prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Basic libs import os import tensorflow as tf import numpy as np import time import pickle import open3d # OS functions from os import makedirs, listdir from os.path import exists, join, isfile, isdir import os.path as path # Dataset parent class from datasets.common import Dataset # ---------------------------------------------------------------------------------------------------------------------- # # Utility functions # \***********************/ # def rotate(points, num_axis=1): if num_axis == 1: theta = np.random.rand() * 2 * np.pi axis = np.random.randint(3) c, s = np.cos(theta), np.sin(theta) R = np.array([[c, -s, -s], [s, c, -s], [s, s, c]], dtype=np.float32) R[:, axis] = 0 R[axis, :] = 0 R[axis, axis] = 1 points = np.matmul(points, R) elif num_axis == 3: for axis in [0, 1, 2]: theta = np.random.rand() * 2 * np.pi c, s = np.cos(theta), np.sin(theta) R = np.array([[c, -s, -s], [s, c, -s], [s, s, c]], dtype=np.float32) R[:, axis] = 0 R[axis, :] = 0 R[axis, axis] = 1 points = np.matmul(points, R) else: exit(-1) return points # ---------------------------------------------------------------------------------------------------------------------- # # Class Definition # \***************/ # class ThreeDMatchDataset(Dataset): """ Class to handle ThreeDMatch dataset for dense keypoint detection and feature description task. """ # Initiation methods # ------------------------------------------------------------------------------------------------------------------ def __init__(self, input_threads=8, voxel_size=0.03, load_test=False): Dataset.__init__(self, 'ThreeDMatch') #################### # Dataset parameters #################### # Type of task conducted on this dataset self.network_model = 'descriptor' # Number of input threads self.num_threads = input_threads # Load test set or train set? self.load_test = load_test # voxel size self.downsample = voxel_size ########################## # Parameters for the files ########################## # Path of the folder containing ply files self.root = 'data/3DMatch/' # Initiate containers self.anc_points = {'train': [], 'val': [], 'test': []} self.keypts = {'train': [], 'val': [], 'test': []} self.anc_to_pos = {'train': {}, 'val': {}, 'test': {}} self.ids_list = {'train': [], 'val': [], 'test': []} if self.load_test: self.prepare_geometry_registration() else: self.prepare_3dmatch_ply(split='train') self.prepare_3dmatch_ply(split='val') def prepare_3dmatch_ply(self, split='train'): """ Load pre-generated point cloud, keypoint correspondence(the indices) to save time. Construct the self.anc_to_pos dictionary. """ print('\nPreparing ply files') pts_filename = join(self.root, f'3DMatch_{split}_{self.downsample:.3f}_points.pkl') keypts_filename = join(self.root, f'3DMatch_{split}_{self.downsample:.3f}_keypts.pkl') if exists(pts_filename) and exists(keypts_filename): with open(pts_filename, 'rb') as file: data = pickle.load(file) self.anc_points[split] = [*data.values()] self.ids_list[split] = [*data.keys()] with open(keypts_filename, 'rb') as file: self.keypts[split] = pickle.load(file) else: print("PKL file not found.") return for idpair in self.keypts[split].keys(): anc = idpair.split("@")[0] pos = idpair.split("@")[1] # add (key -> value) anc -> pos if anc not in self.anc_to_pos[split].keys(): self.anc_to_pos[split][anc] = [pos] else: self.anc_to_pos[split][anc] += [pos] if split == 'train': self.num_train = len(list(self.anc_to_pos[split].keys())) print("Num_train", self.num_train) else: self.num_val = len(list(self.anc_to_pos[split].keys())) print("Num_val", self.num_val) return def get_batch_gen(self, split, config): """ A function defining the batch generator for each split. Should return the generator, the generated types and generated shapes :param split: string in "training", "validation" or "test" :param config: configuration file :return: gen_func, gen_types, gen_shapes """ # Initiate potentials for regular generation if not hasattr(self, 'potentials'): self.potentials = {} # Reset potentials self.potentials[split] = np.random.rand(len(self.anc_points[split])) * 1e-3 ################ # Def generators ################ def random_balanced_gen(): # Initiate concatenation lists anc_points_list = [] pos_points_list = [] anc_keypts_list = [] pos_keypts_list = [] backup_anc_points_list = [] backup_pos_points_list = [] ti_list = [] ti_list_pos = [] batch_n = 0 # Initiate parameters depending on the chosen split if split == 'train': gen_indices = np.random.permutation(self.num_train) # gen_indices = np.arange(self.num_train) elif split == 'val': gen_indices = np.random.permutation(self.num_val) # gen_indices = np.arange(self.num_val) elif split == 'test': gen_indices = np.arange(self.num_test) else: raise ValueError('Wrong split argument in data generator: ' + split) print(gen_indices) # Generator loop for p_i in gen_indices: if split == 'test': anc_id = self.ids_list[split][p_i] pos_id = self.ids_list[split][p_i] else: anc_id = list(self.anc_to_pos[split].keys())[p_i] import random if random.random() > 0.5: pos_id = self.anc_to_pos[split][anc_id][0] else: pos_id = random.choice(self.anc_to_pos[split][anc_id]) anc_ind = self.ids_list[split].index(anc_id) pos_ind = self.ids_list[split].index(pos_id) anc_points = self.anc_points[split][anc_ind].astype(np.float32) pos_points = self.anc_points[split][pos_ind].astype(np.float32) # back up point cloud backup_anc_points = anc_points backup_pos_points = pos_points n = anc_points.shape[0] + pos_points.shape[0] if split == 'test': # for test, use all 5000 the anc_keypts anc_keypts = np.array([]) pos_keypts = np.array([]) # add rotation to test on Rotated3DMatch # anc_points = rotate(anc_points, num_axis=3) # pos_points = rotate(pos_points, num_axis=3) else: if anc_points.shape[0] > 80000 or pos_points.shape[0] > 80000: continue if anc_points.shape[0] < 2000 or pos_points.shape[0] < 2000: continue anc_keypts = self.keypts[split][f'{anc_id}@{pos_id}'][:, 0] pos_keypts = self.keypts[split][f'{anc_id}@{pos_id}'][:, 1] if split == 'train': selected_ind = np.random.choice(min(len(anc_keypts), len(pos_keypts)), config.keypts_num, replace=False) else: selected_ind = np.random.choice(min(len(anc_keypts), len(pos_keypts)), 64, replace=False) anc_keypts = anc_keypts[selected_ind] pos_keypts = pos_keypts[selected_ind] + len(anc_points) # if split == 'train': # # training does not need this keypts # anc_keypts = np.random.choice(len(anc_points), 200) # pos_keypts = np.random.choice(len(anc_points), 200) # else: # # find the correspondence by nearest neighbors sourch. # anc_keypts = np.random.choice(len(anc_points), 400) # pos_pcd = open3d.PointCloud() # pos_pcd.points = open3d.utility.Vector3dVector(pos_points) # kdtree = open3d.geometry.KDTreeFlann(pos_pcd) # pos_ind = [] # anc_ind = [] # for pts, i in zip(anc_points[anc_keypts], anc_keypts): # _, ind, dis = kdtree.search_knn_vector_3d(pts, 1) # if dis[0] < 0.001 and ind[0] not in pos_ind and i not in anc_ind: # pos_ind.append(ind[0]) # anc_ind.append(i) # if len(anc_ind) >= config.keypts_num: # break # anc_keypts = np.array(anc_ind) # pos_keypts = np.array(pos_ind) # pos_keypts = pos_keypts + len(anc_points) # # No matter how many num_keypts are used for training, test only use 64 pair. # if len(anc_keypts) >= config.keypts_num: # if split == 'train': # selected_ind = np.random.choice(range(len(anc_keypts)), config.keypts_num, replace=False) # else: # selected_ind = np.random.choice(range(len(anc_keypts)), 64, replace=False) # anc_keypts = anc_keypts[selected_ind] # pos_keypts = pos_keypts[selected_ind] # else: # if can not build enough correspondence, then skip this fragments pair. # continue # data augmentations: noise anc_noise = np.random.rand(anc_points.shape[0], 3) * config.augment_noise pos_noise = np.random.rand(pos_points.shape[0], 3) * config.augment_noise anc_points += anc_noise pos_points += pos_noise # data augmentations: rotation anc_points = rotate(anc_points, num_axis=config.augment_rotation) pos_points = rotate(pos_points, num_axis=config.augment_rotation) # Add data to current batch anc_points_list += [anc_points] anc_keypts_list += [anc_keypts] pos_points_list += [pos_points] pos_keypts_list += [pos_keypts] backup_anc_points_list += [backup_anc_points] backup_pos_points_list += [backup_pos_points] ti_list += [p_i] ti_list_pos += [p_i] yield (np.concatenate(anc_points_list + pos_points_list, axis=0), # anc_points np.concatenate(anc_keypts_list, axis=0), # anc_keypts np.concatenate(pos_keypts_list, axis=0), np.array(ti_list + ti_list_pos, dtype=np.int32), # anc_obj_index np.array([tp.shape[0] for tp in anc_points_list] + [tp.shape[0] for tp in pos_points_list]), # anc_stack_length np.array([anc_id, pos_id]),
np.concatenate(backup_anc_points_list + backup_pos_points_list, axis=0)
numpy.concatenate
""" Tests for the generic MLEModel Author: <NAME> License: Simplified-BSD """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd import os import re import warnings from statsmodels.tsa.statespace import (sarimax, varmax, kalman_filter, kalman_smoother) from statsmodels.tsa.statespace.mlemodel import MLEModel, MLEResultsWrapper from statsmodels.tsa.statespace.tools import compatibility_mode from statsmodels.datasets import nile from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_raises from nose.exc import SkipTest from statsmodels.tsa.statespace.tests.results import results_sarimax, results_var_misc current_path = os.path.dirname(os.path.abspath(__file__)) try: import matplotlib.pyplot as plt have_matplotlib = True except ImportError: have_matplotlib = False # Basic kwargs kwargs = { 'k_states': 1, 'design': [[1]], 'transition': [[1]], 'selection': [[1]], 'state_cov': [[1]], 'initialization': 'approximate_diffuse' } def get_dummy_mod(fit=True, pandas=False): # This tests time-varying parameters regression when in fact the parameters # are not time-varying, and in fact the regression fit is perfect endog = np.arange(100)*1.0 exog = 2*endog if pandas: index = pd.date_range('1960-01-01', periods=100, freq='MS') endog = pd.Series(endog, index=index) exog = pd.Series(exog, index=index) mod = sarimax.SARIMAX(endog, exog=exog, order=(0,0,0), time_varying_regression=True, mle_regression=False) if fit: with warnings.catch_warnings(): warnings.simplefilter("ignore") res = mod.fit(disp=-1) else: res = None return mod, res def test_wrapping(): # Test the wrapping of various Representation / KalmanFilter / # KalmanSmoother methods / attributes mod, _ = get_dummy_mod(fit=False) # Test that we can get the design matrix assert_equal(mod['design', 0, 0], 2.0 * np.arange(100)) # Test that we can set individual elements of the design matrix mod['design', 0, 0, :] = 2 assert_equal(mod.ssm['design', 0, 0, :], 2) assert_equal(mod.ssm['design'].shape, (1, 1, 100)) # Test that we can set the entire design matrix mod['design'] = [[3.]] assert_equal(mod.ssm['design', 0, 0], 3.) # (Now it's no longer time-varying, so only 2-dim) assert_equal(mod.ssm['design'].shape, (1, 1)) # Test that we can change the following properties: loglikelihood_burn, # initial_variance, tolerance assert_equal(mod.loglikelihood_burn, 1) mod.loglikelihood_burn = 0 assert_equal(mod.ssm.loglikelihood_burn, 0) assert_equal(mod.tolerance, mod.ssm.tolerance) mod.tolerance = 0.123 assert_equal(mod.ssm.tolerance, 0.123) assert_equal(mod.initial_variance, 1e10) mod.initial_variance = 1e12 assert_equal(mod.ssm.initial_variance, 1e12) # Test that we can use the following wrappers: initialization, # initialize_known, initialize_stationary, initialize_approximate_diffuse # Initialization starts off as none assert_equal(mod.initialization, None) # Since the SARIMAX model may be fully stationary or may have diffuse # elements, it uses a custom initialization by default, but it can be # overridden by users mod.initialize_state() # (The default initialization in this case is known because there is a non- # stationary state corresponding to the time-varying regression parameter) assert_equal(mod.initialization, 'known') mod.initialize_approximate_diffuse(1e5) assert_equal(mod.initialization, 'approximate_diffuse') assert_equal(mod.ssm._initial_variance, 1e5) mod.initialize_known([5.], [[40]]) assert_equal(mod.initialization, 'known') assert_equal(mod.ssm._initial_state, [5.]) assert_equal(mod.ssm._initial_state_cov, [[40]]) mod.initialize_stationary() assert_equal(mod.initialization, 'stationary') # Test that we can use the following wrapper methods: set_filter_method, # set_stability_method, set_conserve_memory, set_smoother_output # The defaults are as follows: assert_equal(mod.ssm.filter_method, kalman_filter.FILTER_CONVENTIONAL) assert_equal(mod.ssm.stability_method, kalman_filter.STABILITY_FORCE_SYMMETRY) assert_equal(mod.ssm.conserve_memory, kalman_filter.MEMORY_STORE_ALL) assert_equal(mod.ssm.smoother_output, kalman_smoother.SMOOTHER_ALL) # Now, create the Cython filter object and assert that they have # transferred correctly mod.ssm._initialize_filter() kf = mod.ssm._kalman_filter assert_equal(kf.filter_method, kalman_filter.FILTER_CONVENTIONAL) assert_equal(kf.stability_method, kalman_filter.STABILITY_FORCE_SYMMETRY) assert_equal(kf.conserve_memory, kalman_filter.MEMORY_STORE_ALL) # (the smoother object is so far not in Cython, so there is no # transferring) # Change the attributes in the model class if compatibility_mode: assert_raises(NotImplementedError, mod.set_filter_method, 100) else: mod.set_filter_method(100) mod.set_stability_method(101) mod.set_conserve_memory(102) mod.set_smoother_output(103) # Assert that the changes have occurred in the ssm class if not compatibility_mode: assert_equal(mod.ssm.filter_method, 100) assert_equal(mod.ssm.stability_method, 101) assert_equal(mod.ssm.conserve_memory, 102) assert_equal(mod.ssm.smoother_output, 103) # Assert that the changes have *not yet* occurred in the filter object assert_equal(kf.filter_method, kalman_filter.FILTER_CONVENTIONAL) assert_equal(kf.stability_method, kalman_filter.STABILITY_FORCE_SYMMETRY) assert_equal(kf.conserve_memory, kalman_filter.MEMORY_STORE_ALL) # Re-initialize the filter object (this would happen automatically anytime # loglike, filter, etc. were called) # In this case, an error will be raised since filter_method=100 is not # valid # Note: this error is only raised in the compatibility case, since the # newer filter logic checks for a valid filter mode at a different point if compatibility_mode: assert_raises(NotImplementedError, mod.ssm._initialize_filter) # Now, test the setting of the other two methods by resetting the # filter method to a valid value mod.set_filter_method(1) mod.ssm._initialize_filter() # Retrieve the new kalman filter object (a new object had to be created # due to the changing filter method) kf = mod.ssm._kalman_filter assert_equal(kf.filter_method, 1) assert_equal(kf.stability_method, 101) assert_equal(kf.conserve_memory, 102) def test_fit_misc(): true = results_sarimax.wpi1_stationary endog = np.diff(true['data'])[1:] mod = sarimax.SARIMAX(endog, order=(1,0,1), trend='c') # Test optim_hessian={'opg','oim','approx'} with warnings.catch_warnings(): warnings.simplefilter("ignore") res1 = mod.fit(method='ncg', disp=0, optim_hessian='opg', optim_complex_step=False) res2 = mod.fit(method='ncg', disp=0, optim_hessian='oim', optim_complex_step=False) # Check that the Hessians broadly result in the same optimum assert_allclose(res1.llf, res2.llf, rtol=1e-2) # Test return_params=True mod, _ = get_dummy_mod(fit=False) with warnings.catch_warnings(): warnings.simplefilter("ignore") res_params = mod.fit(disp=-1, return_params=True) # 5 digits necessary to accommodate 32-bit numpy / scipy with OpenBLAS 0.2.18 assert_almost_equal(res_params, [0, 0], 5) def test_score_misc(): mod, res = get_dummy_mod() # Test that the score function works mod.score(res.params) def test_from_formula(): assert_raises(NotImplementedError, lambda: MLEModel.from_formula(1,2,3)) def test_score_analytic_ar1(): # Test the score against the analytic score for an AR(1) model with 2 # observations # Let endog = [1, 0.5], params=[0, 1] mod = sarimax.SARIMAX([1, 0.5], order=(1,0,0)) def partial_phi(phi, sigma2): return -0.5 * (phi**2 + 2*phi*sigma2 - 1) / (sigma2 * (1 - phi**2)) def partial_sigma2(phi, sigma2): return -0.5 * (2*sigma2 + phi - 1.25) / (sigma2**2) params = np.r_[0., 2] # Compute the analytic score analytic_score = np.r_[ partial_phi(params[0], params[1]), partial_sigma2(params[0], params[1])] # Check each of the approximations, transformed parameters approx_cs = mod.score(params, transformed=True, approx_complex_step=True) assert_allclose(approx_cs, analytic_score) approx_fd = mod.score(params, transformed=True, approx_complex_step=False) assert_allclose(approx_fd, analytic_score, atol=1e-5) approx_fd_centered = ( mod.score(params, transformed=True, approx_complex_step=False, approx_centered=True)) assert_allclose(approx_fd, analytic_score, atol=1e-5) harvey_cs = mod.score(params, transformed=True, method='harvey', approx_complex_step=True) assert_allclose(harvey_cs, analytic_score) harvey_fd = mod.score(params, transformed=True, method='harvey', approx_complex_step=False) assert_allclose(harvey_fd, analytic_score, atol=1e-5) harvey_fd_centered = mod.score(params, transformed=True, method='harvey', approx_complex_step=False, approx_centered=True) assert_allclose(harvey_fd_centered, analytic_score, atol=1e-5) # Check the approximations for untransformed parameters. The analytic # check now comes from chain rule with the analytic derivative of the # transformation # if L* is the likelihood evaluated at untransformed parameters and # L is the likelihood evaluated at transformed parameters, then we have: # L*(u) = L(t(u)) # and then # L'*(u) = L'(t(u)) * t'(u) def partial_transform_phi(phi): return -1. / (1 + phi**2)**(3./2) def partial_transform_sigma2(sigma2): return 2. * sigma2 uparams = mod.untransform_params(params) analytic_score = np.dot( np.diag(np.r_[partial_transform_phi(uparams[0]), partial_transform_sigma2(uparams[1])]), np.r_[partial_phi(params[0], params[1]), partial_sigma2(params[0], params[1])]) approx_cs = mod.score(uparams, transformed=False, approx_complex_step=True) assert_allclose(approx_cs, analytic_score) approx_fd = mod.score(uparams, transformed=False, approx_complex_step=False) assert_allclose(approx_fd, analytic_score, atol=1e-5) approx_fd_centered = ( mod.score(uparams, transformed=False, approx_complex_step=False, approx_centered=True)) assert_allclose(approx_fd, analytic_score, atol=1e-5) harvey_cs = mod.score(uparams, transformed=False, method='harvey', approx_complex_step=True) assert_allclose(harvey_cs, analytic_score) harvey_fd = mod.score(uparams, transformed=False, method='harvey', approx_complex_step=False) assert_allclose(harvey_fd, analytic_score, atol=1e-5) harvey_fd_centered = mod.score(uparams, transformed=False, method='harvey', approx_complex_step=False, approx_centered=True) assert_allclose(harvey_fd_centered, analytic_score, atol=1e-5) # Check the Hessian: these approximations are not very good, particularly # when phi is close to 0 params = np.r_[0.5, 1.] def hessian(phi, sigma2): hessian = np.zeros((2,2)) hessian[0,0] = (-phi**2 - 1) / (phi**2 - 1)**2 hessian[1,0] = hessian[0,1] = -1 / (2 * sigma2**2) hessian[1,1] = (sigma2 + phi - 1.25) / sigma2**3 return hessian analytic_hessian = hessian(params[0], params[1]) with warnings.catch_warnings(): warnings.simplefilter("ignore") assert_allclose(mod._hessian_complex_step(params) * 2, analytic_hessian, atol=1e-1) assert_allclose(mod._hessian_finite_difference(params) * 2, analytic_hessian, atol=1e-1) def test_cov_params(): mod, res = get_dummy_mod() # Smoke test for each of the covariance types with warnings.catch_warnings(): warnings.simplefilter("ignore") res = mod.fit(res.params, disp=-1, cov_type='none') assert_equal(res.cov_kwds['description'], 'Covariance matrix not calculated.') res = mod.fit(res.params, disp=-1, cov_type='approx') assert_equal(res.cov_type, 'approx') assert_equal(res.cov_kwds['description'], 'Covariance matrix calculated using numerical (complex-step) differentiation.') res = mod.fit(res.params, disp=-1, cov_type='oim') assert_equal(res.cov_type, 'oim') assert_equal(res.cov_kwds['description'], 'Covariance matrix calculated using the observed information matrix (complex-step) described in Harvey (1989).') res = mod.fit(res.params, disp=-1, cov_type='opg') assert_equal(res.cov_type, 'opg') assert_equal(res.cov_kwds['description'], 'Covariance matrix calculated using the outer product of gradients (complex-step).') res = mod.fit(res.params, disp=-1, cov_type='robust') assert_equal(res.cov_type, 'robust') assert_equal(res.cov_kwds['description'], 'Quasi-maximum likelihood covariance matrix used for robustness to some misspecifications; calculated using the observed information matrix (complex-step) described in Harvey (1989).') res = mod.fit(res.params, disp=-1, cov_type='robust_oim') assert_equal(res.cov_type, 'robust_oim') assert_equal(res.cov_kwds['description'], 'Quasi-maximum likelihood covariance matrix used for robustness to some misspecifications; calculated using the observed information matrix (complex-step) described in Harvey (1989).') res = mod.fit(res.params, disp=-1, cov_type='robust_approx') assert_equal(res.cov_type, 'robust_approx') assert_equal(res.cov_kwds['description'], 'Quasi-maximum likelihood covariance matrix used for robustness to some misspecifications; calculated using numerical (complex-step) differentiation.') assert_raises(NotImplementedError, mod.fit, res.params, disp=-1, cov_type='invalid_cov_type') def test_transform(): # The transforms in MLEModel are noops mod = MLEModel([1,2], **kwargs) # Test direct transform, untransform assert_allclose(mod.transform_params([2, 3]), [2, 3]) assert_allclose(mod.untransform_params([2, 3]), [2, 3]) # Smoke test for transformation in `filter`, `update`, `loglike`, # `loglikeobs` mod.filter([], transformed=False) mod.update([], transformed=False) mod.loglike([], transformed=False) mod.loglikeobs([], transformed=False) # Note that mod is an SARIMAX instance, and the two parameters are # variances mod, _ = get_dummy_mod(fit=False) # Test direct transform, untransform assert_allclose(mod.transform_params([2, 3]), [4, 9]) assert_allclose(mod.untransform_params([4, 9]), [2, 3]) # Test transformation in `filter` res = mod.filter([2, 3], transformed=True) assert_allclose(res.params, [2, 3]) res = mod.filter([2, 3], transformed=False) assert_allclose(res.params, [4, 9]) def test_filter(): endog = np.array([1., 2.]) mod = MLEModel(endog, **kwargs) # Test return of ssm object res = mod.filter([], return_ssm=True) assert_equal(isinstance(res, kalman_filter.FilterResults), True) # Test return of full results object res = mod.filter([]) assert_equal(isinstance(res, MLEResultsWrapper), True) assert_equal(res.cov_type, 'opg') # Test return of full results object, specific covariance type res = mod.filter([], cov_type='oim') assert_equal(isinstance(res, MLEResultsWrapper), True) assert_equal(res.cov_type, 'oim') def test_params(): mod = MLEModel([1,2], **kwargs) # By default start_params raises NotImplementedError assert_raises(NotImplementedError, lambda: mod.start_params) # But param names are by default an empty array assert_equal(mod.param_names, []) # We can set them in the object if we want mod._start_params = [1] mod._param_names = ['a'] assert_equal(mod.start_params, [1]) assert_equal(mod.param_names, ['a']) def check_results(pandas): mod, res = get_dummy_mod(pandas=pandas) # Test fitted values assert_almost_equal(res.fittedvalues[2:], mod.endog[2:].squeeze()) # Test residuals assert_almost_equal(res.resid[2:], np.zeros(mod.nobs-2)) # Test loglikelihood_burn assert_equal(res.loglikelihood_burn, 1) def test_results(pandas=False): check_results(pandas=False) check_results(pandas=True) def test_predict(): dates = pd.date_range(start='1980-01-01', end='1981-01-01', freq='AS') endog = pd.Series([1,2], index=dates) mod = MLEModel(endog, **kwargs) res = mod.filter([]) # Test that predict with start=None, end=None does prediction with full # dataset predict = res.predict() assert_equal(predict.shape, (mod.nobs,)) assert_allclose(res.get_prediction().predicted_mean, predict) # Test a string value to the dynamic option assert_allclose(res.predict(dynamic='1981-01-01'), res.predict()) # Test an invalid date string value to the dynamic option # assert_raises(ValueError, res.predict, dynamic='1982-01-01') # Test for passing a string to predict when dates are not set mod = MLEModel([1,2], **kwargs) res = mod.filter([]) assert_raises(KeyError, res.predict, dynamic='string') def test_forecast(): # Numpy mod = MLEModel([1,2], **kwargs) res = mod.filter([]) forecast = res.forecast(steps=10) assert_allclose(forecast, np.ones((10,)) * 2) assert_allclose(res.get_forecast(steps=10).predicted_mean, forecast) # Pandas index = pd.date_range('1960-01-01', periods=2, freq='MS') mod = MLEModel(pd.Series([1,2], index=index), **kwargs) res = mod.filter([]) assert_allclose(res.forecast(steps=10), np.ones((10,)) * 2) assert_allclose(res.forecast(steps='1960-12-01'), np.ones((10,)) * 2) assert_allclose(res.get_forecast(steps=10).predicted_mean, np.ones((10,)) * 2) def test_summary(): dates = pd.date_range(start='1980-01-01', end='1984-01-01', freq='AS') endog = pd.Series([1,2,3,4,5], index=dates) mod = MLEModel(endog, **kwargs) res = mod.filter([]) # Get the summary txt = str(res.summary()) # Test res.summary when the model has dates assert_equal(re.search('Sample:\s+01-01-1980', txt) is not None, True) assert_equal(re.search('\s+- 01-01-1984', txt) is not None, True) # Test res.summary when `model_name` was not provided assert_equal(re.search('Model:\s+MLEModel', txt) is not None, True) # Smoke test that summary still works when diagnostic tests fail with warnings.catch_warnings(): warnings.simplefilter("ignore") res.filter_results._standardized_forecasts_error[:] = np.nan res.summary() res.filter_results._standardized_forecasts_error = 1 res.summary() res.filter_results._standardized_forecasts_error = 'a' res.summary() def check_endog(endog, nobs=2, k_endog=1, **kwargs): # create the model mod = MLEModel(endog, **kwargs) # the data directly available in the model is the Statsmodels version of # the data; it should be 2-dim, C-contiguous, long-shaped: # (nobs, k_endog) == (2, 1) assert_equal(mod.endog.ndim, 2) assert_equal(mod.endog.flags['C_CONTIGUOUS'], True) assert_equal(mod.endog.shape, (nobs, k_endog)) # the data in the `ssm` object is the state space version of the data; it # should be 2-dim, F-contiguous, wide-shaped (k_endog, nobs) == (1, 2) # and it should share data with mod.endog assert_equal(mod.ssm.endog.ndim, 2) assert_equal(mod.ssm.endog.flags['F_CONTIGUOUS'], True) assert_equal(mod.ssm.endog.shape, (k_endog, nobs)) assert_equal(mod.ssm.endog.base is mod.endog, True) return mod def test_basic_endog(): # Test various types of basic python endog inputs (e.g. lists, scalars...) # Check cannot call with non-array-like # fails due to checks in Statsmodels base classes assert_raises(ValueError, MLEModel, endog=1, k_states=1) assert_raises(ValueError, MLEModel, endog='a', k_states=1) assert_raises(ValueError, MLEModel, endog=True, k_states=1) # Check behavior with different types mod = MLEModel([1], **kwargs) res = mod.filter([]) assert_equal(res.filter_results.endog, [[1]]) mod = MLEModel([1.], **kwargs) res = mod.filter([]) assert_equal(res.filter_results.endog, [[1]]) mod = MLEModel([True], **kwargs) res = mod.filter([]) assert_equal(res.filter_results.endog, [[1]]) mod = MLEModel(['a'], **kwargs) # raises error due to inability coerce string to numeric assert_raises(ValueError, mod.filter, []) # Check that a different iterable tpyes give the expected result endog = [1.,2.] mod = check_endog(endog, **kwargs) mod.filter([]) endog = [[1.],[2.]] mod = check_endog(endog, **kwargs) mod.filter([]) endog = (1.,2.) mod = check_endog(endog, **kwargs) mod.filter([]) def test_numpy_endog(): # Test various types of numpy endog inputs # Check behavior of the link maintained between passed `endog` and # `mod.endog` arrays endog = np.array([1., 2.]) mod = MLEModel(endog, **kwargs) assert_equal(mod.endog.base is not mod.data.orig_endog, True) assert_equal(mod.endog.base is not endog, True) assert_equal(mod.data.orig_endog.base is not endog, True) endog[0] = 2 # there is no link to mod.endog assert_equal(mod.endog, np.r_[1, 2].reshape(2,1)) # there remains a link to mod.data.orig_endog assert_equal(mod.data.orig_endog, endog) # Check behavior with different memory layouts / shapes # Example (failure): 0-dim array endog = np.array(1.) # raises error due to len(endog) failing in Statsmodels base classes assert_raises(TypeError, check_endog, endog, **kwargs) # Example : 1-dim array, both C- and F-contiguous, length 2 endog = np.array([1.,2.]) assert_equal(endog.ndim, 1) assert_equal(endog.flags['C_CONTIGUOUS'], True) assert_equal(endog.flags['F_CONTIGUOUS'], True) assert_equal(endog.shape, (2,)) mod = check_endog(endog, **kwargs) mod.filter([]) # Example : 2-dim array, C-contiguous, long-shaped: (nobs, k_endog) endog = np.array([1., 2.]).reshape(2, 1) assert_equal(endog.ndim, 2) assert_equal(endog.flags['C_CONTIGUOUS'], True) # On newer numpy (>= 0.10), this array is (rightly) both C and F contiguous # assert_equal(endog.flags['F_CONTIGUOUS'], False) assert_equal(endog.shape, (2, 1)) mod = check_endog(endog, **kwargs) mod.filter([]) # Example : 2-dim array, C-contiguous, wide-shaped: (k_endog, nobs) endog = np.array([1., 2.]).reshape(1, 2) assert_equal(endog.ndim, 2) assert_equal(endog.flags['C_CONTIGUOUS'], True) # On newer numpy (>= 0.10), this array is (rightly) both C and F contiguous # assert_equal(endog.flags['F_CONTIGUOUS'], False) assert_equal(endog.shape, (1, 2)) # raises error because arrays are always interpreted as # (nobs, k_endog), which means that k_endog=2 is incompatibile with shape # of design matrix (1, 1) assert_raises(ValueError, check_endog, endog, **kwargs) # Example : 2-dim array, F-contiguous, long-shaped (nobs, k_endog) endog = np.array([1., 2.]).reshape(1, 2).transpose() assert_equal(endog.ndim, 2) # On newer numpy (>= 0.10), this array is (rightly) both C and F contiguous # assert_equal(endog.flags['C_CONTIGUOUS'], False) assert_equal(endog.flags['F_CONTIGUOUS'], True) assert_equal(endog.shape, (2, 1)) mod = check_endog(endog, **kwargs) mod.filter([]) # Example : 2-dim array, F-contiguous, wide-shaped (k_endog, nobs) endog = np.array([1., 2.]).reshape(2, 1).transpose() assert_equal(endog.ndim, 2) # On newer numpy (>= 0.10), this array is (rightly) both C and F contiguous # assert_equal(endog.flags['C_CONTIGUOUS'], False) assert_equal(endog.flags['F_CONTIGUOUS'], True) assert_equal(endog.shape, (1, 2)) # raises error because arrays are always interpreted as # (nobs, k_endog), which means that k_endog=2 is incompatibile with shape # of design matrix (1, 1) assert_raises(ValueError, check_endog, endog, **kwargs) # Example (failure): 3-dim array endog = np.array([1., 2.]).reshape(2, 1, 1) # raises error due to direct ndim check in Statsmodels base classes assert_raises(ValueError, check_endog, endog, **kwargs) # Example : np.array with 2 columns # Update kwargs for k_endog=2 kwargs2 = { 'k_states': 1, 'design': [[1], [0.]], 'obs_cov': [[1, 0], [0, 1]], 'transition': [[1]], 'selection': [[1]], 'state_cov': [[1]], 'initialization': 'approximate_diffuse' } endog = np.array([[1., 2.], [3., 4.]]) mod = check_endog(endog, k_endog=2, **kwargs2) mod.filter([]) def test_pandas_endog(): # Test various types of pandas endog inputs (e.g. TimeSeries, etc.) # Example (failure): pandas.Series, no dates endog = pd.Series([1., 2.]) # raises error due to no dates warnings.simplefilter('always') # assert_raises(ValueError, check_endog, endog, **kwargs) # Example : pandas.Series dates = pd.date_range(start='1980-01-01', end='1981-01-01', freq='AS') endog = pd.Series([1., 2.], index=dates) mod = check_endog(endog, **kwargs) mod.filter([]) # Example : pandas.Series, string datatype endog = pd.Series(['a'], index=dates) # raises error due to direct type casting check in Statsmodels base classes assert_raises(ValueError, check_endog, endog, **kwargs) # Example : pandas.Series endog = pd.Series([1., 2.], index=dates) mod = check_endog(endog, **kwargs) mod.filter([]) # Example : pandas.DataFrame with 1 column endog = pd.DataFrame({'a': [1., 2.]}, index=dates) mod = check_endog(endog, **kwargs) mod.filter([]) # Example (failure): pandas.DataFrame with 2 columns endog = pd.DataFrame({'a': [1., 2.], 'b': [3., 4.]}, index=dates) # raises error because 2-columns means k_endog=2, but the design matrix # set in **kwargs is shaped (1,1) assert_raises(ValueError, check_endog, endog, **kwargs) # Check behavior of the link maintained between passed `endog` and # `mod.endog` arrays endog = pd.DataFrame({'a': [1., 2.]}, index=dates) mod = check_endog(endog, **kwargs) assert_equal(mod.endog.base is not mod.data.orig_endog, True) assert_equal(mod.endog.base is not endog, True) assert_equal(mod.data.orig_endog.values.base is not endog, True) endog.iloc[0, 0] = 2 # there is no link to mod.endog assert_equal(mod.endog, np.r_[1, 2].reshape(2,1)) # there remains a link to mod.data.orig_endog assert_allclose(mod.data.orig_endog, endog) # Example : pandas.DataFrame with 2 columns # Update kwargs for k_endog=2 kwargs2 = { 'k_states': 1, 'design': [[1], [0.]], 'obs_cov': [[1, 0], [0, 1]], 'transition': [[1]], 'selection': [[1]], 'state_cov': [[1]], 'initialization': 'approximate_diffuse' } endog = pd.DataFrame({'a': [1., 2.], 'b': [3., 4.]}, index=dates) mod = check_endog(endog, k_endog=2, **kwargs2) mod.filter([]) def test_diagnostics(): mod, res = get_dummy_mod() # Override the standardized forecasts errors to get more reasonable values # for the tests to run (not necessary, but prevents some annoying warnings) shape = res.filter_results._standardized_forecasts_error.shape res.filter_results._standardized_forecasts_error = ( np.random.normal(size=shape)) # Make sure method=None selects the appropriate test actual = res.test_normality(method=None) desired = res.test_normality(method='jarquebera') assert_allclose(actual, desired) assert_raises(NotImplementedError, res.test_normality, method='invalid') actual = res.test_heteroskedasticity(method=None) desired = res.test_heteroskedasticity(method='breakvar') assert_allclose(actual, desired) assert_raises(ValueError, res.test_heteroskedasticity, method=None, alternative='invalid') assert_raises(NotImplementedError, res.test_heteroskedasticity, method='invalid') actual = res.test_serial_correlation(method=None) desired = res.test_serial_correlation(method='ljungbox') assert_allclose(actual, desired) assert_raises(NotImplementedError, res.test_serial_correlation, method='invalid') # Smoke tests for other options actual = res.test_heteroskedasticity(method=None, alternative='d', use_f=False) desired = res.test_serial_correlation(method='boxpierce') def test_diagnostics_nile_eviews(): # Test the diagnostic tests using the Nile dataset. Results are from # "Fitting State Space Models with EViews" (<NAME> 2011, # Journal of Statistical Software). # For parameter values, see Figure 2 # For Ljung-Box and Jarque-Bera statistics and p-values, see Figure 5 # The Heteroskedasticity statistic is not provided in this paper. niledata = nile.data.load_pandas().data niledata.index = pd.date_range('1871-01-01', '1970-01-01', freq='AS') mod = MLEModel(niledata['volume'], k_states=1, initialization='approximate_diffuse', initial_variance=1e15, loglikelihood_burn=1) mod.ssm['design', 0, 0] = 1 mod.ssm['obs_cov', 0, 0] = np.exp(9.600350) mod.ssm['transition', 0, 0] = 1 mod.ssm['selection', 0, 0] = 1 mod.ssm['state_cov', 0, 0] = np.exp(7.348705) res = mod.filter([]) # Test Ljung-Box # Note: only 3 digits provided in the reference paper actual = res.test_serial_correlation(method='ljungbox', lags=10)[0, :, -1] assert_allclose(actual, [13.117, 0.217], atol=1e-3) # Test Jarque-Bera actual = res.test_normality(method='jarquebera')[0, :2] assert_allclose(actual, [0.041686, 0.979373], atol=1e-5) def test_diagnostics_nile_durbinkoopman(): # Test the diagnostic tests using the Nile dataset. Results are from # Durbin and Koopman (2012); parameter values reported on page 37; test # statistics on page 40 niledata = nile.data.load_pandas().data niledata.index = pd.date_range('1871-01-01', '1970-01-01', freq='AS') mod = MLEModel(niledata['volume'], k_states=1, initialization='approximate_diffuse', initial_variance=1e15, loglikelihood_burn=1) mod.ssm['design', 0, 0] = 1 mod.ssm['obs_cov', 0, 0] = 15099. mod.ssm['transition', 0, 0] = 1 mod.ssm['selection', 0, 0] = 1 mod.ssm['state_cov', 0, 0] = 1469.1 res = mod.filter([]) # Test Ljung-Box # Note: only 3 digits provided in the reference paper actual = res.test_serial_correlation(method='ljungbox', lags=9)[0, 0, -1] assert_allclose(actual, [8.84], atol=1e-2) # Test Jarque-Bera # Note: The book reports 0.09 for Kurtosis, because it is reporting the # statistic less the mean of the Kurtosis distribution (which is 3). norm = res.test_normality(method='jarquebera')[0] actual = [norm[0], norm[2], norm[3]] assert_allclose(actual, [0.05, -0.03, 3.09], atol=1e-2) # Test Heteroskedasticity # Note: only 2 digits provided in the book actual = res.test_heteroskedasticity(method='breakvar')[0, 0] assert_allclose(actual, [0.61], atol=1e-2) def test_prediction_results(): # Just smoke tests for the PredictionResults class, which is copied from # elsewhere in Statsmodels mod, res = get_dummy_mod() predict = res.get_prediction() summary_frame = predict.summary_frame() def test_lutkepohl_information_criteria(): # Setup dataset, use Lutkepohl data dta = pd.DataFrame( results_var_misc.lutkepohl_data, columns=['inv', 'inc', 'consump'], index=pd.date_range('1960-01-01', '1982-10-01', freq='QS')) dta['dln_inv'] = np.log(dta['inv']).diff() dta['dln_inc'] = np.log(dta['inc']).diff() dta['dln_consump'] = np.log(dta['consump']).diff() endog = dta.loc['1960-04-01':'1978-10-01', ['dln_inv', 'dln_inc', 'dln_consump']] # AR model - SARIMAX # (use loglikelihood_burn=1 to mimic conditional MLE used by Stata's var # command). true = results_var_misc.lutkepohl_ar1_lustats mod = sarimax.SARIMAX(endog['dln_inv'], order=(1, 0, 0), trend='c', loglikelihood_burn=1) res = mod.filter(true['params']) assert_allclose(res.llf, true['loglike']) # Test the Lutkepohl ICs # Note: for the Lutkepohl ICs, Stata only counts the AR coefficients as # estimated parameters for the purposes of information criteria, whereas we # count all parameters including scale and constant, so we need to adjust # for that aic = (res.info_criteria('aic', method='lutkepohl') - 2 * 2 / res.nobs_effective) bic = (res.info_criteria('bic', method='lutkepohl') - 2 * np.log(res.nobs_effective) / res.nobs_effective) hqic = (res.info_criteria('hqic', method='lutkepohl') - 2 * 2 * np.log(np.log(res.nobs_effective)) / res.nobs_effective) assert_allclose(aic, true['aic']) assert_allclose(bic, true['bic']) assert_allclose(hqic, true['hqic']) # Test the non-Lutkepohl ICs # Note: for the non-Lutkepohl ICs, Stata does not count the scale as an # estimated parameter, but does count the constant term, for the # purposes of information criteria, whereas we count both, so we need to # adjust for that true = results_var_misc.lutkepohl_ar1 aic = res.aic - 2 bic = res.bic - np.log(res.nobs_effective) assert_allclose(aic, true['estat_aic']) assert_allclose(bic, true['estat_bic']) aic = res.info_criteria('aic') - 2 bic = res.info_criteria('bic') - np.log(res.nobs_effective) assert_allclose(aic, true['estat_aic']) assert_allclose(bic, true['estat_bic']) # Note: could also test the "dfk" (degree of freedom corrections), but not # really necessary since they just rescale things a bit # VAR model - VARMAX # (use loglikelihood_burn=1 to mimic conditional MLE used by Stata's var # command). true = results_var_misc.lutkepohl_var1_lustats mod = varmax.VARMAX(endog, order=(1, 0), trend='nc', error_cov_type='unstructured', loglikelihood_burn=1,) res = mod.filter(true['params']) assert_allclose(res.llf, true['loglike']) # Test the Lutkepohl ICs # Note: for the Lutkepohl ICs, Stata only counts the AR coefficients as # estimated parameters for the purposes of information criteria, whereas we # count all parameters including the elements of the covariance matrix, so # we need to adjust for that aic = (res.info_criteria('aic', method='lutkepohl') - 2 * 6 / res.nobs_effective) bic = (res.info_criteria('bic', method='lutkepohl') - 6 * np.log(res.nobs_effective) / res.nobs_effective) hqic = (res.info_criteria('hqic', method='lutkepohl') - 2 * 6 * np.log(np.log(res.nobs_effective)) / res.nobs_effective) assert_allclose(aic, true['aic']) assert_allclose(bic, true['bic']) assert_allclose(hqic, true['hqic']) # Test the non-Lutkepohl ICs # Note: for the non-Lutkepohl ICs, Stata does not count the elements of the # covariance matrix as estimated parameters for the purposes of information # criteria, whereas we count both, so we need to adjust for that true = results_var_misc.lutkepohl_var1 aic = res.aic - 2 * 6 bic = res.bic - 6 * np.log(res.nobs_effective)
assert_allclose(aic, true['estat_aic'])
numpy.testing.assert_allclose
import warnings import cv2 import matplotlib.pyplot as plt import numpy as np import scipy from scipy.optimize import linear_sum_assignment def get_fast_aji(true, pred): true = np.copy(true) # ? do we need this pred = np.copy(pred) true_id_list = list(np.unique(true)) pred_id_list = list(np.unique(pred)) true_masks = [ None, ] for t in true_id_list[1:]: t_mask = np.array(true == t, np.uint8) true_masks.append(t_mask) pred_masks = [ None, ] for p in pred_id_list[1:]: p_mask = np.array(pred == p, np.uint8) pred_masks.append(p_mask) pairwise_inter = np.zeros( [len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64 ) pairwise_union = np.zeros( [len(true_id_list) - 1, len(pred_id_list) - 1], dtype=np.float64 ) for true_id in true_id_list[1:]: # 0-th is background t_mask = true_masks[true_id] pred_true_overlap = pred[t_mask > 0] pred_true_overlap_id = np.unique(pred_true_overlap) pred_true_overlap_id = list(pred_true_overlap_id) for pred_id in pred_true_overlap_id: if pred_id == 0: # ignore continue # overlaping background p_mask = pred_masks[pred_id] total = (t_mask + p_mask).sum() inter = (t_mask * p_mask).sum() pairwise_inter[true_id - 1, pred_id - 1] = inter pairwise_union[true_id - 1, pred_id - 1] = total - inter pairwise_iou = pairwise_inter / (pairwise_union + 1.0e-6) paired_pred =
np.argmax(pairwise_iou, axis=1)
numpy.argmax
'''Statistical tests for NDVars Common Attributes ----------------- The following attributes are always present. For ANOVA, they are lists with the corresponding items for different effects. t/f/... : NDVar Map of the statistical parameter. p_uncorrected : NDVar Map of uncorrected p values. p : NDVar | None Map of corrected p values (None if no correct was applied). clusters : Dataset | None Table of all the clusters found (None if no clusters were found, or if no clustering was performed). n_samples : None | int The actual number of permutations. If ``samples = -1``, i.e. a complete set or permutations is performed, then ``n_samples`` indicates the actual number of permutations that constitute the complete set. ''' from datetime import datetime, timedelta from functools import reduce, partial from itertools import chain, repeat from math import ceil from multiprocessing import Process, Event, SimpleQueue from multiprocessing.sharedctypes import RawArray import logging import operator import os import re import socket from time import time as current_time from typing import Union import numpy as np import scipy.stats from scipy import ndimage from tqdm import trange from .. import fmtxt, _info, _text from ..fmtxt import FMText from .._celltable import Celltable from .._config import CONFIG from .._data_obj import ( CategorialArg, CellArg, IndexArg, ModelArg, NDVarArg, VarArg, Dataset, Var, Factor, Interaction, NestedEffect, NDVar, Categorial, UTS, ascategorial, asmodel, asndvar, asvar, assub, cellname, combine, dataobj_repr) from .._exceptions import OldVersionError, WrongDimension, ZeroVariance from .._utils import LazyProperty, user_activity from .._utils.numpy_utils import FULL_AXIS_SLICE from . import opt, stats, vector from .connectivity import Connectivity, find_peaks from .connectivity_opt import merge_labels, tfce_increment from .glm import _nd_anova from .permutation import ( _resample_params, permute_order, permute_sign_flip, random_seeds, rand_rotation_matrices) from .t_contrast import TContrastRel from .test import star, star_factor __test__ = False def check_for_vector_dim(y: NDVar) -> None: for dim in y.dims: if dim._connectivity_type == 'vector': raise WrongDimension(f"{dim}: mass-univariate methods are not suitable for vectors. Consider using vector norm as test statistic, or using a testnd.Vector test function.") def check_variance(x): if x.ndim != 2: x = x.reshape((len(x), -1)) if opt.has_zero_variance(x): raise ZeroVariance("y contains data column with zero variance") class NDTest: """Baseclass for testnd test results Attributes ---------- p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). """ _state_common = ('y', 'match', 'sub', 'samples', 'tfce', 'pmin', '_cdist', 'tstart', 'tstop', '_dims') _state_specific = () _statistic = None _statistic_tail = 0 @property def _attributes(self): return self._state_common + self._state_specific def __init__(self, y, match, sub, samples, tfce, pmin, cdist, tstart, tstop): self.y = y.name self.match = dataobj_repr(match) if match else match self.sub = sub self.samples = samples self.tfce = tfce self.pmin = pmin self._cdist = cdist self.tstart = tstart self.tstop = tstop self._dims = y.dims[1:] def __getstate__(self): return {name: getattr(self, name, None) for name in self._attributes} def __setstate__(self, state): # backwards compatibility: if 'Y' in state: state['y'] = state.pop('Y') if 'X' in state: state['x'] = state.pop('X') for k, v in state.items(): setattr(self, k, v) # backwards compatibility: if 'tstart' not in state: cdist = self._first_cdist self.tstart = cdist.tstart self.tstop = cdist.tstop if '_dims' not in state: # 0.17 if 't' in state: self._dims = state['t'].dims elif 'r' in state: self._dims = state['r'].dims elif 'f' in state: self._dims = state['f'][0].dims else: raise RuntimeError("Error recovering old test results dims") self._expand_state() def __repr__(self): args = self._repr_test_args() if self.sub is not None: if isinstance(self.sub, np.ndarray): sub_repr = '<array>' else: sub_repr = repr(self.sub) args.append(f'sub={sub_repr}') if self._cdist: args += self._repr_cdist() else: args.append('samples=0') return f"<{self.__class__.__name__} {', '.join(args)}>" def _repr_test_args(self): """List of strings describing parameters unique to the test Will be joined with ``", ".join(repr_args)`` """ raise NotImplementedError() def _repr_cdist(self): """List of results (override for MultiEffectResult)""" return (self._cdist._repr_test_args(self.pmin) + self._cdist._repr_clusters()) def _expand_state(self): "Override to create secondary results" cdist = self._cdist if cdist is None: self.tfce_map = None self.p = None self._kind = None else: self.tfce_map = cdist.tfce_map self.p = cdist.probability_map self._kind = cdist.kind def _desc_samples(self): if self.samples == -1: return f"a complete set of {self.n_samples} permutations" elif self.samples is None: return "no permutations" else: return f"{self.n_samples} random permutations" def _desc_timewindow(self): tstart = self._time_dim.tmin if self.tstart is None else self.tstart tstop = self._time_dim.tstop if self.tstop is None else self.tstop return f"{_text.ms(tstart)} - {_text.ms(tstop)} ms" def _asfmtext(self): p = self.p.min() max_stat = self._max_statistic() return FMText((fmtxt.eq(self._statistic, max_stat, 'max', stars=p), ', ', fmtxt.peq(p))) def _default_plot_obj(self): raise NotImplementedError def _iter_cdists(self): yield (None, self._cdist) @property def _first_cdist(self): return self._cdist def _plot_model(self): "Determine x for plotting categories" return None def _plot_sub(self): if isinstance(self.sub, str) and self.sub == "<unsaved array>": raise RuntimeError("The sub parameter was not saved for previous " "versions of Eelbrain. Please recompute this " "result with the current version.") return self.sub def _assert_has_cdist(self): if self._cdist is None: raise RuntimeError("This method only applies to results of tests " "with threshold-based clustering and tests with " "a permutation distribution (samples > 0)") def masked_parameter_map(self, pmin=0.05, **sub): """Create a copy of the parameter map masked by significance Parameters ---------- pmin : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. Returns ------- masked_map : NDVar NDVar with data from the original parameter map wherever p <= pmin and 0 everywhere else. """ self._assert_has_cdist() return self._cdist.masked_parameter_map(pmin, **sub) def cluster(self, cluster_id): """Retrieve a specific cluster as NDVar Parameters ---------- cluster_id : int Cluster id. Returns ------- cluster : NDVar NDVar of the cluster, 0 outside the cluster. Notes ----- Clusters only have stable ids for thresholded cluster distributions. """ self._assert_has_cdist() return self._cdist.cluster(cluster_id) @LazyProperty def clusters(self): if self._cdist is None: return None else: return self.find_clusters(None, True) def find_clusters(self, pmin=None, maps=False, **sub): """Find significant regions or clusters Parameters ---------- pmin : None | scalar, 1 >= p >= 0 Threshold p-value. For threshold-based tests, all clusters with a p-value smaller than ``pmin`` are included (default 1); for other tests, find contiguous regions with ``p ≤ pmin`` (default 0.05). maps : bool Include in the output a map of every cluster (can be memory intensive if there are large statistical maps and/or many clusters; default ``False``). Returns ------- ds : Dataset Dataset with information about the clusters. """ self._assert_has_cdist() return self._cdist.clusters(pmin, maps, **sub) def find_peaks(self): """Find peaks in a threshold-free cluster distribution Returns ------- ds : Dataset Dataset with information about the peaks. """ self._assert_has_cdist() return self._cdist.find_peaks() def compute_probability_map(self, **sub): """Compute a probability map Returns ------- probability : NDVar Map of p-values. """ self._assert_has_cdist() return self._cdist.compute_probability_map(**sub) def info_list(self, computation=True): "List with information about the test" out = fmtxt.List("Mass-univariate statistics:") out.add_item(self._name()) dimnames = [dim.name for dim in self._dims] dimlist = out.add_sublist(f"Over {_text.enumeration(dimnames)}") if 'time' in dimnames: dimlist.add_item(f"Time interval: {self._desc_timewindow()}.") cdist = self._first_cdist if cdist is None: out.add_item("No inferential statistics") return out # inference l = out.add_sublist("Inference:") if cdist.kind == 'raw': l.add_item("Based on maximum statistic") elif cdist.kind == 'tfce': l.add_item("Based on maximum statistic with threshold-" "free cluster enhancement (Smith & Nichols, 2009)") elif cdist.kind == 'cluster': l.add_item("Based on maximum cluster mass statistic") sl = l.add_sublist("Cluster criteria:") for dim in dimnames: if dim == 'time': sl.add_item(f"Minimum cluster duration {_text.ms(cdist.criteria.get('mintime', 0))} ms") elif dim == 'source': sl.add_item(f"At least {cdist.criteria.get('minsource', 0)} contiguous sources.") elif dim == 'sensor': sl.add_item(f"At least {cdist.criteria.get('minsensor', 0)} contiguous sensors.") else: value = cdist.criteria.get(f'min{dim}', 0) sl.add_item(f"Minimum number of contiguous elements in {dim}: {value}") # n samples l.add_item(f"In {self._desc_samples()}") # computation if computation: out.add_item(cdist.info_list()) return out @property def _statistic_map(self): return getattr(self, self._statistic) def _max_statistic(self): tail = getattr(self, 'tail', self._statistic_tail) return self._max_statistic_from_map(self._statistic_map, self.p, tail) @staticmethod def _max_statistic_from_map(stat_map: NDVar, p_map: NDVar, tail: int): if tail == 0: func = stat_map.extrema elif tail == 1: func = stat_map.max else: func = stat_map.min if p_map: mask = p_map <= .05 if p_map.min() <= .05 else None else: mask = None return func() if mask is None else func(mask) @property def n_samples(self): if self.samples == -1: return self._first_cdist.samples else: return self.samples @property def _time_dim(self): for dim in self._first_cdist.dims: if isinstance(dim, UTS): return dim return None class t_contrast_rel(NDTest): """Mass-univariate contrast based on t-values Parameters ---------- y : NDVar Dependent variable. x : categorial Model containing the cells which are compared with the contrast. contrast : str Contrast specification: see Notes. match : Factor Match cases for a repeated measures test. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use a t-value equivalent to an uncorrected p-value for a related samples t-test (with df = len(match.cells) - 1). tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Notes ----- A contrast specifies the steps to calculate a map based on *t*-values. Contrast definitions can contain: - Comparisons using ``>`` or ``<`` and data cells to compute *t*-maps. For example, ``"cell1 > cell0"`` will compute a *t*-map of the comparison if ``cell1`` and ``cell0``, being positive where ``cell1`` is greater than ``cell0`` and negative where ``cell0`` is greater than ``cell1``. If the data is defined based on an interaction, cells are specified with ``|``, e.g. ``"a1 | b1 > a0 | b0"``. Cells can contain ``*`` to average multiple cells. Thus, if the second factor in the model has cells ``b1`` and ``b0``, ``"a1 | * > a0 | *"`` would compare ``a1`` to ``a0`` while averaging ``b1`` and ``b0`` within ``a1`` and ``a0``. - Unary numpy functions ``abs`` and ``negative``, e.g. ``"abs(cell1 > cell0)"``. - Binary numpy functions ``subtract`` and ``add``, e.g. ``"add(a>b, a>c)"``. - Numpy functions for multiple arrays ``min``, ``max`` and ``sum``, e.g. ``min(a>d, b>d, c>d)``. Cases with zero variance are set to t=0. Examples -------- To find cluster where both of two pairwise comparisons are reliable, i.e. an intersection of two effects, one could use ``"min(a > c, b > c)"``. To find a specific kind of interaction, where a is greater than b, and this difference is greater than the difference between c and d, one could use ``"(a > b) - abs(c > d)"``. """ _state_specific = ('x', 'contrast', 't', 'tail') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, x: CategorialArg, contrast: str, match: CategorialArg = None, sub: CategorialArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): if match is None: raise TypeError("The `match` parameter needs to be specified for repeated measures test t_contrast_rel") ct = Celltable(y, x, match, sub, ds=ds, coercion=asndvar, dtype=np.float64) check_for_vector_dim(ct.y) check_variance(ct.y.x) # setup contrast t_contrast = TContrastRel(contrast, ct.cells, ct.data_indexes) # original data tmap = t_contrast.map(ct.y.x) n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: df = len(ct.match.cells) - 1 threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None cdist = NDPermutationDistribution( ct.y, samples, threshold, tfce, tail, 't', "t-contrast", tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_order(len(ct.y), samples, unit=ct.match) run_permutation(t_contrast, cdist, iterator) # NDVar map of t-values info = _info.for_stat_map('t', threshold, tail=tail, old=ct.y.info) t = NDVar(tmap, ct.y.dims[1:], info, 't') # store attributes NDTest.__init__(self, ct.y, ct.match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = ('%'.join(ct.x.base_names) if isinstance(ct.x, Interaction) else ct.x.name) self.contrast = contrast self.tail = tail self.tmin = tmin self.t = t self._expand_state() def _name(self): if self.y: return "T-Contrast: %s ~ %s" % (self.y, self.contrast) else: return "T-Contrast: %s" % self.contrast def _plot_model(self): return self.x def _repr_test_args(self): args = [repr(self.y), repr(self.x), repr(self.contrast)] if self.tail: args.append("tail=%r" % self.tail) if self.match: args.append('match=%r' % self.match) return args class corr(NDTest): """Mass-univariate correlation Parameters ---------- y : NDVar Dependent variable. x : continuous The continuous predictor variable. norm : None | categorial Categories in which to normalize (z-score) x. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use an r-value equivalent to an uncorrected p-value. rmin : None | scalar Threshold for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). match : None | categorial When permuting data, only shuffle the cases within the categories of match. parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. r : NDVar Map of correlation values (with threshold contours). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). """ _state_specific = ('x', 'norm', 'n', 'df', 'r') _statistic = 'r' @user_activity def __init__( self, y: NDVarArg, x: VarArg, norm: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, pmin: float = None, rmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, match: CategorialArg = None, parc: str = None, **criteria): sub = assub(sub, ds) y = asndvar(y, sub=sub, ds=ds, dtype=np.float64) check_for_vector_dim(y) if not y.has_case: raise ValueError("Dependent variable needs case dimension") x = asvar(x, sub=sub, ds=ds) if norm is not None: norm = ascategorial(norm, sub, ds) if match is not None: match = ascategorial(match, sub, ds) name = "%s corr %s" % (y.name, x.name) # Normalize by z-scoring the data for each subject # normalization is done before the permutation b/c we are interested in # the variance associated with each subject for the z-scoring. y = y.copy() if norm is not None: for cell in norm.cells: idx = (norm == cell) y.x[idx] = scipy.stats.zscore(y.x[idx], None) # subtract the mean from y and x so that this can be omitted during # permutation y -= y.summary('case') x = x - x.mean() n = len(y) df = n - 2 rmap = stats.corr(y.x, x.x) n_threshold_params = sum((pmin is not None, rmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, rmin and tfce can be specified") else: if pmin is not None: threshold = stats.rtest_r(pmin, df) elif rmin is not None: threshold = abs(rmin) else: threshold = None cdist = NDPermutationDistribution( y, samples, threshold, tfce, 0, 'r', name, tstart, tstop, criteria, parc) cdist.add_original(rmap) if cdist.do_permutation: iterator = permute_order(n, samples, unit=match) run_permutation(stats.corr, cdist, iterator, x.x) # compile results info = _info.for_stat_map('r', threshold) r = NDVar(rmap, y.dims[1:], info, name) # store attributes NDTest.__init__(self, y, match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = x.name self.norm = None if norm is None else norm.name self.rmin = rmin self.n = n self.df = df self.r = r self._expand_state() def _expand_state(self): NDTest._expand_state(self) r = self.r # uncorrected probability pmap = stats.rtest_p(r.x, self.df) info = _info.for_p_map() p_uncorrected = NDVar(pmap, r.dims, info, 'p_uncorrected') self.p_uncorrected = p_uncorrected self.r_p = [[r, self.p]] if self.samples else None def _name(self): if self.y and self.x: return "Correlation: %s ~ %s" % (self.y, self.x) else: return "Correlation" def _repr_test_args(self): args = [repr(self.y), repr(self.x)] if self.norm: args.append('norm=%r' % self.norm) return args def _default_plot_obj(self): if self.samples: return self.masked_parameter_map() else: return self.r class NDDifferenceTest(NDTest): difference = None def _get_mask(self, p=0.05): self._assert_has_cdist() if not 1 >= p > 0: raise ValueError(f"p={p}: needs to be between 1 and 0") if p == 1: if self._cdist.kind != 'cluster': raise ValueError(f"p=1 is only a valid mask for threshold-based cluster tests") mask = self._cdist.cluster_map == 0 else: mask = self.p > p return self._cdist.uncrop(mask, self.difference, True) def masked_difference(self, p=0.05): """Difference map masked by significance Parameters ---------- p : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. """ mask = self._get_mask(p) return self.difference.mask(mask) class NDMaskedC1Mixin: def masked_c1(self, p=0.05): """``c1`` map masked by significance of the ``c1``-``c0`` difference Parameters ---------- p : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. """ mask = self._get_mask(p) return self.c1_mean.mask(mask) class ttest_1samp(NDDifferenceTest): """Mass-univariate one sample t-test Parameters ---------- y : NDVar Dependent variable. popmean : scalar Value to compare y against (default is 0). match : None | categorial Combine data for these categories before testing. sub : index Perform test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use a t-value equivalent to an uncorrected p-value. tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. difference : NDVar The difference value entering the test (``y`` if popmean is 0). n : int Number of cases. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. t : NDVar Map of t-values. tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). Notes ----- Data points with zero variance are set to t=0. """ _state_specific = ('popmean', 'tail', 'n', 'df', 't', 'difference') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, popmean: float = 0, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): ct = Celltable(y, match=match, sub=sub, ds=ds, coercion=asndvar, dtype=np.float64) check_for_vector_dim(ct.y) n = len(ct.y) df = n - 1 y = ct.y.summary() tmap = stats.t_1samp(ct.y.x) if popmean: raise NotImplementedError("popmean != 0") diff = y - popmean if np.any(diff < 0): diff.info['cmap'] = 'xpolar' else: diff = y n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None if popmean: y_perm = ct.y - popmean else: y_perm = ct.y n_samples, samples = _resample_params(len(y_perm), samples) cdist = NDPermutationDistribution( y_perm, n_samples, threshold, tfce, tail, 't', '1-Sample t-Test', tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_sign_flip(n, samples) run_permutation(opt.t_1samp_perm, cdist, iterator) # NDVar map of t-values info = _info.for_stat_map('t', threshold, tail=tail, old=ct.y.info) t = NDVar(tmap, ct.y.dims[1:], info, 't') # store attributes NDDifferenceTest.__init__(self, ct.y, ct.match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.popmean = popmean self.n = n self.df = df self.tail = tail self.t = t self.tmin = tmin self.difference = diff self._expand_state() def __setstate__(self, state): if 'diff' in state: state['difference'] = state.pop('diff') NDTest.__setstate__(self, state) def _expand_state(self): NDTest._expand_state(self) t = self.t pmap = stats.ttest_p(t.x, self.df, self.tail) info = _info.for_p_map(t.info) p_uncorr = NDVar(pmap, t.dims, info, 'p') self.p_uncorrected = p_uncorr def _name(self): if self.y: return "One-Sample T-Test: %s" % self.y else: return "One-Sample T-Test" def _repr_test_args(self): args = [repr(self.y)] if self.popmean: args.append(repr(self.popmean)) if self.match: args.append('match=%r' % self.match) if self.tail: args.append("tail=%i" % self.tail) return args def _default_plot_obj(self): if self.samples: return self.masked_difference() else: return self.difference def _independent_measures_args(y, x, c1, c0, match, ds, sub): "Interpret parameters for independent measures tests (2 different argspecs)" if isinstance(x, str): x = ds.eval(x) if isinstance(x, NDVar): assert c1 is None assert c0 is None assert match is None y1 = asndvar(y, sub, ds) y0 = asndvar(x, sub, ds) y = combine((y1, y0)) c1_name = y1.name c0_name = y0.name x_name = y0.name else: ct = Celltable(y, x, match, sub, cat=(c1, c0), ds=ds, coercion=asndvar, dtype=np.float64) c1, c0 = ct.cat c1_name = c1 c0_name = c0 x_name = ct.x.name match = ct.match y = ct.y y1 = ct.data[c1] y0 = ct.data[c0] return y, y1, y0, c1, c0, match, x_name, c1_name, c0_name class ttest_ind(NDDifferenceTest): """Mass-univariate independent samples t-test Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Combine cases with the same cell on ``x % match``. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold p value for forming clusters. None for threshold-free cluster enhancement. tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- c1_mean : NDVar Mean in the c1 condition. c0_mean : NDVar Mean in the c0 condition. clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. difference : NDVar Difference between the mean in condition c1 and condition c0. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. t : NDVar Map of t-values. tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). Notes ----- Cases with zero variance are set to t=0. """ _state_specific = ('x', 'c1', 'c0', 'tail', 't', 'n1', 'n0', 'df', 'c1_mean', 'c0_mean') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: CellArg = None, c0: CellArg = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): y, y1, y0, c1, c0, match, x_name, c1_name, c0_name = _independent_measures_args(y, x, c1, c0, match, ds, sub) check_for_vector_dim(y) n1 = len(y1) n = len(y) n0 = n - n1 df = n - 2 groups = np.arange(n) < n1 groups.dtype = np.int8 tmap = stats.t_ind(y.x, groups) n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None cdist = NDPermutationDistribution(y, samples, threshold, tfce, tail, 't', 'Independent Samples t-Test', tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_order(n, samples) run_permutation(stats.t_ind, cdist, iterator, groups) # store attributes NDDifferenceTest.__init__(self, y, match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = x_name self.c0 = c0 self.c1 = c1 self.n1 = n1 self.n0 = n0 self.df = df self.tail = tail info = _info.for_stat_map('t', threshold, tail=tail, old=y.info) self.t = NDVar(tmap, y.dims[1:], info, 't') self.tmin = tmin self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self._expand_state() def _expand_state(self): NDTest._expand_state(self) # difference diff = self.c1_mean - self.c0_mean if np.any(diff.x < 0): diff.info['cmap'] = 'xpolar' diff.name = 'difference' self.difference = diff # uncorrected p pmap = stats.ttest_p(self.t.x, self.df, self.tail) info = _info.for_p_map(self.t.info) p_uncorr = NDVar(pmap, self.t.dims, info, 'p') self.p_uncorrected = p_uncorr # composites if self.samples: diff_p = self.masked_difference() else: diff_p = self.difference self.all = [self.c1_mean, self.c0_mean, diff_p] def _name(self): if self.tail == 0: comp = "%s == %s" % (self.c1, self.c0) elif self.tail > 0: comp = "%s > %s" % (self.c1, self.c0) else: comp = "%s < %s" % (self.c1, self.c0) if self.y: return "Independent-Samples T-Test: %s ~ %s" % (self.y, comp) else: return "Independent-Samples T-Test: %s" % comp def _plot_model(self): return self.x def _plot_sub(self): return "(%s).isin(%s)" % (self.x, (self.c1, self.c0)) def _repr_test_args(self): if self.c1 is None: args = [f'{self.y!r} (n={self.n1})', f'{self.x!r} (n={self.n0})'] else: args = [f'{self.y!r}', f'{self.x!r}', f'{self.c1!r} (n={self.n1})', f'{self.c0!r} (n={self.n0})'] if self.match: args.append(f'match{self.match!r}') if self.tail: args.append(f'tail={self.tail}') return args def _default_plot_obj(self): if self.samples: diff = self.masked_difference() else: diff = self.difference return [self.c1_mean, self.c0_mean, diff] def _related_measures_args(y, x, c1, c0, match, ds, sub): "Interpret parameters for related measures tests (2 different argspecs)" if isinstance(x, str): if ds is None: raise TypeError(f"x={x!r} specified as str without specifying ds") x = ds.eval(x) if isinstance(x, NDVar): assert c1 is None assert c0 is None assert match is None y1 = asndvar(y, sub, ds) n = len(y1) y0 = asndvar(x, sub, ds, n) c1_name = y1.name c0_name = y0.name x_name = y0.name elif match is None: raise TypeError("The `match` argument needs to be specified for related measures tests") else: ct = Celltable(y, x, match, sub, cat=(c1, c0), ds=ds, coercion=asndvar, dtype=np.float64) c1, c0 = ct.cat c1_name = c1 c0_name = c0 if not ct.all_within: raise ValueError(f"conditions {c1!r} and {c0!r} do not have the same values on {dataobj_repr(ct.match)}") n = len(ct.y) // 2 y1 = ct.y[:n] y0 = ct.y[n:] x_name = ct.x.name match = ct.match return y1, y0, c1, c0, match, n, x_name, c1, c1_name, c0, c0_name class ttest_rel(NDMaskedC1Mixin, NDDifferenceTest): """Mass-univariate related samples t-test Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Units within which measurements are related (e.g. 'subject' in a within-subject comparison). sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed, default); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use a t-value equivalent to an uncorrected p-value. tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- c1_mean : NDVar Mean in the c1 condition. c0_mean : NDVar Mean in the c0 condition. clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. difference : NDVar Difference between the mean in condition c1 and condition c0. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. t : NDVar Map of t-values. tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). n : int Number of cases. Notes ----- In the permutation cluster test, permutations are done within the categories of ``match``. Cases with zero variance are set to t=0. """ _state_specific = ('x', 'c1', 'c0', 'tail', 't', 'n', 'df', 'c1_mean', 'c0_mean') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: CellArg = None, c0: CellArg = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): y1, y0, c1, c0, match, n, x_name, c1, c1_name, c0, c0_name = _related_measures_args(y, x, c1, c0, match, ds, sub) check_for_vector_dim(y1) if n <= 2: raise ValueError("Not enough observations for t-test (n=%i)" % n) df = n - 1 diff = y1 - y0 tmap = stats.t_1samp(diff.x) n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None n_samples, samples = _resample_params(len(diff), samples) cdist = NDPermutationDistribution( diff, n_samples, threshold, tfce, tail, 't', 'Related Samples t-Test', tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_sign_flip(n, samples) run_permutation(opt.t_1samp_perm, cdist, iterator) # NDVar map of t-values info = _info.for_stat_map('t', threshold, tail=tail, old=y1.info) t = NDVar(tmap, y1.dims[1:], info, 't') # store attributes NDDifferenceTest.__init__(self, y1, match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = x_name self.c0 = c0 self.c1 = c1 self.n = n self.df = df self.tail = tail self.t = t self.tmin = tmin self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self._expand_state() def _expand_state(self): NDTest._expand_state(self) cdist = self._cdist t = self.t # difference diff = self.c1_mean - self.c0_mean if np.any(diff.x < 0): diff.info['cmap'] = 'xpolar' diff.name = 'difference' self.difference = diff # uncorrected p pmap = stats.ttest_p(t.x, self.df, self.tail) info = _info.for_p_map() self.p_uncorrected = NDVar(pmap, t.dims, info, 'p') # composites if self.samples: diff_p = self.masked_difference() else: diff_p = self.difference self.all = [self.c1_mean, self.c0_mean, diff_p] def _name(self): if self.tail == 0: comp = "%s == %s" % (self.c1, self.c0) elif self.tail > 0: comp = "%s > %s" % (self.c1, self.c0) else: comp = "%s < %s" % (self.c1, self.c0) if self.y: return "Related-Samples T-Test: %s ~ %s" % (self.y, comp) else: return "Related-Samples T-Test: %s" % comp def _plot_model(self): return self.x def _plot_sub(self): return "(%s).isin(%s)" % (self.x, (self.c1, self.c0)) def _repr_test_args(self): args = [repr(self.y), repr(self.x)] if self.c1 is not None: args.extend((repr(self.c1), repr(self.c0), repr(self.match))) args[-1] += " (n=%i)" % self.n if self.tail: args.append("tail=%i" % self.tail) return args def _default_plot_obj(self): if self.samples: diff = self.masked_difference() else: diff = self.difference return [self.c1_mean, self.c0_mean, diff] class MultiEffectNDTest(NDTest): def _repr_test_args(self): args = [repr(self.y), repr(self.x)] if self.match is not None: args.append('match=%r' % self.match) return args def _repr_cdist(self): args = self._cdist[0]._repr_test_args(self.pmin) for cdist in self._cdist: effect_args = cdist._repr_clusters() args.append("%r: %s" % (cdist.name, ', '.join(effect_args))) return args def _asfmtext(self): table = fmtxt.Table('llll') table.cells('Effect', fmtxt.symbol(self._statistic, 'max'), fmtxt.symbol('p'), 'sig') table.midrule() for i, effect in enumerate(self.effects): table.cell(effect) table.cell(fmtxt.stat(self._max_statistic(i))) pmin = self.p[i].min() table.cell(fmtxt.p(pmin)) table.cell(star(pmin)) return table def _expand_state(self): self.effects = tuple(e.name for e in self._effects) # clusters cdists = self._cdist if cdists is None: self._kind = None else: self.tfce_maps = [cdist.tfce_map for cdist in cdists] self.p = [cdist.probability_map for cdist in cdists] self._kind = cdists[0].kind def _effect_index(self, effect: Union[int, str]): if isinstance(effect, str): return self.effects.index(effect) else: return effect def _iter_cdists(self): for cdist in self._cdist: yield cdist.name.capitalize(), cdist @property def _first_cdist(self): if self._cdist is None: return None else: return self._cdist[0] def _max_statistic(self, effect: Union[str, int]): i = self._effect_index(effect) stat_map = self._statistic_map[i] tail = getattr(self, 'tail', self._statistic_tail) return self._max_statistic_from_map(stat_map, self.p[i], tail) def cluster(self, cluster_id, effect=0): """Retrieve a specific cluster as NDVar Parameters ---------- cluster_id : int Cluster id. effect : int | str Index or name of the effect from which to retrieve a cluster (default is the first effect). Returns ------- cluster : NDVar NDVar of the cluster, 0 outside the cluster. Notes ----- Clusters only have stable ids for thresholded cluster distributions. """ self._assert_has_cdist() i = self._effect_index(effect) return self._cdist[i].cluster(cluster_id) def compute_probability_map(self, effect=0, **sub): """Compute a probability map Parameters ---------- effect : int | str Index or name of the effect from which to use the parameter map (default is the first effect). Returns ------- probability : NDVar Map of p-values. """ self._assert_has_cdist() i = self._effect_index(effect) return self._cdist[i].compute_probability_map(**sub) def masked_parameter_map(self, effect=0, pmin=0.05, **sub): """Create a copy of the parameter map masked by significance Parameters ---------- effect : int | str Index or name of the effect from which to use the parameter map. pmin : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. Returns ------- masked_map : NDVar NDVar with data from the original parameter map wherever p <= pmin and 0 everywhere else. """ self._assert_has_cdist() i = self._effect_index(effect) return self._cdist[i].masked_parameter_map(pmin, **sub) def find_clusters(self, pmin=None, maps=False, effect=None, **sub): """Find significant regions or clusters Parameters ---------- pmin : None | scalar, 1 >= p >= 0 Threshold p-value. For threshold-based tests, all clusters with a p-value smaller than ``pmin`` are included (default 1); for other tests, find contiguous regions with ``p ≤ pmin`` (default 0.05). maps : bool Include in the output a map of every cluster (can be memory intensive if there are large statistical maps and/or many clusters; default ``False``). effect : int | str Index or name of the effect from which to find clusters (default is all effects). Returns ------- ds : Dataset Dataset with information about the clusters. """ self._assert_has_cdist() if effect is not None: i = self._effect_index(effect) return self._cdist[i].clusters(pmin, maps, **sub) dss = [] info = {} for cdist in self._cdist: ds = cdist.clusters(pmin, maps, **sub) ds[:, 'effect'] = cdist.name if 'clusters' in ds.info: info['%s clusters' % cdist.name] = ds.info.pop('clusters') dss.append(ds) out = combine(dss) out.info.update(info) return out def find_peaks(self): """Find peaks in a TFCE distribution Returns ------- ds : Dataset Dataset with information about the peaks. """ self._assert_has_cdist() dss = [] for cdist in self._cdist: ds = cdist.find_peaks() ds[:, 'effect'] = cdist.name dss.append(ds) return combine(dss) class anova(MultiEffectNDTest): """Mass-univariate ANOVA Parameters ---------- y : NDVar Dependent variable. x : Model Independent variables. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use an f-value equivalent to an uncorrected p-value. fmin : scalar Threshold for forming clusters as f-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). replacement : bool whether random samples should be drawn with replacement or without tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). match : categorial | False When permuting data, only shuffle the cases within the categories of match. By default, ``match`` is determined automatically based on the random efects structure of ``x``. parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- effects : tuple of str Names of the tested effects, in the same order as in other attributes. clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. f : list of NDVar Maps of F values. p : list of NDVar | None Maps of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : list of NDVar Maps of p-values uncorrected for multiple comparison. tfce_maps : list of NDVar | None Maps of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). Examples -------- For information on model specification see the univariate :func:`~eelbrain.test.anova` examples. """ _state_specific = ('x', 'pmin', '_effects', '_dfs_denom', 'f') _statistic = 'f' _statistic_tail = 1 @user_activity def __init__( self, y: NDVarArg, x: ModelArg, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, pmin: float = None, fmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, match: Union[CategorialArg, bool] = None, parc: str = None, force_permutation: bool = False, **criteria): x_arg = x sub_arg = sub sub = assub(sub, ds) y = asndvar(y, sub, ds, dtype=np.float64) check_for_vector_dim(y) x = asmodel(x, sub, ds) if match is None: random_effects = [e for e in x.effects if e.random] if not random_effects: match = None elif len(random_effects) > 1: raise NotImplementedError( "Automatic match parameter for model with more than one " "random effect. Set match manually.") else: match = random_effects[0] elif match is not False: match = ascategorial(match, sub, ds) lm = _nd_anova(x) effects = lm.effects dfs_denom = lm.dfs_denom fmaps = lm.map(y.x) n_threshold_params = sum((pmin is not None, fmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: cdists = None thresholds = tuple(repeat(None, len(effects))) elif n_threshold_params > 1: raise ValueError("Only one of pmin, fmin and tfce can be specified") else: if pmin is not None: thresholds = tuple(stats.ftest_f(pmin, e.df, df_den) for e, df_den in zip(effects, dfs_denom)) elif fmin is not None: thresholds = tuple(repeat(abs(fmin), len(effects))) else: thresholds = tuple(repeat(None, len(effects))) cdists = [ NDPermutationDistribution( y, samples, thresh, tfce, 1, 'f', e.name, tstart, tstop, criteria, parc, force_permutation) for e, thresh in zip(effects, thresholds)] # Find clusters in the actual data do_permutation = 0 for cdist, fmap in zip(cdists, fmaps): cdist.add_original(fmap) do_permutation += cdist.do_permutation if do_permutation: iterator = permute_order(len(y), samples, unit=match) run_permutation_me(lm, cdists, iterator) # create ndvars dims = y.dims[1:] f = [] for e, fmap, df_den, f_threshold in zip(effects, fmaps, dfs_denom, thresholds): info = _info.for_stat_map('f', f_threshold, tail=1, old=y.info) f.append(NDVar(fmap, dims, info, e.name)) # store attributes MultiEffectNDTest.__init__(self, y, match, sub_arg, samples, tfce, pmin, cdists, tstart, tstop) self.x = x_arg if isinstance(x_arg, str) else x.name self._effects = effects self._dfs_denom = dfs_denom self.f = f self._expand_state() def _expand_state(self): # backwards compatibility if hasattr(self, 'effects'): self._effects = self.effects MultiEffectNDTest._expand_state(self) # backwards compatibility if hasattr(self, 'df_den'): df_den_temp = {e.name: df for e, df in self.df_den.items()} del self.df_den self._dfs_denom = tuple(df_den_temp[e] for e in self.effects) # f-maps with clusters pmin = self.pmin or 0.05 if self.samples: f_and_clusters = [] for e, fmap, df_den, cdist in zip(self._effects, self.f, self._dfs_denom, self._cdist): # create f-map with cluster threshold f0 = stats.ftest_f(pmin, e.df, df_den) info = _info.for_stat_map('f', f0) f_ = NDVar(fmap.x, fmap.dims, info, e.name) # add overlay with cluster if cdist.probability_map is not None: f_and_clusters.append([f_, cdist.probability_map]) else: f_and_clusters.append([f_]) self.f_probability = f_and_clusters # uncorrected probability p_uncorr = [] for e, f, df_den in zip(self._effects, self.f, self._dfs_denom): info = _info.for_p_map() pmap = stats.ftest_p(f.x, e.df, df_den) p_ = NDVar(pmap, f.dims, info, e.name) p_uncorr.append(p_) self.p_uncorrected = p_uncorr def _name(self): if self.y: return "ANOVA: %s ~ %s" % (self.y, self.x) else: return "ANOVA: %s" % self.x def _plot_model(self): return '%'.join(e.name for e in self._effects if isinstance(e, Factor) or (isinstance(e, NestedEffect) and isinstance(e.effect, Factor))) def _plot_sub(self): return super(anova, self)._plot_sub() def _default_plot_obj(self): if self.samples: return [self.masked_parameter_map(e) for e in self.effects] else: return self._statistic_map def table(self): """Table with effects and smallest p-value""" table = fmtxt.Table('rlr' + ('' if self.p is None else 'rl')) table.cells('#', 'Effect', 'f_max') if self.p is not None: table.cells('p', 'sig') table.midrule() for i in range(len(self.effects)): table.cell(i) table.cell(self.effects[i]) table.cell(fmtxt.stat(self.f[i].max())) if self.p is not None: pmin = self.p[i].min() table.cell(fmtxt.p(pmin)) table.cell(star(pmin)) return table class Vector(NDDifferenceTest): """Test a vector field for vectors with non-random direction Parameters ---------- y : NDVar Dependent variable (needs to include one vector dimension). match : None | categorial Combine data for these categories before testing. sub : index Perform test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables samples : int Number of samples for permutation test (default 10000). tmin : scalar Threshold value for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. norm : bool Use the vector norm as univariate test statistic (instead of Hotelling’s T-Square statistic). mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- n : int Number of cases. difference : NDVar The vector field averaged across cases. t2 : NDVar | None Hotelling T-Square map; ``None`` if the test used ``norm=True``. p : NDVar | None Map of p-values corrected for multiple comparison (or ``None`` if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. Notes ----- Vector tests are based on the Hotelling T-Square statistic. Computation of the T-Square statistic relies on [1]_. References ---------- .. [1] <NAME>. (2008). Efficient numerical diagonalization of hermitian 3 x 3 matrices. International Journal of Modern Physics C, 19(3), 523-548. `10.1142/S0129183108012303 <https://doi.org/10.1142/S0129183108012303>`_ """ _state_specific = ('difference', 'n', '_v_dim', 't2') @user_activity def __init__( self, y: NDVarArg, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, norm: bool = False, **criteria): use_norm = bool(norm) ct = Celltable(y, match=match, sub=sub, ds=ds, coercion=asndvar, dtype=np.float64) n = len(ct.y) cdist = NDPermutationDistribution(ct.y, samples, tmin, tfce, 1, 'norm', 'Vector test', tstart, tstop, criteria, parc, force_permutation) v_dim = ct.y.dimnames[cdist._vector_ax + 1] v_mean = ct.y.mean('case') v_mean_norm = v_mean.norm(v_dim) if not use_norm: t2_map = self._vector_t2_map(ct.y) cdist.add_original(t2_map.x if v_mean.ndim > 1 else t2_map) if v_mean.ndim == 1: self.t2 = t2_map else: self.t2 = NDVar(t2_map, v_mean_norm.dims, _info.for_stat_map('t2'), 't2') else: cdist.add_original(v_mean_norm.x if v_mean.ndim > 1 else v_mean_norm) self.t2 = None if cdist.do_permutation: iterator = random_seeds(samples) vector_perm = partial(self._vector_perm, use_norm=use_norm) run_permutation(vector_perm, cdist, iterator) # store attributes NDTest.__init__(self, ct.y, ct.match, sub, samples, tfce, None, cdist, tstart, tstop) self.difference = v_mean self._v_dim = v_dim self.n = n self._expand_state() def __setstate__(self, state): if 'diff' in state: state['difference'] = state.pop('diff') NDTest.__setstate__(self, state) @property def _statistic(self): return 'norm' if self.t2 is None else 't2' def _name(self): if self.y: return f"Vector test: {self.y}" else: return "Vector test" def _repr_test_args(self): args = [] if self.y: args.append(repr(self.y)) if self.match: args.append(f'match={self.match!r}') return args @staticmethod def _vector_perm(y, out, seed, use_norm): n_cases, n_dims, n_tests = y.shape assert n_dims == 3 rotation = rand_rotation_matrices(n_cases, seed) if use_norm: return vector.mean_norm_rotated(y, rotation, out) else: return vector.t2_stat_rotated(y, rotation, out) @staticmethod def _vector_t2_map(y): dimnames = y.get_dimnames(first=('case', 'space')) x = y.get_data(dimnames) t2_map = stats.t2_1samp(x) if y.ndim == 2: return np.float64(t2_map) else: dims = y.get_dims(dimnames[2:]) return NDVar(t2_map, dims) class VectorDifferenceIndependent(Vector): """Test difference between two vector fields for non-random direction Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Combine cases with the same cell on ``x % match``. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10000). tmin : scalar Threshold value for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. norm : bool Use the vector norm as univariate test statistic (instead of Hotelling’s T-Square statistic). mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- n : int Total number of cases. n1 : int Number of cases in ``c1``. n0 : int Number of cases in ``c0``. c1_mean : NDVar Mean in the c1 condition. c0_mean : NDVar Mean in the c0 condition. difference : NDVar Difference between the mean in condition c1 and condition c0. t2 : NDVar | None Hotelling T-Square map; ``None`` if the test used ``norm=True``. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. """ _state_specific = ('difference', 'c1_mean', 'c0_mean' 'n', '_v_dim', 't2') _statistic = 'norm' @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: str = None, c0: str = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, tmin: float = None, tfce: bool = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, norm: bool = False, **criteria): use_norm = bool(norm) y, y1, y0, c1, c0, match, x_name, c1_name, c0_name = _independent_measures_args(y, x, c1, c0, match, ds, sub) self.n1 = len(y1) self.n0 = len(y0) self.n = len(y) cdist = NDPermutationDistribution(y, samples, tmin, tfce, 1, 'norm', 'Vector test (independent)', tstart, tstop, criteria, parc, force_permutation) self._v_dim = v_dim = y.dimnames[cdist._vector_ax + 1] self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self.difference = self.c1_mean - self.c0_mean self.difference.name = 'difference' v_mean_norm = self.difference.norm(v_dim) if not use_norm: raise NotImplementedError("t2 statistic not implemented for VectorDifferenceIndependent") else: cdist.add_original(v_mean_norm.x if self.difference.ndim > 1 else v_mean_norm) self.t2 = None if cdist.do_permutation: iterator = random_seeds(samples) vector_perm = partial(self._vector_perm, use_norm=use_norm) run_permutation(vector_perm, cdist, iterator, self.n1) NDTest.__init__(self, y, match, sub, samples, tfce, None, cdist, tstart, tstop) self._expand_state() def _name(self): if self.y: return f"Vector test (independent): {self.y}" else: return "Vector test (independent)" @staticmethod def _vector_perm(y, n1, out, seed, use_norm): assert use_norm n_cases, n_dims, n_tests = y.shape assert n_dims == 3 # randomize directions rotation = rand_rotation_matrices(n_cases, seed) # randomize groups cases = np.arange(n_cases) np.random.shuffle(cases) # group 1 mean_1 = np.zeros((n_dims, n_tests)) for case in cases[:n1]: mean_1 += np.tensordot(rotation[case], y[case], ((1,), (0,))) mean_1 /= n1 # group 0 mean_0 = np.zeros((n_dims, n_tests)) for case in cases[n1:]: mean_0 += np.tensordot(rotation[case], y[case], ((1,), (0,))) mean_0 /= (n_cases - n1) # difference mean_1 -= mean_0 norm = scipy.linalg.norm(mean_1, 2, axis=0) if out is not None: out[:] = norm return norm class VectorDifferenceRelated(NDMaskedC1Mixin, Vector): """Test difference between two vector fields for non-random direction Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Units within which measurements are related (e.g. 'subject' in a within-subject comparison). sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10000). tmin : scalar Threshold value for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. norm : bool Use the vector norm as univariate test statistic (instead of Hotelling’s T-Square statistic). mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- n : int Number of cases. c1_mean : NDVar Mean in the ``c1`` condition. c0_mean : NDVar Mean in the ``c0`` condition. difference : NDVar Difference between the mean in condition ``c1`` and condition ``c0``. t2 : NDVar | None Hotelling T-Square map; ``None`` if the test used ``norm=True``. p : NDVar | None Map of p-values corrected for multiple comparison (or ``None`` if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. See Also -------- Vector : One-sample vector test, notes on vector test implementation """ _state_specific = ('difference', 'c1_mean', 'c0_mean' 'n', '_v_dim', 't2') @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: str = None, c0: str = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, tmin: float = None, tfce: bool = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, norm: bool = False, **criteria): use_norm = bool(norm) y1, y0, c1, c0, match, n, x_name, c1, c1_name, c0, c0_name = _related_measures_args(y, x, c1, c0, match, ds, sub) difference = y1 - y0 difference.name = 'difference' n_samples, samples = _resample_params(n, samples) cdist = NDPermutationDistribution(difference, n_samples, tmin, tfce, 1, 'norm', 'Vector test (related)', tstart, tstop, criteria, parc, force_permutation) v_dim = difference.dimnames[cdist._vector_ax + 1] v_mean = difference.mean('case') v_mean_norm = v_mean.norm(v_dim) if not use_norm: t2_map = self._vector_t2_map(difference) cdist.add_original(t2_map.x if v_mean.ndim > 1 else t2_map) if v_mean.ndim == 1: self.t2 = t2_map else: self.t2 = NDVar(t2_map, v_mean_norm.dims, _info.for_stat_map('t2'), 't2') else: cdist.add_original(v_mean_norm.x if v_mean.ndim > 1 else v_mean_norm) self.t2 = None if cdist.do_permutation: iterator = random_seeds(n_samples) vector_perm = partial(self._vector_perm, use_norm=use_norm) run_permutation(vector_perm, cdist, iterator) # store attributes NDTest.__init__(self, difference, match, sub, samples, tfce, None, cdist, tstart, tstop) self.difference = v_mean self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self._v_dim = v_dim self.n = n self._expand_state() def _name(self): if self.y: return f"Vector test (related): {self.y}" else: return "Vector test (related)" def flatten(array, connectivity): """Reshape SPM buffer array to 2-dimensional map for connectivity processing Parameters ---------- array : ndarray N-dimensional array (with non-adjacent dimension at first position). connectivity : Connectivity N-dimensional connectivity. Returns ------- flat_array : ndarray The input array reshaped if necessary, making sure that input and output arrays share the same underlying data buffer. """ if array.ndim == 2 or not connectivity.custom: return array else: out = array.reshape((array.shape[0], -1)) assert out.base is array return out def flatten_1d(array): if array.ndim == 1: return array else: out = array.ravel() assert out.base is array return out def label_clusters(stat_map, threshold, tail, connectivity, criteria): """Label clusters Parameters ---------- stat_map : array Statistical parameter map (non-adjacent dimension on the first axis). Returns ------- cmap : np.ndarray of uint32 Array with clusters labelled as integers. cluster_ids : np.ndarray of uint32 Identifiers of the clusters that survive the minimum duration criterion. """ cmap = np.empty(stat_map.shape, np.uint32) bin_buff = np.empty(stat_map.shape, np.bool8) cmap_flat = flatten(cmap, connectivity) if tail == 0: int_buff = np.empty(stat_map.shape, np.uint32) int_buff_flat = flatten(int_buff, connectivity) else: int_buff = int_buff_flat = None cids = _label_clusters(stat_map, threshold, tail, connectivity, criteria, cmap, cmap_flat, bin_buff, int_buff, int_buff_flat) return cmap, cids def _label_clusters(stat_map, threshold, tail, conn, criteria, cmap, cmap_flat, bin_buff, int_buff, int_buff_flat): """Find clusters on a statistical parameter map Parameters ---------- stat_map : array Statistical parameter map (non-adjacent dimension on the first axis). cmap : array of int Buffer for the cluster id map (will be modified). Returns ------- cluster_ids : np.ndarray of uint32 Identifiers of the clusters that survive the minimum duration criterion. """ # compute clusters if tail >= 0: bin_map_above = np.greater(stat_map, threshold, bin_buff) cids = _label_clusters_binary(bin_map_above, cmap, cmap_flat, conn, criteria) if tail <= 0: bin_map_below = np.less(stat_map, -threshold, bin_buff) if tail < 0: cids = _label_clusters_binary(bin_map_below, cmap, cmap_flat, conn, criteria) else: cids_l = _label_clusters_binary(bin_map_below, int_buff, int_buff_flat, conn, criteria) x = cmap.max() int_buff[bin_map_below] += x cids_l += x cmap += int_buff cids = np.concatenate((cids, cids_l)) return cids def label_clusters_binary(bin_map, connectivity, criteria=None): """Label clusters in a boolean map Parameters ---------- bin_map : numpy.ndarray Binary map. connectivity : Connectivity Connectivity corresponding to ``bin_map``. criteria : dict Cluster criteria. Returns ------- cmap : numpy.ndarray of uint32 Array with clusters labelled as integers. cluster_ids : numpy.ndarray of uint32 Sorted identifiers of the clusters that survive the selection criteria. """ cmap = np.empty(bin_map.shape, np.uint32) cmap_flat = flatten(cmap, connectivity) cids = _label_clusters_binary(bin_map, cmap, cmap_flat, connectivity, criteria) return cmap, cids def _label_clusters_binary(bin_map, cmap, cmap_flat, connectivity, criteria): """Label clusters in a binary array Parameters ---------- bin_map : np.ndarray Binary map of where the parameter map exceeds the threshold for a cluster (non-adjacent dimension on the first axis). cmap : np.ndarray Array in which to label the clusters. cmap_flat : np.ndarray Flat copy of cmap (ndim=2, only used when all_adjacent==False) connectivity : Connectivity Connectivity. criteria : None | list Cluster size criteria, list of (axes, v) tuples. Collapse over axes and apply v minimum length). Returns ------- cluster_ids : np.ndarray of uint32 Sorted identifiers of the clusters that survive the selection criteria. """ # find clusters n = ndimage.label(bin_map, connectivity.struct, cmap) if n <= 1: # in older versions, n is 1 even when no cluster is found if n == 0 or cmap.max() == 0: return np.array((), np.uint32) else: cids = np.array((1,), np.uint32) elif connectivity.custom: cids = merge_labels(cmap_flat, n, *connectivity.custom[0]) else: cids = np.arange(1, n + 1, 1, np.uint32) # apply minimum cluster size criteria if criteria and cids.size: for axes, v in criteria: cids = np.setdiff1d(cids, [i for i in cids if np.count_nonzero(np.equal(cmap, i).any(axes)) < v], True) if cids.size == 0: break return cids def tfce(stat_map, tail, connectivity, dh=0.1): tfce_im = np.empty(stat_map.shape, np.float64) tfce_im_1d = flatten_1d(tfce_im) bin_buff = np.empty(stat_map.shape, np.bool8) int_buff = np.empty(stat_map.shape, np.uint32) int_buff_flat = flatten(int_buff, connectivity) int_buff_1d = flatten_1d(int_buff) return _tfce(stat_map, tail, connectivity, tfce_im, tfce_im_1d, bin_buff, int_buff, int_buff_flat, int_buff_1d, dh) def _tfce(stat_map, tail, conn, out, out_1d, bin_buff, int_buff, int_buff_flat, int_buff_1d, dh=0.1, e=0.5, h=2.0): "Threshold-free cluster enhancement" out.fill(0) # determine slices if tail == 0: hs = chain(np.arange(-dh, stat_map.min(), -dh), np.arange(dh, stat_map.max(), dh)) elif tail < 0: hs = np.arange(-dh, stat_map.min(), -dh) else: hs = np.arange(dh, stat_map.max(), dh) # label clusters in slices at different heights # fill each cluster with total section value # each point's value is the vertical sum for h_ in hs: if h_ > 0: np.greater_equal(stat_map, h_, bin_buff) h_factor = h_ ** h else: np.less_equal(stat_map, h_, bin_buff) h_factor = (-h_) ** h c_ids = _label_clusters_binary(bin_buff, int_buff, int_buff_flat, conn, None) tfce_increment(c_ids, int_buff_1d, out_1d, e, h_factor) return out class StatMapProcessor: def __init__(self, tail, max_axes, parc): """Reduce a statistical map to the relevant maximum statistic""" self.tail = tail self.max_axes = max_axes self.parc = parc def max_stat(self, stat_map): if self.tail == 0: v = np.abs(stat_map, stat_map).max(self.max_axes) elif self.tail > 0: v = stat_map.max(self.max_axes) else: v = -stat_map.min(self.max_axes) if self.parc is None: return v else: return [v[idx].max() for idx in self.parc] class TFCEProcessor(StatMapProcessor): def __init__(self, tail, max_axes, parc, shape, connectivity, dh): StatMapProcessor.__init__(self, tail, max_axes, parc) self.shape = shape self.connectivity = connectivity self.dh = dh # Pre-allocate memory buffers used for cluster processing self._bin_buff = np.empty(shape, np.bool8) self._int_buff = np.empty(shape, np.uint32) self._tfce_im = np.empty(shape, np.float64) self._tfce_im_1d = flatten_1d(self._tfce_im) self._int_buff_flat = flatten(self._int_buff, connectivity) self._int_buff_1d = flatten_1d(self._int_buff) def max_stat(self, stat_map): v = _tfce( stat_map, self.tail, self.connectivity, self._tfce_im, self._tfce_im_1d, self._bin_buff, self._int_buff, self._int_buff_flat, self._int_buff_1d, self.dh, ).max(self.max_axes) if self.parc is None: return v else: return [v[idx].max() for idx in self.parc] class ClusterProcessor(StatMapProcessor): def __init__(self, tail, max_axes, parc, shape, connectivity, threshold, criteria): StatMapProcessor.__init__(self, tail, max_axes, parc) self.shape = shape self.connectivity = connectivity self.threshold = threshold self.criteria = criteria # Pre-allocate memory buffers used for cluster processing self._bin_buff = np.empty(shape, np.bool8) self._cmap = np.empty(shape, np.uint32) self._cmap_flat = flatten(self._cmap, connectivity) if tail == 0: self._int_buff = np.empty(shape, np.uint32) self._int_buff_flat = flatten(self._int_buff, connectivity) else: self._int_buff = self._int_buff_flat = None def max_stat(self, stat_map, threshold=None): if threshold is None: threshold = self.threshold cmap = self._cmap cids = _label_clusters(stat_map, threshold, self.tail, self.connectivity, self.criteria, cmap, self._cmap_flat, self._bin_buff, self._int_buff, self._int_buff_flat) if self.parc is not None: v = [] for idx in self.parc: clusters_v = ndimage.sum(stat_map[idx], cmap[idx], cids) if len(clusters_v): if self.tail <= 0: np.abs(clusters_v, clusters_v) v.append(clusters_v.max()) else: v.append(0) return v elif len(cids): clusters_v = ndimage.sum(stat_map, cmap, cids) if self.tail <= 0: np.abs(clusters_v, clusters_v) return clusters_v.max() else: return 0 def get_map_processor(kind, *args): if kind == 'tfce': return TFCEProcessor(*args) elif kind == 'cluster': return ClusterProcessor(*args) elif kind == 'raw': return StatMapProcessor(*args) else: raise ValueError("kind=%s" % repr(kind)) class NDPermutationDistribution: """Accumulate information on a cluster statistic. Parameters ---------- y : NDVar Dependent variable. samples : int Number of permutations. threshold : scalar > 0 Threshold-based clustering. tfce : bool | scalar Threshold-free cluster enhancement. tail : 1 | 0 | -1 Which tail(s) of the distribution to consider. 0 is two-tailed, whereas 1 only considers positive values and -1 only considers negative values. meas : str Label for the parameter measurement (e.g., 't' for t-values). name : None | str Name for the comparison. tstart, tstop : None | scalar Restrict the time window for finding clusters (None: use the whole epoch). criteria : dict Dictionary with threshold criteria for cluster size: 'mintime' (seconds) and 'minsource' (n_sources). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation : bool Conduct permutations regardless of whether there are any clusters. Notes ----- Use of the NDPermutationDistribution proceeds in 3 steps: - initialize the NDPermutationDistribution object: ``cdist = NDPermutationDistribution(...)`` - use a copy of y cropped to the time window of interest: ``y = cdist.Y_perm`` - add the actual statistical map with ``cdist.add_original(pmap)`` - if any clusters are found (``if cdist.n_clusters``): - proceed to add statistical maps from permuted data with ``cdist.add_perm(pmap)``. Permutation data shape: case, [vector, ][non-adjacent, ] ... internal shape: [non-adjacent, ] ... """ tfce_warning = None def __init__(self, y, samples, threshold, tfce=False, tail=0, meas='?', name=None, tstart=None, tstop=None, criteria={}, parc=None, force_permutation=False): assert y.has_case assert parc is None or isinstance(parc, str) if tfce and threshold: raise RuntimeError(f"threshold={threshold!r}, tfce={tfce!r}: mutually exclusive parameters") elif tfce: if tfce is not True: tfce = abs(tfce) kind = 'tfce' elif threshold: threshold = float(threshold) kind = 'cluster' assert threshold > 0 else: kind = 'raw' # vector: will be removed for stat_map vector = [d._connectivity_type == 'vector' for d in y.dims[1:]] has_vector_ax = any(vector) if has_vector_ax: vector_ax = vector.index(True) else: vector_ax = None # prepare temporal cropping if (tstart is None) and (tstop is None): y_perm = y self._crop_for_permutation = False self._crop_idx = None else: t_ax = y.get_axis('time') - 1 y_perm = y.sub(time=(tstart, tstop)) # for stat-maps if vector_ax is not None and vector_ax < t_ax: t_ax -= 1 t_slice = y.time._array_index(slice(tstart, tstop)) self._crop_for_permutation = True self._crop_idx = FULL_AXIS_SLICE * t_ax + (t_slice,) dims = list(y_perm.dims[1:]) if has_vector_ax: del dims[vector_ax] # custom connectivity: move non-adjacent connectivity to first axis custom = [d._connectivity_type == 'custom' for d in dims] n_custom = sum(custom) if n_custom > 1: raise NotImplementedError("More than one axis with custom connectivity") nad_ax = None if n_custom == 0 else custom.index(True) if nad_ax: swapped_dims = list(dims) swapped_dims[0], swapped_dims[nad_ax] = dims[nad_ax], dims[0] else: swapped_dims = dims connectivity = Connectivity(swapped_dims, parc) assert connectivity.vector is None # cluster map properties ndim = len(dims) # prepare cluster minimum size criteria if criteria: criteria_ = [] for k, v in criteria.items(): m = re.match('min(\w+)', k) if m: dimname = m.group(1) if not y.has_dim(dimname): raise TypeError( "%r is an invalid keyword argument for this testnd " "function (no dimension named %r)" % (k, dimname)) ax = y.get_axis(dimname) - 1 if dimname == 'time': v = int(ceil(v / y.time.tstep)) else: raise TypeError("%r is an invalid keyword argument for this testnd function" % (k,)) if nad_ax: if ax == 0: ax = nad_ax elif ax == nad_ax: ax = 0 axes = tuple(i for i in range(ndim) if i != ax) criteria_.append((axes, v)) if kind != 'cluster': # here so that invalid keywords raise explicitly err = ("Can not use cluster size criteria when doing " "threshold free cluster evaluation") raise ValueError(err) else: criteria_ = None # prepare distribution samples = int(samples) if parc: for parc_ax, parc_dim in enumerate(swapped_dims): if parc_dim.name == parc: break else: raise ValueError("parc=%r (no dimension named %r)" % (parc, parc)) if parc_dim._connectivity_type == 'none': parc_indexes = np.arange(len(parc_dim)) elif kind == 'tfce': raise NotImplementedError( f"TFCE for parc={parc!r} ({parc_dim.__class__.__name__} dimension)") elif parc_dim._connectivity_type == 'custom': if not hasattr(parc_dim, 'parc'): raise NotImplementedError(f"parc={parc!r}: dimension has no parcellation") parc_indexes = tuple(np.flatnonzero(parc_dim.parc == cell) for cell in parc_dim.parc.cells) parc_dim = Categorial(parc, parc_dim.parc.cells) else: raise NotImplementedError(f"parc={parc!r}") dist_shape = (samples, len(parc_dim)) dist_dims = ('case', parc_dim) max_axes = tuple(chain(range(parc_ax), range(parc_ax + 1, ndim))) else: dist_shape = (samples,) dist_dims = None max_axes = None parc_indexes = None # arguments for the map processor shape = tuple(map(len, swapped_dims)) if kind == 'raw': map_args = (kind, tail, max_axes, parc_indexes) elif kind == 'tfce': dh = 0.1 if tfce is True else tfce map_args = (kind, tail, max_axes, parc_indexes, shape, connectivity, dh) else: map_args = (kind, tail, max_axes, parc_indexes, shape, connectivity, threshold, criteria_) self.kind = kind self.y_perm = y_perm self.dims = tuple(dims) # external stat map dims (cropped time) self.shape = shape # internal stat map shape self._connectivity = connectivity self.samples = samples self.dist_shape = dist_shape self._dist_dims = dist_dims self._max_axes = max_axes self.dist = None self.threshold = threshold self.tfce = tfce self.tail = tail self._nad_ax = nad_ax self._vector_ax = vector_ax self.tstart = tstart self.tstop = tstop self.parc = parc self.meas = meas self.name = name self._criteria = criteria_ self.criteria = criteria self.map_args = map_args self.has_original = False self.do_permutation = False self.dt_perm = None self._finalized = False self._init_time = current_time() self._host = socket.gethostname() self.force_permutation = force_permutation from .. import __version__ self._version = __version__ def _crop(self, im): "Crop an original stat_map" if self._crop_for_permutation: return im[self._crop_idx] else: return im def uncrop( self, ndvar: NDVar, # NDVar to uncrop to: NDVar, # NDVar that has the target time dimensions default: float = 0, # value to fill in uncropped area ): if self.tstart is None and self.tstop is None: return ndvar target_time = to.get_dim('time') t_ax = ndvar.get_axis('time') dims = list(ndvar.dims) dims[t_ax] = target_time shape = list(ndvar.shape) shape[t_ax] = len(target_time) t_slice = target_time._array_index(slice(self.tstart, self.tstop)) x = np.empty(shape, ndvar.x.dtype) x.fill(default) x[FULL_AXIS_SLICE * t_ax + (t_slice,)] = ndvar.x return NDVar(x, dims, ndvar.info, ndvar.name) def add_original(self, stat_map): """Add the original statistical parameter map. Parameters ---------- stat_map : array Parameter map of the statistic of interest (uncropped). """ if self.has_original: raise RuntimeError("Original pmap already added") logger = logging.getLogger(__name__) logger.debug("Adding original parameter map...") # crop/reshape stat_map stat_map = self._crop(stat_map) if self._nad_ax: stat_map = stat_map.swapaxes(0, self._nad_ax) # process map if self.kind == 'tfce': dh = 0.1 if self.tfce is True else self.tfce self.tfce_warning = max(stat_map.max(), -stat_map.min()) < dh cmap = tfce(stat_map, self.tail, self._connectivity, dh) cids = None n_clusters = cmap.max() > 0 elif self.kind == 'cluster': cmap, cids = label_clusters(stat_map, self.threshold, self.tail, self._connectivity, self._criteria) n_clusters = len(cids) # clean original cluster map idx = np.in1d(cmap, cids, invert=True).reshape(self.shape) cmap[idx] = 0 else: cmap = stat_map cids = None n_clusters = True self._t0 = current_time() self._original_cluster_map = cmap self._cids = cids self.n_clusters = n_clusters self.has_original = True self.dt_original = self._t0 - self._init_time self._original_param_map = stat_map if self.force_permutation or (self.samples and n_clusters): self._create_dist() self.do_permutation = True else: self.dist_array = None self.finalize() def _create_dist(self): "Create the distribution container" if CONFIG['n_workers']: n = reduce(operator.mul, self.dist_shape) dist_array = RawArray('d', n) dist = np.frombuffer(dist_array, np.float64, n) dist.shape = self.dist_shape else: dist_array = None dist = np.zeros(self.dist_shape) self.dist_array = dist_array self.dist = dist def _aggregate_dist(self, **sub): """Aggregate permutation distribution to one value per permutation Parameters ---------- [dimname] : index Limit the data for the distribution. Returns ------- dist : array, shape = (samples,) Maximum value for each permutation in the given region. """ dist = self.dist if sub: if self._dist_dims is None: raise TypeError("NDPermutationDistribution does not have parcellation") dist_ = NDVar(dist, self._dist_dims) dist_sub = dist_.sub(**sub) dist = dist_sub.x if dist.ndim > 1: axes = tuple(range(1, dist.ndim)) dist = dist.max(axes) return dist def __repr__(self): items = [] if self.has_original: dt = timedelta(seconds=round(self.dt_original)) items.append("%i clusters (%s)" % (self.n_clusters, dt)) if self.samples > 0 and self.n_clusters > 0: if self.dt_perm is not None: dt = timedelta(seconds=round(self.dt_perm)) items.append("%i permutations (%s)" % (self.samples, dt)) else: items.append("no data") return "<NDPermutationDistribution: %s>" % ', '.join(items) def __getstate__(self): if not self._finalized: raise RuntimeError("Cannot pickle cluster distribution before all " "permutations have been added.") state = { name: getattr(self, name) for name in ( 'name', 'meas', '_version', '_host', '_init_time', # settings ... 'kind', 'threshold', 'tfce', 'tail', 'criteria', 'samples', 'tstart', 'tstop', 'parc', # data properties ... 'dims', 'shape', '_nad_ax', '_vector_ax', '_criteria', '_connectivity', # results ... 'dt_original', 'dt_perm', 'n_clusters', '_dist_dims', 'dist', '_original_param_map', '_original_cluster_map', '_cids', )} state['version'] = 3 return state def __setstate__(self, state): # backwards compatibility version = state.pop('version', 0) if version == 0: if '_connectivity_src' in state: del state['_connectivity_src'] del state['_connectivity_dst'] if '_connectivity' in state: del state['_connectivity'] if 'N' in state: state['samples'] = state.pop('N') if '_version' not in state: state['_version'] = '< 0.11' if '_host' not in state: state['_host'] = 'unknown' if '_init_time' not in state: state['_init_time'] = None if 'parc' not in state: if state['_dist_dims'] is None: state['parc'] = None else: raise OldVersionError("This pickled file is from a previous version of Eelbrain and is not compatible anymore. Please recompute this test.") elif isinstance(state['parc'], tuple): if len(state['parc']) == 0: state['parc'] = None elif len(state['parc']) == 1: state['parc'] = state['parc'][0] else: raise OldVersionError("This pickled file is from a previous version of Eelbrain and is not compatible anymore. Please recompute this test.") nad_ax = state['_nad_ax'] state['dims'] = dims = state['dims'][1:] state['_connectivity'] = Connectivity( (dims[nad_ax],) + dims[:nad_ax] + dims[nad_ax + 1:], state['parc']) if version < 2: state['_vector_ax'] = None if version < 3: state['tfce'] = ['kind'] == 'tfce' for k, v in state.items(): setattr(self, k, v) self.has_original = True self.finalize() def _repr_test_args(self, pmin): "Argument representation for TestResult repr" args = ['samples=%r' % self.samples] if pmin is not None: args.append(f"pmin={pmin!r}") elif self.kind == 'tfce': arg = f"tfce={self.tfce!r}" if self.tfce_warning: arg = f"{arg} [WARNING: The TFCE step is larger than the largest value in the data]" args.append(arg) if self.tstart is not None: args.append(f"tstart={self.tstart!r}") if self.tstop is not None: args.append(f"tstop={self.tstop!r}") for k, v in self.criteria.items(): args.append(f"{k}={v!r}") return args def _repr_clusters(self): info = [] if self.kind == 'cluster': if self.n_clusters == 0: info.append("no clusters") else: info.append("%i clusters" % self.n_clusters) if self.n_clusters and self.samples: info.append(f"{fmtxt.peq(self.probability_map.min())}") return info def _package_ndvar(self, x, info=None, external_shape=False): "Generate NDVar from map with internal shape" if not self.dims: if isinstance(x, np.ndarray): return x.item() return x if not external_shape and self._nad_ax: x = x.swapaxes(0, self._nad_ax) if info is None: info = {} return NDVar(x, self.dims, info, self.name) def finalize(self): "Package results and delete temporary data" if self.dt_perm is None: self.dt_perm = current_time() - self._t0 # original parameter map param_contours = {} if self.kind == 'cluster': if self.tail >= 0: param_contours[self.threshold] = (0.7, 0.7, 0) if self.tail <= 0: param_contours[-self.threshold] = (0.7, 0, 0.7) info = _info.for_stat_map(self.meas, contours=param_contours) self.parameter_map = self._package_ndvar(self._original_param_map, info) # TFCE map if self.kind == 'tfce': self.tfce_map = self._package_ndvar(self._original_cluster_map) else: self.tfce_map = None # cluster map if self.kind == 'cluster': self.cluster_map = self._package_ndvar(self._original_cluster_map) else: self.cluster_map = None self._finalized = True def data_for_permutation(self, raw=True): """Retrieve data flattened for permutation Parameters ---------- raw : bool Return a RawArray and a shape tuple instead of a numpy array. """ # get data in the right shape x = self.y_perm.x if self._vector_ax: x = np.moveaxis(x, self._vector_ax + 1, 1) if self._nad_ax is not None: dst = 1 src = 1 + self._nad_ax if self._vector_ax is not None: dst += 1 if self._vector_ax > self._nad_ax: src += 1 if dst != src: x = x.swapaxes(dst, src) # flat y shape ndims = 1 + (self._vector_ax is not None) n_flat = 1 if x.ndim == ndims else reduce(operator.mul, x.shape[ndims:]) y_flat_shape = x.shape[:ndims] + (n_flat,) if not raw: return x.reshape(y_flat_shape) n = reduce(operator.mul, y_flat_shape) ra = RawArray('d', n) ra[:] = x.ravel() # OPT: don't copy data return ra, y_flat_shape, x.shape[ndims:] def _cluster_properties(self, cluster_map, cids): """Create a Dataset with cluster properties Parameters ---------- cluster_map : NDVar NDVar in which clusters are marked by bearing the same number. cids : array_like of int Numbers specifying the clusters (must occur in cluster_map) which should be analyzed. Returns ------- cluster_properties : Dataset Cluster properties. Which properties are included depends on the dimensions. """ ndim = cluster_map.ndim n_clusters = len(cids) # setup compression compression = [] for ax, dim in enumerate(cluster_map.dims): extents = np.empty((n_clusters, len(dim)), dtype=np.bool_) axes = tuple(i for i in range(ndim) if i != ax) compression.append((ax, dim, axes, extents)) # find extents for all clusters c_mask = np.empty(cluster_map.shape, np.bool_) for i, cid in enumerate(cids): np.equal(cluster_map, cid, c_mask) for ax, dim, axes, extents in compression: np.any(c_mask, axes, extents[i]) # prepare Dataset ds = Dataset() ds['id'] = Var(cids) for ax, dim, axes, extents in compression: properties = dim._cluster_properties(extents) if properties is not None: ds.update(properties) return ds def cluster(self, cluster_id): """Retrieve a specific cluster as NDVar Parameters ---------- cluster_id : int Cluster id. Returns ------- cluster : NDVar NDVar of the cluster, 0 outside the cluster. Notes ----- Clusters only have stable ids for thresholded cluster distributions. """ if self.kind != 'cluster': raise RuntimeError( f'Only cluster-based tests have clusters with stable ids, this ' f'is a {self.kind} distribution. Use the .find_clusters() ' f'method instead with maps=True.') elif cluster_id not in self._cids: raise ValueError(f'No cluster with id {cluster_id!r}') out = self.parameter_map * (self.cluster_map == cluster_id) properties = self._cluster_properties(self.cluster_map, (cluster_id,)) for k in properties: out.info[k] = properties[0, k] return out def clusters(self, pmin=None, maps=True, **sub): """Find significant clusters Parameters ---------- pmin : None | scalar, 1 >= p >= 0 Threshold p-value for clusters (for thresholded cluster tests the default is 1, for others 0.05). maps : bool Include in the output a map of every cluster (can be memory intensive if there are large statistical maps and/or many clusters; default True). [dimname] : index Limit the data for the distribution. Returns ------- ds : Dataset Dataset with information about the clusters. """ if pmin is None: if self.samples > 0 and self.kind != 'cluster': pmin = 0.05 elif self.samples == 0: msg = ("Can not determine p values in distribution without " "permutations.") if self.kind == 'cluster': msg += " Find clusters with pmin=None." raise RuntimeError(msg) if sub: param_map = self.parameter_map.sub(**sub) else: param_map = self.parameter_map if self.kind == 'cluster': if sub: cluster_map = self.cluster_map.sub(**sub) cids = np.setdiff1d(cluster_map.x, [0]) else: cluster_map = self.cluster_map cids = np.array(self._cids) if len(cids): # measure original clusters cluster_v = ndimage.sum(param_map.x, cluster_map.x, cids) # p-values if self.samples: # p-values: "the proportion of random partitions that # resulted in a larger test statistic than the observed # one" (179) dist = self._aggregate_dist(**sub) n_larger = np.sum(dist > np.abs(cluster_v[:, None]), 1) cluster_p = n_larger / self.samples # select clusters if pmin is not None: idx = cluster_p <= pmin cids = cids[idx] cluster_p = cluster_p[idx] cluster_v = cluster_v[idx] # p-value corrected across parc if sub: dist = self._aggregate_dist() n_larger = np.sum(dist > np.abs(cluster_v[:, None]), 1) cluster_p_corr = n_larger / self.samples else: cluster_v = cluster_p = cluster_p_corr = [] ds = self._cluster_properties(cluster_map, cids) ds['v'] = Var(cluster_v) if self.samples: ds['p'] = Var(cluster_p) if sub: ds['p_parc'] = Var(cluster_p_corr) threshold = self.threshold else: p_map = self.compute_probability_map(**sub) bin_map = np.less_equal(p_map.x, pmin) # threshold for maps if maps: values = np.abs(param_map.x)[bin_map] if len(values): threshold = values.min() / 2 else: threshold = 1. # find clusters (reshape to internal shape for labelling) if self._nad_ax: bin_map = bin_map.swapaxes(0, self._nad_ax) if sub: raise NotImplementedError("sub") # need to subset connectivity! c_map, cids = label_clusters_binary(bin_map, self._connectivity) if self._nad_ax: c_map = c_map.swapaxes(0, self._nad_ax) # Dataset with cluster info cluster_map = NDVar(c_map, p_map.dims, {}, "clusters") ds = self._cluster_properties(cluster_map, cids) ds.info['clusters'] = cluster_map min_pos = ndimage.minimum_position(p_map.x, c_map, cids) ds['p'] = Var([p_map.x[pos] for pos in min_pos]) if 'p' in ds: ds['sig'] = star_factor(ds['p']) # expand clusters if maps: shape = (ds.n_cases,) + param_map.shape c_maps = np.empty(shape, dtype=param_map.x.dtype) c_mask = np.empty(param_map.shape, dtype=np.bool_) for i, cid in enumerate(cids): np.equal(cluster_map.x, cid, c_mask) np.multiply(param_map.x, c_mask, c_maps[i]) # package ndvar dims = ('case',) + param_map.dims param_contours = {} if self.tail >= 0: param_contours[threshold] = (0.7, 0.7, 0) if self.tail <= 0: param_contours[-threshold] = (0.7, 0, 0.7) info = _info.for_stat_map(self.meas, contours=param_contours) info['summary_func'] = np.sum ds['cluster'] = NDVar(c_maps, dims, info) else: ds.info['clusters'] = self.cluster_map return ds def find_peaks(self): """Find peaks in a TFCE distribution Returns ------- ds : Dataset Dataset with information about the peaks. """ if self.kind == 'cluster': raise RuntimeError("Not a threshold-free distribution") param_map = self._original_param_map probability_map = self.probability_map.x if self._nad_ax: probability_map = probability_map.swapaxes(0, self._nad_ax) peaks = find_peaks(self._original_cluster_map, self._connectivity) peak_map, peak_ids = label_clusters_binary(peaks, self._connectivity) ds = Dataset() ds['id'] = Var(peak_ids) v = ds.add_empty_var('v') if self.samples: p = ds.add_empty_var('p') bin_buff = np.empty(peak_map.shape, np.bool8) for i, id_ in enumerate(peak_ids): idx = np.equal(peak_map, id_, bin_buff) v[i] = param_map[idx][0] if self.samples: p[i] = probability_map[idx][0] return ds def compute_probability_map(self, **sub): """Compute a probability map Parameters ---------- [dimname] : index Limit the data for the distribution. Returns ------- probability : NDVar Map of p-values. """ if not self.samples: raise RuntimeError("Can't compute probability without permutations") if self.kind == 'cluster': cpmap = np.ones(self.shape) if self.n_clusters: cids = self._cids dist = self._aggregate_dist(**sub) cluster_map = self._original_cluster_map param_map = self._original_param_map # measure clusters cluster_v = ndimage.sum(param_map, cluster_map, cids) # p-values: "the proportion of random partitions that resulted # in a larger test statistic than the observed one" (179) n_larger = np.sum(dist >= np.abs(cluster_v[:, None]), 1) cluster_p = n_larger / self.samples c_mask = np.empty(self.shape, dtype=np.bool8) for i, cid in enumerate(cids): np.equal(cluster_map, cid, c_mask) cpmap[c_mask] = cluster_p[i] # revert to original shape if self._nad_ax: cpmap = cpmap.swapaxes(0, self._nad_ax) dims = self.dims else: if self.kind == 'tfce': stat_map = self.tfce_map else: if self.tail == 0: stat_map = self.parameter_map.abs() elif self.tail < 0: stat_map = -self.parameter_map else: stat_map = self.parameter_map if sub: stat_map = stat_map.sub(**sub) dims = stat_map.dims if isinstance(stat_map, NDVar) else None cpmap = np.zeros(stat_map.shape) if dims else 0. if self.dist is None: # flat stat-map cpmap += 1 else: dist = self._aggregate_dist(**sub) idx = np.empty(stat_map.shape, dtype=np.bool8) actual = stat_map.x if self.dims else stat_map for v in dist: cpmap += np.greater_equal(v, actual, idx) cpmap /= self.samples if dims: return NDVar(cpmap, dims, _info.for_cluster_pmap(), self.name) else: return cpmap def masked_parameter_map(self, pmin=0.05, name=None, **sub): """Parameter map masked by significance Parameters ---------- pmin : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. Returns ------- masked_map : NDVar NDVar with data from the original parameter map, masked with p <= pmin. """ if not 1 >= pmin > 0: raise ValueError(f"pmin={pmin}: needs to be between 1 and 0") if name is None: name = self.parameter_map.name if sub: param_map = self.parameter_map.sub(**sub) else: param_map = self.parameter_map if pmin == 1: if self.kind != 'cluster': raise ValueError(f"pmin=1 is only a valid mask for threshold-based cluster tests") mask = self.cluster_map == 0 else: probability_map = self.compute_probability_map(**sub) mask = probability_map > pmin return param_map.mask(mask, name) @LazyProperty def probability_map(self): if self.samples: return self.compute_probability_map() else: return None @LazyProperty def _default_plot_obj(self): if self.samples: return [[self.parameter_map, self.probability_map]] else: return [[self.parameter_map]] def info_list(self, title="Computation Info"): "List with information on computation" l = fmtxt.List(title) l.add_item("Eelbrain version: %s" % self._version) l.add_item("Host Computer: %s" % self._host) if self._init_time is not None: l.add_item("Created: %s" % datetime.fromtimestamp(self._init_time) .strftime('%y-%m-%d %H:%M')) l.add_item("Original time: %s" % timedelta(seconds=round(self.dt_original))) l.add_item("Permutation time: %s" % timedelta(seconds=round(self.dt_perm))) return l class _MergedTemporalClusterDist: """Merge permutation distributions from multiple tests""" def __init__(self, cdists): if isinstance(cdists[0], list): self.effects = [d.name for d in cdists[0]] self.samples = cdists[0][0].samples dist = {} for i, effect in enumerate(self.effects): if any(d[i].n_clusters for d in cdists): dist[effect] = np.column_stack([d[i].dist for d in cdists if d[i].dist is not None]) if len(dist): dist = {c: d.max(1) for c, d in dist.items()} else: self.samples = cdists[0].samples if any(d.n_clusters for d in cdists): dist = np.column_stack([d.dist for d in cdists if d.dist is not None]) dist = dist.max(1) else: dist = None self.dist = dist def correct_cluster_p(self, res): clusters = res.find_clusters() keys = list(clusters.keys()) if not clusters.n_cases: return clusters if isinstance(res, MultiEffectNDTest): keys.insert(-1, 'p_parc') cluster_p_corr = [] for cl in clusters.itercases(): n_larger = np.sum(self.dist[cl['effect']] > np.abs(cl['v'])) cluster_p_corr.append(float(n_larger) / self.samples) else: keys.append('p_parc') vs = np.array(clusters['v']) n_larger = np.sum(self.dist > np.abs(vs[:, None]), 1) cluster_p_corr = n_larger / self.samples clusters['p_parc'] = Var(cluster_p_corr) clusters = clusters[keys] return clusters def distribution_worker(dist_array, dist_shape, in_queue, kill_beacon): "Worker that accumulates values and places them into the distribution" n = reduce(operator.mul, dist_shape) dist =
np.frombuffer(dist_array, np.float64, n)
numpy.frombuffer
r"""Compute action detection performance for the AVA dataset. Please send any questions about this code to the Google Group ava-dataset-users: https://groups.google.com/forum/#!forum/ava-dataset-users Example usage: python -O get_ava_performance.py \ -l ava/ava_action_list_v2.1_for_activitynet_2018.pbtxt.txt \ -g ava_val_v2.1.csv \ -e ava_val_excluded_timestamps_v2.1.csv \ -d your_results.csv """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from collections import defaultdict import csv import logging import pprint import sys import time import numpy as np import matplotlib.pyplot as plt import seaborn as sns from ava import object_detection_evaluation from ava import standard_fields def print_time(message, start): logging.info("==> %g seconds to %s", time.time() - start, message) def make_image_key(video_id, timestamp): """Returns a unique identifier for a video id & timestamp.""" return "%s,%04d" % (video_id, int(timestamp)) def read_csv(csv_file, class_whitelist=None): """Loads boxes and class labels from a CSV file in the AVA format. CSV file format described at https://research.google.com/ava/download.html. Args: csv_file: A file object. class_whitelist: If provided, boxes corresponding to (integer) class labels not in this set are skipped. Returns: boxes: A dictionary mapping each unique image key (string) to a list of boxes, given as coordinates [y1, x1, y2, x2]. labels: A dictionary mapping each unique image key (string) to a list of integer class lables, matching the corresponding box in `boxes`. scores: A dictionary mapping each unique image key (string) to a list of score values lables, matching the corresponding label in `labels`. If scores are not provided in the csv, then they will default to 1.0. """ start = time.time() boxes = defaultdict(list) labels = defaultdict(list) scores = defaultdict(list) reader = csv.reader(csv_file) for row in reader: assert len(row) in [7, 8], "Wrong number of columns: " + row image_key = make_image_key(row[0], row[1]) x1, y1, x2, y2 = [float(n) for n in row[2:6]] action_id = int(row[6]) if class_whitelist and action_id not in class_whitelist: continue score = 1.0 if len(row) == 8: score = float(row[7]) boxes[image_key].append([y1, x1, y2, x2]) labels[image_key].append(action_id) scores[image_key].append(score) print_time("read file " + csv_file.name, start) return boxes, labels, scores def read_exclusions(exclusions_file): """Reads a CSV file of excluded timestamps. Args: exclusions_file: A file object containing a csv of video-id,timestamp. Returns: A set of strings containing excluded image keys, e.g. "aaaaaaaaaaa,0904", or an empty set if exclusions file is None. """ excluded = set() if exclusions_file: reader = csv.reader(exclusions_file) for row in reader: assert len(row) == 2, "Expected only 2 columns, got: " + row excluded.add(make_image_key(row[0], row[1])) return excluded def read_labelmap(labelmap_file): """Reads a labelmap without the dependency on protocol buffers. Args: labelmap_file: A file object containing a label map protocol buffer. Returns: labelmap: The label map in the form used by the object_detection_evaluation module - a list of {"id": integer, "name": classname } dicts. class_ids: A set containing all of the valid class id integers. """ labelmap = [] class_ids = set() name = "" class_id = "" for line in labelmap_file: if line.startswith(" name:"): name = line.split('"')[1] elif line.startswith(" id:") or line.startswith(" label_id:"): class_id = int(line.strip().split(" ")[-1]) labelmap.append({"id": class_id, "name": name}) class_ids.add(class_id) return labelmap, class_ids def split_list(alist, wanted_parts=1): length = len(alist) return [alist[i * length // wanted_parts: (i + 1) * length // wanted_parts] for i in range(wanted_parts)] def split_interleave(A): lists = split_list(A, wanted_parts=4) D = [val for tup in zip(*lists) for val in tup] return D def run_evaluation_threshold(labelmap, groundtruth, exclusions, iou): # sns.palplot(sns.diverging_palette(128, 240, n=10)) # seq_col_brew = sns.color_palette("Blues_r", 4) # For sequential, blue gradient in reverse # Qualitative data palette # current_palette = sns.color_palette("Paired") # sns.set_palette(current_palette) # Make sure not to mess this up filters = [] filters.append("0.1") filters.append("0.2") filters.append("0.3") filters.append("0.4") filters.append("0.5") filters.append("0.6") filters.append("0.7") filters.append("0.8") filters.append("0.9") root_dir = '../../../data/AVA/files/' ftype = "fusion" all_detections = [] ts = "1809281055" for f in filters: all_detections.append(open("../thresholds/context_" + ftype + "/predictions_fusion_avg_fovea_" + ts + "_" + f + ".csv", 'rb')) all_gndtruths = [] for i in range(len(filters)): all_gndtruths.append(open(root_dir + "AVA_Val_Custom_Corrected.csv", 'rb')) #all_gndtruths.append(open("AVA_Test_Custom_Corrected.csv", 'rb')) #all_gndtruths.append(open("AVA_Test_Custom_Corrected.csv", 'rb')) """Runs evaluations given input files. Args: labelmap: file object containing map of labels to consider, in pbtxt format groundtruth: file object detections: file object exclusions: file object or None. """ categories, class_whitelist = read_labelmap(labelmap) logging.info("CATEGORIES (%d):\n%s", len(categories), pprint.pformat(categories, indent=2)) excluded_keys = read_exclusions(exclusions) # Reads detections data. x_axis = [] xpose_ax = [] xobj_ax = [] xhuman_ax = [] ypose_ax = [] yobj_ax = [] yhuman_ax = [] colors_pose = [] colors_obj = [] colors_human = [] finalmAPs = [] colors = [] maxY = -1.0 for detections, gndtruth, filter_type in zip(all_detections, all_gndtruths, filters): pascal_evaluator = None metrics = None actions = None start = 0 pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator( categories, matching_iou_threshold=iou) # Reads the ground truth data. boxes, labels, _ = read_csv(gndtruth, class_whitelist) start = time.time() for image_key in boxes: if image_key in excluded_keys: logging.info(("Found excluded timestamp in ground truth: %s. " "It will be ignored."), image_key) continue pascal_evaluator.add_single_ground_truth_image_info( image_key, { standard_fields.InputDataFields.groundtruth_boxes: np.array(boxes[image_key], dtype=float), standard_fields.InputDataFields.groundtruth_classes: np.array(labels[image_key], dtype=int), standard_fields.InputDataFields.groundtruth_difficult: np.zeros(len(boxes[image_key]), dtype=bool) }) print_time("convert groundtruth", start) # Run evaluation boxes, labels, scores = read_csv(detections, class_whitelist) start = time.time() for image_key in boxes: if image_key in excluded_keys: logging.info(("Found excluded timestamp in detections: %s. " "It will be ignored."), image_key) continue pascal_evaluator.add_single_detected_image_info( image_key, { standard_fields.DetectionResultFields.detection_boxes: np.array(boxes[image_key], dtype=float), standard_fields.DetectionResultFields.detection_classes: np.array(labels[image_key], dtype=int), standard_fields.DetectionResultFields.detection_scores: np.array(scores[image_key], dtype=float) }) print_time("convert detections", start) start = time.time() metrics = pascal_evaluator.evaluate() print_time("run_evaluator", start) # TODO Show a pretty histogram here besides pprint actions = list(metrics.keys()) final_value = 0.0 for m in actions: ms = m.split("/")[-1] if ms == 'mAP@' + str(iou) + 'IOU': final_value = metrics[m] finalmAPs.append(final_value) else: # x_axis.append(ms) # y_axis.append(metrics[m]) for cat in categories: if cat['name'].split("/")[-1] == ms: if maxY < metrics[m]: maxY = metrics[m] if cat['id'] <= 10: xpose_ax.append("(" + filter_type + ") " + ms) ypose_ax.append(metrics[m]) colors_pose.append('red') elif cat['id'] <= 22: xobj_ax.append("(" + filter_type + ") " + ms) yobj_ax.append(metrics[m]) colors_obj.append('blue') else: xhuman_ax.append("(" + filter_type + ") " + ms) yhuman_ax.append(metrics[m]) colors_human.append('green') # Make a confusion matrix for this run pascal_evaluator = None x_axis = split_interleave(xpose_ax) + split_interleave(xobj_ax) + split_interleave(xhuman_ax) y_axis = split_interleave(ypose_ax) + split_interleave(yobj_ax) + split_interleave(yhuman_ax) colors = split_interleave(colors_pose) + split_interleave(colors_obj) + split_interleave(colors_human) print(filters) print(finalmAPs) plt.ylabel('frame-mAP') top = 0.1 # offset a bit so it looks good sns.set_style("whitegrid") clrs = ['blue' if (x < max(finalmAPs)) else 'red' for x in finalmAPs] g = sns.barplot(filters, finalmAPs, palette=clrs) ax = g # annotate axis = seaborn axis for p in ax.patches: ax.annotate("%.4f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', fontsize=10, color='gray', rotation=90, xytext=(0, 20), textcoords='offset points') _ = g.set_ylim(0, top) # To make space for the annotations plt.show() def run_evaluation(labelmap, groundtruth, exclusions, iou): root_dir = '../../../data/AVA/files/' test_dir = "../test_outputs/" # Make sure not to mess this up experiments_filters = {} experiments_detections = {} experiments_filters['pose'] = ['Pose'] experiments_detections['pose'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb')] experiments_filters['rgb-streams-aug'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['rgb-streams-aug'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['flow vs flowcrop'] = ['Flow', 'Flowcrop'] experiments_detections['flow vs flowcrop'] = [open(test_dir + "/flow/output_test_flowcrop.csv", 'rb'), ] #all_detections.append(open(test_dir + "/flow/output_test_flow.csv", 'rb')) experiments_filters['two-streams'] = ['Two-Stream-RGB', 'Two-Stream-Crop', 'Two-Stream-Gauss', 'Two-Stream-Fovea'] experiments_detections['two-streams'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['two-streams-aug'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['two-streams-aug'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['mlp vs lstm'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['mlp vs lstm'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['lstmA vs lstmB'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['lstmA vs lstmB'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['context-fusion mlp vs lstm'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['context-fusion mlp vs lstm'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['balancing sampling'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['balancing sampling'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['balancing weights'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['balancing weights'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['balancing prior'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['balancing prior'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] # experiment = filters = [] # filters.append("pose") # filters.append("rgb-base") # filters.append("rgb-prior") # filters.append("rgb-sampling") # filters.append("rgb-weights") # filters.append("rgb-kinetics") # filters.append("flow-kinetics") # filters.append("rgb") # filters.append("crop") # filters.append("gauss") # filters.append("fovea") # filters.append("flowcrop") # filters.append("flow") # filters.append("MLP") #filters.append("best case scenario thresh 0.1") #filters.append("two pass scenario thresh 0.1") filters.append("fovea") filters.append("dense-gt") #filters.append("sampling no aug") filters.append("dense-2pass") #filters.append("weights no aug") # filters.append("LSTM5-A-512") # filters.append("random") # filters.append("LSTM5-B-512") # filters.append("LSTM10") # filters.append("2st(rgb)") # filters.append("2st(crop)") # filters.append("2st(gauss)") # filters.append("2st(fovea)") #filters.append("2st(crop) + flowcrop") #filters.append("2st(gauss) + flowcrop") #filters.append("2st(fovea) + flowcrop") #filters.append("2st(fovea) + mlp") #filters.append("2st(crop) + mlp") #filters.append("2st(gauss) + mlp") # filters.append("2stream") #filters.append("2stream + lstm (extra pass)") # filters.append("gauss") #filters.append("gauss aug") #filters.append("LSTMA 512 5 2") #filters.append("LSTMA 512 5 3") #filters.append("LSTMA 512 5 3") #filters.append("LSTMA 1024 5 3") #filters.append("LSTMA 2048 5 3") #filters.append("LSTMB 512 3 3") #filters.append("LSTMB 1024 3 3") #filters.append("LSTMB 2048 3 3") # filters.append("2st(gauss) + lstm") all_detections = [] #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_1024_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_2048_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_3_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_1024_3_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_2048_3_3.csv", 'rb')) # Pose # all_detections.append(open(test_dir + "output_test_flowcrop.csv", 'rb')) # Balancing #all_detections.append(open(test_dir + "output_test_flowcrop.csv", 'rb')) #all_detections.append(open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb')) #all_detections.append(open(test_dir + "/augmentation/predictions_rgb_gauss_1807241628_1000.csv", 'rb')) #all_detections.append(open(test_dir + "/augmentation/output_test_sampling_gauss_1809221859.csv", 'rb')) #all_detections.append(open(test_dir + "/augmentation/output_test_weights_gauss_1809221904.csv", 'rb')) # RGB Streams #all_detections.append(open(test_dir + "/kinetics_init/output_test_rgb_kineticsinit_gauss_1809220212.csv", 'rb')) #all_detections.append(open(test_dir + "/kinetics_init/output_test_flow_kineticsinit_1809220244.csv", 'rb')) # Flow Streams # Context (LSTMs) #filters.append("LSTMB 512 3 3") #filters.append("LSTMB 512 3 2") #filters.append("LSTMB 512 3 1") #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_3_1.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_3_2.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_3_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_1.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_2.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_32_3_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_32_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_32_10_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/mlp/output_test_ctx.csv", 'rb')) #all_detections.append(open(test_dir + "context/mlp/output_test_ctx_mlp_1809212356.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_3_1809220010.csv", 'rb')) #all_detections.append(open(test_dir + "random/output_test_random_1809221552.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_5_3_1809211924.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_128_10_3_1809211930.csv", 'rb')) # 6 2-streams + baseline #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_rgb_1809220100.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_crop.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_gauss.csv", 'rb')) all_detections.append(open(test_dir + "/two-streams/output_test_2stream_fovea.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_crop_1809220117.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_gauss_1809220152.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_fovea_1809220136.csv", 'rb')) # Context Fusions # all_detections.append(open(test_dir + "/context_fusion/output_test_3stream_fovea.csv", 'rb')) # all_detections.append(open(test_dir + "/context_fusion/output_test_3stream_crop.csv", 'rb')) # all_detections.append(open(test_dir + "/context_fusion/output_test_3stream_gauss.csv", 'rb')) all_detections.append(open(test_dir + "/context_fusion/output_test_LSTM_FCfusion_contextGT_gauss_1810011737.csv", 'rb')) all_detections.append(open(test_dir + "/context_fusion/output_test_LSTM_FCfusion_context_secondpass_gauss_1810011754.csv", 'rb')) # LSTMs #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_rgb_1809220100.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_crop.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_gauss.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_fovea.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstm_fusion_thresh_512_5_3_1809242315.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstm_512_5_3_1809242252.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstmavggoodpedro_512_5_3_1809242338.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstmavg_twophase_thresh02_512_5_3_1809281219.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstmavg_threephase_512_5_3_1809281317.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstm_fusion_thresh01_512_5_3_1809281400.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstmavg_twophase_thresh01_512_5_3_1809281423.csv", 'rb')) #all_detections.append(open(test_dir + "rgb_gauss/output_test_gauss.csv", 'rb')) #all_detections.append(open(test_dir + "augmentation/output_test_sampling_gauss_1809221859.csv", 'rb')) #all_detections.append(open(test_dir + "augmentation/output_test_samplingnoaug_gauss_1809281439.csv", 'rb')) #all_detections.append(open(test_dir + "augmentation/output_test_weightsnew_gauss_1809291104.csv", 'rb')) #all_detections.append(open(test_dir + "augmentation/output_test_weightsaug_gauss_1809261228.csv", 'rb')) # output_test_ctx_lstm_512_5_3_1809242252.csv #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_crop_1809220117.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_gauss_1809220152.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_fovea_1809220136.csv", 'rb')) # --------------------------------- # New run to compare new flow #all_detections.append(open(test_dir + "/flow/output_test_flowcrop.csv", 'rb')) #all_detections.append(open(test_dir + "/flow/output_test_flow.csv", 'rb')) # New 2 and 3 streams # all_detections.append(open(test_dir + "output_test_gauss.csv", 'rb')) # all_detections.append(open(test_dir + "output_test_gauss_extra.csv", 'rb')) # all_detections.append(open(test_dir + "output_test_3stream_gauss.csv", 'rb')) # all_detections.append(open(test_dir + "output_test_3stream_crop.csv", 'rb')) # Flow, context, 2-stream, 3-stream run #all_detections.append(open(test_dir + "output_test_ctx.csv", 'rb')) #all_detections.append(open(test_dir + "output_test_flow.csv", 'rb')) #all_detections.append(open(test_dir + "output_test_2stream.csv", 'rb')) #all_detections.append(open(test_dir + "output_test_3stream.csv", 'rb')) # RGB run # all_detections.append(open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb')) # all_detections.append(open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb')) # all_detections.append(open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb')) # all_detections.append(open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')) balancing = False all_gndtruths = [] for i in range(len(all_detections)): if balancing is False: all_gndtruths.append(open(root_dir + "AVA_Test_Custom_Corrected.csv", 'rb')) else: all_gndtruths.append(open(root_dir + "AVA_Test_Custom_Corrected_Balanced.csv", 'rb')) """Runs evaluations given input files. Args: labelmap: file object containing map of labels to consider, in pbtxt format groundtruth: file object detections: file object exclusions: file object or None. """ categories, class_whitelist = read_labelmap(labelmap) logging.info("CATEGORIES (%d):\n%s", len(categories), pprint.pformat(categories, indent=2)) excluded_keys = read_exclusions(exclusions) # Reads detections data. x_axis = [] xpose_ax = [] xobj_ax = [] xhuman_ax = [] ypose_ax = [] yobj_ax = [] yhuman_ax = [] colors_pose = [] colors_obj = [] colors_human = [] finalmAPs = [] colors = [] maxY = -1.0 for detections, gndtruth, filter_type in zip(all_detections, all_gndtruths, filters): pascal_evaluator = None metrics = None actions = None start = 0 pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator( categories, matching_iou_threshold=iou) # Reads the ground truth data. boxes, labels, _ = read_csv(gndtruth, class_whitelist) start = time.time() for image_key in boxes: if image_key in excluded_keys: logging.info(("Found excluded timestamp in ground truth: %s. " "It will be ignored."), image_key) continue pascal_evaluator.add_single_ground_truth_image_info( image_key, { standard_fields.InputDataFields.groundtruth_boxes:
np.array(boxes[image_key], dtype=float)
numpy.array
