brain).replace('.nii.gz','.tfrecord')) rotations = np.pi * (
np.random.rand(n_rotations, 3)
numpy.random.rand
import cv2 import utils import numpy as np from functools import partial def edge_detection_grad_callback( val, img: np.ndarray, win_name: str ): stdevX10 = cv2.getTrackbarPos('stdev', win_name) threshold = cv2.getTrackbarPos('threshold', win_name) alpha1 = cv2.getTrackbarPos('alpha1', win_name) alpha0 = cv2.getTrackbarPos('alpha0', win_name) global img_edges if stdevX10 > 0: img_edges = cv2.GaussianBlur(img, (0, 0), stdevX10/10., stdevX10/10.) else: img_edges = img.copy() img_dx = cv2.Sobel(img_edges, cv2.CV_32F, 1, 0) img_dy = cv2.Sobel(img_edges, cv2.CV_32F, 0, 1) mag, angle = cv2.cartToPolar(img_dx, img_dy, angleInDegrees=True) temp = np.where(angle >= alpha0, 255, 0) temp2 = np.where(angle <= alpha1, 255, 0) temp = np.where((temp + temp2) != 0, 255, 0) temp2 = np.where(mag > threshold, 255, 0) img_edges = np.where((temp * temp2) != 0, 255, 0).astype('uint8') cv2.imshow(win_name, img_edges) def hough_callback(val, img: np.ndarray, win_name: str): drho = cv2.getTrackbarPos('drho', win_name) dtheta = cv2.getTrackbarPos('dtheta', win_name) accum = cv2.getTrackbarPos('accum', win_name) n = cv2.getTrackbarPos('n', win_name) if drho <= 0: return if dtheta <= 0: return if accum <= 0: return img_copy = img.copy() lines = cv2.HoughLines(img_edges.astype('uint8'), drho, dtheta/180.0, accum) n = n if n < len(lines) else len(lines) for [[rho, theta]] in lines[:n]: if (theta < (np.pi / 4.)) or (theta > 3. * np.pi): pt1 = (int(rho / np.cos(theta)), 0) pt2 = ( int(rho - img_copy.shape[0] *
np.sin(theta)
numpy.sin
import pandas as pd def subset_grm(grm, grm_indiv, target_indiv): set_target_indiv = set(target_indiv) isin =
np.array([ g in set_target_indiv for g in grm_indiv ])
numpy.array
# Licensed under an MIT open source license - see LICENSE import numpy as np import pytest from .. import Dendrogram, periodic_neighbours, Structure class Test2DimensionalData(object): def test_dendrogramWithNan(self): n = np.nan data = np.array([[n, n, n, n, n, n, n, n], [n, 4, n, n, n, n, n, n], [n, n, n, 1, n, n, 0, 5], [3, n, n, 2, 3, 2, 0, n]]) d = Dendrogram.compute(data) ######################################## # Check the trunk elements: leaves = [structure for structure in d.trunk if structure.is_leaf] branches = [structure for structure in d.trunk if structure not in leaves] assert len(leaves) == 2, "We expect two leaves among the lowest structures (the trunk)" assert len(branches) == 1, "We expect one branch among the lowest structures (the trunk)" for leaf in leaves: assert len(leaf.values(subtree=False)) == 1, "Leaves in the trunk are only expected to contain one point" assert leaf.parent is None assert leaf.ancestor == leaf assert leaf.get_npix() == 1 if leaf.values(subtree=False)[0] == 4: assert list(zip(*leaf.indices(subtree=False)))[0] == (1, 1) elif leaf.values(subtree=False)[0] == 3: assert list(zip(*leaf.indices(subtree=False)))[0] == (3, 0) else: self.fail("Invalid value of flux in one of the leaves") ######################################## # Check properties of the branch: branch = branches[0] assert branch.parent is None assert branch.ancestor == branch assert branch.get_npix(subtree=False) == 1 # only pixel is a 0 assert branch.get_npix(subtree=True) == 7 assert len(branch.children) == 2 for leaf in branch.children: assert leaf.is_leaf assert leaf.ancestor == branch assert leaf.parent == branch if 5 in leaf.values(subtree=False): assert sum(leaf.values(subtree=False)) == 5 elif 3 in leaf.values(subtree=False): assert sum(leaf.values(subtree=False)) == 1 + 2 + 3 + 2 else: self.fail("Invalid child of the branch") def test_mergeLevelAndHeight(self): n = np.nan data = np.array([[n, n, n, n, n, ], [n, 4, 2, 5, n, ], [n, n, n, n, 0, ]]) d = Dendrogram.compute(data) branch, leaf4, leaf5 = d.trunk[0], d.structure_at((1, 1)), d.structure_at((1, 3)) assert leaf4.height == 4. assert leaf5.height == 5. assert branch.height == 4. def test_dendrogramWithConstBackground(self): # Test a highly artificial array containing a lot of equal pixels data = np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 3, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 2, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 3, 4, 3, 1, 1, 2, 2, 1, 1, 1], [1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ]) d = Dendrogram.compute(data) assert len(d) <= 7 # Some of the '1' valued pixels get included with the leaves and branches, # hence number of structures is currently 7 and not 6 as expected. # Fixing this is probably more trouble than it's worth. leaf_with_twos = d.structure_at((10, 9)) assert leaf_with_twos.height == 2 # Check that all structures contain a reference to the dendrogram for structure in d: assert structure._dendrogram is d class Test3DimensionalData(object): def setup_method(self, method): from ._testdata import data self.data = data def test_dendrogramComputation(self): d = Dendrogram.compute(self.data, min_npix=8, min_delta=0.3, min_value=1.4) # This data with these parameters should produce 55 leaves assert len(d.leaves) == 55 # Now check every pixel in the data cube (this takes a while). st_map = -np.ones(self.data.shape, dtype=np.int) for st in d.all_structures: st_map[st.indices(subtree=False)] = st.idx #check that vmin/vmax/peak are correct for st in d.all_structures: assert st.vmin == self.data[st.indices(subtree=False)].min() assert st.vmax == self.data[st.indices(subtree=False)].max() pk_exp = self.data[st.indices(subtree=True)].max() ind, pk = st.get_peak(subtree=True) assert self.data[ind] == pk assert pk_exp == pk # The "right" way to do this is loop through indices, # and repeatedly call structure_at(). However, this is quite slow # structure_at is a thin wrapper around index_map, # and we compare index_map to st_map instead np.testing.assert_array_equal(st_map, d.index_map) # here, we test a few values of structure_at for coord in np.indices(self.data.shape).reshape(self.data.ndim, np.prod(self.data.shape)).transpose()[::100]: coord = tuple(coord) f = self.data[coord] structure = d.structure_at(coord) if structure is not None: assert structure.idx == st_map[coord], "Pixel at {0} is claimed to be part of {1}, but that structure does not contain the coordinate {0}!".format(coord, structure) else: assert st_map[coord] == -1 class TestNDimensionalData(object): def test_4dim(self): " Test 4-dimensional data " data = np.zeros((5, 5, 5, 5)) # Create a 5x5x5x5 array initialized to zero # N-dimensional data is hard to conceptualize so I've kept this simple. # Create a local maximum (value 5) at the centre data[2, 2, 2, 2] = 5 # add some points around it with value 3. Note that '1:4:2' is equivalent to saying indices '1' and '3' data[2, 1:4:2, 2, 2] = data[2, 2, 1:4:2, 2] = data[2, 2, 2, 1:4:2] = 3 # Add a trail of points of value 2 connecting one of those 3s to a 4 data[0:3, 0, 2, 2] = 2 # Sets [0, 0, 2, 2], [1, 0, 2, 2], and [2, 0, 2, 2] all equal to 2 -> will connect to the '3' at [2, 1, 2, 2] data[0, 0, 2, 1] = 4 # Now dendrogram it: d = Dendrogram.compute(data, min_value=1) # We expect two leaves: leaves = d.leaves assert len(leaves) == 2 # We expect one branch: branches = [i for i in d.all_structures if i.is_branch] assert len(branches) == 1 assert len(d.trunk) == 1 assert d.trunk[0] == branches[0] # The maxima of each leaf should be at [2,2,2,2] and [0,3,2,1] for leaf in leaves: assert leaf.get_peak() in (((2, 2, 2, 2), 5.), ((0, 0, 2, 1), 4.)) assert leaves[0].get_peak() != leaves[1].get_peak() # Check out a few more properties of the leaf around the global maximum: leaf = d.structure_at((2, 2, 2, 2)) assert leaf.vmax == 5 assert leaf.vmin == 2 assert leaf.get_npix() == 1 + 6 + 2 # Contains 1x '5', 6x '3', and 2x '2'. The other '2' should be in the branch # Check that the only pixel in the branch is a '2' at [0,0,2,2] assert (list(zip(*branches[0].indices(subtree=False))), branches[0].values(subtree=False)) == ([(0, 0, 2, 2), ], [2., ]) def test_periodic(): x = np.array([[0, 0, 0, 0, 0, ], [1, 1, 0, 1, 1], [0, 0, 0, 0, 0]]) d = Dendrogram.compute(x, min_value=0.5, neighbours=periodic_neighbours(1)) expected = np.array([[-1, -1, -1, -1, -1], [0, 0, -1, 0, 0], [-1, -1, -1, -1, -1]])
np.testing.assert_array_equal(d.index_map, expected)
numpy.testing.assert_array_equal
#!/usr/bin/env python # coding: utf-8 # # Mask R-CNN Demo # # A quick intro to using the pre-trained model to detect and segment objects. import os import keras import os import sys import random import math import numpy as np import skimage.io import matplotlib import matplotlib.pyplot as plt # Root directory of the project ROOT_DIR = os.path.abspath("../") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize # Import COCO config if 'PYTHONPATH' in os.environ: print("Please unset the environment variable PYTHONPATH if you got errors with pycocotools!") sys.path.append(os.path.join(ROOT_DIR, "samples/coco/")) # To find local version import coco #get_ipython().run_line_magic('matplotlib', 'inline') # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Local path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) # Directory of images to run detection on IMAGE_DIR = os.path.join(ROOT_DIR, "images") # Directory of videos to be saved as detection results VIDEO_OUTPUT_DIR = os.path.join(ROOT_DIR, "videos") # ## Configurations # # We'll be using a model trained on the MS-COCO dataset. The configurations of this model are in the ```CocoConfig``` class in ```coco.py```. # # For inferencing, modify the configurations a bit to fit the task. To do so, sub-class the ```CocoConfig``` class and override the attributes you need to change. class InferenceConfig(coco.CocoConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 if os.getenv('IMAGE_MAX_DIM'): IMAGE_MAX_DIM = int(os.getenv('IMAGE_MAX_DIM')) if os.getenv('IMAGE_MIN_DIM'): IMAGE_MIN_DIM = int(os.getenv('IMAGE_MIN_DIM')) config = InferenceConfig() config.display() # ## Create Model and Load Trained Weights # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=config) # Load weights trained on MS-COCO model.load_weights(COCO_MODEL_PATH, by_name=True) # ## Class Names # # The model classifies objects and returns class IDs, which are integer value that identify each class. Some datasets assign integer values to their classes and some don't. For example, in the MS-COCO dataset, the 'person' class is 1 and 'teddy bear' is 88. The IDs are often sequential, but not always. The COCO dataset, for example, has classes associated with class IDs 70 and 72, but not 71. # # To improve consistency, and to support training on data from multiple sources at the same time, our ```Dataset``` class assigns it's own sequential integer IDs to each class. For example, if you load the COCO dataset using our ```Dataset``` class, the 'person' class would get class ID = 1 (just like COCO) and the 'teddy bear' class is 78 (different from COCO). Keep that in mind when mapping class IDs to class names. # # To get the list of class names, you'd load the dataset and then use the ```class_names``` property like this. # ``` # # Load COCO dataset # dataset = coco.CocoDataset() # dataset.load_coco(COCO_DIR, "train") # dataset.prepare() # # # Print class names # print(dataset.class_names) # ``` # # We don't want to require you to download the COCO dataset just to run this demo, so we're including the list of class names below. The index of the class name in the list represent its ID (first class is 0, second is 1, third is 2, ...etc.) # COCO Class names # Index of the class in the list is its ID. For example, to get ID of # the teddy bear class, use: class_names.index('teddy bear') class_names = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] # ## Run Object Detection from skimage.measure import find_contours import matplotlib.pyplot as plt from matplotlib import patches, lines from matplotlib.patches import Polygon import time class MaskRCNNTracker(): """Implements tracker based segmentation ouputs. Params: - Inputs: - Output: A dictionay that maps the current frame's instance indexes to the unique instance IDs that identify individual objects """ def __init__(self): self.instance_id_manager = 0 self.dict_instance_history = {} self.dict_trajectories = {} self.instance_memory_length = 2 self.frame_number = 0 # the current frame number self.image_size = None # the image size (x, y) of the current frame self.dict_location_prediction = {} self.dict_trajectory_timestamp = {} # frame number corresponding to the last location # if an instance disapprears (i.e., no correspondence found), how long do we keep the # records ? self.time_keep_records_frames = 50 # in frames def fill_polygons_in_bounding_map(self, poly_vertices): """ Given one or multiple ploygons rach consisting of a sequence of vertices, determine a box or map that encloses them. Then fill the polygon(s) within the map and calculate its area. Input: - poly_vertices: A list of polygons. Each item is a list of points [x,y] """ left = 10000 # sufficiently large coordinate in x right = 0 # the minimum possible coordinate in x top = 10000 # sufficiently large coordinate in y bottom = 0 # the minimum possible coordinate in y # polyVertices: a list of N-by-2 arrays for poly in poly_vertices: left = min(left, np.amin(poly[:,0])) right = max(right, np.amax(poly[:,0])) top = min(top, np.amin(poly[:,1])) bottom = max(bottom, np.amax(poly[:,1])) pts = [] for poly in poly_vertices: pts.append(poly-np.array([left,top])) # This map is a 2-D array map = np.zeros((bottom-top+1, right-left+1),dtype=np.uint8) # mask the area cv2.fillPoly(map, pts, color=(255)) polyArea = np.count_nonzero(map) return (left, top, right, bottom, map, polyArea, self.frame_number) def compute_intersection_polygons(self, tuplePolygonA, tuplePolygonB): """ Calculate intersection between two regions each outlined by one or multiple polygons. Inputs: - tuplePolygonA, tuplePolygonB: A tuple to represent a region outlined by one or multiple polygons. See the output of method "fill_polygons_in_bounding_map". Return: Intersection over Union (IoU) in the range from 0 to 1.0 """ # tuplePolygonA and tuplePolygonB # (xmin, ymin, xmax, ymax, filledPolygon2Dmap, frame_number) A_left = tuplePolygonA[0] A_right = tuplePolygonA[2] A_top = tuplePolygonA[1] A_bottom = tuplePolygonA[3] B_left = tuplePolygonB[0] B_right = tuplePolygonB[2] B_top = tuplePolygonB[1] B_bottom = tuplePolygonB[3] # check if the two maps intersect if B_left >= A_right or B_top >= A_bottom: return 0 if A_left >= B_right or A_top >= B_bottom: return 0 # calculate the overlapping part of the two bounding maps Overlap_left = max(A_left, B_left) Overlap_right = min(A_right, B_right) Overlap_top = max(A_top, B_top) Overlap_bottom = min(A_bottom, B_bottom) # get the overlapping part within the two maps respectively Overlap_A_map = tuplePolygonA[4][(Overlap_top-A_top):(min(A_bottom,Overlap_bottom)-A_top+1), (Overlap_left-A_left):(min(A_right,Overlap_right)-A_left+1)] Overlap_B_map = tuplePolygonB[4][(Overlap_top-B_top):(min(B_bottom,Overlap_bottom)-B_top+1), (Overlap_left-B_left):(min(B_right,Overlap_right)-B_left+1)] # calculate the intersection between the two silhouettes within the overlapping part Overlap_map_boolean = np.logical_and(Overlap_A_map, Overlap_B_map) # calculate the area of silhouette intersection Overlap_count = np.count_nonzero(Overlap_map_boolean) Union_count = tuplePolygonA[5] + tuplePolygonB[5] - Overlap_count return Overlap_count/Union_count def update_buffers(self): # Update the buffers (dictionaries) for the past detection results for uid in self.dict_trajectories: if (len(self.dict_trajectories[uid]) > 80): self.dict_trajectories[uid].pop(0) uid_list = list(self.dict_trajectories.keys()) for uid in uid_list: if (self.frame_number - self.dict_trajectory_timestamp[uid]) > self.time_keep_records_frames: self.dict_trajectories.pop(uid) self.dict_trajectory_timestamp.pop(uid) def receive_first_segmentation_output(self, results, class_names, image_size): """ This method is called when the segmentation results for the very first frame received Input: - results: segmentation results as output of Mask R-CNN - class_names: list of class names of the dataset - image_size: image size in format (x, y) Output: - Tuple: item 0: the current instance ID to assigned unique ID (dict) item 1: Contours for current instances (dict) """ boxes = results['rois'] masks = results['masks'] class_ids = results['class_ids'] scores = results['scores'] self.image_size = image_size # Number of instances N = boxes.shape[0] if not N: return None else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] # increment the frame counter self.frame_number = 1 # Find the instances of interest, e.g., persons instances_of_interest = [] for i in range(N): class_id = class_ids[i] if class_id == class_names.index('person') and scores[i] >= 0.75: instances_of_interest.append(i) # Find the contours that cover detected instances dict_contours = {} for i in instances_of_interest: # Mask mask = masks[:, :, i] # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros( (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask dict_contours[i] = find_contours(padded_mask, 0.5) # Analyze the contours and calculate the areas dict_polygons_in_bounding_map = {} for i in dict_contours: pts2d = [] # each element is an array of the shape (-1,2) for c in dict_contours[i]: # the value is a list pts2d.append(c.astype(np.int32)) dict_polygons_in_bounding_map[i] = self.fill_polygons_in_bounding_map(pts2d) # Initialize the buffers dict_inst_index_to_uid = {} # mapping current frame's instance index to unique ID assert self.instance_id_manager == 0 for i in dict_polygons_in_bounding_map: self.instance_id_manager += 1 uid = self.instance_id_manager dict_inst_index_to_uid[i] = uid self.dict_instance_history[uid] = [dict_polygons_in_bounding_map[i]] y1, x1, y2, x2 = boxes[i] self.dict_trajectories[uid] = [[self.frame_number, (x1 + x2)//2, (y1 + y2)//2]] self.dict_trajectory_timestamp[uid] = self.frame_number # calculate the center of the box that encloses a instance's contour dict_box_center = {} for i in dict_polygons_in_bounding_map: cy = (dict_polygons_in_bounding_map[i][0] + dict_polygons_in_bounding_map[i][2])//2 cx = (dict_polygons_in_bounding_map[i][1] + dict_polygons_in_bounding_map[i][3])//2 dict_box_center[i] = (cx, cy) # predict the locations of indentified instances in the next frame self.dict_location_prediction = {} for uid in self.dict_trajectories: self.dict_location_prediction[uid] = self.predict_location(uid) return (dict_inst_index_to_uid, dict_contours, dict_box_center) def receive_subsequent_segmentation_output(self, results, class_names, image_size): """ Update tracker states upon new detection results Input: - results: segmentation results as output of Mask R-CNN - class_names: list of class names of the dataset - image_size: image size in format (x, y) Output: - Tuple: item 0: the current instance ID to assigned unique ID (dict) item 1: Contours for current instances (dict) """ boxes = results['rois'] masks = results['masks'] class_ids = results['class_ids'] scores = results['scores'] self.image_size = image_size diagonal_line = math.sqrt(image_size[0]*image_size[0] + image_size[1]*image_size[1]) # Number of instances N = boxes.shape[0] if not N: return None else: assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0] # increment the frame counter self.frame_number += 1 # pop up the old data if necessary self.update_buffers() # Find the instances of interest, e.g., persons instances_of_interest = [] for i in range(N): class_id = class_ids[i] if class_id == class_names.index('person') and scores[i] >= 0.75: instances_of_interest.append(i) # Find the contours that cover detected instances dict_contours = {} for i in instances_of_interest: # Mask mask = masks[:, :, i] # Mask Polygon # Pad to ensure proper polygons for masks that touch image edges. padded_mask = np.zeros( (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask dict_contours[i] = find_contours(padded_mask, 0.5) # Coorespondence between existing instances and the instances in the current frame dict_inst_index_to_uid = {} # mapping current frame's instance index to unique ID list_matching_distance = [] for i in instances_of_interest: y1, x1, y2, x2 = boxes[i] x0, y0 = (x1 + x2)//2, (y1 + y2)//2 uid_min = 0 # invalid ID min_dist2 = diagonal_line * diagonal_line # here "uid" is a unique ID assigned to each detected instance for uid in self.dict_location_prediction: xp, yp = self.dict_location_prediction[uid] dist2 = (x0 - xp) * (x0 - xp) + (y0 - yp) * (y0 - yp) if dist2 < min_dist2: uid_min = uid min_dist2 = dist2 min_dist = math.sqrt(min_dist2) #print("uid", uid_min, "min_dist:", min_dist) if min_dist/diagonal_line < 0.02: # used a ratio threshold independent of image size list_matching_distance.append((i, uid_min, min_dist)) list_matching_distance.sort(key=lambda item: item[2], reverse=False) # in ascending order uid_set = set(self.dict_location_prediction.keys()) for e in list_matching_distance: # e is a tuple i = e[0] # the instance ID in the current frame uid = e[1] # unique existing instance ID dist = e[2] if uid in uid_set: uid_set.remove(uid) # this unique ID is claimed and won't be taken by other instances dict_inst_index_to_uid[i] = uid # What if the instances do not match any of the existing identified instances ? for i in instances_of_interest: if i not in dict_inst_index_to_uid: # this would be a new instance self.instance_id_manager += 1 uid = self.instance_id_manager dict_inst_index_to_uid[i] = uid # calculate the center of the box that encloses a instance's contour dict_box_center = {} for i in instances_of_interest: y1, x1, y2, x2 = boxes[i] x0, y0 = (x1 + x2)//2, (y1 + y2)//2 dict_box_center[i] = (x0, y0) for i in dict_inst_index_to_uid: y1, x1, y2, x2 = boxes[i] uid = dict_inst_index_to_uid[i] if uid not in self.dict_trajectories: self.dict_trajectories[uid] = [[self.frame_number, (x1 + x2)//2, (y1 + y2)//2]] else: self.dict_trajectories[uid].append([self.frame_number, (x1 + x2)//2, (y1 + y2)//2]) self.dict_trajectory_timestamp[uid] = self.frame_number # predict the locations of indentified instances in the next frame self.dict_location_prediction = {} for uid in self.dict_trajectories: self.dict_location_prediction[uid] = self.predict_location(uid) return (dict_inst_index_to_uid, dict_contours, dict_box_center) def receive_segmentation_output(self, results, class_names, image_size): """ Update tracker states upon new detection results Input: - results: segmentation results as output of Mask R-CNN - class_names: list of class names of the dataset - image_size: image size in format (x, y) Output: - Tuple: item 0: the current instance ID to assigned unique ID (dict) item 1: Contours for current instances (dict) """ if self.instance_id_manager == 0: return self.receive_first_segmentation_output(results, class_names, image_size) else: return self.receive_subsequent_segmentation_output(results, class_names, image_size) def save_trajectory_to_textfile(self, uid, fname): """ Dump a specified instance's location trajectory to a text file Input: - uid: Unique instance ID - fname: out filename """ if uid in self.dict_trajectories: outfile = open(str(fname) + "_%04d"%(uid) + ".txt", "w") for u in self.dict_trajectories[uid]: outfile.write(str(u[0])+"\t"+str(u[1])+"\t"+str(u[2])+"\n") outfile.close() def estimate_velocity(self, uid): """ Return estimated velocity """ if uid not in self.dict_trajectories: return None pos = np.array(self.dict_trajectories[uid]) m = pos.shape[0] # the number of points (memory for the past images) if m < 2: # single point return (0, 0) # partition the set of points x0, y0 = pos[0:m//2, 1].mean(), pos[0:m//2, 2].mean() x1, y1 = pos[m//2:, 1].mean(), pos[m//2:, 2].mean() timespan =
np.amax([1.0, (pos[-1, 0] - pos[0, 0])/2])
numpy.amax
#!/usr/bin/env python36 # -*- coding: utf-8 -*- """ Created on 2018/10/6 9:33 AM @author: Tangrizzly """ from __future__ import print_function import time import numpy as np from numpy.random import uniform import theano import theano.tensor as T from theano.tensor.nnet import sigmoid from theano.tensor import exp from theano.tensor.shared_randomstreams import RandomStreams # from theano.tensor.nnet.nnet import softmax # 作用于2d-matrix,按行处理。 from theano.tensor.extra_ops import Unique __docformat__ = 'restructedtext en' def exe_time(func): def new_func(*args, **args2): t0 = time.time() print("-- @%s, {%s} start" % (time.strftime("%X", time.localtime()), func.__name__)) back = func(*args, **args2) print("-- @%s, {%s} end" % (time.strftime("%X", time.localtime()), func.__name__)) print("-- @%.3fs taken for {%s}" % (time.time() - t0, func.__name__)) return back return new_func def softmax(x): # 竖直方向取softmax。 # theano里的是作用于2d-matrix,按行处理。我文中scan里有一步是处理(n,),直接用会报错,所以要重写。 # 按axis=0处理(n, ),会超级方便。 e_x = exp(x - x.max(axis=0, keepdims=True)) out = e_x / e_x.sum(axis=0, keepdims=True) return out # 'Obo' is one by one. 逐条训练。 # ====================================================================================================================== class GeoIE: def __init__(self, train, test, alpha_lambda, n_user, n_item, n_in, n_hidden, ulptai): # 来自于theano官网的dAE部分。 rng = np.random.RandomState(123) self.n_hidden = n_hidden self.thea_rng = RandomStreams(rng.randint(2 ** 30)) # 旗下随机函数可在GPU下运行。 # 用mask进行补全后的train/test self.ulptai = ulptai tra_buys_masks, tra_buys_neg_masks, tra_count, tra_masks = train tes_buys_masks, tes_buys_neg_masks = test self.tra_masks = theano.shared(borrow=True, value=np.asarray(tra_masks, dtype='int32')) self.tra_count = theano.shared(borrow=True, value=np.asarray(tra_count, dtype='int32')) self.tra_buys_masks = theano.shared(borrow=True, value=np.asarray(tra_buys_masks, dtype='int32')) self.tes_buys_masks = theano.shared(borrow=True, value=np.asarray(tes_buys_masks, dtype='int32')) self.tra_buys_neg_masks = theano.shared(borrow=True, value=np.asarray(tra_buys_neg_masks, dtype='int32')) self.tes_buys_neg_masks = theano.shared(borrow=True, value=
np.asarray(tes_buys_neg_masks, dtype='int32')
numpy.asarray
import sys from numpy.testing import * import numpy.core.umath as ncu import numpy as np class _FilterInvalids(object): def setUp(self): self.olderr = np.seterr(invalid='ignore') def tearDown(self): np.seterr(**self.olderr) class TestDivision(TestCase): def test_division_int(self): # int division should follow Python x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120]) if 5 / 10 == 0.5: assert_equal(x / 100, [0.05, 0.1, 0.9, 1, -0.05, -0.1, -0.9, -1, -1.2]) else: assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2]) assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2]) assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80]) def test_division_complex(self): # check that implementation is correct msg = "Complex division implementation check" x = np.array([1. + 1.*1j, 1. + .5*1j, 1. + 2.*1j], dtype=np.complex128) assert_almost_equal(x**2/x, x, err_msg=msg) # check overflow, underflow msg = "Complex division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = x**2/x assert_almost_equal(y/x, [1, 1], err_msg=msg) def test_zero_division_complex(self): err = np.seterr(invalid="ignore", divide="ignore") try: x = np.array([0.0], dtype=np.complex128) y = 1.0/x assert_(np.isinf(y)[0]) y = complex(np.inf, np.nan)/x assert_(np.isinf(y)[0]) y = complex(np.nan, np.inf)/x assert_(np.isinf(y)[0]) y = complex(np.inf, np.inf)/x assert_(np.isinf(y)[0]) y = 0.0/x assert_(np.isnan(y)[0]) finally: np.seterr(**err) def test_floor_division_complex(self): # check that implementation is correct msg = "Complex floor division implementation check" x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128) y = np.array([0., -1., 0., 0.], dtype=np.complex128) assert_equal(np.floor_divide(x**2,x), y, err_msg=msg) # check overflow, underflow msg = "Complex floor division overflow/underflow check" x = np.array([1.e+110, 1.e-110], dtype=np.complex128) y = np.floor_divide(x**2, x) assert_equal(y, [1.e+110, 0], err_msg=msg) class TestPower(TestCase): def test_power_float(self): x = np.array([1., 2., 3.]) assert_equal(x**0, [1., 1., 1.]) assert_equal(x**1, x) assert_equal(x**2, [1., 4., 9.]) y = x.copy() y **= 2 assert_equal(y, [1., 4., 9.]) assert_almost_equal(x**(-1), [1., 0.5, 1./3]) assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)]) def test_power_complex(self): x = np.array([1+2j, 2+3j, 3+4j]) assert_equal(x**0, [1., 1., 1.]) assert_equal(x**1, x) assert_almost_equal(x**2, [-3+4j, -5+12j, -7+24j]) assert_almost_equal(x**3, [(1+2j)**3, (2+3j)**3, (3+4j)**3]) assert_almost_equal(x**4, [(1+2j)**4, (2+3j)**4, (3+4j)**4]) assert_almost_equal(x**(-1), [1/(1+2j), 1/(2+3j), 1/(3+4j)]) assert_almost_equal(x**(-2), [1/(1+2j)**2, 1/(2+3j)**2, 1/(3+4j)**2]) assert_almost_equal(x**(-3), [(-11+2j)/125, (-46-9j)/2197, (-117-44j)/15625]) assert_almost_equal(x**(0.5), [ncu.sqrt(1+2j), ncu.sqrt(2+3j), ncu.sqrt(3+4j)]) norm = 1./((x**14)[0]) assert_almost_equal(x**14 * norm, [i * norm for i in [-76443+16124j, 23161315+58317492j, 5583548873 + 2465133864j]]) # Ticket #836 def assert_complex_equal(x, y): assert_array_equal(x.real, y.real) assert_array_equal(x.imag, y.imag) for z in [complex(0, np.inf), complex(1, np.inf)]: err = np.seterr(invalid="ignore") z = np.array([z], dtype=np.complex_) try: assert_complex_equal(z**1, z) assert_complex_equal(z**2, z*z) assert_complex_equal(z**3, z*z*z) finally: np.seterr(**err) def test_power_zero(self): # ticket #1271 zero = np.array([0j]) one = np.array([1+0j]) cinf = np.array([complex(np.inf, 0)]) cnan = np.array([complex(np.nan, np.nan)]) def assert_complex_equal(x, y): x, y = np.asarray(x), np.asarray(y) assert_array_equal(x.real, y.real) assert_array_equal(x.imag, y.imag) # positive powers for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, p), zero) # zero power assert_complex_equal(np.power(zero, 0), one) assert_complex_equal(np.power(zero, 0+1j), cnan) # negative power for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]: assert_complex_equal(np.power(zero, -p), cnan) assert_complex_equal(np.power(zero, -1+0.2j), cnan) def test_fast_power(self): x=np.array([1,2,3], np.int16) assert (x**2.00001).dtype is (x**2.0).dtype class TestLog2(TestCase): def test_log2_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.log2(xf), yf) class TestExp2(TestCase): def test_exp2_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt) assert_almost_equal(np.exp2(yf), xf) class TestLogAddExp2(_FilterInvalids): # Need test for intermediate precisions def test_logaddexp2_values(self) : x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec in zip(['f','d','g'],[6, 15, 15]) : xf = np.log2(np.array(x, dtype=dt)) yf = np.log2(np.array(y, dtype=dt)) zf = np.log2(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec) def test_logaddexp2_range(self) : x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp2(logxf, logyf), logzf) def test_inf(self) : err = np.seterr(invalid='ignore') inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] try: for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp2(logxf, logyf), logzf) finally: np.seterr(**err) def test_nan(self): assert_(np.isnan(np.logaddexp2(np.nan, np.inf))) assert_(np.isnan(np.logaddexp2(np.inf, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, 0))) assert_(np.isnan(np.logaddexp2(0, np.nan))) assert_(np.isnan(np.logaddexp2(np.nan, np.nan))) class TestLog(TestCase): def test_log_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : log2_ = 0.69314718055994530943 xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt)*log2_ assert_almost_equal(np.log(xf), yf) class TestExp(TestCase): def test_exp_values(self) : x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for dt in ['f','d','g'] : log2_ = 0.69314718055994530943 xf = np.array(x, dtype=dt) yf = np.array(y, dtype=dt)*log2_ assert_almost_equal(np.exp(yf), xf) class TestLogAddExp(_FilterInvalids): def test_logaddexp_values(self) : x = [1, 2, 3, 4, 5] y = [5, 4, 3, 2, 1] z = [6, 6, 6, 6, 6] for dt, dec in zip(['f','d','g'],[6, 15, 15]) : xf = np.log(np.array(x, dtype=dt)) yf = np.log(np.array(y, dtype=dt)) zf = np.log(np.array(z, dtype=dt)) assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec) def test_logaddexp_range(self) : x = [1000000, -1000000, 1000200, -1000200] y = [1000200, -1000200, 1000000, -1000000] z = [1000200, -1000000, 1000200, -1000000] for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_almost_equal(np.logaddexp(logxf, logyf), logzf) def test_inf(self) : err = np.seterr(invalid='ignore') inf = np.inf x = [inf, -inf, inf, -inf, inf, 1, -inf, 1] y = [inf, inf, -inf, -inf, 1, inf, 1, -inf] z = [inf, inf, inf, -inf, inf, inf, 1, 1] try: for dt in ['f','d','g'] : logxf = np.array(x, dtype=dt) logyf = np.array(y, dtype=dt) logzf = np.array(z, dtype=dt) assert_equal(np.logaddexp(logxf, logyf), logzf) finally: np.seterr(**err) def test_nan(self): assert_(np.isnan(np.logaddexp(np.nan, np.inf))) assert_(np.isnan(np.logaddexp(np.inf, np.nan))) assert_(np.isnan(np.logaddexp(np.nan, 0))) assert_(np.isnan(np.logaddexp(0, np.nan))) assert_(np.isnan(np.logaddexp(np.nan, np.nan))) class TestLog1p(TestCase): def test_log1p(self): assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2)) assert_almost_equal(ncu.log1p(1e-6), ncu.log(1+1e-6)) class TestExpm1(TestCase): def test_expm1(self): assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2)-1) assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6)-1) class TestHypot(TestCase, object): def test_simple(self): assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2)) assert_almost_equal(ncu.hypot(0, 0), 0) def assert_hypot_isnan(x, y): err = np.seterr(invalid='ignore') try: assert_(np.isnan(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not nan" % (x, y, ncu.hypot(x, y))) finally: np.seterr(**err) def assert_hypot_isinf(x, y): err = np.seterr(invalid='ignore') try: assert_(np.isinf(ncu.hypot(x, y)), "hypot(%s, %s) is %s, not inf" % (x, y, ncu.hypot(x, y))) finally: np.seterr(**err) class TestHypotSpecialValues(TestCase): def test_nan_outputs(self): assert_hypot_isnan(np.nan, np.nan) assert_hypot_isnan(np.nan, 1) def test_nan_outputs(self): assert_hypot_isinf(np.nan, np.inf) assert_hypot_isinf(np.inf, np.nan) assert_hypot_isinf(np.inf, 0) assert_hypot_isinf(0, np.inf) def assert_arctan2_isnan(x, y): assert_(np.isnan(ncu.arctan2(x, y)), "arctan(%s, %s) is %s, not nan" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_ispinf(x, y): assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), "arctan(%s, %s) is %s, not +inf" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_isninf(x, y): assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), "arctan(%s, %s) is %s, not -inf" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_ispzero(x, y): assert_((ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not +0" % (x, y, ncu.arctan2(x, y))) def assert_arctan2_isnzero(x, y): assert_((ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not -0" % (x, y, ncu.arctan2(x, y))) class TestArctan2SpecialValues(TestCase): def test_one_one(self): # atan2(1, 1) returns pi/4. assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi) assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi) assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi) def test_zero_nzero(self): # atan2(+-0, -0) returns +-pi. assert_almost_equal(ncu.arctan2(np.PZERO, np.NZERO), np.pi) assert_almost_equal(ncu.arctan2(np.NZERO, np.NZERO), -np.pi) def test_zero_pzero(self): # atan2(+-0, +0) returns +-0. assert_arctan2_ispzero(np.PZERO, np.PZERO) assert_arctan2_isnzero(np.NZERO, np.PZERO) def test_zero_negative(self): # atan2(+-0, x) returns +-pi for x < 0. assert_almost_equal(ncu.arctan2(np.PZERO, -1), np.pi) assert_almost_equal(ncu.arctan2(np.NZERO, -1), -np.pi) def test_zero_positive(self): # atan2(+-0, x) returns +-0 for x > 0. assert_arctan2_ispzero(np.PZERO, 1) assert_arctan2_isnzero(np.NZERO, 1) def test_positive_zero(self): # atan2(y, +-0) returns +pi/2 for y > 0. assert_almost_equal(ncu.arctan2(1, np.PZERO), 0.5 * np.pi) assert_almost_equal(ncu.arctan2(1, np.NZERO), 0.5 * np.pi) def test_negative_zero(self): # atan2(y, +-0) returns -pi/2 for y < 0. assert_almost_equal(ncu.arctan2(-1, np.PZERO), -0.5 * np.pi) assert_almost_equal(ncu.arctan2(-1, np.NZERO), -0.5 * np.pi) def test_any_ninf(self): # atan2(+-y, -infinity) returns +-pi for finite y > 0. assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi) assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi) def test_any_pinf(self): # atan2(+-y, +infinity) returns +-0 for finite y > 0. assert_arctan2_ispzero(1, np.inf) assert_arctan2_isnzero(-1, np.inf) def test_inf_any(self): # atan2(+-infinity, x) returns +-pi/2 for finite x. assert_almost_equal(ncu.arctan2( np.inf, 1), 0.5 * np.pi) assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi) def test_inf_ninf(self): # atan2(+-infinity, -infinity) returns +-3*pi/4. assert_almost_equal(ncu.arctan2( np.inf, -np.inf), 0.75 * np.pi) assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi) def test_inf_pinf(self): # atan2(+-infinity, +infinity) returns +-pi/4. assert_almost_equal(ncu.arctan2( np.inf, np.inf), 0.25 * np.pi) assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi) def test_nan_any(self): # atan2(nan, x) returns nan for any x, including inf assert_arctan2_isnan(np.nan, np.inf) assert_arctan2_isnan(np.inf, np.nan) assert_arctan2_isnan(np.nan, np.nan) class TestLdexp(TestCase): def _check_ldexp(self, tp): assert_almost_equal(ncu.ldexp(np.array(2., np.float32), np.array(3, tp)), 16.) assert_almost_equal(ncu.ldexp(np.array(2., np.float64), np.array(3, tp)), 16.) assert_almost_equal(ncu.ldexp(np.array(2., np.longdouble), np.array(3, tp)), 16.) def test_ldexp(self): # The default Python int type should work assert_almost_equal(ncu.ldexp(2., 3), 16.) # The following int types should all be accepted self._check_ldexp(np.int8) self._check_ldexp(np.int16) self._check_ldexp(np.int32) self._check_ldexp('i') self._check_ldexp('l') @dec.knownfailureif(sys.platform == 'win32' and sys.version_info < (2, 6), "python.org < 2.6 binaries have broken ldexp in the " "C runtime") def test_ldexp_overflow(self): # silence warning emitted on overflow err = np.seterr(over="ignore") try: imax = np.iinfo(np.dtype('l')).max imin = np.iinfo(np.dtype('l')).min assert_equal(ncu.ldexp(2., imax), np.inf) assert_equal(ncu.ldexp(2., imin), 0) finally: np.seterr(**err) class TestMaximum(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.maximum.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), np.nan) assert_equal(func(tmp2), np.nan) def test_reduce_complex(self): assert_equal(np.maximum.reduce([1,2j]),1) assert_equal(np.maximum.reduce([1+3j,2j]),1+3j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([nan, nan, nan]) assert_equal(np.maximum(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([nan, nan, nan], dtype=np.complex) assert_equal(np.maximum(arg1, arg2), out) def test_object_array(self): arg1 = np.arange(5, dtype=np.object) arg2 = arg1 + 1 assert_equal(np.maximum(arg1, arg2), arg2) class TestMinimum(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.minimum.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), np.nan) assert_equal(func(tmp2), np.nan) def test_reduce_complex(self): assert_equal(np.minimum.reduce([1,2j]),2j) assert_equal(np.minimum.reduce([1+3j,2j]),2j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([nan, nan, nan]) assert_equal(np.minimum(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([nan, nan, nan], dtype=np.complex) assert_equal(np.minimum(arg1, arg2), out) def test_object_array(self): arg1 = np.arange(5, dtype=np.object) arg2 = arg1 + 1 assert_equal(np.minimum(arg1, arg2), arg1) class TestFmax(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmax.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 10) assert_equal(func(tmp2), 10) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 9) assert_equal(func(tmp2), 9) def test_reduce_complex(self): assert_equal(np.fmax.reduce([1,2j]),1) assert_equal(np.fmax.reduce([1+3j,2j]),1+3j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([0, 0, nan]) assert_equal(np.fmax(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([0, 0, nan], dtype=np.complex) assert_equal(np.fmax(arg1, arg2), out) class TestFmin(_FilterInvalids): def test_reduce(self): dflt = np.typecodes['AllFloat'] dint = np.typecodes['AllInteger'] seq1 = np.arange(11) seq2 = seq1[::-1] func = np.fmin.reduce for dt in dint: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) for dt in dflt: tmp1 = seq1.astype(dt) tmp2 = seq2.astype(dt) assert_equal(func(tmp1), 0) assert_equal(func(tmp2), 0) tmp1[::2] = np.nan tmp2[::2] = np.nan assert_equal(func(tmp1), 1) assert_equal(func(tmp2), 1) def test_reduce_complex(self): assert_equal(np.fmin.reduce([1,2j]),2j) assert_equal(np.fmin.reduce([1+3j,2j]),2j) def test_float_nans(self): nan = np.nan arg1 = np.array([0, nan, nan]) arg2 = np.array([nan, 0, nan]) out = np.array([0, 0, nan]) assert_equal(np.fmin(arg1, arg2), out) def test_complex_nans(self): nan = np.nan for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)] : arg1 = np.array([0, cnan, cnan], dtype=np.complex) arg2 = np.array([cnan, 0, cnan], dtype=np.complex) out = np.array([0, 0, nan], dtype=np.complex) assert_equal(np.fmin(arg1, arg2), out) class TestFloatingPoint(TestCase): def test_floating_point(self): assert_equal(ncu.FLOATING_POINT_SUPPORT, 1) class TestDegrees(TestCase): def test_degrees(self): assert_almost_equal(ncu.degrees(np.pi), 180.0) assert_almost_equal(ncu.degrees(-0.5*np.pi), -90.0) class TestRadians(TestCase): def test_radians(self): assert_almost_equal(ncu.radians(180.0), np.pi) assert_almost_equal(ncu.radians(-90.0), -0.5*np.pi) class TestSign(TestCase): def test_sign(self): a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0]) out = np.zeros(a.shape) tgt = np.array([1., -1., np.nan, 0.0, 1.0, -1.0]) olderr = np.seterr(invalid='ignore') try: res = ncu.sign(a) assert_equal(res, tgt) res = ncu.sign(a, out) assert_equal(res, tgt) assert_equal(out, tgt) finally: np.seterr(**olderr) class TestSpecialMethods(TestCase): def test_wrap(self): class with_wrap(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): r = with_wrap() r.arr = arr r.context = context return r a = with_wrap() x = ncu.minimum(a, a) assert_equal(x.arr, np.zeros(1)) func, args, i = x.context self.assertTrue(func is ncu.minimum) self.assertEqual(len(args), 2) assert_equal(args[0], a) assert_equal(args[1], a) self.assertEqual(i, 0) def test_wrap_with_iterable(self): # test fix for bug #1026: class with_wrap(np.ndarray): __array_priority__ = 10 def __new__(cls): return np.asarray(1).view(cls).copy() def __array_wrap__(self, arr, context): return arr.view(type(self)) a = with_wrap() x = ncu.multiply(a, (1, 2, 3)) self.assertTrue(isinstance(x, with_wrap)) assert_array_equal(x, np.array((1, 2, 3))) def test_priority_with_scalar(self): # test fix for bug #826: class A(np.ndarray): __array_priority__ = 10 def __new__(cls): return np.asarray(1.0, 'float64').view(cls).copy() a = A() x = np.float64(1)*a self.assertTrue(isinstance(x, A)) assert_array_equal(x, np.array(1)) def test_old_wrap(self): class with_wrap(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr): r = with_wrap() r.arr = arr return r a = with_wrap() x = ncu.minimum(a, a) assert_equal(x.arr, np.zeros(1)) def test_priority(self): class A(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): r = type(self)() r.arr = arr r.context = context return r class B(A): __array_priority__ = 20. class C(A): __array_priority__ = 40. x = np.zeros(1) a = A() b = B() c = C() f = ncu.minimum self.assertTrue(type(f(x,x)) is np.ndarray) self.assertTrue(type(f(x,a)) is A) self.assertTrue(type(f(x,b)) is B) self.assertTrue(type(f(x,c)) is C) self.assertTrue(type(f(a,x)) is A) self.assertTrue(type(f(b,x)) is B) self.assertTrue(type(f(c,x)) is C) self.assertTrue(type(f(a,a)) is A) self.assertTrue(type(f(a,b)) is B) self.assertTrue(type(f(b,a)) is B) self.assertTrue(type(f(b,b)) is B) self.assertTrue(type(f(b,c)) is C) self.assertTrue(type(f(c,b)) is C) self.assertTrue(type(f(c,c)) is C) self.assertTrue(type(ncu.exp(a) is A)) self.assertTrue(type(ncu.exp(b) is B)) self.assertTrue(type(ncu.exp(c) is C)) def test_failing_wrap(self): class A(object): def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): raise RuntimeError a = A() self.assertRaises(RuntimeError, ncu.maximum, a, a) def test_default_prepare(self): class with_wrap(object): __array_priority__ = 10 def __array__(self): return np.zeros(1) def __array_wrap__(self, arr, context): return arr a = with_wrap() x = ncu.minimum(a, a) assert_equal(x, np.zeros(1)) assert_equal(type(x), np.ndarray) def test_prepare(self): class with_prepare(np.ndarray): __array_priority__ = 10 def __array_prepare__(self, arr, context): # make sure we can return a new return np.array(arr).view(type=with_prepare) a = np.array(1).view(type=with_prepare) x = np.add(a, a) assert_equal(x, np.array(2)) assert_equal(type(x), with_prepare) def test_failing_prepare(self): class A(object): def __array__(self): return np.zeros(1) def __array_prepare__(self, arr, context=None): raise RuntimeError a = A() self.assertRaises(RuntimeError, ncu.maximum, a, a) def test_array_with_context(self): class A(object): def __array__(self, dtype=None, context=None): func, args, i = context self.func = func self.args = args self.i = i return np.zeros(1) class B(object): def __array__(self, dtype=None): return np.zeros(1, dtype) class C(object): def __array__(self): return np.zeros(1) a = A() ncu.maximum(np.zeros(1), a) self.assertTrue(a.func is ncu.maximum) assert_equal(a.args[0], 0) self.assertTrue(a.args[1] is a) self.assertTrue(a.i == 1) assert_equal(ncu.maximum(a, B()), 0) assert_equal(ncu.maximum(a, C()), 0) class TestChoose(TestCase): def test_mixed(self): c = np.array([True,True]) a = np.array([True,True]) assert_equal(np.choose(c, (a, 1)), np.array([1,1])) def is_longdouble_finfo_bogus(): info = np.finfo(np.longcomplex) return not np.isfinite(np.log10(info.tiny/info.eps)) class TestComplexFunctions(object): funcs = [np.arcsin, np.arccos, np.arctan, np.arcsinh, np.arccosh, np.arctanh, np.sin, np.cos, np.tan, np.exp, np.exp2, np.log, np.sqrt, np.log10, np.log2, np.log1p] def test_it(self): for f in self.funcs: if f is np.arccosh : x = 1.5 else : x = .5 fr = f(x) fz = f(np.complex(x)) assert_almost_equal(fz.real, fr, err_msg='real part %s'%f) assert_almost_equal(fz.imag, 0., err_msg='imag part %s'%f) def test_precisions_consistent(self) : z = 1 + 1j for f in self.funcs : fcf = f(np.csingle(z)) fcd = f(np.cdouble(z)) fcl = f(np.clongdouble(z)) assert_almost_equal(fcf, fcd, decimal=6, err_msg='fch-fcd %s'%f) assert_almost_equal(fcl, fcd, decimal=15, err_msg='fch-fcl %s'%f) def test_branch_cuts(self): # check branch cuts and continuity on them yield _check_branch_cut, np.log, -0.5, 1j, 1, -1 yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1 yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1 yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1 yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1 yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, -1j], 1, -1 yield _check_branch_cut, np.arccos, [ -2, 2], [1j, -1j], 1, -1 yield _check_branch_cut, np.arctan, [-2j, 2j], [1, -1 ], -1, 1 yield _check_branch_cut, np.arcsinh, [-2j, 2j], [-1, 1], -1, 1 yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1 yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, -1j], 1, -1 # check against bogus branch cuts: assert continuity between quadrants yield _check_branch_cut, np.arcsin, [-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arccos, [-2j, 2j], [ 1, 1], 1, 1 yield _check_branch_cut, np.arctan, [ -2, 2], [1j, 1j], 1, 1 yield _check_branch_cut, np.arcsinh, [ -2, 2, 0], [1j, 1j, 1 ], 1, 1 yield _check_branch_cut, np.arccosh, [-2j, 2j, 2], [1, 1, 1j], 1, 1 yield _check_branch_cut, np.arctanh, [-2j, 2j, 0], [1, 1, 1j], 1, 1 @dec.knownfailureif(True, "These branch cuts are known to fail") def test_branch_cuts_failing(self): # XXX: signed zero not OK with ICC on 64-bit platform for log, see # http://permalink.gmane.org/gmane.comp.python.numeric.general/25335 yield _check_branch_cut, np.log, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log2, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log10, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.log1p, -1.5, 1j, 1, -1, True # XXX: signed zeros are not OK for sqrt or for the arc* functions yield _check_branch_cut, np.sqrt, -0.5, 1j, 1, -1, True yield _check_branch_cut, np.arcsin, [ -2, 2], [1j, -1j], 1, -1, True yield _check_branch_cut, np.arccos, [ -2, 2], [1j, -1j], 1, -1, True yield _check_branch_cut, np.arctan, [-2j, 2j], [1, -1 ], -1, 1, True yield _check_branch_cut, np.arcsinh, [-2j, 2j], [-1, 1], -1, 1, True yield _check_branch_cut, np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True yield _check_branch_cut, np.arctanh, [ -2, 2], [1j, -1j], 1, -1, True def test_against_cmath(self): import cmath, sys # cmath.asinh is broken in some versions of Python, see # http://bugs.python.org/issue1381 broken_cmath_asinh = False if sys.version_info < (2,6): broken_cmath_asinh = True points = [-1-1j, -1+1j, +1-1j, +1+1j] name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan', 'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'} atol = 4*np.finfo(np.complex).eps for func in self.funcs: fname = func.__name__.split('.')[-1] cname = name_map.get(fname, fname) try: cfunc = getattr(cmath, cname) except AttributeError: continue for p in points: a = complex(func(np.complex_(p))) b = cfunc(p) if cname == 'asinh' and broken_cmath_asinh: continue assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s"%(fname,p,a,b)) def check_loss_of_precision(self, dtype): """Check loss of precision in complex arc* functions""" # Check against known-good functions info = np.finfo(dtype) real_dtype = dtype(0.).real.dtype eps = info.eps def check(x, rtol): x = x.astype(real_dtype) z = x.astype(dtype) d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1) assert_(np.all(d < rtol), (np.argmax(d), x[