# Copyright (c) 2014, <NAME>. # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np from scipy.special import wofz from .kern import Kern from ...core.parameterization import Param from ...core.parameterization.transformations import Logexp from ...util.caching import Cache_this class EQ_ODE2(Kern): """ Covariance function for second order differential equation driven by an exponentiated quadratic covariance. This outputs of this kernel have the form .. math:: \frac{\text{d}^2y_j(t)}{\text{d}^2t} + C_j\frac{\text{d}y_j(t)}{\text{d}t} + B_jy_j(t) = \sum_{i=1}^R w_{j,i} u_i(t) where :math:`R` is the rank of the system, :math:`w_{j,i}` is the sensitivity of the :math:`j`th output to the :math:`i`th latent function, :math:`d_j` is the decay rate of the :math:`j`th output and :math:`f_i(t)` and :math:`g_i(t)` are independent latent Gaussian processes goverened by an exponentiated quadratic covariance. :param output_dim: number of outputs driven by latent function. :type output_dim: int :param W: sensitivities of each output to the latent driving function. :type W: ndarray (output_dim x rank). :param rank: If rank is greater than 1 then there are assumed to be a total of rank latent forces independently driving the system, each with identical covariance. :type rank: int :param C: damper constant for the second order system. :type C: array of length output_dim. :param B: spring constant for the second order system. :type B: array of length output_dim. """ #This code will only work for the sparseGP model, due to limitations in models for this kernel def __init__(self, input_dim=2, output_dim=1, rank=1, W=None, lengthscale=None, C=None, B=None, active_dims=None, name='eq_ode2'): #input_dim should be 1, but kern._slice_X is not returning index information required to evaluate kernels assert input_dim == 2, "only defined for 1 input dims" super(EQ_ODE2, self).__init__(input_dim=input_dim, active_dims=active_dims, name=name) self.rank = rank self.output_dim = output_dim if lengthscale is None: lengthscale = .5+np.random.rand(self.rank) else: lengthscale = np.asarray(lengthscale) assert lengthscale.size in [1, self.rank], "Bad number of lengthscales" if lengthscale.size != self.rank: lengthscale = np.ones(self.input_dim)*lengthscale if W is None: #W = 0.5*np.random.randn(self.output_dim, self.rank)/np.sqrt(self.rank) W = np.ones((self.output_dim, self.rank)) else: assert W.shape == (self.output_dim, self.rank) if C is None: C = np.ones(self.output_dim) if B is None: B = np.ones(self.output_dim) self.C = Param('C', C, Logexp()) self.B = Param('B', B, Logexp()) self.lengthscale = Param('lengthscale', lengthscale, Logexp()) self.W = Param('W', W) self.link_parameters(self.lengthscale, self.C, self.B, self.W) @Cache_this(limit=2) def K(self, X, X2=None): #This way is not working, indexes are lost after using k._slice_X #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values index = np.int_(X[:, 1]) index = index.reshape(index.size,) X_flag = index[0] >= self.output_dim if X2 is None: if X_flag: #Calculate covariance function for the latent functions index -= self.output_dim return self._Kuu(X, index) else: raise NotImplementedError else: #This way is not working, indexes are lost after using k._slice_X #index2 = np.asarray(X2, dtype=np.int) #index2 = index2.reshape(index2.size,) if hasattr(X2, 'values'): X2 = X2.values index2 = np.int_(X2[:, 1]) index2 = index2.reshape(index2.size,) X2_flag = index2[0] >= self.output_dim #Calculate cross-covariance function if not X_flag and X2_flag: index2 -= self.output_dim return self._Kfu(X, index, X2, index2) #Kfu else: index -= self.output_dim return self._Kfu(X2, index2, X, index).T #Kuf #Calculate the covariance function for diag(Kff(X,X)) def Kdiag(self, X): #This way is not working, indexes are lost after using k._slice_X #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values index = np.int_(X[:, 1]) index = index.reshape(index.size,) #terms that move along t t = X[:, 0].reshape(X.shape[0], 1) d = np.unique(index) #Output Indexes B = self.B.values[d] C = self.C.values[d] S = self.W.values[d, :] #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B B = B.reshape(B.size, 1) C = C.reshape(C.size, 1) alpha = .5*C C2 = C*C wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) #Terms that move along q lq = self.lengthscale.values.reshape(1, self.lengthscale.size) S2 = S*S kdiag = np.empty((t.size, )) indD = np.arange(B.size) #(1) When wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] d = np.asarray(np.where(np.logical_not(wbool))[0]) #Selection of outputs indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(.5*lq) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] w2 = w*w gam = alphad + 1j*w gamc = alphad - 1j*w c1 = .5/(alphad*w2) c2 = .5/(gam*w2) c = c1 - c2 #DxQ terms nu = lq*(gam*.5) K01 = c0*c #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) ec = egamt*c2[ind] - np.exp(gamct)*c1[ind] #NxQ terms t_lq = t1/lq # Upsilon Calculations # Using wofz wnu = wofz(1j*nu) lwnu = np.log(wnu) t2_lq2 = -t_lq*t_lq upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])))) upm[t1[:, 0] == 0, :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upv[t1[:, 0] == 0, :] = 0. #Covariance calculation kdiag[ind3t] = np.sum(np.real(K01[ind]*upm), axis=1) kdiag[ind3t] += np.sum(np.real((c0[ind]*ec)*upv), axis=1) #(2) When w_d is complex if np.any(wbool): t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(lq*.25) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(C2[d] - 4.*B[d]) alphad = alpha[d] gam = alphad - w gamc = alphad + w w2 = -w*w c1 = .5/(alphad*w2) c21 = .5/(gam*w2) c22 = .5/(gamc*w2) c = c1 - c21 c2 = c1 - c22 #DxQ terms K011 = c0*c K012 = c0*c2 nu = lq*(.5*gam) nuc = lq*(.5*gamc) #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) egamct = np.exp(gamct) ec = egamt*c21[ind] - egamct*c1[ind] ec2 = egamct*c22[ind] - egamt*c1[ind] #NxQ terms t_lq = t1/lq #Upsilon Calculations using wofz t2_lq2 = -t_lq*t_lq #Required when using wofz wnu = wofz(1j*nu).real lwnu = np.log(wnu) upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])).real)) upm[t1[:, 0] == 0., :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upv[t1[:, 0] == 0, :] = 0. wnuc = wofz(1j*nuc).real lwnuc = np.log(wnuc) upmc = wnuc[ind] - np.exp(t2_lq2 + gamct + np.log(wofz(1j*(t_lq + nuc[ind])).real)) upmc[t1[:, 0] == 0., :] = 0. nuc2 = nuc*nuc z1 = nuc[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upvc = - np.exp(lwnuc[ind] + gamct) if indv1[0].shape > 0: upvc[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upvc[indv2] += np.exp(nuc2[ind[indv2[0]], indv2[1]] + gamct[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upvc[t1[:, 0] == 0, :] = 0. #Covariance calculation kdiag[ind2t] = np.sum(K011[ind]*upm + K012[ind]*upmc + (c0[ind]*ec)*upv + (c0[ind]*ec2)*upvc, axis=1) return kdiag def update_gradients_full(self, dL_dK, X, X2 = None): #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values self.B.gradient = np.zeros(self.B.shape) self.C.gradient = np.zeros(self.C.shape) self.W.gradient = np.zeros(self.W.shape) self.lengthscale.gradient = np.zeros(self.lengthscale.shape) index = np.int_(X[:, 1]) index = index.reshape(index.size,) X_flag = index[0] >= self.output_dim if X2 is None: if X_flag: #Kuu or Kmm index -= self.output_dim tmp = dL_dK*self._gkuu_lq(X, index) for q in np.unique(index): ind = np.where(index == q) self.lengthscale.gradient[q] = tmp[np.ix_(ind[0], ind[0])].sum() else: raise NotImplementedError else: #Kfu or Knm #index2 = np.asarray(X2, dtype=np.int) #index2 = index2.reshape(index2.size,) if hasattr(X2, 'values'): X2 = X2.values index2 = np.int_(X2[:, 1]) index2 = index2.reshape(index2.size,) X2_flag = index2[0] >= self.output_dim if not X_flag and X2_flag: index2 -= self.output_dim else: dL_dK = dL_dK.T #so we obtaing dL_Kfu indtemp = index - self.output_dim Xtemp = X X = X2 X2 = Xtemp index = index2 index2 = indtemp glq, gSdq, gB, gC = self._gkfu(X, index, X2, index2) tmp = dL_dK*glq for q in np.unique(index2): ind = np.where(index2 == q) self.lengthscale.gradient[q] = tmp[:, ind].sum() tmpB = dL_dK*gB tmpC = dL_dK*gC tmp = dL_dK*gSdq for d in np.unique(index): ind = np.where(index == d) self.B.gradient[d] = tmpB[ind, :].sum() self.C.gradient[d] = tmpC[ind, :].sum() for q in np.unique(index2): ind2 = np.where(index2 == q) self.W.gradient[d, q] = tmp[np.ix_(ind[0], ind2[0])].sum() def update_gradients_diag(self, dL_dKdiag, X): #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values self.B.gradient = np.zeros(self.B.shape) self.C.gradient = np.zeros(self.C.shape) self.W.gradient = np.zeros(self.W.shape) self.lengthscale.gradient = np.zeros(self.lengthscale.shape) index = np.int_(X[:, 1]) index = index.reshape(index.size,) glq, gS, gB, gC = self._gkdiag(X, index) tmp = dL_dKdiag.reshape(index.size, 1)*glq self.lengthscale.gradient = tmp.sum(0) #TODO: Avoid the reshape by a priori knowing the shape of dL_dKdiag tmpB = dL_dKdiag*gB.reshape(dL_dKdiag.shape) tmpC = dL_dKdiag*gC.reshape(dL_dKdiag.shape) tmp = dL_dKdiag.reshape(index.size, 1)*gS for d in np.unique(index): ind = np.where(index == d) self.B.gradient[d] = tmpB[ind].sum() self.C.gradient[d] = tmpC[ind].sum() self.W.gradient[d, :] = tmp[ind].sum(0) def gradients_X(self, dL_dK, X, X2=None): #index = np.asarray(X, dtype=np.int) #index = index.reshape(index.size,) if hasattr(X, 'values'): X = X.values index = np.int_(X[:, 1]) index = index.reshape(index.size,) X_flag = index[0] >= self.output_dim #If input_dim == 1, use this #gX = np.zeros((X.shape[0], 1)) #Cheat to allow gradient for input_dim==2 gX = np.zeros(X.shape) if X2 is None: #Kuu or Kmm if X_flag: index -= self.output_dim gX[:, 0] = 2.*(dL_dK*self._gkuu_X(X, index)).sum(0) return gX else: raise NotImplementedError else: #Kuf or Kmn #index2 = np.asarray(X2, dtype=np.int) #index2 = index2.reshape(index2.size,) if hasattr(X2, 'values'): X2 = X2.values index2 = np.int_(X2[:, 1]) index2 = index2.reshape(index2.size,) X2_flag = index2[0] >= self.output_dim if X_flag and not X2_flag: #gradient of Kuf(Z, X) wrt Z index -= self.output_dim gX[:, 0] = (dL_dK*self._gkfu_z(X2, index2, X, index).T).sum(1) return gX else: raise NotImplementedError #---------------------------------------# # Helper functions # #---------------------------------------# #Evaluation of squared exponential for LFM def _Kuu(self, X, index): index = index.reshape(index.size,) t = X[:, 0].reshape(X.shape[0],) lq = self.lengthscale.values.reshape(self.rank,) lq2 = lq*lq #Covariance matrix initialization kuu = np.zeros((t.size, t.size)) #Assign 1. to diagonal terms kuu[np.diag_indices(t.size)] = 1. #Upper triangular indices indtri1, indtri2 = np.triu_indices(t.size, 1) #Block Diagonal indices among Upper Triangular indices ind = np.where(index[indtri1] == index[indtri2]) indr = indtri1[ind] indc = indtri2[ind] r = t[indr] - t[indc] r2 = r*r #Calculation of covariance function kuu[indr, indc] = np.exp(-r2/lq2[index[indr]]) #Completation of lower triangular part kuu[indc, indr] = kuu[indr, indc] return kuu #Evaluation of cross-covariance function def _Kfu(self, X, index, X2, index2): #terms that move along t t = X[:, 0].reshape(X.shape[0], 1) d = np.unique(index) #Output Indexes B = self.B.values[d] C = self.C.values[d] S = self.W.values[d, :] #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B #Output related variables must be column-wise C = C.reshape(C.size, 1) B = B.reshape(B.size, 1) C2 = C*C #Input related variables must be row-wise z = X2[:, 0].reshape(1, X2.shape[0]) lq = self.lengthscale.values.reshape((1, self.rank)) #print np.max(z), np.max(z/lq[0, index2]) alpha = .5*C wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) kfu = np.empty((t.size, z.size)) indD = np.arange(B.size) #(1) when wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] #Index transformation d = np.asarray(np.where(np.logical_not(wbool))[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] gam = alphad - 1j*w #DxQ terms Slq = (S[d]/w)*(.5*lq) c0 = Slq*np.sqrt(np.pi) nu = gam*(.5*lq) #1xM terms z_lq = z/lq[0, index2] #NxQ terms t_lq = t1/lq #NxM terms zt_lq = z_lq - t_lq[:, index2] # Upsilon Calculations #Using wofz tz = t1-z fullind = np.ix_(ind, index2) zt_lq2 = -zt_lq*zt_lq z_lq2 = -z_lq*z_lq gamt = -gam[ind]*t1 upsi = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])))) z1 = zt_lq + nu[fullind] indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upsi[t1[:, 0] == 0., :] = 0. #Covariance calculation kfu[ind3t] = c0[fullind]*upsi.imag #(2) when wd is complex if np.any(wbool): #Indexes of index and t related to (2) t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(C2[d] - 4.*B[d]) alphad = alpha[d] gam = alphad - w gamc = alphad + w #DxQ terms Slq = S[d]*(lq*.25) c0 = -Slq*(np.sqrt(np.pi)/w) nu = gam*(lq*.5) nuc = gamc*(lq*.5) #1xM terms z_lq = z/lq[0, index2] #NxQ terms t_lq = t1/lq[0, index2] #NxM terms zt_lq = z_lq - t_lq # Upsilon Calculations tz = t1-z z_lq2 = -z_lq*z_lq zt_lq2 = -zt_lq*zt_lq gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 fullind = np.ix_(ind, index2) upsi = np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])).real))\ - np.exp(z_lq2 + gamct + np.log(wofz(1j*(z_lq + nuc[fullind])).real)) z1 = zt_lq + nu[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi[indv1] -= np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] -= np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) z1 = zt_lq + nuc[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nuac2 = nuc[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nuac2 - gamc[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upsi[t1[:, 0] == 0., :] = 0. kfu[ind2t] = c0[np.ix_(ind, index2)]*upsi return kfu #Gradient of Kuu wrt lengthscale def _gkuu_lq(self, X, index): t = X[:, 0].reshape(X.shape[0],) index = index.reshape(X.shape[0],) lq = self.lengthscale.values.reshape(self.rank,) lq2 = lq*lq #Covariance matrix initialization glq = np.zeros((t.size, t.size)) #Upper triangular indices indtri1, indtri2 = np.triu_indices(t.size, 1) #Block Diagonal indices among Upper Triangular indices ind = np.where(index[indtri1] == index[indtri2]) indr = indtri1[ind] indc = indtri2[ind] r = t[indr] - t[indc] r2 = r*r r2_lq2 = r2/lq2[index[indr]] #Calculation of covariance function er2_lq2 = np.exp(-r2_lq2) #Gradient wrt lq c = 2.*r2_lq2/lq[index[indr]] glq[indr, indc] = er2_lq2*c #Complete the lower triangular glq[indc, indr] = glq[indr, indc] return glq #Be careful this derivative should be transpose it def _gkuu_X(self, X, index): #Diagonal terms are always zero t = X[:, 0].reshape(X.shape[0],) index = index.reshape(index.size,) lq = self.lengthscale.values.reshape(self.rank,) lq2 = lq*lq #Covariance matrix initialization gt = np.zeros((t.size, t.size)) #Upper triangular indices indtri1, indtri2 = np.triu_indices(t.size, 1) #Offset of 1 from the diagonal #Block Diagonal indices among Upper Triangular indices ind = np.where(index[indtri1] == index[indtri2]) indr = indtri1[ind] indc = indtri2[ind] r = t[indr] - t[indc] r2 = r*r r2_lq2 = r2/(-lq2[index[indr]]) #Calculation of covariance function er2_lq2 = np.exp(r2_lq2) #Gradient wrt t c = 2.*r/lq2[index[indr]] gt[indr, indc] = er2_lq2*c #Complete the lower triangular gt[indc, indr] = -gt[indr, indc] return gt #Gradients for Diagonal Kff def _gkdiag(self, X, index): index = index.reshape(index.size,) #terms that move along t d = np.unique(index) B = self.B[d].values C = self.C[d].values S = self.W[d, :].values #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B #Output related variables must be column-wise t = X[:, 0].reshape(X.shape[0], 1) B = B.reshape(B.size, 1) C = C.reshape(C.size, 1) alpha = .5*C C2 = C*C S2 = S*S wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) #Input related variables must be row-wise lq = self.lengthscale.values.reshape(1, self.rank) lq2 = lq*lq gB = np.empty((t.size,)) gC = np.empty((t.size,)) glq = np.empty((t.size, lq.size)) gS = np.empty((t.size, lq.size)) indD = np.arange(B.size) #(1) When wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (1) t1 = t[ind3t] ind = index[ind3t] #Index transformation d = np.asarray(np.where(np.logical_not(wbool))[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(.5*lq) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] alpha2 = alphad*alphad w2 = w*w gam = alphad + 1j*w gam2 = gam*gam gamc = alphad - 1j*w c1 = 0.5/alphad c2 = 0.5/gam c = c1 - c2 #DxQ terms c0 = c0/w2 nu = (.5*lq)*gam #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) egamct = np.exp(gamct) ec = egamt*c2[ind] - egamct*c1[ind] #NxQ terms t_lq = t1/lq t2_lq2 = -t_lq*t_lq t_lq2 = t_lq/lq et2_lq2 = np.exp(t2_lq2) etlq2gamt = np.exp(t2_lq2 + gamt) ##Upsilon calculations #Using wofz wnu = wofz(1j*nu) lwnu = np.log(wnu) t2_lq2 = -t_lq*t_lq upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])))) upm[t1[:, 0] == 0, :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.))\ - np.exp(t2_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upv[t1[:, 0] == 0, :] = 0. #Gradient wrt S Slq = S[d]*lq #For grad wrt S c0_S = Slq*np.sqrt(np.pi)/w2 K01 = c0_S*c gS[ind3t] = np.real(K01[ind]*upm) + np.real((c0_S[ind]*ec)*upv) #For B and C upmd = etlq2gamt - 1. upvd = egamt - et2_lq2 # gradient wrt B dw_dB = 0.5/w dgam_dB = 1j*dw_dB Ba1 = c0*(0.5*dgam_dB/gam2 + (0.5*lq2*gam*dgam_dB - 2.*dw_dB/w)*c) Ba2_1 = c0*(dgam_dB*(0.5/gam2 - 0.25*lq2) + dw_dB/(w*gam)) Ba2_2 = c0*dgam_dB/gam Ba3 = c0*(-0.25*lq2*gam*dgam_dB/alphad + dw_dB/(w*alphad)) Ba4_1 = (S2lq*lq)*dgam_dB/w2 Ba4 = Ba4_1*c gB[ind3t] = np.sum(np.real(Ba1[ind]*upm) - np.real(((Ba2_1[ind] + Ba2_2[ind]*t1)*egamt - Ba3[ind]*egamct)*upv)\ + np.real(Ba4[ind]*upmd) + np.real((Ba4_1[ind]*ec)*upvd), axis=1) # gradient wrt C dw_dC = - alphad*dw_dB dgam_dC = 0.5 + 1j*dw_dC Ca1 = c0*(-0.25/alpha2 + 0.5*dgam_dC/gam2 + (0.5*lq2*gam*dgam_dC - 2.*dw_dC/w)*c) Ca2_1 = c0*(dgam_dC*(0.5/gam2 - 0.25*lq2) + dw_dC/(w*gam)) Ca2_2 = c0*dgam_dC/gam Ca3_1 = c0*(0.25/alpha2 - 0.25*lq2*gam*dgam_dC/alphad + dw_dC/(w*alphad)) Ca3_2 = 0.5*c0/alphad Ca4_1 = (S2lq*lq)*dgam_dC/w2 Ca4 = Ca4_1*c gC[ind3t] = np.sum(np.real(Ca1[ind]*upm) - np.real(((Ca2_1[ind] + Ca2_2[ind]*t1)*egamt - (Ca3_1[ind] + Ca3_2[ind]*t1)*egamct)*upv)\ + np.real(Ca4[ind]*upmd) + np.real((Ca4_1[ind]*ec)*upvd), axis=1) #Gradient wrt lengthscale #DxQ terms la = (1./lq + nu*gam)*c0 la1 = la*c c0l = (S2[d]/w2)*lq la3 = c0l*c gam_2 = .5*gam glq[ind3t] = (la1[ind]*upm).real + ((la[ind]*ec)*upv).real\ + (la3[ind]*(-gam_2[ind] + etlq2gamt*(-t_lq2 + gam_2[ind]))).real\ + ((c0l[ind]*ec)*(-et2_lq2*(t_lq2 + gam_2[ind]) + egamt*gam_2[ind])).real #(2) When w_d is complex if np.any(wbool): t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms S2lq = S2[d]*(.25*lq) c0 = S2lq*np.sqrt(np.pi) w = .5*np.sqrt(C2[d]-4.*B[d]) w2 = -w*w alphad = alpha[d] alpha2 = alphad*alphad gam = alphad - w gamc = alphad + w gam2 = gam*gam gamc2 = gamc*gamc c1 = .5/alphad c21 = .5/gam c22 = .5/gamc c = c1 - c21 c2 = c1 - c22 #DxQ terms c0 = c0/w2 nu = .5*lq*gam nuc = .5*lq*gamc #Nx1 terms gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 egamt = np.exp(gamt) egamct = np.exp(gamct) ec = egamt*c21[ind] - egamct*c1[ind] ec2 = egamct*c22[ind] - egamt*c1[ind] #NxQ terms t_lq = t1/lq t2_lq2 = -t_lq*t_lq et2_lq2 = np.exp(t2_lq2) etlq2gamct = np.exp(t2_lq2 + gamct) etlq2gamt = np.exp(t2_lq2 + gamt) #Upsilon Calculations using wofz t2_lq2 = -t_lq*t_lq #Required when using wofz wnu = np.real(wofz(1j*nu)) lwnu = np.log(wnu) upm = wnu[ind] - np.exp(t2_lq2 + gamt + np.log(wofz(1j*(t_lq + nu[ind])).real)) upm[t1[:, 0] == 0., :] = 0. nu2 = nu*nu z1 = nu[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upv = -np.exp(lwnu[ind] + gamt) if indv1[0].shape > 0: upv[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upv[indv2] += np.exp(nu2[ind[indv2[0]], indv2[1]] + gamt[indv2[0], 0] + np.log(2.)) - np.exp(t2_lq2[indv2]\ + np.log(wofz(-1j*z1[indv2]).real)) upv[t1[:, 0] == 0, :] = 0. wnuc = wofz(1j*nuc).real upmc = wnuc[ind] - np.exp(t2_lq2 + gamct + np.log(wofz(1j*(t_lq + nuc[ind])).real)) upmc[t1[:, 0] == 0., :] = 0. lwnuc = np.log(wnuc) nuc2 = nuc*nuc z1 = nuc[ind] - t_lq indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) upvc = -np.exp(lwnuc[ind] + gamct) if indv1[0].shape > 0: upvc[indv1] += np.exp(t2_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: upvc[indv2] += np.exp(nuc2[ind[indv2[0]], indv2[1]] + gamct[indv2[0], 0] + np.log(2.)) - np.exp(t2_lq2[indv2]\ + np.log(wofz(-1j*z1[indv2]).real)) upvc[t1[:, 0] == 0, :] = 0. #Gradient wrt S #NxQ terms c0_S = (S[d]/w2)*(lq*(np.sqrt(np.pi)*.5)) K011 = c0_S*c K012 = c0_S*c2 gS[ind2t] = K011[ind]*upm + K012[ind]*upmc + (c0_S[ind]*ec)*upv + (c0_S[ind]*ec2)*upvc #Is required to cache this, C gradient also required them upmd = -1. + etlq2gamt upvd = -et2_lq2 + egamt upmdc = -1. + etlq2gamct upvdc = -et2_lq2 + egamct # Gradient wrt B dgam_dB = 0.5/w dgamc_dB = -dgam_dB Ba1 = c0*(0.5*dgam_dB/gam2 + (0.5*lq2*gam*dgam_dB - 1./w2)*c) Ba3 = c0*(-0.25*lq2*gam*dgam_dB/alphad + 0.5/(w2*alphad)) Ba4_1 = (S2lq*lq)*dgam_dB/w2 Ba4 = Ba4_1*c Ba2_1 = c0*(dgam_dB*(0.5/gam2 - 0.25*lq2) + 0.5/(w2*gam)) Ba2_2 = c0*dgam_dB/gam Ba1c = c0*(0.5*dgamc_dB/gamc2 + (0.5*lq2*gamc*dgamc_dB - 1./w2)*c2) Ba3c = c0*(-0.25*lq2*gamc*dgamc_dB/alphad + 0.5/(w2*alphad)) Ba4_1c = (S2lq*lq)*dgamc_dB/w2 Ba4c = Ba4_1c*c2 Ba2_1c = c0*(dgamc_dB*(0.5/gamc2 - 0.25*lq2) + 0.5/(w2*gamc)) Ba2_2c = c0*dgamc_dB/gamc gB[ind2t] = np.sum(Ba1[ind]*upm - ((Ba2_1[ind] + Ba2_2[ind]*t1)*egamt - Ba3[ind]*egamct)*upv\ + Ba4[ind]*upmd + (Ba4_1[ind]*ec)*upvd\ + Ba1c[ind]*upmc - ((Ba2_1c[ind] + Ba2_2c[ind]*t1)*egamct - Ba3c[ind]*egamt)*upvc\ + Ba4c[ind]*upmdc + (Ba4_1c[ind]*ec2)*upvdc, axis=1) ##Gradient wrt C dw_dC = 0.5*alphad/w dgam_dC = 0.5 - dw_dC dgamc_dC = 0.5 + dw_dC S2lq2 = S2lq*lq Ca1 = c0*(-0.25/alpha2 + 0.5*dgam_dC/gam2 + (0.5*lq2*gam*dgam_dC + alphad/w2)*c) Ca2_1 = c0*(dgam_dC*(0.5/gam2 - 0.25*lq2) - 0.5*alphad/(w2*gam)) Ca2_2 = c0*dgam_dC/gam Ca3_1 = c0*(0.25/alpha2 - 0.25*lq2*gam*dgam_dC/alphad - 0.5/w2) Ca3_2 = 0.5*c0/alphad Ca4_1 = S2lq2*(dgam_dC/w2) Ca4 = Ca4_1*c Ca1c = c0*(-0.25/alpha2 + 0.5*dgamc_dC/gamc2 + (0.5*lq2*gamc*dgamc_dC + alphad/w2)*c2) Ca2_1c = c0*(dgamc_dC*(0.5/gamc2 - 0.25*lq2) - 0.5*alphad/(w2*gamc)) Ca2_2c = c0*dgamc_dC/gamc Ca3_1c = c0*(0.25/alpha2 - 0.25*lq2*gamc*dgamc_dC/alphad - 0.5/w2) Ca3_2c = 0.5*c0/alphad Ca4_1c = S2lq2*(dgamc_dC/w2) Ca4c = Ca4_1c*c2 gC[ind2t] = np.sum(Ca1[ind]*upm - ((Ca2_1[ind] + Ca2_2[ind]*t1)*egamt - (Ca3_1[ind] + Ca3_2[ind]*t1)*egamct)*upv\ + Ca4[ind]*upmd + (Ca4_1[ind]*ec)*upvd\ + Ca1c[ind]*upmc - ((Ca2_1c[ind] + Ca2_2c[ind]*t1)*egamct - (Ca3_1c[ind] + Ca3_2c[ind]*t1)*egamt)*upvc\ + Ca4c[ind]*upmdc + (Ca4_1c[ind]*ec2)*upvdc, axis=1) #Gradient wrt lengthscale #DxQ terms la = (1./lq + nu*gam)*c0 lac = (1./lq + nuc*gamc)*c0 la1 = la*c la1c = lac*c2 t_lq2 = t_lq/lq c0l = (S2[d]/w2)*(.5*lq) la3 = c0l*c la3c = c0l*c2 gam_2 = .5*gam gamc_2 = .5*gamc glq[ind2t] = la1c[ind]*upmc + (lac[ind]*ec2)*upvc\ + la3c[ind]*(-gamc_2[ind] + etlq2gamct*(-t_lq2 + gamc_2[ind]))\ + (c0l[ind]*ec2)*(-et2_lq2*(t_lq2 + gamc_2[ind]) + egamct*gamc_2[ind])\ + la1[ind]*upm + (la[ind]*ec)*upv\ + la3[ind]*(-gam_2[ind] + etlq2gamt*(-t_lq2 + gam_2[ind]))\ + (c0l[ind]*ec)*(-et2_lq2*(t_lq2 + gam_2[ind]) + egamt*gam_2[ind]) return glq, gS, gB, gC def _gkfu(self, X, index, Z, index2): index = index.reshape(index.size,) #TODO: reduce memory usage #terms that move along t d = np.unique(index) B = self.B[d].values C = self.C[d].values S = self.W[d, :].values #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B #t column t = X[:, 0].reshape(X.shape[0], 1) C = C.reshape(C.size, 1) B = B.reshape(B.size, 1) C2 = C*C #z row z = Z[:, 0].reshape(1, Z.shape[0]) index2 = index2.reshape(index2.size,) lq = self.lengthscale.values.reshape((1, self.rank)) lq2 = lq*lq alpha = .5*C wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) #kfu = np.empty((t.size, z.size)) glq = np.empty((t.size, z.size)) gSdq = np.empty((t.size, z.size)) gB = np.empty((t.size, z.size)) gC = np.empty((t.size, z.size)) indD = np.arange(B.size) #(1) when wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] #Index transformation d = np.asarray(np.where(np.logical_not(wbool))[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] gam = alphad - 1j*w gam_2 = .5*gam S_w = S[d]/w S_wpi = S_w*(.5*np.sqrt(np.pi)) #DxQ terms c0 = S_wpi*lq #lq*Sdq*sqrt(pi)/(2w) nu = gam*lq nu2 = 1.+.5*(nu*nu) nu *= .5 #1xM terms z_lq = z/lq[0, index2] z_lq2 = -z_lq*z_lq #NxQ terms t_lq = t1/lq #DxM terms gamt = -gam[ind]*t1 #NxM terms zt_lq = z_lq - t_lq[:, index2] zt_lq2 = -zt_lq*zt_lq ezt_lq2 = -np.exp(zt_lq2) ezgamt = np.exp(z_lq2 + gamt) # Upsilon calculations fullind = np.ix_(ind, index2) upsi = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])))) tz = t1-z z1 = zt_lq + nu[fullind] indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upsi[t1[:, 0] == 0., :] = 0. #Gradient wrt S #DxQ term Sa1 = lq*(.5*np.sqrt(np.pi))/w gSdq[ind3t] = Sa1[np.ix_(ind, index2)]*upsi.imag #Gradient wrt lq la1 = S_wpi*nu2 la2 = S_w*lq uplq = ezt_lq2*(gam_2[ind]) uplq += ezgamt*(-z_lq/lq[0, index2] + gam_2[ind]) glq[ind3t] = (la1[np.ix_(ind, index2)]*upsi).imag glq[ind3t] += la2[np.ix_(ind, index2)]*uplq.imag #Gradient wrt B #Dx1 terms dw_dB = .5/w dgam_dB = -1j*dw_dB #DxQ terms Ba1 = -c0*dw_dB/w #DXQ Ba2 = c0*dgam_dB #DxQ Ba3 = lq2*gam_2 #DxQ Ba4 = (dgam_dB*S_w)*(.5*lq2) #DxQ gB[ind3t] = ((Ba1[np.ix_(ind, index2)] + Ba2[np.ix_(ind, index2)]*(Ba3[np.ix_(ind, index2)] - (t1-z)))*upsi).imag\ + (Ba4[np.ix_(ind, index2)]*(ezt_lq2 + ezgamt)).imag #Gradient wrt C (it uses some calculations performed in B) #Dx1 terms dw_dC = -.5*alphad/w dgam_dC = 0.5 - 1j*dw_dC #DxQ terms Ca1 = -c0*dw_dC/w #DXQ Ca2 = c0*dgam_dC #DxQ Ca4 = (dgam_dC*S_w)*(.5*lq2) #DxQ gC[ind3t] = ((Ca1[np.ix_(ind, index2)] + Ca2[np.ix_(ind, index2)]*(Ba3[np.ix_(ind, index2)] - (t1-z)))*upsi).imag\ + (Ca4[np.ix_(ind, index2)]*(ezt_lq2 + ezgamt)).imag #(2) when wd is complex if np.any(wbool): #Indexes of index and t related to (2) t1 = t[ind2t] ind = index[ind2t] #Index transformation d = np.asarray(np.where(wbool)[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(C2[d] - 4.*B[d]) w2 = w*w alphad = alpha[d] gam = alphad - w gamc = alphad + w #DxQ terms S_w= -S[d]/w #minus is given by j*j S_wpi = S_w*(.25*np.sqrt(np.pi)) c0 = S_wpi*lq gam_2 = .5*gam gamc_2 = .5*gamc nu = gam*lq nuc = gamc*lq nu2 = 1.+.5*(nu*nu) nuc2 = 1.+.5*(nuc*nuc) nu *= .5 nuc *= .5 #1xM terms z_lq = z/lq[0, index2] z_lq2 = -z_lq*z_lq #Nx1 gamt = -gam[ind]*t1 gamct = -gamc[ind]*t1 #NxQ terms t_lq = t1/lq[0, index2] #NxM terms zt_lq = z_lq - t_lq zt_lq2 = -zt_lq*zt_lq ezt_lq2 = -np.exp(zt_lq2) ezgamt = np.exp(z_lq2 + gamt) ezgamct = np.exp(z_lq2 + gamct) # Upsilon calculations fullind = np.ix_(ind, index2) upsi1 = - np.exp(z_lq2 + gamct + np.log(wofz(1j*(z_lq + nuc[fullind])).real)) tz = t1-z z1 = zt_lq + nuc[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi1[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nuac2 = nuc[ind[indv2[0]], index2[indv2[1]]]**2 upsi1[indv2] += np.exp(nuac2 - gamc[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upsi1[t1[:, 0] == 0., :] = 0. upsi2 = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])).real)) z1 = zt_lq + nu[fullind] indv1 = np.where(z1 >= 0.) indv2 = np.where(z1 < 0.) if indv1[0].shape > 0: upsi2[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]).real)) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi2[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]).real)) upsi2[t1[:, 0] == 0., :] = 0. #Gradient wrt lq la1 = S_wpi*nu2 la1c = S_wpi*nuc2 la2 = S_w*(.5*lq) uplq = ezt_lq2*(gamc_2[ind]) + ezgamct*(-z_lq/lq[0, index2] + gamc_2[ind])\ - ezt_lq2*(gam_2[ind]) - ezgamt*(-z_lq/lq[0, index2] + gam_2[ind]) glq[ind2t] = la1c[np.ix_(ind, index2)]*upsi1 - la1[np.ix_(ind, index2)]*upsi2\ + la2[np.ix_(ind, index2)]*uplq #Gradient wrt S Sa1 = (lq*(-.25*np.sqrt(np.pi)))/w gSdq[ind2t] = Sa1[np.ix_(ind, index2)]*(upsi1 - upsi2) #Gradient wrt B #Dx1 terms dgam_dB = .5/w dgamc_dB = -dgam_dB #DxQ terms Ba1 = .5*(c0/w2) Ba2 = c0*dgam_dB Ba3 = lq2*gam_2 Ba4 = (dgam_dB*S_w)*(.25*lq2) Ba2c = c0*dgamc_dB Ba3c = lq2*gamc_2 Ba4c = (dgamc_dB*S_w)*(.25*lq2) gB[ind2t] = (Ba1[np.ix_(ind, index2)] + Ba2c[np.ix_(ind, index2)]*(Ba3c[np.ix_(ind, index2)] - (t1-z)))*upsi1\ + Ba4c[np.ix_(ind, index2)]*(ezt_lq2 + ezgamct)\ - (Ba1[np.ix_(ind, index2)] + Ba2[np.ix_(ind, index2)]*(Ba3[np.ix_(ind, index2)] - (t1-z)))*upsi2\ - Ba4[np.ix_(ind, index2)]*(ezt_lq2 + ezgamt) #Gradient wrt C #Dx1 terms dgam_dC = 0.5 - .5*(alphad/w) dgamc_dC = 0.5 + .5*(alphad/w) #DxQ terms Ca1 = -c0*(.5*alphad/w2) Ca2 = c0*dgam_dC Ca4 = (dgam_dC*S_w)*(.25*lq2) Ca2c = c0*dgamc_dC Ca4c = (dgamc_dC*S_w)*(.25*lq2) gC[ind2t] = (Ca1[np.ix_(ind, index2)] + Ca2c[np.ix_(ind, index2)]*(Ba3c[np.ix_(ind, index2)] - (t1-z)))*upsi1\ + Ca4c[np.ix_(ind, index2)]*(ezt_lq2 + ezgamct)\ - (Ca1[np.ix_(ind, index2)] + Ca2[np.ix_(ind, index2)]*(Ba3[np.ix_(ind, index2)] - (t1-z)))*upsi2\ - Ca4[np.ix_(ind, index2)]*(ezt_lq2 + ezgamt) return glq, gSdq, gB, gC #TODO: reduce memory usage def _gkfu_z(self, X, index, Z, index2): #Kfu(t,z) index = index.reshape(index.size,) #terms that move along t d = np.unique(index) B = self.B[d].values C = self.C[d].values S = self.W[d, :].values #Index transformation indd = np.arange(self.output_dim) indd[d] = np.arange(d.size) index = indd[index] #Check where wd becomes complex wbool = C*C >= 4.*B wbool2 = wbool[index] ind2t = np.where(wbool2) ind3t = np.where(np.logical_not(wbool2)) #t column t = X[:, 0].reshape(X.shape[0], 1) C = C.reshape(C.size, 1) B = B.reshape(B.size, 1) C2 = C*C alpha = .5*C #z row z = Z[:, 0].reshape(1, Z.shape[0]) index2 = index2.reshape(index2.size,) lq = self.lengthscale.values.reshape((1, self.rank)) #kfu = np.empty((t.size, z.size)) gz = np.empty((t.size, z.size)) indD = np.arange(B.size) #(1) when wd is real if np.any(np.logical_not(wbool)): #Indexes of index and t related to (2) t1 = t[ind3t] ind = index[ind3t] #TODO: Find a better way of doing this #Index transformation d = np.asarray(np.where(np.logical_not(wbool))[0]) indd = indD.copy() indd[d] = np.arange(d.size) ind = indd[ind] #Dx1 terms w = .5*np.sqrt(4.*B[d] - C2[d]) alphad = alpha[d] gam = alphad - 1j*w S_w = S[d]/w S_wpi =S_w*(.5*np.sqrt(np.pi)) #DxQ terms c0 = S_wpi*lq #lq*Sdq*sqrt(pi)/(2w) nu = (.5*gam)*lq #1xM terms z_lq = z/lq[0, index2] z_lq2 = -z_lq*z_lq #NxQ terms t_lq = t1/lq #DxM terms gamt = -gam[ind]*t1 #NxM terms zt_lq = z_lq - t_lq[:, index2] zt_lq2 = -zt_lq*zt_lq #ezt_lq2 = -np.exp(zt_lq2) ezgamt = np.exp(z_lq2 + gamt) # Upsilon calculations fullind = np.ix_(ind, index2) upsi = - np.exp(z_lq2 + gamt + np.log(wofz(1j*(z_lq + nu[fullind])))) tz = t1-z z1 = zt_lq + nu[fullind] indv1 = np.where(z1.real >= 0.) indv2 = np.where(z1.real < 0.) if indv1[0].shape > 0: upsi[indv1] += np.exp(zt_lq2[indv1] + np.log(wofz(1j*z1[indv1]))) if indv2[0].shape > 0: nua2 = nu[ind[indv2[0]], index2[indv2[1]]]**2 upsi[indv2] += np.exp(nua2 - gam[ind[indv2[0]], 0]*tz[indv2] + np.log(2.))\ - np.exp(zt_lq2[indv2] + np.log(wofz(-1j*z1[indv2]))) upsi[t1[:, 0] == 0., :] = 0. #Gradient wrt z za1 = c0*gam #za2 = S_w gz[ind3t] = (za1[np.ix_(ind, index2)]*upsi).imag + S_w[np.ix_(ind, index2)]*ezgamt.imag #(2) when wd is complex if
np.any(wbool)
numpy.any
import numpy as np import argparse # TODO: need to be changed when changing dataset parser = argparse.ArgumentParser() parser.add_argument("--label_count", default='../lookup/label_frequency.npy', type=str) parser.add_argument("--lookup_table_loc", default='../lookup/b_500/', type=str) parser.add_argument('--num_hash_table', type=int, default=4, help="number of hash tables") parser.add_argument('--R', type=int, default=500, help="hash table size") parser.add_argument('--seed', type=int, default=101, help='random seed (default: 101)') args = parser.parse_args() nhash = args.num_hash_table R = args.R label_count = np.load(args.label_count) lookup_tables = [] for i in range(nhash): lookup_tables += [np.load(args.lookup_table_loc+'bucket_order_'+str(i)+'.npy')] lookup_tables = np.stack(lookup_tables) bucket_count = np.zeros((nhash, R)) for i in range(R): for j in range(nhash): bucket_count[j, i] =
np.sum(label_count[lookup_tables[j]==i])
numpy.sum
import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch from matplotlib import rc from data_management import load_dataset from find_adversarial import err_measure_l2, grid_attack # ----- load configuration ----- import config # isort:skip import config_robustness as cfg_rob # isort:skip from config_robustness import methods # isort:skip # ------ general setup ---------- device = cfg_rob.device save_path = os.path.join(config.RESULTS_PATH, "attacks") save_results = os.path.join(save_path, "example_S6_adv.pkl") do_plot = True save_plot = True # ----- data prep ----- X_test, C_test, Y_test = [ tmp.unsqueeze(-2).to(device) for tmp in load_dataset(config.set_params["path"], subset="test") ] # ----- attack setup ----- # select samples sample = 6 it_init = 200 keep_init = 100 # select range relative noise noise_min = 1e-3 noise_max = 0.06 noise_steps = 50 noise_rel_grid = torch.tensor( np.logspace(np.log10(noise_min),
np.log10(noise_max)
numpy.log10
#!/usr/bin/env python # -*- coding: utf-8 -*- # # @Author: <NAME> (<EMAIL>) # @Filename: tiledb.py # @License: BSD 3-clause (http://www.opensource.org/licenses/BSD-3-Clause) import itertools import astropy import cycler import matplotlib.pyplot as plt import numpy from matplotlib import animation import lvmsurveysim.target from lvmsurveysim.schedule.tiledb import TileDB from lvmsurveysim.schedule.scheduler import Scheduler from lvmsurveysim.schedule.plan import ObservingPlan from lvmsurveysim import IFU, config from lvmsurveysim.schedule.plan import ObservingPlan from lvmsurveysim.utils.plot import __MOLLWEIDE_ORIGIN__, get_axes, transform_patch_mollweide, convert_to_mollweide numpy.seterr(invalid='raise') __all__ = ['Simulator'] class Simulator(object): """Simulates an observing schedule for a list of targets (tile database) following and observing plan. Parameters ---------- tiledb : ~lvmsurveysim.schedule.tiledb.TileDB The `~lvmsurveysim.schedule.tiledb.TileDB` instance with the table of tiles to schedule. observing_plan : l`.ObservingPlan` or None The `.ObservingPlan` to use (one for each observatory). If `None`, it will be created from the ``observing_plan`` section in the configuration file. Contains dates and sun/moon data for the duration of the survey as well as Observatory data. ifu : ~lvmsurveysim.ifu.IFU The `~lvmsurveysim.ifu.IFU` to use. Defaults to the one from the configuration file. Used only for plotting the survey footprint. Attributes ---------- tiledb : ~lvmsurveysim.schedule.tiledb.TileDB Instance of the tile database to observe. schedule : ~astropy.table.Table An astropy table with the results of the scheduling. Includes information about the JD of each observation, the target observed, the index of the pointing in the target tiling, coordinates, etc. """ def __init__(self, tiledb, observing_plan=None, ifu=None): assert isinstance(tiledb, lvmsurveysim.schedule.tiledb.TileDB), \ 'tiledb must be a lvmsurveysim.schedule.tiledb.TileDB instances.' # get rid of the special tiles, we do not need them for the simulator tdb = tiledb.tile_table tiledb.tile_table = tdb[numpy.where(tdb['TileID'] >= tiledb.tileid_start)[0]] if observing_plan is None: observing_plan = self._create_observing_plan() assert isinstance(observing_plan, ObservingPlan), 'observing_plan is not an instance of ObservingPlan.' self.zenith_avoidance = config['scheduler']['zenith_avoidance'] self.time_step = config['scheduler']['timestep'] self.observing_plan = observing_plan self.tiledb = tiledb self.targets = tiledb.targets self.ifu = ifu or IFU.from_config() self.schedule = None def __repr__(self): return (f'<Simulator (observing_plan={self.observing_plan.observatory.name}, ' f'tiles={len(self.tiledb.tile_table)})>') def save(self, path, overwrite=False): """ Saves the results of the scheduling simulation to a FITS file. """ assert isinstance(self.schedule, astropy.table.Table), \ 'cannot save empty schedule. Execute Scheduler.run() first.' targfile = str(self.targets.filename) if self.targets.filename != None else 'NA' self.schedule.meta['targfile'] = targfile self.schedule.write(path+'.fits', format='fits', overwrite=overwrite) @classmethod def load(cls, path, tiledb=None, observing_plan=None): """Creates a new instance from a schedule file. Parameters ---------- path : str or ~pathlib.Path The path to the schedule file and the basename, no extension. The routine expects to find path.fits and path.npy tiledb : ~lvmsurveysim.schedule.tiledb.TileDB or path-like Instance of the tile database to observe. observing_plan : `.ObservingPlan` or None The `.ObservingPlan` to use (one for each observatory). """ schedule = astropy.table.Table.read(path+'.fits') if not isinstance(tiledb, lvmsurveysim.schedule.tiledb.TileDB): assert tiledb != None and tiledb != 'NA', \ 'invalid or unavailable tiledb file path.' tiledb = TileDB.load(tiledb) observing_plan = observing_plan or [] sim = cls(tiledb, observing_plan=observing_plan) sim.schedule = schedule return sim def run(self, progress_bar=True): """Schedules the pointings for the whole survey defined in the observing plan. Parameters ---------- progress_bar : bool If `True`, shows a progress bar. """ # Make self.schedule a list so that we can add rows. Later we'll make # this an Astropy Table. self.schedule = [] plan = self.observing_plan # Instance of the Scheduler scheduler = Scheduler(plan) # observed exposure time for each pointing observed = numpy.zeros(len(self.tiledb.tile_table), dtype=numpy.float) # range of dates for the survey min_date = numpy.min(plan['JD']) max_date = numpy.max(plan['JD']) dates = range(min_date, max_date + 1) if progress_bar: generator = astropy.utils.console.ProgressBar(dates) else: generator = dates for jd in generator: if progress_bar is False: print(f'scheduling JD={jd}.') # Skips JDs not found in the plan or those that don't have good weather. if jd not in plan['JD'] or plan[plan['JD'] == jd]['is_clear'][0] == 0: continue observed += self.schedule_one_night(jd, scheduler, observed) # Convert schedule to Astropy Table. self.schedule = astropy.table.Table( rows=self.schedule, names=['JD', 'observatory', 'target', 'group', 'tileid', 'index', 'ra', 'dec', 'pa', 'airmass', 'lunation', 'shadow_height', "moon_dist", 'lst', 'exptime', 'totaltime'], dtype=[float, 'S10', 'S20', 'S20', int, int, float, float, float, float, float, float, float, float, float, float]) def schedule_one_night(self, jd, scheduler, observed): """Schedules a single night at a single observatory. This method is not intended to be called directly. Instead, use `.run`. Parameters ---------- jd : int The Julian Date to schedule. Must be included in ``plan``. scheduler : .Scheduler The Scheduler instance that will determine the observing sequence. observed : ~numpy.array An array of the length of the tiledb that records the observing time accumulated on each tile thus far Returns ------- exposure_times : `~numpy.ndarray` Array with the exposure times in seconds added to each tile during this night. """ # initialize the scheduler for the night scheduler.prepare_for_night(jd, self.observing_plan, self.tiledb) # shortcut tdb = self.tiledb.tile_table # begin at twilight current_jd = scheduler.evening_twi # While the current time is before morning twilight ... while current_jd < scheduler.morning_twi: # obtain the next tile to observe observed_idx, current_lst, hz, alt, lunation = scheduler.get_optimal_tile(current_jd, observed) if observed_idx == -1: # nothing available self._record_observation(current_jd, self.observing_plan.observatory, lst=current_lst, exptime=self.time_step, totaltime=self.time_step) current_jd += (self.time_step) / 86400.0 continue # observe it, give it one quantum of exposure exptime = tdb['VisitExptime'].data[observed_idx] observed[observed_idx] += exptime # collect observation data to put in table tileid_observed = tdb['TileID'].data[observed_idx] target_index = tdb['TargetIndex'].data[observed_idx] target_name = self.targets[target_index].name groups = self.targets[target_index].groups target_group = groups[0] if groups else 'None' target_overhead = self.targets[target_index].overhead # Get the index of the first value in index_to_target that matches # the index of the target. target_index_first = numpy.nonzero(tdb['TargetIndex'].data == target_index)[0][0] # Get the index of the pointing within its target. pointing_index = observed_idx - target_index_first # Record angular distance to moon dist_to_moon = scheduler.moon_to_pointings[observed_idx] # Update the table with the schedule. airmass = 1.0 / numpy.cos(numpy.radians(90.0 - alt)) self._record_observation(current_jd, self.observing_plan.observatory, target_name=target_name, target_group=target_group, tileid = tileid_observed, pointing_index=pointing_index, ra=tdb['RA'].data[observed_idx], dec=tdb['DEC'].data[observed_idx], pa=tdb['PA'].data[observed_idx], airmass=airmass, lunation=lunation, shadow_height= hz, #hz[valid_priority_idx[obs_tile_idx]], dist_to_moon=dist_to_moon, lst=current_lst, exptime=exptime, totaltime=exptime * target_overhead) current_jd += exptime * target_overhead / 86400.0 return observed def animate_survey(self, filename='lvm_survey.mp4', step=100, observatory=None, projection='mollweide'): """Create an animation of the survey progress and save as an mp4 file. Parameters ---------- filename : str Name of the mp4 file, defaults to ``'lvm_survey.mp4'``. step : int Number of observations per frame of movie. observatory : str Either ``'LCO'`` or ``'APO'`` or `None` (plots both). projection : str Which projection of the sphere to use. Defaults to Mollweide. """ data = self.schedule[self.schedule['target'] != '-'] if observatory: data = data[data['observatory'] == observatory] ll = int(len(data) / step) x,y = convert_to_mollweide(data['ra'], data['dec']) tt = [target.name for target in self.targets] g = numpy.array([tt.index(i) for i in data['target']], dtype=float) t = data['JD'] fig, ax = get_axes(projection=projection) # scat = ax.scatter(x[:1], y[:1], c=g[:1], s=1, edgecolor=None, edgecolors=None) scat = ax.scatter(x, y, c=g % 19, s=0.05, edgecolor=None, edgecolors=None, cmap='tab20') # fig.show() # return def animate(ii): if ii % 10 == 0: print('%.1f %% done\r' % (ii / ll * 100)) scat.set_offsets(numpy.stack((x[:ii * step], y[:ii * step]), axis=0).T) scat.set_array(g[:ii * step]) ax.set_title(str(t[ii])) return scat, anim = animation.FuncAnimation(fig, animate, frames=range(1, ll), interval=1, blit=True, repeat=False) anim.save(filename, fps=24, extra_args=['-vcodec', 'libx264']) def plot(self, observatory=None, projection='mollweide', tname=None, fast=False, annotate=False, edge=False): """Plots the observed pointings. Parameters ---------- observatory : str Plot only the points for that observatory. Otherwise, plots all the pointings. projection : str The projection to use, either ``'mollweide'`` or ``'rectangular'``. tname : str Select only a particular target name to plot fast : bool Plot IFU sized and shaped patches if `False`. This is the default. Allows accurate zooming and viewing. If `True`, plot scatter-plot dots instead of IFUs, for speed sacrificing accuracy. This is MUCH faster. annotate : bool Write the targets' names next to the target coordinates. Implies ``fast=True``. edge : bool Draw tile edges and make tiles partly transparent to better judge overlap. Makes zoomed-out view look odd, so use default False. Returns ------- figure : `matplotlib.figure.Figure` The figure with the plot. """ if annotate is True: fast = True color_cycler = cycler.cycler(bgcolor=['b', 'r', 'g', 'y', 'm', 'c', 'k']) fig, ax = get_axes(projection=projection) if tname != None: data = self.schedule[self.schedule['target'] == tname] else: data = self.schedule[self.schedule['target'] != '-'] if observatory: data = data[data['observatory'] == observatory] if fast is True: if projection == 'mollweide': x,y = convert_to_mollweide(data['ra'], data['dec']) else: x,y = data['ra'], data['dec'] tt = [target.name for target in self.targets] g = numpy.array([tt.index(i) for i in data['target']], dtype=float) ax.scatter(x, y, c=g % 19, s=0.05, edgecolor=None, edgecolors=None, cmap='tab20') if annotate is True: _, text_indices = numpy.unique(g, return_index=True) for i in range(len(tt)): plt.text(x[text_indices[i]], y[text_indices[i]], tt[i], fontsize=9) else: for ii, sty in zip(range(len(self.targets)), itertools.cycle(color_cycler)): target = self.targets[ii] name = target.name target_data = data[data['target'] == name] if edge: patches = [self.ifu.get_patch(scale=target.telescope.plate_scale, centre=[p['ra'], p['dec']], pa=p['pa'], edgecolor='k', linewidth=1, alpha=0.5, facecolor=sty['bgcolor'])[0] for p in target_data] else: patches = [self.ifu.get_patch(scale=target.telescope.plate_scale, centre=[p['ra'], p['dec']], pa=p['pa'], edgecolor='None', linewidth=0.0, facecolor=sty['bgcolor'])[0] for p in target_data] if projection == 'mollweide': patches = [transform_patch_mollweide(patch) for patch in patches] for patch in patches: ax.add_patch(patch) if observatory != None: ax.set_title(f'Observatory: {observatory}') return fig def _create_observing_plan(self): """Returns an `.ObservingPlan` from the configuration file.""" observatory = config['observing_plan'] obs_data = config['observing_plan'][observatory] start_date = obs_data['start_date'] end_date = obs_data['end_date'] return ObservingPlan(start_date, end_date, observatory=observatory) def _record_observation(self, jd, observatory, target_name='-', target_group='-', tileid=-1, pointing_index=-1, ra=-999., dec=-999., pa=-999., airmass=-999., lunation=-999., shadow_height=-999., dist_to_moon=-999., lst=-999., exptime=0., totaltime=0.): """Adds a row to the schedule.""" self.schedule.append((jd, observatory, target_name, target_group, tileid, pointing_index, ra, dec, pa, airmass, lunation, shadow_height, dist_to_moon, lst, exptime, totaltime)) def get_target_time(self, tname, group=False, observatory=None, lunation=None, return_lst=False): """Returns the JDs or LSTs for a target at an observatory. Parameters ---------- tname : str The name of the target or group. Use ``'-'`` for unused time. group : bool If not true, ``tname`` will be the name of a group not a single target. observatory : str The observatory to filter for. lunation : list Restrict the data to a range in lunation. Defaults to returning all lunations. Set to ``[lmin, lmax]`` to return values of ``lmin < lunation <= lmax``. return_lst : bool If `True`, returns an array with the LSTs of all the unobserved times. Returns ------- table : `~numpy.ndarray` An array containing the times the target is observed at an observatory, as JDs. If ``return_lst=True`` returns an array of the corresponding LSTs. """ column = 'group' if group is True else 'target' t = self.schedule[self.schedule[column] == tname] if observatory: t = t[t['observatory'] == observatory] if lunation != None: t = t[(t['lunation'] > lunation[0]) * (t['lunation'] <= lunation[1])] if return_lst: return t['lst'].data else: return t['JD'].data def print_statistics(self, out_file=None, out_format="ascii", overwrite_out=True, observatory=None, targets=None, return_table=False): """Prints a summary of observations at a given observatory. Parameters ---------- observatory : str The observatory to filter for. targets : `~lvmsurveysim.target.TargetList` The targets to summarize. If `None`, use ``self.targets``. return_table : bool If `True`, return a `~astropy.table.Table` with the results. out_file : str Outfile to write statistics. out_format : str Outfile format consistent with astropy.table dumps """ if targets is None: targets = self.targets names = [t.name for t in targets] time_on_target = {} # time spent exposing target exptime_on_target = {} # total time (exp + overhead) on target tile_area = {} # area of a single tile target_ntiles = {} # number of tiles in a target tiling target_ntiles_observed = {} # number of observed tiles target_nvisits = {} # number of visits for each tile surveytime = 0.0 # total time of survey names.append('-') # deals with unused time for tname, i in zip(names, range(len(names))): if (tname != '-'): target = self.targets[i] tile_area[tname] = target.get_pixarea(ifu=self.ifu) target_ntiles[tname] = len(numpy.where(self.tiledb.tile_table['TargetIndex'] == i)[0]) target_nvisits[tname] = float(target.n_exposures / target.min_exposures) else: tile_area[tname] = -999 target_ntiles[tname] = -999 target_nvisits[tname] = 1 tdata = self.schedule[self.schedule['target'] == tname] if observatory: tdata = tdata[tdata['observatory'] == observatory] exptime_on_target[tname] = numpy.sum(tdata['exptime'].data) target_ntiles_observed[tname] = len(tdata) / target_nvisits[tname] target_total_time = numpy.sum(tdata['totaltime'].data) time_on_target[tname] = target_total_time surveytime += target_total_time # targets that completely overlap with others have no tiles for t in self.targets: if target_ntiles[t.name] == 0: print(t.name + ' has no tiles') target_ntiles[t.name] = 1 rows = [ (t if t != '-' else 'unused', numpy.float(target_ntiles[t]), numpy.around(target_ntiles_observed[t], decimals=2), numpy.around(time_on_target[t] / 3600.0, decimals=2), numpy.around(exptime_on_target[t] / 3600.0, decimals=2), numpy.around(time_on_target[t] / surveytime, decimals=2), numpy.around(target_ntiles_observed[t] * tile_area[t], decimals=2) if t != '-' else -999, numpy.around(float(target_ntiles_observed[t]) / float(target_ntiles[t]), decimals=2) if t != '-' else -999) for t in names] stats = astropy.table.Table(rows=rows, names=['Target', 'tiles', 'tiles_obs', 'tottime/h', 'exptime/h', 'timefrac', 'area', 'areafrac'], dtype=('S8', 'f4', 'f4', 'f4', 'f4', 'f4', 'f4', 'f4')) print('%s :' % (observatory if observatory != None else 'APO+LCO')) stats.pprint(max_lines=-1, max_width=-1) if out_file != None: stats.write(out_file, format=out_format, overwrite=overwrite_out) if return_table: return stats def plot_survey(self, observatory=None, bin_size=30., targets=None, groups=None, use_groups=False, use_primary_group=True, show_ungrouped=True, cumulative=False, lst=False, lunation=None, show_unused=True, skip_fast=False, show_mpld3=False): """Plot the hours spent on target. Parameters ---------- observatory : str The observatory to plot. If `None`, all observatories. bin_size : int The number of days in each bin of the plot. targets : list A list with the names of the targets to plot. If empty, plots all targets. groups : list A list with the names of the groups to plot. If empty, plots all groups. use_groups : bool If set, the targets are grouped together using the ``Target.groups`` list. use_primary_group : bool If `True`, a target will only be added to its primary group (the first one in the group list). Only used when ``use_groups=True``. show_ungrouped : bool If `True`, targets that don't belong to any group are plotted individually. Only used when ``use_groups=True``. cumulative : bool or str If `True`, plots the cumulative sum of hours spent on each target. If ``'group'``, it plots the cumulative on-target hours normalised by the total hours needed to observe the target group. If ``'survey'``, plots the cumulative hours normalised by the total survey hours. When ``cumulative`` is not `False`, ``bin_size`` is set to 1. lst : bool Whether to bin the used time by LST instead of JD. show_unused : bool Display the unused time. lunation : list Range of lunations to include in statistics. Defaults to all lunations. Set to ``[lmin, lmax]`` to return values of ``lmin < lunation <= lmax``. Can be used to restrict lst usage plots to only bright, grey, or dark time. skip_fast : bool If set, do not plot targets that complete in the first 20% of the survey. Return ------ fig : `~matplotlib.figure.Figure` The Matplotlib figure of the plot. """ assert self.schedule != None, 'you still have not run a simulation.' if not targets: targets = [target.name for target in self.targets] ncols = 2 if len(targets) > 15 else 1 if lst: bin_size = 1. if bin_size == 30. else bin_size assert cumulative is False, 'cumulative cannot be used with lst=True.' if cumulative != False: bin_size = 1 fig, ax = plt.subplots(figsize=(12, 8)) # Leaves a margin on the right to put the legend fig.subplots_adjust(right=0.65 if ncols == 2 else 0.8) ax.set_prop_cycle(color=['r', 'g', 'b', 'c', 'm', 'y', 'g', 'b', 'c', 'm', 'y', 'r', 'b', 'c', 'm', 'y', 'r', 'g', 'c', 'm', 'y', 'r', 'g', 'b', ], linestyle=['-', '--', '-.', ':', '-', '--', '-.', ':', '-', '--', '-.', ':', '-', '--', '-.', ':', '-', '--', '-.', ':', '-', '--', '-.', ':']) min_b = (numpy.min(self.schedule['JD']) - 2451545.0) if not lst else 0.0 max_b = (numpy.max(self.schedule['JD']) - 2451545.0) if not lst else 24.0 b = numpy.arange(min_b, max_b + bin_size, bin_size) # Creates a list of groups to plot. If use_groups=False, # this is just the list of targets. if not use_groups: groups = [target.name for target in self.targets] else: groups = groups or self.targets.get_groups() # Adds the ungrouped targets. if show_ungrouped: for target in self.targets: if len(target.groups) == 0: groups.append(target.name) for group in groups: # Cumulated group heights group_heights = numpy.zeros(len(b) - 1, dtype=numpy.float) group_target_tot_time = 0.0 # If we are not using groups or the "group" # name is that of an ungrouped target. if not use_groups or group in self.targets._names: targets = [group] else: targets = self.targets.get_group_targets(group, primary=use_primary_group) for tname in targets: t = self.targets.get_target(tname) tindex = [target.name for target in self.targets].index(tname) # plot each target tt = self.get_target_time(tname, observatory=observatory, lunation=lunation, return_lst=lst) if len(tt) == 0: continue if not lst: tt -= 2451545.0 heights, bins = numpy.histogram(tt, bins=b) heights = numpy.array(heights, dtype=float) heights *= t.exptime * t.min_exposures / 3600.0 ntiles = len(numpy.where(self.tiledb.tile_table['TargetIndex'].data == tindex)[0]) target_tot_time = ntiles * t.exptime * t.n_exposures / 3600. if skip_fast: completion = heights.cumsum() / target_tot_time if numpy.quantile(completion, 0.2) >= 1: continue group_heights += heights group_target_tot_time += target_tot_time # Only plot the heights if they are not zero. This prevents # targets that are not observed at an observatory to be displayed. if numpy.sum(group_heights) > 0: if cumulative is False: ax.plot(bins[:-1] + numpy.diff(bins) / 2, group_heights, label=group) else: ax.plot(bins[:-1] + numpy.diff(bins) / 2, numpy.cumsum(group_heights)/group_target_tot_time, label=group) # deal with unused time tt = self.get_target_time('-', observatory=observatory, return_lst=lst) if not lst: tt -= 2451545.0 heights, bins = numpy.histogram(tt, bins=b) heights = numpy.array(heights, dtype=float) heights *= self.time_step / 3600.0 if cumulative: heights = heights.cumsum() if show_unused and cumulative is False: ax.plot(bins[:-1] + numpy.diff(bins) / 2, heights, ':', color='k', label='Unused') ax.set_xlabel('JD - 2451545.0' if not lst else 'LST / h') if cumulative is False: ax.set_ylabel('Hours on target / %.f %s' % ((bin_size, 'days') if not lst else (bin_size, 'h'))) elif cumulative is True: ax.set_ylabel('Hours on target [cumulative]') elif cumulative == 'target': ax.set_ylabel('Fraction of target completed') elif cumulative == 'survey': ax.set_ylabel('Fraction of survey time spent on target') ax.set_title(observatory if observatory != None else 'APO+LCO') # Move legend outside the plot ax.legend(loc='upper left', bbox_to_anchor=(1.05, 1.0), ncol=ncols) return fig def plot_lunation(self, tname, group=False, observatory=None, dark_limit=0.2): """ plot the lunation distribution for a target. use '-' for unused time Parameters ---------- tname : str The name of the target or group. Use ``'-'`` for unused time. group : bool If not true, ``tname`` will be the name of a group not a single target. observatory : str The observatory to filter for. dark_limit : float Limiting lunation value to count as dark time. Defaults to 0.2. Return ------ fig : `~matplotlib.figure.Figure` The Matplotlib figure of the plot. """ dark = self.get_target_time(tname, group=group, lunation=[-0.01, dark_limit], observatory=observatory, return_lst=True) bright = self.get_target_time(tname, group=group, lunation=[dark_limit, 1.0], observatory=observatory, return_lst=True) bin_size = 1 b = numpy.arange(0, 24 + bin_size, bin_size) heights_dark, bins = numpy.histogram(dark, bins=b) heights_dark = numpy.array(heights_dark, dtype=float) heights_bright, bins = numpy.histogram(bright, bins=b) heights_bright = numpy.array(heights_bright, dtype=float) fig, ax = plt.subplots() ax.plot(bins[:-1] + numpy.diff(bins) / 2, heights_dark, label='dark') ax.plot(bins[:-1] + numpy.diff(bins) / 2, heights_bright, label='bright') ax.legend() plt.xlabel('LST') plt.ylabel('# of exposures') plt.title('unused' if tname == '-' else tname) return fig def plot_shadow_height(self, tname=None, group=False, observatory=None, norm=False, cumulative=0, linear_log=False): """ plot the shadow height distribution for a target. use '-' for unused time Parameters ---------- tname : str The name of the target or group. Use 'ALL' for all groups and group==True. group : bool If not true, ``tname`` will be the name of a group not a single target. observatory : str The observatory to filter for. norm : bool Normalize the histograms instead of plotting raw numbers. Return ------ fig : `~matplotlib.figure.Figure` The Matplotlib figure of the plot. """ if linear_log is False: b = numpy.logspace(
numpy.log10(100.)
numpy.log10
import ctypes as c import pathlib from enum import IntEnum import numpy as np from plaster.run.sigproc_v2.c_gauss2_fitter.build import build_dev from plaster.tools.c_common.c_common_tools import CException from plaster.tools.schema import check from plumbum import local c_gauss_fitter_path = local.path( "/erisyon/plaster/plaster/run/sigproc_v2/c_gauss2_fitter" ) def _init(): """ Must be called before anything else in this module """ if local.env.get("PLASTER_C_COMPILE"): with local.cwd(c_gauss_fitter_path): build_dev() # Note, this is executed at LOAD TIME! _init() class Gauss2Params: AMP = 0 SIGMA_X = 1 SIGMA_Y = 2 CENTER_X = 3 CENTER_Y = 4 RHO = 5 OFFSET = 6 N_PARAMS = 7 # Number above this point class AugmentedGauss2Params(Gauss2Params): # These must match in gauss2_fitter.h MEA = 7 NOISE = 8 ASPECT_RATIO = 9 N_FULL_PARAMS = 10 _lib = None MODULE_DIR = pathlib.Path(__file__).parent def load_lib(): global _lib if _lib is not None: return _lib lib = c.CDLL(MODULE_DIR / "_gauss2_fitter.so") lib.gauss2_check.argtypes = [] lib.gauss2_check.restype = c.c_char_p lib.gauss_2d.argtypes = [ np.ctypeslib.ndpointer( dtype=np.float64, ndim=1, flags="C_CONTIGUOUS" ), # double *p np.ctypeslib.ndpointer( dtype=np.float64, ndim=1, flags="C_CONTIGUOUS" ), # double *dst_x c.c_int, # int m c.c_int, # int n c.c_void_p, # void *data ] lib.fit_gauss_2d_on_float_image.argtypes = [ np.ctypeslib.ndpointer( dtype=np.float64, ndim=2, flags="C_CONTIGUOUS" ), # np_float64 *im c.c_int, # np_int64 im_w c.c_int, # np_int64 im_h c.c_int, # np_int64 center_x c.c_int, # np_int64 center_y c.c_int, # np_int64 mea np.ctypeslib.ndpointer( dtype=np.float64, ndim=1, flags="C_CONTIGUOUS" ), # np_float64 *params np.ctypeslib.ndpointer( dtype=np.float64, ndim=1, flags="C_CONTIGUOUS" ), # np_float64 *info np.ctypeslib.ndpointer( dtype=np.float64, ndim=1, flags="C_CONTIGUOUS" ), # np_float64 *covar np.ctypeslib.ndpointer( dtype=np.float64, ndim=1, flags="C_CONTIGUOUS" ), # np_float64 *noise ] lib.fit_gauss_2d_on_float_image.restype = c.c_int lib.fit_array_of_gauss_2d_on_float_image.argtypes = [ np.ctypeslib.ndpointer( dtype=np.float64, ndim=2, flags="C_CONTIGUOUS" ), # np_float64 *im c.c_int, # np_int64 im_w c.c_int, # np_int64 im_h c.c_int, # np_int64 mea c.c_int, # np_int64 n_peaks np.ctypeslib.ndpointer( dtype=np.int64, ndim=1, flags="C_CONTIGUOUS" ), # np_int64 *center_x np.ctypeslib.ndpointer( dtype=np.int64, ndim=1, flags="C_CONTIGUOUS" ), # np_int64 *center_y np.ctypeslib.ndpointer( dtype=np.float64, ndim=1, flags="C_CONTIGUOUS" ), # np_float64 *params np.ctypeslib.ndpointer( dtype=np.float64, ndim=1, flags="C_CONTIGUOUS" ), # np_float64 *var_params np.ctypeslib.ndpointer( dtype=np.int64, ndim=1, flags="C_CONTIGUOUS" ), # np_int64 *fail ] lib.fit_array_of_gauss_2d_on_float_image.restype = c.c_char_p lib.synth_image.argtypes = [ np.ctypeslib.ndpointer( dtype=np.float64, ndim=2, flags="C_CONTIGUOUS" ), # np_float64 *im c.c_int, # np_int64 im_w c.c_int, # np_int64 im_h c.c_int, # np_int64 peak_mea c.c_int, # np_int64 n_peaks np.ctypeslib.ndpointer( dtype=np.float64, ndim=2, flags="C_CONTIGUOUS" ), # np_float64 *params ] lib.synth_image.restype = c.c_char_p _lib = lib return lib class Gauss2FitParams(IntEnum): # These must match in gauss2_fitter.h AMP = 0 SIGNAL = 0 # Alias for AMP SIGMA_X = 1 SIGMA_Y = 2 CENTER_X = 3 CENTER_Y = 4 RHO = 5 OFFSET = 6 N_FIT_PARAMS = 7 # Number above this point MEA = 7 NOISE = 8 ASPECT_RATIO = 9 N_FULL_PARAMS = 10 def gauss2(params): params = np.ascontiguousarray(params, dtype=np.float64) im = np.zeros((11, 11)) im = np.ascontiguousarray(im.flatten(), dtype=np.float64) lib = load_lib() lib.gauss_2d(params, im, 7, 11 * 11, 0) return im.reshape((11, 11)) def fit_image(im, locs, guess_params, peak_mea): """ Arguments: im: ndarray single image locs: ndarray (n_locs, 2) guess_params: ndarray (n_locs, AugmentedGauss2Params.N_FULL_PARAMS) peak_mea: measure of peak Returns: fit_params: ndarray(n_locs, AugmentedGauss2Params.N_FULL_PARAMS) The fit parameters std_params: The std of each fit, essentially a quality of fit metric """ lib = load_lib() n_locs = int(len(locs)) check.array_t(im, ndim=2, dtype=np.float64) im = np.ascontiguousarray(im, dtype=np.float64) # assert np.all(~np.isnan(im)) check.array_t(im, ndim=2, dtype=np.float64, c_contiguous=True) check.array_t(locs, ndim=2, shape=(None, 2)) locs_y = np.ascontiguousarray(locs[:, 0], dtype=np.int64) locs_x = np.ascontiguousarray(locs[:, 1], dtype=np.int64) # MARK all nans as negative which fit_array_of_gauss_2d_on_float_image # treats as a sentinel for "DO NOT FIT" locs_y[np.isnan(locs[:, 0])] = -1 locs_x[np.isnan(locs[:, 1])] = -1 fit_fails = np.zeros((n_locs,), dtype=np.int64) check.array_t(fit_fails, dtype=np.int64, c_contiguous=True) check.array_t( guess_params, dtype=np.float64, ndim=2, shape=(n_locs, AugmentedGauss2Params.N_FULL_PARAMS,), ) fit_params = guess_params.copy() fit_params[:, AugmentedGauss2Params.MEA] = peak_mea fit_params = np.ascontiguousarray(fit_params.flatten()) std_params = np.zeros((n_locs, AugmentedGauss2Params.N_FULL_PARAMS)) std_params = np.ascontiguousarray(std_params.flatten()) check.array_t( fit_params, dtype=np.float64, c_contiguous=True, ndim=1, shape=(n_locs * AugmentedGauss2Params.N_FULL_PARAMS,), ) error = lib.gauss2_check() if error is not None: raise CException(error) error = lib.fit_array_of_gauss_2d_on_float_image( im, im.shape[1], # Note inversion of axis (y is primary in numpy) im.shape[0], peak_mea, n_locs, locs_x, locs_y, fit_params, std_params, fit_fails, ) if error is not None: raise CException(error) # RESHAPE fit_params and NAN-out any where the fit failed fit_params = fit_params.reshape((n_locs, AugmentedGauss2Params.N_FULL_PARAMS)) # fit_fails will be 1 both in the case that the fit failed # and the case where it was skipped because "DO NOT FIT" was passed above fit_params[fit_fails == 1, :] = np.nan # After some very basic analysis, it seems that the following # parameters are reasonable guess for out of bound on the # std of fit. # Note, this analysis was done on 11x11 pixels and might # need to be different for other sizes. # BUT! after using this they seemed to knock out everything # so apparently the are not well tuned yet so this block is # temporarily removed. """ std_params = std_params.reshape((n_locs, AugmentedGauss2Params.N_FULL_PARAMS)) param_std_of_fit_limits = np.array((500, 0.18, 0.18, 0.15, 0.15, 0.08, 5,)) out_of_bounds_mask = np.any( std_params[:, 0 : AugmentedGauss2Params.N_FIT_PARAMS] > param_std_of_fit_limits[None, :], axis=1, ) fit_params[out_of_bounds_mask, :] = np.nan """ return fit_params, std_params def synth_image(im, peak_mea, locs, amps, std_xs, std_ys): """ Generate a synthetic image using the Gaussians in the parallel arrays and accumulate into im """ lib = load_lib() n_locs = int(len(locs)) check.array_t(amps, shape=(n_locs,)) check.array_t(std_xs, shape=(n_locs,)) check.array_t(std_ys, shape=(n_locs,)) params = np.zeros((n_locs, Gauss2FitParams.N_FIT_PARAMS)) params[:, Gauss2FitParams.AMP] = amps params[:, Gauss2FitParams.CENTER_Y] = locs[:, 0] params[:, Gauss2FitParams.CENTER_X] = locs[:, 1] params[:, Gauss2FitParams.SIGMA_X] = std_xs params[:, Gauss2FitParams.SIGMA_Y] = std_ys check.array_t(im, ndim=2) params = np.ascontiguousarray(params, dtype=np.float64) im =
np.ascontiguousarray(im, dtype=np.float64)
numpy.ascontiguousarray
# -*- coding: utf-8 -*- """ Utility functions and classes. """ import datetime import math import sys from typing import Any, Callable, Dict, Iterable, Iterator, List, Tuple, Union import argparse as ap import numpy as np import pandas as pd def is_debugging(): """ Check if the application is running under a debugger. :return: Returns True if debugger is attached. """ return sys.gettrace() is not None def parse_bool_string(val: str) -> bool: """ Parse string representation of a boolean and return its presumed truth value. Following inputs are valid "True" values: - "True", "true", "T", "t", - "Yes", "yes", "Y", "y" - "1" Following inputs are valid "False" values: - "False", "false", "F", "f", - "No", "no", "N", "n" - "0" :param val: String representation of the boolean. :raises argparse.ArgumentTypeError: Raised when given string is not any of the valid options. :return: Returns boolean value of given string. """ if val.lower() in ("true", "t", "yes", "y", "1"): return True elif val.lower() in ("false", "f", "no", "n", "0"): return False else: raise ap.ArgumentTypeError(f"Unknown boolean value \"{val}\"!") def parse_datetime(val: str, format: str = "%d.%m.%Y" ) -> datetime.datetime: """ Parse date-time from string, using provided formatting string. :param val: String being parsed. :return: Parsed date-time. """ return datetime.datetime.strptime( date_string=val, format=format ) def parse_datetime_interval(val: str, format: str = "%d.%m.%Y", sep: str = "/" ) -> Tuple[datetime.datetime]: """ Parse interval of date-times from string, using provided formatting string and separator. :param val: String being parsed. :return: Parsed date-time. """ return tuple([ parse_datetime(val=split, format=format) for split in val.split(sep) ]) def parse_list(val: str, typ: callable, sep: str = ",") -> list: """ Parse separated list of objects into python list. :param val: List of object, separated using separator. :param typ: Parser for the type used as typ(str). :param sep: Separator of list elements. :raises argparse.ArgumentTypeError: Raised when given string does not represent valid list. :return: Returns list of types produced by typ(str). """ try: if val == sep: return [ ] items = val.split(sep) result = [ typ(item) for item in items ] except: raise ap.ArgumentTypeError(f"Invalid list value \"{val}\"!") return result def parse_list_string(typ: callable, sep: str = ",") -> callable: """ Construct a list parser for given type and separator. """ def parser(val: str) -> list: return parse_list(val=val, typ=typ, sep=sep) return parser def reshape_scalar(val: any) -> np.array: """ Create array from given value, keeping dimensions for array types and creating [ val ] for scalars. """ arr =
np.array(val)
numpy.array
import os from typing import IO from PySDDP.newave.script.templates.confhd import ConfhdTemplate from matplotlib import pyplot as plt import numpy as np from random import randint from mpl_toolkits.mplot3d import Axes3D class Confhd(ConfhdTemplate): def __init__(self): super().__init__() self.lista_entrada = list() self._conteudo_ = None self.dir_base = None self._numero_registros_ = None def ler(self, file_name: str, hidr, vazoes, dger, modif, exph) -> None: """ Implementa o método para leitura do arquivo HIDR.DAT que contem os dados cadastrais das usinas hidrelétricas que podem ser utilizadas para a execucao do NEWAVE :param file_name: string com o caminho completo para o arquivo, hidr: classe contendo o cadastro de todas as usinas hidreletrica, vazoes: classe contendo o historico de vazoes completo """ self.dir_base = os.path.split(file_name)[0] self.nome_arquivo = os.path.split(file_name)[1] self._copiavazoes = vazoes.vaz_nat self._numero_registros_ = 0 self.nuhe = 0 nanos = dger.num_anos['valor'] try: with open(file_name, 'r', encoding='latin-1') as f: # type: IO[str] continua = True contador = 1 while continua: self.next_line(f) linha = self.linha if contador >= 3: if len(linha) > 5: self._codigo["valor"].append(int(linha[1:5])) else: break self._nome["valor"].append(linha[6:18]) self._posto["valor"].append(int(linha[19:23])) self._jusante["valor"].append(int(linha[25:29])) self._ree["valor"].append(int(linha[30:34])) self._vol_ini["valor"].append(float(linha[35:41])) self._status["valor"].append(linha[44:46]) self._modif["valor"].append(int(linha[49:53])) self._ano_i["valor"].append(int(linha[58:62])) self._ano_f["valor"].append(int(linha[67:71])) # Preenche com dados cadastrais uhe = hidr.get(self._codigo["valor"][-1]) self._bdh['valor'].append(uhe['bdh']) self._sist['valor'].append(uhe['sist']) self._empr['valor'].append(uhe['empr']) self._desvio['valor'].append(uhe['desvio']) self._vol_min['valor'].append(uhe['vol_min']) self._vol_max['valor'].append(uhe['vol_max']) self._vol_vert['valor'].append(uhe['vol_vert']) self._vol_min_desv['valor'].append(uhe['vol_min_desv']) self._cota_min['valor'].append(uhe['cota_min']) self._cota_max['valor'].append(uhe['cota_max']) self._pol_cota_vol['valor'].append(uhe['pol_cota_vol']) self._pol_cota_area['valor'].append(uhe['pol_cota_area']) self._coef_evap['valor'].append(uhe['coef_evap']) self._num_conj_maq['valor'].append(uhe['num_conj_maq']) self._maq_por_conj['valor'].append(uhe['maq_por_conj']) self._pef_por_conj['valor'].append(uhe['pef_por_conj']) self._cf_hbqt['valor'].append(uhe['cf_hbqt']) self._cf_hbqt['valor_2'].append(uhe['cf_hbqt_2']) self._cf_hbqt['valor_3'].append(uhe['cf_hbqt_3']) self._cf_hbqt['valor_4'].append(uhe['cf_hbqt_4']) self._cf_hbqt['valor_5'].append(uhe['cf_hbqt_5']) self._cf_hbqg['valor'].append(uhe['cf_hbqg']) self._cf_hbqg['valor_2'].append(uhe['cf_hbqg_2']) self._cf_hbqg['valor_3'].append(uhe['cf_hbqg_3']) self._cf_hbqg['valor_4'].append(uhe['cf_hbqg_4']) self._cf_hbqg['valor_5'].append(uhe['cf_hbqg_5']) self._cf_hbpt['valor'].append(uhe['cf_hbpt']) self._cf_hbpt['valor_2'].append(uhe['cf_hbpt_2']) self._cf_hbpt['valor_3'].append(uhe['cf_hbpt_3']) self._cf_hbpt['valor_4'].append(uhe['cf_hbpt_4']) self._cf_hbpt['valor_5'].append(uhe['cf_hbpt_5']) self._alt_efet_conj['valor'].append(uhe['alt_efet_conj']) self._vaz_efet_conj['valor'].append(uhe['vaz_efet_conj']) self._prod_esp['valor'].append(uhe['prod_esp']) self._perda_hid['valor'].append(uhe['perda_hid']) self._num_pol_vnj['valor'].append(uhe['num_pol_vnj']) self._pol_vaz_niv_jus['valor'].append(uhe['pol_vaz_niv_jus']) self._pol_vaz_niv_jus['valor_2'].append(uhe['pol_vaz_niv_jus_2']) self._pol_vaz_niv_jus['valor_3'].append(uhe['pol_vaz_niv_jus_3']) self._pol_vaz_niv_jus['valor_4'].append(uhe['pol_vaz_niv_jus_4']) self._pol_vaz_niv_jus['valor_5'].append(uhe['pol_vaz_niv_jus_5']) self._cota_ref_nivel_jus['valor'].append(uhe['cota_ref_nivel_jus']) self._cfmed['valor'].append(uhe['cfmed']) self._inf_canal_fuga['valor'].append(uhe['inf_canal_fuga']) self._fator_carga_max['valor'].append(uhe['fator_carga_max']) self._fator_carga_min['valor'].append(uhe['fator_carga_min']) self._vaz_min['valor'].append(uhe['vaz_min']) self._unid_base['valor'].append(uhe['unid_base']) self._tipo_turb['valor'].append(uhe['tipo_turb']) self._repres_conj['valor'].append(uhe['repres_conj']) self._teifh['valor'].append(uhe['teifh']) self._ip['valor'].append(uhe['ip']) self._tipo_perda['valor'].append(uhe['tipo_perda']) self._data['valor'].append(uhe['data']) self._observ['valor'].append(uhe['observ']) self._vol_ref['valor'].append(uhe['vol_ref']) self._tipo_reg['valor'].append(uhe['tipo_reg']) # Inclui as vazoes naturais vaz_nat = vazoes.vaz_nat.transpose() vaz_nat = vaz_nat[self._posto["valor"][-1]-1] vaz_nat = vaz_nat.transpose() self._vazoes['valor'].append(vaz_nat) # Se a usina for 'NE' ou 'EE' nao deve possuir maquinas if self._status['valor'][-1] == 'NE' or self._status['valor'][-1] == 'EE': for iconj in range(5): self._maq_por_conj['valor'][-1][iconj] = 0 # Parametros Temporais controlados pelo MODIF.DAT self._vol_mint['valor'].append(self._vol_min['valor'][-1]*np.ones((nanos, 12), 'f')) self._vol_maxt['valor'].append(self._vol_max['valor'][-1]*np.ones((nanos, 12), 'f')) self._vol_minp['valor'].append(self._vol_min['valor'][-1]*np.ones((nanos, 12), 'f')) self._vaz_mint['valor'].append(self._vaz_min['valor'][-1]*np.ones((nanos, 12), 'f')) self._cfugat['valor'].append(self._cfmed['valor'][-1]*np.ones((nanos, 12), 'f')) self._cmont['valor'].append(self._cota_max['valor'][-1]*np.ones((nanos, 12), 'f')) # # Calcula Volume Útil # if self._tipo_reg['valor'][-1] == 'M': self._vol_util['valor'].append(self._vol_max['valor'][-1] - self._vol_min['valor'][-1]) else: self._vol_util['valor'].append(float(0)) self._vol_min['valor'][-1] = self._vol_max['valor'][-1] # Incorpora Modificações do MODIF.DAT usinadf = modif.bloco_usina['df'][modif.bloco_usina['df']['codigo'] == self._codigo['valor'][-1]] self._acerta_modif(usinadf, dger) # Calcula Parametros # # Re-Calcula Volume Útil # if self._tipo_reg['valor'][-1] == 'M': self._vol_util['valor'][-1] = self._vol_max['valor'][-1] - self._vol_min['valor'][-1] else: self._vol_min['valor'][-1] = self._vol_max['valor'][-1] self._calc_pot_efetiva() self._calc_vaz_efetiva() self._calc_produtibs(nanos) self._calc_engol_maximo() # Parametros Temporais calculados pelo EXPH.DAT if self._status['valor'][-1] == 'EX': self._status_vol_morto['valor'].append(2 * np.ones((nanos, 12), 'i')) self._status_motoriz['valor'].append(2 * np.ones((nanos, 12), 'i')) self._vol_morto_tempo['valor'].append(np.zeros((nanos, 12), 'f')) self._engol_tempo['valor'].append(self._engolimento['valor'][-1] * np.ones((nanos, 12), 'f')) self._potencia_tempo['valor'].append(self._pot_efet['valor'][-1] * np.ones((nanos, 12), 'f')) self._unidades_tempo['valor'].append(sum(self._maq_por_conj['valor'][-1]) * np.ones((nanos, 12), 'f')) else: self._status_vol_morto['valor'].append(np.zeros((nanos, 12), 'i')) self._status_motoriz['valor'].append(np.zeros((nanos, 12), 'i')) self._vol_morto_tempo['valor'].append(np.zeros((nanos, 12), 'f')) if self._status['valor'][-1] == 'EE': self._engol_tempo['valor'].append(self._engolimento['valor'][-1] * np.ones((nanos, 12), 'f')) self._potencia_tempo['valor'].append(self._pot_efet['valor'][-1] * np.ones((nanos, 12), 'f')) self._unidades_tempo['valor'].append(sum(self._maq_por_conj['valor'][-1]) * np.ones((nanos, 12), 'f')) else: self._engol_tempo['valor'].append(np.zeros((nanos, 12), 'f')) self._potencia_tempo['valor'].append(np.zeros((nanos, 12), 'f')) self._unidades_tempo['valor'].append(np.zeros((nanos, 12), 'i')) # # Insere matrizes com nanos x 12 para cada tipo de produtibilidade acumulada # self._ro_acum_a_ree['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum_b_ree['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum_c_ree['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum_a_sist['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum_b_sist['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum_c_sist['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum_65['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum_max['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum_med['valor'].append(np.zeros((nanos, 12), 'd')) self._ro_acum_min['valor'].append(np.zeros((nanos, 12), 'd')) # Incorpora Modificações do EXPH.DAT usinadf = exph.bloco_usina['df'][exph.bloco_usina['df']['codigo'] == self._codigo['valor'][-1]] self._acerta_exph(usinadf, dger) self.nuhe += 1 self._numero_registros_ += 1 contador += 1 except Exception as err: if isinstance(err, StopIteration): maior = np.array(self._codigo['valor'], dtype=int) maior = np.max(maior) self._mapa = -np.ones(maior+1, dtype=int) for i, codigo in enumerate(self._codigo['valor']): self._mapa[codigo]=int(i) # Acerta Produtibilidades Acumuladas self._prod_acum() print("OK! Leitura do", os.path.split(file_name)[1], "realizada com sucesso.") else: raise def escrever(self, file_out: str) -> None: """ Implementa o método para escrita do arquivo HIDR.DAT que contem os dados cadastrais das usinas hidrelétricas que podem ser utilizadas para a execucao do NEWAVE :param file_out: string com o caminho completo para o arquivo """ self.dir_base = os.path.split(file_out)[0] self.nome_arquivo = os.path.split(file_out)[1] self._numero_registros_ = 0 formato = "{codigo: >5} {nome: <12} {posto: >4} {jusante: >5} {ree: >4} {vol_ini: >6} {status: >4} {modif: >6} {ano_i: >8} {ano_f: >8}\n" if not os.path.isdir(os.path.split(file_out)[0]): os.mkdir(os.path.split(file_out)[0]) try: with open(file_out, 'w', encoding='latin-1') as f: # type: IO[str] # Imprime Cabeçalho f.write(" NUM NOME POSTO JUS REE V.INIC U.EXIS MODIF INIC.HIST FIM HIST\n") f.write(" XXXX XXXXXXXXXXXX XXXX XXXX XXXX XXX.XX XXXX XXXX XXXX XXXX \n") for iusi in range(self.nuhe): linha = dict( codigo=self._codigo['valor'][iusi], nome=self._nome['valor'][iusi], posto=self._posto['valor'][iusi], jusante=self._jusante['valor'][iusi], ree=self._ree['valor'][iusi], vol_ini=self._vol_ini['valor'][iusi], status=self._status['valor'][iusi], modif=self._modif['valor'][iusi], ano_i=self._ano_i['valor'][iusi], ano_f=self._ano_f['valor'][iusi] ) f.write(formato.format(**linha)) self._numero_registros_ += 1 except Exception as err: raise print("OK! Escrita do", os.path.split(file_out)[1], "realizada com sucesso.") def get(self, entrada): """ Busca uma usina hidreletrica do arquivo CONFHD e retorna um dicionario de dados contendo todas as informacoes desta usina :param entrada: string com o nome da usina ou inteiro com o numero de referencia da usina """ if (type(entrada) == float) or (type(entrada) == int): #for i, valor in enumerate(self._codigo["valor"]): # if valor == int(entrada): # posicao = i # break if type(entrada) == float: entrada = int(entrada) posicao = int(self._mapa[entrada]) if posicao == -1: return None if type(entrada) == str: posicao = None for i, valor in enumerate(self._nome["valor"]): if (valor.upper()).strip() == (entrada.upper()).strip(): posicao = i break if posicao is None: return None uhe = { 'codigo': self._codigo['valor'][posicao], 'nome': self._nome['valor'][posicao], 'posto': self._posto['valor'][posicao], 'ree': self._ree["valor"][posicao], 'vol_ini': self._vol_ini["valor"][posicao], 'status': self._status["valor"][posicao], 'modif': self._modif["valor"][posicao], 'ano_i': self._ano_i["valor"][posicao], 'ano_f': self._ano_f["valor"][posicao], 'bdh': self._bdh['valor'][posicao], 'sist': self._sist['valor'][posicao], 'empr': self._empr['valor'][posicao], 'jusante': self._jusante['valor'][posicao], 'desvio': self._desvio['valor'][posicao], 'vol_min': self._vol_min['valor'][posicao], 'vol_max': self._vol_max['valor'][posicao], 'vol_vert': self._vol_vert['valor'][posicao], 'vol_min_desv': self._vol_min_desv['valor'][posicao], 'cota_min': self._cota_min['valor'][posicao], 'cota_max': self._cota_max['valor'][posicao], 'pol_cota_vol': self._pol_cota_vol['valor'][posicao], 'pol_cota_area': self._pol_cota_area['valor'][posicao], 'coef_evap': self._coef_evap['valor'][posicao], 'num_conj_maq': self._num_conj_maq['valor'][posicao], 'maq_por_conj': self._maq_por_conj['valor'][posicao], 'pef_por_conj': self._pef_por_conj['valor'][posicao], 'cf_hbqt': self._cf_hbqt['valor'][posicao], 'cf_hbqt_2': self._cf_hbqt['valor_2'][posicao], 'cf_hbqt_3': self._cf_hbqt['valor_3'][posicao], 'cf_hbqt_4': self._cf_hbqt['valor_4'][posicao], 'cf_hbqt_5': self._cf_hbqt['valor_5'][posicao], 'cf_hbqg': self._cf_hbqg['valor'][posicao], 'cf_hbqg_2': self._cf_hbqg['valor_2'][posicao], 'cf_hbqg_3': self._cf_hbqg['valor_3'][posicao], 'cf_hbqg_4': self._cf_hbqg['valor_4'][posicao], 'cf_hbqg_5': self._cf_hbqg['valor_5'][posicao], 'cf_hbpt': self._cf_hbpt['valor'][posicao], 'cf_hbpt_2': self._cf_hbpt['valor_2'][posicao], 'cf_hbpt_3': self._cf_hbpt['valor_3'][posicao], 'cf_hbpt_4': self._cf_hbpt['valor_4'][posicao], 'cf_hbpt_5': self._cf_hbpt['valor_5'][posicao], 'alt_efet_conj': self._alt_efet_conj['valor'][posicao], 'vaz_efet_conj': self._vaz_efet_conj['valor'][posicao], 'prod_esp': self._prod_esp['valor'][posicao], 'perda_hid': self._perda_hid['valor'][posicao], 'num_pol_vnj': self._num_pol_vnj['valor'][posicao], 'pol_vaz_niv_jus': self._pol_vaz_niv_jus['valor'][posicao], 'pol_vaz_niv_jus_2': self._pol_vaz_niv_jus['valor_2'][posicao], 'pol_vaz_niv_jus_3': self._pol_vaz_niv_jus['valor_3'][posicao], 'pol_vaz_niv_jus_4': self._pol_vaz_niv_jus['valor_4'][posicao], 'pol_vaz_niv_jus_5': self._pol_vaz_niv_jus['valor_5'][posicao], 'cota_ref_nivel_jus': self._cota_ref_nivel_jus['valor'][posicao], 'cfmed': self._cfmed['valor'][posicao], 'inf_canal_fuga': self._inf_canal_fuga['valor'][posicao], 'fator_carga_max': self._fator_carga_max['valor'][posicao], 'fator_carga_min': self._fator_carga_min['valor'][posicao], 'vaz_min': self._vaz_min['valor'][posicao], 'unid_base': self._unid_base['valor'][posicao], 'tipo_turb': self._tipo_turb['valor'][posicao], 'repres_conj': self._repres_conj['valor'][posicao], 'teifh': self._teifh['valor'][posicao], 'ip': self._ip['valor'][posicao], 'tipo_perda': self._tipo_perda['valor'][posicao], 'data': self._data['valor'][posicao], 'observ': self._observ['valor'][posicao], 'vol_ref': self._vol_ref['valor'][posicao], 'tipo_reg': self._tipo_reg['valor'][posicao], 'vazoes': self._vazoes['valor'][posicao], 'vol_mint': self._vol_mint['valor'][posicao], 'vol_maxt': self._vol_maxt['valor'][posicao], 'vol_minp': self._vol_minp['valor'][posicao], 'vaz_mint': self._vaz_mint['valor'][posicao], 'cmont': self._cmont['valor'][posicao], 'cfugat': self._cfugat['valor'][posicao], 'vol_util': self._vol_util['valor'][posicao], 'pot_efet': self._pot_efet['valor'][posicao], 'vaz_efet': self._vaz_efet['valor'][posicao], 'status_vol_morto': self._status_vol_morto['valor'][posicao], 'status_motoriz': self._status_motoriz['valor'][posicao], 'vol_morto_tempo': self._vol_morto_tempo['valor'][posicao], 'engol_tempo': self._engol_tempo['valor'][posicao], 'potencia_tempo': self._potencia_tempo['valor'][posicao], 'unidades_tempo': self._unidades_tempo['valor'][posicao], 'ro_65': self._ro_65['valor'][posicao], 'ro_50': self._ro_50['valor'][posicao], 'ro_equiv': self._ro_equiv['valor'][posicao], 'ro_equiv65': self._ro_equiv65['valor'][posicao], 'ro_min': self._ro_min['valor'][posicao], 'ro_max': self._ro_max['valor'][posicao], 'engolimento': self._engolimento['valor'][posicao], 'ro_acum_a_ree': self._ro_acum_a_ree['valor'][posicao], 'ro_acum_b_ree': self._ro_acum_b_ree['valor'][posicao], 'ro_acum_c_ree': self._ro_acum_c_ree['valor'][posicao], 'ro_acum_a_sist': self._ro_acum_a_sist['valor'][posicao], 'ro_acum_b_sist': self._ro_acum_b_sist['valor'][posicao], 'ro_acum_c_sist': self._ro_acum_c_sist['valor'][posicao], 'ro_acum': self._ro_acum['valor'][posicao], 'ro_acum_65': self._ro_acum_65['valor'][posicao], 'ro_acum_max': self._ro_acum_max['valor'][posicao], 'ro_acum_med': self._ro_acum_med['valor'][posicao], 'ro_acum_med': self._ro_acum_min['valor'][posicao] } return uhe def put(self, uhe): """ Atualiza os dados da usina com do CONFHD de acordo com o dicionario de dados fornecido na entrada. As chaves do dicionario de dados de entrada devem ser as mesmas do dicionario obtido atraves do comando get. :param uhe: dicionario de dados contendo informacoes da usina a ser atualizada. """ posicao = None for i, valor in enumerate(self._codigo["valor"]): if valor == uhe['codigo']: posicao = i break if posicao is None: return None self._codigo['valor'][posicao] = uhe['codigo'] self._nome['valor'][posicao] = uhe['nome'] self._posto['valor'][posicao] = uhe['posto'] self._bdh['valor'][posicao] = uhe['bdh'] self._sist['valor'][posicao] = uhe['sist'] self._empr['valor'][posicao] = uhe['empr'] self._jusante['valor'][posicao] = uhe['jusante'] self._desvio['valor'][posicao] = uhe['desvio'] self._vol_min['valor'][posicao] = uhe['vol_min'] self._vol_max['valor'][posicao] = uhe['vol_max'] self._vol_vert['valor'][posicao] = uhe['vol_vert'] self._vol_min_desv['valor'][posicao] = uhe['vol_min_desv'] self._cota_min['valor'][posicao] = uhe['cota_min'] self._cota_max['valor'][posicao] = uhe['cota_max'] self._pol_cota_vol['valor'][posicao] = uhe['pol_cota_vol'] self._pol_cota_area['valor'][posicao] = uhe['pol_cota_area'] self._coef_evap['valor'][posicao] = uhe['coef_evap'] self._num_conj_maq['valor'][posicao] = uhe['num_conj_maq'] self._maq_por_conj['valor'][posicao] = uhe['maq_por_conj'] self._pef_por_conj['valor'][posicao] = uhe['pef_por_conj'] self._cf_hbqt['valor'][posicao] = uhe['cf_hbqt'] self._cf_hbqt['valor_2'][posicao] = uhe['cf_hbqt_2'] self._cf_hbqt['valor_3'][posicao] = uhe['cf_hbqt_3'] self._cf_hbqt['valor_4'][posicao] = uhe['cf_hbqt_4'] self._cf_hbqt['valor_5'][posicao] = uhe['cf_hbqt_5'] self._cf_hbqg['valor'][posicao] = uhe['cf_hbqg'] self._cf_hbqg['valor_2'][posicao] = uhe['cf_hbqg_2'] self._cf_hbqg['valor_3'][posicao] = uhe['cf_hbqg_3'] self._cf_hbqg['valor_4'][posicao] = uhe['cf_hbqg_4'] self._cf_hbqg['valor_5'][posicao] = uhe['cf_hbqg_5'] self._cf_hbpt['valor'][posicao] = uhe['cf_hbpt'] self._cf_hbpt['valor_2'][posicao] = uhe['cf_hbpt_2'] self._cf_hbpt['valor_3'][posicao] = uhe['cf_hbpt_3'] self._cf_hbpt['valor_4'][posicao] = uhe['cf_hbpt_4'] self._cf_hbpt['valor_5'][posicao] = uhe['cf_hbpt_5'] self._alt_efet_conj['valor'][posicao] = uhe['alt_efet_conj'] self._vaz_efet_conj['valor'][posicao] = uhe['vaz_efet_conj'] self._prod_esp['valor'][posicao] = uhe['prod_esp'] self._perda_hid['valor'][posicao] = uhe['perda_hid'] self._num_pol_vnj['valor'][posicao] = uhe['num_pol_vnj'] self._pol_vaz_niv_jus['valor'] = uhe['pol_vaz_niv_jus'] self._pol_vaz_niv_jus['valor_2'][posicao] = uhe['pol_vaz_niv_jus_2'] self._pol_vaz_niv_jus['valor_3'][posicao] = uhe['pol_vaz_niv_jus_3'] self._pol_vaz_niv_jus['valor_4'][posicao] = uhe['pol_vaz_niv_jus_4'] self._pol_vaz_niv_jus['valor_5'][posicao] = uhe['pol_vaz_niv_jus_5'] self._cota_ref_nivel_jus['valor'][posicao] = uhe['cota_ref_nivel_jus'] self._cfmed['valor'][posicao] = uhe['cfmed'] self._inf_canal_fuga['valor'][posicao] = uhe['inf_canal_fuga'] self._fator_carga_max['valor'][posicao] = uhe['fator_carga_max'] self._fator_carga_min['valor'][posicao] = uhe['fator_carga_min'] self._vaz_min['valor'][posicao] = uhe['vaz_min'] self._unid_base['valor'][posicao] = uhe['unid_base'] self._tipo_turb['valor'][posicao] = uhe['tipo_turb'] self._repres_conj['valor'][posicao] = uhe['repres_conj'] self._teifh['valor'][posicao] = uhe['teifh'] self._ip['valor'][posicao] = uhe['ip'] self._tipo_perda['valor'][posicao] = uhe['tipo_perda'] self._data['valor'][posicao] = uhe['data'] self._observ['valor'][posicao] = uhe['observ'] self._vol_ref['valor'][posicao] = uhe['vol_ref'] self._tipo_reg['valor'][posicao] = uhe['tipo_reg'] self._vazoes['valor'][posicao] = uhe['vazoes'] self._vol_mint['valor'][posicao] = uhe['vol_mint'] self._vol_maxt['valor'][posicao] = uhe['vol_maxt'] self._vol_minp['valor'][posicao] = uhe['vol_minp'] self._vaz_mint['valor'][posicao] = uhe['vaz_mint'] self._cfugat['valor'][posicao] = uhe['cfugat'] self._vol_util['valor'][posicao] = uhe['vol_util'] self._pot_efet['valor'][posicao] = uhe['pot_efet'] self._vaz_efet['valor'][posicao] = uhe['vaz_efet'] self._status_vol_morto['valor'][posicao] = uhe['status_vol_morto'] self._status_motoriz['valor'][posicao] = uhe['status_motoriz'] self._vol_morto_tempo['valor'][posicao] = uhe['vol_morto_tempo'] self._engol_tempo['valor'][posicao] = uhe['engol_tempo'] self._potencia_tempo['valor'][posicao] = uhe['potencia_tempo'] self._unidades_tempo['valor'][posicao] = uhe['unidades_tempo'] self._ro_65['valor'][posicao] = uhe['ro_65'] self._ro_50['valor'][posicao] = uhe['ro_50'] self._ro_equiv['valor'][posicao] = uhe['ro_equiv'] self._ro_equiv65['valor'][posicao] = uhe['ro_equiv65'] self._ro_min['valor'][posicao] = uhe['ro_min'] self._ro_max['valor'][posicao] = uhe['ro_max'] self._engolimento['valor'][posicao] = uhe['engolimento'] print(np.shape(self._copiavazoes)) for iano in range(np.shape(self._copiavazoes)[0]): for imes in range(12): self._copiavazoes[iano][imes][self._posto['valor'][posicao]-1] = self._vazoes['valor'][posicao][iano][imes] return 'sucesso' def help(self, parametro): """ Detalha o tipo de informacao de uma chave do dicionario de dados obtido pelo comando get. :param parametro: string contendo a chave do dicionario de dados cuja o detalhamento eh desejado """ duvida = getattr(self, '_'+parametro) return duvida['descricao'] # Calcula Vazao Incremental def vaz_inc(self, uhe, iano, imes): def Montante(uhe, iano, imes): for iusi in self.lista_uhes(): usina = self.get(iusi) if usina['jusante'] == uhe['codigo']: if usina['status_vol_morto'][iano][imes] == 2: yield iusi else: yield from Montante(usina, iano, imes) # Inicia a vazão incremental da uhe com a sua vazão natural, depois abate as naturais de montante incremental = uhe['vazoes'][:,imes] if uhe['status_vol_morto'][iano][imes] != 2: print ('Erro: Tentativa de calculo de Incremental para usina (', uhe['nome'], ') fora de operacao no mes ', imes, ' e ano ', iano) return 0 else: for iusina in Montante(uhe, iano, imes): usina = self.get(iusina) incremental = incremental - usina['vazoes'][:,imes] # Caso Alguma Incremental seja Menor que zero, força para zero codigos = np.where(incremental<0) incremental[codigos] = 0 return incremental def vaz_inc_entre_res(self, codigo, ianoconf, imesconf): uhe = self.get(codigo) nanos_hist = len(uhe['vazoes']) def Montante(codigo, iano, imes): #for iusi in self.lista_uhes(): # usina = self.get(iusi) for iusi, jusante in enumerate(self._jusante['valor']): if jusante == codigo: if self._status_vol_morto['valor'][iusi][iano][imes] == 2: if self._vol_util['valor'][iusi] > 0: yield iusi else: yield from Montante(self._codigo['valor'][iusi], iano, imes) else: yield from Montante(self._codigo['valor'][iusi], iano, imes) if uhe['status_vol_morto'][ianoconf][imesconf] != 2: print ('Erro: Tentativa de calculo de Incremental para usina (', uhe['nome'], ') fora de operacao no mes ', imesconf, ' e ano ', ianoconf) return 0 else: incremental = np.zeros(nanos_hist) for ianoh in range(nanos_hist): incremental[ianoh] = uhe['vazoes'][ianoh][imesconf] for iusina in Montante(codigo, ianoconf, imesconf): for ianoh in range(nanos_hist): incremental[ianoh] = incremental[ianoh] - self._vazoes['valor'][iusina][ianoh][imesconf] # Caso Alguma Incremental seja Menor que zero, força para zero codigos = np.where(incremental<0) incremental[codigos] = 0 return incremental ########################################################################################################## # Calcula Parametros das Usinas ########################################################################################################## #def _calc_vol_util(self): # Calcula Volume Util da Usina # if self._tipo_reg['valor'][-1] == 'M': # self._vol_util['valor'].append(self._vol_max['valor'][-1] - self._vol_min['valor'][-1]) # else: # self._vol_util['valor'].append(float(0)) # self._vol_min['valor'][-1] = self._vol_max['valor'][-1] def _calc_pot_efetiva(self): # Calcula Potencia Efetiva da Usina a = np.array(self._maq_por_conj["valor"][-1]) b = np.array(self._pef_por_conj["valor"][-1]) self._pot_efet['valor'].append(np.vdot(a, b)) def _calc_vaz_efetiva(self): # Calcula Vazao Efetiva da Usina a = np.array(self._maq_por_conj["valor"][-1]) b = np.array(self._vaz_efet_conj["valor"][-1]) self._vaz_efet['valor'].append(np.vdot(a, b)) def _calc_produtibs(self, nanos): # Calcula Produtibilidades Associadas aa diversos volumes self._ro_65['valor'].append(np.zeros( (nanos,12), 'd' )) self._ro_50['valor'].append(np.zeros( (nanos,12), 'd' )) self._ro_equiv['valor'].append(np.zeros( (nanos,12), 'd' )) self._ro_equiv65['valor'].append(np.zeros( (nanos,12), 'd' )) self._ro_min['valor'].append(np.zeros( (nanos,12), 'd' )) self._ro_max['valor'].append(np.zeros( (nanos,12), 'd' )) a = self._pol_cota_vol["valor"][-1][0] b = self._pol_cota_vol["valor"][-1][1] c = self._pol_cota_vol["valor"][-1][2] d = self._pol_cota_vol["valor"][-1][3] e = self._pol_cota_vol["valor"][-1][4] # Calcula Produtibilidade Associada a 65% do Volume Util volume = self._vol_min['valor'][-1] + 0.65*self._vol_util['valor'][-1] cota = a + b*volume + c*volume**2 + d*volume**3 + e*volume**4 for iano in range(nanos): for imes in range(12): cfuga = self._cfugat['valor'][-1][iano][imes] if self._tipo_perda['valor'][-1] == 2: self._ro_65['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga - self._perda_hid['valor'][-1]) else: self._ro_65['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga)*(1. - self._perda_hid['valor'][-1]/100) # Calcula Produtibilidade Associada a 50% do Volume Util volume = self._vol_min['valor'][-1] + 0.50*self._vol_util['valor'][-1] cota = a + b*volume + c*volume**2 + d*volume**3 + e*volume**4 for iano in range(nanos): for imes in range(12): cfuga = self._cfugat['valor'][-1][iano][imes] if self._tipo_perda['valor'][-1] == 2: self._ro_50['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga - self._perda_hid['valor'][-1]) else: self._ro_50['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga)*(1. - self._perda_hid['valor'][-1]/100) # Calcula Produtibilidade Associada ao Volume Maximo volume = self._vol_max['valor'][-1] cota = a + b*volume + c*volume**2 + d*volume**3 + e*volume**4 for iano in range(nanos): for imes in range(12): cfuga = self._cfugat['valor'][-1][iano][imes] if self._tipo_perda['valor'][-1] == 2: self._ro_max['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga - self._perda_hid['valor'][-1]) else: self._ro_max['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga)*(1. - self._perda_hid['valor'][-1]/100) # Calcula Produtibilidade Associada ao Volume Minimo volume = self._vol_min['valor'][-1] cota = a + b*volume + c*volume**2 + d*volume**3 + e*volume**4 for iano in range(nanos): for imes in range(12): cfuga = self._cfugat['valor'][-1][iano][imes] if self._tipo_perda['valor'][-1] == 2: self._ro_min['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga - self._perda_hid['valor'][-1]) else: self._ro_min['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga)*(1. - self._perda_hid['valor'][-1]/100) # Calcula Produtibilidade Equivalente if ( self._vol_util['valor'][-1] > 0): cota = 0 cota65 = 0 Vol65 = self._vol_min['valor'][-1] + 0.65*self._vol_util['valor'][-1] for i in range(5): cota = cota + self._pol_cota_vol["valor"][-1][i] * (self._vol_max['valor'][-1]**(i+1)) / (i+1) cota = cota - self._pol_cota_vol["valor"][-1][i] * (self._vol_min['valor'][-1]**(i+1)) / (i+1) cota65 = cota65 + self._pol_cota_vol["valor"][-1][i] * (Vol65**(i+1)) / (i+1) cota65 = cota65 - self._pol_cota_vol["valor"][-1][i] * (self._vol_min['valor'][-1]**(i+1)) / (i+1) cota = cota / self._vol_util['valor'][-1] cota65 = cota65 / (Vol65 - self._vol_min['valor'][-1]) else: cota65 = cota for iano in range(nanos): for imes in range(12): cfuga = self._cfugat['valor'][-1][iano][imes] if self._tipo_perda['valor'][-1] == 2: self._ro_equiv['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga - self._perda_hid['valor'][-1]) self._ro_equiv65['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota65 - cfuga - self._perda_hid['valor'][-1]) else: self._ro_equiv['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota - cfuga)*(1. - self._perda_hid['valor'][-1]/100) self._ro_equiv65['valor'][-1][iano][imes] = self._prod_esp['valor'][-1] * (cota65 - cfuga)*(1. - self._perda_hid['valor'][-1]/100) return def _prod_acum(self): def cascata(confhd, codigo, iano,imes): current = confhd.get(codigo) if current['status_vol_morto'][iano][imes] == 2: yield current['codigo'] while current['jusante'] != 0: current = confhd.get(current['jusante']) if current['status_vol_morto'][iano][imes] == 2: yield current['codigo'] # # Percorre todas as usinas do confhd para inserir produtibilidades acumuladas # for reg, codigo in enumerate(self._codigo['valor']): nanos = len(self._status_vol_morto['valor'][reg]) # # As produtibilidades devem ser calculadas para cada mês/ano do histórico # for iano in range(nanos): for imes in range(12): trocouRee = 0 trocouSist = 0 FioRee = True FioSist = True for iusina in cascata(self, codigo, iano, imes): uhe = self.get(iusina) produtib = uhe['ro_equiv'][iano][imes] produtib65 = uhe['ro_equiv65'][iano][imes] produtibMax = uhe['ro_max'][iano][imes] produtibMed = uhe['ro_65'][iano][imes] produtibMin = uhe['ro_min'][iano][imes] if uhe['status_motoriz'][iano][imes] == 2: self._ro_acum['valor'][reg][iano][imes] += produtib self._ro_acum_65['valor'][reg][iano][imes] += produtib65 self._ro_acum_max['valor'][reg][iano][imes] += produtibMax self._ro_acum_med['valor'][reg][iano][imes] += produtibMed self._ro_acum_min['valor'][reg][iano][imes] += produtibMin if uhe['sist'] != self._sist['valor'][reg]: trocouSist = trocouSist + 1 if uhe['ree'] != self._ree['valor'][reg]: trocouRee = trocouRee + 1 if trocouRee == 0: if uhe['status_motoriz'][iano][imes] == 2: self._ro_acum_a_ree['valor'][reg][iano][imes] += produtib else: if uhe['vol_util'] > 0: FioRee = False if FioRee: if uhe['status_motoriz'][iano][imes] == 2: self._ro_acum_b_ree['valor'][reg][iano][imes] += produtib else: if uhe['status_motoriz'][iano][imes] == 2: self._ro_acum_c_ree['valor'][reg][iano][imes] += produtib if trocouSist == 0: if uhe['status_motoriz'][iano][imes] == 2: self._ro_acum_a_sist['valor'][reg][iano][imes] += produtib else: if uhe['vol_util'] > 0: FioSist = False if FioSist: if uhe['status_motoriz'][iano][imes] == 2: self._ro_acum_b_sist['valor'][reg][iano][imes] += produtib else: if uhe['status_motoriz'][iano][imes] == 2: self._ro_acum_c_sist['valor'][reg][iano][imes] += produtib def _prod_acum_entre_res_ree(self, uhe, iano, imes): if uhe['jusante'] == 0: return 0 uhe_nova = self.get(uhe['jusante']) if uhe_nova['vol_util'] != 0: return 0. elif uhe_nova['ree'] != uhe['ree']: return 0. elif uhe_nova['status_motoriz'][iano][imes] == 2: return uhe_nova['ro_equiv'] + self._prod_acum_entre_res_ree(uhe_nova, iano, imes) else: return self._prod_acum_entre_res_ree(uhe_nova, iano, imes) # # def ProdAcumEntreResSist(self, iano, imes, usinas): # if self.Jusante == 0: # return 0 # for iusina in usinas: # if iusina.Codigo == self.Jusante: # if iusina.VolUtil != 0: # return 0. # elif self.Sist != iusina.Sist: # return 0. # elif iusina.StatusMotoriz[iano][imes] == 2: # return iusina.RoEquiv + iusina.ProdAcumEntreResSist(iano, imes, usinas) # else: # return iusina.ProdAcumEntreResSist(iano, imes, usinas) # break def _calc_engol(self, ql): engol = 0. for i in range(5): # Varre Conjuntos de Maquinas if self._maq_por_conj['valor'][-1][i] > 0: if ql < self._alt_efet_conj['valor'][-1][i]: if self._tipo_turb == 1 or self._tipo_turb == 3: alpha = 0.5 else: alpha = 0.2 else: alpha = -1 if self._alt_efet_conj['valor'][-1][i] != 0: engol = engol + self._maq_por_conj['valor'][-1][i]*self._vaz_efet_conj['valor'][-1][i]*((ql/self._alt_efet_conj['valor'][-1][i])**alpha) return engol def _calc_engol_maximo(self): # Estima Engolimento Maximo da Usina a = self._pol_cota_vol['valor'][-1][0] b = self._pol_cota_vol['valor'][-1][1] c = self._pol_cota_vol['valor'][-1][2] d = self._pol_cota_vol['valor'][-1][3] e = self._pol_cota_vol['valor'][-1][4] # Calcula Engolimento a 65% do Volume Util volume = self._vol_min['valor'][-1] + 0.65*self._vol_util['valor'][-1] cota = a + b*volume + c*volume**2 + d*volume**3 + e*volume**4 queda65 = cota - self._cfmed['valor'][-1] engol65 = self._calc_engol(queda65) # Calcula Engolimento a 50% do Volume Util volume = self._vol_min['valor'][-1] + 0.50*self._vol_util['valor'][-1] cota = a + b*volume + c*volume**2 + d*volume**3 + e*volume**4 queda50 = cota - self._cfmed['valor'][-1] engol50 = self._calc_engol(queda50) # Calcula Engolimento Associada ao Volume Maximo volume = self._vol_max['valor'][-1] cota = a + b*volume + c*volume**2 + d*volume**3 + e*volume**4 quedaMax = cota - self._cfmed['valor'][-1] engolMax = self._calc_engol(quedaMax) # Calcula Engolimento Associada ao Volume Minimo volume = self._vol_min['valor'][-1] cota = a + b*volume + c*volume**2 + d*volume**3 + e*volume**4 quedaMin = cota - self._cfmed['valor'][-1] engolMin = self._calc_engol(quedaMin) # Calcula Engolimento Associado a Altura Equivalente if ( self._vol_util['valor'][-1] > 0): cota = 0 for i in range(5): cota = cota + self._pol_cota_vol['valor'][-1][i] * (self._vol_max['valor'][-1]**(i+1)) / (i+1) cota = cota - self._pol_cota_vol['valor'][-1][i] * (self._vol_min['valor'][-1]**(i+1)) / (i+1) cota = cota / self._vol_util['valor'][-1] quedaEquiv = cota - self._cfmed['valor'][-1] engolEquiv = self._calc_engol(quedaEquiv) self._engolimento['valor'].append((engol50+engol65+engolEquiv+engolMax+engolMin)/5) return def lista_uhes(self): """ Calcula um generator contendo todos os codigos de referencia das usinas pertencentes ao CONFHD. """ for i in range(self.nuhe): yield self._codigo["valor"][i] def _acerta_modif(self, df, dger): tamanho = df.shape tamanho = tamanho[0] for linha in range(tamanho): registro = df.iloc[linha].values # # Palavras chaves tipo zero - somente atualiza valores # if registro[4].upper() == 'NUMCNJ': self._num_conj_maq['valor'][-1] = registro[5] if registro[4].upper() == 'PRODESP': self._prod_esp['valor'][-1] = registro[5] if registro[4].upper() == 'TEIF': self._teifh['valor'][-1] = registro[5] if registro[4].upper() == 'IP': self._ip['valor'][-1] = registro[5] if registro[4].upper() == 'PERDHID': self._perda_hid['valor'][-1] = registro[5] if registro[4].upper() == 'VAZMIN': self._vaz_min['valor'][-1] = registro[5] if registro[4].upper() == 'NUMBAS': self._unid_base['valor'][-1] = registro[5] # # Palavras chaves tipo um - dois campos # if registro[4].upper() == 'NUMMAQ': nr_conj = int(registro[6]) self._maq_por_conj['valor'][-1][nr_conj-1] = int(registro[5]) if registro[4].upper() == 'POTEFE': nr_conj = int(registro[6]) self._pef_por_conj['valor'][-1][nr_conj-1] = registro[5] if registro[4].upper() == 'COEFEVAP': mes = int(registro[6]) self._coef_evap['valor'][-1][mes-1] = registro[5] if registro[4].upper() == 'VOLMIN': if registro[6].find("%") == 1: self._vol_min['valor'][-1] = self._vol_min['valor'][-1] + \ float(registro[5]) * self._vol_util['valor'][-1] / 100 if registro[6].find("h") == 1: self._vol_min['valor'][-1] = registro[5] if registro[4].upper() == 'VOLMAX': if registro[6].find("%") == 1: self._vol_max['valor'][-1] = self._vol_min['valor'][-1] + \ float(registro[5]) * self._vol_util['valor'][-1] / 100 if registro[6].find("h") == 1: self._vol_max['valor'][-1] = registro[5] # # Palavras chaves tipo dois - coeficientes PCA e PCV # if registro[4].upper() == 'VOLCOTA': self._pol_cota_vol['valor'][-1] = registro[5] if registro[4].upper() == 'COTAREA': self._pol_cota_area['valor'][-1] = registro[5] # # Palavras chaves tipo 3 - Data e valor # if registro[4].upper() == 'CFUGA': ano = int(registro[0]) - dger.ano_ini['valor'] mes = int(registro[3]) - 1 while ano < dger.num_anos['valor']: while mes < 12: self._cfugat['valor'][-1][ano][mes] = registro[5] mes += 1 mes = 0 ano += 1 if registro[4].upper() == 'VAZMINT': ano = int(registro[0]) - dger.ano_ini['valor'] mes = int(registro[3]) - 1 while ano < dger.num_anos['valor']: while mes < 12: self._vaz_mint['valor'][-1][ano][mes] = registro[5] mes += 1 mes = 0 ano += 1 if registro[4].upper() == 'CMONT': ano = int(registro[0]) - dger.ano_ini['valor'] mes = int(registro[3]) - 1 while ano < dger.num_anos['valor']: while mes < 12: self._cmont['valor'][-1][ano][mes] = registro[5] mes += 1 mes = 0 ano += 1 # # Palavras chaves tipo 4 - Data, valor e ('h' ou '%') # if registro[4].upper() == 'VMINP': ano = int(registro[0]) - dger.ano_ini['valor'] mes = int(registro[3]) - 1 while ano < dger.num_anos['valor']: while mes < 12: if registro[6].find("h") == 1: self._vol_minp['valor'][-1][ano][mes] = registro[5] if registro[6].find("%") == 1: self._vol_minp['valor'][-1][ano][mes] = self._vol_min['valor'][-1] + \ float(registro[5]) * self._vol_util['valor'][-1] / 100 mes += 1 mes = 0 ano += 1 if registro[4].upper() == 'VMINT': ano = int(registro[0]) - dger.ano_ini['valor'] mes = int(registro[3]) - 1 while ano < dger.num_anos['valor']: while mes < 12: if registro[6].find("h") == 1: self._vol_mint['valor'][-1][ano][mes] = registro[5] if registro[6].find("%") == 1: self._vol_mint['valor'][-1][ano][mes] = self._vol_min['valor'][-1] + \ float(registro[5]) * self._vol_util['valor'][-1] / 100 mes += 1 mes = 0 ano += 1 if registro[4].upper() == 'VMAXT': ano = int(registro[0]) - dger.ano_ini['valor'] mes = int(registro[3]) - 1 while ano < dger.num_anos['valor']: while mes < 12: if registro[6].find("h") == 1: self._vol_maxt['valor'][-1][ano][mes] = registro[5] if registro[6].find("%") == 1: self._vol_maxt['valor'][-1][ano][mes] = self._vol_min['valor'][-1] + \ float(registro[5]) * self._vol_util['valor'][-1] / 100 mes += 1 mes = 0 ano += 1 return def _acerta_exph(self, df, dger): tamanho = df.shape tamanho = tamanho[0] # # Organização do Registro # # registro[0] = 'codigo', # registro[1] = 'nome', # registro[2] = 'mesi_evm', # registro[3] = 'anoi_evm', # registro[4] = 'dura_evm', # registro[5] = 'perc_evm', # registro[6] = 'mesi_tur', # registro[7] = 'anoi_tur', # registro[8] = 'comentar', # registro[9] = 'nume_tur', # registro[10] = 'nume_cnj'] if tamanho > 0: registro = df.iloc[0].values # # Trata Enchimento de Volume Morto # if not np.isnan(registro[2]): dur_vm = int(registro[4]) mesinicial = int(registro[2]) anoinicial = int(registro[3]) volume = self._vol_min['valor'][-1] * float(registro[5]) / 100 volume = (self._vol_min['valor'][-1] - volume) / dur_vm vol_frac = volume for iano in range(anoinicial - dger.ano_ini['valor'], dger.num_anos['valor']): for imes in range(mesinicial - 1, 12): if dur_vm > 0: self._status_vol_morto['valor'][-1][iano][imes] = 1 self._vol_morto_tempo['valor'][-1][iano][imes] += volume volume += vol_frac dur_vm -= 1 else: self._status_vol_morto['valor'][-1][iano][imes] = 2 self._vol_morto_tempo['valor'][-1][iano][imes] = 0. mesinicial = 1 else: self._status_vol_morto['valor'][-1] = 2 * np.ones((dger.num_anos['valor'], 12), 'i') for linha in range(tamanho): registro = df.iloc[linha].values if not np.isnan(registro[6]): # # Preenche evolução temporal do (1) Número de Unidades; (2) Engolimento; (3) Potência # mes_ent = int(registro[6]) ano_ent = int(registro[7]) pot_ent = float(registro[8]) unidade = int(registro[9]) conjunto = int(registro[10]) if mes_ent > 0: mesinicial = mes_ent self._maq_por_conj['valor'][-1][conjunto - 1] = unidade self._pef_por_conj['valor'][-1][conjunto - 1] = pot_ent self._calc_pot_efetiva() self._calc_engol_maximo() for iano in range(ano_ent - dger.ano_ini['valor'], dger.num_anos['valor']): for imes in range(mesinicial - 1, 12): self._unidades_tempo['valor'][-1][iano][imes] += 1 self._engol_tempo['valor'][-1][iano][imes] = self._engolimento['valor'][-1] self._potencia_tempo['valor'][-1][iano][imes] = self._pot_efet['valor'][-1] mesinicial = 1 # # Acerta Status da Motorização # for iano in range(dger.num_anos['valor']): for imes in range(12): if self._unidades_tempo['valor'][-1][iano][imes] >= self._unid_base['valor'][-1]: self._status_motoriz['valor'][-1][iano][imes] = 2 elif self._unidades_tempo['valor'][-1][iano][imes] > 0: self._status_motoriz['valor'][-1][iano][imes] = 1 else: if self._status_motoriz['valor'][-1][iano][imes] == 2: self._status_motoriz['valor'][-1][iano][imes] = 1 else: self._status_motoriz['valor'][-1][iano][imes] = 0 ########################################################################################################## # Plota Gráficos Diversos ########################################################################################################## def plota_volume(self, uhe): nanos = len(uhe['vol_mint']) fig = plt.figure() ax = plt.subplot(111) x_axis = np.arange(1,nanos*12+1) ax.plot(x_axis,uhe['vol_mint'].reshape(nanos*12),'g-.',lw=2, label = 'Vol.Min.Operat.') ax.plot(x_axis,uhe['vol_maxt'].reshape(nanos*12),'g-.',lw=2, label = 'Vol.Max.Operat.') ax.plot(x_axis,uhe['vol_max']*np.ones(nanos*12),'b-',lw=3, label = 'Vol.Minimo Real') ax.plot(x_axis,uhe['vol_min']*np.ones(nanos*12),'b-',lw=3, label = 'Vol.Maximo Real') ax.plot(x_axis,uhe['vol_minp'].reshape(nanos*12),'b-.',lw=2, label = 'Vol.Min.com Pen.') plt.fill_between(x_axis,uhe['vol_mint'].reshape(nanos*12), uhe['vol_maxt'].reshape(nanos*12), facecolor='g', alpha=0.1) titulo = 'Evolucao dos Volumes da Usina \n' + uhe['nome'] plt.title(titulo, fontsize=16) plt.xlabel('Mes de Estudo', fontsize=16) plt.ylabel('Volume em hm^3', fontsize=16) box = ax.get_position() ax.set_position([ box.x0, box.y0, box.width*0.7, box.height] ) ax.legend(loc='center left', shadow=True, fontsize=12, bbox_to_anchor=(1, 0.5)) plt.show() def plota_vaz_min(self, uhe): nanos = len(uhe['vaz_mint']) fig = plt.figure() ax = plt.subplot(111) x_axis = np.arange(1,nanos*12+1) ax.plot(x_axis,uhe['vaz_mint'].reshape(nanos*12),'g-.',lw=2, label='Vaz.Min.Operat.') ax.plot(x_axis,uhe['vaz_min']*np.ones(nanos*12),'b-',lw=3, label='Vaz.Min.Cadastro') titulo = 'Evolucao da Vazao Minima da Usina \n' + uhe['nome'] plt.title(titulo, fontsize=16) plt.xlabel('Mes de Estudo', fontsize=16) plt.ylabel('Vazao Minima em m^3', fontsize=16) box = ax.get_position() ax.set_position([ box.x0, box.y0, box.width*0.7, box.height] ) ax.legend(loc='center left', shadow=True, fontsize=12, bbox_to_anchor=(1, 0.5)) plt.show() def plota_volmorto(self, uhe): if uhe['status'] == 'EX': print('Grafico de Volume Morto nao impresso, pois ', uhe['nome'], 'e uma usina existente') return nanos = len(uhe['vol_morto_tempo']) nmeses = np.count_nonzero(uhe['vol_morto_tempo']) legenda = str(nmeses) + ' Meses' ax = plt.subplot(111) x_axis = np.arange(1,nanos*12+1) p1 = ax.plot(x_axis,uhe['vol_morto_tempo'].reshape(nanos*12),'g-.',lw=2, label = legenda ) titulo = 'Enchimento do Volume Morto da Usina \n' + uhe['nome'] plt.title(titulo, fontsize=16) plt.xlabel('Mes de Estudo', fontsize=16) plt.ylabel('Volume Morto em hm^3', fontsize=16) plt.legend(fontsize=12) np.count_nonzero(uhe['vol_morto_tempo']) plt.show() def plota_potencia(self, uhe): nanos = len(uhe['potencia_tempo']) ax = plt.subplot(111) x_axis = np.arange(1, nanos * 12 + 1) p1 = ax.plot(x_axis, uhe['potencia_tempo'].reshape(nanos * 12), 'g-.', lw=2) titulo = 'Evolucao da Potencia Efetiva da Usina \n' + uhe['nome'] plt.title(titulo, fontsize=16) plt.xlabel('Mes de Estudo', fontsize=16) plt.ylabel('Potencia Efetiva em MW', fontsize=16) plt.show() def plot_vaz(self, uhe): """ Plota as todas as series historicas anuais da usina cujo dicionario de dados eh fornecia na entrada. Em ciano estao as diversas series anuais. Em azul escuro esta a ultima serie anual. Em vermelho continuo esta a media mensal. Em vermelho pontilhado esta a media menos ou mais o desvio padrao. :param uhe: Dicionario de dados contendo informacoes de uma usina hidreletrica """ vaz_nat = uhe['vazoes'] x_axis = np.arange(1, 13) plt.plot(x_axis, vaz_nat.transpose(), 'c-') media = np.mean(vaz_nat, axis=0) plt.plot(x_axis, media, 'r-', lw=3) desvio = np.nanstd(vaz_nat, axis=0) plt.plot(x_axis, media + desvio, 'r-.', lw=2) plt.plot(x_axis, media - desvio, 'r-.', lw=2) ultimo = len(vaz_nat) - 1 plt.plot(x_axis, vaz_nat[:][ultimo], 'b-') titulo = 'Historico de Vazoes da Usina ' + uhe['nome'] plt.title(titulo, fontsize=16) plt.xlabel('Mes do Ano', fontsize=16) plt.ylabel('Vazao', fontsize=16) plt.show() return # Plota Polinomio Cota-Volume def plot_pcv(self, uhe): """ Plota polinimo Cota-Volume da usina hidreletrica especificada na entrada :param uhe: Dicionario de dados contendo informacoes da usina hidreletrica """ if uhe["vol_min"] == 0: return a = uhe['pol_cota_vol'][0] b = uhe['pol_cota_vol'][1] c = uhe['pol_cota_vol'][2] d = uhe['pol_cota_vol'][3] e = uhe['pol_cota_vol'][4] if (uhe["vol_min"] == uhe["vol_max"]): volumes = np.linspace(uhe["vol_min"] - 1,uhe["vol_max"] + 1, 100) cota = a + b*uhe["vol_min"] + c*uhe["vol_min"]**2 + d*uhe["vol_min"]**3 + e*uhe["vol_min"]**4 cota = cota*np.ones(100) else: volumes = np.linspace(uhe["vol_min"],uhe["vol_max"],100) cota = a + b*volumes + c*volumes**2 + d*volumes**3 + e*volumes**4 cota.shape = volumes.shape plt.plot(volumes, cota, 'b-', lw=3) plt.xlabel('Volume do Reservatorio (hm^3)', fontsize=16) titulo = 'Polinomio Cota-Volume da Usina ' + uhe['nome'] plt.title(titulo, fontsize=16) plt.ylabel('Cota em Metros', fontsize=16) plt.xlim(volumes[0], volumes[99]) if ( cota[0] == cota[99]): plt.ylim(cota[0]-1, cota[99]+1) else: plt.ylim(cota[0], cota[99]) plt.show() # Plota Polinomio Cota-Area def plot_pca(self, uhe): """ Plota polinimo cota-area da usina hidreletrica especificada na entrada :param uhe: Dicionario de dados contendo informacoes da usina hidreletrica """ if uhe['vol_min'] == 0: return if (uhe['cota_min'] == uhe['cota_max']): cotas = np.linspace(uhe['cota_min'] - 1,uhe['cota_max'] + 1, 100) else: cotas = np.linspace(uhe['cota_min'],uhe['cota_max'],100) a = uhe['pol_cota_area'][0] b = uhe['pol_cota_area'][1] c = uhe['pol_cota_area'][2] d = uhe['pol_cota_area'][3] e = uhe['pol_cota_area'][4] areas = a + b*cotas + c*cotas**2 + d*cotas**3 + e*cotas**4 areas.shape = cotas.shape plt.plot(cotas, areas, 'b-', lw=3) plt.xlabel('Cota do Reservatorio (em metros)', fontsize=16) titulo = 'Polinomio Cota-Area da Usina ' + uhe['nome'] plt.title(titulo, fontsize=16) plt.ylabel('Area Superficia em km^2', fontsize=16) plt.xlim(cotas[0], cotas[99]) if ( areas[0] == areas[99]): plt.ylim(areas[0]-1, areas[99]+1) else: plt.ylim(areas[0], areas[99]) plt.show() # Plota Produtibilidades Constantes da Usina def plota_produtibs(self, uhe, iano, imes): """ Plota polinimo cota-area da usina hidreletrica especificada na entrada :param uhe: Dicionario de dados contendo informacoes da usina hidreletrica """ x_axis = np.arange(1,7) y_axis = [ uhe['ro_equiv'][iano][imes], uhe['ro_equiv65'][iano][imes], uhe['ro_min'][iano][imes], uhe['ro_50'][iano][imes], uhe['ro_65'][iano][imes], uhe['ro_max'][iano][imes] ] fig, ax = plt.subplots() a, b, c, d, e, f = plt.bar(x_axis, y_axis) a.set_facecolor('r') b.set_facecolor('g') c.set_facecolor('b') d.set_facecolor('y') e.set_facecolor('m') f.set_facecolor('c') ax.set_xticks(x_axis) ax.set_xticklabels(['Equiv', 'Equiv65', 'Min', '50%', '65%', 'Max']) titulo = 'Produtibilidades da Usina ' + uhe['nome'] + ' - Ano: ' + str(iano+1) + ' - Mês:' + str(imes+1) plt.title(titulo, fontsize=16) plt.xlabel('Tipo de Produtibilidade', fontsize=16) plt.ylabel('Produtibilidade', fontsize=16) plt.show() # Plota Variação de Produtibilidade def plot_var_prod(self, uhe): """ Plota variacao da produtibilidade da usina hidreletrica especificada na entrada :param uhe: Dicionario de dados contendo informacoes da usina hidreletrica """ if uhe['vol_min'] == 0: return a = uhe['pol_cota_vol'][0] b = uhe['pol_cota_vol'][1] c = uhe['pol_cota_vol'][2] d = uhe['pol_cota_vol'][3] e = uhe['pol_cota_vol'][4] if (uhe["vol_min"] == uhe["vol_max"]): volumes = np.linspace(uhe["vol_min"] - 1,uhe["vol_max"] + 1, 100) cotamont = a + b*uhe["vol_min"] + c*uhe["vol_min"]**2 + d*uhe["vol_min"]**3 + e*uhe["vol_min"]**4 cotamont = cotamont*np.ones(100) else: volumes = np.linspace(uhe["vol_min"],uhe["vol_max"],100) cotamont = a + b*volumes + c*volumes**2 + d*volumes**3 + e*volumes**4 cotamont.shape = volumes.shape qdef = np.linspace(uhe['vaz_min'], 2*uhe['engolimento'], 100) a = uhe['pol_vaz_niv_jus'][0] b = uhe['pol_vaz_niv_jus'][1] c = uhe['pol_vaz_niv_jus'][2] d = uhe['pol_vaz_niv_jus'][3] e = uhe['pol_vaz_niv_jus'][4] cotajus = a + b*qdef + c*qdef**2 + d*qdef**3 + e*qdef**4 cotajus.shape = qdef.shape xGrid, yGrid = np.meshgrid(cotamont, cotajus) z = uhe['prod_esp'] * ( xGrid - yGrid ) fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(qdef, volumes,z, rcount=100, ccount = 100, cmap=plt.cm.coolwarm, linewidth=0, antialiased=False) plt.xlabel('Vazão Defluente em m^3/s', fontsize=12) titulo = 'Produtibilidade da Usina ' + uhe['nome'] plt.title(titulo, fontsize=16) plt.ylabel('Volume Armazenado em hm^3', fontsize=12) fig.colorbar(surf, shrink=0.5, aspect=5) plt.show() # Plota Usinas Não Existentes e Existentes em Expansao def plota_expansao(self): # Conta quantas usinas estao cont = 0 nomes = [] for iusi, status in enumerate(self._status['valor']): if status == 'EE' or status == 'NE': cont += 1 nomes.append(self._nome['valor'][iusi]) motorizada = np.zeros(cont) vazia = np.zeros(cont) enchendo = np.zeros(cont) submotorizada = np.zeros(cont) ind = np.arange(cont) cont = 0 nanos = len(self._status_vol_morto['valor'][0]) for iusi, status in enumerate(self._status['valor']): if status == 'EE' or status == 'NE': # Meses em que a usina esta motorizada motorizada[cont] = nanos * 12 - np.count_nonzero(self._status_motoriz['valor'][iusi] - 2) # Meses que a usina ainda nao iniciou o enchimento do volume morto vazia[cont] = nanos * 12 - np.count_nonzero(self._status_vol_morto['valor'][iusi]) # Meses que a usina encontra-se enchendo o volume morto enchendo[cont] = nanos * 12 - np.count_nonzero(self._status_vol_morto['valor'][iusi] - 1) # Meses que a usina encontra-se motorizando submotorizada[cont] = nanos * 12 - np.count_nonzero(self._status_motoriz['valor'][iusi] - 1) cont += 1 width = 0.35 # the width of the bars: can also be len(x) sequence ax = plt.axes() p1 = plt.barh(ind, vazia, width, color='w') p2 = plt.barh(ind, enchendo, width, color='lime', left=vazia) p3 = plt.barh(ind, submotorizada, width, color='sienna', left=vazia + enchendo) p4 = plt.barh(ind, motorizada, width, color='black', left=vazia + enchendo + submotorizada) plt.ylabel('Usinas', fontsize=16) plt.title('Usinas Hidreletricas em Expansao', fontsize=16) plt.yticks(ind, nomes, fontsize=12) plt.xticks(np.arange(0, nanos * 12 + 2, 12)) # plt.yticks(np.arange(0, 81, 10)) plt.legend((p1[0], p2[0], p3[0], p4[0]), ('Nao Entrou', 'Enchendo Vol. Morto', 'Submotorizada', 'Motorizada'), fontsize=12) plt.xlabel('Meses do Estudo', fontsize=16) ax.xaxis.grid() plt.show() def parp(self, uhe, ord_max): """ Implementa o método para o calculo dos coeficentes do modelo PAR(p). :param uhe: dicionario de dados com informacoes da usina hidreletrica, ord_max: ord_max do modelo PAR(p) :returns ordem: Ordem do modelo Ar para cada mes, coef_parp: Coeficientes do modelo AR para cada mes, fac: Funcao de Auto-Correlacao, facp: Funcao de Auto-Correlacao Parcial, residuos: Matriz de residuos """ vazoes = uhe['vazoes'] nanos = len(vazoes) # A serie historica do ultimo ano geralmente nao vem completa (despreze-a) media = np.mean(vazoes[1:(nanos-1)], 0) # A primeira serie historica eh utilizada como tendencia (despreze-a) desvio = np.std(vazoes[1:(nanos-1)], 0) # A primeira serie historica eh utilizada como tendencia (despreze-a) # Calcula vazao normalizada (nao precisa) #vaznorm = np.zeros((nanos,12),'d') #for iano in range(nanos): # for imes in range(12): # vaznorm[iano][imes] = (self.Vazoes[iano][imes] - media[imes])/desvio[imes] # Calcula funcao de auto-correlacao (uma para cada mes) fac = np.zeros( (12, ord_max+1), 'd') for ilag in range(ord_max+1): for imes in range(12): for iano in np.arange(1,nanos-1): ano_ant = iano mes_ant = imes - ilag if mes_ant < 0: ano_ant -= 1 mes_ant += 12 fac[imes][ilag] += (vazoes[iano][imes] - media[imes]) * (vazoes[ano_ant][mes_ant] - media[mes_ant]) fac[imes][ilag] /= (nanos-2) fac[imes][ilag] /= (desvio[imes]*desvio[mes_ant]) # Calcula funcao de auto-correlacao parcial (uma para cada mes) facp = np.zeros((12, ord_max+1), 'd') for ilag in np.arange(1,ord_max+1): for imes in range(12): A = np.eye(ilag) B = np.zeros(ilag) # Preenche matriz triangular superior for ilin in range(len(A)): for icol in range( len(A) ): # TODO: Aqui poderia ser np.arange(ilin+1,len(A)): Testar depois if icol > ilin: mes = imes - ilin - 1 if mes < 0: mes = mes + 12 A[ilin][icol] = fac[mes][icol-ilin] B[ilin] = fac[imes][ilin+1] # Preenche matriz triangular inferior for ilin in range(len(A)): for icol in range( len(A) ): # TODO: Aqui poderia ser np.arange(0, ilin): Testar depois if icol < ilin: A[ilin][icol] = A[icol][ilin] phi = np.linalg.solve(A,B) facp[imes][ilag] = phi[ len(phi)-1 ] # Identificacao da ordem IC = 1.96/np.sqrt(nanos-2) ordem = np.zeros(12, 'i') for imes in range(12): ordem[imes] = 0 for ilag in range(ord_max+1): if facp[imes][ilag] > IC or facp[imes][ilag] < -IC: ordem[imes] = ilag # Calculo dos coeficientes coef_parp = np.zeros( (12,ord_max), 'd') for imes in range(12): ilag = ordem[imes] A = np.eye(ilag) B = np.zeros(ilag) # Preenche matriz triangular superior for ilin in range(len(A)): for icol in range( len(A) ): # TODO: Aqui poderia ser np.arange(ilin+1,len(A)): Testar depois if icol > ilin: mes = imes - ilin - 1 if mes < 0: mes = mes + 12 A[ilin][icol] = fac[mes][icol-ilin] B[ilin] = fac[imes][ilin+1] # Preenche matriz triangular inferior for ilin in range(len(A)): for icol in range( len(A) ): # TODO: Aqui poderia ser np.arange(0, ilin): Testar depois if icol < ilin: A[ilin][icol] = A[icol][ilin] phi =
np.linalg.solve(A,B)
numpy.linalg.solve
from datetime import datetime from math import sqrt, exp import numpy as np class LevenshteinCalculator(object): def calculate(self, source, target): if len(source) < len(target): return self.calculate(target, source) if len(target) == 0: return len(source) source = np.array(tuple(source)) target = np.array(tuple(target)) previous_row = np.arange(target.size + 1) for s in source: current_row = previous_row + 1 current_row[1:] = np.minimum(current_row[1:], np.add(previous_row[:-1], target != s)) current_row[1:] =
np.minimum(current_row[1:], current_row[0:-1] + 1)
numpy.minimum
import torch import numpy as np import torch.nn as torch_nn from torch.nn import Parameter import torch.nn.functional as F from collections import OrderedDict from scipy.spatial.transform import Rotation as R import platform # torch.set_default_tensor_type('torch.cuda.FloatTensor') import jittor as jt from jittor import Module from jittor import nn class Sine(Module): def __init(self, w0=30.): super().__init__() self.w0 = w0 def forward(self, input): return jt.sin(self.w0 * input) act_dict = {'relu': nn.ReLU, 'sigmoid': nn.Sigmoid, 'elu': nn.ELU, 'tanh': nn.Tanh, 'sine': Sine} class Embedder(Module): def __init__(self, input_dim, max_freq_log2, N_freqs, log_sampling=True, include_input=True, periodic_fns=(jt.sin, jt.cos)): ''' :param input_dim: dimension of input to be embedded :param max_freq_log2: log2 of max freq; min freq is 1 by default :param N_freqs: number of frequency bands :param log_sampling: if True, frequency bands are linerly sampled in log-space :param include_input: if True, raw input is included in the embedding :param periodic_fns: periodic functions used to embed input ''' super().__init__() self.input_dim = input_dim self.include_input = include_input self.periodic_fns = periodic_fns self.out_dim = 0 if self.include_input: self.out_dim += self.input_dim self.out_dim += self.input_dim * N_freqs * len(self.periodic_fns) if log_sampling: self.freq_bands = 2. ** np.linspace(0., max_freq_log2, N_freqs) else: self.freq_bands = np.linspace(2. ** 0., 2. ** max_freq_log2, N_freqs) self.freq_bands = self.freq_bands.tolist() def execute(self, x): ''' :param x: tensor of shape [..., self.input_dim] :return: tensor of shape [..., self.out_dim] ''' assert (x.shape[-1] == self.input_dim) out = [] if self.include_input: out.append(x) for i in range(len(self.freq_bands)): freq = self.freq_bands[i] for p_fn in self.periodic_fns: out.append(p_fn(x * freq)) out = jt.concat(out, dim=-1) assert (out.shape[-1] == self.out_dim) return out class MLP(Module): def __init__(self, D=8, W=256, input_ch=3, input_ch_viewdirs=3, skips=[4], act_func=nn.ReLU, use_viewdir=True, sigma_mul=0.): ''' :param D: network depth :param W: network width :param input_ch: input channels for encodings of (x, y, z) :param input_ch_viewdirs: input channels for encodings of view directions :param skips: skip connection in network ''' super().__init__() self.input_ch = input_ch self.input_ch_viewdirs = input_ch_viewdirs self.skips = skips self.use_viewdir = use_viewdir self.sigma_mul = sigma_mul # base self.base_layers = [] dim = self.input_ch for i in range(D): self.base_layers.append(nn.Linear(in_features=dim, out_features=W, bias=True)) dim = W if i in self.skips and i != (D - 1): # skip connection after i^th layer dim += input_ch self.base_layers = nn.ModuleList(self.base_layers) self.act = act_func() # sigma sigma_layer = nn.Linear(dim, 1) # sigma must be positive self.sigma_layer = sigma_layer # remap base_remap_layer = nn.Linear(dim, 256) self.base_remap_layer = base_remap_layer # rgb self.rgb_layers = [] dim = 256 + self.input_ch_viewdirs if self.use_viewdir else 256 self.rgb_layers.append(nn.Linear(dim, W // 2)) self.rgb_layers.append(nn.Linear(W // 2, 3)) self.rgb_layers = nn.ModuleList(self.rgb_layers) self.layers = [*self.base_layers, self.sigma_layer, self.base_remap_layer, *self.rgb_layers] def execute(self, pts, dirs): ''' :param input: [..., input_ch+input_ch_viewdirs] :return [..., 4] ''' base = self.base_layers[0](pts) for i in range(len(self.base_layers) - 1): if i in self.skips: base = torch.cat((pts, base), dim=-1) base = self.act(self.base_layers[i + 1](base)) sigma = self.sigma_layer(base) sigma = sigma + nn.relu(sigma) * self.sigma_mul base_remap = self.act(self.base_remap_layer(base)) if self.use_viewdir: rgb_fea = self.act(self.rgb_layers[0](torch.cat((base_remap, dirs), dim=-1))) else: rgb_fea = self.act(self.rgb_layers[0](base_remap)) rgb = jt.sigmoid(self.rgb_layers[1](rgb_fea)) ret = OrderedDict([('rgb', rgb), ('sigma', sigma.squeeze(-1))]) return ret def get_grads(self, only_last=False): if only_last: layers = [self.layers[-1], self.layers[-4]] else: layers = self.layers grads = None for layer in layers: grad = layer.get_grads() grads = grad if grads is None else np.concatenate([grads, grad], axis=-1) return grads class MLP_style(Module): def __init__(self, D=8, W=256, input_ch=3, input_ch_viewdirs=3, skips=[4], act_func=nn.ReLU(), use_viewdir=True, sigma_mul=0., enable_style=False): ''' :param D: network depth :param W: network width :param input_ch: input channels for encodings of (x, y, z) :param input_ch_viewdirs: input channels for encodings of view directions :param skips: skip connection in network ''' super().__init__() self.input_ch = input_ch self.input_ch_viewdirs = input_ch_viewdirs self.skips = skips self.use_viewdir = use_viewdir self.sigma_mul = sigma_mul self.enable_style = enable_style self.act = act_func() # base self.base_layers = [] dim = self.input_ch for i in range(D): self.base_layers.append(nn.Linear(in_features=dim, out_features=W)) dim = W if i in self.skips and i != (D - 1): # skip connection after i^th layer dim += input_ch self.base_layers = nn.ModuleList(self.base_layers) # sigma sigma_layer = nn.Linear(dim, 1) # sigma must be positive self.sigma_layer = sigma_layer # remap base_remap_layer = nn.Linear(dim, 256) self.base_remap_layer = base_remap_layer # rgb self.rgb_layers = [] dim = 256 + self.input_ch_viewdirs if self.use_viewdir else 256 self.rgb_layers.append(nn.Linear(dim, W // 2)) self.rgb_layers.append(nn.Linear(W // 2, 3)) self.rgb_layers = nn.ModuleList(self.rgb_layers) self.layers = [*self.base_layers, self.sigma_layer, self.base_remap_layer, *self.rgb_layers] def execute(self, **kwargs): pts, dirs = kwargs['pts'], kwargs['dirs'] base = self.act(self.base_layers[0](pts)) for i in range(len(self.base_layers) - 1): if i in self.skips: base = jt.concat((pts, base), dim=-1) base = self.act(self.base_layers[i + 1](base)) sigma = self.sigma_layer(base) sigma = sigma + jt.nn.relu(sigma) * self.sigma_mul base_remap = self.act(self.base_remap_layer(base)) if self.use_viewdir: rgb_fea = self.act(self.rgb_layers[0](jt.concat((base_remap, dirs), dim=-1))) else: rgb_fea = self.act(self.rgb_layers[0](base_remap)) rgb = jt.sigmoid(self.rgb_layers[1](rgb_fea)) if self.enable_style: ret = OrderedDict([('rgb', rgb), # ('base', base), # for base input style nerf ('pts', pts), ('sigma', sigma.squeeze(-1))]) return ret else: ret = OrderedDict([('rgb', rgb), ('sigma', sigma.squeeze(-1))]) return ret class Nerf(Module): def __init__(self, args, mode='coarse'): super().__init__() self.use_viewdir = args.use_viewdir """Activation Function""" act_func = act_dict[args.act_type] self.is_siren = (args.act_type == 'sine') """Embedding""" if not self.is_siren: self.embedder_coor = Embedder(input_dim=3, max_freq_log2=args.embed_freq_coor - 1, N_freqs=args.embed_freq_coor) self.embedder_dir = Embedder(input_dim=3, max_freq_log2=args.embed_freq_dir - 1, N_freqs=args.embed_freq_dir) input_ch, input_ch_viewdirs = self.embedder_coor.out_dim, self.embedder_dir.out_dim skips = [4] self.sigma_mul = 0. else: input_ch, input_ch_viewdirs = 3, 3 skips = [] self.sigma_mul = args.siren_sigma_mul """Neural Network""" if mode == 'coarse': net_depth, net_width = args.netdepth, args.netwidth else: net_depth, net_width = args.netdepth_fine, args.netwidth_fine self.net = MLP(D=net_depth, W=net_width, input_ch=input_ch, input_ch_viewdirs=input_ch_viewdirs, skips=skips, use_viewdir=self.use_viewdir, act_func=act_func, sigma_mul=self.sigma_mul) def execute(self, pts, dirs): if not self.is_siren: pts = self.embedder_coor(pts) dirs = self.embedder_dir(dirs) ret = self.net(pts, dirs) return ret class StyleMLP(Module): def __init__(self, args): super().__init__() self.D = args.style_D self.input_ch = args.embed_freq_coor * 3 * 2 + 3 + args.vae_latent self.layers = [] self.skips = [4] dim = self.input_ch for i in range(self.D-1): if i in self.skips: dim += self.input_ch self.layers.append(nn.Linear(dim, args.netwidth)) dim = args.netwidth self.layers.append(nn.Linear(args.netwidth, 3)) self.layers = nn.ModuleList(self.layers) def execute(self, **kwargs): x = kwargs['x'] h = x for i in range(len(self.layers)-1): if i in self.skips: h = jt.concat([h, x], dim=-1) h = self.layers[i](h) h = nn.relu(h) h = self.layers[-1](h) h = jt.sigmoid(h) return {'rgb': h} class StyleMLP_Wild_multilayers(Module): def __init__(self, args): super().__init__() self.D = args.style_D self.input_ch = args.embed_freq_coor * 3 * 2 + 3 + args.vae_latent self.layers = [] self.skips = [4] dim = self.input_ch for i in range(self.D-1): if i in self.skips: dim += (args.embed_freq_coor * 3 * 2 + 3) self.layers.append(nn.Linear(dim, args.netwidth)) dim = args.netwidth + args.vae_latent self.layers.append(nn.Linear(args.netwidth + args.vae_latent, 3)) self.layers = nn.ModuleList(self.layers) def execute(self, **kwargs): x = kwargs['x'] l = kwargs['latent'] h = x for i in range(len(self.layers)-1): h = jt.concat([h, l], dim=-1) if i in self.skips: h = jt.concat([h, x], dim=-1) h = self.layers[i](h) h = nn.relu(h) h = jt.concat([h, l], dim=-1) h = self.layers[-1](h) h = jt.sigmoid(h) return {'rgb': h} class StyleNerf(Module): def __init__(self, args, mode='coarse', enable_style=False): super().__init__() self.use_viewdir = args.use_viewdir """Activation Function""" act_func = act_dict[args.act_type] self.is_siren = (args.act_type == 'sine') """Embedding""" if not self.is_siren: self.embedder_coor = Embedder(input_dim=3, max_freq_log2=args.embed_freq_coor - 1, N_freqs=args.embed_freq_coor) self.embedder_dir = Embedder(input_dim=3, max_freq_log2=args.embed_freq_dir - 1, N_freqs=args.embed_freq_dir) input_ch, input_ch_viewdirs = self.embedder_coor.out_dim, self.embedder_dir.out_dim skips = [4] self.sigma_mul = 0. else: input_ch, input_ch_viewdirs = 3, 3 skips = [] self.sigma_mul = args.siren_sigma_mul """Neural Network""" if mode == 'coarse': net_depth, net_width = args.netdepth, args.netwidth else: net_depth, net_width = args.netdepth_fine, args.netwidth_fine self.net = MLP_style(D=net_depth, W=net_width, input_ch=input_ch, input_ch_viewdirs=input_ch_viewdirs, skips=skips, use_viewdir=self.use_viewdir, act_func=act_func, sigma_mul=self.sigma_mul, enable_style=enable_style) self.enable_style = enable_style def set_enable_style(self, enable_style=False): self.enable_style = enable_style self.net.enable_style = enable_style def execute(self, **kwargs): # mode consistency self.net.enable_style = self.enable_style if not self.is_siren: kwargs['pts'] = self.embedder_coor(kwargs['pts']) kwargs['dirs'] = self.embedder_dir(kwargs['dirs']) ret = self.net(**kwargs) ret['dirs'] = kwargs['dirs'] return ret def vec2skew(v): """ :param v: (N, 3, ) torch tensor :return: (N, 3, 3) """ zero = jt.zeros([v.shape[0], 1], dtype=jt.float32, device=v.device) skew_v0 = jt.concat([zero, -v[:, 2:3], v[:, 1:2]], dim=-1) # (N, 3) skew_v1 = jt.concat([v[:, 2:3], zero, -v[:, 0:1]], dim=-1) skew_v2 = jt.concat([-v[:, 1:2], v[:, 0:1], zero], dim=-1) skew_v = jt.stack([skew_v0, skew_v1, skew_v2], dim=-1) # (N, 3, 3) return skew_v def Exp(r): """so(3) vector to SO(3) matrix :param r: (N, 3) axis-angle, torch tensor :return: (N, 3, 3) """ skew_r = vec2skew(r) # (N, 3, 3) norm_r = r.norm(dim=1, keepdim=True).unsqueeze(-1) + 1e-15 # (N, 1, 1) eye = jt.init.eye(3).unsqueeze(0) # (1, 3, 3) R = eye + (jt.sin(norm_r) / norm_r) * skew_r + ((1 - jt.cos(norm_r)) / norm_r ** 2) * jt.matmul(skew_r, skew_r) return R def make_c2w(r, t): """ :param r: (N, 3, ) axis-angle torch tensor :param t: (N, 3, ) translation vector torch tensor :return: (N, 4, 4) """ R = Exp(r) # (N, 3, 3) c2w = jt.concat([R, t.unsqueeze(-1)], dim=-1) # (N, 3, 4) c2w = jt.concat([c2w, jt.zeros_like(c2w[:, :1])], dim=1) # (N, 4, 4) c2w[:, 3, 3] = 1. return c2w def idx2img(idx, fea, pad=0): batch_size, h, w, z = idx.shape batch_size_p, point_num, dim = fea.shape assert batch_size == batch_size_p, 'Batch Size Do Not Match' idx_img = idx.reshape([batch_size, h*w*z, 1]).expand([batch_size, h*w*z, dim]).long() idx_lst = point_num * torch.ones_like(idx_img) idx_img = torch.where(idx_img >= 0, idx_img, idx_lst) fea_pad = fea.reshape([1, batch_size*point_num, dim]).expand([batch_size, batch_size*point_num, dim]) fea_pad = torch.cat([fea_pad, pad * torch.ones([batch_size, 1, dim]).to(idx.device)], dim=1) fea_img = torch.gather(fea_pad, 1, idx_img).reshape([batch_size, h, w, z, dim]) return fea_img class Camera: def __init__(self, projectionMatrix=None, cameraPose=None, device=torch.device("cpu")): super().__init__() self.device = device self.tensor_list = ['projectionMatrix', 'cameraPose', 'w2c_matrix'] for attr in self.tensor_list: setattr(self, attr, None) self.set(projectionMatrix=projectionMatrix, cameraPose=cameraPose) def set(self, **kwargs): keys = kwargs.keys() func_map = {'projectionMatrix': self.set_project, 'cameraPose': self.set_pose} for name in keys: try: if name in func_map.keys(): func_map[name](kwargs[name]) else: raise ValueError(name + f'is not in{keys}') except ValueError as e: print(repr(e)) def set_pose(self, cameraPose): if cameraPose is None: self.cameraPose = self.w2c_matrix = None return elif type(cameraPose) is np.ndarray: cameraPose = torch.from_numpy(cameraPose) self.cameraPose = cameraPose.float() self.w2c_matrix = torch.inverse(self.cameraPose).float() self.to(self.device) def set_project(self, projectionMatrix): if projectionMatrix is None: self.projectionMatrix = None return elif type(projectionMatrix) is np.ndarray: projectionMatrix = torch.from_numpy(projectionMatrix) self.projectionMatrix = projectionMatrix.float() self.to(self.device) def to(self, device): if type(device) is str: device = torch.device(device) self.device = device for tensor in self.tensor_list: if getattr(self, tensor) is not None: setattr(self, tensor, getattr(self, tensor).to(self.device)) return self def WorldtoCamera(self, coor_world): coor_world = coor_world.clone() if len(coor_world.shape) == 2: coor_world = torch.cat([coor_world, torch.ones([coor_world.shape[0], 1]).to(self.device)], -1) coor_camera = torch.einsum('bcw,nw->bnc', self.w2c_matrix, coor_world) else: coor_world = self.homogeneous(coor_world) coor_camera = torch.einsum('bcw,bnw->bnc', self.w2c_matrix, coor_world) return coor_camera def CameratoWorld(self, coor_camera): coor_camera = coor_camera.clone() coor_camera = self.homogeneous(coor_camera) coor_world = torch.einsum('bwc,bnc->bnw', self.cameraPose, coor_camera)[:, :, :3] return coor_world def WorldtoCVV(self, coor_world): coor_camera = self.WorldtoCamera(coor_world) coor_cvv = torch.einsum('vc,bnc->bnv', self.projectionMatrix, coor_camera) coor_cvv = coor_cvv[..., :-1] / coor_cvv[..., -1:] return coor_cvv def homogeneous(self, coor3d, force=False): if coor3d.shape[-1] == 3 or force: coor3d = torch.cat([coor3d, torch.ones_like(coor3d[..., :1]).to(self.device)], -1) return coor3d def rasterize(self, coor_world, rgb, h=192, w=256, k=1.5, z=1): from pytorch3d.structures import Pointclouds from pytorch3d.renderer import compositing from pytorch3d.renderer.points import rasterize_points def PixeltoCvv(h, w, hid=0, wid=0): cvv = torch.tensor([[[1., 0., 0.], [-1., 0., 0.], [0., 1., 0.]]]).float() pts = Pointclouds(points=cvv, features=cvv) idx, _, dist2 = rasterize_points(pts, [h, w], 1e10, 3) a2, b2, c2 = (dist2.cpu().numpy())[0, hid, wid] x2 = (a2 + b2) / 2 - 1 cosa = (x2 + 1 - a2) / (2 * x2**0.5) sina_abs = (1 - cosa**2)**0.5 u = (x2 ** 0.5) * cosa v = (x2 ** 0.5) * sina_abs if
np.abs((u**2 + (v-1)**2)**0.5 - c2**0.5)
numpy.abs
import unittest import numpy as np import collections import pycomlink as pycml class TestWetDryandRainErrorfunctions(unittest.TestCase): def test_WetDryError_with_simple_arrays(self): reference = np.array([True, False, True, True, False, True, False, np.nan, np.nan, np.nan]) predicted = np.array([True, False, False, True, True, True, True, True, False, np.nan]) wd_error = pycml.validation.stats.calc_wet_dry_performance_metrics( reference, predicted) class_name = 'WetDryError_reference' fields = 'false_wet_rate missed_wet_rate matthews_correlation ' \ 'true_wet_rate true_dry_rate N_dry_reference N_wet_reference '\ 'N_true_wet N_true_dry N_false_wet N_missed_wet ' \ 'N_all_pairs N_nan_pairs N_nan_reference_only ' \ 'N_nan_predicted_only' WetDryError_reference = collections.namedtuple(class_name, fields) ref = WetDryError_reference(0.66666667, 0.25, 0.09128709291752767, 0.75, 0.33333334, 3, 4, 3, 1, 2, 1, 10, 3, 3, 1) np.testing.assert_array_almost_equal( wd_error, ref) # the mcc should be zero, when predicted only contains false/zeros def test_mcc_with_zero_wet_prediction(self): reference = np.array([True, False, False]) predicted =
np.array([False, False, False])
numpy.array
import os, re import tensorflow as tf import pandas as pd import tensorflow_hub as hub from tqdm import tqdm import numpy as np from bert.tokenization import FullTokenizer from tensorflow.keras.callbacks import ModelCheckpoint from sklearn.model_selection import train_test_split from tensorflow.keras import backend as K from tensorflow.keras.callbacks import ReduceLROnPlateau from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import load_model from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import classification_report """# Tokenize Next, tokenize our text to create `input_ids`, `input_masks`, and `segment_ids` """ class PaddingInputExample(object): """Fake example so the num input examples is a multiple of the batch size. When running eval/predict on the TPU, we need to pad the number of examples to be a multiple of the batch size, because the TPU requires a fixed batch size. The alternative is to drop the last batch, which is bad because it means the entire output data won't be generated. We use this class instead of `None` because treating `None` as padding battches could cause silent errors. """ class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label def create_tokenizer_from_hub_module(bert_path): """Get the vocab file and casing info from the Hub module.""" bert_layer = hub.KerasLayer(bert_path, trainable=False) vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() tokenizer = FullTokenizer(vocab_file, do_lower_case) return tokenizer, bert_layer def convert_single_example(tokenizer, example, max_seq_length=256): """Converts a single `InputExample` into a single `InputFeatures`.""" if isinstance(example, PaddingInputExample): input_ids = [0] * max_seq_length input_mask = [0] * max_seq_length segment_ids = [0] * max_seq_length label = 0 return input_ids, input_mask, segment_ids, label tokens_a = tokenizer.tokenize(example.text_a) if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0 : (max_seq_length - 2)] tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length return input_ids, input_mask, segment_ids, example.label def convert_examples_to_features(tokenizer, examples, max_seq_length=256): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" input_ids, input_masks, segment_ids, labels = [], [], [], [] for example in tqdm(examples, desc="Converting examples to features"): input_id, input_mask, segment_id, label = convert_single_example( tokenizer, example, max_seq_length ) input_ids.append(input_id) input_masks.append(input_mask) segment_ids.append(segment_id) labels.append(label) return ( np.array(input_ids), np.array(input_masks), np.array(segment_ids), np.array(labels).reshape(-1, 1), ) def convert_text_to_examples(texts, labels): """Create InputExamples""" InputExamples = [] for text, label in zip(texts, labels): InputExamples.append( InputExample(guid=None, text_a=" ".join(text), text_b=None, label=label) ) return InputExamples # Build model def build_model(bert_layer, max_seq_length, n_classes): act = 'softmax' loss = 'categorical_crossentropy' in_id = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_ids") in_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="input_masks") in_segment = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32, name="segment_ids") bert_inputs = [in_id, in_mask, in_segment] pooled_output, sentence_output = bert_layer(bert_inputs) flatten = tf.keras.layers.Flatten()(pooled_output) dense_1 = tf.keras.layers.Dense(512, activation='relu')(flatten) dropout_1 = tf.keras.layers.Dropout(0.5)(dense_1) dense_2 = tf.keras.layers.Dense(256, activation='relu')(dropout_1) dense_3 = tf.keras.layers.Dense(128, activation='relu')(dense_2) dropout_2 = tf.keras.layers.Dropout(0.4)(dense_3) dense_4 = tf.keras.layers.Dense(64, activation='relu')(dropout_2) pred = tf.keras.layers.Dense(n_classes, activation=act)(dense_4) model = tf.keras.models.Model(inputs=bert_inputs, outputs=pred) adam = Adam(lr=0.0003) model.compile(loss=loss, optimizer=adam, metrics=['accuracy']) model.summary() return model def load_dataset(bert_path, max_seq_length, data_path, text_col, label_col, split=[0.80, 0.10, 0.10]): df = pd.read_csv(data_path) df = df.sample(frac=1).reset_index(drop=True) text = df[text_col].tolist() texts = [' '.join(t.split()[0:max_seq_length]) for t in text] texts =
np.array(texts, dtype=object)
numpy.array
# Created by <NAME> # Date: 16/03/2020 import gym from gym import error, spaces, utils from gym.utils import seeding import numpy as np class RandomWalkEnv(gym.Env): """ Random walk environment. Used to test trajectory evolution algorithms. Each step is decided by the action given """ def __init__(self, seed=None, max_steps=100): """ Constructor :param seed: the random seed for the environment :param max_steps: the maximum number of steps the episode lasts :return: """ self.pose = np.zeros(2) self.t = 0 self.max_steps = max_steps self.observation_space = spaces.Box(low=-np.ones(2), high=np.ones(2), dtype=np.float32) self.action_space = spaces.Box(low=-np.ones(2), high=
np.ones(2)
numpy.ones
import numpy as np import pyautogui as pg from scipy.sparse import csr_matrix from scipy.signal import convolve2d pg.PAUSE = 0 pg.FAILSAFE = True _width, _height = pg.size() ## put hero in the center of the camera #def center_hero(): # tmp = pg.PAUSE # pg.PAUSE = 0 # for i in range(570, 820, 60): # pg.click(x=i, y=20, button='left') # for i in range(1095, 1345, 60): # pg.click(x=i, y=20, button='left') # pg.click(x=880, y=20, button='right') # ## left click the picture of the hero in the UI to put the hero # ## in the center of the camera # HERO_PICTURE = (634, 1002) # pg.PAUSE = 0.05 # pg.click(x=HERO_PICTURE[0], y=HERO_PICTURE[1], button='left') # pg.PAUSE = tmp def center_hero(): pg.doubleClick(573, 22) ## Dota 2 environment ## features, the current state and environmental parameters for learning class DotaEnv: TIME_LIMIT = 600 ## time interval between two actions by pyautogui ## set true to raise an exception at (0, 0) over_time = None # time in the game def __init__(self): center_hero() self.views = [np.array(pg.screenshot())] tmp = pg.PAUSE pg.PAUSE = 0.05 self.views.append(np.array(pg.screenshot())) pg.PAUSE = tmp self.UI = DotaUI(self.views[-1]) self.reward = 0 self.over_time = self.UI.check_time() self.hp = self.UI.get_hp() self.gold = self.UI.get_gold() self.lvl = self.UI.get_lvl() self.ability = self.UI.unlock_ability() ## update once the bot makes an action def update(self): ## screenshot corresponds to the action by the bot self.update_views() self.UI.update(self.views[-1]) self.update_reward() self.over_time = self.UI.check_time() def update_views(self): center_hero() self.views = [np.array(pg.screenshot())] tmp = pg.PAUSE pg.PAUSE = 0.1 self.views.append(np.array(pg.screenshot())) pg.PAUSE = tmp def update_reward(self): UI = self.UI hp = UI.get_hp() lvl = UI.get_lvl() gold = UI.get_gold() ability = UI.unlock_ability() delta_hp = hp - self.hp delta_lvl = lvl - self.lvl delta_gold = gold - self.gold delta_ability = ability - self.ability if delta_gold < 20: delta_gold = 0 ## only considering losing hp if delta_hp > 0: delta_hp = 0 self.reward = delta_gold * 2 + delta_lvl * 100 + delta_hp self.hp = hp self.lvl = lvl self.gold = gold self.ability = ability class DotaBot: MEMORY_LIMIT = 1000 MEMORY_RETRIEVAL = 6 def __init__(self): self.env = DotaEnv() self.policy = BotPolicy(self) self.memory = [] self.center_x = _width / 2 self.center_y = _height / 2 ## interpret the commands and execute them def onestep(self): ## generate the commands based on the current state views = self.env.views policy = self.policy X = policy.get_state(views[-1], views[-2], self.policy.scale) p, meta = policy.forward(X) direction = policy.execute(p) if len(self.memory) >= self.MEMORY_LIMIT: ## randomly throw away old record i = np.random.randint(len(self.memory) - self.MEMORY_RETRIEVAL) self.memory.pop(i) self.memory.append([p.copy(), meta.copy(), direction.copy()]) def get_parameters(self): return self.policy.paras def set_parameters(self, parameters): paras = self.get_parameters() for k in parameters: paras[k] = parameters[k] def get_UI(self): return self.env.UI class BotPolicy: BLACKPIXEL_PERCENT = 0.95 LEFT_PERCENT = 0.1 NUM_ACTIONS = 9 ## add random walk to avoid local minima RANDOM_PROB = 0.005 RANDOM_DIST = 450 RANDOM_PAUSE = 3 def __init__(self, bot): self.bot = bot self.scale = 10 # scaling the screenshot to reduce the dimension self.paras = {} self.paras['w_fc1'] = np.random.normal(loc=0, scale=0.05, \ size=[_width // self.scale * _height // self.scale * 2, 100]) ## output eight direction self.paras['w_fc2'] = np.random.normal(loc=0, scale=0.05, \ size=[100, self.NUM_ACTIONS]) ## the maximum score at the end of the game in the history ## the formula is gold + 100 * lvl self.paras['max_score'] = 1040 ## TODO: tune the parameters self.battle_pause = 0.3 self.battle_L = 100 self.walk_pause = 1.3 self.walk_L = 300 self.learning_rate = 0.00001 self.batch_size = 50 ## the baseline score assuming that the bot did nothing self.standard_score = 1140 ## return the location of the click for a given state def forward(self, X): ## fully connected layer w_fc1 = self.paras['w_fc1'] X_flatten = X.flatten(order='F') X_flatten = np.matrix(X_flatten) fc1 = X_flatten.dot(w_fc1) ## relu fc1[fc1 < 0] = 0 ## second fully connect layer w_fc2 = self.paras['w_fc2'] fc2 = fc1.dot(w_fc2) ## stable softmax fc2 -= np.max(fc2) p = np.exp(fc2) p = p / np.sum(p) ## store results for backpropogation meta = [X, fc1] return p, meta ## return the gradient of parameters def backward(self, p, meta, direction): reward = self.bot.env.reward X, fc1 = meta X_flatten = X.flatten(order='F') X_flatten = np.matrix(X_flatten) i = direction.argmax() dp = np.zeros_like(p) for j in range(len(dp)): if j == i: dp[0, j] = -(1 - p[0, i]) else: dp[0, j] = p[0, j] dw_fc2 = fc1.T.dot(dp) w_fc2 = self.paras["w_fc2"] dx_fc2 = dp.dot(w_fc2.T) ## relu dx_fc2[dx_fc2 < 0] = 0 ## the first layer dw_fc1 = X_flatten.T.dot(dx_fc2) return (dw_fc1, dw_fc2) def local_optimizer(self): reward = self.bot.env.reward if reward != 0: print("reward is ", reward) dw_fc1 = np.zeros_like(self.paras['w_fc1']) dw_fc2 = np.zeros_like(self.paras['w_fc2']) l = min(len(self.bot.memory), self.bot.MEMORY_RETRIEVAL) for i in range(-1, -(l+1), -1): p, meta, direction, _ = self.bot.memory[i] x, y= self.backward(p, meta, direction) dw_fc1 += x dw_fc2 += y dw_fc1 /= l dw_fc2 /= l ## update the parameter self.paras['w_fc1'] -= dw_fc1 * self.learning_rate * reward self.paras['w_fc2'] -= dw_fc2 * self.learning_rate * reward def global_optimizer(self): ## increase or desease the amount of gold compared with previous match max_score = self.paras['max_score'] reward = 0 score = self.bot.env.gold + 100 * self.bot.env.lvl if score < self.bot.policy.standard_score: reward = min(score - self.bot.policy.standard_score, -100) elif score > max_score: reward = score - max_score self.paras['max_score'] = max(max_score, score) print("overall reward is ", reward) ## update the parameter if reward is nonzero if reward != 0: batch_size = self.batch_size if reward > 0: ## try to update effective actions rewards = [i[3] for i in self.bot.memory] pos_indexes = [k for k, v in enumerate(rewards) if v > 0] if len(pos_indexes) > 0: l = max(pos_indexes) else: l = len(self.bot.memory) else: l = len(self.bot.memory) ## STG batch = (l - 1) // batch_size + 1 for i in range(batch): start = i * batch_size end = (i+1) * batch_size dw_fc1 = np.zeros_like(self.paras['w_fc1']) dw_fc2 = np.zeros_like(self.paras['w_fc2']) for j in self.bot.memory[start: end]: p, meta, direction, _ = j x, y= self.backward(p, meta, direction) dw_fc1 += x dw_fc2 += y dw_fc1 /= batch_size dw_fc2 /= batch_size ## update the parameter self.paras['w_fc1'] -= dw_fc1 * self.learning_rate * reward self.paras['w_fc2'] -= dw_fc2 * self.learning_rate * reward ## negative log likelihood def loss(self): l = min(len(self.bot.memory), self.bot.MEMORY_RETRIEVAL) reward = self.bot.env.reward logp = 0 for i in range(-1, -(l+1), -1): p, meta, direction, _ = self.bot.memory[i] prob = p.dot(direction) logp += np.log(prob) return -logp * reward def get_state(self, view1, view2, scale): ## use the difference X = view1 - view2 X =
np.mean(X[:, :, 0:3], axis=2)
numpy.mean
""" Created on March 14, 2017 Originally written by <NAME> in 2015 @author: <NAME> """ import os from datetime import datetime import numpy as np import pandas as pd import pytz def storms(precipitation, perc_snow, mass=1, time=4, stormDays=None, stormPrecip=None, ps_thresh=0.5): """ Calculate the decimal days since the last storm given a precip time series, percent snow, mass threshold, and time threshold - Will look for pixels where perc_snow > 50% as storm locations - A new storm will start if the mass at the pixel has exceeded the mass limit, this ensures that the enough has accumulated Args: precipitation: Precipitation values perc_snow: Precent of precipitation that was snow mass: Threshold for the mass to start a new storm time: Threshold for the time to start a new storm stormDays: If specified, this is the output from a previous run of storms stormPrecip: Keeps track of the total storm precip Returns: tuple: - **stormDays** - Array representing the days since the last storm at a pixel - **stormPrecip** - Array representing the precip accumulated during the most recent storm Created April 17, 2015 @author: <NAME> """ # either preallocate or use the input if stormDays is None: stormDays = np.zeros(precipitation.shape) if stormPrecip is None: stormPrecip = np.zeros(precipitation.shape) # if there is no snow, don't reset the counter # This ensures that the albedo won't be reset stormDays += 1 if np.sum(perc_snow) == 0: # stormDays = np.add(stormDays, 1) stormPrecip =
np.zeros(precipitation.shape)
numpy.zeros