np.argmax(d)
numpy.argmax
import os import random import torch import torch.backends.cudnn as cudnn import numpy as np import scipy.sparse as sp from itertools import chain from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier def init_random_seed(manual_seed): seed = None if manual_seed is None: seed = random.randint(1,10000) else: seed = manual_seed print("use random seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) def init_model(net, device, restore): if restore is not None and os.path.exits(restore): net.load_state_dict(torch.load(restore)) net.restored = True print("Restore model from: {}".format(os.path.abspath(restore))) else: pass if torch.cuda.is_available(): cudnn.benchmark =True net.to(device) return net def save_model(net, model_root, filename): if not os.path.exists(model_root): os.makedirs(model_root) torch.save(net.state_dict(), os.path.join(model_root, filename)) print("save pretrained model to: {}".format(os.path.join(model_root, filename))) #-||x_i-x_j||^2 # def neg_squared_euc_dists(X): # sum_X = np.sum(np.square(X), 1) # D = np.add(np.add(-2 * np.dot(X, X.T), sum_X).T, sum_X) # return -D #input -||x_i-x_j||^2/2*sigma^2, compute softmax def softmax(D, diag_zero=True): # e_x = np.exp(D) e_x = np.exp(D -
np.max(D, axis=1)
numpy.max
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import print_function, division, absolute_import import numpy as np import matplotlib.pyplot as plt from matplotlib.dates import num2epoch, epoch2num import numpy as np from astropy.time import Time from matplotlib.dates import (YearLocator, MonthLocator, DayLocator, HourLocator, MinuteLocator, SecondLocator, DateFormatter, epoch2num) from matplotlib.ticker import FixedLocator, FixedFormatter MIN_TSTART_UNIX = Time('1999:100', format='yday').unix MAX_TSTOP_UNIX = Time(Time.now()).unix + 1e7 # Licensed under a 3-clause BSD style license - see LICENSE.rst """Provide useful utilities for matplotlib.""" # Default tick locator and format specification for making nice time axes TICKLOCS = ((YearLocator, {'base': 5}, '%Y', YearLocator, {'base': 1}), (YearLocator, {'base': 4}, '%Y', YearLocator, {'base': 1}), (YearLocator, {'base': 2}, '%Y', YearLocator, {'base': 1}), (YearLocator, {'base': 1}, '%Y', MonthLocator, {'bymonth': (1, 4, 7, 10)}), (MonthLocator, {'bymonth': list(range(1, 13, 6))}, '%Y-%b', MonthLocator, {}), (MonthLocator, {'bymonth': list(range(1, 13, 4))}, '%Y-%b', MonthLocator, {}), (MonthLocator, {'bymonth': list(range(1, 13, 3))}, '%Y-%b', MonthLocator, {}), (MonthLocator, {'bymonth': list(range(1, 13, 2))}, '%Y-%b', MonthLocator, {}), (MonthLocator, {}, '%Y-%b', DayLocator, {'bymonthday': (1, 15)}), (DayLocator, {'interval': 10}, '%Y:%j', DayLocator, {}), (DayLocator, {'interval': 5}, '%Y:%j', DayLocator, {}), (DayLocator, {'interval': 4}, '%Y:%j', DayLocator, {}), (DayLocator, {'interval': 2}, '%Y:%j', DayLocator, {}), (DayLocator, {'interval': 1}, '%Y:%j', HourLocator, {'byhour': (0, 6, 12, 18)}), (HourLocator, {'byhour': list(range(0, 24, 12))}, '%j:%H:00', HourLocator, {}), (HourLocator, {'byhour': list(range(0, 24, 6))}, '%j:%H:00', HourLocator, {}), (HourLocator, {'byhour': list(range(0, 24, 4))}, '%j:%H:00', HourLocator, {}), (HourLocator, {'byhour': list(range(0, 24, 2))}, '%j:%H:00', HourLocator, {}), (HourLocator, {}, '%j:%H:00', MinuteLocator, {'byminute': (0, 15, 30, 45)}), (MinuteLocator, {'byminute': (0, 30)}, '%j:%H:%M', MinuteLocator, {'byminute': list(range(0,60,5))}), (MinuteLocator, {'byminute': (0, 15, 30, 45)}, '%j:%H:%M', MinuteLocator, {'byminute': list(range(0,60,5))}), (MinuteLocator, {'byminute': list(range(0, 60, 10))}, '%j:%H:%M', MinuteLocator, {}), (MinuteLocator, {'byminute': list(range(0, 60, 5))}, '%j:%H:%M', MinuteLocator, {}), (MinuteLocator, {'byminute': list(range(0, 60, 4))}, '%j:%H:%M', MinuteLocator, {}), (MinuteLocator, {'byminute': list(range(0, 60, 2))}, '%j:%H:%M', MinuteLocator, {}), (MinuteLocator, {}, '%j:%H:%M', SecondLocator, {'bysecond': (0, 15, 30, 45)}), (SecondLocator, {'bysecond': (0, 30)}, '%H:%M:%S', SecondLocator, {'bysecond': list(range(0,60,5))}), (SecondLocator, {'bysecond': (0, 15, 30, 45)}, '%H:%M:%S', SecondLocator, {'bysecond': list(range(0,60,5))}), (SecondLocator, {'bysecond': list(range(0, 60, 10))}, '%H:%M:%S', SecondLocator, {}), (SecondLocator, {'bysecond': list(range(0, 60, 5))}, '%H:%M:%S', SecondLocator, {}), (SecondLocator, {'bysecond': list(range(0, 60, 4))}, '%H:%M:%S', SecondLocator, {}), (SecondLocator, {'bysecond': list(range(0, 60, 2))}, '%H:%M:%S', SecondLocator, {}), (SecondLocator, {}, '%H:%M:%S', SecondLocator, {}), ) def set_time_ticks(plt, ticklocs=None): """ Pick nice values to show time ticks in a date plot. Example:: x = cxctime2plotdate(np.linspace(0, 3e7, 20)) y = np.random.normal(size=len(x)) fig = pylab.figure() plt = fig.add_subplot(1, 1, 1) plt.plot_date(x, y, fmt='b-') ticklocs = set_time_ticks(plt) fig.autofmt_xdate() fig.show() The returned value of ``ticklocs`` can be used in subsequent date plots to force the same major and minor tick locations and formatting. Note also the use of the high-level fig.autofmt_xdate() convenience method to configure vertically stacked date plot(s) to be well-formatted. :param plt: ``matplotlib.axes.AxesSubplot`` object (from ``pylab.figure.add_subplot``) :param ticklocs: list of major/minor tick locators ala the default ``TICKLOCS`` :rtype: tuple with selected ticklocs as first element """ locs = ticklocs or TICKLOCS for majorLoc, major_kwargs, major_fmt, minorLoc, minor_kwargs in locs: plt.xaxis.set_major_locator(majorLoc(**major_kwargs)) plt.xaxis.set_minor_locator(minorLoc(**minor_kwargs)) plt.xaxis.set_major_formatter(DateFormatter(major_fmt)) majorticklocs = plt.xaxis.get_ticklocs() if len(majorticklocs) >= 5: break return ((majorLoc, major_kwargs, major_fmt, minorLoc, minor_kwargs), ) def remake_ticks(ax): """Remake the date ticks for the current plot if space is pressed. If '0' is pressed then set the date ticks to the maximum possible range. """ ticklocs = set_time_ticks(ax) ax.figure.canvas.draw() def plot_cxctime(times, y, fmt='-b', fig=None, ax=None, yerr=None, xerr=None, tz=None, state_codes=None, interactive=True, **kwargs): """Make a date plot where the X-axis values are in a CXC time compatible format. If no ``fig`` value is supplied then the current figure will be used (and created automatically if needed). If yerr or xerr is supplied, ``errorbar()`` will be called and any additional keyword arguments will be passed to it. Otherwise any additional keyword arguments (e.g. ``fmt='b-'``) are passed through to the ``plot()`` function. Also see ``errorbar()`` for an explanation of the possible forms of *yerr*/*xerr*. If the ``state_codes`` keyword argument is provided then the y-axis ticks and tick labels will be set accordingly. The ``state_codes`` value must be a list of (raw_count, state_code) tuples, and is normally set to ``msid.state_codes`` for an MSID object from fetch(). If the ``interactive`` keyword is True (default) then the plot will be redrawn at the end and a GUI callback will be created which allows for on-the-fly update of the date tick labels when panning and zooming interactively. Set this to False to improve the speed when making several plots. This will likely require issuing a plt.draw() or fig.canvas.draw() command at the end. :param times: CXC time values for x-axis (DateTime compatible format, CxoTime) :param y: y values :param fmt: plot format (default = '-b') :param fig: pyplot figure object (optional) :param yerr: error on y values, may be [ scalar | N, Nx1, or 2xN array-like ] :param xerr: error on x values in units of DAYS (may be [ scalar | N, Nx1, or 2xN array-like ] ) :param tz: timezone string :param state_codes: list of (raw_count, state_code) tuples :param interactive: use plot interactively (default=True, faster if False) :param ``**kwargs``: keyword args passed through to ``plot_date()`` or ``errorbar()`` :rtype: ticklocs, fig, ax = tick locations, figure, and axes object. """ from matplotlib import pyplot if fig is None: fig = pyplot.gcf() if ax is None: ax = fig.gca() if yerr is not None or xerr is not None: ax.errorbar(time2plotdate(times), y, yerr=yerr, xerr=xerr, fmt=fmt, **kwargs) ax.xaxis_date(tz) else: ax.plot_date(time2plotdate(times), y, fmt=fmt, **kwargs) ticklocs = set_time_ticks(ax) fig.autofmt_xdate() if state_codes is not None: counts, codes = zip(*state_codes) ax.yaxis.set_major_locator(FixedLocator(counts)) ax.yaxis.set_major_formatter(FixedFormatter(codes)) # If plotting interactively then show the figure and enable interactive resizing if interactive and hasattr(fig, 'show'): fig.canvas.draw() ax.callbacks.connect('xlim_changed', remake_ticks) return ticklocs, fig, ax def time2plotdate(times): """ Convert input CXC time (sec) to the time base required for the matplotlib plot_date function (days since start of year 1)? :param times: times (any DateTime compatible format or object) :rtype: plot_date times """ # # Convert times to float array of CXC seconds # if isinstance(times, (Time, Time)): # times = times.unix # else: times = np.asarray(times) # If not floating point then use CxoTime to convert to seconds # if times.dtype.kind != 'f': # times = Time(times).unix # Find the plotdate of first time and use a relative offset from there t0 = Time(times[0], format='unix').unix plotdate0 = epoch2num(t0) return (times - times[0]) / 86400. + plotdate0 def pointpair(x, y=None): """Interleave and then flatten two arrays ``x`` and ``y``. This is typically useful for making a histogram style plot where ``x`` and ``y`` are the bin start and stop respectively. If no value for ``y`` is provided then ``x`` is used. Example:: from Ska.Matplotlib import pointpair x = np.arange(1, 100, 5) x0 = x[:-1] x1 = x[1:] y = np.random.uniform(len(x0)) xpp = pointpair(x0, x1) ypp = pointpair(y) plot(xpp, ypp) :x: left edge value of point pairs :y: right edge value of point pairs (optional) :rtype: np.array of length 2*len(x) == 2*len(y) """ if y is None: y = x return np.array([x, y]).reshape(-1, order='F') def hist_outline(dataIn, *args, **kwargs): """ histOutline from http://www.scipy.org/Cookbook/Matplotlib/UnfilledHistograms Make a histogram that can be plotted with plot() so that the histogram just has the outline rather than bars as it usually does. Example Usage: binsIn = np.arange(0, 1, 0.1) angle = pylab.rand(50) (bins, data) = histOutline(binsIn, angle) plot(bins, data, 'k-', linewidth=2) """ (histIn, binsIn) = np.histogram(dataIn, *args, **kwargs) stepSize = binsIn[1] - binsIn[0] bins = np.zeros(len(binsIn)*2 + 2, dtype=np.float) data = np.zeros(len(binsIn)*2 + 2, dtype=np.float) for bb in range(len(binsIn)): bins[2*bb + 1] = binsIn[bb] bins[2*bb + 2] = binsIn[bb] + stepSize if bb < len(histIn): data[2*bb + 1] = histIn[bb] data[2*bb + 2] = histIn[bb] bins[0] = bins[1] bins[-1] = bins[-2] data[0] = 0 data[-1] = 0 return (bins, data) def get_stat(t0, t1, npix): t0 = Time(t0) t1 = Time(t1) dt_days = t1 - t0 if dt_days > npix: stat = 'daily' elif dt_days * (24 * 60 / 5) > npix: stat = '5min' else: stat = None return stat class MsidPlot(object): """Make an interactive plot for exploring the MSID data. This method opens a new plot figure (or clears the current figure) and plots the MSID ``vals`` versus ``times``. This plot can be panned or zoomed arbitrarily and the data values will be fetched from the archive as needed. Depending on the time scale, ``iplot`` will display either full resolution, 5-minute, or daily values. For 5-minute and daily values the min and max values are also plotted. Once the plot is displayed and the window is selected by clicking in it, the plot limits can be controlled by the usual methods (window selection, pan / zoom). In addition following key commands are recognized:: a: autoscale for full data range in x and y m: toggle plotting of min/max values p: pan at cursor x y: toggle autoscaling of y-axis z: zoom at cursor x ?: print help Example:: dat = fetch.Msid('aoattqt1', '2011:001', '2012:001', stat='5min') iplot = Ska.engarchive.MsidPlot(dat) Caveat: the ``MsidPlot()`` class is not meant for use within scripts, and may give unexpected results if used in combination with other plotting commands directed at the same plot figure. :param msid: MSID object :param fmt: plot format for values (default="-b") :param fmt_minmax: plot format for mins and maxes (default="-c") :param plot_kwargs: additional plotting keyword args """ def __init__(self, msid, fmt='-b', fmt_minmax='-c', **plot_kwargs): self.fig = plt.gcf() self.fig.clf() self.ax = self.fig.gca() self.zoom = 4.0 self.msid = msid self.fetch = msid.fetch self.fmt = fmt self.fmt_minmax = fmt_minmax self.plot_kwargs = plot_kwargs self.msidname = self.msid.msid self.plot_mins = True self.tstart = self.msid.times[0] self.tstop = self.msid.times[-1] self.scaley = True # Make sure MSID is sampled at the correct density for initial plot stat = get_stat(self.tstart, self.tstop, self.npix) if stat != self.msid.stat: self.msid = self.fetch.Msid(self.msidname, self.tstart, self.tstop, stat=stat) self.ax.set_autoscale_on(True) self.draw_plot() self.ax.set_autoscale_on(False) plt.grid() self.fig.canvas.mpl_connect('key_press_event', self.key_press) @property def npix(self): dims = self.ax.axesPatch.get_window_extent().bounds return int(dims[2] + 0.5) def key_press(self, event): if event.key in ['z', 'p'] and event.inaxes: x0, x1 = self.ax.get_xlim() dx = x1 - x0 xc = event.xdata zoom = self.zoom if event.key == 'p' else 1.0 / self.zoom new_x1 = zoom * (x1 - xc) + xc new_x0 = new_x1 - zoom * dx tstart = max(num2epoch(new_x0), MIN_TSTART_UNIX) tstop = min(num2epoch(new_x1), MAX_TSTOP_UNIX) new_x0 = epoch2num(tstart) new_x1 = epoch2num(tstop) self.ax.set_xlim(new_x0, new_x1) self.ax.figure.canvas.draw_idle() elif event.key == 'm': for _ in range(len(self.ax.lines)): self.ax.lines.pop() self.plot_mins = not self.plot_mins print('\nPlotting mins and maxes is {}'.format( 'enabled' if self.plot_mins else 'disabled')) self.draw_plot() elif event.key == 'a': # self.fig.clf() # self.ax = self.fig.gca() self.ax.set_autoscale_on(True) self.draw_plot() self.ax.set_autoscale_on(False) self.xlim_changed(None) elif event.key == 'y': self.scaley = not self.scaley print('Autoscaling y axis is {}'.format( 'enabled' if self.scaley else 'disabled')) self.draw_plot() elif event.key == '?': print(""" Interactive MSID plot keys: a: autoscale for full data range in x and y m: toggle plotting of min/max values p: pan at cursor x y: toggle autoscaling of y-axis z: zoom at cursor x ?: print help """) def xlim_changed(self, event): x0, x1 = self.ax.get_xlim() self.tstart = Time(num2epoch(x0), format='unix').unix self.tstop = Time(num2epoch(x1), format='unix').unix stat = get_stat(self.tstart, self.tstop, self.npix) if (self.tstart < self.msid.tstart or self.tstop > self.msid.tstop or stat != self.msid.stat): dt = self.tstop - self.tstart self.tstart -= dt / 4 self.tstop += dt / 4 self.msid = self.fetch.Msid(self.msidname, self.tstart, self.tstop, stat=stat) self.draw_plot() def draw_plot(self): msid = self.msid for _ in range(len(self.ax.lines)): self.ax.lines.pop() # Force manual y scaling scaley = self.scaley if scaley: ymin = None ymax = None ok = ((msid.times >= self.tstart) & (msid.times <= self.tstop)) try: self.ax.callbacks.disconnect(self.xlim_callback) except AttributeError: pass if self.plot_mins and hasattr(self.msid, 'mins'): plot_cxctime(msid.times, msid.mins, self.fmt_minmax, ax=self.ax, fig=self.fig, **self.plot_kwargs) plot_cxctime(msid.times, msid.maxes, self.fmt_minmax, ax=self.ax, fig=self.fig, **self.plot_kwargs) if scaley: ymin =
np.min(msid.mins[ok])
numpy.min
import base64 import json import os import os.path as osp import numpy as np import PIL.Image from labelme import utils # labelme版本是3.16.7,版本不同可能会报错 # 视情况使用json文件对应的labelme版本 if __name__ == '__main__': count = os.listdir("./before") # 原来json的文件夹位置 jpgs_path = "jpg" #生成jpg的文件夹位置 pngs_path = "png" #生成png的文件夹位置 classes = ["_background_","kongpao"] #按自定义标注的分类修改 # 按1,2,3... 而不是1,10,100读取 count.sort(key=lambda x: int(x.split('.')[0])) if not os.path.exists(jpgs_path): os.mkdir(jpgs_path) if not os.path.exists(pngs_path): os.mkdir(pngs_path) for i in range(0, len(count)): path = os.path.join("./before", count[i]) #按实际情况修改 if os.path.isfile(path) and path.endswith('json'): data = json.load(open(path)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(path), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value # label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0]+'.jpg')) new = np.zeros([
np.shape(img)
numpy.shape
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.compiler.tests import xla_test from tensorflow.python.platform import googletest from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn class IpuXlaConvTest(xla_test.XLATestCase): def testReductionMeanDim12(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float32, [2, 7, 7, 32], name="a") output = math_ops.reduce_mean(pa, axis=[1, 2]) fd = {pa: np.ones([2, 7, 7, 32])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([2, 32])) def testReductionMeanDim03(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float32, [2, 7, 7, 32], name="a") output = math_ops.reduce_mean(pa, axis=[0, 3]) fd = {pa: np.ones([2, 7, 7, 32])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([7, 7])) def testReductionMeanDim13(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float32, [2, 7, 7, 32], name="a") output = math_ops.reduce_mean(pa, axis=[1, 3]) fd = {pa: np.ones([2, 7, 7, 32])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([2, 7])) def testReductionMeanDim23(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float32, [2, 7, 7, 32], name="a") output = math_ops.reduce_mean(pa, axis=[2, 3]) fd = {pa: np.ones([2, 7, 7, 32])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([2, 7])) def testAvgPoolSamePaddingWithStridesF32(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float32, [1, 1, 10, 10], name="a") output = nn.avg_pool(pa, ksize=[1, 1, 5, 5], strides=[1, 1, 2, 2], data_format='NCHW', padding='SAME', name="avg") fd = {pa: np.ones([1, 1, 10, 10])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([1, 1, 5, 5])) def testAvgPoolSamePaddingWithStridesF16(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float16, [1, 1, 10, 10], name="a") output = nn.avg_pool(pa, ksize=[1, 1, 5, 5], strides=[1, 1, 2, 2], data_format='NCHW', padding='SAME') fd = {pa: np.ones([1, 1, 10, 10])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([1, 1, 5, 5])) def testAvgPoolValidPaddingWithStridesF32(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float32, [1, 1, 10, 10], name="a") output = nn.avg_pool(pa, ksize=[1, 1, 5, 5], strides=[1, 1, 2, 2], data_format='NCHW', padding='VALID') fd = {pa: np.ones([1, 1, 10, 10])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([1, 1, 3, 3])) def testAvgPoolValidPaddingWithStridesF16(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float16, [1, 1, 10, 10], name="a") output = nn.avg_pool(pa, ksize=[1, 1, 5, 5], strides=[1, 1, 2, 2], data_format='NCHW', padding='VALID') fd = {pa: np.ones([1, 1, 10, 10])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([1, 1, 3, 3])) def testMaxPoolSamePaddingWithStridesF32(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float32, [1, 1, 10, 10], name="a") output = nn.max_pool(pa, ksize=[1, 1, 5, 5], strides=[1, 1, 2, 2], data_format='NCHW', padding='SAME', name="max") fd = {pa: np.ones([1, 1, 10, 10])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([1, 1, 5, 5])) def testMaxPoolValidPaddingWithStridesF32(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float32, [1, 1, 10, 10], name="a") output = nn.max_pool(pa, ksize=[1, 1, 5, 5], strides=[1, 1, 2, 2], data_format='NCHW', padding='VALID', name="max") fd = {pa: np.ones([1, 1, 10, 10])} result = sess.run(output, fd) self.assertAllClose(result, np.ones([1, 1, 3, 3])) def testAvgPoolSamePaddingWithStridesF32Dim12(self): with self.session() as sess: with ops.device("/device:IPU:0"): pa = array_ops.placeholder(np.float32, [1, 10, 10, 1], name="a") output = nn.avg_pool(pa, ksize=[1, 5, 5, 1], strides=[1, 2, 2, 1], data_format='NHWC', padding='SAME', name="avg") fd = {pa:
np.ones([1, 10, 10, 1])
numpy.ones
from collections import OrderedDict import george from george import kernels import lightgbm as lgb import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import pickle from astropy.cosmology import FlatLambdaCDM from scipy.optimize import minimize from sklearn.model_selection import StratifiedKFold from scipy.signal import find_peaks from scipy.special import erf import tqdm from settings import settings # Parameters of the dataset num_passbands = 6 pad = 100 start_mjd = 59580 - pad end_mjd = 60675 + pad # Define class labels, galactic vs extragalactic label and weights classes = [6, 15, 16, 42, 52, 53, 62, 64, 65, 67, 88, 90, 92, 95, 99] class_weights = {6: 1, 15: 2, 16: 1, 42: 1, 52: 1, 53: 1, 62: 1, 64: 2, 65: 1, 67: 1, 88: 1, 90: 1, 92: 1, 95: 1, 99: 2} class_galactic = {6: True, 15: False, 16: True, 42: False, 52: False, 53: True, 62: False, 64: False, 65: True, 67: False, 88: False, 90: False, 92: True, 95: False} # Reverse engineered cosmology used in sims cosmo = FlatLambdaCDM(H0=70, Om0=0.3, Tcmb0=2.725) def find_time_to_fractions(fluxes, fractions, forward=True): """Find the time for a lightcurve to decline to a specific fraction of maximum light. fractions should be a decreasing list of the fractions of maximum light that will be found (eg: [0.8, 0.5, 0.2]). """ max_time = np.argmax(fluxes) max_flux = fluxes[max_time] result = np.ones(len(fractions)) * 99999 frac_idx = 0 # Start at maximum light, and move along the spectrum. Whenever we cross # one threshold, we add it to the list and keep going. If we hit the end of # the array without crossing the threshold, we return a large number for # that time. offset = 0 while True: offset += 1 if forward: new_time = max_time + offset if new_time >= fluxes.shape: break else: new_time = max_time - offset if new_time < 0: break test_flux = fluxes[new_time] while test_flux < max_flux * fractions[frac_idx]: result[frac_idx] = offset frac_idx += 1 if frac_idx == len(fractions): break if frac_idx == len(fractions): break return result def multi_weighted_logloss(y_true, y_preds): """ @author olivier https://www.kaggle.com/ogrellier multi logloss for PLAsTiCC challenge """ if y_preds.shape[1] != len(classes): # No prediction for 99, pretend that it doesn't exist. use_classes = classes[:-1] else: use_classes = classes y_p = y_preds # Trasform y_true in dummies y_ohe = pd.get_dummies(y_true) # Normalize rows and limit y_preds to 1e-15, 1-1e-15 y_p = np.clip(a=y_p, a_min=1e-15, a_max=1 - 1e-15) # Transform to log y_p_log = np.log(y_p) y_log_ones = np.sum(y_ohe.values * y_p_log, axis=0) # Get the number of positives for each class nb_pos = y_ohe.sum(axis=0).values.astype(float) # Weight average and divide by the number of positives class_arr = np.array([class_weights[i] for i in use_classes]) y_w = y_log_ones * class_arr / nb_pos loss = - np.sum(y_w) / np.sum(class_arr) return loss def lgb_multi_weighted_logloss(y_true, y_preds): """Wrapper around multi_weighted_logloss that works with lgbm""" y_p = y_preds.reshape(y_true.shape[0], len(classes) - 1, order='F') loss = multi_weighted_logloss(y_true, y_p) return 'wloss', loss, False def do_predictions_flatprob(object_ids, features, classifiers): pred = 0 for classifier in classifiers: pred += ( classifier.predict_proba( features, num_iteration=classifier.best_iteration_) ) / len(classifiers) # Add in flat prediction for class 99. This prediction depends on whether # the object is galactic or extragalactic. gal_frac_99 = 0.04 # Weights without 99 included. weight_gal = sum([class_weights[class_id] for class_id, is_gal in class_galactic.items() if is_gal]) weight_extgal = sum([class_weights[class_id] for class_id, is_gal in class_galactic.items() if not is_gal]) guess_99_gal = gal_frac_99 * class_weights[99] / weight_gal guess_99_extgal = (1 - gal_frac_99) * class_weights[99] / weight_extgal is_gals = features['hostgal_photoz'] == 0. pred_99 = np.array([guess_99_gal if is_gal else guess_99_extgal for is_gal in is_gals]) stack_pred = np.hstack([pred, pred_99[:, None]]) # Normalize stack_pred = stack_pred / np.sum(stack_pred, axis=1)[:, None] # Build a pandas dataframe with the result df = pd.DataFrame(index=object_ids, data=stack_pred, columns=['class_%d' % i for i in classes]) return df def do_predictions(object_ids, features, classifiers, gal_outlier_score=0.25, extgal_outlier_score=1.4): print("OLD!!! DON'T USE!") is_gal = features['hostgal_photoz'] == 0. base_class_99_scores = np.zeros((len(features), 1)) base_class_99_scores[is_gal] = gal_outlier_score base_class_99_scores[~is_gal] = extgal_outlier_score pred = 0 for classifier in classifiers: # Get base scores raw_scores = classifier.predict_proba( features, raw_score=True, num_iteration=classifier.best_iteration_ ) max_scores = np.max(raw_scores, axis=1)[:, None] class_99_scores = np.clip(base_class_99_scores, None, max_scores) # Add in class 99 scores. scores = np.hstack([raw_scores, class_99_scores]) # Turn the scores into a prediction iter_pred = np.exp(scores) / np.sum(np.exp(scores), axis=1)[:, None] pred += iter_pred / len(classifiers) # Build a pandas dataframe with the result df = pd.DataFrame(index=object_ids, data=pred, columns=['class_%d' % i for i in classes]) return df def do_scores(object_ids, features, classifiers): scores = [] for classifier in classifiers: scores.append(classifier.predict_proba( features, raw_score=True, num_iteration=classifier.best_iteration_)) scores = np.array(scores) return scores def convert_scores(meta, scores, gal_outlier_score=0.4, extgal_outlier_score=1.4): is_gal = meta['hostgal_photoz'] == 0. base_class_99_scores = np.zeros((len(meta), 1)) base_class_99_scores[is_gal] = gal_outlier_score base_class_99_scores[~is_gal] = extgal_outlier_score pred = 0 for iter_scores in scores: # Iterate over each classifier's scores if there were more than one. # Get base scores # max_scores = np.max(iter_scores, axis=1)[:, None] max_scores = np.percentile(iter_scores, 100 * 12.5/13, axis=1)[:, None] class_99_scores = np.clip(base_class_99_scores, None, max_scores) # Add in class 99 scores. iter_full_scores = np.hstack([iter_scores, class_99_scores]) # Turn the scores into a prediction iter_pred = np.exp(iter_full_scores) / np.sum(np.exp(iter_full_scores), axis=1)[:, None] pred += iter_pred / len(scores) print("Mean gal 99: %.5f" % np.mean(pred[is_gal, -1])) print("Mean ext 99: %.5f" % np.mean(pred[~is_gal, -1])) # Build a pandas dataframe with the result df = pd.DataFrame(index=meta['object_id'], data=pred, columns=['class_%d' % i for i in classes]) return df def convert_scores_2(meta, scores, s2n, gal_outlier_score=-2., extgal_outlier_score=-0.8): is_gal = meta['hostgal_photoz'] == 0. base_class_99_scores = np.zeros((len(meta), 1)) base_class_99_scores[is_gal] = gal_outlier_score base_class_99_scores[~is_gal] = extgal_outlier_score base_class_99_scores[:, 0] += 1.5*np.log10(s2n) pred = 0 for iter_scores in scores: # Iterate over each classifier's scores if there were more than one. # Get base scores # max_scores = np.max(iter_scores, axis=1)[:, None] max_scores = np.percentile(iter_scores, 100 * 12.5/13, axis=1)[:, None] class_99_scores = np.clip(base_class_99_scores, None, max_scores) # Add in class 99 scores. iter_full_scores = np.hstack([iter_scores, class_99_scores]) # Turn the scores into a prediction iter_pred = np.exp(iter_full_scores) / np.sum(np.exp(iter_full_scores), axis=1)[:, None] pred += iter_pred / len(scores) print("Mean gal 99: %.5f" % np.mean(pred[is_gal, -1])) print("Mean ext 99: %.5f" % np.mean(pred[~is_gal, -1])) # Build a pandas dataframe with the result df = pd.DataFrame(index=meta['object_id'], data=pred, columns=['class_%d' % i for i in classes]) return df def fit_classifier(train_x, train_y, train_weights, eval_x=None, eval_y=None, eval_weights=None, **kwargs): lgb_params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 14, 'metric': 'multi_logloss', 'learning_rate': 0.05, # 'bagging_fraction': .75, # 'bagging_freq': 5, 'colsample_bytree': .5, 'reg_alpha': 0., 'reg_lambda': 0., 'min_split_gain': 10., 'min_child_weight': 2000., 'n_estimators': 5000, 'silent': -1, 'verbose': -1, 'max_depth': 7, 'num_leaves': 50, } lgb_params.update(kwargs) fit_params = { 'verbose': 100, 'sample_weight': train_weights, } if eval_x is not None: fit_params['eval_set'] = [(eval_x, eval_y)] fit_params['eval_metric'] = lgb_multi_weighted_logloss fit_params['early_stopping_rounds'] = 50 fit_params['eval_sample_weight'] = [eval_weights] classifier = lgb.LGBMClassifier(**lgb_params) classifier.fit(train_x, train_y, **fit_params) return classifier class Dataset(object): def __init__(self): """Class to represent part of the PLAsTiCC dataset. This class can load either the training or validation data, can produce features and then can create outputs. The features can also be loaded from a file to avoid having to recalculate them every time. Not everything has to be loaded at once, but some functions might not work if that is the case. I haven't put in the effort to make everything safe with regards to random calls, so if something breaks you probably just need to load the data that it needs. """ self.flux_data = None self.meta_data = None self.features = None self.dataset_name = None # Update this whenever the feature calculation code is updated. self._features_version = settings['FEATURES_VERSION'] # Update this whenever the augmentation code is updated. self._augment_version = settings['AUGMENT_VERSION'] def load_training_data(self): """Load the training dataset.""" self.flux_data = pd.read_csv(settings['RAW_TRAINING_PATH']) self.meta_data = pd.read_csv(settings["RAW_TRAINING_METADATA_PATH"]) # Label folds y = self.meta_data['target'] folds = StratifiedKFold(n_splits=5, shuffle=True, random_state=1) kfold_indices = -1*np.ones(len(y)) for idx, (fold_train, fold_val) in enumerate(folds.split(y, y)): kfold_indices[fold_val] = idx self.meta_data['fold'] = kfold_indices self.dataset_name = 'train' def load_test_data(self): """Load the test metadata.""" self.meta_data = pd.read_csv(settings["RAW_TEST_METADATA_PATH"]) self.dataset_name = 'test' def load_chunk(self, chunk_idx, load_flux_data=True): """Load a chunk from the test dataset. I previously split up the dataset into smaller files that can be read into memory. By default, the flux data is loaded which takes a long time. That can be turned off if desired. """ path = settings["SPLIT_TEST_PATH_FORMAT"] % chunk_idx if load_flux_data: self.flux_data = pd.read_hdf(path, 'df') self.meta_data = pd.read_hdf(path, 'meta') self.dataset_name = 'test_%04d' % chunk_idx def load_augment(self, num_augments, base_name='train'): """Load an augmented dataset.""" dataset_name = '%s_augment_v%d_%d' % ( base_name, self._augment_version, num_augments ) path = '%s/%s.h5' % (settings['AUGMENT_DIR'], dataset_name) self.flux_data = pd.read_hdf(path, 'df') self.meta_data = pd.read_hdf(path, 'meta') self.dataset_name = dataset_name @property def features_path(self): """Path to the features file for this dataset""" features_path = settings['FEATURES_PATH_FORMAT'] % ( self._features_version, self.dataset_name) return features_path def load_simple_features(self): """Load the features for a dataset and postprocess them. This assumes that the features have already been created. """ self.raw_features = pd.read_hdf(self.features_path) rf = self.raw_features # Keys that we want to use in the prediction. use_keys = [ 'hostgal_photoz', 'hostgal_photoz_err', 'count', ] features = rf[use_keys].copy() features['length_scale'] = rf['gp_fit_1'] features['max_flux'] = rf['max_flux_3'] features['max_flux_ratio_r'] = ( (rf['max_flux_5'] - rf['max_flux_3']) / (np.abs(rf['max_flux_5']) + np.abs(rf['max_flux_3'])) ) features['max_flux_ratio_b'] = ( (rf['max_flux_3'] - rf['max_flux_0']) / (np.abs(rf['max_flux_3']) + np.abs(rf['max_flux_0'])) ) features['min_flux'] = rf['min_flux_3'] features['min_flux_ratio_r'] = ( (rf['min_flux_5'] - rf['min_flux_3']) / (np.abs(rf['min_flux_5']) + np.abs(rf['min_flux_3'])) ) features['min_flux_ratio_b'] = ( (rf['min_flux_3'] - rf['min_flux_0']) / (np.abs(rf['min_flux_3']) + np.abs(rf['min_flux_0'])) ) features['max_dt'] = rf['max_dt_5'] - rf['max_dt_0'] features['positive_width'] = rf['positive_width_3'] features['negative_width'] = rf['negative_width_3'] features['frac_time_fwd_0.8'] = rf['frac_time_fwd_0.8_3'] features['frac_time_fwd_0.5'] = rf['frac_time_fwd_0.5_3'] features['frac_time_fwd_0.2'] = rf['frac_time_fwd_0.2_3'] features['ratio_r_time_fwd_0.8'] = ( rf['frac_time_fwd_0.8_3'] / rf['frac_time_fwd_0.8_5']) features['ratio_b_time_fwd_0.8'] = ( rf['frac_time_fwd_0.8_3'] / rf['frac_time_fwd_0.8_0']) features['ratio_r_time_fwd_0.5'] = ( rf['frac_time_fwd_0.5_3'] / rf['frac_time_fwd_0.5_5']) features['ratio_b_time_fwd_0.5'] = ( rf['frac_time_fwd_0.5_3'] / rf['frac_time_fwd_0.5_0']) features['ratio_r_time_fwd_0.2'] = ( rf['frac_time_fwd_0.2_3'] / rf['frac_time_fwd_0.2_5']) features['ratio_b_time_fwd_0.5'] = ( rf['frac_time_fwd_0.2_3'] / rf['frac_time_fwd_0.2_0']) features['frac_time_bwd_0.8'] = rf['frac_time_bwd_0.8_3'] features['frac_time_bwd_0.5'] = rf['frac_time_bwd_0.5_3'] features['frac_time_bwd_0.2'] = rf['frac_time_bwd_0.2_3'] features['ratio_r_time_bwd_0.8'] = ( rf['frac_time_bwd_0.8_3'] / rf['frac_time_bwd_0.8_5']) features['ratio_b_time_bwd_0.8'] = ( rf['frac_time_bwd_0.8_3'] / rf['frac_time_bwd_0.8_0']) features['ratio_r_time_bwd_0.5'] = ( rf['frac_time_bwd_0.5_3'] / rf['frac_time_bwd_0.5_5']) features['ratio_b_time_bwd_0.5'] = ( rf['frac_time_bwd_0.5_3'] / rf['frac_time_bwd_0.5_0']) features['ratio_r_time_bwd_0.2'] = ( rf['frac_time_bwd_0.2_3'] / rf['frac_time_bwd_0.2_5']) features['ratio_b_time_bwd_0.5'] = ( rf['frac_time_bwd_0.2_3'] / rf['frac_time_bwd_0.2_0']) features['frac_s2n_5'] = rf['count_s2n_5'] / rf['count'] features['frac_s2n_-5'] = rf['count_s2n_-5'] / rf['count'] features['frac_background'] = rf['frac_background'] features['time_width_s2n_5'] = rf['time_width_s2n_5'] features['count_max_center'] = rf['count_max_center'] features['count_max_rise_20'] = rf['count_max_rise_20'] features['count_max_rise_50'] = rf['count_max_rise_50'] features['count_max_rise_100'] = rf['count_max_rise_100'] features['count_max_fall_20'] = rf['count_max_fall_20'] features['count_max_fall_50'] = rf['count_max_fall_50'] features['count_max_fall_100'] = rf['count_max_fall_100'] features['num_peaks'] = np.nanmedian([ rf['peaks_pos_0_count'], rf['peaks_pos_1_count'], rf['peaks_pos_2_count'], rf['peaks_pos_3_count'], rf['peaks_pos_4_count'], rf['peaks_pos_5_count'] ], axis=0) features['peak_frac_2'] = np.nanmedian([ rf['peaks_pos_0_frac_2'], rf['peaks_pos_1_frac_2'], rf['peaks_pos_2_frac_2'], rf['peaks_pos_3_frac_2'], rf['peaks_pos_4_frac_2'], rf['peaks_pos_5_frac_2'] ], axis=0) features['peak_frac_3'] = np.nanmedian([ rf['peaks_pos_0_frac_3'], rf['peaks_pos_1_frac_3'], rf['peaks_pos_2_frac_3'], rf['peaks_pos_3_frac_3'], rf['peaks_pos_4_frac_3'], rf['peaks_pos_5_frac_3'] ], axis=0) features['total_s2n'] = ( rf['total_s2n_0'] + rf['total_s2n_1'] + rf['total_s2n_2'] + rf['total_s2n_3'] + rf['total_s2n_4'] + rf['total_s2n_5'] ) self.features = features def load_features(self): """Load the features for a dataset and postprocess them. This assumes that the features have already been created. """ self.raw_features = pd.read_hdf(self.features_path) # Drop keys that we don't want to use in the prediction drop_keys = [ 'object_id', 'hostgal_specz', # 'hostgal_photoz', # 'distmod', 'ra', 'decl', 'gal_l', 'gal_b', 'mwebv', 'ddf', 'max_time', # 'hostgal_photoz', ] features = self.raw_features for key in drop_keys: try: features = features.drop(key, 1) except KeyError: # Key doesn't exist in this version. Ignore it. pass self.features = features def _get_gp_data(self, object_meta, object_data, subtract_median=True): times = [] fluxes = [] bands = [] flux_errs = [] # The zeropoints were arbitrarily set from the first image. Pick the # 20th percentile of all observations in each channel as a new # zeropoint. This has good performance when there are supernova-like # bursts in the image, even if they are quite wide. # UPDATE: when picking the 20th percentile, observations with just # noise get really messed up. Revert back to the median for now and see # if that helps. It doesn't really matter if supernovae go slightly # negative... for passband in range(num_passbands): band_data = object_data[object_data['passband'] == passband] if len(band_data) == 0: # No observations in this band continue # ref_flux = np.percentile(band_data['flux'], 20) ref_flux = np.median(band_data['flux']) for idx, row in band_data.iterrows(): times.append(row['mjd'] - start_mjd) flux = row['flux'] if subtract_median: flux = flux - ref_flux fluxes.append(flux) bands.append(passband) flux_errs.append(row['flux_err']) times = np.array(times) bands = np.array(bands) fluxes = np.array(fluxes) flux_errs = np.array(flux_errs) # Guess the scale based off of the highest signal-to-noise point. # Sometimes the edge bands are pure noise and can have large # insignificant points. scale = fluxes[np.argmax(fluxes / flux_errs)] gp_data = { 'meta': object_meta, 'times': times, 'bands': bands, 'scale': scale, 'fluxes': fluxes, 'flux_errs': flux_errs, } return gp_data def get_gp_data(self, idx, target=None, verbose=False, subtract_median=True): if target is not None: target_data = self.meta_data[self.meta_data['target'] == target] object_meta = target_data.iloc[idx] else: object_meta = self.meta_data.iloc[idx] if verbose: print(object_meta) object_id = object_meta['object_id'] object_data = self.flux_data[self.flux_data['object_id'] == object_id] return self._get_gp_data(object_meta, object_data) def fit_gp(self, idx=None, target=None, object_meta=None, object_data=None, verbose=False, guess_length_scale=20., fix_scale=False): if idx is not None: # idx was specified, pull from the internal data gp_data = self.get_gp_data(idx, target, verbose) else: # The meta data and flux data can also be directly specified. gp_data = self._get_gp_data(object_meta, object_data) # GP kernel. We use a 2-dimensional Matern kernel to model the # transient. The kernel amplitude is fixed to a fraction of the maximum # value in the data, and the kernel width in the wavelength direction # is also fixed. We fit for the kernel width in the time direction as # different transients evolve on very different time scales. kernel = ((0.2*gp_data['scale'])**2 * kernels.Matern32Kernel([guess_length_scale**2, 5**2], ndim=2)) # print(kernel.get_parameter_names()) if fix_scale: kernel.freeze_parameter('k1:log_constant') kernel.freeze_parameter('k2:metric:log_M_1_1') gp = george.GP(kernel) if verbose: print(kernel.get_parameter_dict()) x_data = np.vstack([gp_data['times'], gp_data['bands']]).T gp.compute(x_data, gp_data['flux_errs']) fluxes = gp_data['fluxes'] def neg_ln_like(p): gp.set_parameter_vector(p) return -gp.log_likelihood(fluxes) def grad_neg_ln_like(p): gp.set_parameter_vector(p) return -gp.grad_log_likelihood(fluxes) # print(np.exp(gp.get_parameter_vector())) bounds = [(0, np.log(1000**2))] if not fix_scale: bounds = [(-30, 30)] + bounds fit_result = minimize( neg_ln_like, gp.get_parameter_vector(), jac=grad_neg_ln_like, # bounds=[(-30, 30), (0, 10), (0, 5)], # bounds=[(0, 10), (0, 5)], bounds=bounds, # bounds=[(-30, 30), (0, np.log(1000**2))], # options={'ftol': 1e-4} ) if not fit_result.success: print("Fit failed for %d!" % idx) # print(-gp.log_likelihood(fluxes)) # print(np.exp(fit_result.x)) gp.set_parameter_vector(fit_result.x) if verbose: print(fit_result) print(kernel.get_parameter_dict()) pred = [] pred_times = np.arange(end_mjd - start_mjd + 1) for band in range(6): pred_bands = np.ones(len(pred_times)) * band pred_x_data = np.vstack([pred_times, pred_bands]).T # pred, pred_var = gp.predict(fluxes, pred_x_data, return_var=True) # band_pred, pred_var = gp.predict(fluxes, pred_x_data, # return_var=True) # band_pred = gp.predict(fluxes, pred_x_data, return_var=False) band_pred = gp.predict(fluxes, pred_x_data, return_cov=False) pred.append(band_pred) pred = np.array(pred) # Add results of the GP fit to the gp_data dictionary. gp_data['pred_times'] = pred_times gp_data['pred'] = pred gp_data['fit_parameters'] = fit_result.x return gp_data def plot_gp(self, *args, **kwargs): result = self.fit_gp(*args, **kwargs) plt.figure() for band in range(num_passbands): cut = result['bands'] == band color = 'C%d' % band plt.errorbar(result['times'][cut], result['fluxes'][cut], result['flux_errs'][cut], fmt='o', c=color) plt.plot(result['pred_times'], result['pred'][band], c=color, label=band) plt.legend() def plot_gp_interactive(self): """Make an interactive plot of the GP output. This requires the ipywidgets package to be set up, and has only been tested in jupyter-lab. """ from ipywidgets import interact, IntSlider, Dropdown, fixed targets = np.unique(self.meta_data['target']) idx_widget = IntSlider(min=0, max=1) target_widget = Dropdown(options=targets, index=0) def update_idx_range(*args): idx_widget.max = np.sum(self.meta_data['target'] == target_widget.value) - 1 target_widget.observe(update_idx_range, 'value') update_idx_range() interact(self.plot_gp, idx=idx_widget, target=target_widget, object_meta=fixed(None), object_data=fixed(None)) def extract_features(self, *args, **kwargs): """Extract features from a target""" features = OrderedDict() # Fit the GP and produce an output model gp_data = self.fit_gp(*args, **kwargs) times = gp_data['times'] fluxes = gp_data['fluxes'] flux_errs = gp_data['flux_errs'] bands = gp_data['bands'] s2ns = fluxes / flux_errs pred = gp_data['pred'] meta = gp_data['meta'] # Add the object id. This shouldn't be used for training a model, but # is necessary to identify which row is which when we split things up. features['object_id'] = meta['object_id'] # Features from the meta data features['hostgal_specz'] = meta['hostgal_specz'] features['hostgal_photoz'] = meta['hostgal_photoz'] features['hostgal_photoz_err'] = meta['hostgal_photoz_err'] features['ra'] = meta['ra'] features['decl'] = meta['decl'] features['gal_l'] = meta['gal_l'] features['gal_b'] = meta['gal_b'] features['distmod'] = meta['distmod'] features['mwebv'] = meta['mwebv'] features['ddf'] = meta['ddf'] # Count how many observations there are features['count'] = len(fluxes) # Features from GP fit parameters for i, fit_parameter in enumerate(gp_data['fit_parameters']): features['gp_fit_%d' % i] = fit_parameter # Maximum fluxes and times. max_times = np.argmax(pred, axis=1) med_max_time = np.median(max_times) max_dts = max_times - med_max_time max_fluxes = np.array([pred[band, time] for band, time in enumerate(max_times)]) features['max_time'] = med_max_time for band, (max_flux, max_dt) in enumerate(zip(max_fluxes, max_dts)): features['max_flux_%d' % band] = max_flux features['max_dt_%d' % band] = max_dt # Minimum fluxes. min_fluxes = np.min(pred, axis=1) for band, min_flux in enumerate(min_fluxes): features['min_flux_%d' % band] = min_flux # Calculate the positive and negative integrals of the lightcurve, # normalized to the respective peak fluxes. This gives a measure of the # "width" of the lightcurve, even for non-bursty objects. positive_widths = np.sum(np.clip(pred, 0, None), axis=1) / max_fluxes negative_widths = np.sum(np.clip(pred, None, 0), axis=1) / min_fluxes for band in range(num_passbands): features['positive_width_%d' % band] = positive_widths[band] features['negative_width_%d' % band] = negative_widths[band] # Find times to fractions of the peak amplitude fractions = [0.8, 0.5, 0.2] for band in range(num_passbands): forward_times = find_time_to_fractions(pred[band], fractions) backward_times = find_time_to_fractions(pred[band], fractions, forward=False) for fraction, forward_time, backward_time in \ zip(fractions, forward_times, backward_times): features['frac_time_fwd_%.1f_%d' % (fraction, band)] = \ forward_time features['frac_time_bwd_%.1f_%d' % (fraction, band)] = \ backward_time # Count the number of data points with significant positive/negative # fluxes thresholds = [-20, -10, -5, -3, 3, 5, 10, 20] for threshold in thresholds: if threshold < 0: count = np.sum(s2ns < threshold) else: count = np.sum(s2ns > threshold) features['count_s2n_%d' % threshold] = count # Count the fraction of data points that are "background", i.e. less # than a 3 sigma detection of something. features['frac_background'] = np.sum(np.abs(s2ns) < 3) / len(s2ns) # Sum up the total signal-to-noise in each band for band in range(6): mask = bands == band band_fluxes = fluxes[mask] band_flux_errs = flux_errs[mask] total_band_s2n = np.sqrt(np.sum((band_fluxes / band_flux_errs)**2)) features['total_s2n_%d' % band] = total_band_s2n # Count the time delay between the first and last significant fluxes thresholds = [5, 10, 20] for threshold in thresholds: significant_times = times[
np.abs(s2ns)
numpy.abs
""" Created on 25/05/2015 @author: vgil """ from optparse import OptionParser from anmichelpers.parsers.pronmd import ProdyNMDParser import numpy from anmichelpers.writers.pronmd import ProdyNMDWriter def fill_with_zeros(evecs, from_res, to_res, width): """ Pads an eigenvector array with 0s . from_res starts from 1 """ left_padding = [0.]*((from_res-1)*3) right_padding = [0.]*((width-to_res)*3) new_evecs = [] for evec in evecs: new_evec = [] new_evec.extend(left_padding) new_evec.extend(evec) new_evec.extend(right_padding) new_evecs.append(new_evec) return
numpy.array(new_evecs)
numpy.array
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="view-in-github" colab_type="text" # <a href="https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/pyro_intro.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # + [markdown] id="BGe00SEV5KTl" # [Pyro](https://pyro.ai/) is a probabilistic programming system built on top of PyTorch. It supports posterior inference based on MCMC and stochastic variational inference; discrete latent variables can be marginalized out exactly using dynamic programmming. # + colab={"base_uri": "https://localhost:8080/"} id="P_uM0GuF5ZWr" outputId="4cafba49-31b3-4fcb-d5e5-a151912d2224" # !pip install pyro-ppl # + id="3SBZ5Pmr5F0N" import matplotlib.pyplot as plt import numpy as np import torch import pyro import pyro.infer import pyro.optim import pyro.distributions as dist from torch.distributions import constraints from pyro.infer import MCMC, NUTS, Predictive, HMC from pyro.infer import SVI, Trace_ELBO from pyro.infer import EmpiricalMarginal from pyro.distributions import Beta, Binomial, HalfCauchy, Normal, Pareto, Uniform from pyro.distributions.util import scalar_like from pyro.infer.mcmc.util import initialize_model, summary from pyro.util import ignore_experimental_warning pyro.set_rng_seed(101) # + [markdown] id="FE8OW3Zd50Nn" # # Example: inferring mean of 1d Gaussian . # # We use the simple example from the [Pyro intro](https://pyro.ai/examples/intro_part_ii.html#A-Simple-Example). The goal is to infer the weight $\theta$ of an object, given noisy measurements $y$. We assume the following model: # $$ # \begin{align} # \theta &\sim N(\mu=8.5, \tau^2=1.0)\\ # y \sim &N(\theta, \sigma^2=0.75^2) # \end{align} # $$ # # Where $\mu=8.5$ is the initial guess. # # # + id="hYMFFGAMV0fW" def model(hparams, data=None): prior_mean, prior_sd, obs_sd = hparams theta = pyro.sample("theta", dist.Normal(prior_mean, prior_sd)) y = pyro.sample("y", dist.Normal(theta, obs_sd), obs=data) return y # + [markdown] id="4511pkTB9GYC" # ## Exact inference # # By Bayes rule for Gaussians, we know that the exact posterior, # given a single observation $y=9.5$, is given by # # # $$ # \begin{align} # \theta|y &\sim N(m, s^s) \\ # m &=\frac{\sigma^2 \mu + \tau^2 y}{\sigma^2 + \tau^2} # = \frac{0.75^2 \times 8.5 + 1 \times 9.5}{0.75^2 + 1^2} # = 9.14 \\ # s^2 &= \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2} # = \frac{0.75^2 \times 1^2}{0.75^2 + 1^2}= 0.6^2 # \end{align} # $$ # + colab={"base_uri": "https://localhost:8080/"} id="qNZ4aNNj9M-2" outputId="2d2ee5cf-2dc1-49da-93fa-574577b812f8" mu = 8.5; tau = 1.0; sigma = 0.75; hparams = (mu, tau, sigma) y = 9.5 m = (sigma**2 * mu + tau**2 * y)/(sigma**2 + tau**2) # posterior mean s2 = (sigma**2 * tau**2)/(sigma**2 + tau**2) # posterior variance s = np.sqrt(s2) print(m) print(s) # + [markdown] id="tFIu6O-H8YFM" # ## Ancestral sampling # + colab={"base_uri": "https://localhost:8080/"} id="6dMY6oxJ8bEZ" outputId="3bb6bb9a-1793-4f92-aa9c-bbc4998064e0" def model2(hparams, data=None): prior_mean, prior_sd, obs_sd = hparams theta = pyro.sample("theta", dist.Normal(prior_mean, prior_sd)) y = pyro.sample("y", dist.Normal(theta, obs_sd), obs=data) return theta, y for i in range(5): theta, y = model2(hparams) print([theta, y]) # + [markdown] id="r6ZtMB_cGhz4" # ## MCMC # # See [the documentation](http://docs.pyro.ai/en/stable/mcmc.html) # # + colab={"base_uri": "https://localhost:8080/"} id="WQIhsROHH4uG" outputId="1ec3aa8e-dbdb-4f97-e626-21cb3f69c6e5" nuts_kernel = NUTS(model) obs = torch.tensor(y) mcmc = MCMC(nuts_kernel, num_samples=1000, warmup_steps=50) mcmc.run(hparams, obs) print(type(mcmc)) # + colab={"base_uri": "https://localhost:8080/"} id="K46LfO1rR-ty" outputId="ad6f1d3e-d8a3-4341-8fc7-93aec9c403a0" samples = mcmc.get_samples() print(type(samples)) print(samples.keys()) print(samples['theta'].shape) # + colab={"base_uri": "https://localhost:8080/"} id="E1go0L6Szh-f" outputId="1b34fe04-bc90-4366-ae88-630093ba5f40" mcmc.diagnostics() # + colab={"base_uri": "https://localhost:8080/"} id="MPA4YwjaSrkp" outputId="5abaf70f-ac02-4165-be54-5610bb473471" thetas = samples['theta'].numpy() print(
np.mean(thetas)
numpy.mean
import scipy.signal import numpy as np import matplotlib.pyplot as plt from pylab import * import numpy.ma as ma #Applies a boxcar smooth of length nsmooth to the vector x #returns the smoothed vector def smooth(x, nsmooth): #interpolates over masked values if (sum(x==0)> 0)&(sum(x)>0): bpix = x==0.0 gpix = ~bpix gx = x[gpix] interp = np.interp(bpix.nonzero()[0], gpix.nonzero()[0], gx) x[bpix] = np.float32(interp) return scipy.signal.medfilt(x, nsmooth) #median filters the data def diagnostics_plot(D, M, indmax, outlier_array, f_opt, profile): indmax = np.argmax(outlier_array) #finds biggest outlier indmax = unravel_index(indmax, outlier_array.shape) #converts it from flat to tuple plt.subplot(221) plt.title("Raw Data") plt.imshow(D,vmin=0, vmax=50) plt.scatter(x = indmax[1], y = indmax[0], color='w', marker='x') m = cm.ScalarMappable(cmap= cm.jet) m.set_array(D) plt.colorbar(m) plt.subplot(222) plt.title("Outliers") plt.imshow(M*outlier_array, vmin=0, vmax=20) plt.scatter(x = indmax[1], y = indmax[0], color='w', marker='x') m.set_array(M*outlier_array) plt.colorbar(m) plt.subplot(222) plt.subplot(223) plt.title("Cut in spatial direction") plt.axvline(x = indmax[0], color="red") plt.plot(D[:, indmax[1]], label = "data") plt.plot((f_opt*profile)[:, indmax[1]], color="orange", label= "model") plt.legend() plt.xlabel('Wavelength [um]') plt.ylabel('Counts') plt.subplot(224) plt.title("Outliers: cut in spatial direction") plt.plot(outlier_array[:,indmax[1]]) plt.axvline(x = indmax[0], color="red") plt.ylabel('Residuals') plt.xlabel('Wavelength [um]') plt.tight_layout() plt.show() plt.clf() """Function to optimally extract a spectrum: Inputs: D: data array (already background subtracted) err: error array (in addition to photon noise; e.g. error due to background subtraction) f_std: box-extracted spectrum (from step 4 of Horne) var_std: variance of standard spectrum (also from step 4) M: array masking bad pixels; 0 is bad and 1 is good nsmooth: number of pixels to smooth over to estimate the spatial profile (7 works well) sig_cut: cutoff sigma for flagging outliers (10.0 works well) diagnostics: boolean flag specifying whether to make diagnostic plots outputs: f_opt, var_opt: optimally extracted spectrum and its variance""" def optextr(D, err, f_std, var_std, M, nsmooth, sig_cut, diagnostics): #STEPS 5-8: estimating spatial profile and removing cosmic rays f_opt =
np.copy(f_std)
numpy.copy
import logging from typing import Union from UQpy.inference.information_criteria import AIC from UQpy.inference.information_criteria.baseclass.InformationCriterion import InformationCriterion from beartype import beartype from UQpy.inference.MLE import MLE import numpy as np class InformationModelSelection: # Authors: <NAME>, <NAME> # Last Modified: 12/19 by <NAME> @beartype def __init__( self, parameter_estimators: list[MLE], criterion: InformationCriterion = AIC(), n_optimizations: list[int] = None, initial_parameters: list[np.ndarray] = None ): """ Perform model selection using information theoretic criteria. Supported criteria are :class:`.BIC`, :class:`.AIC` (default), :class:`.AICc`. This class leverages the :class:`.MLE` class for maximum likelihood estimation, thus inputs to :class:`.MLE` can also be provided to :class:`InformationModelSelection`, as lists of length equal to the number of models. :param parameter_estimators: A list containing a maximum-likelihood estimator (:class:`.MLE`) for each one of the models to be compared. :param criterion: Criterion to be used (:class:`.AIC`, :class:`.BIC`, :class:`.AICc)`. Default is :class:`.AIC` :param initial_parameters: Initial guess(es) for optimization, :class:`numpy.ndarray` of shape :code:`(nstarts, n_parameters)` or :code:`(n_parameters, )`, where :code:`nstarts` is the number of times the optimizer will be called. Alternatively, the user can provide input `n_optimizations` to randomly sample initial guess(es). The identified MLE is the one that yields the maximum log likelihood over all calls of the optimizer. """ self.candidate_models = [mle.inference_model for mle in parameter_estimators] self.models_number = len(parameter_estimators) self.criterion: InformationCriterion = criterion self.logger = logging.getLogger(__name__) self.n_optimizations = n_optimizations self.initial_parameters= initial_parameters self.parameter_estimators: list = parameter_estimators """:class:`.MLE` results for each model (contains e.g. fitted parameters)""" # Initialize the outputs self.criterion_values: list = [None, ] * self.models_number """Value of the criterion for all models.""" self.penalty_terms: list = [None, ] * self.models_number """Value of the penalty term for all models. Data fit term is then criterion_value - penalty_term.""" self.probabilities: list = [None, ] * self.models_number """Value of the model probabilities, computed as .. math:: P(M_i|d) = \dfrac{\exp(-\Delta_i/2)}{\sum_i \exp(-\Delta_i/2)} where :math:`\Delta_i = criterion_i - min_i(criterion)`""" # Run the model selection procedure if (self.n_optimizations is not None) or (self.initial_parameters is not None): self.run(self.n_optimizations, self.initial_parameters) def run(self, n_optimizations: list[int], initial_parameters: list[np.ndarray]=None): """ Run the model selection procedure, i.e. compute criterion value for all models. This function calls the :meth:`run` method of the :class:`.MLE` object for each model to compute the maximum log-likelihood, then computes the criterion value and probability for each model. If `data` are given when creating the :class:`.MLE` object, this method is called automatically when the object is created. :param n_optimizations: Number of iterations that the optimization is run, starting at random initial guesses. It is only used if `initial_parameters` is not provided. Default is :math:`1`. The random initial guesses are sampled uniformly between :math:`0` and :math:`1`, or uniformly between user-defined bounds if an input bounds is provided as a keyword argument to the `optimizer` input parameter. :param initial_parameters: Initial guess(es) for optimization, :class:`numpy.ndarray` of shape :code:`(nstarts, n_parameters)` or :code:`(n_parameters, )`, where :code:`nstarts` is the number of times the optimizer will be called. Alternatively, the user can provide input `n_optimizations` to randomly sample initial guess(es). The identified MLE is the one that yields the maximum log likelihood over all calls of the optimizer. """ if (n_optimizations is not None and (len(n_optimizations) != len(self.parameter_estimators))) or \ (initial_parameters is not None and len(initial_parameters) != len(self.parameter_estimators)): raise ValueError("The length of n_optimizations and initial_parameters should be equal to the number of " "parameter estimators") # Loop over all the models for i, parameter_estimator in enumerate(self.parameter_estimators): # First evaluate ML estimate for all models, do several iterations if demanded parameters = None if initial_parameters is not None: parameters = initial_parameters[i] optimizations = 0 if n_optimizations is not None: optimizations = n_optimizations[i] parameter_estimator.run(n_optimizations=optimizations, initial_parameters=parameters) # Then minimize the criterion self.criterion_values[i], self.penalty_terms[i] = \ self.criterion.minimize_criterion(data=parameter_estimator.data, parameter_estimator=parameter_estimator, return_penalty=True) # Compute probabilities from criterion values self.probabilities = self._compute_probabilities(self.criterion_values) def sort_models(self): """ Sort models in descending order of model probability (increasing order of `criterion` value). This function sorts - in place - the attribute lists :py:attr:`.candidate_models`, :py:attr:`.ml_estimators`, :py:attr:`criterion_values`, :py:attr:`penalty_terms` and :py:attr:`probabilities` so that they are sorted from most probable to least probable model. It is a stand-alone function that is provided to help the user to easily visualize which model is the best. No inputs/outputs. """ sort_idx = list(np.argsort(np.array(self.criterion_values))) self.candidate_models = [self.candidate_models[i] for i in sort_idx] self.parameter_estimators = [self.parameter_estimators[i] for i in sort_idx] self.criterion_values = [self.criterion_values[i] for i in sort_idx] self.penalty_terms = [self.penalty_terms[i] for i in sort_idx] self.probabilities = [self.probabilities[i] for i in sort_idx] @staticmethod def _compute_probabilities(criterion_values): delta = np.array(criterion_values) - min(criterion_values) prob = np.exp(-delta / 2) return prob /
np.sum(prob)
numpy.sum
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib as mpl from matplotlib import colors from collections import OrderedDict from tkinter import filedialog, Tk from scipy.optimize import curve_fit import netCDF4 # Some plot properties to make them a bit nicer. plt.ion() plt.rcParams['font.family'] = 'serif' fontsize = 12 ms = 2 lw = 5 tableau20 = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120), (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150), (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148), (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199), (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)] # Scale the tableau20 RGBs to numbers between (0,1) since this is how mpl accepts them. for i in range(len(tableau20)): r, g, b = tableau20[i] tableau20[i] = (r / 255., g / 255., b / 255.) class Readout: """ Class object that holds a figure of a grid of plots from the netCDF output of 3DLIM. Example usage in controlling script lim_readout.py. """ def __init__(self, netcdf_file=None, dat_file=None, lim_file=None, figsize=(15,10), grid_shape=(3,3)): """ netcdf_file: Path to the 3DLIM netCDF file. If None is entered then it will use 'colprobe-test-m2.nc' as a default, which is convienent for testing. dat_file: Path to the casename.dat file. This has things like the duration of the run in it. lim_file: Path to the casename.lim file. This has the forces in it, among many, many other things. figsize: Size of the figure to hold all the plots. The default of (15, 10) is a good size. grid_shape: The shape of the grid of plots. Change if you want to add more plots or whatever. """ # Create the master figure to hold all the plots. self.master_fig = plt.figure(figsize=figsize) # If no netCDF file given, just use this test one and the dat file. if netcdf_file is None: self.netcdf = netCDF4.Dataset('colprobe-test-m2.nc') with open('colprobe-test-m2.dat') as f: self.dat = f.read() else: self.netcdf = netCDF4.Dataset(netcdf_file) # Get the .dat file info as well, if supplied, otherwise it's None. if dat_file: with open(dat_file) as f: self.dat = f.read() else: self.dat = None # Same with .lim file. if lim_file: with open(lim_file) as f: self.lim = f.read() else: self.lim = None # Create figure with array of empty plots. for plot_num in range(1, grid_shape[0] * grid_shape[1] + 1): self.master_fig.add_subplot(grid_shape[0], grid_shape[1], plot_num) def print_readout(self): """ Output a table with relevant info from the netcdf file. """ # Let's just put everything we want into a dict so printing is easy. output = OrderedDict() output['3DLIM Version'] = self.netcdf['VERSION'][:].data.tostring().decode() output['Title'] = self.netcdf['TITLE'][:].data.tostring().decode() output['File'] = self.netcdf['JOB'][:].data.tostring().decode().split(' ')[0] #output['Particles'] = format(self.netcdf['MAXIMP'][:].data, ',') output['Conn. Length'] = self.netcdf['CL'][:].data if self.dat: # Get the total CPU time used. try: time = int(self.dat.split('TOTAL CPU TIME USED (S)')[1].split('\n')[0]) output['Time'] = str(time) + 's (' + format(time/3600, '.2f') + ' hours)' except: pass try: num = int(self.dat.split('NO OF IMPURITY IONS TO FOLLOW')[1].split('\n')[0]) output['No. Imp. Ions'] = "{:,}".format(num) except: pass # Find longest output for formatting. pad = 0 for val in output.values(): if len(str(val)) > pad: pad = len(str(val)) # Printing commands. num_stars = 2 + 15 + 2 + pad print("\n" + "*"*num_stars) for key, val in output.items(): print("* {:15}{:<{pad}} *".format(key, val, pad=pad)) print("*"*num_stars) # Also while we're here put the figure title as the filename. self.master_fig.subplots_adjust(top=0.60) self.master_fig.suptitle(output['Title'], fontsize=26) def centerline(self, plot_num, mult_runs=False, log=False, fit_exp=False): """ Plot the ITF and OTF deposition along the centerlines. plot_num: Location in grid to place this plot. I.e. if the grid_shape is (3,3), then enter a number between 0-8, where the locations are labelled left to right. """ #The deposition array. #dep_arr = np.array(self.netcdf.variables['NERODS3'][0] * -1) dep_arr = self.get_dep_array(mult_runs) # Location of each P bin, and its width. Currently they all have the same width, # but it may end up such that there are custom widths so we leave it like this. ps = np.array(self.netcdf.variables['PS'][:].data) pwids = np.array(self.netcdf.variables['PWIDS'][:].data) # Array of poloidal locations (i.e. the center of each P bin). pol_locs = ps - pwids/2.0 # Drop last row since it's garbage. dep_arr = dep_arr[:-1, :] pol_locs = pol_locs[:-1] # Distance cell centers along surface (i.e. the radial locations). rad_locs = np.array(self.netcdf.variables['ODOUTS'][:].data) # Get the centerline index (or closest to it). cline = np.abs(pol_locs).min() # Index the deposition array at the centerline for plotting. itf_x = rad_locs[np.where(rad_locs > 0.0)[0]] itf_y = dep_arr[np.where(pol_locs == cline)[0], np.where(rad_locs > 0.0)[0]] otf_x = rad_locs[np.where(rad_locs < 0.0)[0]] * -1 otf_y = dep_arr[np.where(pol_locs == cline)[0], np.where(rad_locs < 0.0)[0]] # Plotting commands. ax = self.master_fig.axes[plot_num] if log: ax.semilogy(itf_x*100, itf_y, '-', label='ITF', ms=ms, color=tableau20[6]) ax.semilogy(otf_x*100, otf_y, '-', label='OTF', ms=ms, color=tableau20[8]) else: ax.plot(itf_x*100, itf_y, '-', label='ITF', ms=ms, color=tableau20[6]) ax.plot(otf_x*100, otf_y, '-', label='OTF', ms=ms, color=tableau20[8]) ax.legend(fontsize=fontsize) ax.set_xlabel('Distance along probe (cm)', fontsize=fontsize) ax.set_ylabel('Deposition (arbitrary units)', fontsize=fontsize) ax.set_xlim([0, 10]) ax.set_ylim([0,None]) # Option to perform an exponential fit to the data. if fit_exp: def exp_fit(x, a, b): return a * np.exp(-b * x) popt_itf, pcov_itf = curve_fit(exp_fit, itf_x, itf_y, maxfev=5000) popt_otf, pcov_otf = curve_fit(exp_fit, otf_x, otf_y, maxfev=5000) fitx = np.linspace(0, 0.1, 100) fity_itf = exp_fit(fitx, *popt_itf) fity_otf = exp_fit(fitx, *popt_otf) if log: ax.semilogy(fitx*100, fity_itf, '--', ms=ms, color=tableau20[6]) ax.semilogy(fitx*100, fity_otf, '--', ms=ms, color=tableau20[8]) else: ax.plot(fitx*100, fity_itf, '--', ms=ms, color=tableau20[6]) ax.plot(fitx*100, fity_otf, '--', ms=ms, color=tableau20[8]) print("Lambdas") print(" ITF = {:.2f}".format(1/popt_itf[1]*100)) print(" OTF = {:.2f}".format(1/popt_otf[1]*100)) #print("Max ITF/OTF: {:.2f}".format(itf_y.max()/otf_y.max())) print("Total ITF/OTF: {:.2f}".format(itf_y.sum()/otf_y.sum())) return {'itf_x':itf_x, 'itf_y':itf_y, 'otf_x':otf_x, 'otf_y':otf_y} def deposition_contour(self, plot_num, side, probe_width=0.015, rad_cutoff=0.1, mult_runs=False): """ Plot the 2D tungsten distribution across the face. plot_num: Location in grid to place this plot. I.e. if the grid_shape is (3,3), then enter a number between 0-8, where the locations are labelled left to right. side: Either 'ITF' or 'OTF'. probe_width: The half-width of the collector probe (the variable CPCO). A = 0.015, B = 0.005, C = 0.0025 rad_cutoff: Only plot data from the tip down to rad_cutoff. Useful if we want to compare to LAMS since those scans only go down a certain length of the probe. *** To-do *** - Instead of entering the width, pull out CPCO(?) from the netcdf file. Need to figure out the points being deposited outside the expected probe width first though. """ #The deposition array. #dep_arr = np.array(self.netcdf.variables['NERODS3'][0] * -1) dep_arr = self.get_dep_array(mult_runs) # Location of each P bin, and its width. Currently they all have the same width, # but it may end up such that there are custom widths so we leave it like this. ps = np.array(self.netcdf.variables['PS'][:].data) pwids = np.array(self.netcdf.variables['PWIDS'][:].data) # Array of poloidal locations (i.e. the center of each P bin). pol_locs = ps - pwids/2.0 # Drop last row since it's garbage. dep_arr = dep_arr[:-1, :] pol_locs = pol_locs[:-1] # Distance cell centers along surface (i.e. the radial locations). rad_locs = np.array(self.netcdf.variables['ODOUTS'][:].data) # Remove data beyond rad_cutoff. idx = np.where(np.abs(rad_locs)<rad_cutoff)[0] rad_locs = rad_locs[idx] dep_arr = dep_arr[:, idx] # Get only positive values of rad_locs for ITF... idx = np.where(rad_locs > 0.0)[0] X_itf, Y_itf = np.meshgrid(rad_locs[idx], pol_locs) Z_itf = dep_arr[:, idx] # ... negative for OTF. idx = np.where(rad_locs < 0.0)[0] X_otf, Y_otf = np.meshgrid(np.abs(rad_locs[idx][::-1]), pol_locs) Z_otf = dep_arr[:, idx][:, ::-1] # Make the levels for the contour plot out of whichever side has the max deposition. if Z_itf.max() > Z_otf.max(): levels = np.linspace(0, Z_itf.max(), 15) else: levels = np.linspace(0, Z_otf.max(), 15) # Plotting commands. if side == 'ITF': X = X_itf; Y = Y_itf; Z = Z_itf else: X = X_otf; Y = Y_otf; Z = Z_otf ax = self.master_fig.axes[plot_num] ax.contourf(X*100, Y*100, Z, levels=levels, cmap='Reds') ax.set_xlabel('Distance along probe (cm)', fontsize=fontsize) ax.set_ylabel('Z location (cm)', fontsize=fontsize) ax.set_ylim([-probe_width*100, probe_width*100]) props = dict(facecolor='white') ax.text(0.75, 0.85, side, bbox=props, fontsize=fontsize*1.5, transform=ax.transAxes) # Print out the total amount collected. #print("Total W Deposited ({:}): {:.2f}".format(side, Z.sum())) def velocity_contour_pol(self, pol_slice=0): """ Plot the 2D distribution of the (tungsten? plasma?) velocity at a poloidal slice. pol_slice: The poloidal coordinate to get a velocity plot in (R, B) space. """ pass def velocity_contour_par(self, par_slice=0): """ Plot the 2D distribution of the (tungsten? plasma?) velocity at a parallel (to B) slice. par_slice: The parallel coordinate to get a velocity plot in (R, P) space. """ pass def te_plot(self): """ Plot the input Te (which is at the midplane?). """ pass def ne_plot(self): """ Plot the input ne (which is at the midplane?). """ pass def te_contour(self, plot_num): """ Plot the 2D background electron plasma temperature. plot_num: Location in grid to place this plot. I.e. if the grid_shape is (3,3), then enter a number between 0-8, where the locations are labelled left to right. """ # Get the connection length to restrict the plot between the two absorbing surfaces. cl = float(self.netcdf['CL'][:].data) # Same with the location of the plasma center (the top of the box). ca = float(self.netcdf['CA'][:].data) # Get the X and Y grid data. x = self.netcdf.variables['XOUTS'][:].data y = self.netcdf.variables['YOUTS'][:].data # 2D grid of the temperature data. Z = self.netcdf.variables['CTEMBS'][:].data # Trim the zeros from the edges of the x and y arrays, and the associated # data points as well. This is done to stop this data from messing up # the contours in the contour plot. xkeep_min = np.nonzero(x)[0].min() xkeep_max = np.nonzero(x)[0].max() ykeep_min = np.nonzero(y)[0].min() ykeep_max = np.nonzero(y)[0].max() x = x[xkeep_min:xkeep_max] y = y[ykeep_min:ykeep_max] Z = Z[ykeep_min:ykeep_max, xkeep_min:xkeep_max] # Furthermore, trim the data off that is beyond CL. ykeep_cl = np.where(np.abs(y) < cl)[0] y = y[ykeep_cl] Z = Z[ykeep_cl, :] # Replace zeros in Z with just the smallest density value. Again to # stop all these zeros from messing up the contour levels. try: Zmin = np.partition(np.unique(Z), 1)[1] Z = np.clip(Z, Zmin, None) except: pass # Create grid for plotting. Note we swap definitions for x and y since # we want the x-axis in the plot to be the parallel direction (it just # looks better that way). Y, X = np.meshgrid(x, y) # Plotting commands. ax = self.master_fig.axes[plot_num] cont = ax.contourf(X, Y, Z, cmap='magma', levels=10) ax.set_xlim([-cl, cl]) #ax.set_ylim([None, ca]) ax.set_ylim([None, 0.01]) # Contour weird near edge. ax.set_xlabel('Parallel (m)', fontsize=fontsize) ax.set_ylabel('Radial (m)', fontsize=fontsize) cbar = self.master_fig.colorbar(cont, ax=ax) cbar.set_label('Background Te (eV)') def ne_contour(self, plot_num): """ Plot the 2D background plasma density. plot_num: Location in grid to place this plot. I.e. if the grid_shape is (3,3), then enter a number between 0-8, where the locations are labelled left to right. """ # Get the connection length to restrict the plot between the two absorbing surfaces. cl = float(self.netcdf['CL'][:].data) # Same with the location of the plasma center (the top of the box) ca = float(self.netcdf['CA'][:].data) # Get the X and Y grid data. x = self.netcdf.variables['XOUTS'][:].data y = self.netcdf.variables['YOUTS'][:].data # 2D grid of the temperature data. Z = self.netcdf.variables['CRNBS'][:].data # Trim the zeros from the edges of the x and y arrays, and the associated # data points as well. This is done to stop this data from messing up # the contours in the contour plot. xkeep_min = np.nonzero(x)[0].min() xkeep_max = np.nonzero(x)[0].max() ykeep_min = np.nonzero(y)[0].min() ykeep_max = np.nonzero(y)[0].max() x = x[xkeep_min:xkeep_max] y = y[ykeep_min:ykeep_max] Z = Z[ykeep_min:ykeep_max, xkeep_min:xkeep_max] # Furthermore, trim the data off that is beyond CL. ykeep_cl = np.where(np.abs(y) < cl)[0] y = y[ykeep_cl] Z = Z[ykeep_cl, :] # Replace zeros in Z with just the smallest density value. Again to # stop all these zeros from messing up the contour levels. Zmin = np.partition(np.unique(Z), 1)[1] Z = np.clip(Z, Zmin, None) # Create grid for plotting. Note we swap definitions for x and y since # we want the x-axis in the plot to be the parallel direction (it just # looks better that way). Y, X = np.meshgrid(x, y) # Plotting commands. ax = self.master_fig.axes[plot_num] # Create our own levels since the automatic ones are bad. lev_exp = np.arange(np.floor(np.log10(Z.min())-1), np.ceil(np.log10(Z.max())+1), 0.25) levs = np.power(10, lev_exp) cont = ax.contourf(X, Y, Z, cmap='magma', levels=levs, norm=colors.LogNorm()) ax.set_xlim([-cl, cl]) #ax.set_ylim([None, ca]) ax.set_ylim([None, 0.01]) # Contour weird near edge. ax.set_xlabel('Parallel (m)', fontsize=fontsize) ax.set_ylabel('Radial (m)', fontsize=fontsize) cbar = self.master_fig.colorbar(cont, ax=ax) cbar.set_label('Background ne (m-3)') def avg_imp_vely(self, plot_num): """ SVYBAR: Average impurity velocity at X coordinates in QXS. plot_num: Location in grid to place this plot. I.e. if the grid_shape is (3,3), then enter a number between 0-8, where the locations are labelled left to right. """ # Grab the data. x = self.netcdf.variables['QXS'][:].data y = self.netcdf.variables['SVYBAR'][:].data # Plotting commands. ax = self.master_fig.axes[plot_num] ax.plot(x, y, '.', ms=ms, color=tableau20[6]) ax.set_xlabel('Radial coordinates (m)', fontsize=fontsize) ax.set_ylabel('Average Y imp. vel. (m/s)', fontsize=fontsize) def avg_pol_profiles(self, plot_num, probe_width=0.015, rad_cutoff=0.5): """ Plot the average poloidal profiles for each side. Mainly to see if deposition peaks on the edges. plot_num: Location in grid to place this plot. I.e. if the grid_shape is (3,3), then enter a number between 0-8, where the locations are labelled left to right. probe_width: The half-width of the collector probe (the variable CPCO). A = 0.015, B = 0.005, C = 0.0025 rad_cutoff: Only plot data from the tip down to rad_cutoff. Useful if we want to compare to LAMS since those scans only go down a certain length of the probe. """ # Code copied from above function, deposition_contour. See for comments. dep_arr = np.array(self.netcdf.variables['NERODS3'][0] * -1) ps = np.array(self.netcdf.variables['PS'][:].data) pwids = np.array(self.netcdf.variables['PWIDS'][:].data) pol_locs = ps - pwids/2.0 dep_arr = dep_arr[:-1, :] pol_locs = pol_locs[:-1] rad_locs = np.array(self.netcdf.variables['ODOUTS'][:].data) idx = np.where(np.abs(rad_locs)<rad_cutoff)[0] rad_locs = rad_locs[idx] dep_arr = dep_arr[:, idx] idx = np.where(rad_locs > 0.0)[0] X_itf, Y_itf = np.meshgrid(rad_locs[idx], pol_locs) Z_itf = dep_arr[:, idx] idx =
np.where(rad_locs < 0.0)
numpy.where
#!/usr/bin/env python """Utility functions and classes for creating mixture models""" ######################################################################## # File: mixture_model.py # # Author: <NAME> # History: 1/7/19 Created ######################################################################## import os import sys import numpy as np import pandas as pd from argparse import ArgumentParser from sklearn.mixture import GaussianMixture from timeit import default_timer as timer from py3helpers.utils import load_json, create_dot_dict from scipy.stats import norm from sklearn.neighbors import KernelDensity from signalalign.hiddenMarkovModel import HmmModel, parse_assignment_file, parse_alignment_file from signalalign.utils.sequenceTools import get_motif_kmers, find_modification_index_and_character import tempfile import matplotlib.pyplot as plt import matplotlib.mlab as mlab from sklearn.datasets.samples_generator import make_blobs def parse_args(): parser = ArgumentParser(description=__doc__) # required arguments parser.add_argument('--config', '-c', required=True, action='store', dest='config', type=str, default=None, help="Path to config file") args = parser.parse_args() return args def get_nanopore_gauss_mixture(event_means, n_models): """Create a mixture model from an array of event means and fit some number of models to the data :param event_means: array of event means :param n_models: number of gaussians to fit """ model = GaussianMixture(n_models).fit(event_means) assert model.converged_, "Model has not converged" return model def find_best_1d_gaussian_fit(x, max_n, aic=True): """ :param x: input data :param max_n: max number of gaussians to try to fit to data :param aic: boolean option to use aic or bic. if false use bic as selection criterion :return: """ N = np.arange(1, max_n) models = [None for i in range(len(N))] for i in range(len(N)): models[i] = GaussianMixture(N[i]).fit(x) # use AIC or BIC for model selection if aic: aic = [m.aic(x) for m in models] m_best = models[np.argmin(aic)] else: bic = [m.bic(x) for m in models] m_best = models[np.argmin(bic)] return m_best def get_mus_and_sigmas_1d(gaussian_model): """Get the mean and stdv of each normal curve given a GaussianMixture model :param gaussian_model: an already converged GaussianMixture model :return: list of tuples with tup[0] = mu and tup[1] = sigma """ assert gaussian_model.converged_, "Model has not converged" normals = [] for i, mu in enumerate(gaussian_model.means_): assert len(gaussian_model.covariances_[i]) == 1, "This function only works for 1D gaussian mixture models" sigma = np.sqrt(gaussian_model.covariances_[i][0]) # sigma = sigma / gaussian_model.weights_[i] normals.append((mu, sigma)) return normals def closest_to_canonical(mixture_normals, canonical_mu): """Find the normal distribution closet to canonical mu""" min_index = 0 min_distance = 1000 for i in range(len(mixture_normals)): mu = mixture_normals[i][0] distance = abs(mu - canonical_mu) if distance < min_distance: min_index = i min_distance = distance match = mixture_normals.pop(min_index) return match, mixture_normals, min_distance def fit_model_to_kmer_dist(all_assignments, kmer, n_normals=2): """Return a mixture model from the distribution of event means for a given kmer :param all_assignments: master table of assignments (must have fields "k-mer" and "descaled_event_mean" :param kmer: str that must be in the assignments table :param n_normals: number of normal gaussians to fit to distirbution """ samples = all_assignments[all_assignments["kmer"] == kmer]["level_mean"].values.reshape(-1, 1) model = False if len(samples) == 0: print("No alignments found for kmer: {}".format(kmer)) else: model = get_nanopore_gauss_mixture(samples, n_normals) return model def generate_gaussian_mixture_model_for_motifs(model_h, assignments, all_kmer_pars, strand, output_dir, plot=False, name="", target_model=None, show=False): """Generate new hmm model using mixture model of assignment data for each required kmer given the set of motifs :param model_h: HmmModel :param strand: 't' for template or 'c' for complement :param plot: plot model data :param assignments: assignment DataFrame with "strand", "kmer" and "level_mean" :param all_kmer_pars: list of list of [canonical, modified] kmers :param output_dir: path to save figures, models and log file :param name: optional argument for naming the mixture model :param target_model: use for plotting expected distribution for modified kmer """ assert strand in ('t', 'c'), "Strand must be either 'c' or 't'. strand = {}".format(strand) assignments = assignments[assignments["strand"] == strand] canonical_mixture_components_comparison = [] if name is not "": name += "_" output_model_path = os.path.join(output_dir, "{}_{}mixture_model.hmm".format(strand, name)) for kmer_pair in all_kmer_pars: old_kmer = kmer_pair[0] new_kmer = kmer_pair[1] # fit mixture_model = fit_model_to_kmer_dist(assignments, old_kmer, n_normals=2) if mixture_model: mixture_normals = get_mus_and_sigmas_1d(mixture_model) kmer_mean, kmer_sd = model_h.get_event_mean_gaussian_parameters(old_kmer) match, other, distance = closest_to_canonical(mixture_normals, kmer_mean) # set parameters model_h.set_kmer_event_mean(new_kmer, other[0][0][0]) model_h.set_kmer_event_sd(new_kmer, other[0][1][0]) canonical_mixture_components_comparison.append( [old_kmer, kmer_mean, kmer_sd, match[0][0], match[1][0], other[0][0][0], other[0][1][0], distance[0], strand]) print(old_kmer, mixture_normals) if plot: # model_h.plot_kmer_distributions([old_kmer, new_kmer], # alignment_file_data=assignments, # savefig_dir=output_dir, # name=strand) plot_output_dir = output_dir if show: plot_output_dir = None plot_mixture_model_distribution(old_kmer, new_kmer, kmer_mean, kmer_sd, match[0][0], match[1][0], other[0][0][0], other[0][1][0], strand, mixture_model=mixture_model, kmer_assignments=assignments, save_fig_dir=plot_output_dir, target_model=target_model) model_h.normalize(False, False) model_h.write(output_model_path) data = pd.DataFrame(canonical_mixture_components_comparison, columns=["kmer", "canonical_model_mean", "canonical_model_sd", "canonical_mixture_mean", "canonical_mixture_sd", "modified_mixture_mean", "modified_mixture_sd", "distance", "strand"]) data.sort_values("distance", inplace=True, ascending=False) log_file = os.path.join(output_dir, "{}_distances.tsv".format(strand)) data.to_csv(log_file, sep="\t", index=False) return data def get_motif_kmer_pairs(motif_pair, k, alphabet="ATGC"): """Given a motif pair, create a list of all kmers which contain modification """ all_kmer_pars = [] motif_kmers = get_motif_kmers(motif_pair, k, alphabet=alphabet) pos, old_char, new_char = find_modification_index_and_character(motif_pair[0], motif_pair[1]) for new_kmer in motif_kmers: # get original kmer pos = new_kmer.find(new_char) old_kmer = new_kmer[0:pos] + old_char + new_kmer[pos + 1:] all_kmer_pars.append([old_kmer, new_kmer]) return all_kmer_pars def plot_mixture_model_distribution(canonical_kmer, modified_kmer, canonical_model_mean, canonical_model_sd, canonical_mixture_mean, canonical_mixture_sd, modified_mixture_mean, modified_mixture_sd, strand, mixture_model=None, target_model=None, kmer_assignments=None, save_fig_dir=None): """Plot normal distributions from mixture model and compare with original canonical model :param canonical_model_mean: canonical_model_mean :param canonical_model_sd: canonical_model_sd :param canonical_mixture_mean: canonical_mixture_mean :param canonical_mixture_sd: canonical_mixture_sd :param modified_mixture_mean: modified_mixture_mean :param modified_mixture_sd: modified_mixture_sd :param save_fig_dir: optional path to save figure :param strand: template or complement ('t' or 'c') :param canonical_kmer: kmer to plot :param modified_kmer: modified kmer :param target_model: model to compare the mixture to :param mixture_model: an already fit GaussianMixture model :param kmer_assignments: assignments with ("level_mean" and "kmer") named columns of DataFrame """ fig = plt.figure(figsize=(12, 8)) panel1 = plt.axes([0.1, 0.1, .6, .8]) panel1.set_xlabel('pA') panel1.set_ylabel('Density') panel1.grid(color='black', linestyle='-', linewidth=1, alpha=0.5) panel1.set_title("Mixture Model Comparison: {}".format(canonical_kmer)) # original canonical model x =
np.linspace(canonical_model_mean - 4 * canonical_model_sd, canonical_model_mean + 4 * canonical_model_sd, 200)
numpy.linspace
from . import unittest, numpy, shapely20_deprecated import pytest from shapely.errors import ShapelyDeprecationWarning from shapely.geos import lgeos from shapely.geometry import LineString, asLineString, Point, LinearRing class LineStringTestCase(unittest.TestCase): def test_linestring(self): # From coordinate tuples line = LineString(((1.0, 2.0), (3.0, 4.0))) self.assertEqual(len(line.coords), 2) self.assertEqual(line.coords[:], [(1.0, 2.0), (3.0, 4.0)]) # From Points line2 = LineString((Point(1.0, 2.0), Point(3.0, 4.0))) self.assertEqual(len(line2.coords), 2) self.assertEqual(line2.coords[:], [(1.0, 2.0), (3.0, 4.0)]) # From mix of tuples and Points line3 = LineString((Point(1.0, 2.0), (2.0, 3.0), Point(3.0, 4.0))) self.assertEqual(len(line3.coords), 3) self.assertEqual(line3.coords[:], [(1.0, 2.0), (2.0, 3.0), (3.0, 4.0)]) # Bounds self.assertEqual(line.bounds, (1.0, 2.0, 3.0, 4.0)) # Coordinate access self.assertEqual(tuple(line.coords), ((1.0, 2.0), (3.0, 4.0))) self.assertEqual(line.coords[0], (1.0, 2.0)) self.assertEqual(line.coords[1], (3.0, 4.0)) with self.assertRaises(IndexError): line.coords[2] # index out of range # Geo interface self.assertEqual(line.__geo_interface__, {'type': 'LineString', 'coordinates': ((1.0, 2.0), (3.0, 4.0))}) @shapely20_deprecated def test_linestring_mutate(self): line = LineString(((1.0, 2.0), (3.0, 4.0))) # Coordinate modification line.coords = ((-1.0, -1.0), (1.0, 1.0)) self.assertEqual(line.__geo_interface__, {'type': 'LineString', 'coordinates': ((-1.0, -1.0), (1.0, 1.0))}) @shapely20_deprecated def test_linestring_adapter(self): # Adapt a coordinate list to a line string coords = [[5.0, 6.0], [7.0, 8.0]] la = asLineString(coords) self.assertEqual(la.coords[:], [(5.0, 6.0), (7.0, 8.0)]) def test_linestring_empty(self): # Test Non-operability of Null geometry l_null = LineString() self.assertEqual(l_null.wkt, 'GEOMETRYCOLLECTION EMPTY') self.assertEqual(l_null.length, 0.0) @shapely20_deprecated def test_linestring_empty_mutate(self): # Check that we can set coordinates of a null geometry l_null = LineString() l_null.coords = [(0, 0), (1, 1)] self.assertAlmostEqual(l_null.length, 1.4142135623730951) def test_equals_argument_order(self): """ Test equals predicate functions correctly regardless of the order of the inputs. See issue #317. """ coords = ((0, 0), (1, 0), (1, 1), (0, 0)) ls = LineString(coords) lr = LinearRing(coords) self.assertFalse(ls.__eq__(lr)) # previously incorrectly returned True self.assertFalse(lr.__eq__(ls)) self.assertFalse(ls == lr) self.assertFalse(lr == ls) ls_clone = LineString(coords) lr_clone = LinearRing(coords) self.assertTrue(ls.__eq__(ls_clone)) self.assertTrue(lr.__eq__(lr_clone)) self.assertTrue(ls == ls_clone) self.assertTrue(lr == lr_clone) def test_from_linestring(self): line = LineString(((1.0, 2.0), (3.0, 4.0))) copy = LineString(line) self.assertEqual(len(copy.coords), 2) self.assertEqual(copy.coords[:], [(1.0, 2.0), (3.0, 4.0)]) self.assertEqual('LineString', lgeos.GEOSGeomType(copy._geom).decode('ascii')) def test_from_linestring_z(self): coords = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0)] line = LineString(coords) copy = LineString(line) self.assertEqual(len(copy.coords), 2) self.assertEqual(copy.coords[:], coords) self.assertEqual('LineString', lgeos.GEOSGeomType(copy._geom).decode('ascii')) def test_from_linearring(self): coords = [(0.0, 0.0), (1.0, 0.0), (1.0, 1.0), (0.0, 0.0)] ring = LinearRing(coords) copy = LineString(ring) self.assertEqual(len(copy.coords), 4) self.assertEqual(copy.coords[:], coords) self.assertEqual('LineString', lgeos.GEOSGeomType(copy._geom).decode('ascii')) def test_from_single_coordinate(self): """Test for issue #486""" coords = [[-122.185933073564, 37.3629353839073]] with pytest.raises(ValueError): ls = LineString(coords) ls.geom_type # caused segfault before fix @unittest.skipIf(not numpy, 'Numpy required') def test_numpy(self): from numpy import array, asarray from numpy.testing import assert_array_equal # Construct from a numpy array line = LineString(array([[0.0, 0.0], [1.0, 2.0]])) self.assertEqual(len(line.coords), 2) self.assertEqual(line.coords[:], [(0.0, 0.0), (1.0, 2.0)]) line = LineString(((1.0, 2.0), (3.0, 4.0))) la = asarray(line) expected = array([[1.0, 2.0], [3.0, 4.0]]) assert_array_equal(la, expected) # Coordinate sequences can be adapted as well la = asarray(line.coords)