import collections import fractions import json import os import re import warnings import numpy as np # pip3 install numpy import torch from scipy import ndimage import autodisc as ad warnings.filterwarnings('ignore', '.*output shape of zoom.*') # suppress warning from snd.zoom() ROUND = 10 EPS = 0.0001 class SphericPad(torch.nn.Module): """Pads spherically the input on all sides with the given padding size.""" def __init__(self, padding_size): super(SphericPad, self).__init__() if isinstance(padding_size, int): self.pad_left = self.pad_right = self.pad_top = self.pad_bottom = padding_size elif isinstance(padding_size, tuple) and len(padding_size) == 2: self.pad_left = self.pad_right = padding_size[0] self.pad_top = self.pad_bottom = padding_size[1] elif isinstance(padding_size, tuple) and len(padding_size) == 4: self.pad_left = padding_size[0] self.pad_top = padding_size[1] self.pad_right = padding_size[2] self.pad_bottom = padding_size[3] else: raise ValueError('The padding size shoud be: int, tuple of size 2 or tuple of size 4') def forward(self, input): output = torch.cat([input, input[:, :, :self.pad_bottom, :]], dim=2) output = torch.cat([output, output[:, :, :, :self.pad_right]], dim=3) output = torch.cat([output[:, :, -(self.pad_bottom + self.pad_top):-self.pad_bottom, :], output], dim=2) output = torch.cat([output[:, :, :, -(self.pad_right + self.pad_left):-self.pad_right], output], dim=3) return output def rle2arr(st): ''' Transforms an RLE string to a numpy array. Code from <NAME>. :param st Description of the array in RLE format. :return Numpy array. ''' rle_groups = re.findall("(\d*)([p-y]?[.boA-X$])", st.rstrip('!')) # [(2 yO)(1 $)(1 yO)] code_list = sum([[c] * (1 if n == '' else int(n)) for n, c in rle_groups], []) # [yO yO $ yO] code_arr = [l.split(',') for l in ','.join(code_list).split('$')] # [[yO yO] [yO]] V = [[0 if c in ['.', 'b'] else 255 if c == 'o' else ord(c) - ord('A') + 1 if len(c) == 1 else (ord(c[0]) - ord( 'p')) * 24 + (ord(c[1]) - ord('A') + 25) for c in row if c != ''] for row in code_arr] # [[255 255] [255]] maxlen = len(max(V, key=len)) A = np.array([row + [0] * (maxlen - len(row)) for row in V]) / 255 # [[1 1] [1 0]] return A class Board: def __init__(self, size=(10,10)): self.params = {'R':10, 'T':10, 'b':[1], 'm':0.1, 's':0.01, 'kn':1, 'gn':1} self.cells = np.zeros(size) def clear(self): self.cells.fill(0) '''--------------------------------------------------------------- AUTOMATON PYTORCH VERSION -------------------------------------------------------------------''' def complex_mult_torch(X, Y): """ Computes the complex multiplication in Pytorch when the tensor last dimension is 2: 0 is the real component and 1 the imaginary one""" assert X.shape[-1] == 2 and Y.shape[-1] == 2, 'Last dimension must be 2' return torch.stack( (X[..., 0] * Y[..., 0] - X[..., 1] * Y[..., 1], X[..., 0] * Y[..., 1] + X[..., 1] * Y[..., 0]), dim=-1) def roll_n(X, axis, n): """ Rolls a tensor with a shift n on the specified axis""" f_idx = tuple(slice(None, None, None) if i != axis else slice(0,n,None) for i in range(X.dim())) b_idx = tuple(slice(None, None, None) if i != axis else slice(n,None,None) for i in range(X.dim())) front = X[f_idx] back = X[b_idx] return torch.cat([back, front],axis) class LeniaStepFFT(torch.nn.Module): """ Module pytorch that computes one Lenia Step with the fft version""" def __init__(self, R, b, kn, gn, m, s, T, is_soft_clip, is_gpu, size_y, size_x): super(LeniaStepFFT, self).__init__() self.R = R self.T = T self.dt = float (1.0 / T) self.b = b self.kn = kn self.gn = gn self.m = m self.s = s self.spheric_pad = SphericPad(int(self.R)) self.is_soft_clip = is_soft_clip self.is_gpu = is_gpu self.size_y = size_y self.size_x = size_x self.compute_kernel() def compute_kernel(self): size_y = self.size_y size_x = self.size_x # implementation of meshgrid in torch x = torch.arange(size_x) y = torch.arange(size_y) xx = x.repeat(size_y, 1) yy = y.view(-1,1).repeat(1, size_x) X = (xx - int(size_x / 2)).float() / float(self.R) Y = (yy - int(size_y / 2)).float() / float(self.R) # distance to center in normalized space D = torch.sqrt(X**2 + Y**2) # kernel k = len(self.b) kr = k * D bs = torch.tensor([float(f) for f in self.b]) b = bs[torch.min(torch.floor(kr).long(), (k-1)*torch.ones_like(kr).long())] kfunc = AutomatonPytorch.kernel_core[self.kn - 1] kernel = (D<1).float() * kfunc(torch.min(kr % 1, torch.ones_like(kr))) * b kernel_sum = torch.sum(kernel) # normalization of the kernel self.kernel_norm = (kernel / kernel_sum).unsqueeze(0).unsqueeze(0) # fft of the kernel self.kernel_FFT = torch.rfft(self.kernel_norm, signal_ndim=2, onesided=False) self.kernel_updated = False def forward(self, input): if self.is_gpu: input = input.cuda() self.kernel_FFT = self.kernel_FFT.cuda() self.world_FFT = torch.rfft(input, signal_ndim=2, onesided=False) self.potential_FFT = complex_mult_torch(self.kernel_FFT, self.world_FFT) self.potential = torch.irfft(self.potential_FFT, signal_ndim=2, onesided=False) self.potential = roll_n(self.potential, 3, self.potential.size(3)//2) self.potential = roll_n(self.potential, 2, self.potential.size(2)//2) gfunc = AutomatonPytorch.field_func[min(self.gn,2)] self.field = gfunc(self.potential, self.m, self.s) if not self.is_soft_clip: output_img = torch.clamp(input + self.dt * self.field, min=0., max=1.) else: output_img = AutomatonPytorch.soft_clip(input + self.dt * self.field, 0, 1, self.T) return output_img class LeniaStepConv2d(torch.nn.Module): """ Module pytorch that computes one Lenia Step with the conv2d version""" def __init__(self, R, b, kn, gn, m, s, T, is_soft_clip, is_gpu): super(LeniaStepConv2d, self).__init__() self.R = R self.T = T self.dt = float (1.0 / T) self.b = b self.kn = kn self.gn = gn self.m = m self.s = s self.spheric_pad = SphericPad(int(self.R)) self.is_soft_clip = is_soft_clip self.is_gpu = is_gpu self.compute_kernel() def compute_kernel(self): size_y = 2 * self.R + 1 size_x = 2 * self.R + 1 # implementation of meshgrid in torch x = torch.arange(size_x) y = torch.arange(size_y) xx = x.repeat(size_y, 1) yy = y.view(-1,1).repeat(1, size_x) X = (xx - int(size_x / 2)).float() / float(self.R) Y = (yy - int(size_y / 2)).float() / float(self.R) # distance to center in normalized space D = torch.sqrt(X**2 + Y**2) # kernel k = len(self.b) kr = k * D bs = torch.tensor([float(f) for f in self.b]) b = bs[torch.min(torch.floor(kr).long(), (k-1)*torch.ones_like(kr).long())] kfunc = AutomatonPytorch.kernel_core[self.kn - 1] kernel = (D<1).float() * kfunc(torch.min(kr % 1, torch.ones_like(kr))) * b kernel_sum = torch.sum(kernel) # normalization of the kernel self.kernel_norm = (kernel / kernel_sum).unsqueeze(0).unsqueeze(0) self.kernel_updated = False def forward(self, input): if self.is_gpu: input = input.cuda() self.kernel_norm = self.kernel_norm.cuda() self.potential = torch.nn.functional.conv2d(self.spheric_pad(input), weight = self.kernel_norm) gfunc = AutomatonPytorch.field_func[self.gn] self.field = gfunc(self.potential, self.m, self.s) if not self.is_soft_clip: output_img = torch.clamp(input + self.dt * self.field, 0, 1) # A_new = A + dt * torch.clamp(D, -A/dt, (1-A)/dt) else: output_img = AutomatonPytorch.soft_clip(input + self.dt * self.field, 0, 1, self.T) # A_new = A + dt * Automaton.soft_clip(D, -A/dt, (1-A)/dt, 1) return output_img class AutomatonPytorch: kernel_core = { 0: lambda r: (4 * r * (1-r))**4, # polynomial (quad4) 1: lambda r: torch.exp( 4 - 1 / (r * (1-r)) ), # exponential / gaussian bump (bump4) 2: lambda r, q=1/4: (r>=q).float() * (r<=1-q).float(), # step (stpz1/4) 3: lambda r, q=1/4: (r>=q).float() * (r<=1-q).float() + (r<q).float() *0.5 # staircase (life) } field_func = { 0: lambda n, m, s: torch.max(torch.zeros_like(n), 1 - (n-m)**2 / (9 * s**2) )**4 * 2 - 1, # polynomial (quad4) 1: lambda n, m, s: torch.exp( - (n-m)**2 / (2 * s**2) ) * 2 - 1, # exponential / gaussian (gaus) 2: lambda n, m, s: (torch.abs(n-m)<=s).float() * 2 - 1 # step (stpz) } @staticmethod def soft_max(x, m, k): return torch.log(torch.exp(k*x) + torch.exp(k*m)) / k @staticmethod def soft_clip(x, min, max, k): a = torch.exp(k*x) b = torch.exp(k*min) c = torch.exp(-k*max) return torch.log( 1/(a+b)+c ) / -k def __init__(self, world, version = 'fft', use_gpu = True): self.world = world #self.world_FFT = np.zeros(world.cells.shape) #self.potential_FFT = np.zeros(world.cells.shape) #self.potential = np.zeros(world.cells.shape) #self.field = np.zeros(world.cells.shape) #self.field_old = None #self.change = np.zeros(world.cells.shape) self.X = None self.Y = None self.D = None #self.gen = 0 #self.time = 0 self.is_multi_step = False self.is_soft_clip = False self.is_inverted = False self.kn = 1 self.gn = 1 # look if gpu is available if use_gpu and torch.cuda.is_available(): self.is_gpu = True else: self.is_gpu = False # initialization of the pytorch model to perform one step in Lenia if version == 'fft': self.model = LeniaStepFFT(self.world.params['R'], self.world.params['b'], (self.world.params.get('kn') or self.kn), (self.world.params.get('gn') or self.gn), self.world.params['m'], self.world.params['s'], self.world.params['T'], self.is_soft_clip, self.is_gpu, self.world.cells.shape[0], self.world.cells.shape[1]) elif version == 'conv2d': self.model = LeniaStepConv2d(self.world.params['R'], self.world.params['b'], (self.world.params.get('kn') or self.kn), (self.world.params.get('gn') or self.gn), self.world.params['m'], self.world.params['s'], self.world.params['T'], self.is_soft_clip, self.is_gpu) else: raise ValueError('Lenia pytorch automaton step calculation can be done with fft or conv 2d') if self.is_gpu: self.model = self.model.cuda() def calc_once(self): A = torch.from_numpy(self.world.cells).unsqueeze(0).unsqueeze(0).float() A_new = self.model(A) #A = A[0,0,:,:].cpu().numpy() A_new = A_new[0,0,:,:].cpu().numpy() #self.change = (A_new - A) / (1/self.world.params['T']) self.world.cells = A_new #self.gen += 1 #self.time = round(self.time + (1/self.world.params['T']), ROUND) def reset(self): pass #self.gen = 0 #self.time = 0 #self.field_old = None class Lenia(ad.core.System): @staticmethod def default_config(): def_config = ad.core.System.default_config() def_config.version = 'pytorch_fft' # reikna_fft, pytorch_fft, pytorch_conv2d def_config.use_gpu = True return def_config @staticmethod def default_system_parameters(): def_params = ad.core.System.default_system_parameters() def_params.size_y = 100 def_params.size_x = 100 def_params.R = 13 def_params.T = 10 def_params.b = [1] def_params.m = 0.15 def_params.s = 0.017 def_params.kn = 1 def_params.gn = 1 def_params.init_state = np.zeros((def_params.size_y, def_params.size_x)) return def_params def default_statistics(self): def_stats = super().default_statistics() def_stats.append(LeniaStatistics(self)) return def_stats def __init__(self, statistics=None, system_parameters=None, config=None, **kwargs): super().__init__(statistics=statistics, system_parameters=system_parameters, config=config, **kwargs) self.run_parameters = None self.world = None self.automaton = None def init_run(self, run_parameters=None): if run_parameters is None: self.run_parameters = self.system_parameters else: self.run_parameters = {**self.system_parameters, **run_parameters} self.world = Board((self.run_parameters['size_y'], self.run_parameters['size_x'])) self.world.cells = self.run_parameters["init_state"] self.world.params = self.run_parameters if np.min(self.world.cells) < 0 or np.max(self.world.cells) > 1: raise Warning('The given initial state has values below 0 and\or above 1. It will be clipped to the range [0, 1]') self.world.cells = np.clip(self.world.cells, 0, 1) if self.config.version.lower() == 'pytorch_fft': self.automaton = AutomatonPytorch(self.world, version='fft', use_gpu = self.config.use_gpu) elif self.config.version.lower() == 'pytorch_conv2d': self.automaton = AutomatonPytorch(self.world, version='conv2d', use_gpu = self.config.use_gpu) else: raise ValueError('Unknown lenia version (config.version = {!r})'.format(self.config.version)) return self.world.cells def step(self, step_idx): self.automaton.calc_once() # for some invalid parameters become the cells nan # this makes problems with the computation of the statistics # therefore, assume that all nan cells are 0 self.world.cells[np.isnan(self.world.cells)] = 0 return self.world.cells def stop(self): pass class LeniaStatistics(ad.core.SystemStatistic): '''Default statistics for the lenia system.''' DISTANCE_WEIGHT = 2 # 1=linear, 2=quadratic, ... @staticmethod def calc_statistic_diff(statistic_names, stat1, stat2, nan_value_diff=1.0, nan_nan_diff=0.0): if isinstance(stat1, list) or isinstance(stat2, list): raise NotImplementedError('Difference between statistics given as lists are not implemented!') if not isinstance(statistic_names, list): statistic_names = [statistic_names] stat1 = [stat1] stat2 = [stat2] # assume default difference for all diff = stat1 - stat2 # check if there are angle statistics and calculate there difference appropriately statistic_names_ndarray = np.array(statistic_names) angle_statistics_inds = (statistic_names_ndarray == 'activation_center_movement_angle') \ | (statistic_names_ndarray == 'activation_center_movement_angle_mean') \ | (statistic_names_ndarray == 'positive_growth_center_movement_angle') \ | (statistic_names_ndarray == 'positive_growth_center_movement_angle_mean') for angle_stat_idx in np.where(angle_statistics_inds)[0]: diff[angle_stat_idx] = ad.helper.misc.angle_difference_degree(stat1[angle_stat_idx], stat2[angle_stat_idx]) # if both statistics are nan, then the difference is nan_nan_diff (default=0) diff[np.isnan(stat1) & np.isnan(stat2)] = nan_nan_diff # if one statistic is nan, then the current diff is nan, then use nan_value_diff diff[np.isnan(diff)] = nan_value_diff return diff @staticmethod def calc_goalspace_distance(points1, points2, config, goal_space_extent=None): # normalize representations if goal_space_extent is not None: points1 = points1 - goal_space_extent[:,0] points1 = points1 / (goal_space_extent[:,1] - goal_space_extent[:,0]) points2 = points2 - goal_space_extent[:,0] points2 = points2 / (goal_space_extent[:,1] - goal_space_extent[:,0]) diff = LeniaStatistics.calc_statistic_diff(config.statistics, points1, points2) if len(diff) == 0: dist = np.array([]) elif np.ndim(diff) == 1: dist = np.linalg.norm(diff) else: dist = np.linalg.norm(diff, axis=1) return dist def __init__(self, system): super().__init__(system) # statistics self.data['is_dead'] = [] self.data['activation_mass'] = [] self.data['activation_mass_mean'] = [] self.data['activation_mass_std'] = [] self.data['activation_volume'] = [] self.data['activation_volume_mean'] = [] self.data['activation_volume_std'] = [] self.data['activation_density'] = [] self.data['activation_density_mean'] = [] self.data['activation_density_std'] = [] self.data['activation_center_position'] = [] self.data['activation_center_velocity'] = [] self.data['activation_center_velocity_mean'] = [] self.data['activation_center_velocity_std'] = [] self.data['activation_center_movement_angle'] = [] self.data['activation_center_movement_angle_mean'] = [] self.data['activation_center_movement_angle_std'] = [] self.data['activation_center_movement_angle_velocity'] = [] self.data['activation_center_movement_angle_velocity_mean'] = [] self.data['activation_center_movement_angle_velocity_std'] = [] self.data['activation_mass_asymmetry'] = [] self.data['activation_mass_asymmetry_mean'] = [] self.data['activation_mass_asymmetry_std'] = [] self.data['activation_mass_distribution'] = [] self.data['activation_mass_distribution_mean'] = [] self.data['activation_mass_distribution_std'] = [] self.data['activation_hu1'] = [] self.data['activation_hu1_mean'] = [] self.data['activation_hu1_std'] = [] self.data['activation_hu2'] = [] self.data['activation_hu2_mean'] = [] self.data['activation_hu2_std'] = [] self.data['activation_hu3'] = [] self.data['activation_hu3_mean'] = [] self.data['activation_hu3_std'] = [] self.data['activation_hu4'] = [] self.data['activation_hu4_mean'] = [] self.data['activation_hu4_std'] = [] self.data['activation_hu5'] = [] self.data['activation_hu5_mean'] = [] self.data['activation_hu5_std'] = [] self.data['activation_hu6'] = [] self.data['activation_hu6_mean'] = [] self.data['activation_hu6_std'] = [] self.data['activation_hu7'] = [] self.data['activation_hu7_mean'] = [] self.data['activation_hu7_std'] = [] self.data['activation_hu8'] = [] self.data['activation_hu8_mean'] = [] self.data['activation_hu8_std'] = [] self.data['activation_flusser9'] = [] self.data['activation_flusser9_mean'] = [] self.data['activation_flusser9_std'] = [] self.data['activation_flusser10'] = [] self.data['activation_flusser10_mean'] = [] self.data['activation_flusser10_std'] = [] self.data['activation_flusser11'] = [] self.data['activation_flusser11_mean'] = [] self.data['activation_flusser11_std'] = [] self.data['activation_flusser12'] = [] self.data['activation_flusser12_mean'] = [] self.data['activation_flusser12_std'] = [] self.data['activation_flusser13'] = [] self.data['activation_flusser13_mean'] = [] self.data['activation_flusser13_std'] = [] self.data['positive_growth_mass'] = [] self.data['positive_growth_mass_mean'] = [] self.data['positive_growth_mass_std'] = [] self.data['positive_growth_volume'] = [] self.data['positive_growth_volume_mean'] = [] self.data['positive_growth_volume_std'] = [] self.data['positive_growth_density'] = [] self.data['positive_growth_density_mean'] = [] self.data['positive_growth_density_std'] = [] self.data['positive_growth_center_position'] = [] self.data['positive_growth_center_velocity'] = [] self.data['positive_growth_center_velocity_mean'] = [] self.data['positive_growth_center_velocity_std'] = [] self.data['positive_growth_center_movement_angle'] = [] self.data['positive_growth_center_movement_angle_mean'] = [] self.data['positive_growth_center_movement_angle_std'] = [] self.data['positive_growth_center_movement_angle_velocity'] = [] self.data['positive_growth_center_movement_angle_velocity_mean'] = [] self.data['positive_growth_center_movement_angle_velocity_std'] = [] self.data['activation_positive_growth_centroid_distance'] = [] self.data['activation_positive_growth_centroid_distance_mean'] = [] self.data['activation_positive_growth_centroid_distance_std'] = [] # other self.distance_weight_matrix = LeniaStatistics.calc_distance_matrix(system.system_parameters.size_y, system.system_parameters.size_x) self.angles_from_middle = None def reset(self): # set all statistics to zero self.data = dict.fromkeys(self.data, []) def calc_after_run(self, system, all_obs): '''Calculates the final statistics for lenia observations after a run is completed''' self.reset() num_of_obs = len(all_obs) activation_mass_data = np.ones(num_of_obs) * np.nan activation_volume_data = np.ones(num_of_obs) * np.nan activation_density_data = np.ones(num_of_obs) * np.nan activation_center_position_data = np.ones((num_of_obs, 2)) * np.nan activation_center_velocity_data = np.ones(num_of_obs) * np.nan activation_center_movement_angle_data = np.ones(num_of_obs) * np.nan activation_center_movement_angle_velocity_data = np.ones(num_of_obs) * np.nan activation_mass_asymmetry_data = np.ones(num_of_obs) * np.nan activation_mass_distribution_data = np.ones(num_of_obs) * np.nan activation_hu1_data = np.ones(num_of_obs) * np.nan activation_hu2_data = np.ones(num_of_obs) * np.nan activation_hu3_data = np.ones(num_of_obs) * np.nan activation_hu4_data = np.ones(num_of_obs) * np.nan activation_hu5_data = np.ones(num_of_obs) * np.nan activation_hu6_data = np.ones(num_of_obs) * np.nan activation_hu7_data = np.ones(num_of_obs) * np.nan activation_hu8_data = np.ones(num_of_obs) * np.nan activation_flusser9_data = np.ones(num_of_obs) * np.nan activation_flusser10_data = np.ones(num_of_obs) * np.nan activation_flusser11_data = np.ones(num_of_obs) * np.nan activation_flusser12_data = np.ones(num_of_obs) * np.nan activation_flusser13_data = np.ones(num_of_obs) * np.nan positive_growth_mass_data = np.ones(num_of_obs) * np.nan positive_growth_volume_data = np.ones(num_of_obs) * np.nan positive_growth_density_data = np.ones(num_of_obs) * np.nan positive_growth_center_position_data = np.ones((num_of_obs, 2)) * np.nan positive_growth_center_velocity_data = np.ones(num_of_obs) * np.nan positive_growth_center_movement_angle_data = np.ones(num_of_obs) * np.nan positive_growth_center_movement_angle_velocity_data = np.ones(num_of_obs) * np.nan activation_positive_growth_centroid_distance_data = np.ones(num_of_obs) * np.nan # positive_growth_data = np.ones(num_of_obs) * np.nan # positive_growth_volume_data = np.ones(num_of_obs) * np.nan # positive_growth_density_data = np.ones(num_of_obs) * np.nan size_y = all_obs[0].shape[0] size_x = all_obs[0].shape[1] num_of_cells = size_y * size_x # calc initial center of mass and use it as a reference point to "center" the world around it # in consequetive steps, recalculate the center of mass and "recenter" the wolrd around them #mid_y = int((size_y-1) / 2) #mid_x = int((size_x-1) / 2) mid_y = (size_y - 1) / 2 mid_x = (size_x - 1) / 2 mid = np.array([mid_y, mid_x]) # prepare the angles of the vectors from the middle point for each point in the env, used to compute the mass asymmetry # only recompute for first calculation of statistics (self.angles_from_middle is None) or if the observation size changed if self.angles_from_middle is None or self.angles_from_middle.shape[0] != size_y or self.angles_from_middle.shape[1] != size_x: self.angles_from_middle = np.ones((size_y,size_x))*np.nan for y in range(size_y): for x in range(size_x): vec = [mid_y-y, x-mid_x] self.angles_from_middle[y][x] = ad.helper.misc.angle_of_vec_degree([vec[1], vec[0]]) activation_center_of_mass = np.array(LeniaStatistics.center_of_mass(all_obs[0])) activation_shift_to_center = mid - activation_center_of_mass init_growth = all_obs[1] - all_obs[0] positive_growth_center_of_mass = np.array(LeniaStatistics.center_of_mass(init_growth)) positive_growth_shift_to_center = mid - positive_growth_center_of_mass prev_activation_center_movement_angle = np.nan prev_positive_growth_center_movement_angle = np.nan uncentered_activation_center_position = np.array([np.nan, np.nan]) for step in range(len(all_obs)): activation = all_obs[step] # uncentered_activation_center_position = np.array(ndimage.measurements.center_of_mass(activation)) # # # set center to middle if it can not be calculated, for example if all cells are dead # if np.isnan(uncentered_activation_center_position[0]) or np.isnan(uncentered_activation_center_position[1]) or \ # uncentered_activation_center_position[0] == float('inf') or uncentered_activation_center_position[1] == float('inf'): # uncentered_activation_center_position = mid.copy() # shift the system to the last calculated center of mass so that it is in the middle # the matrix can only be shifted in discrete values, therefore the shift is transformed to integer centered_activation = np.roll(activation, activation_shift_to_center.astype(int), (0, 1)) # calculate the image moments activation_moments = ad.helper.statistics.calc_image_moments(centered_activation) # new center of mass activation_center_of_mass = np.array([activation_moments.y_avg, activation_moments.x_avg]) # calculate the change of center as a vector activation_shift_from_prev_center = mid - activation_center_of_mass # calculate the new shift to center the next obs to the new center activation_shift_to_center = activation_shift_to_center + activation_shift_from_prev_center # transform the new center, encoded as a shift from the first image, back into the original image coordinates uncentered_activation_center_position[0] = (mid_y - activation_shift_to_center[0]) % size_y uncentered_activation_center_position[1] = (mid_x - activation_shift_to_center[1]) % size_x activation_center_position_data[step] = uncentered_activation_center_position # activation mass activation_mass = activation_moments.m00 activation_mass_data[step] = activation_mass / num_of_cells # activation is number of acitvated cells divided by the number of cells # activation volume activation_volume = np.sum(activation > EPS) activation_volume_data[step] = activation_volume / num_of_cells # activation density if activation_volume == 0: activation_density_data[step] = 0 else: activation_density_data[step] = activation_mass/activation_volume # activation moments activation_hu1_data[step] = activation_moments.hu1 activation_hu2_data[step] = activation_moments.hu2 activation_hu3_data[step] = activation_moments.hu3 activation_hu4_data[step] = activation_moments.hu4 activation_hu5_data[step] = activation_moments.hu5 activation_hu6_data[step] = activation_moments.hu6 activation_hu7_data[step] = activation_moments.hu7 activation_hu8_data[step] = activation_moments.hu8 activation_flusser9_data[step] = activation_moments.flusser9 activation_flusser10_data[step] = activation_moments.flusser10 activation_flusser11_data[step] = activation_moments.flusser11 activation_flusser12_data[step] = activation_moments.flusser12 activation_flusser13_data[step] = activation_moments.flusser13 # get velocity and angle of movement # distance between the previous center of mass and the new one is the velocity # angle is computed based on the shift vector if step <= 0: activation_center_velocity = np.nan activation_center_movement_angle = np.nan activation_center_movement_angle_velocity = np.nan activation_mass_asymmetry = np.nan else: activation_center_velocity = np.linalg.norm(activation_shift_from_prev_center) if activation_center_velocity == 0: activation_center_movement_angle = np.nan else: activation_center_movement_angle = ad.helper.misc.angle_of_vec_degree([-1 * activation_shift_from_prev_center[1], activation_shift_from_prev_center[0]]) # Angular velocity, is the difference between the current and previous angle of movement if activation_center_movement_angle is np.nan or prev_activation_center_movement_angle is np.nan: activation_center_movement_angle_velocity = 0 else: activation_center_movement_angle_velocity = ad.helper.misc.angle_difference_degree(activation_center_movement_angle, prev_activation_center_movement_angle) # activation mass asymmetry # calculate the angle between the center shift and the angle from the center to each point. # if the angle is < 180 the point is on the right side of the movement # then use its mass activation_right_side_mass = 0 if np.isnan(activation_center_movement_angle): activation_mass_asymmetry = np.nan else: if activation_mass == 0 or activation_mass_asymmetry == num_of_cells: # if all are active or dead then ther is perfect assymetry activation_mass_asymmetry = 0 else: # for y in range(size_y): # for x in range(size_x): # angle_dist = ad.helper.misc.angle_difference_degree(activation_center_movement_angle, angles_from_middle[y][x]) # # if angle_dist < 180: # activation_right_side_mass = activation_right_side_mass + activation[y][x] angle_dist = ad.helper.misc.angle_difference_degree(activation_center_movement_angle, self.angles_from_middle) activation_right_side_mass = np.sum(activation[angle_dist < 0]) # activation_mass_asymmetry = right_mass - left_mass = right_mass - (mass - right_mass) = 2*right_mass - mass activation_mass_asymmetry = (2 * activation_right_side_mass - activation_mass) / activation_mass prev_activation_center_movement_angle = activation_center_movement_angle activation_center_velocity_data[step] = activation_center_velocity activation_center_movement_angle_data[step] = activation_center_movement_angle activation_center_movement_angle_velocity_data[step] = activation_center_movement_angle_velocity activation_mass_asymmetry_data[step] = activation_mass_asymmetry # mass distribution around the center if activation_mass <= EPS: activation_mass_distribution = 1.0 else: activation_mass_distribution = np.sum(self.distance_weight_matrix * centered_activation) / np.sum(centered_activation) activation_mass_distribution_data[step] = activation_mass_distribution ########################################################################################################################################## # positive growth statistics uncentered_positive_growth_center_position = np.array([np.nan, np.nan]) if step <= 0: positive_growth_mass_data[step] = np.nan positive_growth_volume_data[step] = np.nan positive_growth_density_data[step] = np.nan positive_growth_center_position_data[step] = [np.nan, np.nan] positive_growth_center_velocity_data[step] = np.nan positive_growth_center_movement_angle_data[step] = np.nan positive_growth_center_movement_angle_velocity_data[step] = np.nan else: positive_growth = np.clip(all_obs[step] - all_obs[step - 1], 0, 1) # uncentered_positive_growth_center_position = np.array(StatLenia.center_of_mass(positive_growth)) # # # set center to middle if it can not be calculated, for example if all cells are dead # if np.isnan(uncentered_positive_growth_center_position[0]) or np.isnan(uncentered_positive_growth_center_position[1]) or \ # uncentered_positive_growth_center_position[0] == float('inf') or uncentered_positive_growth_center_position[1] == float('inf'): # uncentered_positive_growth_center_position = mid.copy() # # positive_growth_center_position_data[step] = uncentered_positive_growth_center_position # shift the system to the last calculated center of mass so that it is in the middle # the matrix can only be shifted in discrete values, therefore the shift is transformed to integer centered_positive_growth = np.roll(positive_growth, [int(positive_growth_shift_to_center[0]), int(positive_growth_shift_to_center[1])], (0, 1)) # new center of mass positive_growth_center_of_mass = np.array(LeniaStatistics.center_of_mass(centered_positive_growth)) # calculate the change of center as a vector positive_growth_shift_from_prev_center = mid - positive_growth_center_of_mass # calculate the new shift to center the next obs to the new center positive_growth_shift_to_center = positive_growth_shift_to_center + positive_growth_shift_from_prev_center # transform the new center, encoded as a shift from the first image, back into the original image coordinates uncentered_positive_growth_center_position[0] = (mid_y - positive_growth_shift_to_center[0]) % size_y uncentered_positive_growth_center_position[1] = (mid_x - positive_growth_shift_to_center[1]) % size_x positive_growth_center_position_data[step] = uncentered_positive_growth_center_position # growth mass positive_growth_mass = np.sum(centered_positive_growth) positive_growth_mass_data[step] = positive_growth_mass / num_of_cells # activation is number of acitvated cells divided by the number of cells # activation volume positive_growth_volume = np.sum( centered_positive_growth > EPS ) positive_growth_volume_data[step] = positive_growth_volume / num_of_cells # activation density if positive_growth_volume == 0: positive_growth_density_data[step] = 0 else: positive_growth_density_data[step] = positive_growth_mass / positive_growth_volume # get velocity and angle of movement # distance between the previous center of mass and the new one is the velocity # angle is computed based on the shift vector if step <= 1: positive_growth_center_velocity = np.nan positive_growth_center_movement_angle = np.nan positive_growth_center_movement_angle_velocity = np.nan else: positive_growth_center_velocity = np.linalg.norm(positive_growth_shift_from_prev_center) if positive_growth_center_velocity == 0: positive_growth_center_movement_angle = np.nan else: positive_growth_center_movement_angle = ad.helper.misc.angle_of_vec_degree([-1 * positive_growth_shift_from_prev_center[1], positive_growth_shift_from_prev_center[0]]) # Angular velocity, is the difference between the current and previous angle of movement if positive_growth_center_movement_angle is np.nan or prev_positive_growth_center_movement_angle is np.nan: positive_growth_center_movement_angle_velocity = 0 else: positive_growth_center_movement_angle_velocity = ad.helper.misc.angle_difference_degree(positive_growth_center_movement_angle, prev_positive_growth_center_movement_angle) prev_positive_growth_center_movement_angle = positive_growth_center_movement_angle positive_growth_center_velocity_data[step] = positive_growth_center_velocity positive_growth_center_movement_angle_data[step] = positive_growth_center_movement_angle positive_growth_center_movement_angle_velocity_data[step] = positive_growth_center_movement_angle_velocity ###################################################################################################################### # Growth - Activation centroid distance if step <= 0: activation_positive_growth_centroid_distance_data[step] = np.nan else: activation_positive_growth_centroid_distance = ad.helper.misc.get_min_distance_on_repeating_2d_array((size_y, size_x), uncentered_activation_center_position, uncentered_positive_growth_center_position) activation_positive_growth_centroid_distance_data[step] = activation_positive_growth_centroid_distance is_dead = np.all(all_obs[-1] == 1) or np.all(all_obs[-1] == 0) self.data['is_dead'] = is_dead self.data['activation_mass'] = activation_mass_data self.data['activation_mass_mean'] = np.nanmean(activation_mass_data) self.data['activation_mass_std'] =
np.nanstd(activation_mass_data)
numpy.nanstd
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Arduino lock-in amplifier """ __author__ = "<NAME>" __authoremail__ = "<EMAIL>" __url__ = "https://github.com/Dennis-van-Gils/DvG_Arduino_lock-in_amp" __date__ = "31-08-2021" __version__ = "2.0.0" # pylint: disable=invalid-name import os import sys import time as Time import psutil from PyQt5 import QtCore from PyQt5 import QtWidgets as QtWid from PyQt5.QtCore import QDateTime import numpy as np from dvg_pyqt_filelogger import FileLogger from dvg_debug_functions import dprint from dvg_fftw_welchpowerspectrum import FFTW_WelchPowerSpectrum from Alia_protocol_serial import Alia, Waveform from Alia_qdev import Alia_qdev from Alia_gui import MainWindow # Show debug info in terminal? Warning: Slow! Do not leave on unintentionally. DEBUG = False DEBUG_TIMING = False # Enable GPU-accelerated computations on an NVIDIA videocard with CUDA support? # Affects the FIR filters. USE_CUDA = False # ------------------------------------------------------------------------------ # current_date_time_strings # ------------------------------------------------------------------------------ def current_date_time_strings(): cur_date_time = QDateTime.currentDateTime() return ( cur_date_time.toString("dd-MM-yyyy"), cur_date_time.toString("HH:mm:ss"), ) # ------------------------------------------------------------------------------ # Program termination routines # ------------------------------------------------------------------------------ def stop_running(): app.processEvents() alia_qdev.turn_off() alia_qdev.quit() logger.close() @QtCore.pyqtSlot() def notify_connection_lost(): stop_running() excl = " ! ! ! ! ! ! ! ! " window.qlbl_title.setText("%sLOST CONNECTION%s" % (excl, excl)) str_cur_date, str_cur_time = current_date_time_strings() str_msg = "%s %s\nLost connection to Arduino on port %s.\n" % ( str_cur_date, str_cur_time, alia.ser.portstr, ) print("\nCRITICAL ERROR @ %s" % str_msg) reply = QtWid.QMessageBox.warning( window, "CRITICAL ERROR", str_msg, QtWid.QMessageBox.Ok ) if reply == QtWid.QMessageBox.Ok: pass # Leave the GUI open for read-only inspection by the user @QtCore.pyqtSlot() def about_to_quit(): print("\nAbout to quit") stop_running() alia.close() # ------------------------------------------------------------------------------ # Lock-in amplifier data-acquisition update function # ------------------------------------------------------------------------------ def lockin_DAQ_update(): """Listen for new data blocks send by the lock-in amplifier and perform the main mathematical operations for signal processing. This function will run in a dedicated thread (i.e. `worker_DAQ`), separated from the main program thread that handles the GUI. NOTE: NO GUI OPERATIONS ARE ALLOWED HERE. Otherwise it may affect the `worker_DAQ` thread negatively, resulting in lost blocks of data. """ # Shorthands c: Alia.Config = alia.config state: Alia_qdev.State = alia_qdev.state # Prevent throwings errors if just paused if alia.lockin_paused: return False if DEBUG_TIMING: tock = Time.perf_counter() print("%.2f _DAQ" % (tock - alia.tick)) alia.tick = tock # Listen for data buffers send by the lock-in ( success, _counter, state.time, state.ref_X, state.ref_Y, state.sig_I, ) = alia.listen_to_lockin_amp() if not success: dprint("@ %s %s" % current_date_time_strings()) return False # Detect dropped blocks # --------------------- # TODO: Rethink this procedure. Might be easier done with the index of the # block that also gets send by the Arduino. We either receive a full block, # or we don't. There are no partial blocks that can be received. alia_qdev.state.blocks_received += 1 last_time = state.rb_time[-1] if state.blocks_received > 1 else np.nan dT = (state.time[0] - last_time) / 1e6 # [usec] to [sec] if dT > c.SAMPLING_PERIOD * 1e6 * 1.10: # Allow a little clock jitter N_dropped_samples = int(round(dT / c.SAMPLING_PERIOD) - 1) dprint("Dropped samples: %i" % N_dropped_samples) dprint("@ %s %s" % current_date_time_strings()) # Replace dropped samples with np.nan samples. # As a result, the filter output will contain a continuous series of # np.nan values in the output for up to `RingBuffer_FIR_Filter. # T_settle_filter` seconds long after the occurrence of the last dropped # sample. state.rb_time.extend( last_time + np.arange(1, N_dropped_samples + 1) * c.SAMPLING_PERIOD * 1e6 ) state.rb_ref_X.extend(np.full(N_dropped_samples, np.nan)) state.rb_ref_Y.extend(np.full(N_dropped_samples, np.nan)) state.rb_sig_I.extend(np.full(N_dropped_samples, np.nan)) # Stage 0 # ------- state.sig_I_min = np.min(state.sig_I) state.sig_I_max = np.max(state.sig_I) state.sig_I_avg = np.mean(state.sig_I) state.sig_I_std = np.std(state.sig_I) state.rb_time.extend(state.time) state.rb_ref_X.extend(state.ref_X) state.rb_ref_Y.extend(state.ref_Y) state.rb_sig_I.extend(state.sig_I) # Note: `ref_X` [non-dim] is transformed to `ref_X*` [V] # Note: `ref_Y` [non-dim] is transformed to `ref_Y*` [V] window.hcc_ref_X.extendData( state.time, np.multiply(state.ref_X, c.ref_V_ampl_RMS) + c.ref_V_offset ) window.hcc_ref_Y.extendData( state.time, np.multiply(state.ref_Y, c.ref_V_ampl_RMS) + c.ref_V_offset ) window.hcc_sig_I.extendData(state.time, state.sig_I) # Stage 1 # ------- # fmt: off # Apply filter 1 to sig_I state.filt_I = alia_qdev.firf_1_sig_I.apply_filter(state.rb_sig_I) if alia_qdev.firf_1_sig_I.filter_has_settled: # Retrieve the block of original data from the past that aligns with # the current filter output valid_slice = alia_qdev.firf_1_sig_I.rb_valid_slice state.time_1 = state.rb_time [valid_slice] old_sig_I = state.rb_sig_I[valid_slice] old_ref_X = state.rb_ref_X[valid_slice] old_ref_Y = state.rb_ref_Y[valid_slice] # Heterodyne mixing np.multiply(state.filt_I, old_ref_X, out=state.mix_X) np.multiply(state.filt_I, old_ref_Y, out=state.mix_Y) else: state.time_1.fill(np.nan) old_sig_I = np.full(c.BLOCK_SIZE, np.nan) state.mix_X.fill(np.nan) state.mix_Y.fill(np.nan) state.filt_I_min = np.min(state.filt_I) state.filt_I_max = np.max(state.filt_I) state.filt_I_avg = np.mean(state.filt_I) state.filt_I_std = np.std(state.filt_I) state.rb_time_1.extend(state.time_1) state.rb_filt_I.extend(state.filt_I) state.rb_mix_X .extend(state.mix_X) state.rb_mix_Y .extend(state.mix_Y) window.hcc_filt_1_in .extendData(state.time_1, old_sig_I) window.hcc_filt_1_out.extendData(state.time_1, state.filt_I) window.hcc_mix_X .extendData(state.time_1, state.mix_X) window.hcc_mix_Y .extendData(state.time_1, state.mix_Y) # fmt: on # Stage 2 # ------- # Apply filter 2 to the mixer output state.X = alia_qdev.firf_2_mix_X.apply_filter(state.rb_mix_X) state.Y = alia_qdev.firf_2_mix_Y.apply_filter(state.rb_mix_Y) if alia_qdev.firf_2_mix_X.filter_has_settled: # Retrieve the block of time data from the past that aligns with # the current filter output valid_slice = alia_qdev.firf_1_sig_I.rb_valid_slice state.time_2 = state.rb_time_1[valid_slice] # Signal amplitude: R np.sqrt(np.add(np.square(state.X), np.square(state.Y)), out=state.R) # Signal phase: Theta np.arctan2(state.Y, state.X, out=state.T) np.multiply(state.T, 180 / np.pi, out=state.T) # [rad] to [deg] else: state.time_2.fill(np.nan) state.R.fill(np.nan) state.T.fill(np.nan) state.X_avg = np.mean(state.X) state.Y_avg =
np.mean(state.Y)
numpy.mean
import numpy as np from scipy.linalg import eigh import voice_activity_detector import features_extraction import statistics import utils def get_sigma(ubm, space_dimension): sigma = np.zeros(shape=(len(ubm.covariances) * len(ubm.covariances[0]))) k = 0 for i in range(len(ubm.covariances[0])): for j in range(len(ubm.covariances)): sigma[k] = ubm.covariances[j][i] k += 1 repeat_sigma = np.repeat(np.transpose(sigma)[:, np.newaxis], space_dimension, axis=1) return repeat_sigma def save_i_vector_model(path, i_vector, speaker, components_number): f = open( path + "/ivectors/" + speaker + "_ivector_model_" + str(components_number) + ".txt", "wb") np.save(f, i_vector) f.close def load_i_vector_model(path, speaker, components_number): f = open( path + "/ivectors/" + speaker + "_ivector_model_" + str(components_number) + ".txt", "rb") i_vector = np.load(f) f.close return i_vector def save_i_vectors(path, i_vectors, speaker, components_number): f = open( path + "/ivectors/" + speaker + "_ivector_" + str( components_number) + ".txt", "wb") np.save(f, i_vectors) f.close def extract_i_vector_from_signal(ubm, utterance_path, t_matrix, space_dimension, mfcc_number, frame_duration, step_duration, sigma): t_matrix_divides_sigma = np.divide(t_matrix, sigma) t_matrix_divides_sigma_transpose =
np.transpose(t_matrix_divides_sigma)
numpy.transpose
''' brt.py Created by <NAME> <EMAIL> version 1.1 -- 7.15.2017 Buffalo Ray Trace (BRT) is an interactive GUI for plotting image predictions for a lens model. BRT is written in Python, utilizing the tkinter GUI library, the matplotlib plotting library, the astropy library of tools for astrophysical data analysis. All are available through Anaconda. The only required inputs for BRT are the x and y deflection files (FITS), in units of arcseconds, and a PNG color image or FITS image of the field of view. These two sets of inputs need to have the same field of view. The program provides helper functions to create these files. VERSION HISTORY: 1.1 -- 7.15.2017: Fixed minor bugs. Fixed bug with computing dls/ds using proper cosmology. Added postage stamp feature. Added feature that inserts the redshift of the selected arcs from the arc list into the boxes for ray tracing and plotting the critical curve. ''' import matplotlib matplotlib.use('TkAgg') import numpy as np import os import sys if sys.version_info[0] < 3: from Tkinter import * import tkMessageBox as tkMB else: from tkinter import * from tkinter import messagebox as tkMB import pickle from astropy.io import fits from astropy.wcs import WCS from astropy.cosmology import FlatLambdaCDM from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure from itertools import cycle import warnings import time import datetime import platform from PIL import Image def dlsds(zl,zs,Om0=0.3,H0=70): cosmo = FlatLambdaCDM(Om0=Om0,H0=H0) ratio = np.zeros_like(zs) for i in range(len(zs)): dls = cosmo.angular_diameter_distance_z1z2(zl,zs[i]).value ds = cosmo.angular_diameter_distance(zs[i]).value ratio[i] = dls/ds return ratio def predict_images(xim,yim,deflectx,deflecty,dlsds=1,maxdist=0.5): dims = deflectx.shape source_x = np.zeros_like(deflectx) source_y = np.zeros_like(deflecty) if dims[0] == dims[1]: for i in range(dims[0]): source_x[:,i] = i + 1 - deflectx[:,i]*dlsds source_y[i,:] = i + 1 - deflecty[i,:]*dlsds else: for j in range(dims[0]): source_x[:,j] = j + 1 - deflectx[:,j]*dlsds for k in range(dims[1]): source_y[k,:] = k + 1 - deflecty[k,:]*dlsds xs = source_x[int(np.round(yim))-1,int(np.round(xim))-1] ys = source_y[int(np.round(yim))-1,int(np.round(xim))-1] d = np.sqrt((source_x-xs)**2+(source_y-ys)**2) indices = np.where(d<maxdist) ximp = [] yimp = [] for i,j in zip(indices[1],indices[0]): ximp.append(i+1),yimp.append(j+1) ximp = np.array(ximp) yimp = np.array(yimp) return ximp, yimp def update(f): data = fits.getdata(f) h = fits.getheader(f) h['CRPIX1'] += 0.5 h['CRPIX2'] += 0.5 fits.writeto(f,data,header=h,clobber=True) class StartWindow: def __init__(self): self.root = Tk() self.root.wm_title("Start up") self.root.geometry("380x380") titleFrame = Frame(self.root) titleFrame.pack() title = Label(titleFrame,text="Buffalo Ray Trace",fg='blue') title.config(font=("Helvetica", 24)) title.pack() Label(titleFrame,text='Enter model parameters',fg='red').pack() entryFrame = Frame(self.root) entryFrame.pack() Label(entryFrame, text = "Cluster redshift: ").grid(row=0, column=0,sticky=E) self.entry_zl = Entry(entryFrame,width=15) self.entry_zl.grid(row=0, column=1) Label(entryFrame, text = "Image file: ").grid(row=1, column=0,sticky=E) self.entry_imagefile = Entry(entryFrame,width=15) self.entry_imagefile.grid(row=1, column=1) Button(entryFrame, text='Create',command=self.tiff_window,padx=5,pady=5).grid(row=1,column=2) Label(entryFrame, text = "X deflection file: ").grid(row=2, column=0,sticky=E) self.entry_dxfile = Entry(entryFrame,width=15) self.entry_dxfile.grid(row=2, column=1) Label(entryFrame, text = "Y deflection file: ").grid(row=3, column=0,sticky=E) self.entry_dyfile = Entry(entryFrame,width=15) self.entry_dyfile.grid(row=3, column=1) Label(entryFrame, text = "Deflection file redshift: ").grid(row=4, column=0,sticky=E) self.entry_dz = Entry(entryFrame,width=15) self.entry_dz.grid(row=4, column=1) self.check = IntVar() self.check.set(0) Checkbutton(entryFrame, variable=self.check, onvalue=1, offvalue=0, text='Deflection files are dls/ds = 1').grid(row=5,columnspan=2) Label(entryFrame,text='Enter cosmological parameters',fg='red').grid(row=6,columnspan=2) Label(entryFrame, text = "Omega M (1 - Omega L): ").grid(row=7, column=0,sticky=E) self.entry_Om0 = Entry(entryFrame,width=15) self.entry_Om0.grid(row=7, column=1) self.entry_Om0.insert(0,'0.3') Label(entryFrame, text = "Hubble constant (km/s/Mpc): ").grid(row=8, column=0,sticky=E) self.entry_H0 = Entry(entryFrame,width=15) self.entry_H0.grid(row=8, column=1) self.entry_H0.insert(0,'70.0') submitFrame = Frame(self.root) submitFrame.pack() Button(submitFrame, text = "Enter", command = self.getParams,padx=5,pady=5).pack() Label(submitFrame, text='Or').pack() Button(submitFrame,text="Load previous model",command=self.loadPrevious,padx=5,pady=5).pack() self.root.mainloop() def tiff_window(self): self.toplevel = Toplevel(self.root) Label(self.toplevel, text='Open a fits file in ds9 (or three if RGB) and\nscale to the desired output.',fg='blue').grid(row=0,columnspan=2) Label(self.toplevel, text='TIFF file name: ').grid(row=1,column=0,sticky=E) self.file_entry = Entry(self.toplevel,width=10) self.file_entry.grid(row=1,column=1) Button(self.toplevel,text='Write TIFF',command=self.createTiff,padx=5,pady=5).grid(row=2,columnspan=2) def createTiff(self): tiffname = self.file_entry.get() os.system('xpaset -p ds9 export tiff '+os.getcwd()+'/'+tiffname+' none') fitsname = os.popen('xpaget ds9 file').readlines()[0].rsplit()[0] htiff = fits.getheader(fitsname) wtiff = WCS(htiff) pickle.dump(wtiff,open(tiffname+'.wcs','wb')) self.entry_imagefile.delete(0,END) self.entry_imagefile.insert(0,tiffname) self.toplevel.destroy() def getParams(self): self.zl = self.entry_zl.get() self.imagefile = self.entry_imagefile.get() self.dxfile = self.entry_dxfile.get() self.dyfile = self.entry_dyfile.get() self.dz = self.entry_dz.get() self.isInf = self.check.get() self.Om0 = self.entry_Om0.get() self.H0 = self.entry_H0.get() errors = [] try: self.zl = float(self.zl) except ValueError or self.zl < 0: errors.append('Cluster redshift must be a number > 0.') for file in [self.imagefile, self.dxfile, self.dyfile]: if not os.path.isfile(file): errors.append('File "'+file+ '" does not exist.') if self.isInf == 0: try: self.dz = float(self.dz) except ValueError or self.dz < self.zl: errors.append('Deflect file redshift must be a number > cluster redshift.') try: self.Om0 = float(self.Om0) except ValueError or Om0 < 0 or Om0>1: errors.append('Omega M must be a number between 0 and 1') try: self.H0 = float(self.H0) except ValueError or self.H0 < 0 or self.H0 > 100: errors.append('H0 must be a number between 0 and 100.') if len(errors) > 0: tkMB.showinfo('Error','\n\n'.join(errors)) else: pickle.dump((self.zl, self.imagefile, self.dxfile, self.dyfile, self.dz, self.isInf,self.Om0,self.H0),open('last.brt','wb')) self.startUp() self.root.destroy() def loadPrevious(self): if os.path.isfile('last.brt'): self.zl, self.imagefile, self.dxfile, self.dyfile, self.dz, self.isInf, self.Om0, self.H0 = pickle.load(open('last.brt','rb')) self.entry_zl.delete(0,END) self.entry_zl.insert(0,str(self.zl)) self.entry_imagefile.delete(0,END) self.entry_imagefile.insert(0,self.imagefile) self.entry_dxfile.delete(0,END) self.entry_dxfile.insert(0,self.dxfile) self.entry_dyfile.delete(0,END) self.entry_dyfile.insert(0,self.dyfile) self.entry_dz.delete(0,END) self.entry_dz.insert(0,str(self.dz)) self.check.set(self.isInf) self.entry_Om0.delete(0,END) self.entry_Om0.insert(0,str(self.Om0)) self.entry_H0.delete(0,END) self.entry_H0.insert(0,str(self.H0)) else: tkMB.showinfo('Error','Could not locate previous model. Enter new parameters.') def startUp(self): global zl, image, deflectx, deflecty, dDXdx, dDXdy, dDYdx, dDYdy, Om0, H0, wcs, scalefactor, xoff, yoff zl = self.zl Om0 = self.Om0 H0 = self.H0 with warnings.catch_warnings(): warnings.simplefilter('ignore') im = Image.open(self.imagefile) wtiff = pickle.load(open(self.imagefile+'.wcs','rb')) deflectx = fits.getdata(self.dxfile) deflecty = fits.getdata(self.dyfile) h = fits.getheader(self.dxfile) with warnings.catch_warnings(): warnings.simplefilter('ignore') wcs = WCS(h) ra,dec = wcs.wcs_pix2world([1,h['NAXIS1']+1],[1,h['NAXIS2']+1],1) x,y = wtiff.wcs_world2pix(ra,dec,1) xoff = 0.5-(x[0]-int(x[0])+x[1]-int(x[1]))/2 yoff = 0.5-(y[0]-int(y[0])+y[1]-int(y[1]))/2 image = im.crop((int(x[0]),im.height-int(y[1])+1,int(x[1])+1,im.height-int(y[0]))) scalefactor = image.width/deflectx.shape[0] ps = h['CDELT2']*3600 deflectx /= ps deflecty /= ps if self.isInf == 0: ratio = dlsds(zl,[self.dz],Om0=Om0,H0=H0) deflectx /= ratio[0] deflecty /= ratio[0] with warnings.catch_warnings(): warnings.simplefilter('ignore') dDXdy,dDXdx = np.gradient(deflectx) dDYdy,dDYdx = np.gradient(deflecty) class MainWindow: def __init__(self): self.root = Tk() self.root.wm_title("BRT") self.root.geometry("1000x750") self.points = [] self.labels = [] self.curves = [] self.arcs = [] self.arc_annotate = [] self.arc_labels = np.array([]) self.arc_x = np.array([]) self.arc_y =
np.array([])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: <NAME> # Contact: <EMAIL> # Date: 18/12/2018 # This code generates train/test splits of edges from input graphs for evaluating graph embeddings # on link prediction. It also provides false train and test edge sets of the required sizes. # The train/test sets are efficiently generated by: i) obtaining a spanning tree of the input graph # selected uniformly at random. ii) adding more edges to the spanning tree until the required amount # of train edges is reached. from __future__ import division from __future__ import print_function import os import random import warnings import networkx as nx import numpy as np import scipy as sp from scipy.sparse import triu from scipy.sparse import tril from scipy.sparse.csgraph import depth_first_tree from sklearn.externals.joblib import Parallel, delayed def _sanity_check(G): r""" Helper function that checks if the input graphs contains a single connected component. Raises an error if not. Parameters ---------- G : graph A NetworkX graph Raises ------ ValueError If the graph has more than one (weakly) connected component. """ # Compute the number of connected components if G.is_directed(): num_ccs = nx.number_weakly_connected_components(G) else: num_ccs = nx.number_connected_components(G) # Rise an error if more than one CC exists if num_ccs != 1: raise ValueError("Input graph should contain one (weakly) connected component. " "This graph contains: " + str(num_ccs)) def broder_alg(G, E): r""" Runs Andrei Broder's algorithm to select uniformly at random a spanning tree of the input graph.The direction of the edges included in train_E is taken from E which respects the edge directions in the original graph, thus, the results are still valid for directed graphs. For pairs of nodes in the original digraphs which have edges in both directions, we randomly select the direction of the edge included in the ST. Parameters ---------- G : graph A NetworkX graph E : set A set of directed or undirected edges constituting the graph G. Returns ------- train_E : set A set of edges of G describing the random spanning tree References ---------- .. [1] <NAME>, "Generating Random Spanning Trees", Proc. of the 30th Annual Symposium on Foundations of Computer Science, pp. 442--447, 1989. """ # Create two partitions, S and T. Initially store all nodes in S. S = set(G.nodes) T = set() # Pick a random node as the "current node" and mark it as visited. current_node = random.sample(S, 1).pop() S.remove(current_node) T.add(current_node) # Perform random walk on the graph train_E = set() while S: if G.is_directed(): neighbour_node = random.sample(list(G.successors(current_node)) + list(G.predecessors(current_node)), 1).pop() else: neighbour_node = random.sample(list(G.neighbors(current_node)), 1).pop() if neighbour_node not in T: S.remove(neighbour_node) T.add(neighbour_node) if random.random() < 0.5: if (current_node, neighbour_node) in E: train_E.add((current_node, neighbour_node)) else: train_E.add((neighbour_node, current_node)) else: if (neighbour_node, current_node) in E: train_E.add((neighbour_node, current_node)) else: train_E.add((current_node, neighbour_node)) current_node = neighbour_node # Return the set of edges constituting the spanning tree return train_E def wilson_alg(G, E): r""" Runs Willson's algorithm also known as loop erasing random walk to select uniformly at random a spanning tree of the input graph. A set E contains the original direction of edges in graph G, and train_E will only include edges which exist in E, thus, the results are still valid for digraphs. For pairs of nodes in the original digraphs, which have edges in both directions, we select the direction of the edge in the ST at random. Parameters ---------- G : graph A NetworkX graph E : set A set of directed or undirected edges constituting the graph G. Returns ------- train_E : set A set of edges of G describing the random spanning tree References ---------- .. [1] <NAME>, "Generating Random Spanning Trees More Quickly than the Cover Time", In Proceedings of STOC, pp. 296--303, 1996. .. [2] <NAME> and <NAME>, "How to Get a Perfectly Random Sample from a Generic Markov Chain and Generate a Random Spanning Tree of a Directed Graph", Journal of Algorithms 27, pp. 170--217, 1998. """ # Stores the nodes which are part of the trees created by the LERW. intree = set() # A dictionary which works as a linked list and stores the spanning tree tree = dict() # Pick a random node as the root of the spanning tree and add it to intree # For undirected graphs this is the correct approach r = random.sample(G.nodes, 1).pop() intree.add(r) for node in G.nodes: i = node while i not in intree: # This random successor works for weighted and unweighted graphs because we just # want to select a bunch of edges from the graph, no matter what the weights are. if G.is_directed(): tree[i] = random.sample(list(G.successors(i)) + list(G.predecessors(i)), 1).pop() else: tree[i] = random.sample(list(G.neighbors(i)), 1).pop() i = tree[i] i = node while i not in intree: intree.add(i) i = tree[i] # Create a set to store the train edges train_E = set() # This is only relevant for directed graphs to make the selection of edge direction equiprobable for e in set(zip(tree.keys(), tree.values())): if random.random() < 0.5: if e in E: train_E.add(e) else: train_E.add(e[::-1]) else: if e[::-1] in E: train_E.add(e[::-1]) else: train_E.add(e) # Return the edges of the random spanning tree return train_E def _compute_one_split(G, output_path, owa=True, train_frac=0.51, num_fe_train=None, num_fe_test=None, split_id=0): r""" Computes one split of train/test edges as well as non-edges from an input graph and writes the data to files. The train sets are always connected / weakly connected and span all nodes of the input graph. Input graphs (digraphs) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph output_path : string Indicates the path where data will be stored. Can include a name for all splits to share. owa : bool, optional Encodes the belief that the network respects or not the open world assumption. Default is True. If OWA=True, false train edges can be true test edges. False edges sampled from train graph. If OWA=False, closed world is assumed so false train edges are known to be false (not in G) train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. num_fe_train : int, optional The number of train false edges to generate. Default is same number as true train edges. num_fe_test : int, optional The number of test false edges to generate. Default is same number as true test edges. split_id : int, optional The ID of train/test split. Default is 0. """ # Generate train and test edge splits train_E, test_E = split_train_test(G, train_frac) # Generate the train/test false edges if owa: train_E_false, test_E_false = generate_false_edges_owa(G, train_E, test_E, num_fe_train, num_fe_test) else: train_E_false, test_E_false = generate_false_edges_cwa(G, train_E, test_E, num_fe_train, num_fe_test) # Write the computed split to a file store_train_test_splits(output_path, train_E, train_E_false, test_E, test_E_false, split_id) def compute_splits_parallel(G, output_path, owa=True, train_frac=0.51, num_fe_train=None, num_fe_test=None, num_splits=10): r""" Computes in parallel the required number of train/test splits of edges and non-edges from an input graph and writes the data to files. The train sets are always connected / weakly connected and span all nodes of the input graph. Input graphs (digraphs) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph output_path : string Indicates the path where data will be stored. Can include a name for all splits to share. owa : bool, optional Encodes the belief that the network respects or not the open world assumption. Default is True. If OWA=True, false train edges can be true test edges. False edges sampled from train graph. If OWA=False, closed world is assumed so false train edges are known to be false (not in G) train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. num_fe_train : int, optional The number of train false edges to generate. Default is same number as true train edges. num_fe_test : int, optional The number of test false edges to generate. Default is same number as true test edges. num_splits : int, optional The number of train/test splits to generate. Default is 10. """ # Compute the splits sequentially or in parallel backend = 'multiprocessing' path_func = delayed(_compute_one_split) Parallel(n_jobs=num_splits, verbose=True, backend=backend)( path_func(G, output_path, owa, train_frac, num_fe_train, num_fe_test, split) for split in range(num_splits)) def split_train_test(G, train_frac=0.51, st_alg='wilson'): r""" Computes one train/test split of edges from an input graph and returns the results. The train set will be (weakly) connected and span all nodes of the input graph (digraph). Input graph (digraph) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. st_alg : basestring, optional The algorithm to use for generating the spanning tree constituting the backbone of the train set. Options are: 'wilson' and 'broder'. The first option, 'wilson', also known as LERW is much faster in most cases. Default is 'wilson'. Returns ------- train_E : set The set of train edges test_E : set The set of test edges Raises ------ ValueError If the train_frac parameter is not in range (0, 1]. If the input graph G has more than one (weakly) connected component. """ # Sanity check to make sure the input is correct _sanity_check(G) if train_frac <= 0.0 or train_frac > 1.0: raise ValueError('The train_frac parameter needs to be in range: (0.0, 1.0]') if train_frac == 1.0: return set(G.edges()), set() # Create a set of all edges in G E = set(G.edges) if st_alg == 'broder': # Compute a random spanning tree using broder's algorithm train_E = broder_alg(G, E) else: # Compute a random spanning tree using wilson's algorithm train_E = wilson_alg(G, E) # Fill test edge set as all edges not in the spanning tree test_E = E - train_E # Compute num train edges num_E = len(E) num_train_E = np.ceil(train_frac * num_E) # Check if the num edges in the spanning tree is already greater than the num train edges num_toadd = int(num_train_E - len(train_E)) if num_toadd <= 0: print("WARNING: In order to return a connected train set the train_frac parameter needs to be higher!") print("In this case, the provided train set constitutes a random spanning tree of the input graph.") print("The train_frac value used is: {}".format(len(train_E) / num_E)) print("Edges requested: train = {}, test = {}".format(num_train_E, num_E - num_train_E)) print("Edges returned: train = {}, test = {}".format(len(train_E), num_E - len(train_E))) else: # Add more edges to train set from test set until it has desired size edges = set(random.sample(test_E, num_toadd)) test_E = test_E - edges train_E = train_E | edges # Perform some simple checks assert E == (test_E | train_E) assert len(E) == len(test_E) + len(train_E) if num_toadd > 0: assert num_train_E == len(train_E) # Return the sets of edges return train_E, test_E def rand_split_train_test(G, train_frac=0.51): r""" Computes one train/test split of edges from an input graph and returns the results. The train/test split is computed by randomly removing 1-train_frac edges from the graph. From the remaining edges, those in the mainCC constitute the train edges. From the set of removed edges, those whose nodes are in the train set, are considered part or the test set. The proportion of train/test edges returned might not be the required one. The train set will be (weakly) connected and span all nodes of the input graph. Input graph (digraph) can contain one or many (weakly) connected components. Parameters ---------- G : graph A NetworkX graph train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. Returns ------- train_E : set The set of train edges test_E : set The set of test edges Raises ------ ValueError If the train_frac parameter is not in range (0, 1]. """ if train_frac <= 0.0 or train_frac > 1.0: raise ValueError('The train_frac parameter needs to be in range: (0.0, 1.0]') if train_frac == 1.0: return set(G.edges()), set() # Create a set of all edges in G E = set(G.edges) num_E = len(E) # Compute the potential number of train and test edges which corresponds to the fraction given num_train_E = int(np.ceil(train_frac * num_E)) num_test_E = int(num_E - num_train_E) # Randomly remove 1-train_frac edges from the graph and store them as potential test edges pte_edges = set(random.sample(E, num_test_E)) # The remaining edges are potential train edges ptr_edges = E - pte_edges # Create a graph containing all ptr_edges and compute the mainCC if G.is_directed(): H = nx.DiGraph() H.add_edges_from(ptr_edges) maincc = max(nx.weakly_connected_component_subgraphs(H), key=len) else: H = nx.Graph() H.add_edges_from(ptr_edges) maincc = max(nx.connected_component_subgraphs(H), key=len) # The edges in the mainCC graph are the actual train edges train_E = set(maincc.edges) # Remove potential test edges for which the end nodes do not exist in the train_E test_E = set() for (src, dst) in pte_edges: if src in maincc.nodes and dst in maincc.nodes: test_E.add((src, dst)) # Return the sets of edges return train_E, test_E def naive_split_train_test(G, train_frac=0.51): r""" Computes one train/test split of edges from an input graph and returns the results. The sets are computed using the naive approach that checks connectivity of the graph for each removed edge. If graph gets disconnected, that edges is not removed. The train set will be (weakly) connected and span all nodes of the input graph. Input graph (digraph) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. Returns ------- train_E : set The set of train edges test_E : set The set of test edges Raises ------ ValueError If the train_frac parameter is not in range (0, 1]. If the input graph G has more than one (weakly) connected component. """ # Sanity check to make sure the input is correct _sanity_check(G) if train_frac <= 0.0 or train_frac > 1.0: raise ValueError('The train_frac parameter needs to be in range: (0.0, 1.0]') if train_frac == 1.0: return set(G.edges()), set() # Is directed directed = G.is_directed() G = G.copy() # Create a set of all edges in G aux = np.array(G.edges) np.random.shuffle(aux) E = set([tuple(edge) for edge in aux]) # Compute num train edges num_E = len(E) num_train_E = np.ceil(train_frac * num_E) num_test_E = num_E - num_train_E # Initialize train edges to an empty set train_E = set(G.edges()) # Initialize test edges to an empty set test_E = set() # Iterate over shuffled edges, add to train/val sets for i, edge in enumerate(E): # if i % 500 == 0: # print('{}/{}'.format(i, num_test_E)) node1 = edge[0] node2 = edge[1] # If removing edge would disconnect a connected component, backtrack and move on G.remove_edge(node1, node2) if directed: if nx.number_weakly_connected_components(G) > 1: G.add_edge(node1, node2) continue else: if nx.number_connected_components(G) > 1: G.add_edge(node1, node2) continue # Fill test_edges if len(test_E) < num_test_E: test_E.add(edge) train_E.remove(edge) else: break # Perform some simple checks assert E == (test_E | train_E) assert len(E) == len(train_E) + len(test_E) # Return the sets of edges return train_E, test_E def generate_false_edges_owa(G, train_E, test_E, num_fe_train=None, num_fe_test=None): r""" This method generates false train and test edges for both directed and undirected graphs. The train and test sets are non overlapping. Follows the open world assumption, so false train edges are generated only using the true train edges, so false train edges can be true test edges. This is the case for evolving graphs where edges can only appear. For undirected graphs the output is sorted (smallNodeID, bigNodeID) Parameters ---------- G : graph A NetworkX graph train_E : set The set of train edges. test_E : set The set of test edges. num_fe_train : int, optional The number of train false edges to generate. Default is same number as true train edges. num_fe_test : int, optional The number of test false edges to generate. Default is same number as true test edges. Returns ------- train_false_E : set The set of false train edges test_false_E : set The set of false test edges Raises ------ ValueError If the input graph G has more than one (weakly) connected component. If more false edges than existing in the graph are required. """ # Sanity check to make sure the input is correct _sanity_check(G) # Create a set of vertices V = set(G.nodes) # Initialize the sizes of the false edges if num_fe_train is None: num_fe_train = len(train_E) if num_fe_test is None: num_fe_test = len(test_E) # Make sure the required amount of false edges can be generated max_nonedges = len(V) * len(V) - len(train_E) if num_fe_train > max_nonedges: raise ValueError('Too many false train edges required! Max available for train+test is {}'.format(max_nonedges)) else: if num_fe_train + num_fe_test > max_nonedges: warnings.warn('Too many false edges required in train+test! ' 'Using maximum number of false test edges available: {}'.format(max_nonedges - num_fe_train)) num_fe_test = max_nonedges - num_fe_train # Create sets to store the false edges train_E_false = set() test_E_false = set() # Generate negative train edges while len(train_E_false) < num_fe_train: edge = tuple(random.sample(V, 2)) redge = tuple(reversed(edge)) if edge not in train_E: if G.is_directed(): train_E_false.add(edge) else: if redge not in train_E: train_E_false.add(tuple(sorted(edge))) # Generate negative test edges while len(test_E_false) < num_fe_test: edge = tuple(random.sample(V, 2)) redge = tuple(reversed(edge)) if edge not in train_E and edge not in test_E and edge not in train_E_false: if G.is_directed(): test_E_false.add(edge) else: if redge not in train_E and redge not in test_E and redge not in train_E_false: test_E_false.add(tuple(sorted(edge))) # Perform some simple check before returning the result assert len(train_E_false) == num_fe_train assert len(test_E_false) == num_fe_test assert train_E_false.isdisjoint(test_E_false) assert train_E_false.isdisjoint(train_E) assert test_E_false.isdisjoint(train_E | test_E) # Return the sets of false edges return train_E_false, test_E_false def generate_false_edges_cwa(G, train_E, test_E, num_fe_train=None, num_fe_test=None): r""" This method generates false train and test edges for both directed and undirected graphs. The train and test sets are non overlapping. Follows the closed world assumption, so false train edges are selected as known to be false. This is the case for some networks e.g. protein-protein interaction where information about both the positive class (existing edges) and the negative class (missing edges) exists. For undirected graphs the output is sorted (smallNodeID, bigNodeID) Parameters ---------- G : graph A NetworkX graph train_E : set The set of train edges. test_E : set The set of test edges. num_fe_train : int, optional The number of train false edges to generate. Default is same number as true train edges. num_fe_test : int, optional The number of test false edges to generate. Default is same number as true test edges. Returns ------- train_false_E : set The set of false train edges test_false_E : set The set of false test edges Raises ------ ValueError If the input graph G has more than one (weakly) connected component. If more false edges than existing in the graph are required. """ # Sanity check to make sure the input is correct _sanity_check(G) # Create a set of vertices V = set(G.nodes) # Initialize the sizes of the false edges if num_fe_train is None: num_fe_train = len(train_E) if num_fe_test is None: num_fe_test = len(test_E) # Make sure the required amount of false edges can be generated max_nonedges = len(V) * len(V) - len(G.edges) if num_fe_train > max_nonedges: raise ValueError( 'Too many false train edges required! Max available for train+test is {}'.format(max_nonedges)) else: if num_fe_train + num_fe_test > max_nonedges: warnings.warn('Too many false edges required in train+test! ' 'Using maximum number of false test edges available: {}'.format(max_nonedges - num_fe_train)) # num_fe_test = max_nonedges - num_fe_train return _getall_false_edges(G, (1.0*num_fe_train)/max_nonedges) # Create sets to store the false edges train_E_false = set() test_E_false = set() # Generate negative train edges while len(train_E_false) < num_fe_train: edge = tuple(random.sample(V, 2)) redge = tuple(reversed(edge)) if edge not in train_E and edge not in test_E: if G.is_directed(): train_E_false.add(edge) else: if redge not in train_E and redge not in test_E: train_E_false.add(tuple(sorted(edge))) # Generate negative test edges while len(test_E_false) < num_fe_test: edge = tuple(random.sample(V, 2)) redge = tuple(reversed(edge)) if edge not in train_E and edge not in test_E and edge not in train_E_false: if G.is_directed(): test_E_false.add(edge) else: if redge not in train_E and redge not in test_E and redge not in train_E_false: test_E_false.add(tuple(sorted(edge))) # Perform some simple check before returning the result assert len(train_E_false) == num_fe_train assert len(test_E_false) == num_fe_test assert train_E_false.isdisjoint(test_E_false) assert train_E_false.isdisjoint(train_E | test_E) assert test_E_false.isdisjoint(train_E | test_E) # Return the sets of false edges return train_E_false, test_E_false def generate_false_edges_cwa_close1(G, train_E, test_E, num_fe_train=None, num_fe_test=None, length=None): r""" This method generates false train and test edges for both directed and undirected graphs. The train and test sets are non overlapping. Follows the closed world assumption, so false train edges are selected as known to be false. This is the case for some networks e.g. protein-protein interaction where information about both the positive class (existing edges) and the negative class (missing edges) exists. For undirected graphs the output is sorted (smallNodeID, bigNodeID) Parameters ---------- G : graph A NetworkX graph train_E : set The set of train edges. test_E : set The set of test edges. num_fe_train : int, optional The number of train false edges to generate. Default is same number as true train edges. num_fe_test : int, optional The number of test false edges to generate. Default is same number as true test edges. Returns ------- train_false_E : set The set of false train edges test_false_E : set The set of false test edges Raises ------ ValueError If the input graph G has more than one (weakly) connected component. If more false edges than existing in the graph are required. """ # Sanity check to make sure the input is correct _sanity_check(G) # Create a set of vertices V = set(G.nodes) # Initialize the sizes of the false edges if num_fe_train is None: num_fe_train = len(train_E) if num_fe_test is None: num_fe_test = len(test_E) # Make sure the required amount of false edges can be generated max_nonedges = len(V) * len(V) - len(G.edges) if num_fe_train > max_nonedges: raise ValueError( 'Too many false train edges required! Max available for train+test is {}'.format(max_nonedges)) else: if num_fe_train + num_fe_test > max_nonedges: warnings.warn('Too many false edges required in train+test! ' 'Using maximum number of false test edges available: {}'.format(max_nonedges - num_fe_train)) # num_fe_test = max_nonedges - num_fe_train return _getall_false_edges(G, (1.0*num_fe_train)/max_nonedges) # Create sets to store the false edges train_E_false = set() test_E_false = set() # Generate negative train edges while len(train_E_false) < num_fe_train: edge = tuple(random.sample(V, 2)) redge = tuple(reversed(edge)) if edge not in train_E and edge not in test_E: if G.is_directed(): if (not nx.has_path(G, source=edge[0], target=edge[1])) or (nx.shortest_path_length(G, source=edge[0], target=edge[1]) >= length): train_E_false.add(edge) else: if redge not in train_E and redge not in test_E: if (not nx.has_path(G, source=edge[0], target=edge[1])) or (nx.shortest_path_length(G, source=edge[0], target=edge[1]) >= length): train_E_false.add(tuple(sorted(edge))) # Generate negative test edges while len(test_E_false) < num_fe_test: edge = tuple(random.sample(V, 2)) redge = tuple(reversed(edge)) if edge not in train_E and edge not in test_E and edge not in train_E_false: if G.is_directed(): if (not nx.has_path(G, source=edge[0], target=edge[1])) or (nx.shortest_path_length(G, source=edge[0], target=edge[1]) >= length): test_E_false.add(edge) else: if redge not in train_E and redge not in test_E and redge not in train_E_false: if (not nx.has_path(G, source=edge[0], target=edge[1])) or (nx.shortest_path_length(G, source=edge[0], target=edge[1]) >= length): test_E_false.add(tuple(sorted(edge))) # Perform some simple check before returning the result assert len(train_E_false) == num_fe_train assert len(test_E_false) == num_fe_test assert train_E_false.isdisjoint(test_E_false) assert train_E_false.isdisjoint(train_E | test_E) assert test_E_false.isdisjoint(train_E | test_E) # Return the sets of false edges return train_E_false, test_E_false def generate_false_edges_cwa_close(G, train_E, test_E, num_fe_train=None, num_fe_test=None, length=None): r""" This method generates false train and test edges for both directed and undirected graphs. The train and test sets are non overlapping. Follows the closed world assumption, so false train edges are selected as known to be false. This is the case for some networks e.g. protein-protein interaction where information about both the positive