assert_array_equal(la, expected)
numpy.testing.assert_array_equal
import pyximport pyximport.install() from collections import OrderedDict import importlib import logging import math import os from os.path import expanduser, join import pickle as pkl from PIL import Image, ImageDraw from matplotlib import cm import matplotlib.colors as colors from matplotlib.offsetbox import AnnotationBbox, OffsetImage from matplotlib.patches import Patch import matplotlib.pyplot as plt import numpy as np from numpy.linalg import norm from sklearn.cluster import AgglomerativeClustering, KMeans, SpectralClustering from sklearn.decomposition import PCA from sklearn.manifold import TSNE, Isomap from tqdm import tqdm from configuration import CONFIG, datasets from src.MetaSeg.functions.in_out import components_load, probs_gt_load from src.MetaSeg.functions.metrics import entropy from src.MetaSeg.functions.utils import estimate_kernel_density # noinspection DuplicatedCode class Discovery(object): def __init__( self, embeddings_file="embeddings.p", distance_metric="euclid", method="TSNE", embedding_size=2, overwrite_embeddings=False, n_jobs=10, dpi=300, main_plot_args={}, tsne_args={}, save_dir=join(CONFIG.metaseg_io_path, "vis_embeddings"), ): """Loads the embedding files, computes the dimensionality reductions and calls the initilization of the main plot. Args: embeddings_file (str): Path to the file where all data of segments including feature embeddings is saved. distance_metric (str): Distance metric to use for nearest neighbor computation. method (str): Method to use for dimensionality reduction of nearest neighbor embeddings. For plotting the points are always reduced in dimensionality using PCA to 50 dimensions followed by t-SNE to two dimensions. embedding_size (int): Dimensionality of the feature embeddings used for nearest neighbor search. overwrite_embeddings (bool): If True, precomputed nearest neighbor and plotting embeddings from previous runs are overwritten with freshly computed ones. Otherwise precomputed embeddings are used if requested embedding_size is matching. n_jobs (int): Number of processes to use for t-SNE computation. dpi (int): Dots per inch for graphics that are saved to disk. main_plot_args (dict): Keyword arguments for the creation of the main plot. tsne_args (dict): Keyword arguments for the t-SNE algorithm. save_dir (str): Path to the directory where saved images are placed in. """ self.log = logging.getLogger("Discovery") self.embeddings_file = embeddings_file self.distance_metrics = ["euclid", "cos"] self.dm = ( 0 if distance_metric not in self.distance_metrics else self.distance_metrics.index(distance_metric) ) self.dpi = dpi self.save_dir = save_dir os.makedirs(self.save_dir, exist_ok=True) self.cluster_methods = OrderedDict() self.cluster_methods["kmeans"] = {"main": KMeans, "kwargs": {}} self.cluster_methods["spectral"] = {"main": SpectralClustering, "kwargs": {}} self.cluster_methods["agglo"] = { "main": AgglomerativeClustering, "kwargs": {"linkage": "ward"}, } self.methods_with_ncluster_param = ["kmeans", "spectral", "agglo"] self.cme = 0 self.clustering = None self.n_clusters = 25 # colors: self.standard_color = (0, 0, 1, 1) self.current_color = (1, 0, 0, 1) self.nn_color = (1, 0, 1, 1) self.log.info("Loading data...") with open(self.embeddings_file, "rb") as f: self.data = pkl.load(f) self.iou_preds = self.data["iou_pred"] self.gt = np.array(self.data["gt"]).flatten() self.pred = np.array(self.data["pred"]).flatten() self.gi = self.data[ "image_level_index" ] # global indices (on image level and not on component level) self.log.info("Loaded {} segment embeddings.".format(self.pred.shape[0])) self.nearest_neighbors = None if len(self.data["embeddings"]) == 1: self.data["plot_embeddings"] = np.array( [self.data["embeddings"][0][0], self.data["embeddings"][0][1]] ).reshape((1, 2)) self.data["nn_embeddings"] = self.data["plot_embeddings"] else: if ( "nn_embeddings" not in self.data.keys() or overwrite_embeddings or "plot_embeddings" not in self.data.keys() ) and embedding_size < self.data["embeddings"][0].shape[0]: self.log.info("Computing PCA...") n_comp = ( 50 if 50 < min( len(self.data["embeddings"]), self.data["embeddings"][0].shape[0], ) else min( len(self.data["embeddings"]), self.data["embeddings"][0].shape[0], ) ) embeddings = PCA(n_components=n_comp).fit_transform( np.stack(self.data["embeddings"]).reshape( (-1, self.data["embeddings"][0].shape[0]) ) ) rewrite = True else: rewrite = False if "plot_embeddings" not in self.data.keys() or overwrite_embeddings: self.log.info("Computing t-SNE for plotting") self.data["plot_embeddings"] = TSNE( n_components=2, **tsne_args ).fit_transform(embeddings) new_plot_embeddings = True else: new_plot_embeddings = False if ( embedding_size >= self.data["embeddings"][0].shape[0] or embedding_size is None ): self.embeddings = np.stack(self.data["embeddings"]).reshape( (-1, self.data["embeddings"][0].shape[0]) ) self.log.debug( ( "Requested embedding size of {} was greater or equal " "to data dimensionality of {}. " "Data has thus not been reduced in dimensionality." ).format(embedding_size, self.data["embeddings"].shape[1]) ) elif ( self.data["nn_embeddings"].shape[1] == embedding_size if "nn_embeddings" in self.data.keys() else False ) and not overwrite_embeddings: self.embeddings = self.data["nn_embeddings"] self.log.info( ( "Loaded reduced embeddings " "({} dimensions) from precomputed file " + "for nearest neighbor search." ).format(self.embeddings.shape[1]) ) elif rewrite: if method == "TSNE": if ( "plot_embeddings" in self.data.keys() and embedding_size == 2 and new_plot_embeddings ): self.embeddings = self.data["plot_embeddings"] self.log.info( ( "Reused the precomputed manifold for plotting for " "nearest neighbor search." ) ) else: self.log.info( ( "Computing t-SNE of dimension " "{} for nearest neighbor search..." ).format(embedding_size) ) self.embeddings = TSNE( n_components=embedding_size, n_jobs=n_jobs, **tsne_args ).fit_transform(embeddings) else: self.log.info( ( "Computing Isomap of dimension " "{} for nearest neighbor search..." ).format(embedding_size) ) self.embeddings = Isomap( n_components=embedding_size, n_jobs=n_jobs, ).fit_transform(embeddings) self.data["nn_embeddings"] = self.embeddings else: raise ValueError( ( "Please specify a valid combination of arguments.\n" "Loading fails if 'overwrite_embeddings' is False and " "saved 'embedding_size' does not match the requested one." ) ) # Write added data into pickle file if rewrite: with open(self.embeddings_file, "wb") as f: pkl.dump(self.data, f) self.x = self.data["plot_embeddings"][:, 0] self.y = self.data["plot_embeddings"][:, 1] self.label_mapping = dict() for d in np.unique(self.data["dataset"]).flatten(): try: self.label_mapping[d] = getattr( importlib.import_module(datasets[d].module_name), datasets[d].class_name, )( **datasets[d].kwargs, ).label_mapping except AttributeError: self.label_mapping[d] = None train_dat = self.label_mapping[CONFIG.TRAIN_DATASET.name] = getattr( importlib.import_module(CONFIG.TRAIN_DATASET.module_name), CONFIG.TRAIN_DATASET.class_name, )( **CONFIG.TRAIN_DATASET.kwargs, ) self.pred_mapping = train_dat.pred_mapping if CONFIG.TRAIN_DATASET.name not in self.label_mapping: self.label_mapping[CONFIG.TRAIN_DATASET.name] = train_dat.label_mapping self.tnsize = (50, 50) self.fig_nn = None self.fig_main = None self.line_main = None self.im = None self.xybox = None self.ab = None self.basecolors = np.stack( [self.standard_color for _ in range(self.x.shape[0])] ) self.n_neighbors = 49 self.current_pressed_key = None self.plot_main(**main_plot_args) def plot_main(self, **plot_args): """Initializes the main plot. Only 'legend' (bool) is currently supported as keyword argument. """ self.fig_main = plt.figure(num=1) self.fig_main.canvas.set_window_title("Embedding space") ax = self.fig_main.add_subplot(111) ax.set_axis_off() self.line_main = ax.scatter( self.x, self.y, marker="o", color=self.basecolors, zorder=2 ) self.line_main.set_picker(True) if ( ( plot_args["legend"] and all(lm is not None for lm in self.label_mapping.values()) ) if "legend" in plot_args else False ): box = ax.get_position() ax.set_position([box.x0, box.y0, box.width, box.height * 0.8]) legend_elements = [] for d in np.unique(self.data["dataset"]).flatten(): cls = np.unique(self.gt[np.array(self.data["dataset"])[self.gi] == d]) cls = list( { (self.label_mapping[d][cl][0], self.label_mapping[d][cl][1]) for cl in cls } ) names = np.array([i[0] for i in cls]) cols = np.array([i[1] for i in cls]) legend_elements += [ Patch( color=tuple(i / 255.0 for i in cols[i]) + (1.0,), label=names[i] if not names[i][-1].isdigit() else names[i][: names[i].rfind(" ")], ) for i in range(names.shape[0]) ] ax.legend( loc="upper left", handles=legend_elements, ncol=8, bbox_to_anchor=(0, 1.2), ) self.basecolors = self.line_main.get_facecolor() tmp = ( Image.open(self.data["image_path"][self.gi[0]]) .convert("RGB") .crop(self.data["box"][0]) ) tmp.thumbnail(self.tnsize, Image.ANTIALIAS) self.im = OffsetImage(tmp, zoom=2) self.xybox = (50.0, 50.0) self.ab = AnnotationBbox( self.im, (0, 0), xybox=self.xybox, xycoords="data", boxcoords="offset points", pad=0.3, arrowprops=dict(arrowstyle="->"), ) ax.add_artist(self.ab) self.ab.set_visible(False) if plot_args["save_path"] is not None if "save_path" in plot_args else False: plt.savefig( expanduser(plot_args["save_path"]), dpi=300, bbox_inches="tight" ) else: self.fig_main.canvas.mpl_connect("motion_notify_event", self.hover_main) self.fig_main.canvas.mpl_connect("button_press_event", self.click_main) self.fig_main.canvas.mpl_connect("scroll_event", self.scroll) self.fig_main.canvas.mpl_connect("key_press_event", self.key_press) self.fig_main.canvas.mpl_connect("key_release_event", self.key_release) plt.show() def hover_main(self, event): """Action handler for the main plot. This function shows a thumbnail of the underlying image when a scatter point is hovered with the mouse. """ # if the mouse is over the scatter points if self.line_main.contains(event)[0]: # find out the index within the array from the event ind, *_ = self.line_main.contains(event)[1]["ind"] # get the figure size w, h = self.fig_main.get_size_inches() * self.fig_main.dpi ws = (event.x > w / 2.0) * -1 + (event.x <= w / 2.0) hs = (event.y > h / 2.0) * -1 + (event.y <= h / 2.0) # if event occurs in the top or right quadrant of the figure, # change the annotation box position relative to mouse. self.ab.xybox = (self.xybox[0] * ws, self.xybox[1] * hs) # make annotation box visible self.ab.set_visible(True) # place it at the position of the hovered scatter point self.ab.xy = (self.x[ind], self.y[ind]) # set the image corresponding to that point tmp = ( Image.open(self.data["image_path"][self.gi[ind]]) .convert("RGB") .crop(self.data["box"][ind]) ) tmp.thumbnail(self.tnsize, Image.ANTIALIAS) self.im.set_data(tmp) tmp.close() else: # if the mouse is not over a scatter point self.ab.set_visible(False) self.fig_main.canvas.draw_idle() def click_main(self, event): """Action handler for the main plot. This function shows a single or full image or displays nearest neighbors based on the button that has been pressed and which scatter point was pressed. """ if self.line_main.contains(event)[0]: ind, *_ = self.line_main.contains(event)[1]["ind"] if self.current_pressed_key == "t" and event.button == 1: self.store_thumbnail(ind) elif self.current_pressed_key == "control" and event.button == 1: self.show_single_image(ind, save=True) elif self.current_pressed_key == "control" and event.button == 2: self.show_full_image(ind, save=True) elif event.button == 1: # left mouse button self.show_single_image(ind) elif event.button == 2: # middle mouse button self.show_full_image(ind) elif event.button == 3: # right mouse button if not plt.fignum_exists(2): # nearest neighbor figure is not open anymore or has not been # opened yet self.log.info("Loading nearest neighbors...") self.nearest_neighbors = self.get_nearest_neighbors( ind, metric=self.distance_metrics[self.dm] ) thumbnails = [] for neighbor_ind in self.nearest_neighbors: thumbnails.append( Image.open( self.data["image_path"][self.gi[neighbor_ind]] ).crop(self.data["box"][neighbor_ind]) ) columns = math.ceil(math.sqrt(self.n_neighbors)) rows = math.ceil(self.n_neighbors / columns) self.fig_nn = plt.figure(num=2, dpi=self.dpi) self.fig_nn.canvas.set_window_title( "{} nearest neighbors to selected image".format( self.n_neighbors ) ) for p in range(columns * rows): ax = self.fig_nn.add_subplot(rows, columns, p + 1) ax.set_axis_off() if p < len(thumbnails): ax.imshow(np.asarray(thumbnails[p])) self.fig_nn.canvas.mpl_connect("button_press_event", self.click_nn) self.fig_nn.canvas.mpl_connect("key_press_event", self.key_press) self.fig_nn.canvas.mpl_connect( "key_release_event", self.key_release ) self.fig_nn.canvas.mpl_connect("scroll_event", self.scroll) self.fig_nn.show() else: # nearest neighbor figure is already open. Update the figure with # new nearest neighbor self.update_nearest_neighbors(ind) return self.set_color(ind, self.current_color) self.flush_colors() def click_nn(self, event): """Action handler for the nearest neighbor window. When clicking a cropped segment in the nearest neighbor window the same actions are taken as in the click handler for the main plot. """ if event.inaxes in self.fig_nn.axes: ind = self.get_ind_nn(event) if self.current_pressed_key == "t" and event.button == 1: self.store_thumbnail(self.nearest_neighbors[ind]) elif self.current_pressed_key == "control" and event.button == 1: self.show_single_image(self.nearest_neighbors[ind], save=True) elif self.current_pressed_key == "control" and event.button == 2: self.show_full_image(self.nearest_neighbors[ind], save=True) elif event.button == 1: # left mouse button self.show_single_image(self.nearest_neighbors[ind]) elif event.button == 2: # middle mouse button self.show_full_image(self.nearest_neighbors[ind]) elif event.button == 3: # right mouse button self.update_nearest_neighbors(self.nearest_neighbors[ind]) def key_press(self, event): """Performs different actions based on pressed keys.""" self.log.debug("Key '{}' pressed.".format(event.key)) if event.key == "m": self.dm += 1 self.dm = self.dm % len(self.distance_metrics) self.log.info( "Changed distance metric to {}".format(self.distance_metrics[self.dm]) ) elif event.key == "#": self.cme += 1 self.cme = self.cme % len(self.cluster_methods) self.log.info( "Changed clustering method to {}".format( list(self.cluster_methods.keys())[self.cme] ) ) elif event.key == "c": self.log.info( "Started clustering with {}...".format( list(self.cluster_methods.keys())[self.cme] ) ) self.cluster(method=list(self.cluster_methods.keys())[self.cme]) if self.fig_main.axes[0].get_legend() is not None: self.fig_main.axes[0].get_legend().remove() self.basecolors = cm.get_cmap("viridis", (max(self.clustering) + 1))( self.clustering ) self.flush_colors() elif event.key == "g": self.color_gt() elif event.key == "h": self.color_pred() elif event.key == "b": self.set_color(list(range(self.basecolors.shape[0])), self.standard_color) if self.fig_main.axes[0].get_legend() is not None: self.fig_main.axes[0].get_legend().remove() self.flush_colors() elif event.key == "d": self.show_density() self.current_pressed_key = event.key def key_release(self, event): """Clears the variable where the last pressed key is saved.""" self.current_pressed_key = None self.log.debug("Key '{}' released.".format(event.key)) def scroll(self, event): """Increases or decreases number of nearest neighbors when scrolling on the main or nearest neighbor plot.""" if event.button == "up": self.n_neighbors += 1 self.log.info( "Increased number of nearest neighbors to {}".format(self.n_neighbors) ) elif event.button == "down": if self.n_neighbors > 0: self.n_neighbors -= 1 self.log.info( "Decreased number of nearest neighbors to {}".format( self.n_neighbors ) ) def show_single_image(self, ind, save=False): """Displays the full image belonging to a segment. The segment is marked with a red bounding box.""" self.log.info("{} image...".format("Saving" if save else "Loading")) img_box = self.draw_box_on_image(ind) fig_tmp = plt.figure(max(3, max(plt.get_fignums()) + 1), dpi=self.dpi) ax = fig_tmp.add_subplot(111) ax.set_axis_off() ax.imshow(np.asarray(img_box), interpolation="nearest") if save: fig_tmp.subplots_adjust( bottom=0, left=0, right=1, top=1, hspace=0, wspace=0 ) ax.margins(0.05, 0.05) fig_tmp.gca().xaxis.set_major_locator(plt.NullLocator()) fig_tmp.gca().yaxis.set_major_locator(plt.NullLocator()) fig_tmp.savefig( join(self.save_dir, "image_{}.jpg".format(ind)), bbox_inches="tight", pad_inches=0.0, ) self.log.debug( "Saved image to {}".format( join(self.save_dir, "image_{}.jpg".format(ind)) ) ) else: fig_tmp.canvas.set_window_title( "Dataset: {}, Image index: {}".format( self.data["dataset"][self.gi[ind]], self.data["image_index"][self.gi[ind]], ) ) fig_tmp.tight_layout(pad=0.0) fig_tmp.show() def show_full_image(self, ind, save=False): """Displays four panels of the full image belonging to a segment. Top left: Entropy heatmap of prediction. Top right: Predicted IoU of each segment. Bottom left: Source image with ground truth overlay. Bottom right: Predicted semantic segmentation. """ self.log.info("{} detailed image...".format("Saving" if save else "Loading")) box = self.data["box"][ind] image = np.asarray( Image.open(self.data["image_path"][self.gi[ind]]).convert("RGB") ) image_index = self.data["image_index"][self.gi[ind]] iou_pred = self.data["iou_pred"][self.gi[ind]] dataset = self.data["dataset"][self.gi[ind]] model_name = self.data["model_name"][self.gi[ind]] pred, gt, image_path = probs_gt_load( image_index, input_dir=join(CONFIG.metaseg_io_path, "input", model_name, dataset), ) components = components_load( image_index, components_dir=join( CONFIG.metaseg_io_path, "components", model_name, dataset ), ) e = entropy(pred) pred = pred.argmax(2) predc = np.asarray( [ self.pred_mapping[pred[ind_i, ind_j]][1] for ind_i in range(pred.shape[0]) for ind_j in range(pred.shape[1]) ] ).reshape(image.shape) overlay_factor = [1.0, 0.5, 1.0] if self.label_mapping[dataset] is not None: gtc = np.asarray( [ self.label_mapping[dataset][gt[ind_i, ind_j]][1] for ind_i in range(gt.shape[0]) for ind_j in range(gt.shape[1]) ] ).reshape(image.shape) else: gtc = np.zeros_like(image) overlay_factor[1] = 0.0 img_predc, img_gtc, img_entropy = [ Image.fromarray(
np.uint8(arr * overlay_factor[i] + image * (1 - overlay_factor[i]))
numpy.uint8
import pandas as pd import numpy as np import scipy.stats # AUC comparison adapted from # https://github.com/Netflix/vmaf/ def compute_midrank(x): """Computes midranks. Args: x - a 1D numpy array Returns: array of midranks """ J = np.argsort(x) Z = x[J] N = len(x) T = np.zeros(N, dtype=np.float) i = 0 while i < N: j = i while j < N and Z[j] == Z[i]: j += 1 T[i:j] = 0.5*(i + j - 1) i = j T2 = np.empty(N, dtype=np.float) # Note(kazeevn) +1 is due to Python using 0-based indexing # instead of 1-based in the AUC formula in the paper T2[J] = T + 1 return T2 def fastDeLong(predictions_sorted_transposed, label_1_count): """ The fast version of DeLong's method for computing the covariance of unadjusted AUC. Args: predictions_sorted_transposed: a 2D numpy.array[n_classifiers, n_examples] sorted such as the examples with label "1" are first Returns: (AUC value, DeLong covariance) Reference: @article{sun2014fast, title={Fast Implementation of DeLong's Algorithm for Comparing the Areas Under Correlated Receiver Operating Characteristic Curves}, author={<NAME> and <NAME>}, journal={IEEE Signal Processing Letters}, volume={21}, number={11}, pages={1389--1393}, year={2014}, publisher={IEEE} } """ # Short variables are named as they are in the paper m = label_1_count n = predictions_sorted_transposed.shape[1] - m positive_examples = predictions_sorted_transposed[:, :m] negative_examples = predictions_sorted_transposed[:, m:] k = predictions_sorted_transposed.shape[0] tx = np.empty([k, m], dtype=np.float) ty =
np.empty([k, n], dtype=np.float)
numpy.empty
#!/usr/bin/env python3 import logging #import click import numpy as np import argparse import pickle from os.path import abspath, dirname, join from gym.spaces import Tuple from mujoco_py import const, MjViewer from mae_envs.viewer.env_viewer import EnvViewer from mae_envs.wrappers.multi_agent import JoinMultiAgentActions from mujoco_worldgen.util.envs import examine_env, load_env from mujoco_worldgen.util.types import extract_matching_arguments from mujoco_worldgen.util.parse_arguments import parse_arguments from runpy import run_path from mae_envs.modules.util import (uniform_placement, center_placement, uniform_placement_middle) from gym.spaces import Box, MultiDiscrete, Discrete # from simphas.MRL import mpolicy # import gym # from RL_brain_2 import PolicyGradient from RL_brain_3 import PolicyGradientAgent # import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument('--learning_rate', type=float, default=1e-3, help='learning rate') parser.add_argument('--GAMMA', type=float, default=0.999,) parser.add_argument('--episode', type=int, default=350) parser.add_argument('--n_episode', type=int, default=50000) parser.add_argument('--opt', default='SGLD') parser.add_argument('--n_hiders', type=int, default=1) parser.add_argument('--n_seekers', type=int, default=1) parser.add_argument('--n_agents', type=int, default=2) parser.add_argument('--seeds', type=int, default=1) parser.add_argument('--out', default='output') parser.add_argument('--s_speed', type=int, default=1) parser.add_argument('--h_speed', type=int, default=1) parser.add_argument('--fileseeker', default='policy.pkl') parser.add_argument('--filehider', default='policy.pkl') parser.add_argument('--outflag',type=int, default=0) parser.add_argument('--vlag',type=int, default=0) args = parser.parse_args() def edge_punish(x, y, l=0.2, p=3.53, w=0): xx = 0.0 if (np.abs(x - 0) < l) | (np.abs(x - p) < l): xx = xx + 1.0 elif (np.abs(y - 0) < l) | (np.abs(y - p) < l): xx = xx + 1.0 return w * xx * 1.0 '''multiple setting def matdis(n, obs_x): dism = np.zeros((n, n)) for i in range(n): for j in range(n): if i != j: dism[i, j] = np.sqrt(np.sum((obs_x[i, :2] - obs_x[j, :2]) ** 2)) return dism def matmas(n, mas): matm = np.empty([n, n], dtype=bool) for i in range(n): for j in range(n): if i > j: matm[i, j] = mas[i, j] elif i < j: matm[i, j] = mas[i, j - 1] else: matm[i, j] = False return matm def game_rew(n,n_seekers, dism, matm, thr=1.0): return np.sum( (np.sum ( ((dism < np.ones((n,n))*thr) & (matm))[-n_seekers:], axis=0)>0)) ''' env_name = 'mae_envs/envs/mybase.py' display = False n_agents= args.n_agents n_seekers=args.n_seekers n_hiders=args.n_hiders episode=args.episode n_episode=args.n_episode kwargs = {} seed=args.seeds opt=args.opt lr=args.learning_rate out=args.out outflag=args.outflag s_speed=args.s_speed h_speed=args.h_speed sfile=args.fileseeker hfile=args.filehider vlag=args.vlag GAMMA=args.GAMMA kwargs.update({ 'n_agents': n_agents, 'n_seekers': n_seekers, 'n_hiders': n_hiders, 'n_boxes':0, 'cone_angle': 2 * np.pi, #'n_substeps' : 1 }) module = run_path(env_name) make_env = module["make_env"] args_to_pass, args_remaining = extract_matching_arguments(make_env, kwargs) env = make_env(**args_to_pass) env.reset() if display: env = EnvViewer(env) env.env_reset() print(out) def main(sk=None,hd=None,vlag=0): rhlist = [] rslist = [] Seeker=sk Hider=hd if Seeker == None: Seeker = PolicyGradientAgent(lr, [8], n_actions=9, layer1_size=64, layer2_size=64,opt=opt,seed=seed,GAMMA=GAMMA) if Hider == None: Hider = PolicyGradientAgent(lr, [8], n_actions=9, layer1_size=64, layer2_size=64,opt=opt,seed=seed+12345, GAMMA=GAMMA) for ii in range(n_episode): if display: env.env_reset() else: env.reset() sampleaction = np.array([[5, 5, 5], [5, 5, 5]]) action = {'action_movement': sampleaction} obs, rew, down, _ = env.step(action) observation = np.array( [obs['observation_self'][0][0], obs['observation_self'][0][1], obs['observation_self'][0][4], obs['observation_self'][0][5], obs['observation_self'][1][0], obs['observation_self'][1][1], obs['observation_self'][1][4], obs['observation_self'][1][5]]) for i in range(episode): action_Seeker = Seeker.choose_action(observation) action_Hider = Hider.choose_action(observation) if np.random.rand() > 1: action_Hider =
np.random.randint(9)
numpy.random.randint
from __future__ import division import numpy as np from numpy.linalg import inv from scipy import stats from itertools import islice def online_changepoint_detection(data, hazard_func, observation_likelihood): maxes = np.zeros(len(data) + 1) R = np.zeros((len(data) + 1, len(data) + 1)) R[0, 0] = 1 for t, x in enumerate(data): # Evaluate the predictive distribution for the new datum under each of # the parameters. This is the standard thing from Bayesian inference. predprobs = observation_likelihood.pdf(x) # Evaluate the hazard function for this interval H = hazard_func(np.array(range(t+1))) # Evaluate the growth probabilities - shift the probabilities down and to # the right, scaled by the hazard function and the predictive # probabilities. R[1:t+2, t+1] = R[0:t+1, t] * predprobs * (1-H) # Evaluate the probability that there *was* a changepoint and we're # accumulating the mass back down at r = 0. R[0, t+1] = np.sum( R[0:t+1, t] * predprobs * H) # Renormalize the run length probabilities for improved numerical # stability. R[:, t+1] = R[:, t+1] /
np.sum(R[:, t+1])
numpy.sum
import sys import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from get_data_brasil import run_crear_excel_brasil from get_data_brasil_wcota import run_crear_excel_brasil_wcota from get_data_pernambuco import run_crear_excel_recife from get_data_ourworldindata import run_crear_excel_ourworldindata from pandas import ExcelWriter import colormap import plotly.graph_objects as go from PIL import Image import base64 import os matplotlib.use('tkagg') def plotly_html(a_14_days, p_seven, dia, bra_title, save_path, filename_bg): for i in range(len(p_seven)): if p_seven[i] < 0.0: p_seven[i] = 0.0 color_map = [] for i in range(len(a_14_days)): if i < len(a_14_days) - 60: color_map.append('rgba(0, 0, 0, 0.1)') elif i == len(a_14_days) - 1: color_map.append('rgba(255, 255, 255, 0.6)') else: color_map.append('Blue') fig = go.Figure() fig.add_trace(go.Scatter(x=a_14_days, y=p_seven, text=dia, mode='lines+markers', marker=dict( color=color_map, showscale=False, size=10, line=dict( color='Black', width=0.2)), line=dict( color="Black", width=0.5, dash="dot"), )) fig.add_shape(type="line", x0=0, y0=1, x1=max(a_14_days), y1=1, line=dict( color="Black", width=1, dash="dot", )) image_filename = filename_bg img = base64.b64encode(open(image_filename, 'rb').read()) x = round(a_14_days.max()) y = round(p_seven.max()) print(x, y) fig.add_layout_image( dict( source='data:image/png;base64,{}'.format(img.decode()), xref="x", yref="y", x=0, y=p_seven.max(), sizex=a_14_days.max(), sizey=p_seven.max(), xanchor="left", yanchor="top", sizing="stretch", opacity=0.95, layer="below")) fig.add_annotation(dict(font=dict(color='black', size=9), xref="paper", yref="paper", x=0.9, y=0.9, text="EPG > 100: High", showarrow=False)) fig.add_shape(type="rect", xref="paper", yref="paper", x0=0.9, x1=0.91, y0=0.87, y1=0.89, fillcolor="Red", line_color="Red") fig.add_annotation(dict(font=dict(color='black', size=9), xref="paper", yref="paper", x=0.9, y=0.86, text=" 70 < EPG < 100: Moderate-high", showarrow=False)) fig.add_shape(type="rect", xref="paper", yref="paper", x0=0.9, x1=0.91, y0=0.86, y1=0.78, fillcolor="Yellow", line_color="Yellow") fig.add_annotation(dict(font=dict(color='black', size=9), xref="paper", yref="paper", x=0.9, y=0.82, text=" 30 < EPG < 70 : Moderate", showarrow=False)) fig.add_annotation(dict(font=dict(color='black', size=9), xref="paper", yref="paper", x=0.9, y=0.78, text="EPG < 30: Low", showarrow=False)) fig.add_annotation(dict(font=dict(color='blue', size=9), xref="paper", yref="paper", x=0.9, y=0.728, text="Last 60 days", showarrow=False)) fig.add_shape(type="rect", xref="paper", yref="paper", x0=0.9, x1=0.91, y0=0.77, y1=0.74, fillcolor="Green", line_color="Green") fig.add_shape(type="rect", xref="paper", yref="paper", x0=0.9, x1=0.91, y0=0.725, y1=0.70, fillcolor="Blue", line_color="Blue") fig.update_layout(plot_bgcolor='rgb(255,255,255)', width=800, height=600, xaxis_showgrid=False, yaxis_showgrid=False, xaxis_title="Attack rate per 10⁵ inh. (last 14 days)", yaxis_title="\u03C1 (mean of the last 7 days)", title={ 'text': bra_title, 'y': 0.9, 'x': 0.5, 'xanchor': 'center', 'yanchor': 'top'}, ) fig.update_xaxes(rangemode="tozero") fig.update_yaxes(rangemode="tozero") # fig.show() os.remove(filename_bg) fig.write_html(filename_bg+'.html', include_plotlyjs="cdn") def run_risk_diagrams(argv_1, deaths, file_others_cases, file_others_pop, radio_valor, ourworldindata_country): if argv_1: last_days_time = 30 brasil = False pt = False html = False last_days = False animation = False if radio_valor == 1: last_days = True elif radio_valor == 2: html = True else: pass dataTable = [] dataTable_EPG = [] if argv_1 == 'brasil' and deaths == 'False': try: run_crear_excel_brasil() filename = 'data/Data_Brasil.xlsx' filename_population = 'data/pop_Brasil_v3.xlsx' sheet_name = 'Cases' except AttributeError: print('Error! Not found file or could not download!') elif argv_1 == 'brasil_regions' and deaths == 'False': try: run_crear_excel_brasil() filename = 'data/Data_Brasil.xlsx' filename_population = 'data/pop_Brasil_Regions_v3.xlsx' sheet_name = 'Regions' except AttributeError: print('Error! Not found file or could not download!') elif argv_1 == 'recife': try: run_crear_excel_recife() filename = 'data/cases-recife.xlsx' filename_population = 'data/pop_recife_v1.xlsx' sheet_name = 'Cases' except AttributeError: print('Error! Not found file or could not download!') elif argv_1 == 'WCOTA': try: #run_crear_excel_brasil_wcota('AM') #run_crear_excel_brasil_wcota('PB') run_crear_excel_brasil_wcota('SP') filename = 'data/cases-wcota.xlsx' #filename_population = 'data/pop_AM_v1.xlsx' filename_population = 'data/pop_SP_v1.xlsx' #filename_population = 'data/pop_PB_v1.xlsx' #filename = 'data/Dades.xlsx' #filename_population = 'data/pop_Dades.xlsx' sheet_name = 'Cases' except AttributeError: print('Error! Not found file or could not download!') elif argv_1 == 'ourworldindata' and deaths == 'False': try: run_crear_excel_ourworldindata(ourworldindata_country) filename = 'data/ourworldindata.xlsx' filename_population = 'data/pop_ourworldindata_v1.xlsx' sheet_name = 'Cases' except AttributeError: print('Error! Not found file or could not download!') elif argv_1 == 'others' and deaths == 'False': try: filename = file_others_cases filename_population = file_others_pop sheet_name = 'Cases' except AttributeError: print('Error! Not found file or could not download!') data = pd.read_excel(filename, sheet_name=sheet_name) population = pd.read_excel(filename_population) dia = pd.to_datetime(data['date']).dt.strftime('%d/%m/%Y') dia = dia.to_numpy() region = population.columns for ID in range(len(region)): cumulative_cases = data[region[ID]] cumulative_cases = cumulative_cases.to_numpy() new_cases = np.zeros((len(cumulative_cases)), dtype=np.int) for i in range(len(cumulative_cases)): if i != 0: new_cases[i] = cumulative_cases[i] - \ cumulative_cases[i - 1] p = np.zeros((len(new_cases)), dtype=np.float) for i in range(7, len(new_cases)): div = 0 aux = new_cases[i - 5] + new_cases[i - 6] + new_cases[i - 7] if aux == 0: div = 1 else: div = aux p[i] = min((new_cases[i] + new_cases[i - 1] + new_cases[i - 2]) / div, 4) p_seven = np.zeros((len(new_cases)), dtype=np.float) n_14_days = np.zeros((len(new_cases)), dtype=np.float) a_14_days = np.zeros((len(new_cases)), dtype=np.float) risk = np.zeros((len(new_cases)), dtype=np.float) risk_per_10 = np.zeros((len(new_cases)), dtype=np.float) day13 = 13 for i in range(day13, len(new_cases)): p_seven[i] =
np.average(p[i - 6:i + 1])
numpy.average
"""Create Figures and Extract Results for CVPR paper. Author: <NAME> Email : <EMAIL> """ from __future__ import print_function import os from os.path import join, isdir, isfile from collections import OrderedDict import cPickle as pickle import numpy as np from scipy.misc import imsave import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import spiker from spiker.models import utils from spiker.data import ddd17 def compute_log_curve(log_name, num_runs=4): """Compute log curve, provide mean and standard deviation.""" log_collector = [] for run_idx in range(1, num_runs+1): # prepare log path log_file = join(spiker.SPIKER_EXPS+"-run-%d" % (run_idx), log_name, "csv_history.log") log_dict = utils.parse_csv_log(log_file) log_collector.append(log_dict) # compute for train loss train_loss = np.vstack( (log_collector[0]["loss"][np.newaxis, ...], log_collector[1]["loss"][np.newaxis, ...], log_collector[2]["loss"][np.newaxis, ...], log_collector[3]["loss"][np.newaxis, ...])) train_loss = train_loss.astype("float64") train_loss_mean = np.mean(train_loss, axis=0) train_loss_std = np.std(train_loss, axis=0) # compute for test loss test_loss = np.vstack( (log_collector[0]["val_loss"][np.newaxis, ...], log_collector[1]["val_loss"][np.newaxis, ...], log_collector[2]["val_loss"][np.newaxis, ...], log_collector[3]["val_loss"][np.newaxis, ...])) test_loss = test_loss.astype("float64") test_loss_mean =
np.mean(test_loss, axis=0)
numpy.mean
import numpy as np import matplotlib.pyplot as plt import pandas as pd plt.style.use('seaborn-whitegrid') names = ['Age', 'Workclass', 'fnlwgt', 'Education', 'Education_Num', 'Marital_Status', 'Occupation', 'Relationship', 'Race', 'Sex', 'Capital_Gain', 'Capital_Loss', 'Hours_per_week', 'Country', 'income'] # 获取原始数据集 adult_data = pd.read_csv('../data/adult.csv', names=names) print('原始数据集', adult_data.shape) print(adult_data.head()) def laplace_mech(v, sensitivity, epsilon): return v + np.random.laplace(loc=0, scale=sensitivity / epsilon) def pct_error(orig, priv): return np.abs(orig - priv) / orig * 100.0 # AboveThreshold Algorithm def above_threshold(df, queries, T, epsilon): T_hat = T +
np.random.laplace(loc=0, scale=2 / epsilon)
numpy.random.laplace
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This modules contains some testing of intermediary results between the PyTorch and the Theano framework. """ import numpy as np from paths import DEBUG_DIR_MNIST_012, DEBUG_DIR_MNIST_rot, DEBUG_DIR_ETH80 from debug import * ###################################################################################################### # PROCEDURE # ###################################################################################################### # In order to correctly debug the PyTorch framework we load the exact same data, i.e. the first batch # of the test data. We then save/print and compare every step of the forward pass of a rather simple # model at the beginning, and we increase the complexity of the model as the tests are passed # correctly. The last 't' in files named like xxx_t.xxx stands for Theano, 'p' stands for PyTorch. ###################################################################################################### # WITH ALL WEIGHTS SET TO 1 - MNIST_012 # ###################################################################################################### path = DEBUG_DIR_MNIST_012 + 'constant_weights/' # input averaged with batch ########################################################################## prepared_input_p = np.load(path + 'prepared_input_p.npy') prepared_input_t = np.load(path + 'prepared_input_t.npy') prepared_input_t = np.transpose(prepared_input_t, (0,2,1)) # plot_pytorch_theano_image( # [prepared_input_p[0,:,0], prepared_input_t[0,:,0]], # dir=path, # name='prepared_input' # ) # np.testing.assert_allclose(actual=prepared_input_p[0], desired=prepared_input_t[0], rtol=1e-7) # OK ###################################################################################################### ################################## # Spectral Convolutional Layer 1 # ################################## # filter operator #################################################################################### filter_operator1_p = np.load(path + 'filter_operator1_p.npy') filter_operator1_t = np.load(path + 'filter_operator1_t.npy') filter_operator1_t = np.transpose(filter_operator1_t, (2,1,0)) # plot_pytorch_theano_filter_operator( # [filter_operator1_p[:,:,2], filter_operator1_t[:,:,2]], # dir=path, # name='filter_operator1' # ) # np.testing.assert_allclose(actual=filter_operator1_p, desired=filter_operator1_t, rtol=1e-7) # 0.17% ###################################################################################################### # y ################################################################################################## y1_p = np.load(path + 'y1_p.npy') y1_t = np.load(path + 'y1_t.npy') y1_t = np.transpose(y1_t, (0,3,2,1)) # plot_pytorch_theano_image( # [y1_p[0,:,0], y1_t[0,:,0]], # dir=path, # name='y1' # ) # np.testing.assert_allclose(actual=y1_p, desired=y1_t, rtol=1e-6) # 3.30% ###################################################################################################### # z ################################################################################################## spectral_conv1_p = np.load(path + 'spectral_conv1_p.npy') spectral_conv1_t = np.load(path + 'spectral_conv1_t.npy') spectral_conv1_t = np.transpose(spectral_conv1_t, (0,2,1)) # plot_pytorch_theano_image( # [spectral_conv1_p[0,:,0], spectral_conv1_t[0,:,0]], # dir=path, # name='spectral_conv1' # ) # plot_pytorch_theano_image_diff( # [spectral_conv1_p[0,:,0], spectral_conv1_t[0,:,0]], # dir=path, # name='spectral_conv1_diff' # ) # np.testing.assert_allclose(actual=spectral_conv1_p, desired=spectral_conv1_t, rtol=1e-6) # 3.30% ###################################################################################################### ################################## # Dynamic Pooling 1 # ################################## # mask ############################################################################################### mask1_p = np.load(path + 'mask1_p.npy') mask1_t = np.load(path + 'mask1_t.npy') mask1_t = mask1_t[..., np.newaxis] # plot_pytorch_theano_image( # [mask1_p[0,:,0], # mask1_t[0,:,0]], # dir=path, # name='mask1' # ) # plot_pytorch_theano_image_diff( # [mask1_p[0,:,0], mask1_t[0,:,0]], # dir=path, # name='mask1_diff' # ) # np.testing.assert_allclose(actual=mask1_p, desired=mask1_t, rtol=1e-6) # 1.41% ###################################################################################################### ################################## # Spectral Convolutional Layer 2 # ################################## # y ################################################################################################## y2_p = np.load(path + 'y2_p.npy') y2_t = np.load(path + 'y2_t.npy') # y2_t = np.transpose(y2_t, (0,3,2,1)) # plot_pytorch_theano_image( # [y2_p[0,:,0,0], # y2_t[0,:,0,0]], # dir=path, # name='y2' # ) # np.testing.assert_allclose(actual=y2_p, desired=y2_t, rtol=1e-6) # 9.68% ###################################################################################################### # z ################################################################################################## spectral_conv2_p = np.load(path + 'spectral_conv2_p.npy') spectral_conv2_t = np.load(path + 'spectral_conv2_t.npy') spectral_conv2_t = np.transpose(spectral_conv2_t, (0,2,1)) # plot_pytorch_theano_image( # [spectral_conv2_p[0,:,0], # spectral_conv2_t[0,:,0]], # dir=path, # name='spectral_conv2' # ) # plot_pytorch_theano_image_diff( # [spectral_conv2_p[0,:,0], spectral_conv2_t[0,:,0]], # dir=path, # name='spectral_conv2_diff' # ) # np.testing.assert_allclose(actual=spectral_conv2_p, desired=spectral_conv2_t, rtol=1e-6) # 9.78% ###################################################################################################### ################################## # Dynamic Pooling 2 # ################################## # mask ############################################################################################### mask2_p = np.load(path + 'mask2_p.npy') mask2_t = np.load(path + 'mask2_t.npy') mask2_t = mask2_t[..., np.newaxis] # plot_pytorch_theano_image( # [mask2_p[0,:,0], # mask2_t[0,:,0]], # dir=path, # name='mask2' # ) # plot_pytorch_theano_image_diff( # [mask2_p[0,:,0], mask2_t[0,:,0]], # dir=path, # name='mask2_diff' # ) # np.testing.assert_allclose(actual=mask2_p, desired=mask2_t, rtol=1e-6) # 1.55% ###################################################################################################### ################################## # Spectral Convolutional Layer 3 # ################################## # y ################################################################################################## y3_p = np.load(path + 'y3_p.npy') y3_t = np.load(path + 'y3_t.npy') # y3_t = np.transpose(y3_t, (0,3,2,1)) # plot_pytorch_theano_image( # [y3_p[0,:,0,0], # y3_t[0,:,0,0]], # dir=path, # name='y3' # ) # np.testing.assert_allclose(actual=y3_p, desired=y3_t, rtol=1e-6) # 5.12% ###################################################################################################### # z ################################################################################################## spectral_conv3_p = np.load(path + 'spectral_conv3_p.npy') spectral_conv3_t = np.load(path + 'spectral_conv3_t.npy') spectral_conv3_t =
np.transpose(spectral_conv3_t, (0,2,1))
numpy.transpose
import numpy as np # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # This file contains a set of functions used to generate a uniformly # # random symplectic matrix that is symplectic with respect with # # L = direct_sum_{j=1}^n X # # The only function you will likely need to use is symplectic(i, n) # # DO NOT MODIFY (unless you have a deep understanding of the code) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def test_gram_schmidt(symp_basis): """ Tests to make sure we have a symplectic basis where symp_basis = (v_1, w_1, ..., v_n, w_n) """ n = symp_basis.shape[0] // 2 for j in range(n): for k in range(n): v_j = symp_basis[:, 2 * j] v_k = symp_basis[:, 2 * k] w_j = symp_basis[:, 2 * j + 1] w_k = symp_basis[:, 2 * k + 1] if (inner_prod(v_j, w_k) != (j == k)): return False if not(inner_prod(v_j, v_k) == inner_prod(w_j, w_k) == 0): return False return True def get_lambda(n): """ Creates a 2n x 2n lambda matrix L NOTE: This lambda matrix is NOT the one conventionally used for symplectic matrices """ x = np.array([[0, 1], [1, 0]]) L = np.array([[0, 1], [1, 0]]) for i in range(n - 1): L = direct_sum(L, x) % 2 return L def direct_sum(a, b): """ Returns direct sum of matrices a and b """ m, n = a.shape p, q = b.shape top = np.hstack((a, np.zeros((m, q)))) bottom = np.hstack((np.zeros((p, n)), b)) return np.vstack((top, bottom)) def numberofcosets(n): """ Returns the number of different cosets """ x = np.power(2, 2 * n - 1) * (
np.power(2, 2 * n)
numpy.power