class (existing edges) and the negative class (missing edges) exists. For undirected graphs the output is sorted (smallNodeID, bigNodeID) Parameters ---------- G : graph A NetworkX graph train_E : set The set of train edges. test_E : set The set of test edges. num_fe_train : int, optional The number of train false edges to generate. Default is same number as true train edges. num_fe_test : int, optional The number of test false edges to generate. Default is same number as true test edges. length: int, optional false train and test edges whose shortest path length is larger than the value of length. Returns ------- train_false_E : set The set of false train edges test_false_E : set The set of false test edges Raises ------ ValueError If the input graph G has more than one (weakly) connected component. If more false edges than existing in the graph are required. """ # Sanity check to make sure the input is correct _sanity_check(G) # Create a set of vertices V = set(G.nodes) # Initialize the sizes of the false edges if num_fe_train is None: num_fe_train = len(train_E) if num_fe_test is None: num_fe_test = len(test_E) # Make sure the required amount of false edges can be generated max_nonedges = len(V) * len(V) - len(G.edges) if num_fe_train > max_nonedges: raise ValueError( 'Too many false train edges required! Max available for train+test is {}'.format(max_nonedges)) else: if num_fe_train + num_fe_test > max_nonedges: warnings.warn('Too many false edges required in train+test! ' 'Using maximum number of false test edges available: {}'.format(max_nonedges - num_fe_train)) # num_fe_test = max_nonedges - num_fe_train return _getall_false_edges(G, (1.0*num_fe_train)/max_nonedges) # Create sets to store the false edges train_E_false = set() test_E_false = set() # Generate negative train edges while len(train_E_false) < num_fe_train: edge = tuple(random.sample(V, 2)) redge = tuple(reversed(edge)) if length is not None: if G.is_directed(): if not nx.has_path(G, source=edge[0], target=edge[1]): if not nx.has_path(G, source=edge[1], target=edge[0]): if edge not in train_E and edge not in test_E: train_E_false.add(edge) train_E_false.add(redge) continue continue continue if not nx.has_path(G, source=edge[1], target=edge[0]): continue if G.is_directed() and (nx.shortest_path_length(G, source=edge[0], target=edge[1]) <= length or nx.shortest_path_length(G, source=edge[1], target=edge[0]) <= length): continue else: if nx.shortest_path_length(G, source=edge[0], target=edge[1]) <= length: continue if edge not in train_E and edge not in test_E: if G.is_directed(): train_E_false.add(edge) else: if redge not in train_E and redge not in test_E: train_E_false.add(tuple(sorted(edge))) # Generate negative test edges while len(test_E_false) < num_fe_test: edge = tuple(random.sample(V, 2)) redge = tuple(reversed(edge)) if length is not None: if (edge in test_E) or (edge in train_E_false) or (edge in test_E_false): continue if G.is_directed() : if not nx.has_path(G, source=edge[0], target=edge[1]): if not nx.has_path(G, source=edge[1], target=edge[0]): if edge not in train_E and edge not in test_E: train_E_false.add(edge) train_E_false.add(redge) continue continue continue if not nx.has_path(G, source=edge[1], target=edge[0]): continue if G.is_directed() and (nx.shortest_path_length(G, source=edge[0], target=edge[1]) <= length or nx.shortest_path_length(G, source=edge[1], target=edge[0]) <= length): continue else: if nx.shortest_path_length(G, source=edge[0], target=edge[1]) <= length: continue if (edge not in train_E) and (edge not in test_E) and (edge not in train_E_false): if G.is_directed(): test_E_false.add(edge) else: if (redge not in train_E) and (redge not in test_E) and (redge not in train_E_false): test_E_false.add(redge) # Perform some simple check before returning the result assert len(train_E_false) == num_fe_train assert len(test_E_false) == num_fe_test assert train_E_false.isdisjoint(test_E_false) assert train_E_false.isdisjoint(train_E | test_E) assert test_E_false.isdisjoint(train_E | test_E) # Return the sets of false edges return train_E_false, test_E_false def _getall_false_edges(G, fe_train_frac): print("Generating all non-edges and splitting them in train and test...") train_E_false = list() test_E_false = list() for e in nx.non_edges(G): r = random.uniform(0, 1) if r <= fe_train_frac: train_E_false.append(e) else: test_E_false.append(e) return train_E_false, test_E_false def redges_false(train_E, test_E, output_path=None): r""" For directed graphs computes all non-edges (a->b) such that the opposite edge (a<-b) exists in the graph. It does this for both the train and test edge sets. These non-edges can be used to asses the performance of the embedding methods on predicting non-reciprocated edges. Parameters ---------- train_E : set The set of train edges. test_E : set The set of test edges. output_path : string, optional A path or file where to store the results. Default None. Returns ------- train_redges_false : set A set of edges respecting the mentioned property regarding the train edges test_redges_false : set A set of edges respecting the mentioned property on the complete graph """ # Reverse all train and test edges train_redges_false = set(tuple(reversed(edge_tuple)) for edge_tuple in train_E) test_redges_false = set(tuple(reversed(edge_tuple)) for edge_tuple in test_E) # Keep only the reversed edges which are not real train edges train_redges_false = train_redges_false - train_E # Keep only the test reversed edges which are not true edges in the graph test_redges_false = test_redges_false - train_E test_redges_false = test_redges_false - test_E if output_path is not None: # Store the reversed edges train_redges_false_np = np.array([list(edge_tuple) for edge_tuple in train_redges_false]) test_redges_false_np = np.array([list(edge_tuple) for edge_tuple in test_redges_false]) # Save the splits in different files np.savetxt(output_path, train_redges_false_np, delimiter=',', fmt='%d') np.savetxt(output_path, test_redges_false_np, delimiter=',', fmt='%d') # Return the computed sets return train_redges_false, test_redges_false def store_train_test_splits(output_path, train_E, train_E_false, test_E, test_E_false, split_id=0): r""" Writes the sets of true and false edges to files in the provided path. All files will share the same split number as an identifier. If any folder in the path do not exist, it will be generated. Parameters ---------- output_path : string Indicates the path where data will be stored. It can also include a name for all the splits to share. train_E : set Set of train edges train_E_false : set Set of train non-edges test_E : set Set of test edges test_E_false : set Set of test non-edges split_id : int, optional The ID of train/test split to be stored. Default is 0. Returns ------- filenames : list A list of strings, the names given to the 4 files where the true and false train and test edge are stored. """ # Create path if it does not exist if not os.path.exists(output_path): os.makedirs(output_path) # Convert edge-lists to numpy arrays train_E = np.array([list(edge_tuple) for edge_tuple in train_E]) train_E_false = np.array([list(edge_tuple) for edge_tuple in train_E_false]) test_E = np.array([list(edge_tuple) for edge_tuple in test_E]) test_E_false = np.array([list(edge_tuple) for edge_tuple in test_E_false]) filenames = (os.path.join(output_path, "trE_{}.csv".format(split_id)), os.path.join(output_path, "negTrE_{}.csv".format(split_id)), os.path.join(output_path, "teE_{}.csv".format(split_id)), os.path.join(output_path, "negTeE_{}.csv".format(split_id))) # Save the splits in different files np.savetxt(fname=filenames[0], X=train_E, delimiter=',', fmt='%d') np.savetxt(fname=filenames[1], X=train_E_false, delimiter=',', fmt='%d') np.savetxt(fname=filenames[2], X=test_E, delimiter=',', fmt='%d') np.savetxt(fname=filenames[3], X=test_E_false, delimiter=',', fmt='%d') # Return the names given to the 4 files where data is stored return filenames def store_edgelists(train_path, test_path, train_edges, test_edges): r""" Writes the train and test edgelists to files with the specified names. Parameters ---------- train_path : string Indicates the path where the train data will be stored. test_path : string Indicates the path where the test data will be stored. train_edges : array_like Set of train true and false edges test_edges : array_like Set of test true and false edges """ # Convert edge-lists to numpy arrays train_edges = np.array([list(edge_tuple) for edge_tuple in train_edges]) test_edges = np.array([list(edge_tuple) for edge_tuple in test_edges]) # Save the splits in different files np.savetxt(fname=train_path, X=train_edges, delimiter=',', fmt='%d') np.savetxt(fname=test_path, X=test_edges, delimiter=',', fmt='%d') def check_overlap(filename, num_sets): r""" Shows the amount of overlap (shared elements) between edge sets from different random splits. The path and name of the set (without split ID) for which to compute the overlap is required. The method will read num_sets from the same path and compute the overlap between them. Parameters ---------- filename : string Indicates the path and name (without split ID) of the first set. The sets are assumed to have sequential split IDs starting at 0. num_sets : int The number of sets for which to check the overlap. """ # Load the first set and transform it into a list of tuples S = np.loadtxt(filename+"_0.csv", delimiter=',', dtype=int) S = set(map(tuple, S)) # Initialize the intersection and union sets as all elements in first edge set intrs = S union = S # Sequentially add the rest of the sets and check overlap for i in range(num_sets-1): # Read a new edge set S = np.loadtxt(filename+"_{}.csv".format(i+1), delimiter=',', dtype=int) S = set(map(tuple, S)) # Update intersection and union sets intrs = intrs & S union = union | S # Print the information on screen print("Intersection of {} sets is {}".format(i+2, len(intrs))) print("Union of {} sets is {}".format(i+2, len(union))) print("Jaccard coefficient: {}".format(len(intrs)/len(union))) print("") def random_edge_sample(a, samp_frac=0.01, directed=False): r""" Returns a sample of positive and negative edges from the given graph represented by `a` selected uniformly at random without replacement. If the directed flag is set to False the samples are obtained only from the upper triangle. Parameters ---------- a : sparse matrix A sparse adjacency matrix representing a graph. samp_frac : float, optional An float representing the fraction of elements to sample. Default is 1.0 (1%) directed : bool, optional A flag indicating if the adjacency matrix should be considered directed or undirected. If undirected indices are obtained only from the lower triangle. Default is False. Returns ------- pos_e : ndarray Positive edges neg_e : ndarray Negative edges """ n = a.shape[0] if directed: num_samp = int(n ** 2 * samp_frac / 100) lin_indx_a = np.ravel_multi_index(a.nonzero(), (n, n)) # randomly generate linear indices lin_indx = np.random.randint(0, n ** 2, num_samp) else: # For undir graphs we only need to sample half the num nodes num_samp = int((n*(n-1))/2 * (samp_frac / 100)) lin_indx_a = np.ravel_multi_index(triu(a, k=1).nonzero(), (n, n)) ij = np.random.randint(0, n, size=(2, num_samp)) ij.sort(axis=0) lin_indx = np.ravel_multi_index((ij[0], ij[1]), (n, n)) pos_e = np.intersect1d(lin_indx, lin_indx_a) neg_e = np.setdiff1d(lin_indx, lin_indx_a) # Remove the self edges lin_diag_indxs = np.ravel_multi_index(np.diag_indices(n), (n, n)) pos_e = np.setdiff1d(pos_e, lin_diag_indxs) neg_e = np.setdiff1d(neg_e, lin_diag_indxs) # Unravel the linear indices to obtain src, dst pairs pos_e = np.array(np.unravel_index(np.array(pos_e), (n, n))).T neg_e = np.array(np.unravel_index(np.array(neg_e), (n, n))).T return pos_e, neg_e def random_edge_sample_other(a, samp_frac=0.01, directed=False): r""" Returns a sample of positive and negative edges from the given graph represented by `a` selected uniformly at random without replacement. If the directed flag is set to False the samples are obtained only from the upper triangle. A different take on the random sampling technique. Probably less efficient than the other one. For undir graphs generates lots of candidates also from the bottom triangle to reach the desired density, this is not as efficient as the other version. Parameters ---------- a : sparse matrix A sparse adjacency matrix representing a graph. samp_frac : float, optional An float representing the fraction of elements to sample. Default is 0.01 (1%) directed : bool, optional A flag indicating if the adjacency matrix should be considered directed or undirected. If undirected indices are obtained only from the lower triangle. Default is False. Returns ------- pos_e : ndarray Positive edges neg_e : ndarray Negative edges """ n = a.shape[0] num_samp = int(n**2 * samp_frac) # Generate sparse random matrix representing mask of samples density = (num_samp + n) / n**2 mask = sp.sparse.rand(n, n, density) if not directed: # For undir graphs we only look at the upper triangle mask = triu(mask, k=1) else: # Remove elements from diagonal mask.setdiag(0) mask.eliminate_zeros() mask.data[:] = 1 lin_indx_samp = np.ravel_multi_index(mask.nonzero(), (n, n)) # All positive edges sampled in mask will stay in aux aux = mask.multiply(a) pos_e = np.array(aux.nonzero()).T # The rest of the lin indx not positive are negative lin_indx_ne = np.setdiff1d(lin_indx_samp, np.ravel_multi_index(aux.nonzero(), (n, n))) neg_e = np.array(np.unravel_index(lin_indx_ne, (n, n))) return pos_e, neg_e def quick_split(G, train_frac=0.51): r""" Computes one train/test split of edges from an input graph and returns the results. The train set will be (weakly) connected and span all nodes of the input graph (digraph). This implementation uses a depth first tree to obtain edges covering all nodes for the train graph. Input graph (digraph) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph. Default is 0.51. Returns ------- train_E : array Column array of train edges as pairs src, dst test_E : array Column array of test edges as pairs src, dst Raises ------ ValueError If the train_frac parameter is not in range (0, 1]. If the input graph G has more than one (weakly) connected component. """ _sanity_check(G) if train_frac <= 0.0 or train_frac > 1.0: raise ValueError('The train_frac parameter needs to be in range: (0.0, 1.0]') if train_frac == 1.0: return set(G.edges()), set() # Restrict input graph to its main cc if nx.is_directed(G): a = nx.adj_matrix(G) else: a = triu(nx.adj_matrix(G), k=1) # Compute initial statistics and linear indx of nonzeros n = a.shape[0] num_tr_e = int(a.nnz * train_frac) nz_lin_ind = np.ravel_multi_index(a.nonzero(), (n, n)) # Build a dft starting at a random node. If dir false returns only upper triang dft = depth_first_tree(a, np.random.randint(0, a.shape[0]), directed=nx.is_directed(G)) if nx.is_directed(G): dft_lin_ind = np.ravel_multi_index(dft.nonzero(), (n, n)) else: dft_lin_ind = np.ravel_multi_index(triu(tril(dft).T + dft, k=1).nonzero(), (n, n)) # From all nonzero indx remove those in dft. From the rest take enough to fill train quota. Rest are test rest_lin_ind = np.setdiff1d(nz_lin_ind, dft_lin_ind) aux = np.random.choice(rest_lin_ind, num_tr_e-len(dft_lin_ind), replace=False) lin_tr_e = np.union1d(dft_lin_ind, aux) lin_te_e = np.setdiff1d(rest_lin_ind, aux) # Unravel the linear indices to obtain src, dst pairs tr_e = np.array(np.unravel_index(np.array(lin_tr_e), (n, n))).T te_e = np.array(np.unravel_index(np.array(lin_te_e), (n, n))).T return tr_e, te_e def quick_nonedges(G, train_frac=0.51, fe_ratio=1.0): r""" Computes one train/test split of non-edges from an input graph and returns the results. The negative train and test edges will have no overlap. Also there will be no overlap between false train and test edges and real ones. No selfloop false edges will be generated. Input graph (digraph) cannot contain more than one (weakly) connected component. Parameters ---------- G : graph A NetworkX graph train_frac : float, optional The relative size (in range (0.0, 1.0]) of the train false edge set w.r.t. total number of edges in graph. Default is 0.51. fe_ratio : float, optional The ratio of negative to positive edges to sample. For fr_ratio > 0 and < 1 less false than true edges will be generated. For fe_edges > 1 more false than true edges will be generated. Default 1, same amounts. Returns ------- train_E : array Column array of train edges as pairs src, dst test_E : array Column array of test edges as pairs src, dst Raises ------ ValueError If more false edges than existing in the graph are required. """ # fe_ration can be any float or keyword 'prop' a = nx.adj_matrix(G) n = a.shape[0] density = a.nnz / n ** 2 if fe_ratio == 'prop': fe_ratio =
np.floor(1.0 / density)
numpy.floor
""" Packaged MASAC""" from typing import Dict, List, Tuple import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from unityagents import UnityEnvironment from buffers.buffer import ReplayBuffer from models.network import Network from torch.nn.utils.clip_grad import clip_grad_norm_ class DQNAgent: def __init__( self, env: UnityEnvironment, memory_size: int, batch_size: int, target_update: int, epsilon_decay: float = 1 / 2000, max_epsilon: float = 1.0, min_epsilon: float = 0.1, gamma: float = 0.99, ): self.brain_name = env.brain_names[0] self.brain = env.brains[self.brain_name] env_info = env.reset(train_mode=True)[self.brain_name] self.env = env action_size = self.brain.vector_action_space_size state = env_info.vector_observations[0] state_size = len(state) self.obs_dim = state_size self.action_dim = 1 self.memory = ReplayBuffer(self.obs_dim, self.action_dim, memory_size, batch_size) self.batch_size = batch_size self.target_update = target_update self.epsilon_decay = epsilon_decay self.max_epsilon = max_epsilon self.min_epsilon = min_epsilon self.gamma = gamma self.epsilon = max_epsilon self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.dqn = Network(self.obs_dim, self.action_dim) self.dqn_target = Network(self.obs_dim, self.action_dim) self.dqn_target.load_state_dict(self.dqn.state_dict()) self.dqn_target.eval() self.optimizer = optim.Adam(self.dqn.parameters(), lr=5e-5) self.transition = list() self.is_test = False def select_action(self, state: np.ndarray) -> np.int64: """ Select an action given input """ if self.epsilon > np.random.random(): selected_action = np.random.random_integers(0, self.action_dim-1) else: selected_action = self.dqn( torch.FloatTensor(state).to(self.device) ) selected_action = np.argmax(selected_action.detach().cpu().numpy()) if not self.is_test: self.transition = [state, selected_action] return selected_action def step(self, action: np.int64) -> Tuple[np.ndarray, np.float64, bool]: "Take an action and return environment response" env_info = self.env.step(action)[self.brain_name] next_state = env_info.vector_observations[0] reward = env_info.rewards[0] done = env_info.local_done[0] if not self.is_test: self.transition += [reward, next_state, done] self.memory.store(*self.transition) return next_state, reward, done def update_model(self) -> torch.Tensor: """ Update model by gradient descent""" samples = self.memory.sample_batch() loss = self._compute_dqn_loss(samples) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.item() def train(self, num_episode: int, max_iteration: int=1000, plotting_interval: int=400): """ train the agent """ self.is_test = False env_info = self.env.reset(train_mode=True)[self.brain_name] state = env_info.vector_observations[0] update_cnt = 0 epsilons = [] losses = [] avg_losses= [] scores = [] avg_scores = [] for episode in range(num_episode): env_info = self.env.reset(train_mode=True)[self.brain_name] state = env_info.vector_observations[0] score = 0 for iter in range(max_iteration): action = self.select_action(state) next_state, reward, done = self.step(action) state = next_state score += reward if done: break if len(self.memory) > self.batch_size: loss = self.update_model() losses.append(loss) update_cnt += 1 avg_losses.append(np.mean(losses)) losses = [] self.epsilon = max( self.min_epsilon, self.epsilon - ( self.max_epsilon - self.min_epsilon ) * self.epsilon_decay ) epsilons.append(self.epsilon) if update_cnt % self.target_update == 0: self._target_hard_update() scores.append(score) epsilons.append(self.epsilon) if episode >= 100: avg_scores.append(
np.mean(scores[-100:])
numpy.mean
"""Run Demonstration Image Classification Experiments. """ import sys,os sys.path.append('..') import numpy as np from models.BrokenModel import BrokenModel as BrokenModel import glob import tensorflow as tf import pandas as pd from timeit import default_timer as timer from .calloc import loadChannel,quantInit from .simmods import * from errConceal.caltec import * from errConceal.altec import * from errConceal.tc_algos import * import cv2 as cv2 from PIL import Image # ---------------------------------------------------------------------------- # def fnRunImgClassDemo(modelDict,splitLayerDict,ecDict,batch_size,path_base,transDict,outputDir): print('TensorFlow version') print(tf.__version__) model_path = modelDict['fullModel'] customObjects = modelDict['customObjects'] task = modelDict['task'] normalize = modelDict['normalize'] reshapeDims = modelDict['reshapeDims'] splitLayer = splitLayerDict['split'] mobile_model_path = splitLayerDict['MobileModel'] cloud_model_path = splitLayerDict['CloudModel'] rowsPerPacket = transDict['rowsperpacket'] quantization = transDict['quantization'] numberOfBits_1 = quantization[1]['numberOfBits'] numberOfBits_2 = quantization[2]['numberOfBits'] channel = transDict['channel'] res_data_dir = outputDir['resDataDir'] # directory for loss maps. sim_data_dir = outputDir['simDataDir'] # directory for simulation results. # ------------------------------------------------------------------------ # # tensorflow.keras deep model loading. loaded_model = tf.keras.models.load_model(os.path.join(model_path)) loaded_model_config = loaded_model.get_config() loaded_model_name = loaded_model_config['name'] # Check if mobile and cloud sub-models are already available: if os.path.isfile(mobile_model_path) and os.path.isfile(cloud_model_path): print(f'Sub-models of {loaded_model_name} split at {splitLayer} are available.') mobile_model = tf.keras.models.load_model(os.path.join(mobile_model_path)) cloud_model = tf.keras.models.load_model(os.path.join(cloud_model_path)) else: # if not, split the deep model. # Object for splitting a tf.keras model into a mobile sub-model and a cloud # sub-model at the chosen split layer 'splitLayer'. testModel = BrokenModel(loaded_model, splitLayer, customObjects) testModel.splitModel() mobile_model = testModel.deviceModel cloud_model = testModel.remoteModel # Save the mobile and cloud sub-model mobile_model.save(mobile_model_path) cloud_model.save(cloud_model_path) # ---------------------------------------------------------------------------- # # Create results directory if 'GilbertChannel' in channel: lossProbability = channel['GilbertChannel']['lossProbability'] burstLength = channel['GilbertChannel']['burstLength'] results_dir = os.path.join(sim_data_dir,path_base,loaded_model_name,'demo',splitLayer+'_lp_'+str(lossProbability)+'_Bl_'+str(burstLength)) channel_flag = 'GC' elif 'RandomLossChannel' in channel: lossProbability = channel['RandomLossChannel']['lossProbability'] results_dir = os.path.join(sim_data_dir,path_base,loaded_model_name,'demo',splitLayer+'_lp_'+str(lossProbability)) channel_flag = 'RL' elif 'ExternalChannel' in channel: print('External packet traces imported') results_dir = os.path.join(sim_data_dir,path_base,loaded_model_name,'demo',splitLayer+'_ext_trace') channel_flag = 'EX' num_channels = transDict['channel']['ExternalChannel']['num_channels'] ext_dir = os.path.join(res_data_dir,path_base,loaded_model_name,splitLayer) else: # No lossy channel. This means we are doing a quantization experiment. channel_flag = 'NC' results_dir = os.path.join(sim_data_dir,path_base,loaded_model_name,'demo',splitLayer+'_NoChannel') MC_runs = [0,1] # with no lossy channel, there's no need to do monte carlo runs because each monte carlo run would give the same results. if channel_flag in ['GC','RL','EX']: # Only load altec weights if we will be doing error concealment. tc_weights_path = ecDict['ALTeC']['weightspath'] altec_w_path = os.path.join(tc_weights_path,loaded_model_name,splitLayer,splitLayer+'_rpp_'+str(rowsPerPacket)+'_'+str(numberOfBits_1)+'Bits_tensor_weights.npy') altec_pkt_w = np.load(altec_w_path) print(f'Loaded ALTeC weights for splitLayer {splitLayer} and {rowsPerPacket} rows per packet. Shape {np.shape(altec_pkt_w)}') halrtc_iters = ecDict['HaLRTC']['numiters'] silrtc_iters = ecDict['SiLRTC']['numiters'] inpaint_radius = ecDict['InpaintNS']['radius'] os.makedirs(results_dir,exist_ok=True) res_filename = '_'+str(numberOfBits_1)+'Bits_'+str(numberOfBits_2)+'Bits_' # ------------------------------------------------------------------------ # # Objects for the channel, quantization. if channel_flag != 'EX': channel = loadChannel(channel) quant_tensor1 = quantInit(quantization,tensor_id = 1) quant_tensor2 = quantInit(quantization,tensor_id = 2) # ------------------------------------------------------------------------ # # Load the dataset dataset_x_files,dataset_y_labels,file_names = fn_Data_PreProcessing_ImgClass(path_base,reshapeDims,normalize) # ------------------------------------------------------------------------ # # Process the dataset. batched_y_labels = [dataset_y_labels[i:i + batch_size] for i in range(0, len(dataset_y_labels), batch_size)] batched_x_files = [dataset_x_files[i: i + batch_size] for i in range(0,len(dataset_x_files),batch_size)] if channel_flag == 'EX': loss_matrix_mc = [] print('Loading external packet traces') for i_mc in range(MC_runs[0],MC_runs[1]): # Load external packet traces as loss matrices. lossMap_list = [] for i_c in range(num_channels): df = pd.read_excel(os.path.join(ext_dir,'Rpp_'+str(rowsPerPacket)+'_MC_'+str(i_mc)+'.xlsx'),sheet_name=[str(i_c)],engine='openpyxl') lossMap_channel = (df[str(i_c)].to_numpy())[:,1:].astype(np.bool) lossMap_list.append(lossMap_channel) loss_matrix_all = np.dstack(lossMap_list) loss_matrix_ex = [loss_matrix_all[k_batch:k_batch+batch_size,:,:] for k_batch in range(0,np.shape(loss_matrix_all)[0],batch_size)] loss_matrix_mc.append(loss_matrix_ex) # lists to store results. true_labels = [] top1_pred_full_model = [] top1_pred_split_model = [] top5_pred_full_model = [] top5_pred_split_model = [] top1_pred_caltec = [] top5_pred_caltec = [] top1_pred_altec = [] top5_pred_altec = [] top1_pred_halrtc = [] top5_pred_halrtc = [] top1_pred_silrtc = [] top5_pred_silrtc = [] top1_pred_inpaint = [] top5_pred_inpaint = [] top1_conf_full = [] top1_conf_split = [] top1_conf_caltec = [] top1_conf_altec = [] top1_conf_halrtc = [] top1_conf_silrtc = [] top1_conf_inpaint = [] for i_b in range(len(batched_y_labels)): # Run through Monte Carlo experiments through each batch. print(f"Batch {i_b}") batch_labels = np.asarray(batched_y_labels[i_b],dtype=np.int64) true_labels.extend(batch_labels) batch_imgs = batched_x_files[i_b] batch_imgs_stacked = np.vstack([i[np.newaxis,...] for i in batch_imgs]) # ---------------------------------------------------------------- # full_model_out = loaded_model.predict(batch_imgs_stacked) batch_top1_predictions = np.argmax(full_model_out,axis=1) batch_confidence = np.max(full_model_out,axis=1) top1_pred_full_model.extend(batch_top1_predictions) top1_conf_full.extend(batch_confidence) for i_item in range(np.shape(full_model_out)[0]): item_top5_predictions = np.argpartition(-full_model_out[i_item,:],5)[:5] top5_pred_full_model.append(item_top5_predictions) # --------------------------------------------------------------- # deviceOut = mobile_model.predict(batch_imgs_stacked) print(f'Shape of device out tensor {np.shape(deviceOut)}') # ---------------------------------------------------------------- # devOut = [] if not isinstance(deviceOut, list): devOut.append(deviceOut) deviceOut = devOut # deviceOut is the output tensor for a batch of data. # Quantize the data quanParams_1 = [] quanParams_2 = [] # If quantization is required: if len(deviceOut) > 1: if quant_tensor1!= 'noQuant': print("Quantizing tensors") quant_tensor1.bitQuantizer(deviceOut[0]) deviceOut[0] = quant_tensor1.quanData quanParams_1.append(quant_tensor1.min) quanParams_1.append(quant_tensor1.max) quant_tensor2.bitQuantizer(deviceOut[1]) deviceOut[1] = quant_tensor2.quanData quanParams_2.append(quant_tensor2.min) quanParams_2.append(quant_tensor2.max) else: if quant_tensor1!= 'noQuant': print("Quantizing tensor.") quant_tensor1.bitQuantizer(deviceOut[0]) deviceOut[0] = quant_tensor1.quanData quanParams_1.append(quant_tensor1.min) quanParams_1.append(quant_tensor1.max) # Save quantized tensors as image. for i in range(len(deviceOut)): quant_tensor = deviceOut[i] for item_index in range(np.shape(quant_tensor)[0]): for i_c in range(np.shape(quant_tensor)[-1]): tensor_channel = Image.fromarray(quant_tensor[item_index,:,:,i_c].astype(np.uint8)) tensor_channel.save(os.path.join(results_dir,'original_batch_'+str(i_b)+'_item_'+str(item_index)+'_tensor_'+str(i)+'_channel_'+str(i_c)+res_filename+'.png')) # -------------------------------------------------------------------- # # Transmit the tensor deviceOut through the channel. if channel_flag in ['GC','RL']: # if a lossy channel has to be realized. # if mc_task == 'GenLossPatterns': # if we want to generate packet loss patterns. lossMatrix = [] receivedIndices = [] lostIndices = [] dOut = [] for i in range(len(deviceOut)): dO, lM, rI, lI = transmit(deviceOut[i], channel, rowsPerPacket) dOut.append(dO) lossMatrix.append(lM) receivedIndices.append(rI) lostIndices.append(lI) channel.lossMatrix = [] deviceOut = dOut # ---------------------------------------------------------------- # # packetize tensor. pkt_obj_list = [] for i in range(len(deviceOut)): pkt_obj_list.append(PacketModel(rows_per_packet=rowsPerPacket,data_tensor=np.copy(deviceOut[i].data_tensor))) # -------------------------------------------------------------------- # if channel_flag == 'EX': batch_loss_matrix = loss_matrix_mc[i_mc] loss_matrix = [batch_loss_matrix[i_b]] # -------------------------------------------------------------------- # if channel_flag in ['GC','RL','EX']: # ---------------------------------------------------------------- # # apply the loss matrix to the tensor. for i in range(len(pkt_obj_list)): loss_map = lossMatrix[i] #print(np.shape(loss_map)) channel_width = np.shape(pkt_obj_list[i].packet_seq)[3] # loop through items in batch. for item_index in range(np.shape(loss_map)[0]): item_lost_map = loss_map[item_index,:,:] lost_pkt_indices,lost_channel_indices = np.where(item_lost_map == False) if len(lost_pkt_indices) != 0: # drop packet in tensor. for k in range(len(lost_pkt_indices)): pkt_obj_list[i].packet_seq[item_index,lost_pkt_indices[k],:,:,lost_channel_indices[k]] = np.zeros([rowsPerPacket,channel_width]) for i in range(len(deviceOut)): quant_tensor = pkt_obj_list[i].data_tensor for item_index in range(np.shape(quant_tensor)[0]): for i_c in range(np.shape(quant_tensor)[-1]): tensor_channel = Image.fromarray(quant_tensor[item_index,:,:,i_c].astype(np.uint8)) tensor_channel.save(os.path.join(results_dir,'corrupted_batch_'+str(i_b)+'_item_'+str(item_index)+'_tensor_'+str(i)+'_channel_'+str(i_c)+res_filename+'.png')) deviceOut = pkt_obj_list # --------------------------------------------------====-------------- # # Inverse quantize received packets. # If necessary, inverse quantize tensors. if len(deviceOut) > 1: # If more than one tensor is transmitted from the mobile device to the cloud. if quant_tensor1!= 'noQuant': print("Inverse quantizing tensors") if channel_flag != 'NC': quant_tensor1.quanData = deviceOut[0].data_tensor qMin, qMax = quanParams_1 quant_tensor1.min = qMin quant_tensor1.max = qMax deviceOut[0].data_tensor = quant_tensor1.inverseQuantizer() quant_tensor2.quanData = deviceOut[1].data_tensor qMin, qMax = quanParams_2 quant_tensor2.min = qMin quant_tensor2.max = qMax deviceOut[1].data_tensor = quant_tensor2.inverseQuantizer() else: # no channel. quant_tensor1.quanData = deviceOut[0] qMin, qMax = quanParams_1 quant_tensor1.min = qMin quant_tensor1.max = qMax deviceOut[0] = quant_tensor1.inverseQuantizer() quant_tensor2.quanData = deviceOut[1] qMin, qMax = quanParams_2 quant_tensor2.min = qMin quant_tensor2.max = qMax deviceOut[1] = quant_tensor2.inverseQuantizer() else: # A single tensor is transmitted from the mobile device to the cloud. if quant_tensor1 != 'noQuant': print("Inverse quantizing tensor") if channel_flag != 'NC': # we have lossy channels (either GE, RL or external packet traces.) quant_tensor1.quanData = deviceOut[0].data_tensor qMin, qMax = quanParams_1 quant_tensor1.min = qMin quant_tensor1.max = qMax deviceOut[0].data_tensor = quant_tensor1.inverseQuantizer() else: # no channel. quant_tensor1.quanData = deviceOut[0] qMin, qMax = quanParams_1 quant_tensor1.min = qMin quant_tensor1.max = qMax deviceOut[0] = quant_tensor1.inverseQuantizer() cOut = [] for i in range(len(deviceOut)): if channel_flag != 'NC': cOut.append(np.copy(deviceOut[i].data_tensor)) else: cOut.append(np.copy(deviceOut[i])) deviceOut = cOut # -------------------------------------------------------------------- # # Run cloud prediction on channel output data. tensor_out = cloud_model.predict(deviceOut) cloud_Top1_pred = np.argmax(tensor_out,axis=1) cloud_Top1_confidence = np.max(tensor_out,axis=1) top1_pred_split_model.extend(cloud_Top1_pred) top1_conf_split.extend(cloud_Top1_confidence) for i_item in range(np.shape(tensor_out)[0]): item_top5_predictions = np.argpartition(-tensor_out[i_item,:],5)[:5] top5_pred_split_model.append(item_top5_predictions) # -------------------------------------------------------------------- # # Run packet loss concealment methods if a lossy channel was used. if channel_flag in ['EX','RL','GC']: # Flush missing packets out of tensor. # packetize tensor. pkt_obj_list_caltec = [] pkt_obj_list_altec = [] pkt_obj_list_halrtc = [] pkt_obj_list_silrtc = [] pkt_obj_list_inpaint = [] inpaint_masks_list = [] for i in range(len(deviceOut)): pkt_obj_list_caltec.append(PacketModel(rows_per_packet=rowsPerPacket,data_tensor=np.copy(deviceOut[i]))) pkt_obj_list_altec.append(PacketModel(rows_per_packet=rowsPerPacket,data_tensor=np.copy(deviceOut[i]))) pkt_obj_list_halrtc.append(PacketModel(rows_per_packet=rowsPerPacket,data_tensor=np.copy(deviceOut[i]))) pkt_obj_list_silrtc.append(PacketModel(rows_per_packet=rowsPerPacket,data_tensor=np.copy(deviceOut[i]))) pkt_obj_list_inpaint.append(PacketModel(rows_per_packet=rowsPerPacket,data_tensor=np.copy(deviceOut[i]))) inpaint_masks = np.zeros(np.shape(pkt_obj_list[i].data_tensor),dtype= np.uint8) inpaint_masks_list.append(PacketModel(rows_per_packet=rowsPerPacket,data_tensor=np.copy(inpaint_masks))) # ---------------------------------------------------------------- # # apply this loss matrix to the tensor. for i in range(len(pkt_obj_list)): loss_map = lossMatrix[i] channel_width = np.shape(pkt_obj_list_caltec[i].packet_seq)[3] # loop through items in batch. for item_index in range(np.shape(loss_map)[0]): item_lost_map = loss_map[item_index,:,:] lost_pkt_indices,lost_channel_indices = np.where(item_lost_map == False) if len(lost_pkt_indices) != 0: # drop packet in tensor. for k in range(len(lost_pkt_indices)): pkt_obj_list_caltec[i].packet_seq[item_index,lost_pkt_indices[k],:,:,lost_channel_indices[k]] = np.zeros([rowsPerPacket,channel_width]) pkt_obj_list_altec[i].packet_seq[item_index,lost_pkt_indices[k],:,:,lost_channel_indices[k]] = np.zeros([rowsPerPacket,channel_width]) pkt_obj_list_halrtc[i].packet_seq[item_index,lost_pkt_indices[k],:,:,lost_channel_indices[k]] = np.zeros([rowsPerPacket,channel_width]) pkt_obj_list_silrtc[i].packet_seq[item_index,lost_pkt_indices[k],:,:,lost_channel_indices[k]] = np.zeros([rowsPerPacket,channel_width]) pkt_obj_list_inpaint[i].packet_seq[item_index,lost_pkt_indices[k],:,:,lost_channel_indices[k]] =
np.zeros([rowsPerPacket,channel_width])
numpy.zeros
import numpy as np import random from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt import queue training_files = ["bisecting.txt","blobs.txt","moons.txt"] INPUT_FILE="blobs.txt" ITERATIONS=50 #Define label for differnt point group UNASSIGNED = 0 CORE_PT = -1 BORDER_PT = -2 dataset = [] noOfClusters = 0 def read_dataset(INPUT_FILE): """ Reading dataset """ global dataset f = open(INPUT_FILE, "r") lines = f.readlines() for i in range(len(lines)): data = lines[i].split() dataset.append(list(map(float, data))) print("Total dataset = {} points".format(len(dataset))) f.close() pass def find_nearest_neighbour(k): """ Nearest neighbour """ global dataset nearest_neighbors = NearestNeighbors(n_neighbors=k) nearest_neighbors.fit(dataset) distances, indices = nearest_neighbors.kneighbors(dataset) distances = np.sort(distances, axis=0)[:, 1] # print(distances, indices) plt.grid() plt.plot(distances) # plt.savefig(INPUT_FILE+'_Nearest_Neighbour.png') plt.show() def plotClusters(dataset, labels, noOfClusters, file): total_points = len(dataset) print("Plotting for {} points".format(total_points)) plt.figure() # Color array for clusters scatterColors = ["blue","green","red","cyan","brown","indigo", "pink", "royalblue", "orange","yellow","black","olive", "gold", "orangered", "skyblue", "teal" ] for i in range(noOfClusters): if (i==0): #Plot all noise point as blue color='blue' else: color = scatterColors[i % len(scatterColors)] x = []; y = [] for j in range(total_points): if labels[j] == i: x.append(dataset[j][0]) y.append(dataset[j][1]) plt.scatter(x, y, c=color, alpha=1, marker='.') plt.grid() plt.savefig(file) # plt.show() def euclidean_dist(point1, point2): """ Euclid distance function """ x1 = point1[0] x2 = point2[0] y1 = point1[1] y2 = point2[1] # create the points p1 = (x1 - x2)**2 p2 = (y1 - y2)**2 return np.sqrt(p1 + p2) def neighbor_points(dataset, pointIdx, radius): ''' find all neigbor points in radius from a given point. ''' points = [] for i in range(len(dataset)): # Calculating distance btn points if euclidean_dist(dataset[i], dataset[pointIdx]) <= radius: points.append(i) return points def dbscan(data, Eps, MinPt): ''' DBSCAN Algorithm ''' global dataset, noOfClusters #initilize all pointlable to unassign pointlabel = [UNASSIGNED] * len(data) neighbourhood_arr = [] #initilize list for core/noncore point core_pts=[] non_core_pts=[] #Find all neigbor for all point for i in range(len(data)): neighbourhood_arr.append(neighbor_points(dataset,i,Eps)) #Find all core point, edgepoint and noise for i in range(len(neighbourhood_arr)): # A point is a core point if it has more than a specified number of points (MinPts) within Eps if (len(neighbourhood_arr[i]) >= MinPt): pointlabel[i] = CORE_PT core_pts.append(i) else: non_core_pts.append(i) for i in non_core_pts: for j in neighbourhood_arr[i]: if j in core_pts: pointlabel[i] = BORDER_PT break #start assigning point to cluster cluster_no = 1 # Put all neigbor core point in queue and find neigboir's neigbor for i in range(len(pointlabel)): q = queue.Queue() if (pointlabel[i] == CORE_PT): pointlabel[i] = cluster_no for j in neighbourhood_arr[i]: if(pointlabel[j] == CORE_PT): q.put(j) pointlabel[j]= cluster_no elif(pointlabel[j] == BORDER_PT): pointlabel[j] = cluster_no # checking queue while not q.empty(): neighbors = neighbourhood_arr[q.get()] for n in neighbors: if (pointlabel[n] == CORE_PT): pointlabel[n]=cluster_no q.put(n) if (pointlabel[n] == BORDER_PT): pointlabel[n]=cluster_no cluster_no = cluster_no + 1 noOfClusters = cluster_no return pointlabel def DBSCAN_start(eps, minpts): """ docstring """ global dataset, noOfClusters print("Starting DBSCAN for EPS: {} | Minpts: {}".format(eps, minpts)) labels = dbscan(dataset,eps,minpts) plotClusters(dataset, labels, noOfClusters, INPUT_FILE+'_DBSCAN.png') outliers = labels.count(0) print("No. of Clusters: {}".format(noOfClusters-1)) print("Outliers: {}".format(outliers)) return noOfClusters - 1 def calc_distance(X1, X2): return (sum((X1 - X2)**2))**0.5 def assign_clusters(centroids, X): assigned_cluster = [] for i in X: distance=[] for j in centroids: distance.append(calc_distance(i, j)) # print(distance) # print(np.argmin(distance)) # print("--------------------------------") assigned_cluster.append(np.argmin(distance)) # idx of minimum element # print(assigned_cluster) return assigned_cluster def calc_centroids(clusters_lables, k): global dataset points_per_cluster = [[] for _ in range(k)] for i in range(len(clusters_lables)): points_per_cluster[clusters_lables[i]].append(dataset[i]) centroids = [] for i in range(k): centroids.append(np.mean(points_per_cluster[i], axis=0)) return centroids def match_centroids(c_new, c_old): return (
np.array(c_new)
numpy.array
import pandas as pd import matplotlib.pyplot as plt import numpy as np housePrice = pd.read_csv('metroMelbHousePrices.csv',encoding = 'ISO-8859-1') commute = pd.read_csv('metroMelbCommuteDistance.csv',encoding = 'ISO-8859-1') distance = pd.read_csv('distanceToCBD.csv',encoding = 'ISO-8859-1') df = pd.merge(housePrice,commute,on='postcode') df = df.sort_values('medPrice') plt.scatter(df['medCommute'], df['medPrice']) plt.xlabel('medCommute (km)') plt.ylabel('medPrice ($)') plt.grid(True) x = np.array(df['medCommute']) y = np.array(df['medPrice']) m,b = np.polyfit(x, y, 1) plt.plot(x, m*x + b) plt.savefig('withOutliers.png') ##Outlier Detection using IQR # Keep only values inside the IQR Q1 = df['medPrice'].quantile(0.25) Q3 = df['medPrice'].quantile(0.75) Q1b = df['medCommute'].quantile(0.25) Q3b = df['medCommute'].quantile(0.75) df1 = df.loc[df['medPrice'] > Q1] df1 = df1.loc[df1['medCommute'] > Q1b] df2 = df1.loc[df1['medPrice'] < Q3] df2 = df2.loc[df2['medCommute'] < Q3b] # re-plot plt.clf() plt.scatter(df2['medCommute'], df2['medPrice']) plt.xlabel('medCommute (km)') plt.ylabel('medPrice ($)') plt.grid(True) x = np.array(df2['medCommute']) y = np.array(df2['medPrice']) m,b = np.polyfit(x, y, 1) plt.plot(x, m*x + b) plt.savefig('noOutliersIQR.png') # z-score outlier detection ######################################################################### from scipy import stats df['zPrice'] = np.abs(stats.zscore(df['medPrice'])) df['zCommute'] = np.abs(stats.zscore(df['medCommute'])) df1 = df.iloc[np.where(df['zPrice'] < 2)] df2 = df.iloc[np.where(df1['zCommute'] < 2)] # re-plot plt.clf() plt.scatter(df2['medCommute'], df2['medPrice']) plt.xlabel('medCommute (km)') plt.ylabel('medPrice ($)') plt.grid(True) x = np.array(df2['medCommute']) y = np.array(df2['medPrice']) m,b = np.polyfit(x, y, 1) plt.plot(x, m*x + b) plt.savefig('noOutliersZSCORE2STD.png') df1 = df.iloc[np.where(df['zPrice'] < 1)] df2 = df.iloc[np.where(df1['zCommute'] < 1)] # re-plot plt.clf() plt.scatter(df2['medCommute'], df2['medPrice']) plt.xlabel('medCommute (km)') plt.ylabel('medPrice ($)') plt.grid(True) x = np.array(df2['medCommute']) y = np.array(df2['medPrice']) m,b = np.polyfit(x, y, 1) plt.plot(x, m*x + b) plt.savefig('noOutliersZSCORE1STD.png') ################################################################################ plt.clf() df = pd.merge(housePrice,distance,on='postcode') df = df.sort_values('medPrice') plt.scatter(df['distance'], df['medPrice']) plt.xlabel('distance (km)') plt.ylabel('medPrice ($)') plt.grid(True) df['zPrice'] = np.abs(stats.zscore(df['medPrice'])) df['zDistance'] = np.abs(stats.zscore(df['distance'])) df1 = df.iloc[np.where(df['zPrice'] < 2)] df2 = df.iloc[np.where(df1['zDistance'] < 2)] # re-plot plt.clf() plt.scatter(df2['distance'], df2['medPrice']) plt.xlabel('distance (km)') plt.ylabel('medPrice ($)') plt.grid(True) x = np.array(df2['distance']) y =
np.array(df2['medPrice'])
numpy.array
import numpy as np import xarray as xr import matplotlib.pyplot as plt from scipy.spatial import ConvexHull from shapely.geometry.polygon import Polygon from skimage import morphology import abc import warnings from numba import njit from . import mask from . import cube from . import section as dm_section from . import plot from . import utils class BasePlanform(abc.ABC): """Base planform object. Defines common attributes and methods of all planform objects. """ def __init__(self, planform_type, *args, name=None): """Instantiate for subclasses of BasePlanform. The base class instantiation handles setting the `name` attribute of the `Planform`, and defines the internal plotting routine via :obj:`_show`. Parameters ---------- planform_type : :obj`str` String identifying the *type* of `Planform` being instantiated. *args Arbitrary arguments, passed from the subclass, not used here. name : :obj:`str`, optional An optional name for the planform, helpful for maintaining and keeping track of multiple `Planform` objects of the same type. This is disctinct from the :obj:`planform_type`. The name is used internally if you use the :obj:`register_planform` method of a `Cube`. """ # begin unconnected self._shape = None self._variables = None self.planform_type = planform_type self._name = name @property def name(self): """Planform name. Helpful to differentiate multiple `Planform` objects. """ return self._name @name.setter def name(self, var): if (self._name is None): # _name is not yet set self._name = var or self.planform_type else: # _name is already set if not (var is None): warnings.warn( UserWarning("`name` argument supplied to instantiated " "`Planform` object. To change the name of " "a Planform, you must set the attribute " "directly with `plan._name = 'name'`.")) # do nothing @property def shape(self): """Planform shape. """ return self._shape def _show(self, field, varinfo, **kwargs): """Internal method for showing a planform. Each planform may implement it's own method to determine what field to show when called, and different calling options. Parameters ---------- field : :obj:`DataArray` The data to show. varinfo : :obj:`VariableInfo` A :obj:`VariableInfo` instance describing how to color `field`. **kwargs Acceptable kwargs are `ax`, `title`, `ticks`, `colorbar`, `colorbar_label`. See description for `DataPlanform.show` for more information. """ # process arguments and inputs ax = kwargs.pop('ax', None) title = kwargs.pop('title', None) ticks = kwargs.pop('ticks', False) colorbar = kwargs.pop('colorbar', True) colorbar_label = kwargs.pop('colorbar_label', False) if not ax: ax = plt.gca() # get the extent as arbitrary dimensions d0, d1 = field.dims d0_arr, d1_arr = field[d0], field[d1] _extent = [d1_arr[0], # dim1, 0 d1_arr[-1] + d1_arr[1], # dim1, end + dx d0_arr[-1] + d0_arr[1], # dim0, end + dx d0_arr[0]] # dim0, 0 im = ax.imshow(field, cmap=varinfo.cmap, norm=varinfo.norm, vmin=varinfo.vmin, vmax=varinfo.vmax, extent=_extent) if colorbar: cb = plot.append_colorbar(im, ax) if colorbar_label: _colorbar_label = \ varinfo.label if (colorbar_label is True) \ else str(colorbar_label) # use custom if passed cb.ax.set_ylabel(_colorbar_label, rotation=-90, va="bottom") if not ticks: ax.set_xticks([], minor=[]) ax.set_yticks([], minor=[]) if title: ax.set_title(str(title)) return im class Planform(BasePlanform): """Basic Planform object. This class is used to slice the `Cube` along the `dim0` axis. The object is akin to the various `Section` classes, but there is only the one way to slice as a Planform. """ def __init__(self, *args, z=None, t=None, idx=None, **kwargs): """ Identify coordinate defining the planform. Parameters ---------- CubeInstance : :obj:`~deltametrics.cube.BaseCube` subclass, optional Connect to this cube. No connection is made if cube is not provided. z : :obj:`float`, optional t : :obj:`float`, optional idx : :obj:`int`, optional Notes ----- If no positional arguments are passed, an empty `Planform` not connected to any cube is returned. This cube may need to be manually connected to have any functionality (via the :meth:`connect` method); this need will depend on the type of `Planform`. """ if (not (z is None)) and (not (idx is None)): raise TypeError('Cannot specify both `z` and `idx`.') if (not (t is None)) and (not (idx is None)): raise TypeError('Cannot specify both `t` and `idx`.') if (not (z is None)) and (not (t is None)): raise TypeError('Cannot specify both `z` and `t`.') self.cube = None self._dim0_idx = None self._input_z = z self._input_t = t self._input_idx = idx super().__init__('data', *args, **kwargs) if len(args) > 0: self.connect(args[0]) else: pass @property def variables(self): """List of variables. """ return self._variables @property def idx(self): """Index into underlying Cube along axis 0. """ return self._dim0_idx def connect(self, CubeInstance, name=None): """Connect this Planform instance to a Cube instance. """ if not issubclass(type(CubeInstance), cube.BaseCube): raise TypeError('Expected type is subclass of {_exptype}, ' 'but received was {_gottype}.'.format( _exptype=type(cube.BaseCube), _gottype=type(CubeInstance))) self.cube = CubeInstance self._variables = self.cube.variables self.name = name # use the setter to determine the _name self._shape = self.cube.shape[1:] self._compute_planform_coords() def _compute_planform_coords(self): """Should calculate vertical coordinate of the section. Sets the value ``self._dim0_idx`` according to the algorithm of a `Planform` initialization. .. warning:: When implementing a new planform type, be sure that ``self._dim0_idx`` is a *one-dimensional array*, or you will get an improperly shaped Planform array in return. """ # determine the index along dim0 to slice cube if (not (self._input_z is None)) or (not (self._input_t is None)): # z an t are treated the same internally, and either will be # silently used to interpolate the dim0 coordinates to find the # nearest index dim0_val = self._input_z or self._input_t self._dim0_idx = np.argmin(np.abs( np.array(self.cube.dim0_coords) - dim0_val)) else: # then idx must have been given self._dim0_idx = self._input_idx def __getitem__(self, var): """Get a slice of the planform. Slicing the planform instance creates an `xarray` `DataArray` instance from data for variable ``var``. .. note:: We only support slicing by string. Parameters ---------- var : :obj:`str` Which variable to slice. Returns ------- data : :obj:`DataArray` The undelrying data returned as an xarray `DataArray`, maintaining coordinates. """ if isinstance(self.cube, cube.DataCube): _xrDA = self.cube[var][self._dim0_idx, :, :] _xrDA.attrs = {'slicetype': 'data_planform', 'knows_stratigraphy': self.cube._knows_stratigraphy, 'knows_spacetime': True} if self.cube._knows_stratigraphy: _xrDA.strat.add_information( _psvd_mask=self.cube.strat_attr.psvd_idx[self._dim0_idx, :, :], # noqa: E501 _strat_attr=self.cube.strat_attr( 'planform', self._dim0_idx, None)) return _xrDA elif isinstance(self.cube, cube.StratigraphyCube): _xrDA = self.cube[var][self._dim0_idx, :, :] _xrDA.attrs = {'slicetype': 'stratigraphy_planform', 'knows_stratigraphy': True, 'knows_spacetime': False} return _xrDA elif (self.cube is None): raise AttributeError( 'No cube connected. Are you sure you ran `.connect()`?') else: raise TypeError('Unknown Cube type encountered: %s' % type(self.cube)) def show(self, var, ax=None, title=None, ticks=False, colorbar=True, colorbar_label=False): """Show the planform. Method enumerates convenient routines for visualizing planform data and slices of stratigraphy. Parameters ---------- var : :obj:`str` Which attribute to show. Can be a string for a named `Cube` attribute. label : :obj:`bool`, `str`, optional Display a label of the variable name on the plot. Default is False, display nothing. If ``label=True``, the label name from the :obj:`~deltametrics.plot.VariableSet` is used. Other arguments are attempted to coerce to `str`, and the literal is diplayed. colorbar : :obj:`bool`, optional Whether a colorbar is appended to the axis. colorbar_label : :obj:`bool`, `str`, optional Display a label of the variable name along the colorbar. Default is False, display nothing. If ``label=True``, the label name from the :obj:`~deltametrics.plot.VariableSet` is used. Other arguments are attempted to coerce to `str`, and the literal is diplayed. ax : :obj:`~matplotlib.pyplot.Axes` object, optional A `matplotlib` `Axes` object to plot the section. Optional; if not provided, a call is made to ``plt.gca()`` to get the current (or create a new) `Axes` object. Examples -------- Display the `eta` and `velocity` planform of a DataCube. .. plot:: :include-source: >>> golfcube = dm.sample_data.golf() >>> planform = dm.plan.Planform(golfcube, idx=70) ... >>> fig, ax = plt.subplots(1, 2) >>> planform.show('eta', ax=ax[0]) >>> planform.show('velocity', ax=ax[1]) >>> plt.show() """ # process the planform attribute to a field _varinfo = self.cube.varset[var] if \ issubclass(type(self.cube), cube.BaseCube) else \ plot.VariableSet()[var] _field = self[var] # call the internal _show method im = self._show( _field, _varinfo, ax=ax, title=title, ticks=ticks, colorbar=colorbar, colorbar_label=colorbar_label) return im class SpecialtyPlanform(BasePlanform): """A base class for All specialty planforms. .. hint:: All specialty planforms should subclass. Specialty planforms are planforms that hold some computation or attribute *about* some underlying data, rather than the actual data. As a general rule, anything that is not a DataPlanform is a SpecialtyPlanform. This base class implements a slicing method (it slices the `data` field), and a `show` method for displaying the planform (it displays the `data` field). .. rubric:: Developer Notes All subclassing objects must implement: * a property named `data` that points to some field (i.e., an attribute of the planform) that best characterizes the Planform. For example, the OAP planform `data` property points to the `sea_angles` field. All subclassing objects should consider implementing: * the `show` method takes (optionally) a string argument specifying the field to display, which can match any attriute of the `SpecialtyPlanform`. If no argument is passed to `show`, the `data` field is displayed. A :obj:`VariableInfo` object `self._default_varinfo` is created on instantiating a subclass, which will be used to style the displayed field. You can add different `VariableInfo` objects with the name matching any other field of the planform to use that style instead; for example, OAP implements `self._sea_angles_varinfo`, which is used if the `sea_angles` field is specified to :meth:`show`. * The `self._default_varinfo` can be overwritten in a subclass (after ``super().__init__``) to style the `show` default field (`data`) a certain way. For example, OAP sets ``self._default_varinfo = self._sea_angles_varinfo``. """ def __init__(self, planform_type, *args, **kwargs): """Initialize the SpecialtyPlanform. BaseClass, only called by subclassing methods. This `__init__` method calls the `BasePlanform.__init__`. Parameters ---------- planform_type : :obj:`str` A string specifying the type of planform being created. *args Passed to `BasePlanform.__init__`. *kwargs Passed to `BasePlanform.__init__`. """ super().__init__(planform_type, *args, **kwargs) self._default_varinfo = plot.VariableInfo( 'data', label='data') @property @abc.abstractmethod def data(self): """The public data field. This attribute *must* be implemented as an alias to another attribute. The choice of field is up to the developer. """ ... def __getitem__(self, slc): """Slice the planform. Implements basic slicing for `SpecialtyPlanform` by passing the `slc` to `self.data`. I.e., the returned slice is ``self.data[slc]``. """ return self.data[slc] def show(self, var=None, ax=None, title=None, ticks=False, colorbar=True, colorbar_label=False): """Show the planform. Display a field of the planform, called by attribute name. Parameters ---------- var : :obj:`str` Which field to show. Must be an attribute of the planform. `show` will look for another attribute describing the :obj:`VariableInfo` for that attribute named ``self._<var>_varinfo`` and use that to style the plot, if found. If this `VariableInfo` is not found, the default is used. label : :obj:`bool`, `str`, optional Display a label of the variable name on the plot. Default is False, display nothing. If ``label=True``, the label name from the :obj:`~deltametrics.plot.VariableSet` is used. Other arguments are attempted to coerce to `str`, and the literal is diplayed. colorbar : :obj:`bool`, optional Whether a colorbar is appended to the axis. colorbar_label : :obj:`bool`, `str`, optional Display a label of the variable name along the colorbar. Default is False, display nothing. If ``label=True``, the label name from the :obj:`~deltametrics.plot.VariableSet` is used. Other arguments are attempted to coerce to `str`, and the literal is diplayed. ax : :obj:`~matplotlib.pyplot.Axes` object, optional A `matplotlib` `Axes` object to plot the section. Optional; if not provided, a call is made to ``plt.gca()`` to get the current (or create a new) `Axes` object. """ if (var is None): _varinfo = self._default_varinfo _field = self.data elif (isinstance(var, str)): _field = self.__getattribute__(var) # will error if var not attr _expected_varinfo = '_' + var + '_varinfo' if hasattr(self, _expected_varinfo): _varinfo = self.__getattribute__(_expected_varinfo) else: _varinfo = self._default_varinfo else: raise TypeError('Bad value for `var`: {0}'.format(var)) self._show( _field, _varinfo, ax=ax, title=title, ticks=ticks, colorbar=colorbar, colorbar_label=colorbar_label) class OpeningAnglePlanform(SpecialtyPlanform): """Planform for handling the Shaw Opening Angle Method. This `Planform` (called `OAP` for short) is a wrapper/handler for the input and output from the :func:`shaw_opening_angle_method`. The `OAP` is a convenient way to manage extraction of a shoreline or a delta topset area. Moreover, the `OAP` can be used as the input for :doc:`many types of Mask </reference/mask/index>` objects, so it is often computationally advantageous to compute this `Planform` once, and then use it to create many different types of masks. Examples -------- Instantiate the `OpeningAnglePlanform` from an **inverted** binary mask of elevation data (i.e., from an :obj:`~deltametrics.mask.ElevationMask`). Note that the below example is the most verbose method for creating the `OAP`. Consider available static methods. .. plot:: :context: reset :include-source: >>> golfcube = dm.sample_data.golf() >>> _EM = dm.mask.ElevationMask( ... golfcube['eta'][-1, :, :], ... elevation_threshold=0) >>> # extract a mask of area below sea level as the >>> # inverse of the ElevationMask >>> below_mask = ~(_EM.mask) >>> OAP = dm.plan.OpeningAnglePlanform(below_mask) The OAP stores information computed from the :func:`shaw_opening_angle_method`. See the two properties of the OAP :obj:`below_mask` and :obj:`sea_angles`. .. plot:: :context: fig, ax = plt.subplots(1, 3, figsize=(10, 4)) golfcube.quick_show('eta', idx=-1, ax=ax[0]) im1 = ax[1].imshow(OAP.below_mask, cmap='Greys_r') im2 = ax[2].imshow(OAP.sea_angles, cmap='jet') dm.plot.append_colorbar(im2, ax=ax[2]) ax[0].set_title('input elevation data') ax[1].set_title('OAP.below_mask') ax[2].set_title('OAP.sea_angles') for i in range(1, 3): ax[i].set_xticks([]) ax[i].set_yticks([]) """ @staticmethod def from_arrays(*args): """Create directly from arrays. .. warning:: not implemented. """ raise NotImplementedError @staticmethod def from_elevation_data(elevation_data, **kwargs): """Create an `OpeningAnglePlanform` from elevation data. This process creates an ElevationMask from the input elevation array, and proceeds to make the OAP from the below sea level mask. .. note:: Keyword arguments are passed to the `ElevationMask` *and* to the `OpeningAnglePlanform`, and thus passed to :func:`shaw_opening_angle_method`. .. important:: The `elevation_threshold` argument is implicitly required in this method, because it is required to instantiate an :obj:`ElevationMask` from elevation data. Parameters ---------- elevation_data : :obj:`ndarray` The elevation data to create the `ElevationMask` that is in turn used to create the `OpeningAnglePlanform`. Examples -------- .. doctest:: >>> golfcube = dm.sample_data.golf() >>> OAP = dm.plan.OpeningAnglePlanform.from_elevation_data( ... golfcube['eta'][-1, :, :], ... elevation_threshold=0) """ # make a temporary mask _em = mask.ElevationMask( elevation_data, **kwargs) # invert the mask for the below sea level area _below_mask = ~(_em.mask) # compute from __init__ pathway return OpeningAnglePlanform(_below_mask, **kwargs) @staticmethod def from_ElevationMask(ElevationMask, **kwargs): """Create an `OpeningAnglePlanform` from an `ElevationMask`. .. note:: Keyword arguments are passed to the `OpeningAnglePlanform`, and thus passed to :func:`shaw_opening_angle_method`. Parameters ---------- ElevationMask : :obj:`~deltametrics.mask.ElevationMask` The :obj:`ElevationMask` to be used to create the `OpeningAnglePlanform`. Examples -------- .. doctest:: >>> golfcube = dm.sample_data.golf() >>> _EM = dm.mask.ElevationMask( ... golfcube['eta'][-1, :, :], ... elevation_threshold=0) >>> OAP = dm.plan.OpeningAnglePlanform.from_ElevationMask( ... _EM) """ if not isinstance(ElevationMask, mask.ElevationMask): raise TypeError('Must be type: ElevationMask.') # invert the mask for the below sea level area _below_mask = ~(ElevationMask.mask) # compute from __init__ pathway return OpeningAnglePlanform(_below_mask) @staticmethod def from_mask(UnknownMask, **kwargs): """Wraps :obj:`from_ElevationMask`. """ return OpeningAnglePlanform.from_ElevationMask( UnknownMask, **kwargs) def __init__(self, *args, **kwargs): """Init. EXPECTS A BINARY OCEAN MASK AS THE INPUT! .. note:: needs docstring. """ super().__init__('opening angle', *args) self._shape = None self._sea_angles = None self._below_mask = None # set variable info display options self._sea_angles_varinfo = plot.VariableInfo( 'sea_angles', cmap=plt.cm.jet, label='opening angle') self._below_mask_varinfo = plot.VariableInfo( 'below_mask', cmap=plt.cm.gray, label='where below') self._default_varinfo = self._sea_angles_varinfo # check for inputs to return or proceed if (len(args) == 0): _allow_empty = kwargs.pop('allow_empty', False) if _allow_empty: # do nothing and return partially instantiated object return else: raise ValueError( 'Expected 1 input, got 0.') if not (len(args) == 1): raise ValueError( 'Expected 1 input, got %s.' % str(len(args))) # process the argument to the omask needed for Shaw OAM if utils.is_ndarray_or_xarray(args[0]): _arr = args[0] # check that is boolean or integer binary if (_arr.dtype == bool): _below_mask = _arr elif (_arr.dtype == int): if np.all(np.logical_or(_arr == 0, _arr == 1)): _below_mask = _arr else: ValueError( 'The input was an integer array, but some elements in ' 'the array were not 0 or 1.') else: raise TypeError( 'The input was not an integer or boolean array, but was ' '{0}. If you are trying to instantiate an OAP from ' 'elevation data directly, see static method ' '`OpeningAnglePlanform.from_elevation_data`.') # now check the type and allocate the arrays as xr.DataArray if isinstance(_below_mask, xr.core.dataarray.DataArray): self._below_mask = xr.zeros_like(_below_mask, dtype=bool) self._below_mask.name = 'below_mask' self._sea_angles = xr.zeros_like(_below_mask, dtype=float) self._sea_angles.name = 'sea_angles' elif isinstance(_below_mask, np.ndarray): # this will use meshgrid to fill out with dx=1 in shape of array self._below_mask = xr.DataArray( data=np.zeros(_below_mask.shape, dtype=bool), name='below_mask') self._sea_angles = xr.DataArray( data=np.zeros(_below_mask.shape, dtype=float), name='sea_angles') else: raise TypeError('Invalid type {0}'.format(type(_below_mask))) elif issubclass(type(args[0]), cube.BaseCube): raise NotImplementedError( 'Instantiation from a Cube is not yet implemented.') else: # bad type supplied as argument raise TypeError('Invalid type for argument.') self._shape = _below_mask.shape self._compute_from_below_mask(_below_mask, **kwargs) def _compute_from_below_mask(self, below_mask, **kwargs): """Method for actual computation of the arrays. Parameters ---------- below_mask The binarized array of values that should be considered as the ocean pixels. **kwargs Passed to :func:`shaw_opening_angle_method`. """ sea_angles =
np.zeros(self._shape)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Fri Nov 26 16:37:58 2021 @author: Diloz """ import os import sys import cv2 import scipy import numpy as np import pandas as pd from scipy import ndimage from scipy import optimize from scipy.stats import normaltest import matplotlib.pylab as plt from scipy.optimize import curve_fit import imalgo import plotting import checkerCards import segmentation #%% eps = np.finfo(float).eps colrLable = ['blu', 'grn', 'red'] # lbl_illum = ['blu_L', 'grn_L', 'red_L'] expID, daySowing, cam = 'exp05', '2018-01-05-11-00', 'cam03' # Color Constancy dirParent = "C:/Users/<NAME>/OneDrive - LA TROBE UNIVERSITY/PhD - Datasets" # dirParent = "C:/Users/17600112/OneDrive - LA TROBE UNIVERSITY/PhD - Datasets" root = os.path.join(dirParent, expID) path_potTempl = os.path.join(root, 'potTempl.png') potTemp = cv2.imread(path_potTempl)[:, :,0] folder_trash = os.path.join(dirParent, 'trash') if not os.path.exists(folder_trash): os.makedirs(folder_trash) #%% 5. Estimate the illuminant on pots by interpolating the Macbeth cards # This function estimates the illuminant on the centre of the pot using interpolation def illum_interp(df_coor, df_Known, imBGR_src, imNum, illumLabl): delt_int = (imBGR_src.shape[0]/100) # Known illuminant at the colorCheckers df_data = df_Known.copy().dropna() # df_data = df_data.drop(columns=['left', 'width', 'top', 'height', 'light']) df_data = df_data.loc[:, ['position', 'name', 'col_centre', 'row_centre', 'blu', 'grn', 'red']] df_data.sort_values(by=["row_centre"], inplace=True) df_data.reset_index(drop=True, inplace=True) row_known1 = df_data.loc[:, "row_centre"].values col_known1 = df_data.loc[:, "col_centre"].values row_max = np.max(row_known1) row_min = np.min(row_known1) col_max = np.max(col_known1) col_min = np.min(col_known1) # Unknown illuminant at each pot centre coordinates df_All = df_coor.drop(columns=['left', 'width', 'top', 'height', 'light']).copy() df_All = df_All.drop(df_All[df_All.name == 'Checker'].index) df_All.loc[df_All["row_centre"] >= row_max,"row_centre"] = row_max - delt_int df_All.loc[df_All["row_centre"] <= row_min,"row_centre"] = row_min + delt_int df_All.loc[df_All["col_centre"] >= col_max, "col_centre"] = col_max - delt_int df_All.loc[df_All["col_centre"] <= col_min, "col_centre"] = col_min + delt_int # df_All.sort_values(by=["position"], inplace=True) df_All.sort_values(by=["row_centre"], inplace=True) df_All.reset_index(drop=True, inplace=True) row_All = df_All.loc[:, "row_centre"].values col_All = df_All.loc[:, "col_centre"].values print(df_All.describe()) print(df_data.loc[0:5, :]) # Zip coordinates to train Model interp1 zipCoord1 = list(zip(row_known1, col_known1)) # Double interpolation (NaN) # for cnt in range(len(illumLabl)): for cnt in range(len(illumLabl)): row_known2, col_known2, interp1, illum_known2 = [], [], [], [] illum_chan = illumLabl[cnt] # First Interpolation: Using a linear interpolator illum_known1 = df_data.loc[:, illum_chan].values interp1 = scipy.interpolate.LinearNDInterpolator(zipCoord1, illum_known1) illum_estim1 = interp1(row_All, col_All) # Second Interpolation for misssing values: Nearest Interpolator indxEmpty = np.argwhere(np.isnan(illum_estim1)).flatten() if len(indxEmpty) > 0: indxNoEmpty = np.argwhere(~np.isnan(illum_estim1)).flatten() row_known2 = row_All[indxNoEmpty] col_known2 = col_All[indxNoEmpty] illum_known2 = illum_estim1[indxNoEmpty] # Zip coordinates to train Model interp2 zipCoord2 = list(zip(row_known2, col_known2)) interp2 = scipy.interpolate.NearestNDInterpolator(zipCoord2, illum_known2) illum_estim2 = interp2(row_All, col_All) df_All.loc[:, illum_chan] = illum_estim2 df_All = pd.concat([df_All, df_data]) df_All.reset_index(drop=True, inplace=True) return df_All #%% # Generate the illuminant prior surface def illum_surface(df_illum, Siz_src, imNum, illumLabl): width = Siz_src[1] height = Siz_src[0] dim = (width, height) wth = int(width/10) hth = int(height /10) df = df_illum.copy() df.sort_values(by=["row_centre"], inplace=True) df.reset_index(drop=True, inplace=True) row_point = df.loc[:, "row_centre"].values row_diff = np.append(row_point[0], (row_point[1:] - row_point[0:-1])) row_chang = row_point[row_diff>100] row_num = int(len(row_chang)) col_num = int(round((len(row_point) / row_num))) im_aux = np.ones((row_num, col_num, 3), dtype=np.float32) bott = 0 top = col_num - 1 for row in range(row_num): df_aux = df.loc[bott:top, :].copy() bott = top + 1 top+= col_num df_aux.sort_values(by=["col_centre"], inplace=True) df_aux.reset_index(drop=True, inplace=True) for col in range(len(df_aux)): im_aux[row, col, 0] = df_aux.loc[col, illumLabl[0]] im_aux[row, col, 1] = df_aux.loc[col, illumLabl[1]] im_aux[row, col, 2] = df_aux.loc[col, illumLabl[2]] im_ill_resiz = cv2.resize(im_aux, dim, interpolation = cv2.INTER_AREA) # Smooth the Surface using a kernel size equal to 10% of the image blur1 = cv2.blur(im_ill_resiz,(wth,wth)) blur2 = cv2.blur(blur1,(101,101)) prior_surf = np.clip(blur2, 0, 511) return prior_surf #%% Correct an input image using the illuminant surface def correctIllumGrey(img_src, illum): imgBGR = np.float32(img_src.copy()) illumBGR = illum.copy() # Convert RGB illuminant values into sRBG, Values [0, 1] illumXYZ = np.float32(cv2.cvtColor(illumBGR, cv2.COLOR_BGR2XYZ)) illumXYZ[illumXYZ[:, :, :]<=0] = eps # Normalize illuminant with respect of Y, where Y=1 illumXYZ_norm = np.zeros_like(illumXYZ) illumXYZ_norm[:, :, 0] = np.divide(illumXYZ[:, :, 0], illumXYZ[:, :, 1]) illumXYZ_norm[:, :, 1] = np.divide(illumXYZ[:, :, 1], illumXYZ[:, :, 1]) illumXYZ_norm[:, :, 2] = np.divide(illumXYZ[:, :, 2], illumXYZ[:, :, 1]) illumXYZ_norm[illumXYZ_norm[:, :, :]<=0] = eps illumBGR_aux = cv2.cvtColor(illumXYZ_norm * 255, cv2.COLOR_XYZ2BGR) illumBGR_aux[illumBGR_aux[:, :, :]<=0] = eps imgBGR[:, :, 0] = np.divide(imgBGR[:, :, 0], illumBGR_aux[:, :, 0])*255 imgBGR[:, :, 1] = np.divide(imgBGR[:, :, 1], illumBGR_aux[:, :, 1])*255 imgBGR[:, :, 2] = np.divide(imgBGR[:, :, 2], illumBGR_aux[:, :, 2])*255 imgBGR = np.uint8(np.clip(np.round(imgBGR), 0, 255)) return imgBGR #%% def correctIllumFit(img_src, illum): imgBGR = img_src.copy() imgBGR_aux1 = np.ones_like(np.float32(imgBGR)) illumBGR = np.float32(illum.copy()) illumBGR[illumBGR[:, :, :] == 0] = eps illumBGR_aux = np.ones_like(illumBGR) illumBGR_aux[:, :, 0] = np.divide(255, illumBGR[:, :, 0]) illumBGR_aux[:, :, 1] = np.divide(255, illumBGR[:, :, 1]) illumBGR_aux[:, :, 2] = np.divide(255, illumBGR[:, :, 2]) imgBGR_aux1[:, :, 0] = np.multiply(imgBGR[:, :, 0], illumBGR_aux[:, :, 0]) imgBGR_aux1[:, :, 1] = np.multiply(imgBGR[:, :, 1], illumBGR_aux[:, :, 1]) imgBGR_aux1[:, :, 2] = np.multiply(imgBGR[:, :, 2], illumBGR_aux[:, :, 2]) imgBGR[:, :, 0] =np.uint8(np.clip(np.round(imgBGR_aux1[:, :, 0]), 0, 255)) imgBGR[:, :, 1] =np.uint8(np.clip(np.round(imgBGR_aux1[:, :, 1]), 0, 255)) imgBGR[:, :, 2] =np.uint8(np.clip(np.round(imgBGR_aux1[:, :, 2]), 0, 255)) return imgBGR #%% 6. Calculate the cloth Reflectance using Bayesian Inference # Cloth reflectance Xc = Yc/Lc def imgFeature(img_src, illum, coor_df, potTemp, imNum): illBGR = illum.copy() imgBGR = img_src.copy() df = coor_df.loc[coor_df["name"]!="Checker", :].copy() df.sort_values(by=["position"], inplace=True) df.reset_index(drop=True, inplace=True) df_ref = df.copy() df_ill = df.copy() df_pix = df.copy() sampl = np.random.randint(len(df), size=1) for cnt in range(len(df)): posn, name, top, left, wd, ht = df.loc[cnt, ['position', 'name', 'top', 'left', 'width', 'height']].values if name == "Checker": continue bottom = top + ht right = left+ wd off = 10 potBGRCrp = imgBGR[top - off : bottom + off, left - off : right + off] search_scale = np.linspace(1.00, 1.0040, 10) search_degree = np.linspace(-2.5,2.5,15) num_cores = 2 potImgAdj, startY, endY, startX, endX, deg = checkerCards.getChecker(potBGRCrp, potTemp, search_scale, search_degree, num_cores) off2 = 30 potImg = potImgAdj[off2:-off2, off2:-off2] potMask, _ = segmentation.segment(potImg, 0.15, posn) kernel = np.ones((3,3),np.uint8) potMask = cv2.erode(potMask, kernel, iterations=7) potSeg = cv2.bitwise_and(potImg, potImg, mask = potMask) pixel_leaf = potImg[
np.where(potMask >0)
numpy.where
# -*- coding: utf-8 -*- import numpy as np import json class BatchTableHeader(object): def __init__(self): self.properties = {} def add_property_from_array(self, propertyName, array): self.properties[propertyName] = array def to_array(self): # convert dict to json string bt_json = json.dumps(self.properties, separators=(',', ':')) # header must be 4-byte aligned (refer to batch table documentation) #bt_json += ' '*(4 - len(bt_json) % 4) # returns an array of binaries representing the batch table return np.fromstring(bt_json, dtype=np.uint8) class BatchTableBody(object): def __init__(self): self.properties = {} self.header_length = 0 def sync(self, header): self.header_length = len(header.to_array()) def to_array(self): # header must be 4-byte aligned (refer to batch table documentation) body = ' '*(4 - self.header_length % 4) # Returns a blank space for now for testing return
np.fromstring(body, dtype=np.uint8)
numpy.fromstring
import os from collections import defaultdict import numpy from matplotlib import pyplot as plt from csep.utils.basic_types import seq_iter, AdaptiveHistogram from csep.utils.calc import _compute_likelihood, bin1d_vec, _compute_spatial_statistic from csep.utils.constants import CSEP_MW_BINS, SECONDS_PER_DAY, SECONDS_PER_HOUR, SECONDS_PER_WEEK from csep.models import EvaluationResult from csep.core.repositories import FileSystem from csep.utils.plots import plot_number_test, plot_magnitude_test, plot_likelihood_test, plot_spatial_test, \ plot_cumulative_events_versus_time_dev, plot_magnitude_histogram_dev, plot_distribution_test, plot_probability_test, \ plot_spatial_dataset from csep.utils.stats import get_quantiles, cumulative_square_diff, sup_dist # todo: refactor these methods to not perform any filtering of catalogs inside the processing task class AbstractProcessingTask: def __init__(self, data=None, name=None, min_mw=2.5, n_cat=None, mws=None): self.data = data or [] # to-be deprecated self.mws = mws or [2.5, 3.0, 3.5, 4.0, 4.5] self.min_mw = min_mw self.n_cat = n_cat self.name = name self.ax = [] self.fnames = [] self.needs_two_passes = False self.buffer = [] self.region = None self.buffer_fname = None self.fhandle = None self.archive = True self.version = 1 @staticmethod def _build_filename(dir, mw, plot_id): basename = f"{plot_id}_mw_{str(mw).replace('.','p')}".lower() return os.path.join(dir, basename) def process(self, data): raise NotImplementedError('must implement process()!') def process_again(self, catalog, args=()): """ This function defaults to pass unless the method needs to read through the data twice. """ pass def post_process(self, obs, args=None): """ Compute evaluation of data stored in self.data. Args: obs (csep.Catalog): used to evaluate the forecast args (tuple): args for this function Returns: result (csep.core.evaluations.EvaluationResult): """ result = EvaluationResult() return result def plot(self, results, plot_dir, show=False): """ plots function, typically just a wrapper to function in utils.plotting() Args: show (bool): show plot, if plotting multiple, just run on last. filename (str): where to save the file plot_args (dict): plotting args to pass to function Returns: axes (matplotlib.axes) """ raise NotImplementedError('must implement plot()!') def store_results(self, results, dir): """ Saves evaluation results serialized into json format. This format is used to recreate the results class which can then be plotted if desired. The following directory structure will be created: | dir |-- n-test |---- n-test_mw_2.5.json |---- n_test_mw_3.0.json |-- m-test |---- m_test_mw_2.5.json |---- m_test_mw_3.0.json ... The results iterable should only contain results for a single evaluation. Typically they would contain different minimum magnitudes. Args: results (Iterable of EvaluationResult): iterable object containing evaluation results. this could be a list or tuple of lists as well dir (str): directory to store the testing results. name will be constructed programatically. Returns: None """ success = False if self.archive == False: return # handle if results is just a single result if isinstance(results, EvaluationResult): repo = FileSystem(url=self._build_filename(dir, results.min_mw, results.name) + '.json') if repo.save(results.to_dict()): success = True return success # or if its an iterable for idx in seq_iter(results): # for debugging if isinstance(results[idx], tuple) or isinstance(results[idx], list): result = results[idx] else: result = [results[idx]] for r in result: repo = FileSystem(url=self._build_filename(dir, r.min_mw, r.name) + '.json') if repo.save(r.to_dict()): success = True return success def store_data(self, dir): """ Store the intermediate data used to calculate the results for the evaluations. """ raise NotImplementedError class NumberTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.mws = [2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0] def process(self, catalog, filter=False): if not self.name: self.name = catalog.name counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') counts.append(cat_filt.event_count) self.data.append(counts) def post_process(self, obs, args=None): # we dont need args for this function _ = args results = {} data = numpy.array(self.data) for i, mw in enumerate(self.mws): obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) observation_count = obs_filt.event_count # get delta_1 and delta_2 values delta_1, delta_2 = get_quantiles(data[:,i], observation_count) # prepare result result = EvaluationResult(test_distribution=data[:,i], name='N-Test', observed_statistic=observation_count, quantile=(delta_1, delta_2), status='Normal', obs_catalog_repr=obs.date_accessed, sim_name=self.name, min_mw=mw, obs_name=obs.name) results[mw] = result return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result in results.items(): # compute bin counts, this one is special because of integer values td = result.test_distribution min_bin, max_bin = numpy.min(td), numpy.max(td) # hard-code some logic for bin size bins = numpy.arange(min_bin, max_bin) if len(bins) == 1: bins = 3 n_test_fname = AbstractProcessingTask._build_filename(plot_dir, mw, 'n_test') _ = plot_number_test(result, show=show, plot_args={'percentile': 95, 'title': f'Number Test, M{mw}+', 'bins': bins, 'filename': n_test_fname}) self.fnames.append(n_test_fname) class MagnitudeTest(AbstractProcessingTask): def __init__(self, mag_bins=None, **kwargs): super().__init__(**kwargs) self.mws = [2.5, 3.0, 3.5, 4.0] self.mag_bins = mag_bins self.version = 4 def process(self, catalog): if not self.name: self.name = catalog.name # magnitude mag_bins should probably be bound to the region, although we should have a SpaceMagnitudeRegion class if self.mag_bins is None: try: self.mag_bins = catalog.region.mag_bins except: self.mag_bins = CSEP_MW_BINS # optimization idea: always compute this for the lowest magnitude, above this is redundant mags = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') binned_mags = cat_filt.magnitude_counts(mag_bins=self.mag_bins) mags.append(binned_mags) # data shape (n_cat, n_mw, n_mw_bins) self.data.append(mags) def post_process(self, obs, args=None): # we dont need args _ = args results = {} for i, mw in enumerate(self.mws): test_distribution = [] # get observed magnitude counts obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: print(f"Skipping {mw} in Magnitude test because no observed events.") continue obs_histogram = obs_filt.magnitude_counts(mag_bins=self.mag_bins) n_obs_events = numpy.sum(obs_histogram) mag_counts_all = numpy.array(self.data) # get the union histogram, simply the sum over all catalogs, (n_cat, n_mw) union_histogram = numpy.sum(mag_counts_all[:,i,:], axis=0) n_union_events = numpy.sum(union_histogram) union_scale = n_obs_events / n_union_events scaled_union_histogram = union_histogram * union_scale for j in range(mag_counts_all.shape[0]): n_events = numpy.sum(mag_counts_all[j,i,:]) if n_events == 0: continue scale = n_obs_events / n_events catalog_histogram = mag_counts_all[j,i,:] * scale test_distribution.append(cumulative_square_diff(numpy.log10(catalog_histogram+1), numpy.log10(scaled_union_histogram+1))) # compute statistic from the observation obs_d_statistic = cumulative_square_diff(numpy.log10(obs_histogram+1), numpy.log10(scaled_union_histogram+1)) # score evaluation _, quantile = get_quantiles(test_distribution, obs_d_statistic) # prepare result result = EvaluationResult(test_distribution=test_distribution, name='M-Test', observed_statistic=obs_d_statistic, quantile=quantile, status='Normal', min_mw=mw, obs_catalog_repr=obs.date_accessed, obs_name=obs.name, sim_name=self.name) results[mw] = result return results def plot(self, results, plot_dir, plot_args=None, show=False): # get the filename for mw, result in results.items(): m_test_fname = self._build_filename(plot_dir, mw, 'm-test') plot_args = {'percentile': 95, 'title': f'Magnitude Test, M{mw}+', 'bins': 'auto', 'filename': m_test_fname} _ = plot_magnitude_test(result, show=False, plot_args=plot_args) self.fnames.append(m_test_fname) def _build_filename(self, dir, mw, plot_id): try: mag_dh = self.mag_bins[1] - self.mag_bins[0] mag_dh_str = f"_dmag{mag_dh:.1f}".replace('.','p').lower() except: mag_dh_str = '' basename = f"{plot_id}_mw_{str(mw).replace('.', 'p')}{mag_dh_str}".lower() return os.path.join(dir, basename) class LikelihoodAndSpatialTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.region = None self.test_distribution_spatial = [] self.test_distribution_likelihood = [] self.cat_id = 0 self.needs_two_passes = True self.buffer = [] self.fnames = {} self.fnames['l-test'] = [] self.fnames['s-test'] = [] self.version = 5 def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name # compute stuff from data counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_counts = cat_filt.spatial_counts() counts.append(gridded_counts) # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(counts) else: self.data += numpy.array(counts) def process_again(self, catalog, args=()): # we dont actually need to do this if we are caching the data time_horizon, n_cat, end_epoch, obs = args apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) # unfortunately, we need to iterate twice through the catalogs for this, unless we start pre-processing # everything and storing approximate cell-wise rates lhs = numpy.zeros(len(self.mws)) lhs_norm = numpy.zeros(len(self.mws)) for i, mw in enumerate(self.mws): obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) n_obs = obs_filt.event_count cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_cat = cat_filt.spatial_counts() lh, lh_norm = _compute_likelihood(gridded_cat, apprx_rate_density[i,:], expected_cond_count[i], n_obs) lhs[i] = lh lhs_norm[i] = lh_norm self.test_distribution_likelihood.append(lhs) self.test_distribution_spatial.append(lhs_norm) def post_process(self, obs, args=None): cata_iter, time_horizon, end_epoch, n_cat = args results = {} apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) test_distribution_likelihood = numpy.array(self.test_distribution_likelihood) # there can be nans in the spatial distribution test_distribution_spatial = numpy.array(self.test_distribution_spatial) # prepare results for each mw for i, mw in enumerate(self.mws): # get observed likelihood obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog.') continue n_obs = obs_filt.get_number_of_events() gridded_obs = obs_filt.spatial_counts() obs_lh, obs_lh_norm = _compute_likelihood(gridded_obs, apprx_rate_density[i,:], expected_cond_count[i], n_obs) # if obs_lh is -numpy.inf, recompute but only for indexes where obs and simulated are non-zero message = "normal" if obs_lh == -numpy.inf or obs_lh_norm == -numpy.inf: idx_good_sim = apprx_rate_density[i,:] != 0 new_gridded_obs = gridded_obs[idx_good_sim] new_n_obs = numpy.sum(new_gridded_obs) print(f"Found -inf as the observed likelihood score for M{self.mws[i]}+. " f"Assuming event(s) occurred in undersampled region of forecast.\n" f"Recomputing with {new_n_obs} events after removing {n_obs - new_n_obs} events.") if new_n_obs == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog ' f'after correcting for under-sampling in forecast.') continue new_ard = apprx_rate_density[i,idx_good_sim] # we need to use the old n_obs here, because if we normalize the ard to a different value the observed # statistic will not be computed correctly. obs_lh, obs_lh_norm = _compute_likelihood(new_gridded_obs, new_ard, expected_cond_count[i], n_obs) message = "undersampled" # determine outcome of evaluation, check for infinity _, quantile_likelihood = get_quantiles(test_distribution_likelihood[:,i], obs_lh) # build evaluation result result_likelihood = EvaluationResult(test_distribution=test_distribution_likelihood[:,i], name='L-Test', observed_statistic=obs_lh, quantile=quantile_likelihood, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) # check for nans here test_distribution_spatial_1d = test_distribution_spatial[:,i] if numpy.isnan(numpy.sum(test_distribution_spatial_1d)): test_distribution_spatial_1d = test_distribution_spatial_1d[~numpy.isnan(test_distribution_spatial_1d)] if n_obs == 0 or numpy.isnan(obs_lh_norm): message = "not-valid" quantile_spatial = -1 else: _, quantile_spatial = get_quantiles(test_distribution_spatial_1d, obs_lh_norm) result_spatial = EvaluationResult(test_distribution=test_distribution_spatial_1d, name='S-Test', observed_statistic=obs_lh_norm, quantile=quantile_spatial, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) results[mw] = (result_likelihood, result_spatial) return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result_tuple in results.items(): # plot likelihood test l_test_fname = self._build_filename(plot_dir, mw, 'l-test') plot_args = {'percentile': 95, 'title': f'Pseudo-Likelihood Test, M{mw}+', 'filename': l_test_fname} _ = plot_likelihood_test(result_tuple[0], axes=None, plot_args=plot_args, show=show) # we can access this in the main program if needed # self.ax.append((ax, spatial_ax)) self.fnames['l-test'].append(l_test_fname) if result_tuple[1].status == 'not-valid': print(f'Skipping plot for spatial test on {mw}. Test results are not valid, likely because no earthquakes observed in target observed_catalog.') continue # plot spatial test s_test_fname = self._build_filename(plot_dir, mw, 's-test') plot_args = {'percentile': 95, 'title': f'Spatial Test, M{mw}+', 'filename': s_test_fname} _ = plot_spatial_test(result_tuple[1], axes=None, plot_args=plot_args, show=False) self.fnames['s-test'].append(s_test_fname) class SpatialTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.region = None self.test_distribution_spatial = [] self.cat_id = 0 self.needs_two_passes = True self.buffer = [] self.fnames = {} self.fnames['s-test'] = [] self.version = 5 def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name # compute stuff from data counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_counts = cat_filt.spatial_counts() counts.append(gridded_counts) # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(counts) else: self.data += numpy.array(counts) def process_again(self, catalog, args=()): # we dont actually need to do this if we are caching the data time_horizon, n_cat, end_epoch, obs = args apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) # unfortunately, we need to iterate twice through the catalogs for this, unless we start pre-processing # everything and storing approximate cell-wise rates lhs = numpy.zeros(len(self.mws)) lhs_norm = numpy.zeros(len(self.mws)) for i, mw in enumerate(self.mws): obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) n_obs = obs_filt.event_count cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_cat = cat_filt.spatial_counts() lh, lh_norm = _compute_likelihood(gridded_cat, apprx_rate_density[i,:], expected_cond_count[i], n_obs) lhs[i] = lh lhs_norm[i] = lh_norm self.test_distribution_spatial.append(lhs_norm) def post_process(self, obs, args=None): cata_iter, time_horizon, end_epoch, n_cat = args results = {} apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) # there can be nans in the spatial distribution test_distribution_spatial = numpy.array(self.test_distribution_spatial) # prepare results for each mw for i, mw in enumerate(self.mws): # get observed likelihood obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog.') continue n_obs = obs_filt.get_number_of_events() gridded_obs = obs_filt.spatial_counts() obs_lh, obs_lh_norm = _compute_likelihood(gridded_obs, apprx_rate_density[i,:], expected_cond_count[i], n_obs) # if obs_lh is -numpy.inf, recompute but only for indexes where obs and simulated are non-zero message = "normal" if obs_lh == -numpy.inf or obs_lh_norm == -numpy.inf: idx_good_sim = apprx_rate_density[i,:] != 0 new_gridded_obs = gridded_obs[idx_good_sim] new_n_obs = numpy.sum(new_gridded_obs) print(f"Found -inf as the observed likelihood score for M{self.mws[i]}+. " f"Assuming event(s) occurred in undersampled region of forecast.\n" f"Recomputing with {new_n_obs} events after removing {n_obs - new_n_obs} events.") if new_n_obs == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog ' f'after correcting for under-sampling in forecast.') continue new_ard = apprx_rate_density[i,idx_good_sim] # we need to use the old n_obs here, because if we normalize the ard to a different value the observed # statistic will not be computed correctly. obs_lh, obs_lh_norm = _compute_likelihood(new_gridded_obs, new_ard, expected_cond_count[i], n_obs) message = "undersampled" # check for nans here test_distribution_spatial_1d = test_distribution_spatial[:,i] if numpy.isnan(numpy.sum(test_distribution_spatial_1d)): test_distribution_spatial_1d = test_distribution_spatial_1d[~numpy.isnan(test_distribution_spatial_1d)] if n_obs == 0 or numpy.isnan(obs_lh_norm): message = "not-valid" quantile_spatial = -1 else: _, quantile_spatial = get_quantiles(test_distribution_spatial_1d, obs_lh_norm) result_spatial = EvaluationResult(test_distribution=test_distribution_spatial_1d, name='S-Test', observed_statistic=obs_lh_norm, quantile=quantile_spatial, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) results[mw] = result_spatial return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result in results.items(): if result.status == 'not-valid': print(f'Skipping plot for spatial test on {mw}. Test results are not valid, likely because no earthquakes observed in target observed_catalog.') continue # plot spatial test s_test_fname = self._build_filename(plot_dir, mw, 's-test') plot_args = {'percentile': 95, 'title': f'Spatial Test, M{mw}+', 'filename': s_test_fname} _ = plot_spatial_test(result, axes=None, plot_args=plot_args, show=False) self.fnames['s-test'].append(s_test_fname) class LikelihoodTest(AbstractProcessingTask): def __init__(self, **kwargs): super().__init__(**kwargs) self.region = None self.test_distribution_likelihood = [] self.cat_id = 0 self.needs_two_passes = True self.buffer = [] self.fnames = {} self.fnames['l-test'] = [] self.fnames['s-test'] = [] self.version = 5 def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name # compute stuff from data counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_counts = cat_filt.spatial_counts() counts.append(gridded_counts) # we want to aggregate the counts in each bin to preserve memory if len(self.data) == 0: self.data = numpy.array(counts) else: self.data += numpy.array(counts) def process_again(self, catalog, args=()): # we dont actually need to do this if we are caching the data time_horizon, n_cat, end_epoch, obs = args apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) # unfortunately, we need to iterate twice through the catalogs for this, unless we start pre-processing # everything and storing approximate cell-wise rates lhs = numpy.zeros(len(self.mws)) lhs_norm = numpy.zeros(len(self.mws)) for i, mw in enumerate(self.mws): obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) n_obs = obs_filt.event_count cat_filt = catalog.filter(f'magnitude >= {mw}') gridded_cat = cat_filt.spatial_counts() lh, lh_norm = _compute_likelihood(gridded_cat, apprx_rate_density[i,:], expected_cond_count[i], n_obs) lhs[i] = lh lhs_norm[i] = lh_norm self.test_distribution_likelihood.append(lhs) def post_process(self, obs, args=None): cata_iter, time_horizon, end_epoch, n_cat = args results = {} apprx_rate_density = numpy.array(self.data) / n_cat expected_cond_count = numpy.sum(apprx_rate_density, axis=1) test_distribution_likelihood = numpy.array(self.test_distribution_likelihood) # there can be nans in the spatial distribution # prepare results for each mw for i, mw in enumerate(self.mws): # get observed likelihood obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) if obs_filt.event_count == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog.') continue n_obs = obs_filt.get_number_of_events() gridded_obs = obs_filt.spatial_counts() obs_lh, obs_lh_norm = _compute_likelihood(gridded_obs, apprx_rate_density[i,:], expected_cond_count[i], n_obs) # if obs_lh is -numpy.inf, recompute but only for indexes where obs and simulated are non-zero message = "normal" if obs_lh == -numpy.inf or obs_lh_norm == -numpy.inf: idx_good_sim = apprx_rate_density[i,:] != 0 new_gridded_obs = gridded_obs[idx_good_sim] new_n_obs = numpy.sum(new_gridded_obs) print(f"Found -inf as the observed likelihood score for M{self.mws[i]}+. " f"Assuming event(s) occurred in undersampled region of forecast.\n" f"Recomputing with {new_n_obs} events after removing {n_obs - new_n_obs} events.") if new_n_obs == 0: print(f'Skipping pseudo-likelihood based tests for M{mw}+ because no events in observed observed_catalog ' f'after correcting for under-sampling in forecast.') continue new_ard = apprx_rate_density[i,idx_good_sim] # we need to use the old n_obs here, because if we normalize the ard to a different value the observed # statistic will not be computed correctly. obs_lh, obs_lh_norm = _compute_likelihood(new_gridded_obs, new_ard, expected_cond_count[i], n_obs) message = "undersampled" # determine outcome of evaluation, check for infinity _, quantile_likelihood = get_quantiles(test_distribution_likelihood[:,i], obs_lh) # build evaluation result result_likelihood = EvaluationResult(test_distribution=test_distribution_likelihood[:,i], name='L-Test', observed_statistic=obs_lh, quantile=quantile_likelihood, status=message, min_mw=mw, obs_catalog_repr=obs.date_accessed, sim_name=self.name, obs_name=obs.name) results[mw] = result_likelihood return results def plot(self, results, plot_dir, plot_args=None, show=False): for mw, result in results.items(): # plot likelihood test l_test_fname = self._build_filename(plot_dir, mw, 'l-test') plot_args = {'percentile': 95, 'title': f'Pseudo-Likelihood Test, M{mw}+', 'filename': l_test_fname} _ = plot_likelihood_test(result, axes=None, plot_args=plot_args, show=show) # we can access this in the main program if needed # self.ax.append((ax, spatial_ax)) self.fnames['s-test'].append(l_test_fname) class CumulativeEventPlot(AbstractProcessingTask): def __init__(self, origin_epoch, end_epoch, **kwargs): super().__init__(**kwargs) self.origin_epoch = origin_epoch self.end_epoch = end_epoch self.time_bins, self.dt = self._get_time_bins() self.n_bins = self.time_bins.shape[0] self.archive = False def _get_time_bins(self): diff = (self.end_epoch - self.origin_epoch) / SECONDS_PER_DAY / 1000 # if less than 7 day use hours if diff <= 7.0: dt = SECONDS_PER_HOUR * 1000 # if less than 180 day use days elif diff <= 180: dt = SECONDS_PER_DAY * 1000 # if less than 3 years (1,095.75 days) use weeks elif diff <= 1095.75: dt = SECONDS_PER_WEEK * 1000 # use 30 day else: dt = SECONDS_PER_DAY * 1000 * 30 # always make bins from start to end of observed_catalog return numpy.arange(self.origin_epoch, self.end_epoch+dt/2, dt), dt def process(self, catalog): counts = [] for mw in self.mws: cat_filt = catalog.filter(f'magnitude >= {mw}') n_events = cat_filt.catalog.shape[0] ses_origin_time = cat_filt.get_epoch_times() inds = bin1d_vec(ses_origin_time, self.time_bins) binned_counts = numpy.zeros(self.n_bins) for j in range(n_events): binned_counts[inds[j]] += 1 counts.append(binned_counts) self.data.append(counts) def post_process(self, obs, args=None): # data are stored as (n_cat, n_mw_bins, n_time_bins) summed_counts = numpy.cumsum(self.data, axis=2) # compute summary statistics for plotting fifth_per = numpy.percentile(summed_counts, 5, axis=0) first_quar = numpy.percentile(summed_counts, 25, axis=0) med_counts = numpy.percentile(summed_counts, 50, axis=0) second_quar = numpy.percentile(summed_counts, 75, axis=0) nine_fifth = numpy.percentile(summed_counts, 95, axis=0) # compute median for comcat observed_catalog obs_counts = [] for mw in self.mws: obs_filt = obs.filter(f'magnitude >= {mw}', in_place=False) obs_binned_counts = numpy.zeros(self.n_bins) inds = bin1d_vec(obs_filt.get_epoch_times(), self.time_bins) for j in range(obs_filt.event_count): obs_binned_counts[inds[j]] += 1 obs_counts.append(obs_binned_counts) obs_summed_counts = numpy.cumsum(obs_counts, axis=1) # update time_bins for plotting millis_to_hours = 60 * 60 * 1000 * 24 time_bins = (self.time_bins - self.time_bins[0]) / millis_to_hours # since we are cumulating, plot at bin ends time_bins = time_bins + (self.dt / millis_to_hours) # make all arrays start at zero time_bins = numpy.insert(time_bins, 0, 0) # 2d array with (n_mw, n_time_bins) fifth_per = numpy.insert(fifth_per, 0, 0, axis=1) first_quar = numpy.insert(first_quar, 0, 0, axis=1) med_counts = numpy.insert(med_counts, 0, 0, axis=1) second_quar = numpy.insert(second_quar, 0, 0, axis=1) nine_fifth = numpy.insert(nine_fifth, 0, 0, axis=1) obs_summed_counts = numpy.insert(obs_summed_counts, 0, 0, axis=1) # ydata is now (5, n_mw, n_time_bins) results = {'xdata': time_bins, 'ydata': (fifth_per, first_quar, med_counts, second_quar, nine_fifth), 'obs_data': obs_summed_counts} return results def plot(self, results, plot_dir, plot_args=None, show=False): # these are numpy arrays with mw information xdata = results['xdata'] ydata = numpy.array(results['ydata']) obs_data = results['obs_data'] # get values from plotting args for i, mw in enumerate(self.mws): cum_counts_fname = self._build_filename(plot_dir, mw, 'cum_counts') plot_args = {'title': f'Cumulative Event Counts, M{mw}+', 'xlabel': 'Days since start of forecast', 'filename': cum_counts_fname} ax = plot_cumulative_events_versus_time_dev(xdata, ydata[:,i,:], obs_data[i,:], plot_args, show=False) # self.ax.append(ax) self.fnames.append(cum_counts_fname) def store_results(self, results, dir): # store quickly for numpy, because we dont have a results class to deal with this fname = self._build_filename(dir, self.mws[0], 'cum_counts') + '.npy' numpy.save(fname, results) class MagnitudeHistogram(AbstractProcessingTask): def __init__(self, calc=True, **kwargs): super().__init__(**kwargs) self.calc = calc self.archive = False def process(self, catalog): """ this can share data with the Magnitude test, hence self.calc """ if not self.name: self.name = catalog.name if self.calc: # always compute this for the lowest magnitude, above this is redundant cat_filt = catalog.filter(f'magnitude >= {self.mws[0]}') binned_mags = cat_filt.magnitude_counts() self.data.append(binned_mags) def post_process(self, obs, args=None): """ just store observation for later """ _ = args self.obs = obs def plot(self, results, plot_dir, plot_args=None, show=False): mag_hist_fname = self._build_filename(plot_dir, self.mws[0], 'mag_hist') plot_args = { 'xlim': [self.mws[0], numpy.max(CSEP_MW_BINS)], 'title': f"Magnitude Histogram, M{self.mws[0]}+", 'sim_label': self.name, 'obs_label': self.obs.name, 'filename': mag_hist_fname } obs_filt = self.obs.filter(f'magnitude >= {self.mws[0]}', in_place=False) # data (n_sim, n_mag, n_mw_bins) ax = plot_magnitude_histogram_dev(numpy.array(self.data)[:,0,:], obs_filt, plot_args, show=False) # self.ax.append(ax) self.fnames.append(mag_hist_fname) class UniformLikelihoodCalculation(AbstractProcessingTask): """ This calculation assumes that the spatial distribution of the forecast is uniform, but the seismicity is located in spatial bins according to the clustering provided by the forecast model. """ def __init__(self, **kwargs): super().__init__(**kwargs) self.data = None self.test_distribution_likelihood = [] self.test_distribution_spatial = [] self.fnames = {} self.fnames['l-test'] = [] self.fnames['s-test'] = [] self.needs_two_passes = True def process(self, catalog): # grab stuff from data that we might need later if not self.region: self.region = catalog.region if not self.name: self.name = catalog.name def process_again(self, catalog, args=()): time_horizon, n_cat, end_epoch, obs = args expected_cond_count =
numpy.sum(self.data, axis=1)
numpy.sum
from discord.ext import commands import discord import numpy as np import os import traceback from parse import parse client = discord.Client() bot = commands.Bot(command_prefix='/') token = os.environ['DISCORD_BOT_TOKEN'] # @bot.event # async def on_command_error(ctx, error): # orig_error = getattr(error, "original", error) # error_msg = ''.join(traceback.TracebackException.from_exception(orig_error).format()) # await ctx.send(error_msg) # @bot.command() # async def ping(ctx): # await ctx.send('pong') # @bot.command() # async def neko(ctx): # await ctx.send('nyan') def dice(dice_size): num = np.random.randint(1, int(dice_size + 1)) return num def simple_dice(dice_size, dice_num): dice_val = np.array([], dtype=np.int64) for i in range(dice_num): dice_val = np.append(dice_val, dice(dice_size)) #msg = 'dice: ' + str(np.sum(dice_val)) + ' = ' + str(dice_val) m = dice_val return m def CCB(m, a): if m <= (a/5): msg = 'dice: ' + str(np.sum(m)) + ' = ' + str(m) + ' <= ' + str(a) + ' Extreme!!!' elif (a/5) < m <= (a/2): msg = 'dice: ' + str(
np.sum(m)
numpy.sum
#!/usr/bin/env python3 ''' Icecore PSM Adapted from Sylvia's PRYSM code (https://github.com/sylvia-dee/PRYSM) with precipitation weighting added. ''' import numpy as np from scipy import integrate, signal from pathos.multiprocessing import ProcessingPool as Pool from tqdm import tqdm import LMRt # import time # from IPython import embed def ice_sensor(year, d18Op, pr, alt_diff=0.): ''' Icecore sensor model The ice core sensor model calculates precipitation-weighted del18OP (i.e. isotope ratio is weighted by the amount of precipitation that accumulates) and corrects for temperature and altitude bias between model and site ([Yurtsever, 1975], 0.3/100m [Vogel et al., 1975]). Args: year (1d array: time): time axis [year in float] d18Op (2d array: location, time): d18O of precipitation [permil] pr (2d array: location, time): precipitation rate [kg m-2 s-1] alt_diff 12d array: location): actual Altitude-Model Altitude [meters] Returns: d18Oice (2d array: location, year in int): annualizd d18O of ice [permil] References: Yurtsever, Y., Worldwide survey of stable isotopes in precipitation., Rep. Isotope Hydrology Section, IAEA, 1975. ''' # Altitude Effect: cooling and precipitation of heavy isotopes. # O18 ~0.15 to 0.30 permil per 100m. alt_eff = -0.25 alt_corr = (alt_diff/100.)*alt_eff d18Op_weighted, year_int = LMRt.utils.annualize_var(d18Op, year, weights=pr) d18O_ice = d18Op_weighted + alt_corr return d18O_ice def diffusivity(rho, T=250, P=0.9, rho_d=822, b=1.3): ''' DOCSTRING: Function 'diffusivity' Description: Calculates diffusivity (in m^2/s) as a function of density. Inputs: P: Ambient Pressure in Atm T: Temperature in K rho: density profile (kg/m^3) rho_d: 822 kg/m^2 [default], density at which ice becomes impermeable to diffusion Defaults are available for all but rho, so only one argument need be entered. Note values for diffusivity in air: D16 = 2.1e-5*(T/273.15)^1.94*1/P D18 = D16/1.0285 D2 = D16/1.0251 D17 = D16/((D16/D18)^0.518) Reference: Johnsen et al. (2000): Diffusion of Stable isotopes in polar firn and ice: the isotope effect in firn diffusion ''' # Set Constants R = 8.314478 # Gas constant m = 18.02e-3 # molar weight of water (in kg) alpha18 = np.exp(11.839/T-28.224e-3) # ice-vapor fractionation for oxygen 18 p = np.exp(9.5504+3.53*np.log(T)-5723.265/T-0.0073*T) # saturation vapor pressure Po = 1. # reference pressure, atmospheres rho_i = 920. # kg/m^3, density of solid ice # Set diffusivity in air (units of m^2/s) Da = 2.1e-5*np.power((T/273.15), 1.94)*(Po/P) Dai = Da/1.0285 # Calculate Tortuosity invtau = np.zeros(len(rho)) # for i in range(len(rho)): # if rho[i] <= rho_i/np.sqrt(b): # # invtau[i]=1.-1.3*np.power((rho[i]/rho_d),2) # invtau[i] = 1.-1.3*np.power((rho[i]/rho_i), 2) # else: # invtau[i] = 0. selector =rho <= rho_i/np.sqrt(b) invtau[selector] = 1.-1.3*(rho[selector]/rho_i)**2 D = m*p*invtau*Dai*(1/rho-1/rho_d)/(R*T*alpha18) return D def densification(Tavg, bdot, rhos, z): # ,model='hljohnsen'): ''' Calculates steady state snow/firn depth density profiles using Herron-Langway type models. Args: Tavg: 10m temperature in celcius ## CELCIUS! bdot: accumulation rate in mwe/yr or (kg/m2/yr) rhos: surface density in kg/m3 z: depth in true_metres model can be: {'HLJohnsen' 'HerronLangway' 'LiZwally' 'Helsen' 'NabarroHerring'} default is herronlangway. (The other models are tuned for non-stationary modelling (Read Arthern et al.2010 before applying in steady state). Returns: rho: density (kg/m3) for all z-values. zieq: ice equivalent depth for all z-values. t: age for all z-values (only taking densification into account.) Example usage: z=0:300 [rho,zieq,t]=densitymodel(-31.5,177,340,z,'HerronLangway') plot(z,rho) References: Herron-Langway type models. (Arthern et al. 2010 formulation). <NAME>, University of Copenhagen 2010 Adapted by <NAME>, Brown University, 2017 Optimized by <NAME>, University of Southern California, 2017 ''' rhoi = 920. rhoc = 550. rhow = 1000. rhos = 340. R = 8.314 # Tavg=248. # bdot=0.1 # Herron-Langway with Johnsen et al 2000 corrections. # Small corrections to HL model which are not in Arthern et al. 2010 c0 = 0.85*11*(bdot/rhow)*np.exp(-10160./(R*Tavg)) c1 = 1.15*575*np.sqrt(bdot/rhow)*np.exp(-21400./(R*Tavg)) k0 = c0/bdot # ~g4 k1 = c1/bdot # critical depth at which rho=rhoc zc = (np.log(rhoc/(rhoi-rhoc))-np.log(rhos/(rhoi-rhos)))/(k0*rhoi) # g6 ix = z <= zc # find the z's above and below zc upix = np.where(ix) # indices above zc dnix = np.where(~ix) # indices below zc q = np.zeros((z.shape)) # pre-allocate some space for q, rho rho = np.zeros((z.shape)) # test to ensure that this will not blow up numerically if you have a very very long core. # manually set all super deep layers to solid ice (rhoi=920) NUM = k1*rhoi*(z-zc)+np.log(rhoc/(rhoi-rhoc)) numerical = np.where(NUM <= 100.0) blowup = np.where(NUM > 100.0) q[dnix] = np.exp(k1*rhoi*(z[dnix]-zc)+np.log(rhoc/(rhoi-rhoc))) # g7 q[upix] = np.exp(k0*rhoi*z[upix]+np.log(rhos/(rhoi-rhos))) # g7 rho[numerical] = q[numerical]*rhoi/(1+q[numerical]) # [g8] modified by fzhu to fix inconsistency of array size rho[blowup] = rhoi # only calculate this if you want zieq tc = (
np.log(rhoi-rhos)
numpy.log
""" Additional tests for PandasArray that aren't covered by the interface tests. """ import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.arrays import PandasArray from pandas.core.arrays.numpy_ import PandasDtype @pytest.fixture( params=[ np.array(["a", "b"], dtype=object), np.array([0, 1], dtype=float), np.array([0, 1], dtype=int), np.array([0, 1 + 2j], dtype=complex), np.array([True, False], dtype=bool), np.array([0, 1], dtype="datetime64[ns]"), np.array([0, 1], dtype="timedelta64[ns]"), ] ) def any_numpy_array(request): """ Parametrized fixture for NumPy arrays with different dtypes. This excludes string and bytes. """ return request.param # ---------------------------------------------------------------------------- # PandasDtype @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", True), ("uint", True), ("float", True), ("complex", True), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_numeric(dtype, expected): dtype = PandasDtype(dtype) assert dtype._is_numeric is expected @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", False), ("uint", False), ("float", False), ("complex", False), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_boolean(dtype, expected): dtype = PandasDtype(dtype) assert dtype._is_boolean is expected def test_repr(): dtype = PandasDtype(np.dtype("int64")) assert repr(dtype) == "PandasDtype('int64')" def test_constructor_from_string(): result = PandasDtype.construct_from_string("int64") expected = PandasDtype(np.dtype("int64")) assert result == expected # ---------------------------------------------------------------------------- # Construction def test_constructor_no_coercion(): with pytest.raises(ValueError, match="NumPy array"): PandasArray([1, 2, 3]) def test_series_constructor_with_copy(): ndarray = np.array([1, 2, 3]) ser = pd.Series(PandasArray(ndarray), copy=True) assert ser.values is not ndarray def test_series_constructor_with_astype(): ndarray = np.array([1, 2, 3]) result = pd.Series(PandasArray(ndarray), dtype="float64") expected = pd.Series([1.0, 2.0, 3.0], dtype="float64") tm.assert_series_equal(result, expected) def test_from_sequence_dtype(): arr = np.array([1, 2, 3], dtype="int64") result = PandasArray._from_sequence(arr, dtype="uint64") expected = PandasArray(np.array([1, 2, 3], dtype="uint64")) tm.assert_extension_array_equal(result, expected) def test_constructor_copy(): arr = np.array([0, 1]) result = PandasArray(arr, copy=True) assert np.shares_memory(result._ndarray, arr) is False def test_constructor_with_data(any_numpy_array): nparr = any_numpy_array arr = PandasArray(nparr) assert arr.dtype.numpy_dtype == nparr.dtype # ---------------------------------------------------------------------------- # Conversion def test_to_numpy(): arr = PandasArray(np.array([1, 2, 3])) result = arr.to_numpy() assert result is arr._ndarray result = arr.to_numpy(copy=True) assert result is not arr._ndarray result = arr.to_numpy(dtype="f8") expected = np.array([1, 2, 3], dtype="f8") tm.assert_numpy_array_equal(result, expected) # ---------------------------------------------------------------------------- # Setitem def test_setitem_series(): ser = pd.Series([1, 2, 3]) ser.array[0] = 10 expected = pd.Series([10, 2, 3]) tm.assert_series_equal(ser, expected) def test_setitem(any_numpy_array): nparr = any_numpy_array arr = PandasArray(nparr, copy=True) arr[0] = arr[1] nparr[0] = nparr[1] tm.assert_numpy_array_equal(arr.to_numpy(), nparr) # ---------------------------------------------------------------------------- # Reductions def test_bad_reduce_raises(): arr = np.array([1, 2, 3], dtype="int64") arr = PandasArray(arr) msg = "cannot perform not_a_method with type int" with pytest.raises(TypeError, match=msg): arr._reduce(msg) def test_validate_reduction_keyword_args(): arr = PandasArray(np.array([1, 2, 3])) msg = "the 'keepdims' parameter is not supported .*all" with pytest.raises(ValueError, match=msg): arr.all(keepdims=True) # ---------------------------------------------------------------------------- # Ops def test_ufunc(): arr = PandasArray(np.array([-1.0, 0.0, 1.0])) result = np.abs(arr) expected = PandasArray(np.abs(arr._ndarray)) tm.assert_extension_array_equal(result, expected) r1, r2 = np.divmod(arr, np.add(arr, 2)) e1, e2 = np.divmod(arr._ndarray, np.add(arr._ndarray, 2)) e1 = PandasArray(e1) e2 = PandasArray(e2) tm.assert_extension_array_equal(r1, e1) tm.assert_extension_array_equal(r2, e2) def test_basic_binop(): # Just a basic smoke test. The EA interface tests exercise this # more thoroughly. x = PandasArray(
np.array([1, 2, 3])
numpy.array
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Core module of the pulse drawer. This module provides the `DrawerCanvas` which is a collection of `Chart` object. The `Chart` object is a collection of drawings. A user can assign multiple channels to a single chart instance. For example, we can define a chart for specific qubit and assign all related channels to the chart. This chart-channel mapping is defined by the function specified by ``layout.chart_channel_map`` of the stylesheet. Because this chart instance is decoupled from the coordinate system of the plotter, we can arbitrarily place charts on the plotter canvas, i.e. if we want to create 3D plot, each chart may be placed on the X-Z plane and charts are arranged along the Y-axis. Thus this data model maximizes the flexibility to generate an output image. The chart instance is not just a container of drawings, as it also performs data processing like binding abstract coordinates and truncating long pulses for an axis break. Each chart object has `.parent` which points to the `DrawerCanvas` instance so that each child chart can refer to the global figure settings such as time range and axis break. Initialization ~~~~~~~~~~~~~~ The `DataCanvas` and `Chart` are not exposed to users as they are implicitly initialized in the interface function. It is noteworthy that the data canvas is agnostic to plotters. This means once the canvas instance is initialized we can reuse this data among multiple plotters. The canvas is initialized with a stylesheet and quantum backend information :py:class:~`qiskit.visualization.pulse_v2.device_info.DrawerBackendInfo`. Chart instances are automatically generated when pulse program is loaded. ```python canvas = DrawerCanvas(stylesheet=stylesheet, device=device) canvas.load_program(sched) canvas.update() ``` Once all properties are set, `.update` method is called to apply changes to drawings. If the `DrawDataContainer` is initialized without backend information, the output shows the time in units of the system cycle time `dt` and the frequencies are initialized to zero. Update ~~~~~~ To update the image, a user can set new values to canvas and then call the `.update` method. ```python canvas.set_time_range(2000, 3000, seconds=False) canvas.update() ``` All stored drawings are updated accordingly. The plotter API can access to drawings with `.collections` property of chart instance. This returns an iterator of drawing with the unique data key. If a plotter provides object handler for plotted shapes, the plotter API can manage the lookup table of the handler and the drawing by using this data key. """ from copy import deepcopy from enum import Enum from functools import partial from itertools import chain from typing import Union, List, Tuple, Iterator, Optional import numpy as np from qiskit import pulse from qiskit.pulse.transforms import target_qobj_transform from qiskit.visualization.exceptions import VisualizationError from qiskit.visualization.pulse_v2 import events, types, drawings, device_info from qiskit.visualization.pulse_v2.stylesheet import QiskitPulseStyle class DrawerCanvas: """Collection of `Chart` and configuration data. Pulse channels are associated with some `Chart` instance and drawing data object are stored in the `Chart` instance. Device, stylesheet, and some user generators are stored in the `DrawingCanvas` and `Chart` instances are also attached to the `DrawerCanvas` as children. Global configurations are accessed by those children to modify the appearance of the `Chart` output. """ def __init__(self, stylesheet: QiskitPulseStyle, device: device_info.DrawerBackendInfo): """Create new data container with backend system information. Args: stylesheet: Stylesheet to decide appearance of output image. device: Backend information to run the program. """ # stylesheet self.formatter = stylesheet.formatter self.generator = stylesheet.generator self.layout = stylesheet.layout # device info self.device = device # chart self.global_charts = Chart(parent=self, name='global') self.charts = [] # visible controls self.disable_chans = set() self.disable_types = set() # data scaling self.chan_scales = dict() # global time self._time_range = (0, 0) self._time_breaks = [] # title self.fig_title = '' @property def time_range(self) -> Tuple[int, int]: """Return current time range to draw. Calculate net duration and add side margin to edge location. Returns: Time window considering side margin. """ t0, t1 = self._time_range total_time_elimination = 0 for t0b, t1b in self.time_breaks: if t1b > t0 and t0b < t1: total_time_elimination += t1b - t0b net_duration = t1 - t0 - total_time_elimination new_t0 = t0 - net_duration * self.formatter['margin.left_percent'] new_t1 = t1 + net_duration * self.formatter['margin.right_percent'] return new_t0, new_t1 @time_range.setter def time_range(self, new_range: Tuple[int, int]): """Update time range to draw.""" self._time_range = new_range @property def time_breaks(self) -> List[Tuple[int, int]]: """Return time breaks with time range. If an edge of time range is in the axis break period, the axis break period is recalculated. Raises: VisualizationError: When axis break is greater than time window. Returns: List of axis break periods considering the time window edges. """ t0, t1 = self._time_range axis_breaks = [] for t0b, t1b in self._time_breaks: if t0b >= t1 or t1b <= t0: # skip because break period is outside of time window continue if t0b < t0 and t1b > t1: raise VisualizationError('Axis break is greater than time window. ' 'Nothing will be drawn.') if t0b < t0 < t1b: if t1b - t0 > self.formatter['axis_break.length']: new_t0 = t0 + 0.5 * self.formatter['axis_break.max_length'] axis_breaks.append((new_t0, t1b)) continue if t0b < t1 < t1b: if t1 - t0b > self.formatter['axis_break.length']: new_t1 = t1 - 0.5 * self.formatter['axis_break.max_length'] axis_breaks.append((t0b, new_t1)) continue axis_breaks.append((t0b, t1b)) return axis_breaks @time_breaks.setter def time_breaks(self, new_breaks: List[Tuple[int, int]]): """Set new time breaks.""" self._time_breaks = sorted(new_breaks, key=lambda x: x[0]) def load_program(self, program: Union[pulse.Waveform, pulse.ParametricPulse, pulse.Schedule]): """Load a program to draw. Args: program: `Waveform`, `ParametricPulse`, or `Schedule` to draw. Raises: VisualizationError: When input program is invalid data format. """ if isinstance(program, (pulse.Schedule, pulse.ScheduleBlock)): self._schedule_loader(program) elif isinstance(program, (pulse.Waveform, pulse.ParametricPulse)): self._waveform_loader(program) else: raise VisualizationError('Data type %s is not supported.' % type(program)) # update time range self.set_time_range(0, program.duration, seconds=False) # set title self.fig_title = self.layout['figure_title'](program=program, device=self.device) def _waveform_loader(self, program: Union[pulse.Waveform, pulse.ParametricPulse]): """Load Waveform instance. This function is sub-routine of py:method:`load_program`. Args: program: `Waveform` to draw. """ chart = Chart(parent=self) # add waveform data fake_inst = pulse.Play(program, types.WaveformChannel()) inst_data = types.PulseInstruction(t0=0, dt=self.device.dt, frame=types.PhaseFreqTuple(phase=0, freq=0), inst=fake_inst, is_opaque=program.is_parameterized()) for gen in self.generator['waveform']: obj_generator = partial(gen, formatter=self.formatter, device=self.device) for data in obj_generator(inst_data): chart.add_data(data) self.charts.append(chart) def _schedule_loader(self, program: Union[pulse.Schedule, pulse.ScheduleBlock]): """Load Schedule instance. This function is sub-routine of py:method:`load_program`. Args: program: `Schedule` to draw. """ program = target_qobj_transform(program, remove_directives=False) # initialize scale values self.chan_scales = {} for chan in program.channels: if isinstance(chan, pulse.channels.DriveChannel): self.chan_scales[chan] = self.formatter['channel_scaling.drive'] elif isinstance(chan, pulse.channels.MeasureChannel): self.chan_scales[chan] = self.formatter['channel_scaling.measure'] elif isinstance(chan, pulse.channels.ControlChannel): self.chan_scales[chan] = self.formatter['channel_scaling.control'] elif isinstance(chan, pulse.channels.AcquireChannel): self.chan_scales[chan] = self.formatter['channel_scaling.acquire'] else: self.chan_scales[chan] = 1.0 # create charts mapper = self.layout['chart_channel_map'] for name, chans in mapper(channels=program.channels, formatter=self.formatter, device=self.device): chart = Chart(parent=self, name=name) # add standard pulse instructions for chan in chans: chart.load_program(program=program, chan=chan) # add barriers barrier_sched = program.filter(instruction_types=[pulse.instructions.RelativeBarrier], channels=chans) for t0, _ in barrier_sched.instructions: inst_data = types.BarrierInstruction(t0, self.device.dt, chans) for gen in self.generator['barrier']: obj_generator = partial(gen, formatter=self.formatter, device=self.device) for data in obj_generator(inst_data): chart.add_data(data) # add chart axis chart_axis = types.ChartAxis(name=chart.name, channels=chart.channels) for gen in self.generator['chart']: obj_generator = partial(gen, formatter=self.formatter, device=self.device) for data in obj_generator(chart_axis): chart.add_data(data) self.charts.append(chart) # add snapshot data to global snapshot_sched = program.filter(instruction_types=[pulse.instructions.Snapshot]) for t0, inst in snapshot_sched.instructions: inst_data = types.SnapshotInstruction(t0, self.device.dt, inst.label, inst.channels) for gen in self.generator['snapshot']: obj_generator = partial(gen, formatter=self.formatter, device=self.device) for data in obj_generator(inst_data): self.global_charts.add_data(data) # calculate axis break self.time_breaks = self._calculate_axis_break(program) def _calculate_axis_break(self, program: pulse.Schedule) -> List[Tuple[int, int]]: """A helper function to calculate axis break of long pulse sequence. Args: program: A schedule to calculate axis break. Returns: List of axis break periods. """ axis_breaks = [] edges = set() for t0, t1 in chain.from_iterable(program.timeslots.values()): if t1 - t0 > 0: edges.add(t0) edges.add(t1) edges = sorted(edges) for t0, t1 in zip(edges[:-1], edges[1:]): if t1 - t0 > self.formatter['axis_break.length']: t_l = t0 + 0.5 * self.formatter['axis_break.max_length'] t_r = t1 - 0.5 * self.formatter['axis_break.max_length'] axis_breaks.append((t_l, t_r)) return axis_breaks def set_time_range(self, t_start: Union[int, float], t_end: Union[int, float], seconds: bool = True): """Set time range to draw. All child chart instances are updated when time range is updated. Args: t_start: Left boundary of drawing in units of cycle time or real time. t_end: Right boundary of drawing in units of cycle time or real time. seconds: Set `True` if times are given in SI unit rather than dt. Raises: VisualizationError: When times are given in float without specifying dt. """ # convert into nearest cycle time if seconds: if self.device.dt is not None: t_start = int(np.round(t_start / self.device.dt)) t_end = int(np.round(t_end / self.device.dt)) else: raise VisualizationError('Setting time range with SI units requires ' 'backend `dt` information.') self.time_range = (t_start, t_end) def set_disable_channel(self, channel: pulse.channels.Channel, remove: bool = True): """Interface method to control visibility of pulse channels. Specified object in the blocked list will not be shown. Args: channel: A pulse channel object to disable. remove: Set `True` to disable, set `False` to enable. """ if remove: self.disable_chans.add(channel) else: self.disable_chans.discard(channel) def set_disable_type(self, data_type: types.DataTypes, remove: bool = True): """Interface method to control visibility of data types. Specified object in the blocked list will not be shown. Args: data_type: A drawing data type to disable. remove: Set `True` to disable, set `False` to enable. """ if isinstance(data_type, Enum): data_type_str = str(data_type.value) else: data_type_str = data_type if remove: self.disable_types.add(data_type_str) else: self.disable_types.discard(data_type_str) def update(self): """Update all associated charts and generate actual drawing data from template object. This method should be called before the canvas is passed to the plotter. """ for chart in self.charts: chart.update() class Chart: """A collection of drawing to be shown on the same line. Multiple pulse channels can be assigned to a single `Chart`. The parent `DrawerCanvas` should be specified to refer to the current user preference. The vertical value of each `Chart` should be in the range [-1, 1]. This truncation should be performed in the plotter interface. """ # unique index of chart chart_index = 0 # list of waveform type names waveform_types = [str(types.WaveformType.REAL.value), str(types.WaveformType.IMAG.value), str(types.WaveformType.OPAQUE.value)] def __init__(self, parent: DrawerCanvas, name: Optional[str] = None): """Create new chart. Args: parent: `DrawerCanvas` that this `Chart` instance belongs to. name: Name of this `Chart` instance. """ self.parent = parent # data stored in this channel self._collections = dict() self._output_dataset = dict() # channel metadata self.index = self._cls_index() self.name = name or '' self._channels = set() # vertical axis information self.vmax = 0 self.vmin = 0 self.scale = 1.0 self._increment_cls_index() def add_data(self, data: drawings.ElementaryData): """Add drawing to collections. If the given object already exists in the collections, this interface replaces the old object instead of adding new entry. Args: data: New drawing to add. """ self._collections[data.data_key] = data def load_program(self, program: pulse.Schedule, chan: pulse.channels.Channel): """Load pulse schedule. This method internally generates `ChannelEvents` to parse the program for the specified pulse channel. This method is called once Args: program: Pulse schedule to load. chan: A pulse channels associated with this instance. """ chan_events = events.ChannelEvents.load_program(program, chan) chan_events.set_config(dt=self.parent.device.dt, init_frequency=self.parent.device.get_channel_frequency(chan), init_phase=0) # create objects associated with waveform for gen in self.parent.generator['waveform']: waveforms = chan_events.get_waveforms() obj_generator = partial(gen, formatter=self.parent.formatter, device=self.parent.device) drawing_items = [obj_generator(waveform) for waveform in waveforms] for drawing_item in list(chain.from_iterable(drawing_items)): self.add_data(drawing_item) # create objects associated with frame change for gen in self.parent.generator['frame']: frames = chan_events.get_frame_changes() obj_generator = partial(gen, formatter=self.parent.formatter, device=self.parent.device) drawing_items = [obj_generator(frame) for frame in frames] for drawing_item in list(chain.from_iterable(drawing_items)): self.add_data(drawing_item) self._channels.add(chan) def update(self): """Update vertical data range and scaling factor of this chart. Those parameters are updated based on current time range in the parent canvas. """ self._output_dataset.clear() self.vmax = 0 self.vmin = 0 # waveform for key, data in self._collections.items(): if data.data_type not in Chart.waveform_types: continue # truncate, assume no abstract coordinate in waveform sample trunc_x, trunc_y = self._truncate_data(data) # no available data points if trunc_x.size == 0 or trunc_y.size == 0: continue # update y range scale = min(self.parent.chan_scales.get(chan, 1.0) for chan in data.channels) self.vmax = max(scale * np.max(trunc_y), self.vmax) self.vmin = min(scale * np.min(trunc_y), self.vmin) # generate new data new_data = deepcopy(data) new_data.xvals = trunc_x new_data.yvals = trunc_y self._output_dataset[key] = new_data # calculate chart level scaling factor if self.parent.formatter['control.auto_chart_scaling']: max_val = max(abs(self.vmax), abs(self.vmin), self.parent.formatter['general.vertical_resolution']) self.scale = min(1.0 / max_val, self.parent.formatter['general.max_scale']) else: self.scale = 1.0 # update vertical range with scaling and limitation self.vmax = max(self.scale * self.vmax, self.parent.formatter['channel_scaling.pos_spacing']) self.vmin = min(self.scale * self.vmin, self.parent.formatter['channel_scaling.neg_spacing']) # other data for key, data in self._collections.items(): if data.data_type in Chart.waveform_types: continue # truncate trunc_x, trunc_y = self._truncate_data(data) # no available data points if trunc_x.size == 0 or trunc_y.size == 0: continue # generate new data new_data = deepcopy(data) new_data.xvals = trunc_x new_data.yvals = trunc_y self._output_dataset[key] = new_data @property def is_active(self) -> bool: """Check if there is any active waveform data in this entry. Returns: Return `True` if there is any visible waveform in this chart. """ for data in self._output_dataset.values(): if data.data_type in Chart.waveform_types and self._check_visible(data): return True return False @property def collections(self) -> Iterator[Tuple[str, drawings.ElementaryData]]: """Return currently active entries from drawing data collection. The object is returned with unique name as a key of an object handler. When the horizontal coordinate contains `AbstractCoordinate`, the value is substituted by current time range preference. """ for name, data in self._output_dataset.items(): # prepare unique name unique_id = 'chart{ind:d}_{key}'.format(ind=self.index, key=name) if self._check_visible(data): yield unique_id, data @property def channels(self) -> List[pulse.channels.Channel]: """Return a list of channels associated with this chart. Returns: List of channels associated with this chart. """ return list(self._channels) def _truncate_data(self, data: drawings.ElementaryData) -> Tuple[np.ndarray, np.ndarray]: """A helper function to truncate drawings according to time breaks. # TODO: move this function to common module to support axis break for timeline. Args: data: Drawing object to truncate. Returns: Set of truncated numpy arrays for x and y coordinate. """ xvals = self._bind_coordinate(data.xvals) yvals = self._bind_coordinate(data.yvals) if isinstance(data, drawings.BoxData): # truncate box data. these object don't require interpolation at axis break. return self._truncate_boxes(xvals, yvals) elif data.data_type in [types.LabelType.PULSE_NAME, types.LabelType.OPAQUE_BOXTEXT]: # truncate pulse labels. these objects are not removed by truncation. return self._truncate_pulse_labels(xvals, yvals) else: # other objects return self._truncate_vectors(xvals, yvals) def _truncate_pulse_labels(self, xvals: np.ndarray, yvals: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """A helper function to remove text according to time breaks. Args: xvals: Time points. yvals: Data points. Returns: Set of truncated numpy arrays for x and y coordinate. """ xpos = xvals[0] t0, t1 = self.parent.time_range if xpos < t0 or xpos > t1: return np.array([]), np.array([]) offset_accumulation = 0 for tl, tr in self.parent.time_breaks: if xpos < tl: return np.array([xpos - offset_accumulation]), yvals if tl < xpos < tr: return np.array([tl - offset_accumulation]), yvals else: offset_accumulation += tr - tl return np.array([xpos - offset_accumulation]), yvals def _truncate_boxes(self, xvals: np.ndarray, yvals: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """A helper function to clip box object according to time breaks. Args: xvals: Time points. yvals: Data points. Returns: Set of truncated numpy arrays for x and y coordinate. """ x0, x1 = xvals t0, t1 = self.parent.time_range if x1 < t0 or x0 > t1: # out of drawing range return np.array([]), np.array([]) # clip outside x0 = max(t0, x0) x1 = min(t1, x1) offset_accumulate = 0 for tl, tr in self.parent.time_breaks: tl -= offset_accumulate tr -= offset_accumulate # # truncate, there are 5 patterns wrt the relative position of truncation and xvals # if x1 < tl: break if tl < x0 and tr > x1: # case 1: all data points are truncated # : +-----+ : # : |/////| : # -----:---+-----+---:----- # l 0 1 r return np.array([]), np.array([]) elif tl < x1 < tr: # case 2: t < tl, right side is truncated # +---:-----+ : # | ://///| : # -----+---:-----+---:----- # 0 l 1 r x1 = tl elif tl < x0 < tr: # case 3: tr > t, left side is truncated # : +-----:---+ # : |/////: | # -----:---+-----:---+----- # l 0 r 1 x0 = tl x1 = tl + t1 - tr elif tl > x0 and tr < x1: # case 4: tr > t > tl, middle part is truncated # +---:-----:---+ # | ://///: | # -----+---:-----:---+----- # 0 l r 1 x1 -= tr - tl elif tr < x0: # case 5: tr > t > tl, nothing truncated but need time shift # : : +---+ # : : | | # -----:---:-----+---+----- # l r 0 1 x0 -= tr - tl x1 -= tr - tl offset_accumulate += tr - tl return np.asarray([x0, x1], dtype=float), yvals def _truncate_vectors(self, xvals: np.ndarray, yvals: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """A helper function to remove sequential data points according to time breaks. Args: xvals: Time points. yvals: Data points. Returns: Set of truncated numpy arrays for x and y coordinate. """ xvals = np.asarray(xvals, dtype=float) yvals = np.asarray(yvals, dtype=float) t0, t1 = self.parent.time_range if max(xvals) < t0 or min(xvals) > t1: # out of drawing range return np.array([]), np.array([]) if min(xvals) < t0: # truncate x less than left limit inds = xvals > t0 yvals = np.append(np.interp(t0, xvals, yvals), yvals[inds]) xvals = np.append(t0, xvals[inds]) if max(xvals) > t1: # truncate x larger than right limit inds = xvals < t1 yvals = np.append(yvals[inds],
np.interp(t1, xvals, yvals)
numpy.interp
import os import sys import re import argparse import json import tensorflow as tf import numpy as np import csv from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score import sklearn.metrics import torch import logging from mlio.pipeline import Pipeline, Dataset from pytorch_lightning.callbacks import Callback import torchvision def get_model_args(sample, model_args): if callable(model_args): model_input = model_args(sample) if isinstance(model_args, str): model_input = sample[model_args] if isinstance(model_args, (list, set)): model_input = [get_model_args(sample, x) for x in model_args] return model_input class FilterClusterManager(Callback): def __init__( self, path, cache_writer, filter_dataloader, min_elements=5, silhouette_score=0.1, element_cache=200, min_k=2, max_k=20, version=0, device="cpu", index="id", step=None, epoch=None, first_epoch=True, model_input="image", model_output="feature", concept_list="concept_ids", resnet_imagenet=True, ): self.feature_cache = {} if not os.path.exists(path): os.makedirs(path) self.path = os.path.join(path, f"{version}.json") self.meta_path = os.path.join(path, f"{version}_meta.json") self.element_cache = element_cache self.min_elements = min_elements self.silhouette_score = silhouette_score self.filter_dataloader = filter_dataloader self.device = device self.index = index self.concept_list = concept_list self.cache_writer = cache_writer self._iter = 0 self.min_k = min_k self.max_k = max_k self.step = step self.epoch = epoch self.first_epoch = first_epoch self.model_input = model_input self.model_output = model_output self.resnet_imagenet = resnet_imagenet if resnet_imagenet: logging.info('Filter use only a pretrained model') resnet_model = torchvision.models.resnet.resnet50(pretrained=True) self.imagenet_features = torch.nn.Sequential(*list(resnet_model.children())[:-1]).to(torch.device("cuda:0")) self._epoch_counter = 0 if first_epoch else epoch # We will start before the first sample arrives self._step_counter = step # We will start before the first sample arrives if step is None and epoch is None: self.epoch = 1 if step is not None and epoch is not None: print("I should learn assert") exit() def on_epoch_start(self, trainer, pl_module): if self.first_epoch and self._epoch_counter == 0: self._epoch_counter -= 1 return self.clustering(trainer, pl_module) if self.epoch is None: return self._epoch_counter -= 1 if self._epoch_counter > 0: return self._epoch_counter = self.epoch result = self.clustering(trainer, pl_module) return result def on_batch_start(self, trainer, pl_module): if self.step is None: return self._step_counter -= 1 if self._step_counter > 0: return self._step_counter = self.step result = self.clustering(trainer, pl_module) return result def clustering(self, trainer, pl_module): rank = 0 if torch.distributed.is_initialized(): rank = torch.distributed.get_rank() if rank == 0: logging.info(f"Cluster: start filtering") self._iter += 1 result = { "filter/reject_count": 0, "filter/accept_count": 0, "filter/iter": self._iter, "filter/k_hist":
np.zeros(shape=self.max_k)
numpy.zeros
import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import os # customized from scipy.optimize import minimize class SolarlikeFourierAnalysis: """docstring for SolarlikeFourierAnalysis""" def __init__(self, starname, outputdir, fnyq, numax): sep = "\\" if os.name=="nt" else "/" self.starname = starname self.outputdir = outputdir # "with a / in the end" assert outputdir.endswith(sep), "outputdir should end with "+sep self.fnyq = fnyq # in microHz (muHz) self.numax = numax # in microHz (muHz) self.dnu = (self.numax/3050)**0.77 * 135.1 # Stello+2009 return # def pass_light_curves def pass_power_spectrum(self, freq, power, trimUpperLimitInDnu=None, trimLowerLimitInDnu=None, ifGlobalMode=True): idx = np.array(np.zeros(len(freq))+1, dtype=bool) freq = np.array(freq) power = np.array(power) if not trimUpperLimitInDnu is None: idx = (idx) & (freq<=self.numax+trimUpperLimitInDnu*self.dnu) if not trimLowerLimitInDnu is None: idx = (idx) & (freq>=self.numax-trimLowerLimitInDnu*self.dnu) if ifGlobalMode: self.freq = freq[idx] self.power = power[idx] return else: return freq[idx], power[idx] def __smooth_power(self, period=None): if period is None: period = self._dnu0/15.0 # microHz self.powers = self._smooth_wrapper(self.freq, self.power, period, "bartlett") return def _smooth_wrapper(self, x, y, period, windowtype, samplinginterval=None): if samplinginterval is None: samplinginterval = np.median(x[1:-1] - x[0:-2]) if not windowtype in ["flat", "hanning", "hamming", "bartlett", "blackman"]: raise ValueError("Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") xp = np.arange(np.min(x), np.max(x), samplinginterval) yp = np.interp(xp, x, y) window_len = int(period/samplinginterval) if window_len % 2 == 0: window_len = window_len + 1 if windowtype == "flat": w = np.ones(window_len,"d") else: w = eval("np."+windowtype+"(window_len)") ys = np.convolve(w/w.sum(),yp,mode="same") yf = np.interp(x, xp, ys) return yf def __background_model(self, bgpara, bgtype="withgaussian", granNumber=1): flatNoiseLevel = bgpara[0] height = bgpara[1] numax = bgpara[2] sigma = bgpara[3] ampHarvey, freqHarvey, powerHarvery = [], [], [] for igran in range(granNumber): ampHarvey.append(bgpara[4+igran*2]) freqHarvey.append(bgpara[4+igran*2+1]) powerHarvery.append(bgpara[4+igran*2+2]) zeta = 2.0*2.0**0.5/np.pi power_gran = np.zeros(len(self.freq)) for igran in range(granNumber): power_gran += zeta*ampHarvey[igran]**2.0/(freqHarvey[igran]*(1+(self.freq/freqHarvey[igran])**powerHarvery[igran])) power_gaussian = height * np.exp(-1.0*(numax-self.freq)**2/(2.0*sigma**2.0)) if bgtype == "withgaussian": power = power_gran + power_gaussian elif bgtype == "withoutgaussian": power = power_gran power *= self.__response_function() power += flatNoiseLevel return power def __response_function(self): sincfunctionarg = (np.pi/2.0)*self.freq/self.fnyq responsefunction = (np.sin(sincfunctionarg)/sincfunctionarg)**2.0 return responsefunction def __guess_background_parameters(self, granNumber=1): zeta = 2*2**0.5/np.pi flatNoiseLevel = np.median(self.powers[int(len(self.freq)*0.9):]) height = se.closest_point(self.freq, self.powers, self.numax) sigma = 3.0 * self.dnu freqHarvey_solar = [2440.5672465, 735.4653975, 24.298031575000003] numax_solar = 3050 ampHarvey, freqHarvey= [], [] for igran in range(granNumber): freqHarvey.append(self.numax/numax_solar*freqHarvey_solar[igran]) ampHarvey.append((se.closest_point(self.freq, self.powers, freqHarvey[igran])*2/zeta*freqHarvey[igran])**0.5) init = [flatNoiseLevel, height, self.numax, sigma] bounds = [[flatNoiseLevel*0.9, flatNoiseLevel*1.1], [height*0.2, height*5.0], [self.numax*0.8, self.numax*1.2], [sigma*0.5, sigma*4.0]] names = ["W", "H", "numax", "sigma"] for igran in range(granNumber): init.append(ampHarvey[igran]) init.append(freqHarvey[igran]) init.append(4.0) bounds.append([ampHarvey[igran]*0.3, ampHarvey[igran]*3.0]) bounds.append([freqHarvey[igran]*0.2, freqHarvey[igran]*5.0]) bounds.append([2.0, 8.0]) names.append("a"+str(igran)) names.append("b"+str(igran)) names.append("c"+str(igran)) return init, bounds, names def fit_background(self, granNumber=1, ifdisplay=True): assert granNumber in [1,2,3], "granNumber should be one 1, 2 or 3." assert ("freq" in self.__dict__) & ("power" in self.__dict__), "Power spectrum must be passed in before any fitting." def residuals_bg(bgpara): model = self.__background_model(bgpara, bgtype="withgaussian", granNumber=granNumber) return np.sum(np.log(model) + self.power/model) self.__smooth_power() init, bounds, names = self.__guess_background_parameters(granNumber=granNumber) res = minimize(residuals_bg, init, bounds=bounds) bgpara = res.x # save backbround parameters print("Background parameters "+", ".join(names)) print(bgpara) np.savetxt(self.outputdir+"bgpara.txt", bgpara, header=", ".join(names)) power_bg = self.__background_model(bgpara, bgtype="withoutgaussian", granNumber=granNumber) power_bg_wg = self.__background_model(bgpara, bgtype="withgaussian", granNumber=granNumber) # divide the background and save power spectrum self.snr = self.power/power_bg SNRData =
np.array([self.freq, self.snr])
numpy.array
# -*- coding: utf-8 -*- """ This code allows us to run classical clustering approaches namely Kmeans, Spherical Kmeans and Auto-encoder """ import numpy as np import pandas as pd from sklearn.utils import check_random_state from coclust import clustering from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture from coclust.evaluation.external import accuracy from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.metrics.cluster import adjusted_rand_score from sklearn import metrics import time import random from keras.models import Model from keras.layers import Dense, Input def random_init(n_clusters, n_cols, random_state=None): """Create a random column cluster assignment matrix. Each row contains 1 in the column corresponding to the cluster where the processed data matrix column belongs, 0 elsewhere. Parameters ---------- n_clusters: int Number of clusters n_cols: int Number of columns of the data matrix (i.e. number of rows of the matrix returned by this function) random_state : int or :class:`numpy.RandomState`, optional The generator used to initialize the cluster labels. Defaults to the global numpy random number generator. Returns ------- matrix Matrix of shape (``n_cols``, ``n_clusters``) """ if random_state == None: W_a = np.random.randint(n_clusters, size=n_cols) else: random_state = check_random_state(random_state) W_a = random_state.randint(n_clusters, size=n_cols) W = np.zeros((n_cols, n_clusters)) W[np.arange(n_cols), W_a] = 1 return W def purity_score(y_true, y_pred): # compute contingency matrix (also called confusion matrix) contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred) # return purity return np.sum(np.amax(contingency_matrix, axis=0)) / np.sum(contingency_matrix) global_path = './data/' path_to_save = './results/resultViewClustering/' nom_BDD = ['DBLP1','DBLP2','PubMed_Diabets' ,'classic3', 'classic4', 'ag_news'] nCLusters = [3,3,3,3, 4, 4] nbrIteration = 30 nbSlices = 8 nbAlgorithms = 3 df_results = pd.DataFrame(columns=["Dataset", "Time", "ACC", "NMI", "ARI", "Purity",'Algorithm','View'], index=np.arange(nbrIteration * ((len(nom_BDD) * nbSlices*nbAlgorithms ))).tolist()) cpt = 0 for nb in range(len(nom_BDD)): print('###############################################') print('nom_BDD ', nom_BDD[nb]) bdd_name = nom_BDD[nb] inf_doc = pd.read_csv(global_path+bdd_name+'/' + bdd_name+'.csv', delimiter=',') abstracts = np.asarray(inf_doc['text']).astype(str).tolist() # print(inf_doc) labels_all = np.asarray(inf_doc['label']).astype(int) n_new = inf_doc.shape[0] d_new = inf_doc.shape[1] labels = labels_all[0:n_new] labels = labels.tolist() ################################################################## # hyperparameters # ################################################################## K = nCLusters[nb] print('K ', K) del inf_doc ################################################################## # Load DBLP1 dataset # ################################################################## simBow = np.load(global_path +bdd_name+'/' + 'view_bow' + '.npz') simBow = simBow['arr_0'] print('simBow ', simBow.shape) simBert = np.load(global_path +bdd_name+'/' + 'view_bert-base-cased' + '.npz') simBert = simBert['arr_0'] simBertLPCA =
np.load(global_path +bdd_name+'/' + 'view_avgpca__bert-large-cased' + '.npz')
numpy.load