import sys import numpy as np import pandas as pd import openmdao.api as om from wisdem.commonse import gravity eps = 1e-3 # Convenience functions for computing McDonald's C and F parameters def chsMshc(x): return np.cosh(x) * np.sin(x) - np.sinh(x) * np.cos(x) def chsPshc(x): return np.cosh(x) * np.sin(x) + np.sinh(x) * np.cos(x) def carterFactor(airGap, slotOpening, slotPitch): """Return Carter factor (based on Langsdorff's empirical expression) See page 3-13 Boldea Induction machines Chapter 3 """ gma = (2 * slotOpening / airGap) ** 2 / (5 + 2 * slotOpening / airGap) return slotPitch / (slotPitch - airGap * gma * 0.5) # --------------- def carterFactorMcDonald(airGap, h_m, slotOpening, slotPitch): """Return Carter factor using Carter's equation (based on Schwartz-Christoffel's conformal mapping on simplified slot geometry) This code is based on Eq. B.3-5 in Appendix B of McDonald's thesis. It is used by PMSG_arms and PMSG_disc. h_m : magnet height (m) b_so : stator slot opening (m) tau_s : Stator slot pitch (m) """ mu_r = 1.06 # relative permeability (probably for neodymium magnets, often given as 1.05 - GNS) g_1 = airGap + h_m / mu_r # g b_over_a = slotOpening / (2 * g_1) gamma = 4 / np.pi * (b_over_a * np.arctan(b_over_a) - np.log(np.sqrt(1 + b_over_a ** 2))) return slotPitch / (slotPitch - gamma * g_1) # --------------- def carterFactorEmpirical(airGap, slotOpening, slotPitch): """Return Carter factor using Langsdorff's empirical expression""" sigma = (slotOpening / airGap) / (5 + slotOpening / airGap) return slotPitch / (slotPitch - sigma * slotOpening) # --------------- def carterFactorSalientPole(airGap, slotWidth, slotPitch): """Return Carter factor for salient pole rotor Where does this equation come from? It's different from other approximations above. Original code: tau_s = np.pi * dia / S # slot pitch b_s = tau_s * b_s_tau_s # slot width b_t = tau_s - b_s # tooth width K_C1 = (tau_s + 10 * g_a) / (tau_s - b_s + 10 * g_a) # salient pole rotor slotPitch - slotWidth == toothWidth """ return (slotPitch + 10 * airGap) / (slotPitch - slotWidth + 10 * airGap) # salient pole rotor # --------------------------------- def array_seq(q1, b, c, Total_number): Seq = np.array([1, 0, 0, 1, 0]) diff = Total_number * 5 / 6 G = np.prod(Seq.shape) return Seq, diff, G # --------------------------------- def winding_factor(Sin, b, c, p, m): S = int(Sin) # Step 1 Writing q1 as a fraction q1 = b / c # Step 2: Writing a binary sequence of b-c zeros and b ones Total_number = int(S / b) L = array_seq(q1, b, c, Total_number) # STep 3 : Repeat binary sequence Q_s/b times New_seq = np.tile(L[0], Total_number) Actual_seq1 = pd.DataFrame(New_seq[:, None].T) Winding_sequence = ["A", "C1", "B", "A1", "C", "B1"] New_seq2 = np.tile(Winding_sequence, int(L[1])) Actual_seq2 = pd.DataFrame(New_seq2[:, None].T) Seq_f = pd.concat([Actual_seq1, Actual_seq2], ignore_index=True) Seq_f.reset_index(drop=True) Slots = S R = S if S % 2 == 0 else S + 1 Windings_arrange = (pd.DataFrame(index=Seq_f.index, columns=Seq_f.columns[1:R])).fillna(0) counter = 1 # Step #4 Arranging winding in Slots for i in range(0, len(New_seq)): if Seq_f.loc[0, i] == 1: Windings_arrange.loc[0, counter] = Seq_f.loc[1, i] counter = counter + 1 Windings_arrange.loc[1, 1] = "C1" for k in range(1, R): if Windings_arrange.loc[0, k] == "A": Windings_arrange.loc[1, k + 1] = "A1" elif Windings_arrange.loc[0, k] == "B": Windings_arrange.loc[1, k + 1] = "B1" elif Windings_arrange.loc[0, k] == "C": Windings_arrange.loc[1, k + 1] = "C1" elif Windings_arrange.loc[0, k] == "A1": Windings_arrange.loc[1, k + 1] = "A" elif Windings_arrange.loc[0, k] == "B1": Windings_arrange.loc[1, k + 1] = "B" elif Windings_arrange.loc[0, k] == "C1": Windings_arrange.loc[1, k + 1] = "C" Phase_A = np.zeros((1000, 1), dtype=float) counter_A = 0 # Windings_arrange.to_excel('test.xlsx') # Winding vector, W_A for Phase A for l in range(1, R): if Windings_arrange.loc[0, l] == "A" and Windings_arrange.loc[1, l] == "A": Phase_A[counter_A, 0] = l Phase_A[counter_A + 1, 0] = l counter_A = counter_A + 2 elif Windings_arrange.loc[0, l] == "A1" and Windings_arrange.loc[1, l] == "A1": Phase_A[counter_A, 0] = -1 * l Phase_A[counter_A + 1, 0] = -1 * l counter_A = counter_A + 2 elif Windings_arrange.loc[0, l] == "A" or Windings_arrange.loc[1, l] == "A": Phase_A[counter_A, 0] = l counter_A = counter_A + 1 elif Windings_arrange.loc[0, l] == "A1" or Windings_arrange.loc[1, l] == "A1": Phase_A[counter_A, 0] = -1 * l counter_A = counter_A + 1 W_A = (np.trim_zeros(Phase_A)).T # Calculate winding factor K_w = 0 for r in range(0, int(2 * (S) / 3)): Gamma = 2 * np.pi * p * np.abs(W_A[0, r]) / S K_w += np.sign(W_A[0, r]) * (np.exp(Gamma * 1j)) K_w = np.abs(K_w) / (2 * S / 3) CPMR = np.lcm(S, int(2 * p)) N_cog_s = CPMR / S N_cog_p = CPMR / p N_cog_t = CPMR * 0.5 / p A = np.lcm(S, int(2 * p)) b_p_tau_p = 2 * 1 * p / S - 0 b_t_tau_s = (2) * S * 0.5 / p - 2 return K_w # --------------------------------- def shell_constant(R, t, l, x, E, v): Lambda = (3 * (1 - v ** 2) / (R ** 2 * t ** 2)) ** 0.25 D = E * t ** 3 / (12 * (1 - v ** 2)) C_14 = (np.sinh(Lambda * l)) ** 2 + (np.sin(Lambda * l)) ** 2 C_11 = (np.sinh(Lambda * l)) ** 2 - (np.sin(Lambda * l)) ** 2 F_2 = np.cosh(Lambda * x) * np.sin(Lambda * x) + np.sinh(Lambda * x) * np.cos(Lambda * x) C_13 = np.cosh(Lambda * l) * np.sinh(Lambda * l) - np.cos(Lambda * l) * np.sin(Lambda * l) F_1 = np.cosh(Lambda * x) * np.cos(Lambda * x) F_4 = np.cosh(Lambda * x) * np.sin(Lambda * x) - np.sinh(Lambda * x) * np.cos(Lambda * x) return D, Lambda, C_14, C_11, F_2, C_13, F_1, F_4 # --------------------------------- def plate_constant(a, b, E, v, r_o, t): D = E * t ** 3 / (12 * (1 - v ** 2)) C_2 = 0.25 * (1 - (b / a) ** 2 * (1 + 2 * np.log(a / b))) C_3 = 0.25 * (b / a) * (((b / a) ** 2 + 1) * np.log(a / b) + (b / a) ** 2 - 1) C_5 = 0.5 * (1 - (b / a) ** 2) C_6 = 0.25 * (b / a) * ((b / a) ** 2 - 1 + 2 * np.log(a / b)) C_8 = 0.5 * (1 + v + (1 - v) * (b / a) ** 2) C_9 = (b / a) * (0.5 * (1 + v) * np.log(a / b) + 0.25 * (1 - v) * (1 - (b / a) ** 2)) L_11 = (1 / 64) * ( 1 + 4 * (r_o / a) ** 2 - 5 * (r_o / a) ** 4 - 4 * (r_o / a) ** 2 * (2 + (r_o / a) ** 2) * np.log(a / r_o) ) L_17 = 0.25 * (1 - 0.25 * (1 - v) * ((1 - (r_o / a) ** 4) - (r_o / a) ** 2 * (1 + (1 + v) * np.log(a / r_o)))) return D, C_2, C_3, C_5, C_6, C_8, C_9, L_11, L_17 # --------------------------------- debug = False # --------------------------------- class GeneratorBase(om.ExplicitComponent): """ Base class for generators Parameters ---------- B_r : float, [T] Remnant flux density E : float, [Pa] youngs modulus G : float, [Pa] Shear modulus P_Fe0e : float, [W/kg] specific eddy losses @ 1.5T, 50Hz P_Fe0h : float, [W/kg] specific hysteresis losses W / kg @ 1.5 T @50 Hz S_N : float Slip alpha_p : float b_r_tau_r : float Rotor Slot width / Slot pitch ratio b_ro : float, [m] Rotor slot opening width b_s_tau_s : float Stator Slot width/Slot pitch ratio b_so : float, [m] Stator slot opening width cofi : float power factor freq : float, [Hz] grid frequency h_i : float, [m] coil insulation thickness h_sy0 : float h_w : float, [m] Slot wedge height k_fes : float Stator iron fill factor per Grauers k_fillr : float Rotor slot fill factor k_fills : float Stator Slot fill factor k_s : float magnetic saturation factor for iron m : int Number of phases mu_0 : float, [m*kg/s**2/A**2] permeability of free space mu_r : float, [m*kg/s**2/A**2] relative permeability (neodymium) p : float number of pole pairs (taken as int within code) phi : numpy array[90], [rad] tilt angle (during transportation) q1 : int Stator slots per pole per phase q2 : int Rotor slots per pole per phase ratio_mw2pp : float ratio of magnet width to pole pitch(bm / self.tau_p) resist_Cu : float, [ohm/m] Copper resistivity sigma : float, [Pa] assumed max shear stress v : float poisson ratio y_tau_p : float Stator coil span to pole pitch y_tau_pr : float Rotor coil span to pole pitch I_0 : float, [A] no-load excitation current T_rated : float, [N*m] Rated torque d_r : float, [m] arm depth d_r h_m : float, [m] magnet height h_0 : float, [m] Slot height h_s : float, [m] Yoke height h_s len_s : float, [m] Stator core length machine_rating : float, [W] Machine rating shaft_rpm : numpy array[n_pc], [rpm] rated speed of input shaft (lss for direct, hss for geared) n_r : float number of arms n rad_ag : float, [m] airgap radius t_wr : float, [m] arm depth thickness n_s : float number of stator arms n_s b_st : float, [m] arm width b_st d_s : float, [m] arm depth d_s t_ws : float, [m] arm depth thickness D_shaft : float, [m] Shaft diameter rho_Copper : float, [kg*m**-3] Copper density rho_Fe : float, [kg*m**-3] Magnetic Steel density rho_Fes : float, [kg*m**-3] Structural Steel density rho_PM : float, [kg*m**-3] Magnet density Returns ------- B_rymax : float, [T] Peak Rotor yoke flux density B_trmax : float, [T] maximum tooth flux density in rotor B_tsmax : float, [T] maximum tooth flux density in stator B_g : float, [T] Peak air gap flux density B_g B_g1 : float, [T] air gap flux density fundamental B_pm1 : float Fundamental component of peak air gap flux density N_s : float Number of turns in the stator winding b_s : float, [m] slot width b_t : float, [m] tooth width A_Curcalc : float, [mm**2] Conductor cross-section mm^2 A_Cuscalc : float, [mm**2] Stator Conductor cross-section mm^2 b_m : float magnet width mass_PM : float, [kg] Magnet mass Copper : float, [kg] Copper Mass Iron : float, [kg] Electrical Steel Mass Structural_mass : float, [kg] Structural Mass generator_mass : float, [kg] Actual mass f : float Generator output frequency I_s : float, [A] Generator output phase current R_s : float, [ohm] Stator resistance L_s : float Stator synchronising inductance J_s : float, [A*m**-2] Stator winding current density A_1 : float Specific current loading K_rad : float Stack length ratio Losses : numpy array[n_pc], [W] Total loss generator_efficiency : numpy array[n_pc] Generator electromagnetic efficiency values (<1) u_ar : float, [m] Rotor radial deflection u_as : float, [m] Stator radial deflection u_allow_r : float, [m] Allowable radial rotor u_allow_s : float, [m] Allowable radial stator y_ar : float, [m] Rotor axial deflection y_as : float, [m] Stator axial deflection y_allow_r : float, [m] Allowable axial y_allow_s : float, [m] Allowable axial z_ar : float, [m] Rotor circumferential deflection z_as : float, [m] Stator circumferential deflection z_allow_r : float, [m] Allowable circum rotor z_allow_s : float, [m] Allowable circum stator b_allow_r : float, [m] Allowable arm dimensions b_allow_s : float, [m] Allowable arm TC1 : float, [m**3] Torque constraint TC2r : float, [m**3] Torque constraint-rotor TC2s : float, [m**3] Torque constraint-stator R_out : float, [m] Outer radius S : float Stator slots Slot_aspect_ratio : float Slot aspect ratio Slot_aspect_ratio1 : float Stator slot aspect ratio Slot_aspect_ratio2 : float Rotor slot aspect ratio D_ratio : float Stator diameter ratio J_r : float Rotor winding Current density L_sm : float mutual inductance Q_r : float Rotor slots R_R : float Rotor resistance b_r : float rotor slot width b_tr : float rotor tooth width b_trmin : float minimum tooth width """ def initialize(self): self.options.declare("n_pc", default=20) def setup(self): n_pc = self.options["n_pc"] # Constants and parameters self.add_input("B_r", val=1.2, units="T") self.add_input("E", val=0.0, units="Pa") self.add_input("G", val=0.0, units="Pa") self.add_input("P_Fe0e", val=1.0, units="W/kg") self.add_input("P_Fe0h", val=4.0, units="W/kg") self.add_input("S_N", val=-0.002) self.add_input("alpha_p", val=0.5 * np.pi * 0.7) self.add_input("b_r_tau_r", val=0.45) self.add_input("b_ro", val=0.004, units="m") self.add_input("b_s_tau_s", val=0.45) self.add_input("b_so", val=0.004, units="m") self.add_input("cofi", val=0.85) self.add_input("freq", val=60, units="Hz") self.add_input("h_i", val=0.001, units="m") self.add_input("h_sy0", val=0.0) self.add_input("h_w", val=0.005, units="m") self.add_input("k_fes", val=0.9) self.add_input("k_fillr", val=0.7) self.add_input("k_fills", val=0.65) self.add_input("k_s", val=0.2) self.add_discrete_input("m", val=3) self.add_input("mu_0", val=np.pi * 4e-7, units="m*kg/s**2/A**2") self.add_input("mu_r", val=1.06, units="m*kg/s**2/A**2") self.add_input("p", val=3.0) self.add_input("phi", val=np.deg2rad(90), units="rad") self.add_discrete_input("q1", val=6) self.add_discrete_input("q2", val=4) self.add_input("ratio_mw2pp", val=0.7) self.add_input("resist_Cu", val=1.8e-8 * 1.4, units="ohm/m") self.add_input("sigma", val=40e3, units="Pa") self.add_input("v", val=0.3) self.add_input("y_tau_p", val=1.0) self.add_input("y_tau_pr", val=10.0 / 12) # General inputs # self.add_input('r_s', val=0.0, units='m', desc='airgap radius r_s') self.add_input("I_0", val=0.0, units="A") self.add_input("rated_torque", val=0.0, units="N*m") self.add_input("d_r", val=0.0, units="m") self.add_input("h_m", val=0.0, units="m") self.add_input("h_0", val=0.0, units="m") self.add_input("h_s", val=0.0, units="m") self.add_input("len_s", val=0.0, units="m") self.add_input("machine_rating", val=0.0, units="W") self.add_input("shaft_rpm", val=np.zeros(n_pc), units="rpm") self.add_input("n_r", val=0.0) self.add_input("rad_ag", val=0.0, units="m") self.add_input("t_wr", val=0.0, units="m") # Structural design variables self.add_input("n_s", val=0.0) self.add_input("b_st", val=0.0, units="m") self.add_input("d_s", val=0.0, units="m") self.add_input("t_ws", val=0.0, units="m") self.add_input("D_shaft", val=0.0, units="m") # Material properties self.add_input("rho_Copper", val=8900.0, units="kg*m**-3") self.add_input("rho_Fe", val=7700.0, units="kg*m**-3") self.add_input("rho_Fes", val=7850.0, units="kg*m**-3") self.add_input("rho_PM", val=7450.0, units="kg*m**-3") # Magnetic loading self.add_output("B_rymax", val=0.0, units="T") self.add_output("B_trmax", val=0.0, units="T") self.add_output("B_tsmax", val=0.0, units="T") self.add_output("B_g", val=0.0, units="T") self.add_output("B_g1", val=0.0, units="T") self.add_output("B_pm1", val=0.0) # Stator design self.add_output("N_s", val=0.0) self.add_output("b_s", val=0.0, units="m") self.add_output("b_t", val=0.0, units="m") self.add_output("A_Curcalc", val=0.0, units="mm**2") self.add_output("A_Cuscalc", val=0.0, units="mm**2") # Rotor magnet dimension self.add_output("b_m", val=0.0) # Mass Outputs self.add_output("mass_PM", val=0.0, units="kg") self.add_output("Copper", val=0.0, units="kg") self.add_output("Iron", val=0.0, units="kg") self.add_output("Structural_mass", val=0.0, units="kg") self.add_output("generator_mass", val=0.0, units="kg") # Electrical performance self.add_output("f", val=np.zeros(n_pc)) self.add_output("I_s", val=np.zeros(n_pc), units="A") self.add_output("R_s", val=np.zeros(n_pc), units="ohm") self.add_output("L_s", val=0.0) self.add_output("J_s", val=np.zeros(n_pc), units="A*m**-2") self.add_output("A_1", val=np.zeros(n_pc)) # Objective functions self.add_output("K_rad", val=0.0) self.add_output("Losses", val=np.zeros(n_pc), units="W") self.add_output("eandm_efficiency", val=np.zeros(n_pc)) # Structural performance self.add_output("u_ar", val=0.0, units="m") self.add_output("u_as", val=0.0, units="m") self.add_output("u_allow_r", val=0.0, units="m") self.add_output("u_allow_s", val=0.0, units="m") self.add_output("y_ar", val=0.0, units="m") self.add_output("y_as", val=0.0, units="m") self.add_output("y_allow_r", val=0.0, units="m") self.add_output("y_allow_s", val=0.0, units="m") self.add_output("z_ar", val=0.0, units="m") self.add_output("z_as", val=0.0, units="m") self.add_output("z_allow_r", val=0.0, units="m") self.add_output("z_allow_s", val=0.0, units="m") self.add_output("b_allow_r", val=0.0, units="m") self.add_output("b_allow_s", val=0.0, units="m") self.add_output("TC1", val=0.0, units="m**3") self.add_output("TC2r", val=0.0, units="m**3") self.add_output("TC2s", val=0.0, units="m**3") # Other parameters self.add_output("R_out", val=0.0, units="m") self.add_output("S", val=0.0) self.add_output("Slot_aspect_ratio", val=0.0) self.add_output("Slot_aspect_ratio1", val=0.0) self.add_output("Slot_aspect_ratio2", val=0.0) self.add_output("D_ratio", val=0.0) self.add_output("J_r", val=np.zeros(n_pc)) self.add_output("L_sm", val=0.0) self.add_output("Q_r", val=0.0) self.add_output("R_R", val=0.0) self.add_output("b_r", val=0.0) self.add_output("b_tr", val=0.0) self.add_output("b_trmin", val=0.0) # ---------------------------------------------------------------------------------------- class PMSG_Outer(GeneratorBase): """ Estimates overall electromagnetic dimensions and Efficiency of PMSG -arms generator. Parameters ---------- P_mech : float, [W] Shaft mechanical power N_c : float Number of turns per coil b : float Slot pole combination c : float Slot pole combination E_p : float, [V] Stator phase voltage h_yr : float, [m] rotor yoke height h_ys : float, [m] Yoke height h_sr : float, [m] Structural Mass h_ss : float, [m] Stator yoke height t_r : float, [m] Rotor disc thickness t_s : float, [m] Stator disc thickness y_sh : float, [m] Shaft deflection theta_sh : float, [rad] slope of shaft D_nose : float, [m] Nose outer diameter y_bd : float, [m] Deflection of the bedplate theta_bd : float, [rad] Slope at the bedplate u_allow_pcent : float Radial deflection as a percentage of air gap diameter y_allow_pcent : float Radial deflection as a percentage of air gap diameter z_allow_deg : float, [deg] Allowable torsional twist B_tmax : float, [T] Peak Teeth flux density Returns ------- B_smax : float, [T] Peak Stator flux density B_symax : float, [T] Peak Stator flux density tau_p : float, [m] Pole pitch q : float, [N/m**2] Normal stress len_ag : float, [m] Air gap length h_t : float, [m] tooth height tau_s : float, [m] Slot pitch J_actual : float, [A/m**2] Current density T_e : float, [N*m] Electromagnetic torque twist_r : float, [deg] torsional twist twist_s : float, [deg] Stator torsional twist Structural_mass_rotor : float, [kg] Rotor mass (kg) Structural_mass_stator : float, [kg] Stator mass (kg) Mass_tooth_stator : float, [kg] Teeth and copper mass Mass_yoke_rotor : float, [kg] Rotor yoke mass Mass_yoke_stator : float, [kg] Stator yoke mass rotor_mass : float, [kg] Total rotor mass stator_mass : float, [kg] Total stator mass """ def initialize(self): super(PMSG_Outer, self).initialize() def setup(self): super(PMSG_Outer, self).setup() n_pc = self.options["n_pc"] # PMSG_structrual inputs self.add_input("P_mech", units="W") self.add_input("N_c", 0.0) self.add_input("b", 0.0) self.add_input("c", 0.0) self.add_input("E_p", 0.0, units="V") self.add_input("h_yr", val=0.0, units="m") self.add_input("h_ys", val=0.0, units="m") self.add_input("h_sr", 0.0, units="m") self.add_input("h_ss", 0.0, units="m") self.add_input("t_r", 0.0, units="m") self.add_input("t_s", 0.0, units="m") self.add_input("y_sh", units="m") self.add_input("theta_sh", 0.0, units="rad") self.add_input("D_nose", 0.0, units="m") self.add_input("y_bd", units="m") self.add_input("theta_bd", 0.0, units="rad") self.add_input("u_allow_pcent", 0.0) self.add_input("y_allow_pcent", 0.0) self.add_input("z_allow_deg", 0.0, units="deg") # Magnetic loading self.add_input("B_tmax", 0.0, units="T") self.add_output("B_smax", val=0.0, units="T") self.add_output("B_symax", val=0.0, units="T") self.add_output("tau_p", 0.0, units="m") self.add_output("q", 0.0, units="N/m**2") self.add_output("len_ag", 0.0, units="m") # Stator design self.add_output("h_t", 0.0, units="m") self.add_output("tau_s", 0.0, units="m") # Electrical performance self.add_output("J_actual", val=np.zeros(n_pc), units="A/m**2") self.add_output("T_e", 0.0, units="N*m") # Material properties self.add_output("twist_r", 0.0, units="deg") self.add_output("twist_s", 0.0, units="deg") # Mass Outputs self.add_output("Structural_mass_rotor", 0.0, units="kg") self.add_output("Structural_mass_stator", 0.0, units="kg") self.add_output("Mass_tooth_stator", 0.0, units="kg") self.add_output("Mass_yoke_rotor", 0.0, units="kg") self.add_output("Mass_yoke_stator", 0.0, units="kg") self.add_output("rotor_mass", 0.0, units="kg") self.add_output("stator_mass", 0.0, units="kg") def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): # Unpack inputs rad_ag = float(inputs["rad_ag"]) len_s = float(inputs["len_s"]) p = float(inputs["p"]) b = float(inputs["b"]) c = float(inputs["c"]) h_m = float(inputs["h_m"]) h_ys = float(inputs["h_ys"]) h_yr = float(inputs["h_yr"]) h_s = float(inputs["h_s"]) h_ss = float(inputs["h_ss"]) h_0 = float(inputs["h_0"]) B_tmax = float(inputs["B_tmax"]) E_p = float(inputs["E_p"]) P_mech = float(inputs["P_mech"]) P_av_v = float(inputs["machine_rating"]) h_sr = float(inputs["h_sr"]) t_r = float(inputs["t_r"]) t_s = float(inputs["t_s"]) R_sh = 0.5 * float(inputs["D_shaft"]) R_no = 0.5 * float(inputs["D_nose"]) y_sh = float(inputs["y_sh"]) y_bd = float(inputs["y_bd"]) rho_Fes = float(inputs["rho_Fes"]) rho_Fe = float(inputs["rho_Fe"]) sigma = float(inputs["sigma"]) shaft_rpm = inputs["shaft_rpm"] # Grab constant values B_r = float(inputs["B_r"]) E = float(inputs["E"]) G = float(inputs["G"]) P_Fe0e = float(inputs["P_Fe0e"]) P_Fe0h = float(inputs["P_Fe0h"]) cofi = float(inputs["cofi"]) h_w = float(inputs["h_w"]) k_fes = float(inputs["k_fes"]) k_fills = float(inputs["k_fills"]) m = int(discrete_inputs["m"]) mu_0 = float(inputs["mu_0"]) mu_r = float(inputs["mu_r"]) p = float(inputs["p"]) phi = float(inputs["phi"]) ratio_mw2pp = float(inputs["ratio_mw2pp"]) resist_Cu = float(inputs["resist_Cu"]) v = float(inputs["v"]) """ #Assign values to universal constants B_r = 1.279 # Tesla remnant flux density E = 2e11 # N/m^2 young's modulus ratio = 0.8 # ratio of magnet width to pole pitch(bm/self.tau_p) mu_0 = np.pi*4e-7 # permeability of free space mu_r = 1.06 # relative permeability cofi = 0.85 # power factor #Assign values to design constants h_0 = 0.005 # Slot opening height h_w = 0.004 # Slot wedge height m = 3 # no of phases #b_s_tau_s = 0.45 # slot width to slot pitch ratio k_fills = 0.65 # Slot fill factor P_Fe0h = 4 # specific hysteresis losses W/kg @ 1.5 T P_Fe0e = 1 # specific hysteresis losses W/kg @ 1.5 T k_fes = 0.8 # Iron fill factor #Assign values to universal constants phi = 90*2*np.pi/360 # tilt angle (rotor tilt -90 degrees during transportation) v = 0.3 # Poisson's ratio G = 79.3e9 """ ######################## Electromagnetic design ################################### K_rad = len_s / (2 * rad_ag) # Aspect ratio # Calculating air gap length dia = 2 * rad_ag # air gap diameter len_ag = 0.001 * dia # air gap length r_s = rad_ag - len_ag # Stator outer radius b_so = 2 * len_ag # Slot opening tau_p = np.pi * dia / (2 * p) # pole pitch # Calculating winding factor Slot_pole = b / c S = Slot_pole * 2 * p * m testval = S / (m * np.gcd(int(S), int(p))) if float(np.round(testval, 3)).is_integer(): k_w = winding_factor(int(S), b, c, int(p), m) b_m = ratio_mw2pp * tau_p # magnet width alpha_p = np.pi / 2 * ratio_mw2pp tau_s = np.pi * (dia - 2 * len_ag) / S # Calculating Carter factor for statorand effective air gap length gamma = ( 4 / np.pi * ( b_so / 2 / (len_ag + h_m / mu_r) * np.arctan(b_so / 2 / (len_ag + h_m / mu_r)) - np.log(np.sqrt(1 + (b_so / 2 / (len_ag + h_m / mu_r)) ** 2)) ) ) k_C = tau_s / (tau_s - gamma * (len_ag + h_m / mu_r)) # carter coefficient g_eff = k_C * (len_ag + h_m / mu_r) # angular frequency in radians om_m = 2 * np.pi * shaft_rpm / 60 om_e = p * om_m freq = om_e / 2 / np.pi # outout frequency # Calculating magnetic loading B_pm1 = B_r * h_m / mu_r / (g_eff) B_g = B_r * h_m / (mu_r * g_eff) * (4 / np.pi) * np.sin(alpha_p) B_symax = B_pm1 * b_m / (2 * h_ys) * k_fes B_rymax = B_pm1 * b_m * k_fes / (2 * h_yr) b_t = B_pm1 * tau_s / B_tmax N_c = 2 # Number of turns per coil q = (B_g) ** 2 / 2 / mu_0 # Stator winding length ,cross-section and resistance l_Cus = 2 * (len_s + np.pi / 4 * (tau_s + b_t)) # length of a turn # Calculating no-load voltage induced in the stator N_s = np.rint(E_p / (np.sqrt(2) * len_s * r_s * k_w * om_m * B_g)) # Z = P_av_v / (m*E_p) # Calculating leakage inductance in stator V_1 = E_p / 1.1 I_n = P_av_v / 3 / cofi / V_1 J_s = 6.0 A_Cuscalc = I_n / J_s A_slot = 2 * N_c * A_Cuscalc * (10 ** -6) / k_fills tau_s_new = np.pi * (dia - 2 * len_ag - 2 * h_w - 2 * h_0) / S b_s2 = tau_s_new - b_t # Slot top width b_s1 = np.sqrt(b_s2 ** 2 - 4 * np.pi * A_slot / S) b_s = (b_s1 + b_s2) * 0.5 N_coil = 2 * S P_s = mu_0 * (h_s / 3 / b_s + h_w * 2 / (b_s2 + b_so) + h_0 / b_so) # Slot permeance function L_ssigmas = S / 3 * 4 * N_c ** 2 * len_s * P_s # slot leakage inductance L_ssigmaew = ( N_coil * N_c ** 2 * mu_0 * tau_s * np.log((0.25 * np.pi * tau_s ** 2) / (0.5 * h_s * b_s)) ) # end winding leakage inductance L_aa = 2 * np.pi / 3 * (N_c ** 2 * mu_0 * len_s * r_s / g_eff) L_m = L_aa L_ssigma = L_ssigmas + L_ssigmaew L_s = L_m + L_ssigma G_leak = np.abs((1.1 * E_p) ** 4 - (1 / 9) * (P_av_v * om_e * L_s) ** 2) # Calculating stator current and electrical loading I_s = np.sqrt(2 * (np.abs((E_p * 1.1) ** 2 - G_leak ** 0.5)) / (om_e * L_s) ** 2) A_1 = 6 * I_s * N_s / np.pi / dia J_actual = I_s / (A_Cuscalc * 2 ** 0.5) L_Cus = N_s * l_Cus R_s = inputs["resist_Cu"] * (N_s) * l_Cus / (A_Cuscalc * (10 ** -6)) B_smax = np.sqrt(2) * I_s * mu_0 / g_eff # Calculating Electromagnetically active mass wedge_area = (b_s * 0.5 - b_so * 0.5) * (2 * h_0 + h_w) V_Cus = m * L_Cus * (A_Cuscalc * (10 ** -6)) # copper volume h_t = h_s + h_w + h_0 V_Fest = len_s * S * (b_t * (h_s + h_w + h_0) + wedge_area) # volume of iron in stator tooth V_Fesy = ( len_s * np.pi * ((rad_ag - len_ag - h_s - h_w - h_0) ** 2 - (rad_ag - len_ag - h_s - h_w - h_0 - h_ys) ** 2) ) # volume of iron in stator yoke V_Fery = len_s * np.pi * ((rad_ag + h_m + h_yr) ** 2 - (rad_ag + h_m) ** 2) Copper = V_Cus[-1] * inputs["rho_Copper"] M_Fest = V_Fest * rho_Fe # Mass of stator tooth M_Fesy = V_Fesy * rho_Fe # Mass of stator yoke M_Fery = V_Fery * rho_Fe # Mass of rotor yoke Iron = M_Fest + M_Fesy + M_Fery mass_PM = 2 * np.pi * (rad_ag + h_m) * len_s * h_m * ratio_mw2pp * inputs["rho_PM"] # Calculating Losses ##1. Copper Losses K_R = 1.0 # Skin effect correction co-efficient P_Cu = m * (I_s / 2 ** 0.5) ** 2 * R_s * K_R # Iron Losses ( from Hysteresis and eddy currents) P_Hyys = ( M_Fesy * (B_symax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in stator yoke P_Ftys = ( M_Fesy * ((B_symax / 1.5) ** 2) * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator yoke P_Fesynom = P_Hyys + P_Ftys P_Hyd = ( M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in stator teeth P_Ftd = ( M_Fest * (B_tmax / 1.5) ** 2 * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator teeth P_Festnom = P_Hyd + P_Ftd # Iron Losses ( from Hysteresis and eddy currents) P_Hyyr = ( M_Fery * (B_rymax / 1.5) ** 2 * (P_Fe0h * om_e / (2 * np.pi * 60)) ) # Hysteresis losses in stator yoke P_Ftyr = ( M_Fery * ((B_rymax / 1.5) ** 2) * (P_Fe0e * (om_e / (2 * np.pi * 60)) ** 2) ) # Eddy losses in stator yoke P_Ferynom = P_Hyyr + P_Ftyr # additional stray losses due to leakage flux P_ad = 0.2 * (P_Hyys + P_Ftys + P_Hyd + P_Ftd + P_Hyyr + P_Ftyr) pFtm = 300 # specific magnet loss P_Ftm = pFtm * 2 * p * b_m * len_s Losses = P_Cu + P_Festnom + P_Fesynom + P_ad + P_Ftm + P_Ferynom gen_eff = (P_mech - Losses) / (P_mech) I_snom = gen_eff * (P_mech / m / E_p / cofi) # rated current I_qnom = gen_eff * P_mech / (m * E_p) X_snom = om_e * (L_m + L_ssigma) T_e = np.pi * rad_ag ** 2 * len_s * 2 * sigma Stator = M_Fesy + M_Fest + Copper # modified mass_stru_steel Rotor = M_Fery + mass_PM # modified (N_r*(R_1-self.R_sh)*a_r*self.rho_Fes)) Mass_tooth_stator = M_Fest + Copper Mass_yoke_rotor = M_Fery Mass_yoke_stator = M_Fesy R_out = (dia + 2 * h_m + 2 * h_yr + 2 * inputs["h_sr"]) * 0.5 Losses = Losses generator_efficiency = gen_eff else: # Bad design for k in outputs.keys(): outputs[k] = 1e30 return ######################## Rotor inactive (structural) design ################################### # Radial deformation of rotor R = rad_ag + h_m L_r = len_s + t_r + 0.125 constants_x_0 = shell_constant(R, t_r, L_r, 0, E, v) constants_x_L = shell_constant(R, t_r, L_r, L_r, E, v) f_d_denom1 = R / (E * ((R) ** 2 - (R_sh) ** 2)) * ((1 - v) * R ** 2 + (1 + v) * (R_sh) ** 2) f_d_denom2 = ( t_r / (2 * constants_x_0[0] * (constants_x_0[1]) ** 3) * ( constants_x_0[2] / (2 * constants_x_0[3]) * constants_x_0[4] - constants_x_0[5] / constants_x_0[3] * constants_x_0[6] - 0.5 * constants_x_0[7] ) ) f = q * (R) ** 2 * t_r / (E * (h_yr + h_sr) * (f_d_denom1 + f_d_denom2)) u_d = ( f / (constants_x_L[0] * (constants_x_L[1]) ** 3) * ( ( constants_x_L[2] / (2 * constants_x_L[3]) * constants_x_L[4] - constants_x_L[5] / constants_x_L[3] * constants_x_L[6] - 0.5 * constants_x_L[7] ) ) + y_sh ) u_ar = (q * (R) ** 2) / (E * (h_yr + h_sr)) - u_d u_ar = np.abs(u_ar + y_sh) u_allow_r = 2 * rad_ag / 1000 * inputs["u_allow_pcent"] / 100 # axial deformation of rotor W_back_iron = plate_constant(R + h_sr + h_yr, R_sh, E, v, 0.5 * h_yr + R, t_r) W_ssteel = plate_constant(R + h_sr + h_yr, R_sh, E, v, h_yr + R + h_sr * 0.5, t_r) W_mag = plate_constant(R + h_sr + h_yr, R_sh, E, v, h_yr + R - 0.5 * h_m, t_r) W_ir = rho_Fe * gravity * np.sin(phi) * (L_r - t_r) * h_yr y_ai1r = ( -W_ir * (0.5 * h_yr + R) ** 4 / (R_sh * W_back_iron[0]) * (W_back_iron[1] * W_back_iron[4] / W_back_iron[3] - W_back_iron[2]) ) W_sr = rho_Fes * gravity * np.sin(phi) * (L_r - t_r) * h_sr y_ai2r = ( -W_sr * (h_sr * 0.5 + h_yr + R) ** 4 / (R_sh * W_ssteel[0]) * (W_ssteel[1] * W_ssteel[4] / W_ssteel[3] - W_ssteel[2]) ) W_m = np.sin(phi) * mass_PM / (2 * np.pi * (R - h_m * 0.5)) y_ai3r = -W_m * (R - h_m) ** 4 / (R_sh * W_mag[0]) * (W_mag[1] * W_mag[4] / W_mag[3] - W_mag[2]) w_disc_r = rho_Fes * gravity * np.sin(phi) * t_r a_ii = R + h_sr + h_yr r_oii = R_sh M_rb = ( -w_disc_r * a_ii ** 2 / W_ssteel[5] * (W_ssteel[6] * 0.5 / (a_ii * R_sh) * (a_ii ** 2 - r_oii ** 2) - W_ssteel[8]) ) Q_b = w_disc_r * 0.5 / R_sh * (a_ii ** 2 - r_oii ** 2) y_aiir = ( M_rb * a_ii ** 2 / W_ssteel[0] * W_ssteel[1] + Q_b * a_ii ** 3 / W_ssteel[0] * W_ssteel[2] - w_disc_r * a_ii ** 4 / W_ssteel[0] * W_ssteel[7] ) I = np.pi * 0.25 * (R ** 4 - (R_sh) ** 4) F_ecc = q * 2 * np.pi * K_rad * rad_ag ** 3 M_ar = F_ecc * L_r * 0.5 y_ar = ( np.abs(y_ai1r + y_ai2r + y_ai3r) + y_aiir + (R + h_yr + h_sr) * inputs["theta_sh"] + M_ar * L_r ** 2 * 0 / (2 * E * I) ) y_allow_r = L_r / 100 * inputs["y_allow_pcent"] # Torsional deformation of rotor J_dr = 0.5 * np.pi * ((R + h_yr + h_sr) ** 4 - R_sh ** 4) J_cylr = 0.5 * np.pi * ((R + h_yr + h_sr) ** 4 - R ** 4) twist_r = 180 / np.pi * inputs["rated_torque"] / G * (t_r / J_dr + (L_r - t_r) / J_cylr) Structural_mass_rotor = ( rho_Fes * np.pi * (((R + h_yr + h_sr) ** 2 - (R_sh) ** 2) * t_r + ((R + h_yr + h_sr) ** 2 - (R + h_yr) ** 2) * len_s) ) TC1 = inputs["rated_torque"] / (2 * np.pi * sigma) TC2r = (R + (h_yr + h_sr)) ** 2 * L_r ######################## Stator inactive (structural) design ################################### # Radial deformation of Stator L_stator = len_s + t_s + 0.1 R_stator = rad_ag - len_ag - h_t - h_ys - h_ss constants_x_0 = shell_constant(R_stator, t_s, L_stator, 0, E, v) constants_x_L = shell_constant(R_stator, t_s, L_stator, L_stator, E, v) f_d_denom1 = ( R_stator / (E * ((R_stator) ** 2 - (R_no) ** 2)) * ((1 - v) * R_stator ** 2 + (1 + v) * (R_no) ** 2) ) f_d_denom2 = ( t_s / (2 * constants_x_0[0] * (constants_x_0[1]) ** 3) * ( constants_x_0[2] / (2 * constants_x_0[3]) * constants_x_0[4] - constants_x_0[5] / constants_x_0[3] * constants_x_0[6] - 0.5 * constants_x_0[7] ) ) f = q * (R_stator) ** 2 * t_s / (E * (h_ys + h_ss) * (f_d_denom1 + f_d_denom2)) # TODO: Adds y_bd twice? u_as = ( (q * (R_stator) ** 2) / (E * (h_ys + h_ss)) - f * 0 / (constants_x_L[0] * (constants_x_L[1]) ** 3) * ( ( constants_x_L[2] / (2 * constants_x_L[3]) * constants_x_L[4] - constants_x_L[5] / constants_x_L[3] * constants_x_L[6] - 1 / 2 * constants_x_L[7] ) ) + y_bd ) u_as = np.abs(u_as + y_bd) u_allow_s = 2 * rad_ag / 1000 * inputs["u_allow_pcent"] / 100 # axial deformation of stator W_back_iron = plate_constant(R_stator + h_ss + h_ys + h_t, R_no, E, v, 0.5 * h_ys + h_ss + R_stator, t_s) W_ssteel = plate_constant(R_stator + h_ss + h_ys + h_t, R_no, E, v, R_stator + h_ss * 0.5, t_s) W_active = plate_constant(R_stator + h_ss + h_ys + h_t, R_no, E, v, R_stator + h_ss + h_ys + h_t * 0.5, t_s) W_is = rho_Fe * gravity * np.sin(phi) * (L_stator - t_s) * h_ys y_ai1s = ( -W_is * (0.5 * h_ys + R_stator) ** 4 / (R_no * W_back_iron[0]) * (W_back_iron[1] * W_back_iron[4] / W_back_iron[3] - W_back_iron[2]) ) W_ss = rho_Fes * gravity * np.sin(phi) * (L_stator - t_s) * h_ss y_ai2s = ( -W_ss * (h_ss * 0.5 + h_ys + R_stator) ** 4 / (R_no * W_ssteel[0]) * (W_ssteel[1] * W_ssteel[4] / W_ssteel[3] - W_ssteel[2]) ) W_cu = np.sin(phi) * Mass_tooth_stator / (2 * np.pi * (R_stator + h_ss + h_ys + h_t * 0.5)) y_ai3s = ( -W_cu * (R_stator + h_ss + h_ys + h_t * 0.5) ** 4 / (R_no * W_active[0]) * (W_active[1] * W_active[4] / W_active[3] - W_active[2]) ) w_disc_s = rho_Fes * gravity *
np.sin(phi)
numpy.sin
""" Author : <NAME> 01 October 2021 Hacktoberfest Mozilla Campus Club Cummins College of Engineering for Women Pune """ import re import numpy as np #makes all the ones that are part of the same island 0 def remove_ones(x,y): global r global c global grid #check that indices x and y exist in grid if (x<0 or x>=r or y<0 or y>=c): return if grid[x][y]==0: return #Marks the cell as 0 grid[x][y] = 0 #this function should keep calling itself till the entire island #has been traversed and all the ones in it made to 0 #checking #horizontal and vertical remove_ones(x+1,y) remove_ones(x-1,y) remove_ones(x,y+1) remove_ones(x,y-1) #diagonal remove_ones(x+1,y+1) remove_ones(x+1,y-1) remove_ones(x-1,y+1) remove_ones(x-1,y-1) def iterate(): count=0 #this is simple ireator that calls the remove_ones #function for the first time for a particular island for i in range(0,r): for j in range(0,c): if grid[i][j]==1: count+=1 remove_ones(i,j) #print(grid) ##uncomment above to visialize the islands being removed return(count) #the grid must be entered in the following format {{0,1},{1,0},{1,1},{1,0}} s=input("grid = ") #no of rows r=s.count("{") - 1 #grid is initially a 1D numpy array #the regex removes all the characters that are not 0 or 1 grid=np.array(list(re.sub(r"[^0-1]","",s)), dtype= int) #reshape the grid c=(int) (len(grid)/r) #columns grid =
np.reshape(grid, (r,c))
numpy.reshape
__author__ = 'sibirrer' # this file contains a class to compute the Navaro-Frank-White function in mass/kappa space # the potential therefore is its integral import numpy as np class NFWt(object): """ this class contains functions concerning the truncated NFW profile with truncation function (t^2 / (r^2 + t^2)) detailed in Baltz et al 2008 relation are: R_200 = c * Rs """ def function(self, x, y, Rs, theta_Rs, t, center_x=0, center_y=0): """ :param x: angular position :param y: angular position :param Rs: angular turn over point :param theta_Rs: deflection at Rs :param t: truncation radius (angular units) :param center_x: center of halo :param center_y: center of halo :return: """ rho0_input = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs) if Rs < 0.0001: Rs = 0.0001 x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) f_ = self.nfwPot(R, Rs, rho0_input, t) return f_ def derivatives(self, x, y, Rs, theta_Rs, t, center_x=0, center_y=0): """ returns df/dx and df/dy of the function (integral of NFW) """ rho0_input = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs) if Rs < 0.0001: Rs = 0.0001 x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) f_x, f_y = self.nfwAlpha(R, Rs, rho0_input, t, x_, y_) return f_x, f_y def hessian(self, x, y, Rs, theta_Rs, t, center_x=0, center_y=0): """ returns Hessian matrix of function d^2f/dx^2, d^f/dy^2, d^2/dxdy """ rho0_input = self._alpha2rho0(theta_Rs=theta_Rs, Rs=Rs) if Rs < 0.0001: Rs = 0.0001 x_ = x - center_x y_ = y - center_y R = np.sqrt(x_**2 + y_**2) kappa = self.density_2d(R, 0, Rs, rho0_input, t) gamma1, gamma2 = self.nfwGamma(R, Rs, rho0_input, t, x_, y_) f_xx = kappa + gamma1 f_yy = kappa - gamma1 f_xy = gamma2 return f_xx, f_yy, f_xy def density(self, R, Rs, rho0, t): """ three dimenstional NFW profile :param R: radius of interest :type R: float/numpy array :param Rs: scale radius :type Rs: float :param rho0: density normalization (characteristic density) :type rho0: float :param t: truncation radius (angular units) :return: rho(R) density """ return rho0 / (R / Rs * (1 + R / Rs) ** 2) * (t**2*(R**2 + t**2)**-1) def density_2d(self, x, y, Rs, rho0, t, center_x=0, center_y=0): """ projected two dimenstional NFW profile (kappa*Sigma_crit) :param R: radius of interest :type R: float/numpy array :param Rs: scale radius :type Rs: float :param rho0: density normalization (characteristic density) :type rho0: float :param r200: radius of (sub)halo :type r200: float>0 :param t: truncation radius (angular units) :return: Epsilon(R) projected density at radius R """ x_ = x - center_x y_ = y - center_y R = np.sqrt(x_ ** 2 + y_ ** 2) x = R / Rs Fx = self._F(x,t) return 2 * rho0 * Rs * Fx def mass_3d(self, R, Rs, rho0, t): """ mass enclosed a 3d sphere or radius r :param r: :param Ra: :param Rs: :param t: truncation radius (angular units) :return: """ raise ValueError('not yet implemented') def mass_3d_lens(self, R, Rs, theta_Rs, t): """ mass enclosed a 3d sphere or radius r :param r: :param Ra: :param Rs: :param t: truncation radius (angular units) :return: """ raise ValueError('not yet implemented') def mass_2d(self, R, Rs, rho0, t): """ mass enclosed a 3d sphere or radius r :param r: :param Ra: :param Rs: :param t: truncation radius (angular units) :return: """ raise ValueError('not yet implemented') def nfw2D_smoothed(self, R, Rs, rho0, t, pixscale): """ projected two dimenstional NFW profile with smoothing around the pixel scale this routine is ment to better compare outputs to N-body simulations (not ment ot do lensemodelling with it) :param R: radius of interest :type R: float/numpy array :param Rs: scale radius :type Rs: float :param rho0: density normalization (characteristic density) :type rho0: float :param r200: radius of (sub)halo :type r200: float>0 :param pixscale: pixel scale (same units as R,Rs) :type pixscale: float>0 :param t: truncation radius (angular units) :return: Epsilon(R) projected density at radius R """ x = R / Rs d = pixscale / (2 * Rs) a = np.empty_like(x) x_ = x[x > d] upper = x_ + d lower = x_ - d a[x > d] = 4 * rho0 * Rs ** 3 * (self._g(upper,t) - self._g(lower,t)) / (2 * x_ * Rs * pixscale) a[x < d] = 4 * rho0 * Rs ** 3 * self._g(d,t) / ((pixscale / 2) ** 2) return a def nfwPot(self, R, Rs, rho0, t): """ lensing potential of NFW profile (*Sigma_crit*D_OL**2) :param R: radius of interest :type R: float/numpy array :param Rs: scale radius :type Rs: float :param rho0: density normalization (characteristic density) :type rho0: float :param r200: radius of (sub)halo :type r200: float>0 :param t: truncation radius (angular units) :return: Epsilon(R) projected density at radius R """ x = R / Rs hx = self._h(x, t) return 2 * rho0 * Rs ** 3 * hx def nfwAlpha(self, R, Rs, rho0, t, ax_x, ax_y): """ deflection angel of NFW profile (*Sigma_crit*D_OL) along the projection to coordinate "axis" :param R: radius of interest :type R: float/numpy array :param Rs: scale radius :type Rs: float :param rho0: density normalization (characteristic density) :type rho0: float :param r200: radius of (sub)halo :type r200: float>0 :param axis: projection to either x- or y-axis :type axis: same as R :param t: truncation radius (angular units) :return: Epsilon(R) projected density at radius R """ if isinstance(R, int) or isinstance(R, float): R = max(R, 0.00001) else: R[R <= 0.00001] = 0.00001 x = R / Rs gx = self._g(x,t) a = 4 * rho0 * Rs * R * gx / x ** 2 / R return a * ax_x, a * ax_y def nfwGamma(self, R, Rs, rho0, t, ax_x, ax_y): """ shear gamma of NFW profile (*Sigma_crit) along the projection to coordinate "axis" :param R: radius of interest :type R: float/numpy array :param Rs: scale radius :type Rs: float :param rho0: density normalization (characteristic density) :type rho0: float :param r200: radius of (sub)halo :type r200: float>0 :param axis: projection to either x- or y-axis :type axis: same as R :return: Epsilon(R) projected density at radius R """ c = 0.001 if isinstance(R, int) or isinstance(R, float): R = max(R, c) else: R[R <= c] = c x = R/Rs gx = self._g(x,t) Fx = self._F(x,t) a = 2*rho0*Rs*(2*gx/x**2 - Fx)#/x #2*rho0*Rs*(2*gx/x**2 - Fx)*axis/x return a*(ax_y**2-ax_x**2)/R**2, -a*2*(ax_x*ax_y)/R**2 def tau_deflection_factor(self, x, tau): return tau ** 2 * (tau ** 2 + 1) ** -2 * ( (tau ** 2 + 1 + 2 * (x ** 2 - 1)) * self._func(x) + tau * np.pi + (tau ** 2 - 1) * np.log(tau) + np.sqrt(tau ** 2 + x ** 2) * (-np.pi + self._Log(x, tau) * (tau ** 2 - 1) * tau ** -1)) def _func(self,x): if isinstance(x, np.ndarray): nfwvals = np.ones_like(x) inds1 = np.where(x < 1) inds2 = np.where(x > 1) nfwvals[inds1] = (1 - x[inds1] ** 2) ** -.5 * np.arccosh(x[inds1]**-1) nfwvals[inds2] = (x[inds2] ** 2 - 1) ** -.5 * np.arccos(x[inds2]**-1) return nfwvals elif isinstance(x, float) or isinstance(x, int): if x == 1: return 1 if x < 1: return (1 - x ** 2) ** -.5 * np.arctanh((1 - x ** 2) ** .5) else: return (x ** 2 - 1) ** -.5 * np.arctan((x ** 2 - 1) ** .5) def _F(self, X,t): """ analytic solution of the projection integral :param x: R/Rs :type x: float >0 """ c = 0.001 t2 = t**2 t2p = (t2+1)**2 t2m = (t2-1)**2 if isinstance(X, int) or isinstance(X, float): if X < 1: x = max(c, X) cos = np.arccosh(x ** -1) F = cos * (1 - x ** 2) ** -.5 elif X == 1: cos = 0 F = 1 else: # X > 1: cos = np.arccos(X ** -1) F = cos * (X ** 2 - 1) ** -.5 a = t2*t2p**-1*(t2p*(X**2-1)**-1 * (1-F) +2*F - np.pi*(t2+X**2)**-.5 + t2m * self._Log(X,t)*(t*(t2+X**2)**.5)**-1) else: a = np.empty_like(X) X[X < c] = c x = X[X < 1] cos =
np.arccosh(x ** -1)
numpy.arccosh
""" .. module:: model_fitter :platform: Unix, Mac, Windows :synopsis: Microlensing model fitter. .. moduleauthor:: <NAME> <<EMAIL>> .. moduleauthor:: <NAME> <<EMAIL>> .. moduleauthor:: <NAME> <<EMAIL>> .. moduleauthor:: <NAME> """ from pymultinest.solve import Solver import os from astropy.table.row import Row import glob import math import numpy as np import pylab as plt import scipy.stats import pymultinest import src.BAGLE.model as mmodel from astropy.table import Table from astropy.table import Row from astropy import units from astropy.stats import sigma_clipped_stats import json from string import digits import copy import pdb from datetime import date import yaml from dynesty import plotting as dyplot from six.moves import range import matplotlib.patches as mpatches import logging import types from matplotlib.ticker import MaxNLocator, NullLocator from matplotlib.colors import LinearSegmentedColormap, colorConverter from matplotlib.ticker import ScalarFormatter from scipy import spatial from scipy.ndimage import gaussian_filter as norm_kde from scipy.stats import gaussian_kde import warnings from dynesty.utils import resample_equal, unitcheck from dynesty.utils import quantile as _quantile import re try: str_type = types.StringTypes float_type = types.FloatType int_type = types.IntType except: str_type = str float_type = float int_type = int muS_scale_factor = 100.0 # Global variable to define all array-style parameters (i.e. multiple filters). multi_filt_params = ['b_sff', 'mag_src', 'mag_base', 'add_err', 'mult_err', 'mag_src_pri', 'mag_src_sec', 'fratio_bin', 'gp_log_sigma', 'gp_log_rho', 'gp_log_S0', 'gp_log_omega0', 'gp_rho', 'gp_log_omega04_S0', 'gp_log_omega0', 'add_err', 'mult_err'] class PSPL_Solver(Solver): """ A PyMultiNest solver to find the optimal PSPL parameters, given data and a microlensing model from model.py. DESPITE THE NAME YOU CAN ALSO USE IT TO FIT PSBL! Attributes ----------- data : dictionary Observational data used to fit a microlensing model. What the data must contain depends on what type of microlensing model you are solving for. The data dictionary must always photometry information of at least one filter. This data must contain the times, magnitudes, and magnitude errors of the observations. The keys to these arrays are: * `t_phot1` (MJD) * `mag1` (magnitudes) * `mag_err1` (magnitudes) PSPL_Solver supports multiple photometric filters. For each additional filter, increments the extension of the above keys by one. For example, a second filter would be: * `t_phot2` (MJD) * `mag2` (magnitudes) * `mag_err2` (magnitudes) PSPL_Solver supports solving microlensing models that calculate with parallax. These models must be accompanied with data that contains the right ascenscion and declination of the target. These keys are: * `raL` (decimal degrees) * `decL` (decimal degrees) PSPL_Solver supports solving microlensing models that fit astrometry. These models must be accompanied with data that contains astrometric observations in the following keys: * `t_ast` (MJD) * `xpos` (arcsec along East-West increasing to the East) * `ypos` (arcsec along the North-South increasing to the North) * `xpos_err` (arcsec) * `ypos_err` (arcsec) model_class : PSPL_Solver must be provided with the microlensing model that you are trying to fit to your data. These models are written out in model.py, along with extensive documentation as to their content and construction in the file's docstring. The model can support either 1. photometric data or photometric and astrometric data, 2. parallax or no parallax, and 3. different parameterizations of the model. For example, a model with accepts both astrometric and photometric data, uses parallax, and uses a parameterization that includes the distance to the source and the lens is: `PSPL_PhotAstrom_Par_Param1`. custom_additional_param_names : list, optional If provided, the fitter will override the default `additional_param_names` of the model_class. These are the parameters, besides those that are being fitted for, that are written out to disk for posterior plotting after the fit has completed. To see the default additional_param_names run: `print(model_class.additional _param_names)` add_error_on_photometry : boolean, optional If set to True, the fitter will fit for an additive error to the photometric magnitudes in the fitting process. This error will have the name `add_errN`, with an `N` equal to the filter number. multiply_error_on_photometry : boolean, optional If set to True, the fitter will fit for a multiplicative error to the photometric magnitudes in the fitting process. This error will have the name `mult_errN`, with an `N` equal to the filter number. All other parameters : See pymultinest.run() for a description of all other parameters. Examples ------------------- Assuming that a data dictionary has been instantiated with the above keys, and that a model has been loaded in from model.py, PSPL_Solver can be run with the following commands: .. code:: fitter = PSPL_Solver(data, PSPL_PhotAstrom_Par_Param1, add_error_on_photometry=True, custom_additional_param_names=['dS', 'tE'], outputfiles_basename='./model_output/test_') fitter.solve() """ default_priors = { 'mL': ('make_gen', 0, 100), 't0': ('make_t0_gen', None, None), 't0_prim': ('make_t0_gen', None, None), 'xS0_E': ('make_xS0_gen', None, None), 'xS0_N': ('make_xS0_gen', None, None), 'u0_amp': ('make_gen', -1, 1), 'u0_amp_prim': ('make_gen', -1, 1), 'beta': ('make_gen', -2, 2), 'muL_E': ('make_gen', -20, 20), 'muL_N': ('make_gen', -20, 20), 'muS_E': ('make_muS_EN_gen', None, None), 'muS_N': ('make_muS_EN_gen', None, None), 'dL': ('make_gen', 1000, 8000), 'dS': ('make_gen', 100, 10000), 'dL_dS': ('make_gen', 0.01, 0.99), 'b_sff': ('make_gen', 0.0, 1.5), 'mag_src': ('make_mag_src_gen', None, None), 'mag_src_pri': ('make_mag_src_gen', None, None), 'mag_src_sec': ('make_mag_src_gen', None, None), 'mag_base': ('make_mag_base_gen', None, None), 'tE': ('make_gen', 1, 400), 'piE_E': ('make_gen', -1, 1), 'piE_N': ('make_gen', -1, 1), 'piEN_piEE' : ('make_gen', -10, 10), 'thetaE': ('make_lognorm_gen', 0, 1), 'log10_thetaE': ('make_truncnorm_gen', -0.2, 0.3, -4, 4), 'q': ('make_gen', 0.001, 1), 'alpha': ('make_gen', 0, 360), 'phi': ('make_gen', 0, 360), 'sep': ('make_gen', 1e-4, 2e-2), 'piS': ('make_piS', None, None), 'add_err': ('make_gen', 0, 0.3), 'mult_err': ('make_gen', 1.0, 3.0), 'radius': ('make_gen', 1E-4, 1E-2), 'fratio_bin': ('make_gen', 0, 1), # We really need to make some normal distributions. All these are junk right now. 'gp_log_rho': ('make_norm_gen', 0, 5), 'gp_log_S0': ('make_norm_gen', 0, 5), 'gp_log_sigma': ('make_norm_gen', 0, 5), 'gp_rho':('make_invgamma_gen', None, None), 'gp_log_omega04_S0':('make_norm_gen', 0, 5), # FIX... get from data 'gp_log_omega0':('make_norm_gen', 0, 5) } def __init__(self, data, model_class, custom_additional_param_names=None, add_error_on_photometry=False, multiply_error_on_photometry=False, use_phot_optional_params=True, use_ast_optional_params=True, wrapped_params=None, importance_nested_sampling=False, multimodal=True, const_efficiency_mode=False, n_live_points=300, evidence_tolerance=0.5, sampling_efficiency=0.8, n_iter_before_update=100, null_log_evidence=-1e90, max_modes=100, mode_tolerance=-1e90, outputfiles_basename="chains/1-", seed=-1, verbose=False, resume=False, context=0, write_output=True, log_zero=-1e100, max_iter=0, init_MPI=False, dump_callback=None): """ Accepted optional inputs are the same as on pymultinest.run(). Note that prior distributions are defined upon initiatlization and can be modified on the object before running solve(). Parameters --------------- use_phot_optional_params : bool, or list of bools, optional optional photometry parameters """ # Set the data, model, and error modes self.data = data self.model_class = model_class self.add_error_on_photometry = add_error_on_photometry self.multiply_error_on_photometry = multiply_error_on_photometry self.use_phot_optional_params = use_phot_optional_params self.use_ast_optional_params = use_ast_optional_params # Check the data self.check_data() # list of all possible multi-filt, multi-phot, multi-ast parameters that anyone # could ever possibly use. self.multi_filt_params = multi_filt_params self.gp_params = ['gp_log_sigma', 'gp_log_rho', 'gp_log_S0', 'gp_log_omega0', 'gp_rho', 'gp_log_omega04_S0', 'gp_log_omega0'] # Set up parameterization of the model self.remove_digits = str.maketrans('', '', digits) # removes nums from strings self.custom_additional_param_names = custom_additional_param_names self.n_phot_sets = None self.n_ast_sets = None self.fitter_param_names = None self.additional_param_names = None self.all_param_names = None self.n_dims = None self.n_params = None self.n_clustering_params = None self.setup_params() # Set multinest stuff self.multimodal = multimodal self.wrapped_params = wrapped_params self.importance_nested_sampling = importance_nested_sampling self.const_efficiency_mode = const_efficiency_mode self.n_live_points = n_live_points self.evidence_tolerance = evidence_tolerance self.sampling_efficiency = sampling_efficiency self.n_iter_before_update = n_iter_before_update self.null_log_evidence = null_log_evidence self.max_modes = max_modes self.mode_tolerance = mode_tolerance self.outputfiles_basename = outputfiles_basename self.seed = seed self.verbose = verbose self.resume = resume self.context = context self.write_output = write_output self.log_zero = log_zero self.max_iter = max_iter self.init_MPI = init_MPI if dump_callback is None: self.dump_callback = self.callback_plotter else: self.dump_callback = dump_callback # Setup the default priors self.priors = None # self.priors = {} self.make_default_priors() # Stuff needed for using multinest posteriors as priors. self.post_param_cdf = None self.post_param_names = None self.post_param_bininds = None self.post_param_bins = None # Make the output directory if doesn't exist if os.path.dirname(outputfiles_basename) != '': os.makedirs(os.path.dirname(outputfiles_basename), exist_ok=True) return def check_data(self): if 't_ast1' in self.data.keys(): if not self.model_class.paramAstromFlag or \ not self.model_class.astrometryFlag: print('***** WARNING: ASTROMETRY DATA WILL NOT BE FIT ' 'BY %s *****' % str(self.model_class)) else: if self.model_class.paramAstromFlag or \ self.model_class.astrometryFlag: raise RuntimeError('Astrometry data required to ' 'run %s' % str(self.model_class)) if 't_phot1' in self.data.keys(): if not self.model_class.paramPhotFlag or \ not self.model_class.photometryFlag: print('***** WARNING: PHOTOMETRY DATA WILL NOT BE FIT ' 'BY %s *****' % str(self.model_class)) else: if self.model_class.paramPhotFlag or \ self.model_class.photometryFlag: raise RuntimeError('Photometry data required to ' 'run %s' % str(self.model_class)) def setup_params(self): # Number of photometry sets n_phot_sets = 0 # Number of astrometry sets n_ast_sets = 0 phot_params = [] ast_params = [] # The indices in map_phot_idx_to_ast_idx map phot to astrom # map_phot_idx_to_ast_idx <--> [0, 1, 2, ... len(map_phot_idx_to_ast_idx)-1] map_phot_idx_to_ast_idx = [] for key in self.data.keys(): if 't_phot' in key and (self.model_class.paramPhotFlag or self.model_class.photometryFlag): n_phot_sets += 1 # Photometry parameters for phot_name in self.model_class.phot_param_names: phot_params.append(phot_name + str(n_phot_sets)) # Optional photometric parameters -- not all filters for opt_phot_name in self.model_class.phot_optional_param_names: if isinstance(self.use_phot_optional_params, (list, np.ndarray)): if self.use_phot_optional_params[n_phot_sets-1]: phot_params.append(opt_phot_name + str(n_phot_sets)) # Case: single value -- set for all filters. else: if self.use_phot_optional_params: phot_params.append(opt_phot_name + str(n_phot_sets)) else: msg = 'WARNING: Your model supports optional photometric parameters; ' msg += 'but you have disabled them for all filters. ' msg += 'Consider using a simpler model instead.' print(msg) # Additive error parameters (not on the model) -- not all filters if self.add_error_on_photometry: # Case: List -- control additive error on each filter. if isinstance(self.add_error_on_photometry, (list, np.ndarray)): if self.add_error_on_photometry[n_phot_sets-1]: phot_params.append('add_err' + str(n_phot_sets)) # Case: single value -- set for all filters. else: phot_params.append('add_err' + str(n_phot_sets)) # Multiplicative error parameters (not on the model) -- not all filters if self.multiply_error_on_photometry: # Case: List -- control additive error on each filter. if isinstance(self.multiply_error_on_photometry, (list, np.ndarray)): if self.multiply_error_on_photometry[n_phot_sets-1]: phot_params.append('mult_err' + str(n_phot_sets)) # Case: single value -- set for all filters. else: phot_params.append('mult_err' + str(n_phot_sets)) if 't_ast' in key and (self.model_class.paramAstromFlag or self.model_class.astrometryFlag): n_ast_sets += 1 # Optional astrometric parameters -- not all filters for opt_ast_name in self.model_class.ast_optional_param_names: if isinstance(self.use_ast_optional_params, (list, np.ndarray)): if self.use_ast_optional_params[n_ast_sets-1]: ast_params.append(opt_ast_name + str(n_ast_sets)) # Case: single value -- set for all filters. else: if self.use_ast_optional_params: ast_params.append(opt_ast_name + str(n_ast_sets)) else: msg = 'WARNING: Your model supports optional astrometric parameters; ' msg += 'but you have disabled them for all filters. ' msg += 'Consider using a simpler model instead.' print(msg) # The indices in map_phot_idx_to_ast_idx map phot to astrom # map_phot_idx_to_ast_idx <--> [0, 1, 2, ... len(map_phot_idx_to_ast_idx)-1] if n_ast_sets > 0 and n_phot_sets > 0: for aa in self.data['ast_data']: try: idx = self.data['phot_data'].index(aa) map_phot_idx_to_ast_idx.append(idx) except ValueError: print('*** CHECK YOUR INPUT! All astrometry data must have a corresponding photometry data set! ***') raise self.n_phot_sets = n_phot_sets self.n_ast_sets = n_ast_sets self.map_phot_idx_to_ast_idx = map_phot_idx_to_ast_idx self.fitter_param_names = self.model_class.fitter_param_names + \ phot_params + ast_params if self.custom_additional_param_names is not None: self.additional_param_names = [] for cc, param_name in enumerate(self.custom_additional_param_names): if param_name in self.multi_filt_params: # Special handling for gp params if param_name in self.gp_params: if self.use_phot_optional_params is True: for ff in range(n_phot_sets): self.additional_param_names += [param_name + str(ff+1)] elif self.use_phot_optional_params is False: continue else: for ii, use in enumerate(self.use_phot_optional_params): if use: self.additional_param_names += [param_name + str(ii+1)] else: self.additional_param_names += [param_name] else: self.additional_param_names = [] for i, param_name in enumerate(self.model_class.additional_param_names): if param_name in self.multi_filt_params: # Special handling for gp params if param_name in self.gp_params: if self.use_phot_optional_params is True: for nn in range(self.n_phot_sets): self.additional_param_names += [param_name + str(nn+1)] elif self.use_phot_optional_params is False: continue else: for ii, use in enumerate(self.use_phot_optional_params): if use: self.additional_param_names += [param_name + str(ii+1)] else: self.additional_param_names += [param_name] self.all_param_names = self.fitter_param_names + self.additional_param_names self.n_dims = len(self.fitter_param_names) self.n_params = len(self.all_param_names) # cube dimensions self.n_clustering_params = self.n_dims def make_default_priors(self): """ Setup our prior distributions (i.e. random samplers). We will draw from these in the Prior() function. We set them up in advance because they depend on properties of the data. Also, they can be over-written by custom priors as desired. To make your own custom priors, use the make_gen() functions with different limits. """ # if os.path.exists("u0.txt"): # os.remove("u0.txt") # # if os.path.exists("piEE.txt"): # os.remove("piEE.txt") # # if os.path.exists("piEN.txt"): # os.remove("piEN.txt") self.priors = {} for param_name in self.fitter_param_names: if any(x in param_name for x in self.multi_filt_params): priors_name, filt_index = split_param_filter_index1(param_name) else: priors_name = param_name filt_index = None # FIXME: can we write the code so it doesn't require the prior to exist here? foo = self.default_priors[priors_name] prior_type = foo[0] if prior_type == 'make_gen': prior_min = foo[1] prior_max = foo[2] self.priors[param_name] = make_gen(prior_min, prior_max) if prior_type == 'make_norm_gen': prior_mean = foo[1] prior_std = foo[2] self.priors[param_name] = make_norm_gen(prior_mean, prior_std) if prior_type == 'make_lognorm_gen': prior_mean = foo[1] prior_std = foo[2] self.priors[param_name] = make_lognorm_gen(prior_mean, prior_std) if prior_type == 'make_truncnorm_gen': prior_mean = foo[1] prior_std = foo[2] prior_lo_cut = foo[3] prior_hi_cut = foo[4] self.priors[param_name] = make_truncnorm_gen(prior_mean, prior_std, prior_lo_cut, prior_hi_cut) if prior_type == 'make_invgamma_gen': n_digits = len(param_name) - len(priors_name) # Get the right indices. num = int(param_name[-n_digits:]) self.priors[param_name] = make_invgamma_gen(self.data['t_phot' + str(num)]) elif prior_type == 'make_t0_gen': # Hard-coded to use the first data set to set the t0 prior. self.priors[param_name] = make_t0_gen(self.data['t_phot1'], self.data['mag1']) elif prior_type == 'make_xS0_gen': if param_name == 'xS0_E': pos = self.data['xpos1'] elif param_name == 'xS0_N': pos = self.data['ypos1'] self.priors[param_name] = make_xS0_gen(pos) elif prior_type == 'make_muS_EN_gen': if param_name == 'muS_E': pos = self.data['xpos1'] elif param_name == 'muS_N': pos = self.data['ypos1'] self.priors[param_name] = make_muS_EN_gen(self.data['t_ast1'], pos, scale_factor=muS_scale_factor) elif prior_type == 'make_piS': self.priors[param_name] = make_piS() elif prior_type == 'make_fdfdt': self.priors[param_name] = make_fdfdt() elif prior_type == 'make_mag_base_gen': self.priors[param_name] = make_mag_base_gen(self.data['mag' + str(filt_index)]) return def get_model(self, params): if self.model_class.parallaxFlag: raL, decL = self.data['raL'], self.data['decL'] else: raL, decL = None, None params_dict = generate_params_dict(params, self.fitter_param_names) mod = self.model_class(*params_dict.values(), raL=raL, decL=decL) # FIXME: Why are we updating params here??? if not isinstance(params, (dict, Row)): # FIXME: is there better way to do this. for i, param_name in enumerate(self.additional_param_names): filt_name, filt_idx = split_param_filter_index1(param_name) if filt_idx == None: # Not a multi-filter paramter. params[self.n_dims + i] = getattr(mod, param_name) else: params[self.n_dims + i] = getattr(mod, filt_name)[filt_idx-1] return mod # FIXME: Is there a reason Prior takes ndim and nparams when those aren't used? # Is it the same reason as LogLikelihood? def Prior(self, cube, ndim=None, nparams=None): for i, param_name in enumerate(self.fitter_param_names): cube[i] = self.priors[param_name].ppf(cube[i]) return cube def Prior_copy(self, cube): cube_copy = cube.copy() for i, param_name in enumerate(self.fitter_param_names): cube_copy[i] = self.priors[param_name].ppf(cube[i]) # Append on additional parameters. add_params = np.zeros(len(self.additional_param_names), dtype='float') cube_copy = np.append(cube_copy, add_params) # Strangely, get_model does the parameter updating for the additional parameters. # This should really be elsewhere FIXME. model = self.get_model(cube_copy) return cube_copy # FIXME: I pass in ndim and nparams since that's what's done in Prior, but I don't think they're necessary? def Prior_from_post(self, cube, ndim=None, nparams=None): """Get the bin midpoints """ binmids = [] for bb in np.arange(len(self.post_param_bins)): binmids.append((self.post_param_bins[bb][:-1] + self.post_param_bins[bb][1:])/2) # Draw a random sample from the posteriors. post_params = self.sample_post(binmids, self.post_param_cdf, self.post_param_bininds) # Make the cube by combining the posterior draws and the 1-D priors. for i, param_name in enumerate(self.fitter_param_names): if param_name in self.post_param_names: pdx = self.post_param_names.index(param_name) cube[i] = post_params[pdx] else: cube[i] = self.priors[param_name].ppf(cube[i]) return cube def sample_post(self, binmids, cdf, bininds): """Randomly sample from a multinest posterior distribution. Parameters ---------- Nparams: number of parameters Nbins: number of histogram bins per dimension Nnzero: number of histogram bins with non-zero probability binmids : list of length N, each list entry is an array of shape (M, ) The centers of the bins for each parameter cdf : (Nnzero, ) array CDF of the distribution. Only the non-zero probability entries. bininds : (Nnzero, Nparams) array Histogram indices of the non-zero probability entries. """ # Make a random sample from the posterior using inverse transform sampling. rr = np.random.uniform() if len(np.where(cdf > rr)[0]) == 0: idx = 0 else: idx = np.min(np.where(cdf > rr)[0]) # Get the random sample. Npars = len(bininds[0]) pars = np.empty(len(bininds[0]), dtype=float) for i in range(Npars): pars[i] = binmids[i][int(bininds[idx,i])] # Sample randomly within the bin width, so not just discreet points. pars[i] += np.random.uniform() * (binmids[i][1] - binmids[i][0]) return pars def LogLikelihood(self, cube, ndim=None, n_params=None): """This is just a wrapper because PyMultinest requires passing in the ndim and nparams. """ lnL = self.log_likely(cube, verbose=self.verbose) # lnL = self.log_likely0(cube, verbose=self.verbose) return lnL def dyn_prior(self, cube): for i, param_name in enumerate(self.fitter_param_names): cube[i] = self.priors[param_name].ppf(cube[i]) return cube def dyn_log_likely(self, cube): lnL = self.log_likely(cube, verbose=self.verbose) return lnL def log_likely_astrometry(self, model): if model.astrometryFlag: lnL_ast = 0.0 # If no photometry if len(self.map_phot_idx_to_ast_idx) == 0: for i in range(self.n_ast_sets): lnL_ast_i = model.log_likely_astrometry(self.data['t_ast' + str(i+1)], self.data['xpos' + str(i+1)], self.data['ypos' + str(i+1)], self.data['xpos_err' + str(i+1)], self.data['ypos_err' + str(i+1)], ast_filt_idx = i) lnL_ast += lnL_ast_i.sum() # If photometry else: for i in range(self.n_ast_sets): lnL_ast_i = model.log_likely_astrometry(self.data['t_ast' + str(i+1)], self.data['xpos' + str(i+1)], self.data['ypos' + str(i+1)], self.data['xpos_err' + str(i+1)], self.data['ypos_err' + str(i+1)], ast_filt_idx = self.map_phot_idx_to_ast_idx[i]) lnL_ast += lnL_ast_i.sum() else: lnL_ast = 0 return lnL_ast def log_likely_photometry(self, model, cube): if model.photometryFlag: lnL_phot = 0.0 for i in range(self.n_phot_sets): t_phot = self.data['t_phot' + str(i + 1)] mag = self.data['mag' + str(i + 1)] # additive or multiplicative error mag_err = self.get_modified_mag_err(cube, i) lnL_phot += model.log_likely_photometry(t_phot, mag, mag_err, i) else: lnL_phot = 0 return lnL_phot def log_likely(self, cube, verbose=False): """ Parameters -------------- cube : list or dict The dictionary or cube of the model parameters. """ model = self.get_model(cube) # # Useful for debugging the parallax cache. # def get_cache_size(): # """Print out the cache size""" # cache_file = mmodel.cache_dir + '/joblib/microlens/jlu/model/parallax_in_direction/' # # size = 0 # for path, dirs, files in os.walk(cache_file): # for f in files: # fp = os.path.join(path, f) # size += os.path.getsize(fp) # # return size # # print(f'Cache size = {get_cache_size()}') lnL_phot = self.log_likely_photometry(model, cube) lnL_ast = self.log_likely_astrometry(model) lnL = lnL_phot + lnL_ast if verbose: self.plot_model_and_data(model) fmt = '{0:13s} = {1:f} ' for ff in range(self.n_params): if isinstance(cube, dict) or isinstance(cube, Row): pname = self.all_param_names[ff] if ((isinstance(cube, dict) and pname in cube) or (isinstance(cube, Row) and pname in cube.colnames)): print(fmt.format(pname, cube[pname])), else: print(fmt.format(pname, -999.0)), else: print(fmt.format(self.all_param_names[ff], cube[ff])), print(fmt.format('lnL_phot', lnL_phot)), print(fmt.format('lnL_ast', lnL_ast)), print(fmt.format('lnL', lnL)) # pdb.set_trace() return lnL def callback_plotter(self, nSamples, nlive, nPar, physLive, posterior, stats, maxLogLike, logZ, logZerr, foo): # ideally this should work; but it looks like # it has been mangled by multinest. # p_mean = stats[0] # p_std = stats[1] # p_best = stats[2] # p_map = stats[3] # p_best = posterior.mean(axis=0)[0:-2] bdx = np.argmax(physLive[:, -1]) p_best = physLive[bdx, 0:-1] print('') print('UPDATE: Current MaxLogLike = ', physLive[bdx, -1]) print('') model = self.get_model(p_best) self.plot_model_and_data(model) return # Code for randomly sampling prior # def log_likely0(self, cube, verbose=False): # """ # Parameters # _____________ # cube : list or dict # The dictionary or cube of the model parameters. # """ # model = self.get_model(cube) # # with open("u0.txt", "a") as f: # t = cube[1] # f.write(str(t) + '\n') # # with open("piEE.txt", "a") as f: # t = cube[5] # f.write(str(t) + '\n') # # with open("piEN.txt", "a") as f: # t = cube[6] # f.write(str(t) + '\n') # # return -1 def get_modified_mag_err(self, cube, filt_index): mag_err = copy.deepcopy(self.data['mag_err' + str(filt_index + 1)]) if self.add_error_on_photometry: add_err_name = 'add_err' + str(filt_index + 1) if isinstance(cube, dict) or isinstance(cube, Row): add_err = cube[add_err_name] else: add_err_idx = self.all_param_names.index(add_err_name) add_err = cube[add_err_idx] mag_err = np.hypot(mag_err, add_err) if self.multiply_error_on_photometry: mult_err_name = 'mult_err' + str(filt_index + 1) if isinstance(cube, dict) or isinstance(cube, Row): mult_err = cube[mult_err_name] else: mult_err_idx = self.all_param_names.index(mult_err_name) mult_err = cube[mult_err_idx] mag_err *= mult_err return mag_err def write_params_yaml(self): """ Write a YAML file that contains the parameters to re-initialize this object, if desired. """ params = {} params['target'] = self.data['target'] params['phot_data'] = self.data['phot_data'] params['phot_files'] = self.data['phot_files'] params['astrom_data'] = self.data['ast_data'] params['astrom_files'] = self.data['ast_files'] params['add_error_on_photometry'] = self.add_error_on_photometry params['multiply_error_on_photometry'] = self.multiply_error_on_photometry params['use_phot_optional_params'] = self.use_phot_optional_params params['use_ast_optional_params'] = self.use_ast_optional_params params['model'] = self.model_class.__name__ params['custom_additional_param_names'] = self.custom_additional_param_names params['wrapped_params'] = self.wrapped_params params['run_date'] = str(date.today()) with open(self.outputfiles_basename + 'params.yaml', 'w') as f: foo = yaml.dump(params, f) return def solve(self): """ Run a MultiNest fit to find the optimal parameters (and their posteriors) given the data. Note we will ALWAYS tell multinest to be verbose. """ self.write_params_yaml() # Choose whether to use self.Prior or self.Prior_from_post depending # on whether self.post_param_names is none or not. use_prior = None if self.post_param_cdf is not None: use_prior = self.Prior_from_post else: use_prior = self.Prior print('*************************************************') print('*** Using', use_prior.__name__, 'for prior function. ***') print('*************************************************') pymultinest.run(self.LogLikelihood, use_prior, self.n_dims, n_params=self.n_params, n_clustering_params=self.n_clustering_params, multimodal=self.multimodal, importance_nested_sampling=self.importance_nested_sampling, wrapped_params=self.wrapped_params, const_efficiency_mode=self.const_efficiency_mode, n_live_points=self.n_live_points, evidence_tolerance=self.evidence_tolerance, sampling_efficiency=self.sampling_efficiency, n_iter_before_update=self.n_iter_before_update, null_log_evidence=self.null_log_evidence, max_modes=self.max_modes, mode_tolerance=self.mode_tolerance, outputfiles_basename=self.outputfiles_basename, seed=self.seed, # verbose=self.verbose, verbose=True, resume=self.resume, context=self.context, write_output=self.write_output, log_zero=self.log_zero, max_iter=self.max_iter, init_MPI=self.init_MPI, dump_callback=self.dump_callback) return def separate_modes(self): """ Reads in the fits for the different modes (post_separate.dat) and splits it into a .dat file per mode. Is there a more intelligent way to deal with all the indices??? Write better later, but it seems to work for now... """ mode_file = self.outputfiles_basename + 'post_separate.dat' # Search for the empty lines (these separate the different modes) empty_lines = [] with open(mode_file, 'r') as orig_file: for num, line in enumerate(orig_file, start=0): if line == '\n': empty_lines.append(num) # Error checking if len(empty_lines) % 2 != 0: print('SOMETHING BAD HAPPENED!') # Figure out how many modes there are (# modes = idx_range) idx_range = int(len(empty_lines) / 2) # Split into the different files orig_tab = np.loadtxt(mode_file) for idx in np.arange(idx_range): start_idx = empty_lines[idx * 2 + 1] + 1 - 2 * (idx + 1) if idx != np.arange(idx_range)[-1]: end_idx = empty_lines[idx * 2 + 2] - 2 * (idx + 1) np.savetxt( self.outputfiles_basename + 'mode' + str(idx) + '.dat', orig_tab[start_idx:end_idx]) else: np.savetxt( self.outputfiles_basename + 'mode' + str(idx) + '.dat', orig_tab[start_idx:]) return def calc_best_fit(self, tab, smy, s_idx=0, def_best='maxl'): """Returns best-fit parameters, where best-fit can be median, maxl, or MAP. Default is maxl. If best-fit is median, then also return +/- 1 sigma uncertainties. If best-fit is MAP, then also need to indicate which row of summary table to use. Default is `s_idx = 0` (global solution). `s_idx = 1, 2, ... , n` for the n different modes. `tab = self.load_mnest_results()` `smy = self.load_mnest_summary()` """ params = self.all_param_names # Use Maximum Likelihood solution if def_best.lower() == 'maxl': best = np.argmax(tab['logLike']) tab_best = tab[best][params] return tab_best # Use MAP solution if def_best.lower() == 'map': # tab_best = {} # for n in params: # if (n != 'weights' and n != 'logLike'): # tab_best[n] = smy['MAP_' + n][s_idx] # Recalculate ourselves. No dependence on smy. best = np.argmax(tab['weights']) tab_best = tab[best][params] return tab_best # Use mean solution if def_best.lower() == 'mean': tab_best = {} tab_errors = {} for n in params: if (n != 'weights' and n != 'logLike'): tab_best[n] = np.mean(tab[n]) tab_errors[n] = np.std(tab[n]) return tab_best, tab_errors # Use median solution if def_best.lower() == 'median': tab_best = {} med_errors = {} sumweights = np.sum(tab['weights']) weights = tab['weights'] / sumweights sig1 = 0.682689 sig2 = 0.9545 sig3 = 0.9973 sig1_lo = (1. - sig1) / 2. sig2_lo = (1. - sig2) / 2. sig3_lo = (1. - sig3) / 2. sig1_hi = 1. - sig1_lo sig2_hi = 1. - sig2_lo sig3_hi = 1. - sig3_lo for n in params: # Calculate median, 1 sigma lo, and 1 sigma hi credible interval. tmp = weighted_quantile(tab[n], [0.5, sig1_lo, sig1_hi], sample_weight=weights) tab_best[n] = tmp[0] # Switch from values to errors. err_lo = tmp[0] - tmp[1] err_hi = tmp[2] - tmp[0] med_errors[n] = np.array([err_lo, err_hi]) return tab_best, med_errors def get_best_fit(self, def_best='maxl'): """Returns best-fit parameters, where best-fit can be median, maxl, or MAP. Default is maxl. If best-fit is median, then also return +/- 1 sigma uncertainties. `tab = self.load_mnest_results()` `smy = self.load_mnest_summary()` """ tab = self.load_mnest_results() smy = self.load_mnest_summary() best_fit = self.calc_best_fit(tab=tab, smy=smy, s_idx=0, def_best=def_best) return best_fit def get_best_fit_modes(self, def_best='maxl'): """Identify best-fit model """ tab_list = self.load_mnest_modes() smy = self.load_mnest_summary() best_fit_list = [] # ADD A USEFUL COMMENT HERE ABOUT INDEXING!!!!!! for ii, tab in enumerate(tab_list, 1): best_fit = self.calc_best_fit(tab=tab, smy=smy, s_idx=ii, def_best=def_best) # best_fit_list.append(best_fit[0]) best_fit_list.append(best_fit) return best_fit_list def get_best_fit_model(self, def_best='maxl'): """Identify best-fit model Parameters ----------- def_best : str Choices are 'map' (maximum a posteriori), 'median', or 'maxl' (maximum likelihood) """ best = self.get_best_fit(def_best=def_best) if ((def_best == 'median') or (def_best == 'mean')): pspl_mod = self.get_model(best[0]) else: pspl_mod = self.get_model(best) return pspl_mod def get_best_fit_modes_model(self, def_best='maxl'): best_list = self.get_best_fit_modes(def_best=def_best) pspl_mod_list = [] for best in best_list: pspl_mod = self.get_model(best) pspl_mod_list.append(pspl_mod) return pspl_mod_list def load_mnest_results(self, remake_fits=False): """Load up the MultiNest results into an astropy table. """ outroot = self.outputfiles_basename if remake_fits or not os.path.exists(outroot + '.fits'): # Load from text file (and make fits file) tab = Table.read(outroot + '.txt', format='ascii') # Convert to log(likelihood) since Multinest records -2*logLikelihood tab['col2'] /= -2.0 # Rename the parameter columns. This is hard-coded to match the # above run() function. tab.rename_column('col1', 'weights') tab.rename_column('col2', 'logLike') for ff in range(len(self.all_param_names)): cc = 3 + ff tab.rename_column('col{0:d}'.format(cc), self.all_param_names[ff]) tab.write(outroot + '.fits', overwrite=True) else: # Load much faster from fits file. tab = Table.read(outroot + '.fits') return tab def load_mnest_summary(self, remake_fits=False): """Load up the MultiNest results into an astropy table. """ sum_root = self.outputfiles_basename + 'summary' if remake_fits or not os.path.exists(sum_root + '.fits'): # Load from text file (and make fits file) tab = Table.read(sum_root + '.txt', format='ascii') tab.rename_column('col' + str(len(tab.colnames) - 1), 'logZ') tab.rename_column('col' + str(len(tab.colnames)), 'maxlogL') for ff in range(len(self.all_param_names)): mean = 0 * len(self.all_param_names) + 1 + ff stdev = 1 * len(self.all_param_names) + 1 + ff maxlike = 2 * len(self.all_param_names) + 1 + ff maxapost = 3 * len(self.all_param_names) + 1 + ff tab.rename_column('col{0:d}'.format(mean), 'Mean_' + self.all_param_names[ff]) tab.rename_column('col{0:d}'.format(stdev), 'StDev_' + self.all_param_names[ff]) tab.rename_column('col{0:d}'.format(maxlike), 'MaxLike_' + self.all_param_names[ff]) tab.rename_column('col{0:d}'.format(maxapost), 'MAP_' + self.all_param_names[ff]) tab.write(sum_root + '.fits', overwrite=True) else: # Load from fits file, which is much faster. tab = Table.read(sum_root + '.fits') return tab def load_mnest_modes(self, remake_fits=False): """Load up the separate modes results into an astropy table. """ # Get all the different mode files tab_list = [] modes = glob.glob(self.outputfiles_basename + 'mode*.dat') if len(modes) < 1: # In rare cases, we don't have the .dat files (modified, re-split). # Then check the *.fits files. modes = glob.glob(self.outputfiles_basename + 'mode*.fits') if len(modes) < 1: print('No modes files! Did you run multinest_utils.separate_mode_files yet?') else: remake_fits = False for num, mode in enumerate(modes, start=0): mode_root = self.outputfiles_basename + 'mode' + str(num) if remake_fits or not os.path.exists(mode_root + '.fits'): # Load from text file (and make fits file) tab = Table.read(mode_root + '.dat', format='ascii') # Convert to log(likelihood) since Multinest records -2*logLikelihood tab['col2'] /= -2.0 # Rename the parameter columns. tab.rename_column('col1', 'weights') tab.rename_column('col2', 'logLike') for ff in range(len(self.all_param_names)): cc = 3 + ff tab.rename_column('col{0:d}'.format(cc), self.all_param_names[ff]) tab.write(mode_root + '.fits', overwrite=True) else: tab = Table.read(mode_root + '.fits') tab_list.append(tab) return tab_list def load_mnest_results_for_dynesty(self, remake_fits=False): """Make a Dynesty-style results object that can be used in the nicer plotting codes. """ # Fetch the summary stats for the global solution stats = self.load_mnest_summary(remake_fits=remake_fits) stats = stats[0] # Load up all of the parameters. data_tab = self.load_mnest_results(remake_fits=remake_fits) # Sort the samples by increasing log-like. sdx = data_tab['logLike'].argsort() data_tab = data_tab[sdx] weights = data_tab['weights'] loglike = data_tab['logLike'] samples = np.zeros((len(data_tab), len(self.all_param_names)), dtype=float) for ff in range(len(self.all_param_names)): samples[:, ff] = data_tab[self.all_param_names[ff]].astype(np.float64) logZ = stats['logZ'] logvol = np.log(weights) - loglike + logZ logvol = logvol - logvol.max() results = dict(samples=samples, weights=weights, logvol=logvol, loglike=loglike) return results def load_mnest_modes_results_for_dynesty(self, remake_fits=False): """Make a Dynesty-style results object that can be used in the nicer plotting codes. """ results_list = [] # Load up the summary results and trim out the global mode. stats = self.load_mnest_summary(remake_fits=remake_fits) stats = stats[1:] # Load up all of the parameters. modes_list = self.load_mnest_modes(remake_fits=remake_fits) for num, data_tab in enumerate(modes_list, start=0): # Sort the samples by increasing log-like. sdx = data_tab['logLike'].argsort() data_tab = data_tab[sdx] weights = data_tab['weights'] loglike = data_tab['logLike'] samples = np.zeros((len(data_tab), len(self.all_param_names)), dtype=float) for ff in range(len(self.all_param_names)): samples[:, ff] = data_tab[self.all_param_names[ff]].astype(np.float64) logZ = stats['logZ'][num] # are these in the same order? logvol = np.log(weights) - loglike + logZ logvol = logvol - logvol.max() results = dict(samples=samples, weights=weights, logvol=logvol, loglike=loglike) results_list.append(results) return results_list def plot_dynesty_style(self, sim_vals=None, fit_vals=None, remake_fits=False, dims=None, traceplot=True, cornerplot=True, kde=True): """ Parameters ------------ sim_vals : dict Dictionary of simulated input or comparison values to overplot on posteriors. fit_vals : str Choices are 'map' (maximum a posteriori), 'mean', or 'maxl' (maximum likelihood) """ res = self.load_mnest_results_for_dynesty(remake_fits=remake_fits) smy = self.load_mnest_summary(remake_fits=remake_fits) truths = None # Sort the parameters into the right order. if sim_vals != None: truths = [] for param in self.all_param_names: if param in sim_vals: truths.append(sim_vals[param]) else: truths.append(None) if fit_vals == 'map': truths = [] for param in self.all_param_names: truths.append(smy['MAP_' + param][0]) # global best fit. if fit_vals == 'mean': truths = [] for param in self.all_param_names: truths.append(smy['Mean_' + param][0]) # global best fit. if fit_vals == 'maxl': truths = [] for param in self.all_param_names: truths.append(smy['MaxLike_' + param][0]) # global best fit. if dims is not None: labels=[self.all_param_names[i] for i in dims] truths=[truths[i] for i in dims] else: labels=self.all_param_names if traceplot: dyplot.traceplot(res, labels=labels, dims=dims, show_titles=True, truths=truths, kde=kde) plt.subplots_adjust(hspace=0.7) plt.savefig(self.outputfiles_basename + 'dy_trace.png') plt.close() if cornerplot: dyplot.cornerplot(res, labels=labels, dims=dims, show_titles=True, truths=truths) ax = plt.gca() ax.tick_params(axis='both', which='major', labelsize=10) plt.savefig(self.outputfiles_basename + 'dy_corner.png') plt.close() return def plot_model_and_data(self, model, input_model=None, mnest_results=None, suffix='', zoomx=None, zoomy=None, zoomy_res=None, fitter=None, N_traces=50): """ Make and save the model and data plots. zoomx, xoomy, zoomy_res : list the same length as `self.n_phot_sets` Each entry of the list is a list `[a, b]` cooresponding to the plot limits """ # Plot out parameters (just record values) fig = plot_params(model) fig.savefig(self.outputfiles_basename + 'parameters.png') plt.close() # Plot photometry if model.photometryFlag: for i in range(self.n_phot_sets): if hasattr(model, 'use_gp_phot'): if model.use_gp_phot[i]: gp = True else: gp = False else: gp = False # if gp: # pointwise_likelihood(self.data, model, filt_index=i) # debug_gp_nan(self.data, model, filt_index=i) fig = plot_photometry(self.data, model, input_model=input_model, dense_time=True, residuals=True, filt_index=i, mnest_results=mnest_results, gp=gp, fitter=fitter, N_traces=N_traces) fig.savefig(self.outputfiles_basename + 'phot_and_residuals_' + str(i + 1) + suffix + '.png') plt.close() if (zoomx is not None) or (zoomy is not None) or (zoomy_res is not None): if zoomx is not None: zoomxi=zoomx[i] else: zoomxi=None if zoomy is not None: zoomyi=zoomy[i] else: zoomyi=None if zoomy_res is not None: zoomy_resi=zoomy_res[i] else: zoomy_resi=None fig = plot_photometry(self.data, model, input_model=input_model, dense_time=True, residuals=True, filt_index=i, mnest_results=mnest_results, zoomx=zoomxi, zoomy=zoomyi, zoomy_res=zoomy_resi, gp=gp, fitter=fitter, N_traces=N_traces) fig.savefig(self.outputfiles_basename + 'phot_and_residuals_' + str(i + 1) + suffix + 'zoom.png') plt.close() if gp: fig = plot_photometry_gp(self.data, model, input_model=input_model, dense_time=True, residuals=True, filt_index=i, mnest_results=mnest_results, gp=gp, N_traces=N_traces) if fig is not None: fig.savefig(self.outputfiles_basename + 'phot_and_residuals_gp_' + str(i + 1) + suffix + '.png') plt.close() if (zoomx is not None) or (zoomy is not None) or (zoomy_res is not None): if zoomx is not None: zoomxi=zoomx[i] else: zoomxi=None if zoomy is not None: zoomyi=zoomy[i] else: zoomyi=None if zoomy_res is not None: zoomy_resi=zoomy_res[i] else: zoomy_resi=None fig = plot_photometry_gp(self.data, model, input_model=input_model, dense_time=True, residuals=True, filt_index=i, mnest_results=mnest_results, zoomx=zoomxi, zoomy=zoomyi, zoomy_res=zoomy_resi, gp=gp, N_traces=N_traces) if fig is not None: fig.savefig(self.outputfiles_basename + 'phot_and_residuals_gp_' + str(i + 1) + suffix + 'zoom.png') plt.close() if model.astrometryFlag: for i in range(self.n_ast_sets): # If no photometry if len(self.map_phot_idx_to_ast_idx) == 0: fig_list = plot_astrometry(self.data, model, input_model=input_model, dense_time=True, n_phot_sets=self.n_phot_sets, filt_index=i, ast_filt_index=i, mnest_results=mnest_results, fitter=fitter, N_traces=N_traces) # If photometry else: fig_list = plot_astrometry(self.data, model, input_model=input_model, dense_time=True, n_phot_sets=self.n_phot_sets, filt_index=i, ast_filt_index=self.map_phot_idx_to_ast_idx[i], mnest_results=mnest_results, fitter=fitter, N_traces=N_traces) fig_list[0].savefig( self.outputfiles_basename + 'astr_on_sky_' + str(i + 1) + suffix + '.png') fig_list[1].savefig( self.outputfiles_basename + 'astr_time_RA_' + str(i + 1) + suffix + '.png') fig_list[2].savefig( self.outputfiles_basename + 'astr_time_Dec_' + str(i + 1) + suffix + '.png') fig_list[3].savefig( self.outputfiles_basename + 'astr_time_RA_remove_pm_' + str(i + 1) + suffix + '.png') fig_list[4].savefig( self.outputfiles_basename + 'astr_time_Dec_remove_pm_' + str(i + 1) + suffix + '.png') fig_list[5].savefig( self.outputfiles_basename + 'astr_remove_pm_' + str(i + 1) + suffix + '.png') fig_list[6].savefig( self.outputfiles_basename + 'astr_on_sky_unlensed' + suffix + '.png') fig_list[7].savefig( self.outputfiles_basename + 'astr_longtime_RA_remove_pm' + suffix + '.png') fig_list[8].savefig( self.outputfiles_basename + 'astr_longtime_Dec_remove_pm' + suffix + '.png') fig_list[9].savefig( self.outputfiles_basename + 'astr_longtime_remove_pm' + suffix + '.png') for fig in fig_list: plt.close(fig) return def plot_model_and_data_modes(self, def_best='maxl'): """Plots photometry data, along with n random draws from the posterior. """ pspl_mod_list = self.get_best_fit_modes_model(def_best=def_best) for num, pspl_mod in enumerate(pspl_mod_list, start=0): model = pspl_mod self.plot_model_and_data(model, suffix='_mode' + str(num)) return def summarize_results(self, def_best='maxl', remake_fits=False): tab = self.load_mnest_results(remake_fits=remake_fits) smy = self.load_mnest_summary(remake_fits=remake_fits) if len(tab) < 1: print('Did you run multinest_utils.separate_mode_files yet?') # Which params to include in table parameters = tab.colnames parameters.remove('weights') parameters.remove('logLike') print('####################') print('Median Solution:') print('####################') fmt_med = ' {0:15s} {1:10.3f} + {2:10.3f} - {3:10.3f}' fmt_other = ' {0:15s} {1:10.3f}' best_arr = self.get_best_fit(def_best='median') best = best_arr[0] errs = best_arr[1] for n in parameters: print(fmt_med.format(n, best[n], errs[n][0], errs[n][1])) self.print_likelihood(params=best) print('') print('####################') print('Max-likelihood Solution:') print('####################') best = self.get_best_fit(def_best='maxl') for n in parameters: print(fmt_other.format(n, best[n])) self.print_likelihood(params=best) print('') print('####################') print('MAP Solution:') print('####################') best = self.get_best_fit(def_best='map') for n in parameters: print(fmt_other.format(n, best[n])) self.print_likelihood(params=best) print('') return def summarize_results_modes(self, remake_fits=False): tab_list = self.load_mnest_modes(remake_fits=remake_fits) smy = self.load_mnest_summary(remake_fits=remake_fits) if len(tab_list) < 1: print('Did you run multinest_utils.separate_mode_files yet?') print('Number of modes : ' + str(len(tab_list))) for ii, tab in enumerate(tab_list, 1): # Which params to include in table parameters = tab.colnames parameters.remove('weights') parameters.remove('logLike') print('####################') print('Median Solution:') print('####################') fmt_med = ' {0:15s} {1:10.3f} + {2:10.3f} - {3:10.3f}' fmt_other = ' {0:15s} {1:10.3f}' best_arr = self.calc_best_fit(tab=tab, smy=smy, s_idx=ii, def_best='median') best = best_arr[0] errs = best_arr[1] for n in parameters: print(fmt_med.format(n, best[n], errs[n][0], errs[n][1])) self.print_likelihood(params=best) print('') print('####################') print('Max-likelihood Solution:') print('####################') best = self.calc_best_fit(tab=tab, smy=smy, s_idx=ii, def_best='maxl') for n in parameters: print(fmt_other.format(n, best[n])) self.print_likelihood(params=best) print('') print('####################') print('MAP Solution:') print('####################') best = self.calc_best_fit(tab=tab, smy=smy, s_idx=ii, def_best='map') for n in parameters: print(fmt_other.format(n, best[n])) self.print_likelihood(params=best) print('') return def print_likelihood(self, params='best', verbose=True): """ Parameters ----------- model_params : str or dict, optional model_params = 'best' will load up the best solution and calculate the chi^2 based on those values. Alternatively, pass in a dictionary with the model parameters to use. """ if params == 'best': params = self.get_best_fit() lnL = self.log_likely(params, verbose) chi2 = self.calc_chi2(params, verbose) print('logL : {0:.1f}'.format(lnL)) print('chi2 : {0:.1f}'.format(chi2)) return def calc_chi2(self, params='best', verbose=False): """ Parameters ----------- params : str or dict, optional model_params = 'best' will load up the best solution and calculate the chi^2 based on those values. Alternatively, pass in a dictionary with the model parameters to use. """ if params == 'best': params = self.get_best_fit() # Get likelihoods. pspl = self.get_model(params) lnL_phot = self.log_likely_photometry(pspl, params) lnL_ast = self.log_likely_astrometry(pspl) # Calculate constants needed to subtract from lnL to calculate chi2. if pspl.astrometryFlag: # Lists to store lnL, chi2, and constants for each filter. chi2_ast_filts = [] lnL_const_ast_filts = [] for nn in range(self.n_ast_sets): t_ast = self.data['t_ast' + str(nn + 1)] x = self.data['xpos' + str(nn + 1)] y = self.data['ypos' + str(nn + 1)] xerr = self.data['xpos_err' + str(nn + 1)] yerr = self.data['ypos_err' + str(nn + 1)] # Calculate the lnL for just a single filter. # If no photometry if len(self.map_phot_idx_to_ast_idx) == 0: lnL_ast_nn = pspl.log_likely_astrometry(t_ast, x, y, xerr, yerr, ast_filt_idx=nn) # If photometry else: lnL_ast_nn = pspl.log_likely_astrometry(t_ast, x, y, xerr, yerr, ast_filt_idx=self.map_phot_idx_to_ast_idx[nn]) lnL_ast_nn = lnL_ast_nn.sum() # Calculate the chi2 and constants for just a single filter. lnL_const_ast_nn = -0.5 * np.log(2.0 * math.pi * xerr ** 2) lnL_const_ast_nn += -0.5 * np.log(2.0 * math.pi * yerr ** 2) lnL_const_ast_nn = lnL_const_ast_nn.sum() chi2_ast_nn = (lnL_ast_nn - lnL_const_ast_nn) / -0.5 # Save to our lists chi2_ast_filts.append(chi2_ast_nn) lnL_const_ast_filts.append(lnL_const_ast_nn) lnL_const_ast = sum(lnL_const_ast_filts) else: lnL_const_ast = 0 if pspl.photometryFlag: # Lists to store lnL, chi2, and constants for each filter. chi2_phot_filts = [] lnL_const_phot_filts = [] for nn in range(self.n_phot_sets): if hasattr(pspl, 'use_gp_phot'): if pspl.use_gp_phot[nn]: gp = True else: gp = False else: gp = False t_phot = self.data['t_phot' + str(nn + 1)] mag = self.data['mag' + str(nn + 1)] mag_err = self.get_modified_mag_err(params, nn) # Calculate the lnL for just a single filter. lnL_phot_nn = pspl.log_likely_photometry(t_phot, mag, mag_err, nn) # Calculate the chi2 and constants for just a single filter. if gp: log_det = pspl.get_log_det_covariance(t_phot, mag, mag_err, nn) lnL_const_phot_nn = -0.5 * log_det - 0.5 * np.log(2 * np.pi) * len(mag) else: lnL_const_phot_nn = -0.5 * np.log(2.0 * math.pi * mag_err**2) lnL_const_phot_nn = lnL_const_phot_nn.sum() chi2_phot_nn = (lnL_phot_nn - lnL_const_phot_nn) / -0.5 # Save to our lists chi2_phot_filts.append(chi2_phot_nn) lnL_const_phot_filts.append(lnL_const_phot_nn) lnL_const_phot = sum(lnL_const_phot_filts) else: lnL_const_phot = 0 # Calculate chi2. chi2_ast = (lnL_ast - lnL_const_ast) / -0.5 chi2_phot = (lnL_phot - lnL_const_phot) / -0.5 chi2 = chi2_ast + chi2_phot if verbose: fmt = '{0:13s} = {1:f} ' if pspl.photometryFlag: for ff in range(self.n_phot_sets): print(fmt.format('chi2_phot' + str(ff + 1), chi2_phot_filts[ff])) if pspl.astrometryFlag: for ff in range(self.n_ast_sets): print(fmt.format('chi2_ast' + str(ff + 1), chi2_ast_filts[ff])) print(fmt.format('chi2_phot', chi2_phot)) print(fmt.format('chi2_ast', chi2_ast)) print(fmt.format('chi2', chi2)) return chi2 def calc_chi2_manual(self, params='best', verbose=False): """ Parameters ----------- params : str or dict, optional model_params = 'best' will load up the best solution and calculate the chi^2 based on those values. Alternatively, pass in a dictionary with the model parameters to use. """ if params == 'best': params = self.get_best_fit() pspl = self.get_model(params) if pspl.astrometryFlag: # Lists to store lnL, chi2, and constants for each filter. chi2_ast_filts = [] pspl = self.get_model(params) for nn in range(self.n_ast_sets): t_ast = self.data['t_ast' + str(nn + 1)] x = self.data['xpos' + str(nn + 1)] y = self.data['ypos' + str(nn + 1)] xerr = self.data['xpos_err' + str(nn + 1)] yerr = self.data['ypos_err' + str(nn + 1)] # NOTE: WILL BREAK FOR LUMINOUS LENS. BREAKS FOR ASTROM AND PHOTOM??? ADD map_phot_ pos_out = pspl.get_astrometry(t_ast, ast_filt_idx=nn) chi2_ast_nn = (x - pos_out[:,0])**2/xerr**2 chi2_ast_nn += (y - pos_out[:,1])**2/yerr**2 chi2_ast_filts.append(np.nansum(chi2_ast_nn)) else: chi2_ast_filts = [0] if pspl.photometryFlag: # Lists to store lnL, chi2, and constants for each filter. chi2_phot_filts = [] for nn in range(self.n_phot_sets): if hasattr(pspl, 'use_gp_phot'): if pspl.use_gp_phot[nn]: gp = True else: gp = False else: gp = False t_phot = self.data['t_phot' + str(nn + 1)] mag = self.data['mag' + str(nn + 1)] mag_err = self.get_modified_mag_err(params, nn) if gp: print('GP') mod_m_at_dat, mod_m_at_dat_std = pspl.get_photometry_with_gp(t_phot, mag, mag_err, nn) print(pspl.get_log_det_covariance(t_phot, mag, mag_err, nn)) mag_out = mod_m_at_dat mag_err_out = mod_m_at_dat_std chi2_phot_nn = (mag - mag_out)**2/mag_err_out**2 else: mag_out = pspl.get_photometry(t_phot, nn) chi2_phot_nn = (mag - mag_out)**2/mag_err**2 # chi2_phot_nn = (mag - mag_out)**2/mag_err**2 chi2_phot_filts.append(np.nansum(chi2_phot_nn)) print('NANs : ' + str(np.sum(np.isnan(chi2_phot_nn)))) else: chi2_phot_filts = [0] if verbose: fmt = '{0:13s} = {1:f} ' if pspl.photometryFlag: for ff in range(self.n_phot_sets): print(fmt.format('chi2_phot' + str(ff + 1), chi2_phot_filts[ff])) if pspl.astrometryFlag: for ff in range(self.n_ast_sets): print(fmt.format('chi2_ast' + str(ff + 1), chi2_ast_filts[ff])) chi2 = np.sum(chi2_ast_filts) + np.sum(chi2_phot_filts) # print(fmt.format('chi2_phot', chi2_phot)) # print(fmt.format('chi2_ast', chi2_ast)) # print(fmt.format('chi2', chi2)) # return chi2 def write_summary_maxL(self, return_mnest_results=False): tab = self.load_mnest_results() smy = self.load_mnest_summary() parameters = tab.colnames fmt = '{0:15s} {1:10.3f}' fmt_i = '{0:15s} {1:10d}' k = self.n_dims n_phot = 0 n_ast = 0 for nn in range(self.n_phot_sets): n_phot += len(self.data['t_phot' + str(nn + 1)]) if self.n_ast_sets > 0: for nn in range(self.n_ast_sets): n_ast += 2 * len(self.data['t_ast' + str(nn + 1)]) n_tot = n_phot + n_ast maxlogL = smy['maxlogL'][0] aic = calc_AIC(k, maxlogL) bic = calc_BIC(n_tot, k, maxlogL) parameters.remove('weights') parameters.remove('logLike') best = self.get_best_fit(def_best='maxl') chi2 = self.calc_chi2(params=best, verbose=True) lnL = self.log_likely(cube =best, verbose=True) # Fetch the root name of the file. file_dir, name_str = os.path.split(self.outputfiles_basename) with open(name_str + 'maxL_summary.txt', 'w+') as myfile: myfile.write(file_dir + '\n') myfile.write(name_str + '\n') myfile.write(fmt.format('logL', maxlogL) + '\n') myfile.write(fmt.format('AIC', aic) + '\n') myfile.write(fmt.format('BIC', bic) + '\n') myfile.write(fmt.format('logL', lnL) + '\n') myfile.write(fmt.format('chi2', chi2) + '\n') myfile.write(fmt_i.format('n_tot', n_tot) + '\n') myfile.write('\n') for nn in parameters: myfile.write(fmt.format(nn, best[nn]) + '\n') if return_mnest_results: return tab else: return class PSPL_Solver_weighted(PSPL_Solver): """ Soliver where the likelihood function has each data set weigthed equally (i.e. not the natural weighting by the number of points; but rather each contributes 1/n_k where n is the number of data points and k is the data set. """ def __init__(self, data, model_class, custom_additional_param_names=None, add_error_on_photometry=False, multiply_error_on_photometry=False, use_phot_optional_params=True, use_ast_optional_params=True, wrapped_params=None, importance_nested_sampling=False, multimodal=True, const_efficiency_mode=False, n_live_points=300, evidence_tolerance=0.5, sampling_efficiency=0.8, n_iter_before_update=100, null_log_evidence=-1e90, max_modes=100, mode_tolerance=-1e90, outputfiles_basename="chains/1-", seed=-1, verbose=False, resume=False, context=0, write_output=True, log_zero=-1e100, max_iter=0, init_MPI=False, dump_callback=None, weights='phot_ast_equal'): """ See documentation for PSPL_Solver. The only additional input parameter is weights which can be * 'phot_ast_equal' * 'all_equal' * list - length of number of photom + astrom data sets * array - length of number of photom + astrom data sets """ super().__init__(data, model_class, custom_additional_param_names=custom_additional_param_names, add_error_on_photometry=add_error_on_photometry, multiply_error_on_photometry=multiply_error_on_photometry, use_phot_optional_params=use_phot_optional_params, use_ast_optional_params=use_ast_optional_params, wrapped_params=wrapped_params, importance_nested_sampling=importance_nested_sampling, multimodal=multimodal, const_efficiency_mode=const_efficiency_mode, n_live_points=n_live_points, evidence_tolerance=evidence_tolerance, sampling_efficiency=sampling_efficiency, n_iter_before_update=n_iter_before_update, null_log_evidence=null_log_evidence, max_modes=max_modes, mode_tolerance=mode_tolerance, outputfiles_basename=outputfiles_basename, seed=seed, verbose=verbose, resume=resume, context=context, write_output=write_output, log_zero=log_zero, max_iter=max_iter, init_MPI=init_MPI, dump_callback=dump_callback) self.weights = self.calc_weights(weights) print(self.weights) return def calc_weights(self, weights): """ order of weight_arr is `[phot_1, phot_2, ... phot_n, ast_1, ast_2, ... ast_n]` """ weights_arr = np.ones(self.n_phot_sets + self.n_ast_sets) ##### # No weights ##### if weights is None: return weights_arr # Calculate the number of photometry and astrometry data points n_ast_data = 0 for nn in range(self.n_ast_sets): n_ast_data += 2 * len(self.data['t_ast' + str(nn + 1)]) n_phot_data = 0 for i in range(self.n_phot_sets): n_phot_data += len(self.data['t_phot' + str(i + 1)]) n_data = n_ast_data + n_phot_data n_sets = self.n_phot_sets + self.n_ast_sets ##### # All the photometry is weighted equally to the astrometry. # The relative weights between the photometric data sets don't change. ##### if weights == 'phot_ast_equal': denom = n_ast_data * self.n_phot_sets + n_phot_data * self.n_ast_sets # Photometry weights for i in range(self.n_phot_sets): n_i = len(self.data['t_phot' + str(i + 1)]) weights_arr[i] = (n_data / n_sets) * n_ast_data / denom # Astrometry weights for i in range(self.n_ast_sets): n_i = len(self.data['t_ast' + str(i + 1)]) weights_arr[self.n_phot_sets + i] = (n_data / n_sets) * n_phot_data / denom return weights_arr ##### # Each data set is given equal weights, regardless of photometry # or astrometry. ##### if weights == 'all_equal': # Photometry weights for i in range(self.n_phot_sets): n_i = len(self.data['t_phot' + str(i + 1)]) weights_arr[i] = (1e-3 * n_data / n_sets) * (1.0 / n_i) # Astrometry weight for i in range(self.n_ast_sets): n_i = len(self.data['t_ast' + str(i + 1)]) weights_arr[self.n_phot_sets + i] = (1e-3 * n_data / n_sets) * (1.0 / n_i) return weights_arr ##### # Custom weights. ##### else: # Check weight array is right length, all positive numbers. if not isinstance(weights, np.ndarray): raise Exception('weight needs to be a numpy array.') if len(weights_arr) != len(weights): raise Exception('weight array needs to be the same length as the number of data sets.') if len(np.where(weights < 0)[0]) > 0: raise Exception('weights must be positive.') return weights def log_likely_astrometry(self, model): if model.astrometryFlag: lnL_ast = 0.0 for i in range(self.n_ast_sets): t_ast = self.data['t_ast' + str(i + 1)] xpos = self.data['xpos' + str(i + 1)] ypos = self.data['ypos' + str(i + 1)] xpos_err = self.data['xpos_err' + str(i + 1)] ypos_err = self.data['ypos_err' + str(i + 1)] weight = self.weights[self.n_phot_sets + i] lnL_ast_unwgt = model.log_likely_astrometry(t_ast, xpos, ypos, xpos_err, ypos_err) lnL_ast_i = lnL_ast_unwgt * weight lnL_ast += lnL_ast_i if self.verbose: print(f'lnL_ast: i = {i} L_unwgt = {lnL_ast_unwgt:15.1f}, L_wgt = {lnL_ast_i:15.1f}, weights = {weight:.1e}') else: lnL_ast = 0 return lnL_ast def log_likely_photometry(self, model, cube): if model.photometryFlag: lnL_phot = 0.0 for i in range(self.n_phot_sets): t_phot = self.data['t_phot' + str(i + 1)] mag = self.data['mag' + str(i + 1)] # additive or multiplicative error mag_err = self.get_modified_mag_err(cube, i) weight = self.weights[i] lnL_phot_unwgt = model.log_likely_photometry(t_phot, mag, mag_err, i) lnL_phot_i = lnL_phot_unwgt * weight lnL_phot += lnL_phot_i if self.verbose: print(f'lnL_phot: i = {i} L_unwgt = {lnL_phot_unwgt:15.1f}, L_wgt = {lnL_phot_i:15.1f}, weight = {weight:.1e}') else: lnL_phot = 0 return lnL_phot class PSPL_Solver_Hobson_Weighted(PSPL_Solver): def log_likely(self, cube, verbose=False): """ Compute a log-likelihood where there is a hyperparameter, alpha_k, that controls the weighting between each data k set. This algorithm is described in Hobson et al. 2002. Specifically, we are implementing Eq. 35. Parameters ----------- cube : list or dict The dictionary or cube of the model parameters. """ # Fetch the model for these parameters. model = self.get_model(cube) # We are implementing the Hobson weighting scheme such that we # explore and then marginalize over the hyperparameter, alpha_k (ak), # where we have the kth data set, Dk. # see Hobson et al. 2002 for details. lnL = 0.0 ########## # Photometry ########## if model.photometryFlag: for i in range(self.n_phot_sets): t_phot = self.data['t_phot' + str(i + 1)] mag = self.data['mag' + str(i + 1)] # additive or multiplicative error mag_err = self.get_modified_mag_err(cube, i) nk = len(mag) nk21 = (nk / 2.0) + 1.0 chi2_m = model.get_chi2_photometry(t_phot, mag, mag_err, filt_index=i) lnL_const_standard = model.get_lnL_constant(mag_err) lnL_const_hobson = scipy.special.gammaln( nk21 ) + (nk21 * np.log(2)) # Equation 35 from Hobson lnL_phot = lnL_const_standard.sum() lnL_phot += -1.0 * nk21 * np.log(chi2_m.sum() + 2) lnL_phot += lnL_const_hobson lnL += lnL_phot ########## # Astrometry ########## if model.astrometryFlag: for i in range(self.n_ast_sets): # If no photometry if len(self.map_phot_idx_to_ast_idx) == 0: ast_filt_idx = i else: ast_filt_idx = self.map_phot_idx_to_ast_idx[i] t_ast = self.data['t_ast' + str(i+1)] x_obs = self.data['xpos' + str(i+1)] y_obs = self.data['ypos' + str(i+1)] x_err_obs = self.data['xpos_err' + str(i+1)] y_err_obs = self.data['ypos_err' + str(i+1)] nk = len(x_obs) + len(y_obs) nk21 = (nk / 2.0) + 1.0 chi2_xy = model.get_chi2_astrometry(t_ast, x_obs, y_obs, x_err_obs, y_err_obs, ast_filt_idx=ast_filt_idx) lnL_const_standard = model.get_lnL_constant(x_err_obs) + model.get_lnL_constant(y_err_obs) lnL_const_hobson = scipy.special.gammaln( nk21 ) + (nk21 * np.log(2)) # Equation 35 from Hobson lnL_ast = lnL_const_standard.sum() lnL_ast += -1.0 * nk21 * np.log(chi2_xy.sum() + 2) lnL_ast += lnL_const_hobson lnL += lnL_ast # Reporting if verbose: # self.plot_model_and_data(model) # pdb.set_trace() fmt = '{0:13s} = {1:f} ' for ff in range(self.n_params): if isinstance(cube, dict) or isinstance(cube, Row): pname = self.all_param_names[ff] if ((isinstance(cube, dict) and pname in cube) or (isinstance(cube, Row) and pname in cube.colnames)): print(fmt.format(pname, cube[pname])), else: print(fmt.format(pname, -999.0)), else: print(fmt.format(self.all_param_names[ff], cube[ff])), print(fmt.format('lnL_phot', lnL_phot)), print(fmt.format('lnL_ast', lnL_ast)), print(fmt.format('lnL', lnL)) return lnL def hobson_weight_log_likely(self, ln_prob_dk_giv_ak_1): """ Implement a data-set-specific weighting scheme by using a hyperparameter, alpha_k, for the kth data set as described in Hobson et al. 2002. Specifically, we are implementing Eq. 16 and 23-27, with the prior described in Eq. 21. We are not using the simplifications in Section 5 for now. """ # Get back to prob not ln(prob): prob_dk_giv_ak_1 = np.exp(ln_prob_dk_giv_ak_1) # Sample alpha_k hyperparameter alpha_k_prior = scipy.stats.expon() # print('Hobson: ', ln_prob_dk_giv_ak_1) def integrand(ak, prob_dk_giv_ak_1, ln_prob_dk_giv_ak_1, ii): # Prior probability for this ak prob_ak = alpha_k_prior.pdf(ak) ln_prob_ak = np.log(prob_ak) # Normalization (over all data) for this ak z_k_ak = np.sum(np.exp(ak * ln_prob_dk_giv_ak_1)) ln_z_k_ak = np.log(z_k_ak) # Pull out just this single data point. ln_prob_di_ak_1 = ln_prob_dk_giv_ak_1[ii] ln_prob_d_ak = (ak * ln_prob_di_ak_1) + ln_prob_ak - ln_z_k_ak # print(f'ak = {ak:.4f} ln_z_k_ak = {ln_z_k_ak} z_k_ak = {z_k_ak} ln_prob_d_ak={ln_prob_d_ak}') prob_d_ak = np.exp(ln_prob_d_ak) return prob_d_ak prob_dk = np.zeros(len(prob_dk_giv_ak_1), dtype=float) # for ii in range(len(prob_d_each)): for ii in range(2): # pdb.set_trace() prob_dk[ii] = scipy.integrate.quad(integrand, 0, np.inf, args=(prob_dk_giv_ak_1, ln_prob_dk_giv_ak_1, ii))[0] # print(f' prob_dk = {prob_dk}') lnL_dk = np.log(prob_dk) return lnL_dk def get_hobson_effective_weights(self, cube): """ Return the effective weights, alpha_k, for each data set. Photometry first, then astrometry. """ eff_weights = np.empty(0, dtype=float) # Fetch the model for these parameters. model = self.get_model(cube) # We are implementing the Hobson weighting scheme such that we # explore and then marginalize over the hyperparameter, alpha_k (ak), # where we have the kth data set, Dk. # see Hobson et al. 2002 for details. ########## # Photometry ########## if model.photometryFlag: for i in range(self.n_phot_sets): t_phot = self.data['t_phot' + str(i + 1)] mag = self.data['mag' + str(i + 1)] # additive or multiplicative error mag_err = self.get_modified_mag_err(cube, i) nk = len(mag) chi2_m = model.get_chi2_photometry(t_phot, mag, mag_err, filt_index=i) ak_eff = nk / chi2_m.sum() eff_weights = np.append(eff_weights, ak_eff) ########## # Astrometry ########## if model.astrometryFlag: for i in range(self.n_ast_sets): # If no photometry if len(self.map_phot_idx_to_ast_idx) == 0: ast_filt_idx = i else: ast_filt_idx = self.map_phot_idx_to_ast_idx[i] t_ast = self.data['t_ast' + str(i+1)] x_obs = self.data['xpos' + str(i+1)] y_obs = self.data['ypos' + str(i+1)] x_err_obs = self.data['xpos_err' + str(i+1)] y_err_obs = self.data['ypos_err' + str(i+1)] nk = len(x_obs) + len(y_obs) chi2_xy = model.get_chi2_astrometry(t_ast, x_obs, y_obs, x_err_obs, y_err_obs, ast_filt_idx=ast_filt_idx) ak_eff = nk / chi2_xy.sum() eff_weights = np.append(eff_weights, ak_eff) return eff_weights ######################### ### PRIOR GENERATORS ### ######################### def make_gen(min, max): return scipy.stats.uniform(loc=min, scale=max - min) def make_norm_gen(mean, std): return scipy.stats.norm(loc=mean, scale=std) def make_lognorm_gen(mean, std): """ Make a natural-log normal distribution for a variable. The specified mean and std should be in the ln() space. """ return scipy.stats.lognorm(s=std, scale=np.exp(mean)) def make_log10norm_gen(mean_in_log10, std_in_log10): """Scale scipy lognorm from natural log to base 10. Note the mean and std should be in the log10() space already. Parameters ------------- mean: mean of the underlying log10 gaussian (i.e. a log10 quantity) std: variance of underlying log10 gaussian """ # Convert mean and std from log10 to ln. return scipy.stats.lognorm(s=std_in_log10 * np.log(10), scale=np.exp(mean_in_log10 * np.log(10))) def make_truncnorm_gen(mean, std, lo_cut, hi_cut): """lo_cut and hi_cut are in the units of sigma """ return scipy.stats.truncnorm(lo_cut, hi_cut, loc=mean, scale=std) def make_truncnorm_gen_with_bounds(mean, std, low_bound, hi_bound): """ low_bound and hi_bound are in the same units as mean and std """ assert hi_bound > low_bound clipped_mean = min(max(mean, low_bound), hi_bound) if clipped_mean == low_bound: low_sigma = -0.01 * std hi_sigma = (hi_bound - clipped_mean) / std elif clipped_mean == hi_bound: low_sigma = (low_bound - clipped_mean) / std hi_sigma = 0.01 * std else: low_sigma = (low_bound - clipped_mean) / std hi_sigma = (hi_bound - clipped_mean) / std return scipy.stats.truncnorm(low_sigma, hi_sigma, loc=clipped_mean, scale=std) def make_t0_gen(t, mag): """Get an approximate t0 search range by finding the brightest point and then searching days where flux is higher than 80% of this peak. """ mag_min = np.min(mag) # min mag = brightest delta_mag = np.max(mag) - mag_min idx = np.where(mag < (mag_min + (0.2 * delta_mag)))[0] t0_min = t[idx].min() t0_max = t[idx].max() # Pad by and extra 40% in case of gaps. t0_min -= 0.4 * (t0_max - t0_min) t0_max += 0.4 * (t0_max - t0_min) return make_gen(t0_min, t0_max) def make_mag_base_gen(mag): """ Make a prior for baseline magnitude using the data. """ mean, med, std = sigma_clipped_stats(mag, sigma_lower=2, sigma_upper=4) gen = make_truncnorm_gen(mean, 3 * std, -5, 5) return gen def make_mag_src_gen(mag): """ Make a prior for source magnitude using the data. Allow negative blending. """ mean, med, std = sigma_clipped_stats(mag, sigma_lower=2, sigma_upper=4) gen = make_gen(mean - 1, mean + 5) return gen def make_xS0_gen(pos): posmin = pos.min() - 5 * pos.std() posmax = pos.max() + 5 * pos.std() # print('make_xS0_gen') # print('posmin : ', posmin) # print('posmax : ', posmax) # print(' ') return make_gen(posmin, posmax) def make_xS0_norm_gen(pos): posmid = 0.5 * (pos.min() + pos.max()) poswidth = np.abs(pos.max() - pos.min()) # print('make_xS0_norm_gen') # print('posmid : ', posmid) # print('poswidth : ', poswidth) # print(' ') return make_norm_gen(posmid, poswidth) def make_muS_EN_gen(t, pos, scale_factor=100.0): """Get an approximate muS search range by looking at the best fit straight line to the astrometry. Then allows lots of free space. Inputs ------ t: array of times in days pos: array of positions in arcsec Returns ------- gen: uniform generator for velocity in mas/yr """ # Convert t to years temporarily. t_yr = t / mmodel.days_per_year # Reshaping stuff... convert (1,N) array into (N,) array if (t_yr.ndim == 2 and t_yr.shape[0] == 1): t_yr = t_yr.reshape(len(t_yr[0])) pos = pos.reshape(len(pos[0])) par, cov = np.polyfit(t_yr, pos, 1, cov=True) vel = par[0] * 1e3 # mas/yr vel_err = (cov[0][0] ** 0.5) * 1e3 # mas/yr vel_lo = vel - scale_factor * vel_err vel_hi = vel + scale_factor * vel_err # print('make_muS_EN_gen') # print('vel_lo : ', vel_lo) # print('vel_hi : ', vel_hi) # print(' ') return make_gen(vel_lo, vel_hi) def make_muS_EN_norm_gen(t, pos): """Get an approximate muS search range by looking at the best fit straight line to the astrometry. Then allows lots of free space. Parameters ------------ t: array of times in days pos: array of positions in arcsec Returns -------- gen: uniform generator for velocity in mas/yr """ # Convert t to years temporarily. t_yr = t / mmodel.days_per_year par, cov = np.polyfit(t_yr, pos, 1, cov=True) vel = par[0] * 1e3 # mas/yr vel_err = (cov[0][0] ** 0.5) * 1e3 # mas/yr scale_factor = 10.0 # print('make_muS_EN_norm_gen') # print('vel : ', vel) # print('vel_1sigma : ', scale_factor * vel_err) # print(' ') return make_norm_gen(vel, scale_factor * vel_err) def make_invgamma_gen(t_arr): """ADD DESCRIPTION Parameters ------------ t_arr: time array """ a,b = compute_invgamma_params(t_arr) # print('inv gamma') # print('a : ', a) # print('b : ', b) return scipy.stats.invgamma(a, scale=b) def compute_invgamma_params(t_arr): """ | Based on function of same name from <NAME>'s ``caustic`` package: https://github.com/fbartolic/caustic | Returns parameters of an inverse gamma distribution s.t. * 1% of total prob. mass is assigned to values of :math:`t < t_{min}` and * 1% of total prob. masss to values greater than t_{tmax}. `t_{min}` is defined to be the median spacing between consecutive data points in the time series and t_{max} is the total duration of the time series. Parameters ---------- t_arr : array Array of times Returns ------- invgamma_a, invgamma_b : float (?) The parameters a,b of the inverse gamma function. """ def solve_for_params(params, x_min, x_max): lower_mass = 0.01 upper_mass = 0.99 # Trial parameters alpha, beta = params # Equation for the roots defining params which satisfy the constraint cdf_l = scipy.stats.invgamma.cdf(x_min, alpha, scale=beta) - lower_mass, cdf_u = scipy.stats.invgamma.cdf(x_max, alpha, scale=beta) - upper_mass, return np.array([cdf_l, cdf_u]).reshape((2,)) # Compute parameters for the prior on GP hyperparameters med_sep = np.median(np.diff(t_arr)) tot_dur = t_arr[-1] - t_arr[0] invgamma_a, invgamma_b = scipy.optimize.fsolve(solve_for_params, (0.001, 0.001), (med_sep, tot_dur)) return invgamma_a, invgamma_b def make_piS(): # piS prior comes from PopSyCLE: # We will assume a truncated normal distribution with only a small-side truncation at ~20 kpc. piS_mean = 0.1126 # mas piS_std = 0.0213 # mas piS_lo_cut = (0.05 - piS_mean) / piS_std # sigma piS_hi_cut = 90. # sigma return scipy.stats.truncnorm(piS_lo_cut, piS_hi_cut, loc=piS_mean, scale=piS_std) def make_fdfdt(): return scipy.stats.norm(loc=0, scale=1 / 365.25) def random_prob(generator, x): value = generator.ppf(x) ln_prob = generator.logpdf(value) return value, ln_prob def weighted_quantile(values, quantiles, sample_weight=None, values_sorted=False, old_style=False): """ Very close to numplt.percentile, but supports weights. Parameters _____________ values: numplt.array with data quantiles: array-like with many quantiles needed sample_weight: array-like of the same length as `array` values_sorted: bool, if True, then will avoid sorting of initial array old_style: if True, will correct output to be consistent with numplt.percentile. Returns -------- arr: numplt.array with computed quantiles. Notes ------- .. note:: quantiles should be in [0, 1]! """ values = np.array(values) quantiles = np.array(quantiles) if sample_weight is None: sample_weight = np.ones(len(values)) sample_weight = np.array(sample_weight) assert np.all(quantiles >= 0) and np.all( quantiles <= 1), 'quantiles should be in [0, 1]' if not values_sorted: sorter = np.argsort(values) values = values[sorter] sample_weight = sample_weight[sorter] weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight if old_style: # To be convenient with np.percentile weighted_quantiles -= weighted_quantiles[0] weighted_quantiles /= weighted_quantiles[-1] else: weighted_quantiles /= np.sum(sample_weight) return np.interp(quantiles, weighted_quantiles, values) def split_param_filter_index1(s): """ Split a parameter name into the <string><number> components where <string> is the parameter name and <number> is the filter index (1-based). If there is no number at the end for a filter index, then return None for the second argument. Returns ---------- param_name : str The name of the parameter. filt_index : int (or None) The 1-based filter index. """ param_name = s.rstrip('123456789') if len(param_name) == len(s): filt_index = None else: filt_index = int(s[len(param_name):]) return param_name, filt_index def generate_params_dict(params, fitter_param_names): """ Take a list, dictionary, or astropy Row of fit parameters and extra parameters and convert it into a well-formed dictionary that can be fed straight into a model object. The output object will only contain parameters specified by name in fitter_param_names. Multi-filter photometry parameters are treated specially and grouped together into an array such as ['mag_src'] = [mag_src1, mag_src2]. Parameters ---------- params : list, dict, Row Contains values of parameters. Note that if the params are in a list, they need to be in the same order as fitter_param_names. If the params are in a dict or Row, then order is irrelevant. fitter_param_names : list The names of the parameters that will be delivered, in order, in the output. Returns ---------- params_dict : dict Dictionary of the parameter names and values. """ skip_list = ['weights', 'logLike', 'add_err', 'mult_err'] multi_list = ['mag_src', 'mag_base', 'b_sff', 'mag_src_pri', 'mag_src_sec', 'fratio_bin'] multi_dict = ['gp_log_rho', 'gp_log_S0', 'gp_log_sigma', 'gp_rho', 'gp_log_omega04_S0', 'gp_log_omega0'] params_dict = {} for i, param_name in enumerate(fitter_param_names): # Skip some parameters. if any([x in param_name for x in skip_list]): continue if isinstance(params, (dict, Row)): key = param_name else: key = i # Check to see if this is a multi-filter parameter. None if not. filt_param, filt_idx = split_param_filter_index1(param_name) # Handle global parameters (not filter dependent) if filt_idx == None: params_dict[param_name] = params[key] else: # Handle filter dependent parameters... 2 cases (list=required vs. dict=optional) if filt_param in multi_list: # Handle the filter-dependent fit parameters (required params). # They need to be grouped as a list for input into a model. if filt_param not in params_dict: params_dict[filt_param] = [] # Add this filter to our list. params_dict[filt_param].append(params[key]) if filt_param in multi_dict: # Handle the optional filter-dependent fit parameters (required params). # They need to be grouped as a dicionary for input into a model. if filt_param not in params_dict: params_dict[filt_param] = {} # Add this filter to our dict. Note the switch to 0-based here. params_dict[filt_param][filt_idx-1] = params[key] return params_dict ######################################## ### GENERAL USE AND SHARED FUNCTIONS ### ######################################## def pointwise_likelihood(data, model, filt_index=0): """Makes some plots to diagnose weirdness in GP fits. """ # Get the data out. dat_t = data['t_phot' + str(filt_index + 1)] dat_m = data['mag' + str(filt_index + 1)] dat_me = data['mag_err' + str(filt_index + 1)] # Make models. # Decide if we sample the models at a denser time, or just the # same times as the measurements. pw_logL = np.zeros(len(dat_t)) for tt, time in enumerate(dat_t): pw_logL[tt] = model.log_likely_photometry([dat_t[tt]], [dat_m[tt]], [dat_me[tt]], filt_index) return pw_logL def debug_gp_nan(data, model, filt_index=0): """Makes some plots to diagnose weirdness in GP fits. """ # Get the data out. dat_t = data['t_phot' + str(filt_index + 1)] dat_m = data['mag' + str(filt_index + 1)] dat_me = data['mag_err' + str(filt_index + 1)] # Make models. # Decide if we sample the models at a denser time, or just the # same times as the measurements. mod_m_out, mod_m_out_std = model.get_photometry_with_gp(dat_t, dat_m, dat_me, filt_index, dat_t) if mod_m_out is None: print('GP not working at prediction times!') mod_m_out = model.get_photometry(dat_t, filt_index) mod_m_at_dat, mod_m_at_dat_std = model.get_photometry_with_gp(dat_t, dat_m, dat_me, filt_index) bad_idx = np.nonzero(np.isnan(mod_m_at_dat))[0] print('Number of nan: ', str(len(bad_idx))) plt.figure(100, figsize=(10,10)) plt.clf() plt.errorbar(dat_t, dat_m, yerr=dat_me, fmt='k.', alpha=0.2) plt.errorbar(dat_t[bad_idx], dat_m[bad_idx], yerr=dat_me[bad_idx], fmt='ro', alpha=1) plt.gca().invert_yaxis() plt.xlabel('Time') plt.ylabel('Mag') plt.savefig('nans.png') # Magnitude errors plt.figure(101, figsize=(6,6)) plt.clf() plt.hist(dat_me, label='All', bins=np.linspace(0, np.max(dat_me), 50), alpha=0.5) plt.hist(dat_me[bad_idx], label='Bad', bins=np.linspace(0, np.max(dat_me), 50), alpha=0.5) plt.yscale('log') plt.xlabel('mag err') plt.legend() plt.savefig('nans_me_hist.png') # Difference between time of point N and point N-1. plt.figure(102, figsize=(6,6)) plt.clf() plt.hist(dat_t[bad_idx] - dat_t[bad_idx-1], bins=np.logspace(-2, 2, 50), label='Bad', alpha=0.5) plt.hist(dat_t[1:] - dat_t[:-1], bins=np.logspace(-2, 2, 50), label='All', alpha=0.5) plt.xscale('log') plt.yscale('log') plt.xlabel('delta t (days)') plt.legend() plt.savefig('nans_deltat_hist.png') def plot_params(model): """Print parameters """ x0 = 0.05 y0 = 0.95 dy = 0.03 fig = plt.figure(1, figsize=(10, 10)) plt.subplots_adjust(left=0.1, top=0.95, bottom=0.05, right=0.95) ax_lab = fig.add_subplot(111) ax_lab.xaxis.set_visible(False) ax_lab.yaxis.set_visible(False) ax_lab.set_axis_off() ax_lab.text(x0, y0 - 0 * dy, 'Model Parameters:', fontsize=10) def get_param_value(pname): if pname.endswith('_E') or pname.endswith('_N'): pname_act = pname[:-2] elif pname == 'log10_thetaE': pname_act = 'thetaE_amp' else: pname_act = pname pvalue = getattr(model, pname_act) if pname.endswith('_E'): pvalue = pvalue[0] if pname.endswith('_N'): pvalue = pvalue[1] if pname == 'log10_thetaE': pvalue = np.log10(pvalue) return pvalue for ff in range(len(model.fitter_param_names)): pname = model.fitter_param_names[ff] pvalu = get_param_value(pname) fmt_str = '{0:s} = {1:.2f}' if pname.startswith('x'): fmt_str = '{0:s} = {1:.4f}' ax_lab.text(x0, y0 - (ff + 1) * dy, fmt_str.format(pname, pvalu), fontsize=10) nrow = len(model.fitter_param_names) for ff in range(len(model.phot_param_names)): pname = model.phot_param_names[ff] pvalu = get_param_value(pname) fmt_str = '{0:s} = {1:.2f}' for rr in range(len(pvalu)): ax_lab.text(x0, y0 - (nrow + 1) * dy, fmt_str.format(pname + str(rr + 1), pvalu[rr]), fontsize=10) nrow += 1 nrow = 0 for ff in range(len(model.additional_param_names)): pname = model.additional_param_names[ff] pvalu = get_param_value(pname) fmt_str = '{0:s} = {1:.2f}' if pname in multi_filt_params: for rr in range(len(pvalu)): ax_lab.text(x0, y0 - (nrow + 1) * dy, fmt_str.format(pname + str(rr + 1), pvalu[rr]), fontsize=10) nrow += 1 else: ax_lab.text(x0 + 0.5, y0 - (ff + 1) * dy, fmt_str.format(pname, pvalu), fontsize=10) nrow += 1 return fig def plot_photometry(data, model, input_model=None, dense_time=True, residuals=True, filt_index=0, zoomx=None, zoomy=None, zoomy_res=None, mnest_results=None, N_traces=50, gp=False, fitter=None): """Get the data out. """ dat_t = data['t_phot' + str(filt_index + 1)] dat_m = data['mag' + str(filt_index + 1)] dat_me = data['mag_err' + str(filt_index + 1)] # Make models. # Decide if we sample the models at a denser time, or just the # same times as the measurements. if dense_time: # 1 day sampling over whole range mod_t = np.arange(dat_t.min(), dat_t.max(), 0.1) else: mod_t = dat_t if gp: mod_m_out, mod_m_out_std = model.get_photometry_with_gp(dat_t, dat_m, dat_me, filt_index, mod_t) if mod_m_out is None: print('GP not working at prediction times!') mod_m_out = model.get_photometry(mod_t, filt_index) mod_m_at_dat, mod_m_at_dat_std = model.get_photometry_with_gp(dat_t, dat_m, dat_me, filt_index) if mod_m_at_dat is None: print('GP not working at data times!') mod_m_at_dat = model.get_photometry(dat_t, filt_index) else: mod_m_out = model.get_photometry(mod_t, filt_index) mod_m_at_dat = model.get_photometry(dat_t, filt_index) # Input Model if input_model != None: mod_m_in = input_model.get_photometry(mod_t, filt_index) # fig = plt.figure(1, figsize=(15,15)) fig = plt.figure(1, figsize=(10,10)) plt.clf() # plt.subplots_adjust(bottom=0.2, left=0.2) plt.subplots_adjust(bottom=0.2, left=0.3) # Decide if we are plotting residuals if residuals: # f1 = plt.gcf().add_axes([0.1, 0.3, 0.8, 0.6]) # f1 = plt.gcf().add_axes([0.1, 0.35, 0.8, 0.55]) # f2 = plt.gcf().add_axes([0.1, 0.1, 0.8, 0.2]) f1 = plt.gcf().add_axes([0.2, 0.45, 0.7, 0.45]) f2 = plt.gcf().add_axes([0.2, 0.15, 0.7, 0.25]) else: plt.gca() ##### # Data ##### f1.errorbar(dat_t, dat_m, yerr=dat_me, fmt='k.', alpha=0.2, label='Data') if input_model != None: f1.plot(mod_t, mod_m_in, 'g-', label='Input') f1.plot(mod_t, mod_m_out, 'r-', label='Model') if gp and mod_m_out_std is not None: f1.fill_between(mod_t, mod_m_out+mod_m_out_std, mod_m_out-mod_m_out_std, color='r', alpha=0.3, edgecolor="none") f1.set_ylabel('I (mag)') f1.invert_yaxis() f1.set_title('Input Data and Output Model') f1.get_xaxis().set_visible(False) f1.set_xlabel('t - t0 (days)') f1.legend() if zoomx is not None: f1.set_xlim(zoomx[0], zoomx[1]) if zoomy is not None: f1.set_ylim(zoomy[0], zoomy[1]) ##### # Traces ##### if mnest_results is not None: idx_arr = np.random.choice(np.arange(len(mnest_results['weights'])), p=mnest_results['weights'], size=N_traces) trace_times = [] trace_magnitudes = [] for idx in idx_arr: # # FIXME: This doesn't work if there are additional_param_names in the model # # You will have extra arguments when passing in **params_dict into the model class. # # FIXME 2: there needs to be a way to deal with multiples in additional_param_names # params_dict = generate_params_dict(mnest_results[idx], # mnest_results.colnames) # # trace_mod = model.__class__(**params_dict, # raL=model.raL, # decL=model.decL) trace_mod = fitter.get_model(mnest_results[idx]) if gp: trace_mag, trace_mag_std = trace_mod.get_photometry_with_gp(dat_t, dat_m, dat_me, filt_index, mod_t) if trace_mag_std is None: print('GP is not working at model times!') continue else: trace_mag = trace_mod.get_photometry(mod_t, filt_index) trace_times.append(mod_t) trace_magnitudes.append(trace_mag) f1.plot(mod_t, trace_mag, color='c', alpha=0.5, linewidth=1, zorder=-1) ##### # Residuals ##### if residuals: f1.get_shared_x_axes().join(f1, f2) f2.errorbar(dat_t, dat_m - mod_m_at_dat, yerr=dat_me, fmt='k.', alpha=0.2) f2.axhline(0, linestyle='--', color='r') f2.set_xlabel('Time (HJD)') f2.set_ylabel('Obs - Mod') if zoomx is not None: f2.set_xlim(zoomx[0], zoomx[1]) if zoomy is not None: f2.set_ylim(zoomy[0], zoomy[1]) if zoomy_res is not None: f2.set_ylim(zoomy_res[0], zoomy_res[1]) return fig def plot_photometry_gp(data, model, input_model=None, dense_time=True, residuals=True, filt_index=0, zoomx=None, zoomy=None, zoomy_res=None, mnest_results=None, N_traces=50, gp=False): gs_kw = dict(height_ratios=[1,2,1]) fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, ncols=1, sharex=True, figsize=(15,15), gridspec_kw=gs_kw) # plt.clf() plt.subplots_adjust(bottom=0.1, left=0.1) # Get the data out. dat_t = data['t_phot' + str(filt_index + 1)] dat_m = data['mag' + str(filt_index + 1)] dat_me = data['mag_err' + str(filt_index + 1)] # Make models. # Decide if we sample the models at a denser time, or just the # same times as the measurements. if dense_time: # 1 day sampling over whole range mod_t = np.arange(dat_t.min(), dat_t.max(), 1) else: mod_t = dat_t mod_m_out_gp, mod_m_out_std_gp = model.get_photometry_with_gp(dat_t, dat_m, dat_me, filt_index, mod_t) mod_m_at_dat_gp, mod_m_at_dat_std_gp = model.get_photometry_with_gp(dat_t, dat_m, dat_me, filt_index) mod_m_out = model.get_photometry(mod_t, filt_index) mod_m_at_dat = model.get_photometry(dat_t, filt_index) if mod_m_out_gp is not None: # Input Model if input_model != None: mod_m_in = input_model.get_photometry(mod_t, filt_index) ##### # Data only ##### ax1.errorbar(dat_t, dat_m, yerr=dat_me, fmt='k.', alpha=0.2, label='Raw Data') ax1.set_ylabel('I (mag)') ax1.invert_yaxis() ax1.get_xaxis().set_visible(False) ax1.legend() ##### # Data minus model (just GP) ##### ax2.errorbar(dat_t, dat_m - (mod_m_at_dat_gp - mod_m_at_dat), yerr=dat_me, fmt='k.', alpha=0.2, label='Detrended data') ax2.plot(mod_t, mod_m_out, 'r-', label='Model', lw=1) ax2.set_ylabel('I (mag)') ax2.invert_yaxis() ax2.get_xaxis().set_visible(False) ax2.legend() ##### # Data minus GP (just model/detrended data) ##### ax3.axhline(y=0, color='dimgray', ls=':', alpha=0.8) ax3.errorbar(dat_t, dat_m - mod_m_at_dat, yerr=dat_me, fmt='k.', alpha=0.2, label='Correlated Noise') ax3.plot(mod_t, mod_m_out_gp - mod_m_out, 'r-', label='GP', lw=1, zorder=5000) ax3.set_ylabel('I (mag)') ax3.invert_yaxis() ax3.set_xlabel('Time (HJD)') ax3.legend() if zoomx is not None: ax1.set_xlim(zoomx[0], zoomx[1]) ax2.set_xlim(zoomx[0], zoomx[1]) ax3.set_xlim(zoomx[0], zoomx[1]) if zoomy is not None: ax1.set_ylim(zoomy[0], zoomy[1]) ax2.set_ylim(zoomy[0], zoomy[1]) if zoomy_res is not None: ax3.set_ylim(zoomy_res[0], zoomy_res[1]) return fig else: return None def plot_astrometry(data, model, input_model=None, dense_time=True, residuals=True, n_phot_sets=0, filt_index=0, ast_filt_index=0, mnest_results=None, N_traces=50, fitter=None): """Astrometry on the sky """ fig_list = [] plt.close(n_phot_sets + 1) fig = plt.figure(n_phot_sets + 1, figsize=(10, 10)) # PLOT 1 fig_list.append(fig) plt.clf() # Get the data out. dat_x = data['xpos' + str(filt_index + 1)] * 1e3 dat_y = data['ypos' + str(filt_index + 1)] * 1e3 dat_xe = data['xpos_err' + str(filt_index + 1)] * 1e3 dat_ye = data['ypos_err' + str(filt_index + 1)] * 1e3 dat_t = data['t_ast' + str(filt_index + 1)] if (dat_xe.ndim == 2 and dat_xe.shape[0] == 1): dat_t = dat_t.reshape(len(dat_t[0])) dat_x = dat_x.reshape(len(dat_x[0])) dat_y = dat_y.reshape(len(dat_y[0])) dat_xe = dat_xe.reshape(len(dat_xe[0])) dat_ye = dat_ye.reshape(len(dat_ye[0])) # Data plt.errorbar(dat_x, dat_y, xerr=dat_xe, yerr=dat_ye, fmt='k.', label='Data') # Decide if we sample the models at a denser time, or just the # same times as the measurements. if dense_time: # 1 day sampling over whole range t_mod = np.arange(dat_t.min(), dat_t.max(), 1) else: t_mod = dat_t # Model - usually from fitter pos_out = model.get_astrometry(t_mod, ast_filt_idx=ast_filt_index) plt.plot(pos_out[:, 0] * 1e3, pos_out[:, 1] * 1e3, 'r-', label='Model') # Input model if input_model != None: pos_in = input_model.get_astrometry(t_mod, ast_filt_idx=ast_filt_index) plt.plot(pos_in[:, 0] * 1e3, pos_in[:, 1] * 1e3, 'g-', label='Input Model') ##### # Traces ##### if mnest_results is not None: idx_arr = np.random.choice(np.arange(len(mnest_results['weights'])), p=mnest_results['weights'], size=N_traces) trace_posxs = [] trace_posys = [] trace_posxs_no_pm = [] trace_posys_no_pm = [] for idx in idx_arr: trace_mod = fitter.get_model(mnest_results[idx]) trace_pos = trace_mod.get_astrometry(t_mod, ast_filt_idx=ast_filt_index) trace_pos_no_pm = trace_mod.get_astrometry(t_mod, ast_filt_idx=ast_filt_index) - trace_mod.get_astrometry_unlensed(t_mod) trace_posxs.append(trace_pos[:, 0] * 1e3) trace_posys.append(trace_pos[:, 1] * 1e3) trace_posxs_no_pm.append(trace_pos_no_pm[:, 0] * 1e3) trace_posys_no_pm.append(trace_pos_no_pm[:, 1] * 1e3) if mnest_results is not None: for idx in np.arange(len(idx_arr)): plt.plot(trace_posxs[idx], trace_posys[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) plt.gca().invert_xaxis() plt.xlabel(r'$\Delta \alpha^*$ (mas)') plt.ylabel(r'$\Delta \delta$ (mas)') plt.legend(fontsize=12) ##### # Astrometry vs. time # x = RA, y = Dec ##### plt.close(n_phot_sets + 2) fig = plt.figure(n_phot_sets + 2, figsize=(10, 10)) # PLOT 2 fig_list.append(fig) plt.clf() plt.subplots_adjust(bottom=0.25, left=0.25) # Decide if we're plotting residuals if residuals: f1 = plt.gcf().add_axes([0.15, 0.3, 0.8, 0.6]) f2 = plt.gcf().add_axes([0.15, 0.1, 0.8, 0.2]) else: plt.gca() f1.errorbar(dat_t, dat_x, yerr=dat_xe, fmt='k.', label='Data') f1.plot(t_mod, pos_out[:, 0] * 1e3, 'r-', label='Model') if input_model != None: f1.plot(t_mod, pos_in[:, 0] * 1e3, 'g-', label='Input Model') f1.set_xlabel('t - t0 (days)') f1.set_ylabel(r'$\Delta \alpha^*$ (mas)') f1.legend() # Decide if plotting traces if mnest_results is not None: for idx in np.arange(len(idx_arr)): f1.plot(t_mod, trace_posxs[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) if residuals: f1.get_xaxis().set_visible(False) f1.get_shared_x_axes().join(f1, f2) f2.errorbar(dat_t, dat_x - model.get_astrometry(dat_t, ast_filt_idx=ast_filt_index)[:,0] * 1e3, yerr=dat_xe, fmt='k.', alpha=0.2) f2.axhline(0, linestyle='--', color='r') f2.set_xlabel('Time (HJD)') f2.set_ylabel('Obs - Mod') plt.close(n_phot_sets + 3) fig = plt.figure(n_phot_sets + 3, figsize=(10, 10)) # PLOT 3 fig_list.append(fig) plt.clf() plt.subplots_adjust(bottom=0.25, left=0.25) # Decide if we're plotting residuals if residuals: f1 = plt.gcf().add_axes([0.15, 0.3, 0.8, 0.6]) f2 = plt.gcf().add_axes([0.15, 0.1, 0.8, 0.2]) else: plt.gca() f1.errorbar(dat_t, dat_y, yerr=dat_ye, fmt='k.', label='Data') f1.plot(t_mod, pos_out[:, 1] * 1e3, 'r-', label='Model') if input_model != None: f1.plot(t_mod, pos_in[:, 1] * 1e3, 'g-', label='Input') f1.set_xlabel('t - t0 (days)') f1.set_ylabel(r'$\Delta \delta$ (mas)') f1.legend() # Decide if plotting traces if mnest_results is not None: for idx in np.arange(len(idx_arr)): f1.plot(t_mod, trace_posys[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) if residuals: f1.get_xaxis().set_visible(False) f1.get_shared_x_axes().join(f1, f2) f2.errorbar(dat_t, dat_y - model.get_astrometry(dat_t, ast_filt_idx=ast_filt_index)[:,1] * 1e3, yerr=dat_ye, fmt='k.', alpha=0.2) f2.axhline(0, linestyle='--', color='r') f2.set_xlabel('Time (HJD)') f2.set_ylabel('Obs - Mod') ##### # Remove the unlensed motion (proper motion) # astrometry vs. time ##### # Make the model unlensed points. p_mod_unlens_tdat = model.get_astrometry_unlensed(dat_t) x_mod_tdat = p_mod_unlens_tdat[:, 0] y_mod_tdat = p_mod_unlens_tdat[:, 1] x_no_pm = data['xpos' + str(filt_index + 1)] - x_mod_tdat y_no_pm = data['ypos' + str(filt_index + 1)] - y_mod_tdat # Make the dense sampled model for the same plot dp_tmod_unlens = model.get_astrometry(t_mod, ast_filt_idx=ast_filt_index) - model.get_astrometry_unlensed(t_mod) x_mod_no_pm = dp_tmod_unlens[:, 0] y_mod_no_pm = dp_tmod_unlens[:, 1] # Long time # baseline = np.max((2*(dat_t.max() - dat_t.min()), 5*model.tE)) # longtime = np.arange(model.t0 - baseline, model.t0 + baseline, 1) baseline = 3*(dat_t.max() - dat_t.min()) longtime = np.arange(t_mod.min()-baseline, t_mod.max()+baseline, 1) dp_tmod_unlens_longtime = model.get_astrometry(longtime) - model.get_astrometry_unlensed(longtime) x_mod_no_pm_longtime = dp_tmod_unlens_longtime[:, 0] y_mod_no_pm_longtime = dp_tmod_unlens_longtime[:, 1] # Make the dense sampled model for the same plot for INPUT model if input_model != None: dp_tmod_unlens_in = input_model.get_astrometry(t_mod, ast_filt_idx=ast_filt_index) - input_model.get_astrometry_unlensed(t_mod) x_mod_no_pm_in = dp_tmod_unlens_in[:, 0] y_mod_no_pm_in = dp_tmod_unlens_in[:, 1] if (x_no_pm.ndim == 2 and x_no_pm.shape[0] == 1): x_no_pm = x_no_pm.reshape(len(x_no_pm[0])) y_no_pm = y_no_pm.reshape(len(y_no_pm[0])) # Prep some colorbar stuff cmap = plt.cm.viridis norm = plt.Normalize(vmin=dat_t.min(), vmax=dat_t.max()) smap = plt.cm.ScalarMappable(cmap=cmap, norm=norm) smap.set_array([]) plt.close(n_phot_sets + 4) fig = plt.figure(n_phot_sets + 4, figsize=(10, 10)) # PLOT 4 fig_list.append(fig) plt.clf() plt.errorbar(dat_t, x_no_pm * 1e3, yerr=dat_xe, fmt='k.', label='Data') plt.plot(t_mod, x_mod_no_pm * 1e3, 'r-', label='Model') if mnest_results is not None: for idx in np.arange(len(idx_arr)): plt.plot(t_mod, trace_posxs_no_pm[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) if input_model != None: plt.plot(t_mod, x_mod_no_pm_in * 1e3, 'g-', label='Input') plt.xlabel('t - t0 (days)') plt.ylabel(r'$\Delta \alpha^*$ (mas)') plt.legend() plt.close(n_phot_sets + 5) fig = plt.figure(n_phot_sets + 5, figsize=(10, 10)) # PLOT 5 fig_list.append(fig) plt.clf() plt.errorbar(dat_t, y_no_pm * 1e3, yerr=dat_ye, fmt='k.', label='Data') plt.plot(t_mod, y_mod_no_pm * 1e3, 'r-', label='Model') if mnest_results is not None: for idx in np.arange(len(idx_arr)): plt.plot(t_mod, trace_posys_no_pm[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) if input_model != None: plt.plot(t_mod, y_mod_no_pm_in * 1e3, 'g-', label='Input') plt.xlabel('t - t0 (days)') plt.ylabel(r'$\Delta \delta$ (mas)') plt.legend() plt.close(n_phot_sets + 6) fig = plt.figure(n_phot_sets + 6) # PLOT 6 fig_list.append(fig) plt.clf() plt.scatter(x_no_pm * 1e3, y_no_pm * 1e3, c=dat_t, cmap=cmap, norm=norm, s=5) plt.errorbar(x_no_pm * 1e3, y_no_pm * 1e3, xerr=dat_xe, yerr=dat_ye, fmt='none', ecolor=smap.to_rgba(dat_t)) plt.scatter(x_mod_no_pm * 1e3, y_mod_no_pm * 1e3, c=t_mod, cmap=cmap, norm=norm) if mnest_results is not None: for idx in np.arange(len(idx_arr)): plt.plot(trace_posxs_no_pm[idx], trace_posys_no_pm[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) plt.gca().invert_xaxis() plt.axis('equal') plt.xlabel(r'$\Delta \alpha^*$ (mas)') plt.ylabel(r'$\Delta \delta$ (mas)') plt.colorbar() ##### # Astrometry on the sky ##### plt.close(n_phot_sets + 7) fig = plt.figure(n_phot_sets + 7, figsize=(10, 10)) # PLOT 7 fig_list.append(fig) plt.clf() # Data plt.errorbar(dat_x, dat_y, xerr=dat_xe, yerr=dat_ye, fmt='k.', label='Data') # Decide if we sample the models at a denser time, or just the # same times as the measurements. if dense_time: # 1 day sampling over whole range t_mod = np.arange(dat_t.min(), dat_t.max(), 1) else: t_mod = data['t_ast'] # Model - usually from fitter pos_out = model.get_astrometry(t_mod) pos_out_unlens = model.get_astrometry_unlensed(longtime) plt.plot(pos_out[:, 0] * 1e3, pos_out[:, 1] * 1e3, 'r-', label='Model') plt.plot(pos_out_unlens[:, 0] * 1e3, pos_out_unlens[:, 1] * 1e3, 'b:', label='Model unlensed') # Input model if input_model != None: pos_in = input_model.get_astrometry(t_mod) plt.plot(pos_in[:, 0] * 1e3, pos_in[:, 1] * 1e3, 'g-', label='Input Model') if mnest_results is not None: for idx in np.arange(len(idx_arr)): plt.plot(trace_posxs[idx], trace_posys[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) plt.gca().invert_xaxis() plt.xlabel(r'$\Delta \alpha^*$ (mas)') plt.ylabel(r'$\Delta \delta$ (mas)') plt.legend(fontsize=12) plt.close(n_phot_sets + 8) fig = plt.figure(n_phot_sets + 8, figsize=(10, 10)) # PLOT 8 fig_list.append(fig) plt.clf() plt.errorbar(dat_t, x_no_pm * 1e3, yerr=dat_xe, fmt='k.', label='Data') plt.plot(longtime, x_mod_no_pm_longtime * 1e3, 'r-', label='Model') plt.xlabel('t - t0 (days)') plt.ylabel(r'$\Delta \alpha^*$ (mas)') plt.legend() if mnest_results is not None: for idx in np.arange(len(idx_arr)): plt.plot(t_mod, trace_posxs_no_pm[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) plt.close(n_phot_sets + 9) fig = plt.figure(n_phot_sets + 9, figsize=(10, 10)) # PLOT 9 fig_list.append(fig) plt.clf() plt.errorbar(dat_t, y_no_pm * 1e3, yerr=dat_ye, fmt='k.', label='Data') plt.plot(longtime, y_mod_no_pm_longtime * 1e3, 'r-', label='Model') plt.xlabel('t - t0 (days)') plt.ylabel(r'$\Delta \delta$ (mas)') plt.legend() if mnest_results is not None: for idx in np.arange(len(idx_arr)): plt.plot(t_mod, trace_posys_no_pm[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) # Prep some colorbar stuff cmap = plt.cm.viridis norm = plt.Normalize(vmin=dat_t.min(), vmax=dat_t.max()) smap = plt.cm.ScalarMappable(cmap=cmap, norm=norm) smap.set_array([]) plt.close(n_phot_sets + 10) fig = plt.figure(n_phot_sets + 10) # PLOT 10 fig_list.append(fig) plt.clf() plt.scatter(x_no_pm * 1e3, y_no_pm * 1e3, c=dat_t, cmap=cmap, norm=norm, s=5) plt.errorbar(x_no_pm * 1e3, y_no_pm * 1e3, xerr=dat_xe, yerr=dat_ye, fmt='none', ecolor=smap.to_rgba(dat_t)) plt.colorbar() plt.scatter(x_mod_no_pm_longtime * 1e3, y_mod_no_pm_longtime * 1e3, s=1) # c=longtime, cmap=cmap, norm=norm, s=1) if mnest_results is not None: for idx in np.arange(len(idx_arr)): plt.plot(trace_posys_no_pm[idx], trace_posxs_no_pm[idx], color='c', alpha=0.5, linewidth=1, zorder=-1) plt.gca().invert_xaxis() plt.axis('equal') plt.xlabel(r'$\Delta \alpha^*$ (mas)') plt.ylabel(r'$\Delta \delta$ (mas)') return fig_list def plot_astrometry_on_sky(data, model): t_mod = np.arange(data['t_ast1'].min() - 300.0, data['t_ast1'].max() + 300.0, 5.0) pos_out = model.get_astrometry(t_mod) pos_in = model.get_astrometry_unlensed(t_mod) lens_in = model.get_lens_astrometry(t_mod) plt.close(1) fig = plt.figure(1, figsize=(16, 4)) plt.subplots_adjust(wspace=0.5, top=0.90) ast_colors = ['maroon', 'navy', 'purple', 'steelblue'] # Plot the data: RA vs. time plt.subplot(131) for ii in range(len(data['ast_data'])): suff = str(ii+1) plt.errorbar(data['t_ast'+suff], data['xpos'+suff]*1e3, yerr=data['xpos_err'+suff]*1e3, marker='.', color=ast_colors[ii], ls='none', label=data['ast_data'][ii]) plt.plot(t_mod, pos_out[:, 0]*1e3, 'r-', label='Src-Lensed') plt.plot(t_mod, pos_in[:, 0]*1e3, 'r--', label='Src-Unlensed') plt.plot(t_mod, lens_in[:, 0]*1e3, 'k-.', label='Lens') plt.xlabel('Time (MJD)') plt.ylabel(r'$\Delta \alpha$ (mas)') # plt.ylim(228, 233) fig.legend(loc='lower center', ncol=5, bbox_to_anchor=(0.55, 0.95)) # Plot the data: Dec vs. time plt.subplot(132) for ii in range(len(data['ast_data'])): suff = str(ii+1) plt.errorbar(data['t_ast'+suff], data['ypos'+suff]*1e3, yerr=data['ypos_err'+suff]*1e3, marker='.', color=ast_colors[ii], ls='none') plt.plot(t_mod, pos_out[:, 1]*1e3, 'r-') plt.plot(t_mod, pos_in[:, 1]*1e3, 'r--') plt.plot(t_mod, lens_in[:, 1]*1e3, 'k-.') plt.ylabel(r'$\Delta \delta$ (mas)') plt.xlabel('Time (MJD)') # Plot the data: Dec vs. time plt.subplot(133) for ii in range(len(data['ast_data'])): suff = str(ii+1) plt.errorbar(data['xpos'+suff]*1e3, data['ypos'+suff]*1e3, xerr=data['xpos_err'+suff]*1e3, yerr=data['ypos_err'+suff]*1e3, marker='.', color=ast_colors[ii], ls='none') plt.plot(pos_out[:, 0]*1e3, pos_out[:, 1]*1e3, 'r-') plt.plot(pos_in[:, 0]*1e3, pos_in[:, 1]*1e3, 'r--') plt.plot(lens_in[:, 0]*1e3, lens_in[:, 1]*1e3, 'k-.') plt.xlabel(r'$\Delta \alpha$ (mas)') plt.ylabel(r'$\Delta \delta$ (mas)') plt.gca().invert_xaxis() plt.axis('equal') return fig def plot_astrometry_proper_motion_removed(data, model): """Proper Motion Subtracted """ t_mod = np.arange(data['t_ast1'].min() - 300.0, data['t_ast1'].max() + 300.0, 5.0) pos_out = model.get_astrometry(t_mod) pos_in = model.get_astrometry_unlensed(t_mod) lens_in = model.get_lens_astrometry(t_mod) pos_out -= model.muS[np.newaxis, :] * 1e-3 * (t_mod[:, np.newaxis] - model.t0) / 365.25 pos_in -= model.muS[np.newaxis, :] * 1e-3 * (t_mod[:, np.newaxis] - model.t0) / 365.25 lens_in -= model.muS[np.newaxis, :] * 1e-3 * (t_mod[:, np.newaxis] - model.t0) / 365.25 plt.close('all') fig = plt.figure(figsize=(16, 4)) plt.subplots_adjust(wspace=0.5, top=0.90) ast_colors = ['maroon', 'navy', 'purple'] # Plot the data: RA vs. time plt.subplot(131) for ii in range(len(data['ast_data'])): suff = str(ii+1) x = data['xpos'+suff] - (model.muS[0] * 1e-3 * (data['t_ast'+suff] - model.t0) / 365.25) plt.errorbar(data['t_ast'+suff], x*1e3, yerr=data['xpos_err'+suff]*1e3, marker='.', color=ast_colors[ii], ls='none', label=data['ast_data'][ii]) plt.plot(t_mod, pos_out[:, 0]*1e3, 'r-', label='Src-Lensed') plt.plot(t_mod, pos_in[:, 0]*1e3, ls='--', color='orange', label='Src-Unlensed') plt.plot(t_mod, lens_in[:, 0]*1e3, 'k-.', label='Lens') plt.xlabel('Time (MJD)') plt.ylabel(r'$\Delta \alpha$ - PM (mas)') plt.ylim(x.min()*1e3-2, x.max()*1e3+2) fig.legend(loc='lower center', ncol=5, bbox_to_anchor=(0.55, 0.95)) # Plot the data: Dec vs. time plt.subplot(132) for ii in range(len(data['ast_data'])): suff = str(ii+1) y = data['ypos'+suff] - (model.muS[1] * 1e-3 * (data['t_ast'+suff] - model.t0) / 365.25) plt.errorbar(data['t_ast'+suff], y*1e3, yerr=data['ypos_err'+suff]*1e3, marker='.', color=ast_colors[ii], ls='none') plt.plot(t_mod, pos_out[:, 1]*1e3, 'r-') plt.plot(t_mod, pos_in[:, 1]*1e3, ls='--', color='orange') plt.plot(t_mod, lens_in[:, 1]*1e3, 'k-.') plt.ylabel(r'$\Delta \delta$ - PM (mas)') plt.xlabel('Time (MJD)') plt.ylim(y.min()*1e3-2, y.max()*1e3+2) # Plot the data: Dec vs. time plt.subplot(133) for ii in range(len(data['ast_data'])): suff = str(ii+1) x = data['xpos'+suff] - (model.muS[0] * 1e-3 * (data['t_ast'+suff] - model.t0) / 365.25) y = data['ypos'+suff] - (model.muS[1] * 1e-3 * (data['t_ast'+suff] - model.t0) / 365.25) plt.errorbar(x*1e3, y*1e3, xerr=data['xpos_err'+suff]*1e3, yerr=data['ypos_err'+suff]*1e3, marker='.', color=ast_colors[ii], ls='none') plt.plot(pos_out[:, 0]*1e3, pos_out[:, 1]*1e3, 'r-') plt.plot(pos_in[:, 0]*1e3, pos_in[:, 1]*1e3, ls='--', color='orange') plt.plot(lens_in[:, 0]*1e3, lens_in[:, 1]*1e3, 'k-.') plt.xlabel(r'$\Delta \alpha$ - PM (mas)') plt.ylabel(r'$\Delta \delta$ - PM (mas)') plt.axis('equal') plt.xlim(x.min()*1e3-1, x.max()*1e3+1) plt.ylim(y.min()*1e3-1, y.max()*1e3+1) plt.gca().invert_xaxis() return fig def quantiles(mnest_results, sigma=1): """ Calculate the median and N sigma credicble interval. Parameters ---------- mnest_results : astropy table The table that comes out of load_mnest_results. sigma : int, optional 1, 2, or 3 sigma to determine which credible interval to return. """ pars = mnest_results.colnames weights = mnest_results['weights'] sumweights =
np.sum(weights)
numpy.sum
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Oct 30 19:00:00 2017 @author: gsutanto """ import numpy as np import tensorflow as tf import random import os import sys import copy import time import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import glob from colorama import init, Fore, Back, Style init() sys.path.append(os.path.join(os.path.dirname(__file__), '../../../utilities/')) sys.path.append(os.path.join(os.path.dirname(__file__), '../../../neural_nets/feedforward/')) from utilities import * from FeedForwardNeuralNetwork import * # Seed the random variables generator: random.seed(38) np.random.seed(38) def generate1stOrderTimeAffineDynSys(init_val, dt, tau, alpha): traj_length = int(round(tau/dt)) traj = np.zeros(traj_length) x = init_val for t in range(traj_length): traj[t] = x x = (1 - ((dt/tau) * alpha)) * x return traj if __name__ == "__main__": plt.close('all') base_tau = 0.5 dt = 1/300.0 alpha = 25.0/3.0 # similar to (1st order) canonical system's alpha plt_color_code = ['b', 'g', 'r', 'c', 'm', 'y', 'k'] N_traj = len(plt_color_code) stretched_traj_length = int(round(base_tau/dt * (N_traj + 1)/2)) trajs = [None] * N_traj data_output = [None] * N_traj data_input = [None] * N_traj ax_plt = [None] * 2 plt_label = [None] * 2 fig, (ax_plt[0], ax_plt[1]) = plt.subplots(2, sharex=True, sharey=True) for i in range(N_traj): tau = (i+1) * base_tau traj = generate1stOrderTimeAffineDynSys(1.0, dt, tau, alpha) trajs[i] = traj data_output[i] = traj[1:] - traj[:-1] # = C_{t} - C_{t-1} data_input[i] = ((dt/tau) * traj[:-1]) # (dt/tau) * C_{t-1} plt_label[0] = 'traj ' + str(i+1) + ', tau=' + str(tau) + 's' plt_label[1] = 'traj ' + str(i+1) stretched_traj = stretchTrajectory(traj, stretched_traj_length) ax_plt[0].plot(traj, color=plt_color_code[i], label=plt_label[0]) ax_plt[1].plot(stretched_traj, color=plt_color_code[i], label=plt_label[1]) ax_plt[0].set_title('Unstretched vs Stretched Trajectories of 1st Order Time-Affine Dynamical Systems, dt=(1/' + str(1.0/dt) + ')s') ax_plt[0].set_ylabel('Unstretched') ax_plt[1].set_ylabel('Stretched') ax_plt[1].set_xlabel('Time Index') for p in range(2): ax_plt[p].legend() # Fine-tune figure; make subplots close to each other and hide x ticks for # all but bottom plot. # f.subplots_adjust(hspace=0) plt.setp([a.get_xticklabels() for a in fig.axes[:-1]], visible=False) X = np.vstack([di.reshape(di.shape[0],1) for di in data_input]).astype(np.float32) Y = np.vstack([do.reshape(do.shape[0],1) for do in data_output]).astype(np.float32) N_NN_reinit_trials = 1 batch_size = 128 TF_max_train_iters = 100001 # Dropouts: tf_train_dropout_keep_prob = 0.5 # L2 Regularization Constant beta = 0.0 logs_path = "/tmp/ffnn/" NN_name = 'my_ffnn' fraction_train_dataset = 0.85 fraction_test_dataset = 0.075 chunk_size = 1 # Initial Learning Rate init_learning_rate = 0.001 # Define Neural Network Topology topology = [1, 1] # Define Neural Network Activation Function ffnn_hidden_layer_activation_func_list = [] N_data = X.shape[0] D_input = X.shape[1] D_output = Y.shape[1] print('N_data =', N_data) print('D_input =', D_input) print('D_output =', D_output) # Permutation with Chunks (for Stochastic Gradient Descent (SGD)) data_idx_chunks = list(chunks(range(N_data), chunk_size)) N_chunks = len(data_idx_chunks) N_train_chunks = np.round(fraction_train_dataset * N_chunks).astype(int) N_test_chunks = np.round(fraction_test_dataset * N_chunks).astype(int) N_valid_chunks = N_chunks - N_train_chunks - N_test_chunks chunk_permutation = np.random.permutation(N_chunks) chunk_idx_train = np.sort(chunk_permutation[0:N_train_chunks], 0) chunk_idx_valid = np.sort(chunk_permutation[N_train_chunks:(N_train_chunks+N_valid_chunks)], 0) chunk_idx_test = np.sort(chunk_permutation[(N_train_chunks+N_valid_chunks):N_chunks], 0) idx_train_dataset = np.concatenate([data_idx_chunks[i] for i in chunk_idx_train]) idx_valid_dataset = np.concatenate([data_idx_chunks[i] for i in chunk_idx_valid]) idx_test_dataset = np.concatenate([data_idx_chunks[i] for i in chunk_idx_test]) # Training Dataset Index is Permuted for Stochastic Gradient Descent (SGD) permuted_idx_train_dataset = idx_train_dataset[np.random.permutation(len(idx_train_dataset))] assert (((set(permuted_idx_train_dataset).union(set(idx_valid_dataset))).union(set(idx_test_dataset))) == set(np.arange(N_data))), "NOT all data is utilized!" X_train = X[permuted_idx_train_dataset,:] X_valid = X[idx_valid_dataset,:] X_test = X[idx_test_dataset,:] Y_train = Y[permuted_idx_train_dataset,:] Y_valid = Y[idx_valid_dataset,:] Y_test = Y[idx_test_dataset,:] N_train_dataset = X_train.shape[0] N_valid_dataset = X_valid.shape[0] N_test_dataset = X_test.shape[0] print('N_train_dataset =', N_train_dataset) print('N_valid_dataset =', N_valid_dataset) print('N_test_dataset =', N_test_dataset) # Build the complete graph for feeding inputs, training, and saving checkpoints. ff_nn_graph = tf.Graph() with ff_nn_graph.as_default(): # Input data. For the training data, we use a placeholder that will be fed # at run time with a training minibatch. tf_train_X_batch = tf.placeholder(tf.float32, shape=[batch_size, D_input], name="tf_train_X_batch_placeholder") tf_train_X = tf.constant(X_train, name="tf_train_X_constant") tf_valid_X = tf.constant(X_valid, name="tf_valid_X_constant") tf_test_X = tf.constant(X_test, name="tf_test_X_constant") tf_train_Y_batch = tf.placeholder(tf.float32, shape=[batch_size, D_output], name="tf_train_Y_batch_placeholder") tf_train_Y = tf.constant(Y_train, name="tf_train_Y_constant") tf_valid_Y = tf.constant(Y_valid, name="tf_valid_Y_constant") tf_test_Y = tf.constant(Y_test, name="tf_test_Y_constant") FFNN = FeedForwardNeuralNetwork(NN_name, topology, ffnn_hidden_layer_activation_func_list) # Build the Prediction Graph (that computes predictions from the inference model). train_batch_prediction = FFNN.performNeuralNetworkPrediction(tf_train_X_batch, tf_train_dropout_keep_prob) # Build the Training Graph (that calculate and apply gradients). train_op, loss = FFNN.performNeuralNetworkTraining(train_batch_prediction, tf_train_Y_batch, init_learning_rate, beta) # Create a summary: tf.summary.scalar("loss", loss) # merge all summaries into a single "operation" which we can execute in a session summary_op = tf.summary.merge_all() # Predictions for the training, validation, and test data. train_prediction = FFNN.performNeuralNetworkPrediction(tf_train_X, 1.0) valid_prediction = FFNN.performNeuralNetworkPrediction(tf_valid_X, 1.0) test_prediction = FFNN.performNeuralNetworkPrediction(tf_test_X, 1.0) # Run training for TF_max_train_iters and save checkpoint at the end. with tf.Session(graph=ff_nn_graph) as session: for n_NN_reinit_trial in range(N_NN_reinit_trials): print ("n_NN_reinit_trial = ", n_NN_reinit_trial) # Run the Op to initialize the variables. tf.global_variables_initializer().run() print("Initialized") if (FFNN.num_params < N_train_dataset): print("OK: FFNN.num_params=%d < %d=N_train_dataset" % (FFNN.num_params, N_train_dataset)) else: print(Fore.RED + "WARNING: FFNN.num_params=%d >= %d=N_train_dataset" % (FFNN.num_params, N_train_dataset)) print(Style.RESET_ALL) # sys.exit("ERROR: FFNN.num_params=%d >= %d=N_train_dataset" % (FFNN.num_params, N_train_dataset)) # create log writer object writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph()) np.set_printoptions(suppress=True)
np.set_printoptions(precision=4)
numpy.set_printoptions
from multiprocessing import Pool import platform import numpy as np from mogp_emulator.GaussianProcess import ( GaussianProcessBase, GaussianProcess, PredictResult ) from mogp_emulator.Kernel import KernelBase from mogp_emulator.Priors import GPPriors class MultiOutputGP(object): """Implementation of a multiple-output Gaussian Process Emulator. Essentially a parallelized wrapper for the predict method. To fit in parallel, use the ``fit_GP_MAP`` routine Required arguments are ``inputs`` and ``targets``, both of which must be numpy arrays. ``inputs`` can be 1D or 2D (if 1D, assumes second axis has length 1). ``targets`` can be 1D or 2D (if 2D, assumes a single emulator and the first axis has length 1). Optional arguments specify how each individual emulator is constructed, including the mean function, kernel, priors, and how to handle the nugget. Each argument can take values allowed by the base ``GaussianProcess`` class, in which case all emulators are assumed to use the same value. Any of these arguments can alternatively be a list of values with length matching the number of emulators to set those values individually. """ def __init__(self, inputs, targets, mean=None, kernel="SquaredExponential", priors=None, nugget="adaptive", inputdict={}, use_patsy=True): """ Create a new multi-output GP Emulator """ self.GPClass = GaussianProcess if not inputdict == {}: warnings.warn("The inputdict interface for mean functions has been deprecated. " + "You must input your mean formulae using the x[0] format directly " + "in the formula.", DeprecationWarning) if not use_patsy: warnings.warn("patsy is now required to parse all formulae and form design " + "matrices in mogp-emulator. The use_patsy=False option will be ignored.") # check input types and shapes, reshape as appropriate for the case of a single emulator inputs = np.array(inputs) targets = np.array(targets) if len(inputs.shape) == 1: inputs = np.reshape(inputs, (-1, 1)) if len(targets.shape) == 1: targets = np.reshape(targets, (1, -1)) elif not (len(targets.shape) == 2): raise ValueError("targets must be either a 1D or 2D array") if not (len(inputs.shape) == 2): raise ValueError("inputs must be either a 1D or 2D array") if not (inputs.shape[0] == targets.shape[1]): raise ValueError("the first dimension of inputs must be the same length as the second dimension of targets (or first if targets is 1D))") self.n_emulators = targets.shape[0] self.n = inputs.shape[0] self.D = inputs.shape[1] if not isinstance(mean, list): mean = self.n_emulators*[mean] assert isinstance(mean, list), "mean must be None, a string, a valid patsy model description, or a list of None/string/mean functions" assert len(mean) == self.n_emulators if isinstance(kernel, str) or issubclass(type(kernel), KernelBase): kernel = self.n_emulators*[kernel] assert isinstance(kernel, list), "kernel must be a Kernel subclass or a list of Kernel subclasses" assert len(kernel) == self.n_emulators if isinstance(priors, (GPPriors, dict)) or priors is None: priorslist = self.n_emulators*[priors] else: priorslist = list(priors) assert isinstance(priorslist, list), ("priors must be a GPPriors object, None, or arguments to construct " + "a GPPriors object or a list of length n_emulators containing the above") assert len(priorslist) == self.n_emulators, "Bad length for list provided for priors to MultiOutputGP" if isinstance(nugget, (str, float)): nugget = self.n_emulators*[nugget] assert isinstance(nugget, list), "nugget must be a string, float, or a list of strings and floats" assert len(nugget) == self.n_emulators self.emulators = [ self.GPClass(inputs, single_target, m, k, p, n) for (single_target, m, k, p, n) in zip(targets, mean, kernel, priorslist, nugget)] def predict(self, testing, unc=True, deriv=False, include_nugget=True, allow_not_fit=False, processes=None): """Make a prediction for a set of input vectors Makes predictions for each of the emulators on a given set of input vectors. The input vectors must be passed as a ``(n_predict, D)`` or ``(D,)`` shaped array-like object, where ``n_predict`` is the number of different prediction points under consideration and ``D`` is the number of inputs to the emulator. If the prediction inputs array has shape ``(D,)``, then the method assumes ``n_predict == 1``. The prediction points are passed to each emulator and the predictions are collected into an ``(n_emulators, n_predict)`` shaped numpy array as the first return value from the method. Optionally, the emulator can also calculate the uncertainties in the predictions (as a variance) and the derivatives with respect to each input parameter. If the uncertainties are computed, they are returned as the second output from the method as an ``(n_emulators, n_predict)`` shaped numpy array. If the derivatives are computed, they are returned as the third output from the method as an ``(n_emulators, n_predict, D)`` shaped numpy array. Finally, if uncertainties are computed, the ``include_nugget`` flag determines if the uncertainties should include the nugget. By default, this is set to ``True``. Derivatives have been deprecated due to changes in how the mean function is computed, so setting ``deriv=True`` will have no effect and will raise a ``DeprecationWarning``. The ``allow_not_fit`` flag determines how the object handles any emulators that do not have fit hyperparameter values (because fitting presumably failed). By default, ``allow_not_fit=False`` and the method will raise an error if any emulators are not fit. Passing ``allow_not_fit=True`` will override this and ``NaN`` will be returned from any emulators that have not been fit. As with the fitting, this computation can be done independently for each emulator and thus can be done in parallel. :param testing: Array-like object holding the points where predictions will be made. Must have shape ``(n_predict, D)`` or ``(D,)`` (for a single prediction) :type testing: ndarray :param unc: (optional) Flag indicating if the uncertainties are to be computed. If ``False`` the method returns ``None`` in place of the uncertainty array. Default value is ``True``. :type unc: bool :param include_nugget: (optional) Flag indicating if the nugget should be included in the predictive variance. Only relevant if ``unc = True``. Default is ``True``. :type include_nugget: bool :param allow_not_fit: (optional) Flag that allows predictions to be made even if not all emulators have been fit. Default is ``False`` which will raise an error if any unfitted emulators are present. :type allow_not_fit: bool :param processes: (optional) Number of processes to use when making the predictions. Must be a positive integer or ``None`` to use the number of processors on the computer (default is ``None``) :type processes: int or None :returns: ``PredictResult`` object holding numpy arrays containing the predictions, uncertainties, and derivatives, respectively. Predictions and uncertainties have shape ``(n_emulators, n_predict)`` while the derivatives have shape ``(n_emulators, n_predict, D)``. If the ``do_unc`` or ``do_deriv`` flags are set to ``False``, then those arrays are replaced by ``None``. :rtype: PredictResult """ testing = np.array(testing) if self.D == 1 and testing.ndim == 1: testing = np.reshape(testing, (-1, 1)) elif testing.ndim == 1: testing = np.reshape(testing, (1, len(testing))) assert testing.ndim == 2, "testing must be a 2D array" n_testing, D = np.shape(testing) assert D == self.D, "second dimension of testing must be the same as the number of input parameters" if deriv: warnings.warn("Prediction derivatives have been deprecated and are no longer supported", DeprecationWarning) if not processes is None: processes = int(processes) assert processes > 0, "number of processes must be a positive integer" if allow_not_fit: predict_method = _gp_predict_default_NaN else: predict_method = self.GPClass.predict if platform.system() == "Windows": predict_vals = [predict_method(gp, testing, unc, deriv, include_nugget) for gp in self.emulators] else: with Pool(processes) as p: predict_vals = p.starmap(predict_method, [(gp, testing, unc, deriv, include_nugget) for gp in self.emulators]) # repackage predictions into numpy arrays predict_unpacked, unc_unpacked, deriv_unpacked = [
np.array(t)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Python 2.7 @author: <NAME> <EMAIL> Last Update: 23.8.2018 Use Generative Model for posture extrapolation """ from datetime import datetime import os, sys, numpy as np, argparse from time import time from tqdm import tqdm, trange import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec #from skimage.transform import resize from skimage import measure from scipy.io import loadmat from scipy.misc import imread from scipy.spatial.distance import euclidean, cdist from sklearn.preprocessing import normalize try: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA except: from sklearn.lda import LDA from sklearn.svm import LinearSVC from utils import load_table, load_features, draw_border, fig2data, load_image sys.path.append('./magnification/') from Generator import Generator, find_differences, find_differences_cc #import config_pytorch as cfg import config_pytorch_human as cfg parser = argparse.ArgumentParser() parser.add_argument("-f", "--length",type=int,default=8, help="Sequence length") parser.add_argument("-q", "--query",type=int,default=10, help="Frame query") parser.add_argument("-nn", "--nn",type=int,default=30, help="Nearest neighbor for posture average") parser.add_argument("-l", "--lambdas",type=float,default=2.5, help="Extrapolation factor") parser.add_argument("-g", "--gpu",type=int,default=0, help="GPU device to use for image generation") args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"]= str(args.gpu) #args.query = 1599 ############################################ # 0. Prepare magnifier object ############################################ generator = Generator(z_dim=cfg.encode_dim,path_model=cfg.vae_weights_path) ############################################ # 1. Load sequences and features ############################################ detections = load_table(cfg.detection_file,asDict=False) det_cohort= np.array(detections['cohort']) # Used for classifier and plots det_time = np.array(detections['time']) # Used for classifier and plots det_frames= np.array(detections['frames']) det_videos=
np.array(detections['videos'])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Plot ranks of top 100 users in the cyberbullying dataset Usage: python plot_fig4_top_entities.py Input data files: ../data/[app_name]_out/complete_user_[app_name].txt, ../data/[app_name]_out/user_[app_name]_all.txt Time: ~8M """ import sys, os, platform from collections import defaultdict from datetime import datetime import numpy as np from scipy.stats import entropy, kendalltau import matplotlib as mpl if platform.system() == 'Linux': mpl.use('Agg') # no UI backend import matplotlib.pyplot as plt sys.path.append(os.path.join(os.path.dirname(__file__), '../')) from utils.helper import Timer, melt_snowflake from utils.metrics import mean_absolute_percentage_error as mape cm = plt.cm.get_cmap('RdBu') def write_to_file(filepath, header, datalist): with open(filepath, 'w') as fout: for user_idx, user_id in enumerate(header): fout.write('{0}\t{1}\t{2}\n'.format(user_id, sum(datalist[user_idx]), ','.join(map(str, datalist[user_idx])))) def read_from_file(filepath, dtype=0): datalist = [] with open(filepath, 'r') as fin: for line in fin: user_id, total, records = line.rstrip().split('\t') if dtype == 0: records = list(map(int, records.split(','))) else: records = list(map(float, records.split(','))) datalist.append(records) return datalist def main(): timer = Timer() timer.start() app_name = 'cyberbullying' hours_in_day = 24 minutes_in_hour = 60 seconds_in_minute = 60 ms_in_second = 1000 num_bins = 100 width = ms_in_second // num_bins num_top = 500 fig, axes = plt.subplots(1, 2, figsize=(7.2, 4.8), gridspec_kw={'width_ratios': [2.75, 3]}) axes = axes.ravel() confusion_sampling_rate = np.load('../data/{0}_out/{0}_confusion_sampling_rate.npy'.format(app_name)) confusion_sampling_rate = np.nan_to_num(confusion_sampling_rate) load_external_data = True if not load_external_data: sample_entity_stats = defaultdict(int) with open('../data/{0}_out/user_{0}_all.txt'.format(app_name), 'r') as fin: for line in fin: split_line = line.rstrip().split(',') sample_entity_stats[split_line[1]] += 1 # == == == == == == Part 2: Plot entity rank == == == == == == # print('>>> found top {0} users in sample set...'.format(num_top)) sample_top = [kv[0] for kv in sorted(sample_entity_stats.items(), key=lambda x: x[1], reverse=True)[:num_top]] # == == == == == == Part 1: Find tweets appearing in complete set == == == == == == # complete_post_lists_hour = [[0] * hours_in_day for _ in range(num_top)] complete_post_lists_min = [[0] * minutes_in_hour for _ in range(num_top)] complete_post_lists_sec = [[0] * seconds_in_minute for _ in range(num_top)] complete_post_lists_10ms = [[0] * num_bins for _ in range(num_top)] complete_entity_stats = defaultdict(int) with open('../data/{0}_out/complete_user_{0}.txt'.format(app_name), 'r') as fin: for line in fin: split_line = line.rstrip().split(',') user_id = split_line[1] if user_id in sample_top: complete_entity_stats[user_id] += 1 user_idx = sample_top.index(user_id) tweet_id = split_line[0] timestamp_ms = melt_snowflake(tweet_id)[0] dt_obj = datetime.utcfromtimestamp(timestamp_ms // 1000) hour = dt_obj.hour minute = dt_obj.minute second = dt_obj.second millisec = timestamp_ms % 1000 ms_idx = (millisec-7) // width if millisec >= 7 else (1000 + millisec-7) // width complete_post_lists_hour[user_idx][hour] += 1 complete_post_lists_min[user_idx][minute] += 1 complete_post_lists_sec[user_idx][second] += 1 complete_post_lists_10ms[user_idx][ms_idx] += 1 write_to_file('./complete_post_lists_hour.txt', sample_top, complete_post_lists_hour) write_to_file('./complete_post_lists_min.txt', sample_top, complete_post_lists_min) write_to_file('./complete_post_lists_sec.txt', sample_top, complete_post_lists_sec) write_to_file('./complete_post_lists_10ms.txt', sample_top, complete_post_lists_10ms) print('>>> finish dumping complete lists...') timer.stop() # == == == == == == Part 2: Find appearing tweets in sample set == == == == == == # sample_post_lists_hour = [[0] * hours_in_day for _ in range(num_top)] sample_post_lists_min = [[0] * minutes_in_hour for _ in range(num_top)] sample_post_lists_sec = [[0] * seconds_in_minute for _ in range(num_top)] sample_post_lists_10ms = [[0] * num_bins for _ in range(num_top)] estimated_post_lists_hour = [[0] * hours_in_day for _ in range(num_top)] estimated_post_lists_min = [[0] * minutes_in_hour for _ in range(num_top)] estimated_post_lists_sec = [[0] * seconds_in_minute for _ in range(num_top)] estimated_post_lists_10ms = [[0] * num_bins for _ in range(num_top)] hourly_conversion = np.mean(confusion_sampling_rate, axis=(1, 2, 3)) minutey_conversion = np.mean(confusion_sampling_rate, axis=(2, 3)) secondly_conversion = np.mean(confusion_sampling_rate, axis=(3)) with open('../data/{0}_out/user_{0}_all.txt'.format(app_name), 'r') as fin: for line in fin: split_line = line.rstrip().split(',') user_id = split_line[1] if user_id in sample_top: user_idx = sample_top.index(user_id) tweet_id = split_line[0] timestamp_ms = melt_snowflake(tweet_id)[0] dt_obj = datetime.utcfromtimestamp(timestamp_ms // 1000) hour = dt_obj.hour minute = dt_obj.minute second = dt_obj.second millisec = timestamp_ms % 1000 ms_idx = (millisec-7) // width if millisec >= 7 else (1000 + millisec-7) // width sample_post_lists_hour[user_idx][hour] += 1 sample_post_lists_min[user_idx][minute] += 1 sample_post_lists_sec[user_idx][second] += 1 sample_post_lists_10ms[user_idx][ms_idx] += 1 estimated_post_lists_hour[user_idx][hour] += 1 / hourly_conversion[hour] estimated_post_lists_min[user_idx][minute] += 1 / minutey_conversion[hour, minute] estimated_post_lists_sec[user_idx][second] += 1 / secondly_conversion[hour, minute, second] estimated_post_lists_10ms[user_idx][ms_idx] += 1 / confusion_sampling_rate[hour, minute, second, ms_idx] write_to_file('./sample_post_lists_hour.txt', sample_top, sample_post_lists_hour) write_to_file('./sample_post_lists_min.txt', sample_top, sample_post_lists_min) write_to_file('./sample_post_lists_sec.txt', sample_top, sample_post_lists_sec) write_to_file('./sample_post_lists_10ms.txt', sample_top, sample_post_lists_10ms) write_to_file('./estimated_post_lists_hour.txt', sample_top, estimated_post_lists_hour) write_to_file('./estimated_post_lists_min.txt', sample_top, estimated_post_lists_min) write_to_file('./estimated_post_lists_sec.txt', sample_top, estimated_post_lists_sec) write_to_file('./estimated_post_lists_10ms.txt', sample_top, estimated_post_lists_10ms) print('>>> finish dumping sample and estimated lists...') timer.stop() else: sample_top = [] complete_post_lists_hour = [] with open('./complete_post_lists_hour.txt', 'r') as fin: for line in fin: user_id, total, records = line.rstrip().split('\t') sample_top.append(user_id) records = list(map(int, records.split(','))) complete_post_lists_hour.append(records) sample_post_lists_hour = read_from_file('./sample_post_lists_hour.txt', dtype=0) sample_post_lists_min = read_from_file('./sample_post_lists_min.txt', dtype=0) sample_post_lists_sec = read_from_file('./sample_post_lists_sec.txt', dtype=0) sample_post_lists_10ms = read_from_file('./sample_post_lists_10ms.txt', dtype=0) estimated_post_lists_hour = read_from_file('./estimated_post_lists_hour.txt', dtype=1) estimated_post_lists_min = read_from_file('./estimated_post_lists_min.txt', dtype=1) estimated_post_lists_sec = read_from_file('./estimated_post_lists_sec.txt', dtype=1) estimated_post_lists_10ms = read_from_file('./estimated_post_lists_10ms.txt', dtype=1) # == == == == == == Part 3: Find the best estimation by comparing JS distance == == == == == == # ret = {} num_estimate_list = [] num_sample_list = [] num_complete_list = [] sample_entity_stats = {user_id: sum(sample_post_lists_hour[user_idx]) for user_idx, user_id in enumerate(sample_top)} complete_entity_stats = {user_id: sum(complete_post_lists_hour[user_idx]) for user_idx, user_id in enumerate(sample_top)} min_mat = np.array([], dtype=np.int64).reshape(0, 60) sec_mat = np.array([], dtype=np.int64).reshape(0, 60) for user_idx, user_id in enumerate(sample_top): num_sample = sample_entity_stats[user_id] num_complete = complete_entity_stats[user_id] hour_entropy = entropy(sample_post_lists_hour[user_idx], base=hours_in_day) min_entropy = entropy(sample_post_lists_min[user_idx], base=minutes_in_hour) sec_entropy = entropy(sample_post_lists_sec[user_idx], base=seconds_in_minute) ms10_entropy = entropy(sample_post_lists_10ms[user_idx], base=num_bins) min_mat = np.vstack((min_mat, np.array(sample_post_lists_min[user_idx]).reshape(1, -1))) sec_mat = np.vstack((sec_mat,
np.array(sample_post_lists_sec[user_idx])
numpy.array
""" Code to cut SMPL into near symmetric parts. Author: Bharat Cite: Combining Implicit Function Learning and Parametric Models for 3D Human Reconstruction, ECCV 2020. """ import numpy as np from psbody.mesh import Mesh import sys sys.path.append('..') import pickle as pkl from lib.smplx.body_models import SMPLX def get_tpose_smplx(): # sp = SmplPaths(gender='neutral') # smplx = sp.get_smpl() # smplx.trans[:] = 0 # smplx.pose[:] = 0 smplx_output = SMPLX(model_path="/home/chen/SMPLX/models/smplx", batch_size=1, gender='neutral')() return smplx_output def cut_right_forearm(display=False): smplx = get_tpose_smplx() verts = smplx.vertices.detach().cpu().numpy().squeeze() faces = smplx.faces ms = Mesh(v=verts, f=faces) col = np.zeros(verts.shape[0]) col[verts[:, 0] < -0.6] = 1 # right hand if display: ms.set_vertex_colors_from_weights(col) ms.show() print('right_forearm ', np.where(col)[0].shape) return col def cut_left_forearm(display=False): smplx = get_tpose_smplx() verts = smplx.vertices.detach().cpu().numpy().squeeze() faces = smplx.faces ms = Mesh(v=verts, f=faces) col = np.zeros(verts.shape[0]) col[verts[:, 0] > 0.6] = 1 # left hand if display: ms.set_vertex_colors_from_weights(col) ms.show() print('left_forearm ', np.where(col)[0].shape) return col def cut_right_midarm(display=False): smplx = get_tpose_smplx() verts = smplx.vertices.detach().cpu().numpy().squeeze() faces = smplx.faces ms = Mesh(v=verts, f=faces) col = np.zeros(verts.shape[0]) col[(verts[:, 0] >= -0.6) & (verts[:, 0] < -0.4)] = 1 if display: ms.set_vertex_colors_from_weights(col) ms.show() print('right_midarm ', np.where(col)[0].shape) return col def cut_right_upperarm(display=False): smplx = get_tpose_smplx() verts = smplx.vertices.detach().cpu().numpy().squeeze() faces = smplx.faces ms = Mesh(v=verts, f=faces) col = np.zeros(verts.shape[0]) col[(verts[:, 0] >= -0.4) & (verts[:, 0] < -0.2)] = 1 if display: ms.set_vertex_colors_from_weights(col) ms.show() print('right_upperarm ', np.where(col)[0].shape) return col def cut_left_midarm(display=False): smplx = get_tpose_smplx() verts = smplx.vertices.detach().cpu().numpy().squeeze() faces = smplx.faces ms = Mesh(v=verts, f=faces) col = np.zeros(verts.shape[0]) col[(verts[:, 0] <= 0.6) & (verts[:, 0] > 0.4)] = 1 if display: ms.set_vertex_colors_from_weights(col) ms.show() print('left_midarm ', np.where(col)[0].shape) return col def cut_left_upperarm(display=False): smplx = get_tpose_smplx() verts = smplx.vertices.detach().cpu().numpy().squeeze() faces = smplx.faces ms = Mesh(v=verts, f=faces) col = np.zeros(verts.shape[0]) col[(verts[:, 0] <= 0.4) & (verts[:, 0] > 0.2)] = 1 if display: ms.set_vertex_colors_from_weights(col) ms.show() print('left_upperarm ', np.where(col)[0].shape) return col def cut_head(display=False): smplx = get_tpose_smplx() verts = smplx.vertices.detach().cpu().numpy().squeeze() faces = smplx.faces ms = Mesh(v=verts, f=faces) col = np.zeros(verts.shape[0]) col[verts[:, 1] > 0.16] = 1 if display: ms.set_vertex_colors_from_weights(col) ms.show() print('head ', np.where(col)[0].shape) return col def cut_upper_right_leg(display=False): smplx = get_tpose_smplx() verts = smplx.vertices.detach().cpu().numpy().squeeze() faces = smplx.faces ms = Mesh(v=verts, f=faces) col = np.zeros(verts.shape[0]) col[(verts[:, 1] < -0.44) & (verts[:, 0] < 0) & (verts[:, 1] >= -0.84)] = 1 if display: ms.set_vertex_colors_from_weights(col) ms.show() print('upper_right_leg ', np.where(col)[0].shape) return col def cut_right_leg(display=False): smplx = get_tpose_smplx() verts = smplx.vertices.detach().cpu().numpy().squeeze() faces = smplx.faces ms = Mesh(v=verts, f=faces) col = np.zeros(verts.shape[0]) col[(verts[:, 1] < -0.84) & (verts[:, 0] < 0) & (verts[:, 1] > -1.14)] = 1 if display: ms.set_vertex_colors_from_weights(col) ms.show() print('right_leg ',
np.where(col)
numpy.where
import numpy as np def movingaverage(interval, window_size=14, pad=False): window = np.ones(int(window_size))/float(window_size) ma= np.convolve(interval, window, 'same') # pad the end properly if pad: w = window_size x = np.array(interval) n = len(ma) start = n-w for i in range(start, start+w): seq=x[i-w:i] ma[i]=seq.sum()/len(seq) return ma def gentrends(x, window=1/3.0, charts=True): """ Returns a Pandas dataframe with support and resistance lines. :param x: One-dimensional data set :param window: How long the trendlines should be. If window < 1, then it will be taken as a percentage of the size of the data :param charts: Boolean value saying whether to print chart to screen """ import numpy as np import pandas.io.data as pd x = np.array(x) if window < 1: window = int(window * len(x)) max1 = np.where(x == max(x))[0][0] # find the index of the abs max min1 = np.where(x == min(x))[0][0] # find the index of the abs min # First the max if max1 + window > len(x): max2 = max(x[0:(max1 - window)]) else: max2 = max(x[(max1 + window):]) # Now the min if min1 - window < 0: min2 = min(x[(min1 + window):]) else: min2 = min(x[0:(min1 - window)]) # Now find the indices of the secondary extrema max2 = np.where(x == max2)[0][0] # find the index of the 2nd max min2 = np.where(x == min2)[0][0] # find the index of the 2nd min # Create & extend the lines maxslope = (x[max1] - x[max2]) / (max1 - max2) # slope between max points minslope = (x[min1] - x[min2]) / (min1 - min2) # slope between min points a_max = x[max1] - (maxslope * max1) # y-intercept for max trendline a_min = x[min1] - (minslope * min1) # y-intercept for min trendline b_max = x[max1] + (maxslope * (len(x) - max1)) # extend to last data pt b_min = x[min1] + (minslope * (len(x) - min1)) # extend to last data point maxline = np.linspace(a_max, b_max, len(x)) # Y values between max's minline = np.linspace(a_min, b_min, len(x)) # Y values between min's # OUTPUT trends = np.transpose(np.array((x, maxline, minline))) trends = pd.DataFrame(trends, index=np.arange(0, len(x)), columns=['Data', 'Max Line', 'Min Line']) if charts is True: from matplotlib.pyplot import plot, grid, show plot(trends) grid() show() return trends, maxslope, minslope def segtrends(x, segments=2, charts=True, momentum=False): """ Turn minitrends to iterative process more easily adaptable to implementation in simple trading systems; allows backtesting functionality. :param x: One-dimensional data set :param window: How long the trendlines should be. If window < 1, then it will be taken as a percentage of the size of the data :param charts: Boolean value saying whether to print chart to screen """ import numpy as np n = len(x) y = np.array(x) movy = movingaverage(y, 7) # Implement trendlines # Find the indexes of these maxima in the data segments = int(segments) maxima = np.ones(segments) minima =
np.ones(segments)
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 11 16:22:17 2021 @author: mike_ubuntu """ import numpy as np import warnings #from abc import ABC, abstractmethod, abstractproperty from functools import reduce import copy import gc import inspect import time from sklearn.linear_model import LinearRegression import src.globals as global_var from src.token_family import TF_Pool from src.factor import Factor from src.supplementary import Filter_powers, Population_Sort, form_label#, memory_assesment import src.moeadd.moeadd_stc as moeadd #import src.moeadd.moeadd_supplementary as moeadd_sup def Check_Unqueness(obj, background): return not any([elem == obj for elem in background]) def normalize_ts(Input): # print('normalize_ts Input:', Input) matrix = np.copy(Input) # print(Matrix.shape) if np.ndim(matrix) == 0: raise ValueError('Incorrect input to the normalizaton: the data has 0 dimensions') elif np.ndim(matrix) == 0: return matrix else: for i in np.arange(matrix.shape[0]): std = np.std(matrix[i]) if std != 0: matrix[i] = (matrix[i] - np.mean(matrix[i])) / std else: matrix[i] = 1 return matrix class Complex_Structure(object): def __init__(self, interelement_operator = np.add, *params): self.structure = None self.interelement_operator = interelement_operator def __eq__(self, other): if type(other) != type(self): raise ValueError('Type of self and other are different') return (all([any([other_elem == self_elem for other_elem in other.structure]) for self_elem in self.structure]) and all([any([other_elem == self_elem for self_elem in self.structure]) for other_elem in other.structure]) and len(other.structure) == len(self.structure)) def set_evaluator(self, evaluator): raise NotImplementedError # self._eval_obj = evaluator def evaluate(self, structural = False): assert len(self.structure) > 0, 'Attempt to evaluate an empty complex structure' if len(self.structure) == 1: return self.structure[0].evaluate(structural) else: # print([type(elem) for elem in self.structure]) return reduce(lambda x, y: self.interelement_operator(x, y.evaluate(structural)), self.structure[1:], self.structure[0].evaluate(structural)) def reset_saved_state(self): self.saved = {True:False, False:False} self.saved_as = {True:None, False:None} for elem in self.structure: elem.reset_saved_state() @property def name(self): pass class Term(Complex_Structure): def __init__(self, pool, passed_term = None, max_factors_in_term = 1, forbidden_tokens = None, interelement_operator = np.multiply): super().__init__(interelement_operator) self.pool = pool self.max_factors_in_term = max_factors_in_term if type(passed_term) == type(None): self.Randomize(forbidden_tokens) else: self.Defined(passed_term) if type(global_var.tensor_cache) != type(None): self.use_cache() # if type(global_var.grid_cache) != type(None): # self.use_grid_cache() self.reset_saved_state() # key - state of normalization, value - if the variable is saved in cache @property def cache_label(self): if len(self.structure) > 1: structure_sorted = sorted(self.structure, key = lambda x: x.cache_label) cache_label = tuple([elem.cache_label for elem in structure_sorted])#reduce(form_label, structure_sorted, '') else: cache_label = self.structure[0].cache_label return cache_label def use_cache(self): self.cache_linked = True for idx, _ in enumerate(self.structure): if not self.structure[idx].cache_linked: self.structure[idx].use_cache() # # def use_grids_cache(self): #! # self.grid_cache_linked = True # for idx, _ in enumerate(self.structure): # if not self.structure[idx].cache_linked: # self.structure[idx].use_cache() def Defined(self, passed_term): self.structure = [] if type(passed_term) == list or type(passed_term) == tuple: for i, factor in enumerate(passed_term): if type(factor) == str: # token_family = [token_family for token_family in self.tokens if factor in token_family.tokens][0] # self.structure.append(Factor(factor, token_family, randomize = True)) self.structure.append(self.pool.create(label = factor)); raise NotImplementedError elif type(factor) == Factor: self.structure.append(factor) else: raise ValueError('The structure of a term should be declared with str or src.factor.Factor obj, instead got', type(factor)) else: # Случай, если подается лишь 1 токен if type(passed_term) == str: # token_family = [token_family for token_family in self.tokens if passed_term in token_family.tokens][0] # self.structure.append(Factor(passed_term, token_family, randomize = True)) self.structure.append(self.pool.create(label = passed_term)); raise NotImplementedError elif type(passed_term) == Factor: self.structure.append(passed_term) else: raise ValueError('The structure of a term should be declared with str or src.factor.Factor obj, instead got', type(passed_term)) def Randomize(self, forbidden_factors = None, **kwargs): if np.sum(self.pool.families_cardinality(meaningful_only = True)) == 0: raise ValueError('No token families are declared as meaningful for the process of the system search') factors_num = np.random.randint(1, self.max_factors_in_term +1) # print('factors:', factors_num) while True: self.occupied_tokens_labels = [] occupied_by_factor, factor = self.pool.create(label = None, create_meaningful = True, occupied = self.occupied_tokens_labels, **kwargs) self.structure = [factor,] self.occupied_tokens_labels.extend(occupied_by_factor) for i in np.arange(1, factors_num): occupied_by_factor, factor = self.pool.create(label = None, create_meaningful = False, occupied = self.occupied_tokens_labels, def_term_tokens = [token.label for token in self.structure], **kwargs) self.structure.append(factor) self.occupied_tokens_labels.extend(occupied_by_factor) self.structure = Filter_powers(self.structure) if type(forbidden_factors) == type(None): # print('term length ff', len(self.structure)) break elif all([(Check_Unqueness(factor, forbidden_factors) or not factor.status['unique_for_right_part']) for factor in self.structure]): # print('term length compl cond', len(self.structure), forbidden_factors) break def evaluate(self, structural): # , normalize = True assert type(global_var.tensor_cache) != type(None), 'Currently working only with connected cache' # print('Normalized state of current equaton: ', normalize) # print('normalized evaluation', normalize, [elem for idx, elem in enumerate(inspect.stack()[:-18])], len(inspect.stack())) # print('\n') normalize = structural # if self.saved[structural]: value = global_var.tensor_cache.get(self.cache_label, normalized = normalize, saved_as = self.saved_as[normalize]) value = value.reshape(value.size) return value else: self.prev_normalized = normalize value = super().evaluate(structural) # print(self.name, ' - ') # print(value.shape) if normalize and np.ndim(value) != 1: value = normalize_ts(value) elif normalize and np.ndim(value) == 1 and np.std(value) != 0: value = (value - np.mean(value))/
np.std(value)
numpy.std