import itertools import math import numpy as np import tinychain as tc import unittest from testutils import DEFAULT_PORT, start_host, PersistenceTest ENDPOINT = "/transact/hypothetical" class DenseTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.host = start_host("test_dense_tensor") def testConstant(self): c = 1.414 shape = [3, 2, 1] cxt = tc.Context() cxt.tensor = tc.tensor.Dense.constant(shape, c) cxt.result = tc.After(cxt.tensor[0, 0, 0].write(0), cxt.tensor) expected = expect_dense(tc.F64, shape, [0] + [c] * (np.product(shape) - 1)) actual = self.host.post(ENDPOINT, cxt) self.assertEqual(expected, actual) def testSlice(self): shape = [2, 5] cxt = tc.Context() cxt.tensor = tc.tensor.Dense.arange(shape, 1, 11) cxt.result = cxt.tensor[1, 2:-1] actual = self.host.post(ENDPOINT, cxt) expected = expect_dense(tc.I64, [2], np.arange(1, 11).reshape([2, 5])[1, 2:-1]) self.assertEqual(actual, expected) def testAssignSlice(self): cxt = tc.Context() cxt.big = tc.tensor.Dense.zeros([2, 2, 5]) cxt.small = tc.tensor.Dense.arange([2, 5], 1, 11) cxt.result = tc.After(cxt.big[1, :2].write(cxt.small[0]), cxt.big) actual = self.host.post(ENDPOINT, cxt) expected = np.zeros([2, 2, 5], np.int64) expected[1, 0:2] = np.arange(1, 11).reshape(2, 5)[0] expected = expect_dense(tc.I64, [2, 2, 5], expected.flatten()) self.assertEqual(actual, expected) def testAdd(self): cxt = tc.Context() cxt.left = tc.tensor.Dense.arange([5, 2, 2], 1., 21.) cxt.right = tc.tensor.Dense.constant([2, 5, 1, 2], 2) cxt.result = cxt.left + cxt.right actual = self.host.post(ENDPOINT, cxt) left = np.arange(1., 21., 1.).reshape([5, 2, 2]) right = np.ones([2, 5, 1, 2], np.int32) * 2 expected = expect_dense(tc.F64, [2, 5, 2, 2], (left + right).flatten()) self.assertEqual(actual, expected) def testDiv(self): shape = [3] cxt = tc.Context() cxt.left = tc.tensor.Dense.arange(shape, 2., 8.) cxt.right = tc.tensor.Dense.constant([1], 2) cxt.result = cxt.left / cxt.right actual = self.host.post(ENDPOINT, cxt) expected = expect_dense(tc.F64, shape, np.arange(1, 4)) self.assertEqual(actual, expected) def testMul(self): shape = [5, 2, 1] cxt = tc.Context() cxt.left = tc.tensor.Dense.arange(shape, 1, 11) cxt.right = tc.tensor.Dense.constant([5], 2) cxt.result = cxt.left * cxt.right actual = self.host.post(ENDPOINT, cxt) left = np.arange(1, 11).reshape(shape) right = np.ones([5]) * 2 expected = left * right expected = expect_dense(tc.I64, list(expected.shape), expected.flatten()) self.assertEqual(actual, expected) def testMulWithBroadcast(self): tau = np.array([[4.188]]) v = np.array([[1], [0.618]]) cxt = tc.Context() cxt.tau = load_dense(tau) cxt.v = load_dense(v) cxt.result = cxt.tau * tc.tensor.einsum("ij,kj->ik", [cxt.v, cxt.v]) actual = self.host.post(ENDPOINT, cxt) expected = tau * (v @ v.T) self.assertEqual(expected.shape, tuple(actual[tc.uri(tc.tensor.Dense)][0][0])) self.assertTrue(np.allclose(expected.flatten(), actual[tc.uri(tc.tensor.Dense)][1])) def testSub(self): shape = [1, 3] cxt = tc.Context() cxt.left = tc.tensor.Dense.arange(shape, 0, 6) cxt.right = tc.tensor.Dense.constant([1], 2) cxt.result = cxt.left - cxt.right actual = self.host.post(ENDPOINT, cxt) expected = expect_dense(tc.I64, shape, np.arange(-2, 4, 2)) self.assertEqual(actual, expected) def testLogarithm(self): size = 1_000_000 shape = [10, size / 10] cxt = tc.Context() cxt.x = tc.tensor.Dense.arange(shape, 2, size + 2) cxt.ln = cxt.x.log() cxt.log = cxt.x.log(math.e) cxt.test = (cxt.ln == cxt.log).all() self.assertTrue(self.host.post(ENDPOINT, cxt)) def testLogic(self): big = [20, 20, 10] trailing = [10] cxt = tc.Context() cxt.big_ones = tc.tensor.Dense.ones(big, tc.U8) cxt.big_zeros = tc.tensor.Dense.zeros(big, tc.U8) cxt.true = tc.tensor.Dense.ones(trailing) cxt.false = tc.tensor.Dense.zeros(trailing) cxt.result = [ cxt.big_ones.logical_and(cxt.false).any(), cxt.big_ones.logical_and(cxt.true).all(), cxt.big_zeros.logical_or(cxt.true).all(), cxt.big_zeros.logical_or(cxt.false).any(), cxt.big_ones.logical_xor(cxt.big_zeros).all(), ] actual = self.host.post(ENDPOINT, cxt) self.assertEqual(actual, [False, True, True, False, True]) def testProduct(self): shape = [2, 3, 4] axis = 1 cxt = tc.Context() cxt.big = tc.tensor.Dense.arange(shape, 0, 24) cxt.result = cxt.big.product(axis) actual = self.host.post(ENDPOINT, cxt) expected = np.product(np.arange(0, 24).reshape(shape), axis) self.assertEqual(actual, expect_dense(tc.I64, [2, 4], expected.flatten())) def testProductAll(self): shape = [2, 3] cxt = tc.Context() cxt.big = tc.tensor.Dense.arange(shape, 1, 7) cxt.result = cxt.big.product() actual = self.host.post(ENDPOINT, cxt) self.assertEqual(actual, np.product(range(1, 7))) def testSum(self): shape = [4, 2, 3, 5] axis = 2 cxt = tc.Context() cxt.big = tc.tensor.Dense.arange(shape, 0., 120.) cxt.result = cxt.big.sum(axis) actual = self.host.post(ENDPOINT, cxt) expected = np.sum(np.arange(0, 120).reshape(shape), axis) self.assertEqual(actual, expect_dense(tc.F64, [4, 2, 5], expected.flatten())) def testSumAll(self): shape = [5, 2] cxt = tc.Context() cxt.big = tc.tensor.Dense.arange(shape, 0, 10) cxt.result = cxt.big.sum() actual = self.host.post(ENDPOINT, cxt) self.assertEqual(actual, sum(range(10))) def testSliceAndTransposeAndSliceAndSlice(self): self.maxDiff = None shape = [2, 3, 4, 5] cxt = tc.Context() cxt.big = tc.tensor.Dense.arange(shape, 0, 120) cxt.medium = cxt.big[0] cxt.small = cxt.medium.transpose()[1, 1:3] cxt.tiny = cxt.small[0, :-1] expected = np.arange(0, 120).reshape(shape) expected = expected[0] expected = np.transpose(expected)[1, 1:3] expected = expected[0, :-1] actual = self.host.post(ENDPOINT, cxt) self.assertEqual(actual, expect_dense(tc.I64, expected.shape, expected.flatten())) def testFlip(self): shape = [5, 4, 3] cxt = tc.Context() cxt.x = tc.tensor.Dense.arange(shape, 0, 60) cxt.result = cxt.x.flip(0) expected = np.arange(0, 60).reshape(shape) expected = np.flip(expected, 0) actual = self.host.post(ENDPOINT, cxt) self.assertEqual(actual, expect_dense(tc.I64, expected.shape, expected.flatten())) def testReshape(self): source = [2, 3, 4, 1] dest = [3, 8] cxt = tc.Context() cxt.x = tc.tensor.Dense.arange(source, 0, 24) cxt.result = cxt.x.reshape(dest) actual = self.host.post(ENDPOINT, cxt) self.assertEqual(actual, expect_dense(tc.I64, dest, np.arange(24).tolist())) def testTile(self): shape = [2, 3] multiples = 2 x = np.arange(0, np.product(shape)).reshape(shape) cxt = tc.Context() cxt.x = load_dense(x, tc.I32) cxt.result = tc.tensor.tile(cxt.x, 2) actual = self.host.post(ENDPOINT, cxt) expected = np.tile(x, multiples) self.assertEqual(actual, expect_dense(tc.I32, list(expected.shape), expected.flatten().tolist())) def testArgmax(self): shape = [2, 3, 4] x = np.arange(0, np.product(shape)).reshape(shape) cxt = tc.Context() cxt.x = load_dense(x) cxt.am = cxt.x.argmax() cxt.am0 = cxt.x.argmax(0) cxt.am1 = cxt.x.argmax(1) cxt.result = cxt.am, cxt.am0, cxt.am1 actual_am, actual_am0, actual_am1 = self.host.post(ENDPOINT, cxt) self.assertEqual(actual_am, np.argmax(x)) self.assertEqual(actual_am0, expect_dense(tc.U64, [3, 4], np.argmax(x, 0).flatten().tolist())) self.assertEqual(actual_am1, expect_dense(tc.U64, [2, 4], np.argmax(x, 1).flatten().tolist())) @classmethod def tearDownClass(cls): cls.host.stop() class SparseTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.host = start_host("test_sparse_tensor") def testCreate(self): shape = [2, 5] coord = [0, 0] value = 1 cxt = tc.Context() cxt.tensor = tc.tensor.Sparse.zeros(shape, tc.I32) cxt.result = tc.After(cxt.tensor[coord].write(value), cxt.tensor) actual = self.host.post(ENDPOINT, cxt) expected = expect_sparse(tc.I32, shape, [[coord, value]]) self.assertEqual(actual, expected) def testWriteAndSlice(self): shape = [2, 5] cxt = tc.Context() cxt.tensor = tc.tensor.Sparse.zeros(shape) cxt.result = tc.After(cxt.tensor[:, 2:-1].write(1), cxt.tensor) actual = self.host.post(ENDPOINT, cxt) expected = expect_sparse(tc.F32, shape, [[[0, 2], 1], [[0, 3], 1], [[1, 2], 1], [[1, 3], 1]]) self.assertEqual(actual, expected) def testAdd(self): shape = [5, 2, 3] cxt = tc.Context() cxt.big = tc.tensor.Sparse.zeros(shape) cxt.small = tc.tensor.Sparse.zeros([3]) cxt.result = tc.After([ cxt.big[1].write(1), cxt.small[1].write(2), ], cxt.big + cxt.small) actual = self.host.post(ENDPOINT, cxt) big = np.zeros(shape) big[1] = 1 small = np.zeros([3]) small[1] = 2 expected = big + small expected = expect_sparse(tc.F32, shape, expected) self.assertEqual(actual, expected) def testDiv(self): shape = [3, 2, 4] cxt = tc.Context() cxt.big = tc.tensor.Sparse.zeros(shape) cxt.small = tc.tensor.Sparse.zeros([1, 1]) cxt.result = tc.After([ cxt.big[:2].write(1), cxt.small[0].write(-2), ], cxt.big / cxt.small) actual = self.host.post(ENDPOINT, cxt) big = np.zeros(shape) big[:2] = 1. small = np.zeros([1, 1]) small[0] = -2. expected = big / small expected = expect_sparse(tc.F32, shape, expected) self.assertEqual(actual, expected) def testMul(self): shape = [3, 5, 2] cxt = tc.Context() cxt.big = tc.tensor.Sparse.zeros(shape) cxt.small = tc.tensor.Sparse.zeros([5, 2]) cxt.result = tc.After([ cxt.big[:, 1:-2].write(2), cxt.small[1].write(3), ], cxt.big * cxt.small) actual = self.host.post(ENDPOINT, cxt) big = np.zeros(shape) big[:, 1:-2] = 2 small = np.zeros([5, 2]) small[1] = 3 expected = big * small expected = expect_sparse(tc.F32, shape, expected) self.assertEqual(actual, expected) def testSub(self): shape = [3, 5, 2] cxt = tc.Context() cxt.big = tc.tensor.Sparse.zeros(shape, tc.I16) cxt.small = tc.tensor.Sparse.zeros([5, 2], tc.U32) cxt.result = tc.After([ cxt.big[:, 1:-2].write(2), cxt.small[1].write(3), ], cxt.small - cxt.big) actual = self.host.post(ENDPOINT, cxt) big = np.zeros(shape) big[:, 1:-2] = 2 small = np.zeros([5, 2]) small[1] = 3 expected = small - big expected = expect_sparse(tc.I32, shape, expected) self.assertEqual(actual, expected) def testSum(self): shape = [2, 4, 3, 5] axis = 1 cxt = tc.Context() cxt.big = tc.tensor.Sparse.zeros(shape, tc.I32) cxt.result = tc.After(cxt.big[0, 1:3].write(2), cxt.big.sum(axis)) actual = self.host.post(ENDPOINT, cxt) expected = np.zeros(shape, dtype=np.int32) expected[0, 1:3] = 2 expected = expected.sum(axis) expected = expect_sparse(tc.I32, [2, 3, 5], expected) self.assertEqual(actual, expected) def testProduct(self): shape = [2, 4, 3, 5] axis = 2 cxt = tc.Context() cxt.big = tc.tensor.Sparse.zeros(shape, tc.I32) cxt.result = tc.After(cxt.big[0, 1:3].write(2), cxt.big.product(axis)) actual = self.host.post(ENDPOINT, cxt) expected = np.zeros(shape, dtype=np.int32) expected[0, 1:3] = 2 expected = expected.prod(axis) expected = expect_sparse(tc.I32, [2, 4, 5], expected) self.assertEqual(actual, expected) def testSliceAndBroadcast(self): self.maxDiff = None data = [ [[0, 0, 3, 0], 1.], [[0, 2, 0, 0], 2.], [[1, 0, 0, 0], 3.], ] shape = [2, 5, 2, 3, 4, 10] cxt = tc.Context() cxt.small = tc.tensor.Sparse.load([2, 3, 4, 1], tc.F32, data) cxt.big = cxt.small * tc.tensor.Dense.ones(shape) cxt.slice = cxt.big[:-1, 1:4, 1] actual = self.host.post(ENDPOINT, cxt) expected = np.zeros([2, 3, 4, 1]) for coord, value in data: expected[tuple(coord)] = value expected = expected * np.ones(shape) expected = expected[:-1, 1:4, 1] expected = expect_sparse(tc.F64, expected.shape, expected) self.assertEqual(actual, expected) def testArgmax(self): shape = [2, 3] x = (np.random.random(np.product(shape)) * 2) - 1 x = (x * (np.abs(x) > 0.5)).reshape(shape) cxt = tc.Context() cxt.x = tc.tensor.Sparse.load( shape, tc.F32, [(list(coord), x[coord]) for coord in
np.ndindex(x.shape)
numpy.ndindex
#!/usr/bin/env python3 import numpy as np from urllib.request import urlopen from Bio.PDB.PDBParser import PDBParser import argparse import os import sys import shutil import glob import re import warnings import time startTime = time.time() #silence warnings from numpy when doing gap_checks (and all others but it's all dealt with internally [hopefully]) old_settings = np.seterr(all='ignore') warnings.simplefilter(action = "ignore", category = FutureWarning) # Oregon State 2014 # <NAME> # In collaboration with: # <NAME> # <NAME> # <NAME> # Dr. <NAME> #checks if there is a valid file at a specified location def is_valid_file(parser, arg): if not os.path.exists(arg): parser.error("The file %s does not exist!" % arg) else: return (open(arg, 'r')) # return an open file handle # importing arguments from the user parser=argparse.ArgumentParser( description='''Assigns secondary structure without using hydrogen bonds. One method uses virtual dihedrals and bond angles, the other using phi/psi2 motifs to identify secondary structure. ''', epilog="""IMPORTANT NOTES:\nExpect there to be strange ? residues at the end of the output if there are any ligands or other non-water HETATOMS present. This can be safely ignored.""" ) parser.add_argument('-i',dest="input",metavar="FILE",type=lambda x: is_valid_file(parser, x), help='This should be a pdb file. Do not use in combination with the "-c" option.') parser.add_argument('-c',dest="code",type=str, help='This should be a four letter pdb code. Only use this option if you want to download directly from the PDB.') parser.add_argument('-o',dest="output",metavar="FILE", help='Output file, a table using tabs as seperators. If not specified, default is to output to STDOUT as human readable output.') parser.add_argument('--legend',dest='legend', action='store_true', help='Option to print a legend for the Secondary Structure codes.') parser.add_argument('--verbose',dest='verbose', action='store_true', help='Option to print a all the output, including the behind the scenes methods for structure assignment.') parser.set_defaults(legend=False, verbose=False) args=parser.parse_args() if args.legend == True: print ("\nLEGEND:\n_:\tBreak in the chain (as detected by checking bond distance)\n-:\tUnassigned trans-residue\n=:\tUnassigned cis-residue\nP:\tPII-Helix\nt:\tTurn defined by CA to CA Distance (or implied as a consequence of other turns)\nN:\tA typically non-hydrogen bonded turn\nT:\tA typically hydrogen bonded turn T\nE:\tExtended or Beta-strand conformation\nH:\tAlpha Helical Conformation\nG:\t3,10 Helix\nBb:\tBeta-bulge\nU:\tPi-helical bulge\nX:\tThe Stig\n") # Dictionary and function that converts triple letter codes to single letter # Any non-conventional three letter code becomes "?" # Victor made the first version of this function def to_single(single,triple): return (single[triple]) one_letter = {'ALA':'A', 'ARG':'R', 'ASN':'N', 'ASP':'D', 'CYS':'C', 'GLN':'Q', 'GLU':'E', 'GLY':'G', 'HIS':'H', 'ILE':'I', \ 'LEU':'L', 'LYS':'K', 'MET':'M', 'PHE':'F', 'PRO':'P', 'SER':'S', 'THR':'T', 'TRP':'W', 'TYR':'Y', 'VAL':'V', 'BLA':'-'} #function for getting pdb files online def fetch_pdb(id): pdb = "%s.pdb" % str(id.lower()) url = 'http://www.rcsb.org/pdb/files/%s.pdb' % id.lower() tmp = urlopen(url) fh = open(pdb,'wb') fh.write(tmp.read()) fh.close() if args.code == None: try: pdb = args.input print ("\nWorking...\n") except: pass elif args.input == None: try: fetch_pdb(args.code) pdb = open('%s.pdb' %args.code.lower(), 'r') print ("\nWorking...\n") except: print ("\n\n\nPlease enter a valid code or path.\n\n\n") else: print ("\n\n\nPlease only choose option -i or option -c.\n\n\n") def atom_get(i,atom): if atom_list[i][1] == atom: return (atom_list[i][2]) else: return ('no') def chain_get(i,atom): if atom_list[i][1] == atom: return (atom_list[i][3]) else: return ('no') def model_get(i,atom): if atom_list[i][1] == atom: return (atom_list[i][4]) else: return ('no') # function to get indicies, matches the index from resnum list with the index for the atomic coords, which is why the resnum has to be in each def index_getter(resnum): indices = [] i = 0 for atom in atom_list: try: index = atom.index(resnum) if index == 0: indices.append(i) except: pass i += 1 return (indices) # checks for certain atom types and grabs just those coordinates #this is for correctly sorting atom types def atom_getter(index,atom): if atom_list[index][1] == atom: return (atom_xyz[index]) else: return ('no') #### GAP CHECK FUNCTION ###### def gap_check(resnum): indices = index_getter(resnum) prev_indices = [] next_indices = [] for i in indices: prev_indices.append(i-4) next_indices.append(i+4) atom_types = ['C','N'] for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) elif atom == 'N': iN = atom_getter(i,atom) for i in prev_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': prevC = atom_getter(i,atom) for i in next_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': nextN = atom_getter(i,atom) try: ahead = np.subtract(nextN, iC) behind = np.subtract(iN, prevC) ahead_mag = np.sqrt(ahead.dot(ahead)) behind_mag = np.sqrt(behind.dot(behind)) if ((ahead_mag > 1.5) and (behind_mag > 1.5)): return('isolated') elif(ahead_mag > 1.5): return('ahead') elif(behind_mag > 1.5): return('behind') else: return('no') except: return("Fatal Error in Gap Check") #### GAP CHECK FUNCTION for dison3, discn3, discaca3, and dison4 ###### def long_gap_check(resnum): indices = index_getter(resnum) next_indices = [] plus_two_indices = [] plus_three_indices =[] plus_four_indices =[] for i in indices: plus_two_indices.append(i+8) next_indices.append(i+4) plus_three_indices.append(i+12) plus_four_indices.append(i+16) atom_types = ['C','N'] for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) for i in plus_two_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': plus_twoC = atom_getter(i,atom) elif atom == 'N': plus_twoN = atom_getter(i,atom) for i in next_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': nextC = atom_getter(i,atom) elif atom == 'N': nextN = atom_getter(i,atom) for i in plus_three_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': plus_threeC = atom_getter(i,atom) elif atom == 'N': plus_threeN = atom_getter(i,atom) for i in plus_four_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': plus_fourN = atom_getter(i,atom) try: ahead = np.subtract(nextN, iC) two_ahead = np.subtract(plus_twoN, nextC) three_ahead = np.subtract(plus_threeN, plus_twoC) four_ahead = np.subtract(plus_fourN, plus_threeC) ahead_mag = np.sqrt(ahead.dot(ahead)) two_ahead_mag = np.sqrt(two_ahead.dot(ahead)) three_ahead_mag = np.sqrt(three_ahead.dot(ahead)) four_ahead_mag = np.sqrt(four_ahead.dot(ahead)) if ((ahead_mag > 1.5) or (two_ahead_mag > 1.5) or (three_ahead_mag > 1.5)): return('threegap') elif ((ahead_mag > 1.5) or (two_ahead_mag > 1.5) or (three_ahead_mag > 1.5) or (four_ahead_mag > 1.5)): return('fourgap') else: return('no') except: return("Fatal Error in Gap Check") # ZETA FUNCTION # returns a single value, zeta for the resnum entered # There are functions within functions here: I'm sorry. I was new to python def zeta_calc(resnum): # The order of atoms in atom_list is N, CA, C, O #this returns the index values of each of the atoms at this residue number indices = index_getter(resnum) prev_indices = [] for i in indices: prev_indices.append(i-4) if ((gap_check(resnum) == 'behind') or (gap_check(resnum) == 'isolated')): return('ERROR') atom_types = ['C','O'] # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) elif atom == 'O': iO = atom_getter(i,atom) for i in prev_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': prevC = atom_getter(i,atom) elif atom == 'O': prevO = atom_getter(i,atom) v1 = np.subtract(iC, iO) v2 = np.subtract(prevC, iC) v3 = np.subtract(prevO, prevC) n1 = np.cross(v1,v2) n2 = np.cross(v2,v3) dot1 = np.dot(n1,n2) n1mag = np.sqrt(n1.dot(n1)) n2mag = np.sqrt(n2.dot(n2)) cos_zeta = dot1/(n1mag*n2mag) zeta = np.degrees(np.arccos(cos_zeta)) #testing for direction cross = np.cross(n1,n2) direction = np.dot(cross, v2) if direction < 0: zeta = -1 * zeta return (zeta) # Omega FUNCTION # returns a single value, ome for the resnum entered # There are functions within functions here: I'm sorry. I was new to python def ome_calc(resnum): # The order of atoms in atom_list is N, CA, C, O indices = index_getter(resnum) prev_indices = [] for i in indices: prev_indices.append(i-4) if ((gap_check(resnum) == 'behind') or (gap_check(resnum) == 'isolated')): return('ERROR') atom_types = ['C','N','CA'] # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'N': iN = atom_getter(i,atom) elif atom == 'CA': iCA = atom_getter(i,atom) for i in prev_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': prevC = atom_getter(i,atom) elif atom == 'CA': prevCA = atom_getter(i,atom) v1 = np.subtract(iN, iCA) v2 = np.subtract(prevC, iN) v3 = np.subtract(prevCA, prevC) n1 = np.cross(v1,v2) n2 = np.cross(v2,v3) dot1 = np.dot(n1,n2) n1mag = np.sqrt(n1.dot(n1)) n2mag = np.sqrt(n2.dot(n2)) cos_ome = dot1/(n1mag*n2mag) ome = np.degrees(np.arccos(cos_ome)) #testing for direction cross = np.cross(n1,n2) direction = np.dot(cross, v2) if direction < 0: ome = -1 * ome return (ome) # PHI FUNCTION # returns a single value, phi for the resnum entered # There are functions within functions here: I'm sorry. I was new to python def phi_calc(resnum): indices = index_getter(resnum) prev_indices = [] for i in indices: prev_indices.append(i-4) if ((gap_check(resnum) == 'behind') or (gap_check(resnum) == 'isolated')): return('ERROR') atom_types = ['C','N','CA'] # gets coords for each atom and creates a variable for each, this makes atom assignment pdbfile order independant for i in indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': iC = atom_getter(i,atom) elif atom == 'CA': iCA = atom_getter(i,atom) elif atom == 'N': iN = atom_getter(i,atom) for i in prev_indices: for atom in atom_types: if atom_getter(i,atom) == 'no': pass elif atom == 'C': prevC = atom_getter(i,atom) v1 = np.subtract(iCA, iC) v2 = np.subtract(iN, iCA) v3 =
np.subtract(prevC, iN)
numpy.subtract
import numpy as np import copy from scipy.stats import beta from scipy.special import expit from scipy.stats import expon from scipy.stats import uniform from scipy.stats import multinomial from numpy.polynomial import legendre class SNMHawkesBeta: """ This class implements sigmoid nonlinear multivariate Hawkes processes with Beta densities as basis functions. The main features it provides include simulation and statistical inference. """ def __init__(self, number_of_dimensions, number_of_basis): """ Initialises an instance. :type number_of_dimensions: int :param number_of_dimensions: number of dimensions (neurons) :type number_of_basis: int :param number_of_basis: number of basis functions (beta densities) """ self.number_of_dimensions = number_of_dimensions self.number_of_basis = number_of_basis self.beta_ab = np.zeros((number_of_basis, 3)) self.T_phi = 0 self.lamda_ub =
np.zeros(number_of_dimensions)
numpy.zeros
from __future__ import print_function import numpy as np import random import json import sys import os import pickle as pkl import networkx as nx from networkx.readwrite import json_graph version_info = list(map(int, nx.__version__.split('.'))) major = version_info[0] import scipy.sparse as sp minor = version_info[1] # assert (major <= 1) and (minor <= 11), "networkx major version > 1.11" def load_data(prefix, normalize=True): G_data = json.load(open(prefix + "-G.json")) G = json_graph.node_link_graph(G_data) conversion = lambda n : int(n) if os.path.exists(prefix + "-feats.npy"): feats = np.load(prefix + "-feats.npy") else: print("No features present.. Only identity features will be used.") feats = None class_map = json.load(open(prefix + "-class_map.json")) if isinstance(list(class_map.values())[0], list): lab_conversion = lambda n : n else: lab_conversion = lambda n : int(n) class_map = {conversion(k):lab_conversion(v) for k,v in class_map.items()} ## Remove all nodes that do not have val/test annotations ## (necessary because of networkx weirdness with the Reddit data) if normalize and not feats is None: from sklearn.preprocessing import StandardScaler train_ids = np.array([n for n in G.nodes() if not G.node[n]['val'] and not G.node[n]['test']]) train_feats = feats[train_ids] scaler = StandardScaler() scaler.fit(train_feats) feats = scaler.transform(feats) return G, feats, class_map def parse_index_file(filename): """Parse index file.""" index = [] for line in open(filename): index.append(int(line.strip())) return index def sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def load_data_gcn(dataset_str,task_type = "semi"): """ Loads input data from gcn/data directory ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object; ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object; ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object; ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object; ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict object; ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object. All objects above must be saved using python pickle module. :param dataset_str: Dataset name :return: All data input files loaded (as well the training/test data). """ names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph'] objects = [] for i in range(len(names)): with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding='latin1')) else: objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects) test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str)) test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range-min(test_idx_range), :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range-min(test_idx_range), :] = ty ty = ty_extended features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty)) labels[test_idx_reorder, :] = labels[test_idx_range, :] if task_type == "full": print("Load full supervised task.") #supervised setting idx_test = test_idx_range.tolist() idx_train = range(len(ally)- 500) idx_val = range(len(ally) - 500, len(ally)) elif task_type == "semi": print("Load semi-supervised task.") #semi-supervised setting idx_test = test_idx_range.tolist() idx_train = range(len(y)) idx_val = range(len(y), len(y)+500) else: raise ValueError("Task type: %s is not supported. Available option: full and semi.") train_mask = sample_mask(idx_train, labels.shape[0]) val_mask = sample_mask(idx_val, labels.shape[0]) test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test =
np.zeros(labels.shape)
numpy.zeros
""" The game of Reversi. Warning: this game is not coded in an optimal way, the AI will be slow. """ import numpy as np from easyAI import TwoPlayersGame to_string = lambda a : "ABCDEFGH"[a[0]] + str(a[1]+1) to_array = lambda s : np.array(["ABCDEFGH".index(s[0]),int(s[1])-1]) class Reversi( TwoPlayersGame ): """ See the rules on http://en.wikipedia.org/wiki/Reversi Here for simplicity we suppose that the game ends when a player cannot play, but it would take just a few more lines to implement the real ending rules, by which the game ends when both players can't play. This implementation will make a slow and dumbe AI and could be sped up by adding a way of unmaking moves (method unmake_moves) and coding some parts in C (this is left as an exercise :) ) """ def __init__(self, players, board = None): self.players = players self.board = np.zeros((8,8), dtype=int) self.board[3,[3,4]] = [1,2] self.board[4,[3,4]] = [2,1] self.nplayer=1 def possible_moves(self): """ Only moves that lead to flipped pieces are allowed """ return [to_string((i,j)) for i in range(8) for j in range(8) if (self.board[i,j] == 0) and (pieces_flipped(self.board, (i,j), self.nplayer) != [])] def make_move(self, pos): """ Put the piece at position ``pos`` and flip the pieces that much be flipped """ pos= to_array(pos) flipped = pieces_flipped(self.board, pos, self.nplayer) for i,j in flipped: self.board[i,j] = self.nplayer self.board[pos[0],pos[1]] = self.nplayer def show(self): """ Prints the board in a fancy (?) way """ print('\n'+'\n'.join([' 1 2 3 4 5 6 7 8']+ ['ABCDEFGH'[k] + ' '+' '.join([['.','1','2','X'][self.board[k][i]] for i in range(8)]) for k in range(8)]+[''])) def is_over(self): """ The game is considered over when someone cannot play. That may not be the actual rule but it is simpler to code :). Of course it would be possible to implement that a player can pass if it cannot play (by adding the move 'pass')""" return self.possible_moves() == [] def scoring(self): """ In the beginning of the game (less than 32 pieces) much importance is given to placing pieces on the border. After this point, only the number of pieces of each player counts """ if np.sum(self.board==0) > 32: # less than half the board is full player = self.board==self.nplayer opponent = self.board==self.nopponent return ((player-opponent)*BOARD_SCORE).sum() else: npieces_player = np.sum(self.board==self.nplayer) npieces_opponent =
np.sum(self.board==self.nopponent)
numpy.sum
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Unit Tests __author__: <NAME>, <NAME>, <NAME> """ import os import sys import unittest import numpy as np from scipy.io import loadmat sys.path.append(".") from inferactively.distributions import Categorical, Dirichlet # nopep8 class TestCategorical(unittest.TestCase): def test_init_empty(self): c = Categorical() self.assertEqual(c.ndim, 2) def test_init_overload(self): with self.assertRaises(ValueError): values = np.random.rand(3, 2) _ = Categorical(dims=2, values=values) def test_float_conversion(self): values = np.array([2, 3]) self.assertEqual(values.dtype, np.int) c = Categorical(values=values) self.assertEqual(c.values.dtype, np.float64) def test_init_dims_expand(self): c = Categorical(dims=[5]) self.assertEqual(c.shape, (5, 1)) def test_init_dims_int_expand(self): c = Categorical(dims=5) self.assertEqual(c.shape, (5, 1)) def test_multi_factor_init_dims(self): c = Categorical(dims=[[5, 4], [4, 3]]) self.assertEqual(c.shape, (2,)) self.assertEqual(c[0].shape, (5, 4)) self.assertEqual(c[1].shape, (4, 3)) def test_multi_factor_init_values(self): values_1 = np.random.rand(5, 4) values_2 = np.random.rand(4, 3) values = np.array([values_1, values_2]) c = Categorical(values=values) self.assertEqual(c.shape, (2,)) self.assertEqual(c[0].shape, (5, 4)) self.assertEqual(c[1].shape, (4, 3)) def test_multi_factor_init_values_expand(self): values_1 = np.random.rand(5) values_2 = np.random.rand(4) values = np.array([values_1, values_2]) c = Categorical(values=values) self.assertEqual(c.shape, (2,)) self.assertEqual(c[0].shape, (5, 1)) self.assertEqual(c[1].shape, (4, 1)) def test_normalize_multi_factor(self): values_1 = np.random.rand(5) values_2 = np.random.rand(4, 3) values = np.array([values_1, values_2]) c = Categorical(values=values) c.normalize() self.assertTrue(c.is_normalized()) def test_normalize_single_dim(self): values = np.array([1.0, 1.0]) c = Categorical(values=values) expected_values = np.array([[0.5], [0.5]]) c.normalize() self.assertTrue(np.array_equal(c.values, expected_values)) def test_normalize_two_dim(self): values = np.array([[1.0, 1.0], [1.0, 1.0]]) c = Categorical(values=values) expected_values = np.array([[0.5, 0.5], [0.5, 0.5]]) c.normalize() self.assertTrue(np.array_equal(c.values, expected_values)) def test_is_normalized(self): values = np.array([[0.7, 0.5], [0.3, 0.5]]) c = Categorical(values=values) self.assertTrue(c.is_normalized()) values = np.array([[0.2, 0.8], [0.3, 0.5]]) c = Categorical(values=values) self.assertFalse(c.is_normalized()) def test_remove_zeros(self): values = np.array([[1.0, 0.0], [1.0, 1.0]]) c = Categorical(values=values) self.assertTrue((c.values == 0.0).any()) c.remove_zeros() self.assertFalse((c.values == 0.0).any()) def test_contains_zeros(self): values = np.array([[1.0, 0.0], [1.0, 1.0]]) c = Categorical(values=values) self.assertTrue(c.contains_zeros()) values = np.array([[1.0, 1.0], [1.0, 1.0]]) c = Categorical(values=values) self.assertFalse(c.contains_zeros()) def test_entropy(self): values = np.random.rand(3, 2) entropy = -np.sum(values * np.log(values), 0) c = Categorical(values=values) self.assertTrue(np.array_equal(c.entropy(return_numpy=True), entropy)) def test_log(self): values = np.random.rand(3, 2) log_values = np.log(values) c = Categorical(values=values) self.assertTrue(np.array_equal(c.log(return_numpy=True), log_values)) def test_copy(self): values = np.random.rand(3, 2) c = Categorical(values=values) c_copy = c.copy() self.assertTrue(np.array_equal(c_copy.values, c.values)) c_copy.values = c_copy.values * 2 self.assertFalse(np.array_equal(c_copy.values, c.values)) def test_ndim(self): values = np.random.rand(3, 2) c = Categorical(values=values) self.assertEqual(c.ndim, c.values.ndim) def test_shape(self): values = np.random.rand(3, 2) c = Categorical(values=values) self.assertEqual(c.shape, (3, 2)) def test_sample_single(self): # values are already normalized values = np.array([1.0, 0.0]) c = Categorical(values=values) self.assertEqual(0, c.sample()) # values are not normalized values = np.array([0, 10.0]) c = Categorical(values=values) self.assertEqual(1, c.sample()) def test_sample_AoA(self): # values are already normalized values_1 = np.array([1.0, 0.0]) values_2 = np.array([0.0, 1.0, 0.0]) values = np.array([values_1, values_2]) c = Categorical(values=values) self.assertTrue(np.isclose(np.array([0, 1]), c.sample()).all()) # values are not normalized values_1 = np.array([10.0, 0.0]) values_2 = np.array([0.0, 10.0, 0.0]) values = np.array([values_1, values_2]) c = Categorical(values=values) self.assertTrue(np.isclose(np.array([0, 1]), c.sample()).all()) def test_dot_function_a(self): """ test with vectors and matrices, discrete state / outcomes """ array_path = os.path.join(os.getcwd(), "tests/data/dot_a.mat") mat_contents = loadmat(file_name=array_path) A = mat_contents["A"] obs = mat_contents["o"] states = mat_contents["s"] states = np.array(states, dtype=object) result_1 = mat_contents["result1"] result_2 = mat_contents["result2"] result_3 = mat_contents["result3"] A = Categorical(values=A) result_1_py = A.dot(obs, return_numpy=True) self.assertTrue(np.isclose(result_1, result_1_py).all()) result_2_py = A.dot(states, return_numpy=True) result_2_py = result_2_py.astype("float64")[:, np.newaxis] self.assertTrue(np.isclose(result_2, result_2_py).all()) result_3_py = A.dot(states, dims_to_omit=[0], return_numpy=True) self.assertTrue(np.isclose(result_3, result_3_py).all()) def test_dot_function_a_cat(self): """ test with vectors and matrices, discrete state / outcomes Now, when arguments themselves are instances of Categorical """ array_path = os.path.join(os.getcwd(), "tests/data/dot_a.mat") mat_contents = loadmat(file_name=array_path) A = mat_contents["A"] obs = Categorical(values=mat_contents["o"]) states = Categorical(values=mat_contents["s"][0]) result_1 = mat_contents["result1"] result_2 = mat_contents["result2"] result_3 = mat_contents["result3"] A = Categorical(values=A) result_1_py = A.dot(obs, return_numpy=True) self.assertTrue(np.isclose(result_1, result_1_py).all()) result_2_py = A.dot(states, return_numpy=True) result_2_py = result_2_py.astype("float64")[:, np.newaxis] self.assertTrue(np.isclose(result_2, result_2_py).all()) result_3_py = A.dot(states, dims_to_omit=[0], return_numpy=True) self.assertTrue(np.isclose(result_3, result_3_py).all()) def test_dot_function_b(self): """ continuous states and outcomes """ array_path = os.path.join(os.getcwd(), "tests/data/dot_b.mat") mat_contents = loadmat(file_name=array_path) A = mat_contents["A"] obs = mat_contents["o"] states = mat_contents["s"] states = np.array(states, dtype=object) result_1 = mat_contents["result1"] result_2 = mat_contents["result2"] result_3 = mat_contents["result3"] A = Categorical(values=A) result_1_py = A.dot(obs, return_numpy=True) self.assertTrue(np.isclose(result_1, result_1_py).all()) result_2_py = A.dot(states, return_numpy=True) result_2_py = result_2_py.astype("float64")[:, np.newaxis] self.assertTrue(np.isclose(result_2, result_2_py).all()) result_3_py = A.dot(states, dims_to_omit=[0], return_numpy=True) self.assertTrue(np.isclose(result_3, result_3_py).all()) def test_dot_function_c(self): """ DISCRETE states and outcomes, but also a third hidden state factor """ array_path = os.path.join(os.getcwd(), "tests/data/dot_c.mat") mat_contents = loadmat(file_name=array_path) A = mat_contents["A"] obs = mat_contents["o"] states = mat_contents["s"] states_array_version = np.empty(states.shape[1], dtype=object) for i in range(states.shape[1]): states_array_version[i] = states[0][i][0] result_1 = mat_contents["result1"] result_2 = mat_contents["result2"] result_3 = mat_contents["result3"] A = Categorical(values=A) result_1_py = A.dot(obs, return_numpy=True) self.assertTrue(np.isclose(result_1, result_1_py).all()) result_2_py = A.dot(states_array_version, return_numpy=True) result_2_py = result_2_py.astype("float64")[:, np.newaxis] self.assertTrue(np.isclose(result_2, result_2_py).all()) result_3_py = A.dot(states_array_version, dims_to_omit=[0], return_numpy=True) self.assertTrue(np.isclose(result_3, result_3_py).all()) def test_dot_function_c_cat(self): """ test with vectors and matrices, discrete state / outcomes but with a third hidden state factor. Now, when arguments themselves are instances of Categorical """ array_path = os.path.join(os.getcwd(), "tests/data/dot_c.mat") mat_contents = loadmat(file_name=array_path) A = mat_contents["A"] obs = Categorical(values=mat_contents["o"]) states = mat_contents["s"] states_array_version = np.empty(states.shape[1], dtype=object) for i in range(states.shape[1]): states_array_version[i] = states[0][i][0] states_array_version = Categorical(values=states_array_version) result_1 = mat_contents["result1"] result_2 = mat_contents["result2"] result_3 = mat_contents["result3"] A = Categorical(values=A) result_1_py = A.dot(obs, return_numpy=True) self.assertTrue(np.isclose(result_1, result_1_py).all()) result_2_py = A.dot(states_array_version, return_numpy=True) result_2_py = result_2_py.astype("float64")[:, np.newaxis] self.assertTrue(np.isclose(result_2, result_2_py).all()) result_3_py = A.dot(states_array_version, dims_to_omit=[0], return_numpy=True) self.assertTrue(np.isclose(result_3, result_3_py).all()) def test_dot_function_d(self): """ CONTINUOUS states and outcomes, but also a third hidden state factor """ array_path = os.path.join(os.getcwd(), "tests/data/dot_d.mat") mat_contents = loadmat(file_name=array_path) A = mat_contents["A"] obs = mat_contents["o"] states = mat_contents["s"] states_array_version = np.empty(states.shape[1], dtype=object) for i in range(states.shape[1]): states_array_version[i] = states[0][i][0] result_1 = mat_contents["result1"] result_2 = mat_contents["result2"] result_3 = mat_contents["result3"] A = Categorical(values=A) result_1_py = A.dot(obs, return_numpy=True) self.assertTrue(np.isclose(result_1, result_1_py).all()) result_2_py = A.dot(states_array_version, return_numpy=True) result_2_py = result_2_py.astype("float64")[:, np.newaxis] self.assertTrue(np.isclose(result_2, result_2_py).all()) result_3_py = A.dot(states_array_version, dims_to_omit=[0], return_numpy=True) self.assertTrue(np.isclose(result_3, result_3_py).all()) def test_dot_function_e(self): """ CONTINUOUS states and outcomes, but add a final (fourth) hidden state factor """ array_path = os.path.join(os.getcwd(), "tests/data/dot_e.mat") mat_contents = loadmat(file_name=array_path) A = mat_contents["A"] obs = mat_contents["o"] states = mat_contents["s"] states_array_version =
np.empty(states.shape[1], dtype=object)
numpy.empty
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' :py:mod:`k2.py` - Main mission routines --------------------------------------- Implements several routines specific to the `K2` mission. ''' from __future__ import division, print_function, absolute_import, \ unicode_literals from . import sysrem from .utils import * from ...config import EVEREST_SRC, EVEREST_DAT, EVEREST_DEV, MAST_ROOT, \ EVEREST_MAJOR_MINOR from ...utils import DataContainer, sort_like, AP_COLLAPSED_PIXEL, \ AP_SATURATED_PIXEL from ...mathutils import SavGol, Interpolate, Scatter, Downbin try: import pyfits except ImportError: try: import astropy.io.fits as pyfits except ImportError: raise Exception('Please install the `pyfits` package.') import matplotlib.pyplot as pl from matplotlib.ticker import ScalarFormatter, MaxNLocator import k2plr as kplr kplr_client = kplr.API() from k2plr.config import KPLR_ROOT import numpy as np import george from tempfile import NamedTemporaryFile import random import os import sys import shutil import time import logging log = logging.getLogger(__name__) __all__ = ['Setup', 'Season', 'Breakpoints', 'GetData', 'GetNeighbors', 'Statistics', 'TargetDirectory', 'HasShortCadence', 'DVSFile', 'InjectionStatistics', 'HDUCards', 'CSVFile', 'FITSFile', 'FITSUrl', 'CDPP', 'GetTargetCBVs', 'FitCBVs', 'PlanetStatistics', 'StatsToCSV'] def Setup(): ''' Called when the code is installed. Sets up directories and downloads the K2 catalog. ''' if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'cbv')): os.makedirs(os.path.join(EVEREST_DAT, 'k2', 'cbv')) GetK2Stars(clobber=False) def Season(EPIC, **kwargs): ''' Returns the campaign number for a given EPIC target. ''' return Campaign(EPIC, **kwargs) def Breakpoints(EPIC, season=None, cadence='lc', **kwargs): ''' Returns the location of the breakpoints for a given target. :param int EPIC: The EPIC ID number :param str cadence: The light curve cadence. Default `lc` .. note :: The number corresponding to a given breakpoint is the number \ of cadences *since the beginning of the campaign*. ''' # Get the campaign number if season is None: campaign = Season(EPIC) if hasattr(campaign, '__len__'): raise AttributeError( "Please choose a campaign/season for this target: %s." % campaign) else: campaign = season # Select LC or SC if cadence == 'lc': breakpoints = { 0: [665], # OK 1: [2210], # OK 2: [2042], # OK 3: [2140], # OK 4: [520, 2153], # OK 5: [1774], # OK 6: [2143], # OK 7: [1192, 2319], # OK 8: [1950], # OK 91: [], 92: [], 101: [], # NO DATA 102: [], # NO BREAKPOINT 111: [], 112: [], 12: [1900], # OK 13: [2157], # OK 14: [1950], # OK 15: [2150], # OK 16: [1945], # OK 17: [1640], # OK 18: [] # Short campaign } elif cadence == 'sc': breakpoints = { 0: np.array([3753, 11259, 15012, 18765, 60048, # OK 63801, 67554, 71307, 75060, 78815, 82566, 86319, 90072, 93825, 97578, 101331, 105084, 108837]), 1: np.array([8044, 12066, 16088, 20135, 24132, 28154, # OK 32176, 36198, 40220, 44242, 48264, 52286, 56308, 60330, 64352, 68374, 72396, 76418, 80440, 84462, 88509, 92506, 96528, 100550, 104572, 108594, 112616, 116638]), 2: np.array(np.linspace(0, 115680, 31)[1:-1], dtype=int), # OK 3: np.array([3316, 6772, 10158, 13694, 16930, 20316, # OK 23702, 27088, 30474, 33860, 37246, 40632, 44018, 47404, 50790, 54176, 57562, 60948, 64334, 67720, 71106, 74492, 77878, 81264, 84650, 88036, 91422, 94808, 98194]), 4: np.array(np.linspace(0, 101580, 31)[1:-1], dtype=int), # OK 5: np.array([3663, 7326, 10989, 14652, 18315, 21978, # OK 25641, 29304, 32967, 36630, 40293, 43956, 47619, 51282, 54945, 58608, 62271, 65934, 69597, 73260, 76923, 80646, 84249, 87912, 91575, 95238, 98901, 102564, 106227]), 6: np.array(np.linspace(0, 115890, 31)[1:-1], dtype=int), # OK 7: np.array(np.linspace(0, 121290, 31)[1:-1], dtype=int), # OK # Unclear 8: np.array(np.linspace(0, 115590, 31)[1:-1], dtype=int), 91: [], 92: [], 101: [], 102: [], 111: [], 112: [], 12: [], 13: [], 14: [], 15: [], 16: [], 17: [], 18: [] } else: raise ValueError("Invalid value for the cadence.") # Return if campaign in breakpoints: return breakpoints[campaign] else: return None def CDPP(flux, mask=[], cadence='lc'): ''' Compute the proxy 6-hr CDPP metric. :param array_like flux: The flux array to compute the CDPP for :param array_like mask: The indices to be masked :param str cadence: The light curve cadence. Default `lc` ''' # 13 cadences is 6.5 hours rmswin = 13 # Smooth the data on a 2 day timescale svgwin = 49 # If short cadence, need to downbin if cadence == 'sc': newsize = len(flux) // 30 flux = Downbin(flux, newsize, operation='mean') flux_savgol = SavGol(np.delete(flux, mask), win=svgwin) if len(flux_savgol): return Scatter(flux_savgol / np.nanmedian(flux_savgol), remove_outliers=True, win=rmswin) else: return np.nan def GetData(EPIC, season=None, cadence='lc', clobber=False, delete_raw=False, aperture_name='k2sff_15', saturated_aperture_name='k2sff_19', max_pixels=75, download_only=False, saturation_tolerance=-0.1, bad_bits=[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17], get_hires=True, get_nearby=True, **kwargs): ''' Returns a :py:obj:`DataContainer` instance with the raw data for the target. :param int EPIC: The EPIC ID number :param int season: The observing season (campaign). Default :py:obj:`None` :param str cadence: The light curve cadence. Default `lc` :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param bool delete_raw: Delete the FITS TPF after processing it? \ Default :py:obj:`False` :param str aperture_name: The name of the aperture to use. Select \ `custom` to call :py:func:`GetCustomAperture`. Default `k2sff_15` :param str saturated_aperture_name: The name of the aperture to use if \ the target is saturated. Default `k2sff_19` :param int max_pixels: Maximum number of pixels in the TPF. Default 75 :param bool download_only: Download raw TPF and return? Default \ :py:obj:`False` :param float saturation_tolerance: Target is considered saturated \ if flux is within this fraction of the pixel well depth. \ Default -0.1 :param array_like bad_bits: Flagged :py:obj`QUALITY` bits to consider \ outliers when computing the model. \ Default `[1,2,3,4,5,6,7,8,9,11,12,13,14,16,17]` :param bool get_hires: Download a high resolution image of the target? \ Default :py:obj:`True` :param bool get_nearby: Retrieve location of nearby sources? \ Default :py:obj:`True` ''' # Campaign no. if season is None: campaign = Season(EPIC) if hasattr(campaign, '__len__'): raise AttributeError( "Please choose a campaign/season for this target: %s." % campaign) else: campaign = season # Is there short cadence data available for this target? # DEBUG: Disabling short cadence for now! short_cadence = False #HasShortCadence(EPIC, season=campaign) if cadence == 'sc' and not short_cadence: raise ValueError("Short cadence data not available for this target.") # Local file name filename = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % campaign, ('%09d' % EPIC)[:4] + '00000', ('%09d' % EPIC)[4:], 'data.npz') # Download? if clobber or not os.path.exists(filename): # Get the TPF tpf = os.path.join(KPLR_ROOT, 'data', 'k2', 'target_pixel_files', str(EPIC), 'ktwo%09d-c%02d_lpd-targ.fits.gz' % (EPIC, campaign)) sc_tpf = os.path.join(KPLR_ROOT, 'data', 'k2', 'target_pixel_files', str(EPIC), 'ktwo%09d-c%02d_spd-targ.fits.gz' % (EPIC, campaign)) if clobber or not os.path.exists(tpf): # DEBUG: Disabling short cadence for now! kplr_client.k2_star(EPIC).get_target_pixel_files(fetch=True, short_cadence=False) with pyfits.open(tpf) as f: qdata = f[1].data # Get the TPF aperture tpf_aperture = (f[2].data & 2) // 2 # Get the enlarged TPF aperture tpf_big_aperture = np.array(tpf_aperture) for i in range(tpf_big_aperture.shape[0]): for j in range(tpf_big_aperture.shape[1]): if f[2].data[i][j] == 1: for n in [(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)]: if n[0] >= 0 and n[0] < tpf_big_aperture.shape[0]: if n[1] >= 0 and n[1] < \ tpf_big_aperture.shape[1]: if tpf_aperture[n[0]][n[1]] == 1: tpf_big_aperture[i][j] = 1 # Is there short cadence data? if short_cadence: with pyfits.open(sc_tpf) as f: sc_qdata = f[1].data # Get K2SFF apertures try: k2sff = kplr.K2SFF(EPIC, sci_campaign=campaign) k2sff_apertures = k2sff.apertures if delete_raw: os.remove(k2sff._file) except: k2sff_apertures = [None for i in range(20)] # Make a dict of all our apertures # We're not getting K2SFF apertures 0-9 any more apertures = {'tpf': tpf_aperture, 'tpf_big': tpf_big_aperture} for i in range(10, 20): apertures.update({'k2sff_%02d' % i: k2sff_apertures[i]}) # Get the header info fitsheader = [pyfits.getheader(tpf, 0).cards, pyfits.getheader(tpf, 1).cards, pyfits.getheader(tpf, 2).cards] if short_cadence: sc_fitsheader = [pyfits.getheader(sc_tpf, 0).cards, pyfits.getheader(sc_tpf, 1).cards, pyfits.getheader(sc_tpf, 2).cards] else: sc_fitsheader = None # Get a hi res image of the target if get_hires: hires = GetHiResImage(EPIC) else: hires = None # Get nearby sources if get_nearby: nearby = GetSources(EPIC) else: nearby = [] # Delete? if delete_raw: os.remove(tpf) if short_cadence: os.remove(sc_tpf) # Get the arrays cadn = np.array(qdata.field('CADENCENO'), dtype='int32') time = np.array(qdata.field('TIME'), dtype='float64') fpix = np.array(qdata.field('FLUX'), dtype='float64') fpix_err = np.array(qdata.field('FLUX_ERR'), dtype='float64') qual = np.array(qdata.field('QUALITY'), dtype=int) # Get rid of NaNs in the time array by interpolating naninds = np.where(np.isnan(time)) time = Interpolate(np.arange(0, len(time)), naninds, time) # Get the motion vectors (if available!) pc1 = np.array(qdata.field('POS_CORR1'), dtype='float64') pc2 = np.array(qdata.field('POS_CORR2'), dtype='float64') if not np.all(np.isnan(pc1)) and not np.all(np.isnan(pc2)): pc1 = Interpolate(time, np.where(np.isnan(pc1)), pc1) pc2 = Interpolate(time, np.where(np.isnan(pc2)), pc2) else: pc1 = None pc2 = None # Do the same for short cadence if short_cadence: sc_cadn = np.array(sc_qdata.field('CADENCENO'), dtype='int32') sc_time = np.array(sc_qdata.field('TIME'), dtype='float64') sc_fpix = np.array(sc_qdata.field('FLUX'), dtype='float64') sc_fpix_err = np.array(sc_qdata.field('FLUX_ERR'), dtype='float64') sc_qual = np.array(sc_qdata.field('QUALITY'), dtype=int) sc_naninds = np.where(np.isnan(sc_time)) sc_time = Interpolate( np.arange(0, len(sc_time)), sc_naninds, sc_time) sc_pc1 = np.array(sc_qdata.field('POS_CORR1'), dtype='float64') sc_pc2 = np.array(sc_qdata.field('POS_CORR2'), dtype='float64') if not np.all(np.isnan(sc_pc1)) and not np.all(np.isnan(sc_pc2)): sc_pc1 = Interpolate( sc_time, np.where(np.isnan(sc_pc1)), sc_pc1) sc_pc2 = Interpolate( sc_time, np.where(np.isnan(sc_pc2)), sc_pc2) else: sc_pc1 = None sc_pc2 = None else: sc_cadn = None sc_time = None sc_fpix = None sc_fpix_err = None sc_qual = None sc_pc1 = None sc_pc2 = None # Static pixel images for plotting pixel_images = [fpix[0], fpix[len(fpix) // 2], fpix[len(fpix) - 1]] # Atomically write to disk. # http://stackoverflow.com/questions/2333872/ # atomic-writing-to-file-with-python if not os.path.exists(os.path.dirname(filename)): os.makedirs(os.path.dirname(filename)) f = NamedTemporaryFile("wb", delete=False) np.savez_compressed(f, cadn=cadn, time=time, fpix=fpix, fpix_err=fpix_err, qual=qual, apertures=apertures, pc1=pc1, pc2=pc2, fitsheader=fitsheader, pixel_images=pixel_images, nearby=nearby, hires=hires, sc_cadn=sc_cadn, sc_time=sc_time, sc_fpix=sc_fpix, sc_fpix_err=sc_fpix_err, sc_qual=sc_qual, sc_pc1=sc_pc1, sc_pc2=sc_pc2, sc_fitsheader=sc_fitsheader) f.flush() os.fsync(f.fileno()) f.close() shutil.move(f.name, filename) if download_only: return # Load data = np.load(filename) apertures = data['apertures'][()] pixel_images = data['pixel_images'] nearby = data['nearby'] hires = data['hires'][()] if cadence == 'lc': fitsheader = data['fitsheader'] cadn = data['cadn'] time = data['time'] fpix = data['fpix'] fpix_err = data['fpix_err'] qual = data['qual'] pc1 = data['pc1'] pc2 = data['pc2'] elif cadence == 'sc': fitsheader = data['sc_fitsheader'] cadn = data['sc_cadn'] time = data['sc_time'] fpix = data['sc_fpix'] fpix_err = data['sc_fpix_err'] qual = data['sc_qual'] pc1 = data['sc_pc1'] pc2 = data['sc_pc2'] else: raise ValueError("Invalid value for the cadence.") # Select the "saturated aperture" to check if the star is saturated # If it is, we will use this aperture instead if saturated_aperture_name == 'custom': saturated_aperture = GetCustomAperture(data) else: if saturated_aperture_name is None: saturated_aperture_name = 'k2sff_19' saturated_aperture = apertures[saturated_aperture_name] if saturated_aperture is None: log.error("Invalid aperture selected. Defaulting to `tpf_big`.") saturated_aperture_name = 'tpf_big' saturated_aperture = apertures[saturated_aperture_name] # HACK: Some C05 K2SFF apertures don't match the target pixel file # pixel grid size. This is likely because they're defined on the M67 # superstamp. For now, let's ignore these stars. if saturated_aperture.shape != fpix.shape[1:]: log.error("Aperture size mismatch!") return None # Compute the saturation flux and the 97.5th percentile # flux in each pixel of the saturated aperture. We're going # to compare these to decide if the star is saturated. satflx = SaturationFlux(EPIC, campaign=campaign) * \ (1. + saturation_tolerance) f97 = np.zeros((fpix.shape[1], fpix.shape[2])) for i in range(fpix.shape[1]): for j in range(fpix.shape[2]): if saturated_aperture[i, j]: # Let's remove NaNs... tmp = np.delete(fpix[:, i, j], np.where( np.isnan(fpix[:, i, j]))) # ... and really bad outliers... if len(tmp): f = SavGol(tmp) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) bad = np.where((f > med + 10. * MAD) | (f < med - 10. * MAD))[0] np.delete(tmp, bad) # ... so we can compute the 97.5th percentile flux i97 = int(0.975 * len(tmp)) tmp = tmp[np.argsort(tmp)[i97]] f97[i, j] = tmp # Check if any of the pixels are actually saturated if np.nanmax(f97) <= satflx: log.info("No saturated columns detected.") saturated = False else: log.info("Saturated pixel(s) found. Switching to aperture `%s`." % saturated_aperture_name) aperture_name = saturated_aperture_name saturated = True # Now grab the aperture we'll actually use if aperture_name == 'custom': aperture = GetCustomAperture(data) else: if aperture_name is None: aperture_name = 'k2sff_15' aperture = apertures[aperture_name] if aperture is None: log.error("Invalid aperture selected. Defaulting to `tpf_big`.") aperture_name = 'tpf_big' aperture = apertures[aperture_name] # HACK: Some C05 K2SFF apertures don't match the target pixel file # pixel grid size. This is likely because they're defined on the M67 # superstamp. For now, let's ignore these stars. if aperture.shape != fpix.shape[1:]: log.error("Aperture size mismatch!") return None # Now we check if the aperture is too big. Can lead to memory errors... # Treat saturated and unsaturated stars differently. if saturated: # Need to check if we have too many pixels *after* collapsing columns. # Sort the apertures in decreasing order of pixels, but keep the apert. # chosen by the user first. aperture_names = np.array(list(apertures.keys())) npix_per_aperture = np.array( [np.sum(apertures[k]) for k in aperture_names]) aperture_names = aperture_names[np.argsort(npix_per_aperture)[::-1]] aperture_names = np.append([aperture_name], np.delete( aperture_names, np.argmax(aperture_names == aperture_name))) # Loop through them. Pick the first one that satisfies # the `max_pixels` constraint for aperture_name in aperture_names: aperture = apertures[aperture_name] aperture[np.isnan(fpix[0])] = 0 ncol = 0 apcopy = np.array(aperture) for j in range(apcopy.shape[1]): if np.any(f97[:, j] > satflx): apcopy[:, j] = 0 ncol += 1 if np.sum(apcopy) + ncol <= max_pixels: break if np.sum(apcopy) + ncol > max_pixels: log.error( "No apertures available with fewer than %d pixels. Aborting." % max_pixels) return None # Now, finally, we collapse the saturated columns into single pixels # and make the pixel array 2D ncol = 0 fpixnew = [] ferrnew = [] # HACK: K2SFF sometimes clips the heads/tails of saturated columns # That's really bad, since that's where all the information is. Let's # artificially extend the aperture by two pixels at the top and bottom # of each saturated column. This *could* increase contamination, but # it's unlikely since the saturated target is by definition really # bright ext = 0 for j in range(aperture.shape[1]): if np.any(f97[:, j] > satflx): for i in range(aperture.shape[0]): if (aperture[i, j] == 0) and \ (np.nanmedian(fpix[:, i, j]) > 0): if (i + 2 < aperture.shape[0]) and \ aperture[i + 2, j] == 1: aperture[i, j] = 2 ext += 1 elif (i + 1 < aperture.shape[0]) and \ aperture[i + 1, j] == 1: aperture[i, j] = 2 ext += 1 elif (i - 1 >= 0) and aperture[i - 1, j] == 1: aperture[i, j] = 2 ext += 1 elif (i - 2 >= 0) and aperture[i - 2, j] == 1: aperture[i, j] = 2 ext += 1 if ext: log.info("Extended saturated columns by %d pixel(s)." % ext) for j in range(aperture.shape[1]): if np.any(f97[:, j] > satflx): marked = False collapsed = np.zeros(len(fpix[:, 0, 0])) collapsed_err2 = np.zeros(len(fpix[:, 0, 0])) for i in range(aperture.shape[0]): if aperture[i, j]: if not marked: aperture[i, j] = AP_COLLAPSED_PIXEL marked = True else: aperture[i, j] = AP_SATURATED_PIXEL collapsed += fpix[:, i, j] collapsed_err2 += fpix_err[:, i, j] ** 2 if np.any(collapsed): fpixnew.append(collapsed) ferrnew.append(np.sqrt(collapsed_err2)) ncol += 1 else: for i in range(aperture.shape[0]): if aperture[i, j]: fpixnew.append(fpix[:, i, j]) ferrnew.append(fpix_err[:, i, j]) fpix2D = np.array(fpixnew).T fpix_err2D = np.array(ferrnew).T log.info("Collapsed %d saturated column(s)." % ncol) else: # Check if there are too many pixels if np.sum(aperture) > max_pixels: # This case is simpler: we just pick the largest aperture # that's less than or equal to `max_pixels` keys = list(apertures.keys()) npix = np.array([np.sum(apertures[k]) for k in keys]) aperture_name = keys[np.argmax(npix * (npix <= max_pixels))] aperture = apertures[aperture_name] aperture[np.isnan(fpix[0])] = 0 if np.sum(aperture) > max_pixels: log.error("No apertures available with fewer than " + "%d pixels. Aborting." % max_pixels) return None log.warn( "Selected aperture is too big. Proceeding with aperture " + "`%s` instead." % aperture_name) # Make the pixel flux array 2D aperture[np.isnan(fpix[0])] = 0 ap = np.where(aperture & 1) fpix2D = np.array([f[ap] for f in fpix], dtype='float64') fpix_err2D = np.array([p[ap] for p in fpix_err], dtype='float64') # Compute the background binds = np.where(aperture ^ 1) if RemoveBackground(EPIC, campaign=campaign) and (len(binds[0]) > 0): bkg = np.nanmedian(np.array([f[binds] for f in fpix], dtype='float64'), axis=1) # Uncertainty of the median: # http://davidmlane.com/hyperstat/A106993.html bkg_err = 1.253 * np.nanmedian(np.array([e[binds] for e in fpix_err], dtype='float64'), axis=1) \ / np.sqrt(len(binds[0])) bkg = bkg.reshape(-1, 1) bkg_err = bkg_err.reshape(-1, 1) else: bkg = 0. bkg_err = 0. # Make everything 2D and remove the background fpix = fpix2D - bkg fpix_err = np.sqrt(fpix_err2D ** 2 + bkg_err ** 2) flux = np.sum(fpix, axis=1) ferr = np.sqrt(np.sum(fpix_err ** 2, axis=1)) # Get NaN data points nanmask = np.where(np.isnan(flux) | (flux == 0))[0] # Get flagged data points -- we won't train our model on them badmask = [] for b in bad_bits: badmask += list(np.where(qual & 2 ** (b - 1))[0]) # Flag >10 sigma outliers -- same thing. tmpmask = np.array(list(set(np.concatenate([badmask, nanmask])))) t = np.delete(time, tmpmask) f = np.delete(flux, tmpmask) f = SavGol(f) med = np.nanmedian(f) MAD = 1.4826 * np.nanmedian(np.abs(f - med)) bad = np.where((f > med + 10. * MAD) | (f < med - 10. * MAD))[0] badmask.extend([np.argmax(time == t[i]) for i in bad]) # Campaign 2 hack: the first day or two are screwed up if campaign == 2: badmask.extend(np.where(time < 2061.5)[0]) # TODO: Fix time offsets in first half of # Campaign 0. See note in everest 1.0 code # Finalize the mask badmask = np.array(sorted(list(set(badmask)))) # Interpolate the nans fpix = Interpolate(time, nanmask, fpix) fpix_err = Interpolate(time, nanmask, fpix_err) # Return data = DataContainer() data.ID = EPIC data.campaign = campaign data.cadn = cadn data.time = time data.fpix = fpix data.fpix_err = fpix_err data.nanmask = nanmask data.badmask = badmask data.aperture = aperture data.aperture_name = aperture_name data.apertures = apertures data.quality = qual data.Xpos = pc1 data.Ypos = pc2 data.meta = fitsheader data.mag = fitsheader[0]['KEPMAG'][1] data.pixel_images = pixel_images data.nearby = nearby data.hires = hires data.saturated = saturated data.bkg = bkg return data def GetNeighbors(EPIC, season=None, model=None, neighbors=10, mag_range=(11., 13.), cdpp_range=None, aperture_name='k2sff_15', cadence='lc', **kwargs): ''' Return `neighbors` random bright stars on the same module as `EPIC`. :param int EPIC: The EPIC ID number :param str model: The :py:obj:`everest` model name. Only used when \ imposing CDPP bounds. Default :py:obj:`None` :param int neighbors: Number of neighbors to return. Default 10 :param str aperture_name: The name of the aperture to use. Select \ `custom` to call \ :py:func:`GetCustomAperture`. Default `k2sff_15` :param str cadence: The light curve cadence. Default `lc` :param tuple mag_range: (`low`, `high`) values for the Kepler magnitude. \ Default (11, 13) :param tuple cdpp_range: (`low`, `high`) values for the de-trended CDPP. \ Default :py:obj:`None` ''' # Zero neighbors? if neighbors == 0: return [] # Get the IDs # Campaign no. if season is None: campaign = Season(EPIC) if hasattr(campaign, '__len__'): raise AttributeError( "Please choose a campaign/season for this target: %s." % campaign) else: campaign = season epics, kepmags, channels, short_cadence = np.array(GetK2Stars()[ campaign]).T short_cadence = np.array(short_cadence, dtype=bool) epics = np.array(epics, dtype=int) c = GetNeighboringChannels(Channel(EPIC, campaign=season)) # Manage kwargs if aperture_name is None: aperture_name = 'k2sff_15' if mag_range is None: mag_lo = -np.inf mag_hi = np.inf else: mag_lo = mag_range[0] mag_hi = mag_range[1] # K2-specific tweak. The short cadence stars are preferentially # really bright ones, so we won't get many neighbors if we # stick to the default magnitude range! I'm # therefore enforcing a lower magnitude cut-off of 8. if cadence == 'sc': mag_lo = 8. if cdpp_range is None: cdpp_lo = -np.inf cdpp_hi = np.inf else: cdpp_lo = cdpp_range[0] cdpp_hi = cdpp_range[1] targets = [] # First look for nearby targets, then relax the constraint # If still no targets, widen magnitude range for n in range(3): if n == 0: nearby = True elif n == 1: nearby = False elif n == 2: mag_lo -= 1 mag_hi += 1 # Loop over all stars for star, kp, channel, sc in zip(epics, kepmags, channels, short_cadence): # Preliminary vetting if not (((channel in c) if nearby else True) and (kp < mag_hi) \ and (kp > mag_lo) and (sc if cadence == 'sc' else True)): continue # Reject if self or if already in list if (star == EPIC) or (star in targets): continue # Ensure raw light curve file exists if not os.path.exists( os.path.join(TargetDirectory(star, campaign), 'data.npz')): continue # Ensure crowding is OK. This is quite conservative, as we # need to prevent potential astrophysical false positive # contamination from crowded planet-hosting neighbors when # doing neighboring PLD. contam = False data = np.load(os.path.join( TargetDirectory(star, campaign), 'data.npz')) aperture = data['apertures'][()][aperture_name] # Check that the aperture exists! if aperture is None: continue fpix = data['fpix'] for source in data['nearby'][()]: # Ignore self if source['ID'] == star: continue # Ignore really dim stars if source['mag'] < kp - 5: continue # Compute source position x = int(np.round(source['x'] - source['x0'])) y = int(np.round(source['y'] - source['y0'])) # If the source is within two pixels of the edge # of the target aperture, reject the target for j in [x - 2, x - 1, x, x + 1, x + 2]: if j < 0: # Outside the postage stamp continue for i in [y - 2, y - 1, y, y + 1, y + 2]: if i < 0: # Outside the postage stamp continue try: if aperture[i][j]: # Oh-oh! contam = True except IndexError: # Out of bounds... carry on! pass if contam: continue # HACK: This happens for K2SFF M67 targets in C05. # Let's skip them if aperture.shape != fpix.shape[1:]: continue # Reject if the model is not present if model is not None: if not os.path.exists(os.path.join( TargetDirectory(star, campaign), model + '.npz')): continue # Reject if CDPP out of range if cdpp_range is not None: cdpp = np.load(os.path.join(TargetDirectory( star, campaign), model + '.npz'))['cdpp'] if (cdpp > cdpp_hi) or (cdpp < cdpp_lo): continue # Passed all the tests! targets.append(star) # Do we have enough? If so, return if len(targets) == neighbors: random.shuffle(targets) return targets # If we get to this point, we didn't find enough neighbors... # Return what we have anyway. return targets def PlanetStatistics(model='nPLD', compare_to='k2sff', **kwargs): ''' Computes and plots the CDPP statistics comparison between `model` and `compare_to` for all known K2 planets. :param str model: The :py:obj:`everest` model name :param str compare_to: The :py:obj:`everest` model name or \ other K2 pipeline name ''' # Load all planet hosts f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'planets.tsv') epic, campaign, kp, _, _, _, _, _, _ = np.loadtxt( f, unpack=True, skiprows=2) epic = np.array(epic, dtype=int) campaign = np.array(campaign, dtype=int) cdpp = np.zeros(len(epic)) saturated = np.zeros(len(epic), dtype=int) cdpp_1 = np.zeros(len(epic)) # Get the stats for c in set(campaign): # Everest model f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(c), model)) e0, _, _, c0, _, _, _, _, s0 = np.loadtxt(f, unpack=True, skiprows=2) for i, e in enumerate(epic): if e in e0: j = np.argmax(e0 == e) cdpp[i] = c0[j] saturated[i] = s0[j] # Comparison model f = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(c), compare_to.lower())) if not os.path.exists(f): continue if compare_to.lower() in ['everest1', 'k2sff', 'k2sc']: e1, c1 = np.loadtxt(f, unpack=True, skiprows=2) else: e1, _, _, c1, _, _, _, _, _ = np.loadtxt( f, unpack=True, skiprows=2) for i, e in enumerate(epic): if e in e1: j = np.argmax(e1 == e) cdpp_1[i] = c1[j] sat = np.where(saturated == 1) unsat = np.where(saturated == 0) # Plot the equivalent of the Aigrain+16 figure fig, ax = pl.subplots(1) fig.canvas.set_window_title( 'K2 Planet Hosts: %s versus %s' % (model, compare_to)) x = kp y = (cdpp - cdpp_1) / cdpp_1 ax.scatter(x[unsat], y[unsat], color='b', marker='.', alpha=0.5, zorder=-1, picker=True) ax.scatter(x[sat], y[sat], color='r', marker='.', alpha=0.5, zorder=-1, picker=True) ax.set_ylim(-1, 1) ax.set_xlim(8, 18) ax.axhline(0, color='gray', lw=2, zorder=-99, alpha=0.5) ax.axhline(0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) ax.axhline(-0.5, color='gray', ls='--', lw=2, zorder=-99, alpha=0.5) ax.set_title(r'K2 Planet Hosts', fontsize=18) ax.set_ylabel(r'Relative CDPP', fontsize=18) ax.set_xlabel('Kepler Magnitude', fontsize=18) # Pickable points Picker = StatsPicker([ax], [kp], [y], epic, model=model, compare_to=compare_to) fig.canvas.mpl_connect('pick_event', Picker) # Show pl.show() def ShortCadenceStatistics(campaign=None, clobber=False, model='nPLD', plot=True, **kwargs): ''' Computes and plots the CDPP statistics comparison between short cadence and long cadence de-trended light curves :param campaign: The campaign number or list of campaign numbers. \ Default is to plot all campaigns :param bool clobber: Overwrite existing files? Default :py:obj:`False` :param str model: The :py:obj:`everest` model name :param bool plot: Default :py:obj:`True` ''' # Check campaign if campaign is None: campaign = np.arange(9) else: campaign = np.atleast_1d(campaign) # Update model name model = '%s.sc' % model # Compute the statistics for camp in campaign: sub = np.array(GetK2Campaign( camp, cadence='sc', epics_only=True), dtype=int) outfile = os.path.join(EVEREST_SRC, 'missions', 'k2', 'tables', 'c%02d_%s.cdpp' % (int(camp), model)) if clobber or not os.path.exists(outfile): with open(outfile, 'w') as f: print("EPIC Kp Raw CDPP " + "Everest CDPP Saturated", file=f) print("--------- ------ --------- " + "------------ ---------", file=f) all = GetK2Campaign(int(camp), cadence='sc') stars =
np.array([s[0] for s in all], dtype=int)
numpy.array
import os import math import warnings import numpy as np import pandas as pd import gmhazard_calc.constants as const from gmhazard_calc.im import IM, IMType from qcore import nhm def calculate_rupture_rates( nhm_df: pd.DataFrame, rup_name: str = "rupture_name", annual_rec_prob_name: str = "annual_rec_prob", mag_name: str = "mag_name", ) -> pd.DataFrame: """Takes in a list of background ruptures and calculates the rupture rates for the given magnitudes The rupture rate calculation is based on the Gutenberg-Richter equation from OpenSHA. It discretises the recurrance rate per magnitude instead of storing the probability of rupture exceeding a certain magnitude https://en.wikipedia.org/wiki/Gutenberg%E2%80%93Richter_law https://github.com/opensha/opensha-core/blob/master/src/org/opensha/sha/magdist/GutenbergRichterMagFreqDist.java Also includes the rupture magnitudes """ data = np.ndarray( sum(nhm_df.n_mags), dtype=[ (rup_name, str, 64), (annual_rec_prob_name, np.float64), (mag_name, np.float64), ], ) # Make an array of fault bounds so the ith faults has # the ruptures indexes[i]-indexes[i+1]-1 (inclusive) indexes = np.cumsum(nhm_df.n_mags.values) indexes = np.insert(indexes, 0, 0) index_mask = np.zeros(len(data), dtype=bool) warnings.filterwarnings( "ignore", message="invalid value encountered in true_divide" ) for i, line in nhm_df.iterrows(): index_mask[indexes[i] : indexes[i + 1]] = True # Generate the magnitudes for each rupture sample_mags = np.linspace(line.M_min, line.M_cutoff, line.n_mags) for ii, iii in enumerate(range(indexes[i], indexes[i + 1])): data[rup_name][iii] = create_ds_rupture_name( line.source_lat, line.source_lon, line.source_depth, sample_mags[ii], line.tect_type, ) # Calculate the cumulative rupture rate for each rupture baseline = ( line.b * math.log(10, 2.72) / (1 - 10 ** (-1 * line.b * (line.M_cutoff - line.M_min))) ) f_m_mag = np.power(10, (-1 * line.b * (sample_mags - line.M_min))) * baseline f_m_mag = np.append(f_m_mag, 0) rup_prob = (f_m_mag[:-1] + f_m_mag[1:]) / 2 * 0.1 total_cumulative_rate = rup_prob * line.totCumRate # normalise total_cumulative_rate = ( line.totCumRate * total_cumulative_rate / np.sum(total_cumulative_rate) ) data[mag_name][index_mask] = sample_mags data[annual_rec_prob_name][index_mask] = total_cumulative_rate index_mask[indexes[i] : indexes[i + 1]] = False background_values = pd.DataFrame(data=data) background_values.fillna(0, inplace=True) return background_values def convert_im_type(im_type: str): """Converts the IM type to the standard format, will be redundant in the future""" if im_type.startswith("SA"): return "p" + im_type.replace("p", ".") return im_type def get_erf_name(erf_ffp: str) -> str: """Gets the erf name, required for rupture ids Use this function for consistency, instead of doing it manual """ return os.path.basename(erf_ffp).split(".")[0] def pandas_isin(array_1: np.ndarray, array_2: np.ndarray) -> np.ndarray: """This is the same as a np.isin, however is significantly faster for large arrays https://stackoverflow.com/questions/15939748/check-if-each-element-in-a-numpy-array-is-in-another-array """ return pd.Index(pd.unique(array_2)).get_indexer(array_1) >= 0 def get_min_max_values_for_im(im: IM): """Get minimum and maximum for the given im. Values for velocity are given on cm/s, acceleration on cm/s^2 and Ds on s """ if im.is_pSA(): assert im.period is not None, "No period provided for pSA, this is an error" if im.period <= 0.5: return 0.005, 10.0 elif 0.5 < im.period <= 1.0: return 0.005, 7.5 elif 1.0 < im.period <= 3.0: return 0.0005, 5.0 elif 3.0 < im.period <= 5.0: return 0.0005, 4.0 elif 5.0 < im.period <= 10.0: return 0.0005, 3.0 if im.im_type is IMType.PGA: return 0.0001, 10.0 elif im.im_type is IMType.PGV: return 1.0, 400.0 elif im.im_type is IMType.CAV: return 0.0001 * 980, 20.0 * 980.0 elif im.im_type is IMType.AI: return 0.01, 1000.0 elif im.im_type is IMType.Ds575 or im.im_type is IMType.Ds595: return 1.0, 400.0 else: print("Unknown IM, cannot generate a range of IM values. Exiting the program") exit(1) def get_im_values(im: IM, n_values: int = 100): """ Create an range of values for a given IM according to their min, max as defined by get_min_max_values Parameters ---------- im: IM The IM Object to get im values for n_values: int Returns ------- Array of IM values """ start, end = get_min_max_values_for_im(im) im_values = np.logspace( start=np.log(start), stop=np.log(end), num=n_values, base=np.e ) return im_values def closest_location(locations, lat, lon): """ Find position of closest location in locations 2D np.array of (lat, lon). """ d = ( np.sin(np.radians(locations[:, 0] - lat) / 2.0) ** 2 + np.cos(
np.radians(lat)
numpy.radians
# -*- coding: utf-8 -*- """ Created on Fri Mar 27 14:04:56 2020 @author: geraldod """ from numpy import pi, sin, cos, argsort, sqrt, iscomplex, real from numpy import array, diag, argsort, zeros, zeros_like, eye, ones, allclose, argmax, hstack, vstack, block from scipy.linalg import eig, eigh, cholesky, inv, block_diag from Gear import GearSet # import Drivetrain class model: def __init__(self, dtrain): self.drivetrain = dtrain # Drivetrain() # self.x = 0 self.M = 0 self.K = 0 # self.F = 0 # self.n_DOF = 0 # self.f_n = 0 # self.mode_shape = 0 def modal_analysis(self): eig_val, mode_shape = eig(self.K, self.M, right = True) if(not any(iscomplex(eig_val))): eig_val = real(eig_val) else: print('At least one complex eigenvalue detected during the calculation of the symmetric undamped eigenvalue problem.') # lambda to omega_n: omega_n = sqrt(eig_val) # omega_n to Hz: f_n = omega_n/(2.0*pi) idx = argsort(f_n) f_n = f_n[idx] mode_shape = mode_shape[:, idx] for i in range(len(f_n)): j = argmax(abs(mode_shape[:, i])) mode_shape[:, i] = mode_shape[:, i]/mode_shape[j, i] return { 'f_n': f_n, 'mode_shape': mode_shape } ############################################################################### class torsional_2DOF(model): def __init__(self, dtrain): super().__init__(dtrain) self.n_DOF = 2 self.M = self.__inertia_matrix() self.K = self.__stiffness_matrix() modA = self.modal_analysis() self.f_n = modA['f_n'] self.mode_shape = modA['mode_shape'] def __inertia_matrix(self): DT = self.drivetrain J_R = DT.J_Rotor # [kg-m^2], Rotor inertia J_G = DT.J_Gen # [kg-m^2], Generator inertia U = DT.u[-1] M = diag([J_R, J_G*U**2]) return M def __stiffness_matrix(self): DT = self.drivetrain U = DT.u[-1] k_LSS = DT.main_shaft.stiffness('torsional') k_HSS = DT.stage[-1].output_shaft.stiffness('torsional') k = (k_LSS*k_HSS*U**2)/(k_LSS + k_HSS*U**2) K = k*array([[ 1.0, -1.0], [-1.0, 1.0]]) return K ############################################################################### class Kahraman_94(model): def __init__(self, dtrain): super().__init__(dtrain) # number of DOFs for each stage: self.n_DOF = self.__calc_NDOF() self.M = self.__inertia_matrix() self.K = self.__stiffness_matrix() modA = self.modal_analysis() self.f_n = modA['f_n'] self.mode_shape = modA['mode_shape'] def __calc_NDOF(self): stage = self.drivetrain.stage Np = [0, 2] for i in range(len(stage)): Np.append(Np[-1] + sum([stage[i].N_p + 1 if(stage[i].configuration == 'parallel') else stage[i].N_p + 2])) return Np def __inertia_matrix(self): DT = self.drivetrain N = self.n_DOF M = zeros((N[-1], N[-1])) M[0 , 0 ] = DT.J_Rotor # [kg-m^2], Rotor inertia M[-1, -1] = DT.J_Gen # [kg-m^2], Generator inertia i = 0 sub_range = slice(N[i], N[i + 1]) M[sub_range, sub_range] += DT.main_shaft.inertia_matrix('torsional') for i in range(DT.N_st): sub_range = slice(N[i + 1] - 1, N[i + 2]) M[sub_range, sub_range] += Kahraman_94.__stage_inertia_matrix(DT.stage[i]) return M @staticmethod def __stage_inertia_matrix(stage): if(stage.configuration == 'parallel'): J_p = stage.J_x[0] J_w = stage.J_x[1] M = diag([J_w, J_p, 0.0]) elif(stage.configuration == 'planetary'): J_c = stage.carrier.J_x J_s = stage.J_x[0] J_p = stage.J_x[1] d = [J_c] [d.append(J_p) for i in range(stage.N_p)] d.append(J_s) d.append(0.0) M = diag(d) M[-2:, -2:] += stage.output_shaft.inertia_matrix('torsional') return M def __stiffness_matrix(self): DT = self.drivetrain N = self.n_DOF K = zeros((N[-1], N[-1])) i = 0 sub_range = slice(N[i], N[i + 1]) K[sub_range, sub_range] += DT.main_shaft.stiffness_matrix('torsional') for i in range(DT.N_st): sub_range = slice(N[i + 1] - 1, N[i + 2]) K[sub_range, sub_range] += Kahraman_94.__stage_stiffness_matrix(DT.stage[i]) return K @staticmethod def __stage_stiffness_matrix(stage): if(stage.configuration == 'parallel'): N = 3 K = zeros((N, N)) r_p = stage.d[0]*1.0e-3/2.0 r_w = stage.d[1]*1.0e-3/2.0 k = stage.k_mesh K[0:2, 0:2] = k*array([[ r_w**2, r_p*r_w], [r_p*r_w , r_p**2]]) elif(stage.configuration == 'planetary'): N = stage.N_p + 3 K = zeros((N, N)) k_1 = stage.sub_set('planet-ring').k_mesh k_2 = stage.sub_set('sun-planet').k_mesh r_c = stage.a_w*1.0e-3 r_s = stage.d[0]*1.0e-3/2.0 r_p = stage.d[1]*1.0e-3/2.0 d = [stage.N_p*r_c*(k_1 + k_2)] [d.append((k_1 + k_2)*r_p**2) for i in range(stage.N_p)] d.append(stage.N_p*k_2*r_s**2) d.append(0.0) pla_lin = ones(stage.N_p + 1)*r_c*r_p*(k_1 - k_2) pla_lin[-1] = -3.0*k_2*r_s*r_c pla_col = ones(stage.N_p )*k_2*r_p*r_s i = stage.N_p + 1 i1 = i + 1 K[0, 1:i1] = pla_lin K[1:i, -2] = pla_col K += K.T K += diag(d) K[-2:, -2:] += stage.output_shaft.stiffness_matrix('torsional') return K ############################################################################### class Lin_Parker_99(model): def __init__(self, dtrain): super().__init__(dtrain) self.n_DOF = self.__calc_ class Lin_Parker_99_mod(model): def __init__(self, dtrain): super().__init__(dtrain) # number of DOFs for each stage: self.n_DOF = self.__calc_NDOF() self.M = self.__inertia_matrix() stiff = self.__stiffness_matrix() self.K_b = stiff['K_b'] self.K_m = stiff['K_m'] self.K_Omega = stiff['K_Omega'] self.K = self.K_b + self.K_m modA = self.modal_analysis() self.f_n = modA['f_n'] self.mode_shape = modA['mode_shape'] def __calc_NDOF(self): stage = self.drivetrain.stage Np = [0, 6] for i in range(len(stage)): Np.append(Np[-1] + sum([(stage[i].N_p + 1)*3 if(stage[i].configuration == 'parallel') else (stage[i].N_p + 2)*3])) return Np def __inertia_matrix(self): DT = self.drivetrain m_R = DT.m_Rotor J_R = DT.J_Rotor m_G = DT.m_Gen J_G = DT.J_Gen N = self.n_DOF M = zeros((N[-1], N[-1])) M[:3, :3 ] = diag([m_R, m_R, J_R]) # Rotor inertia matrix M[-3:, -3:] = diag([m_G, m_G, J_G]) # Generator inertia matrix i = 0 sub_range = slice(N[i], N[i + 1]) M[sub_range, sub_range] += DT.main_shaft.inertia_matrix('Lin_Parker_99')*0 for i in range(DT.N_st): sub_range = slice(N[i + 1] - 3, N[i + 2]) M[sub_range, sub_range] += Lin_Parker_99.__stage_inertia_matrix(DT.stage[i]) return M @staticmethod def __stage_inertia_matrix(stage): M_ = lambda m, J: diag([m, m, J]) if(stage.configuration == 'parallel'): d = [M_(stage.mass[1], stage.J_x[1]), # wheel M_(stage.mass[0], stage.J_x[0]), # pinion M_( 0 , 0 )] # output shaft elif(stage.configuration == 'planetary'): m_p = stage.mass[1] J_p = stage.J_x[1] d = [M_(stage.carrier.mass, stage.carrier.J_x)] # carrier [d.append(M_(m_p, J_p)) for i in range(stage.N_p)] # planet d.append( M_(stage.mass[0], stage.J_x[0])) # sun d.append( M_( 0, 0)) # output shaft M = block_diag(*d) M[-6:, -6:] += stage.output_shaft.inertia_matrix('Lin_Parker_99')*0 return M def __stiffness_matrix(self): DT = self.drivetrain N = self.n_DOF K_b = zeros((N[-1], N[-1])) K_m = zeros_like(K_b) K_Omega = zeros_like(K_b) i = 0 sub_range = slice(N[i], N[i + 1]) K_b[sub_range, sub_range] += DT.main_shaft.stiffness_matrix('Lin_Parker_99')*0 for i in range(DT.N_st): stiff = Lin_Parker_99.__stage_stiffness_matrix(DT.stage[i]) sub_range = slice(N[i + 1] - 3, N[i + 2]) K_b[ sub_range, sub_range] += stiff['K_b'] K_m[ sub_range, sub_range] += stiff['K_m'] K_Omega[sub_range, sub_range] += stiff['K_Omega'] return {'K_b' : K_b, 'K_m' : K_m, 'K_Omega': K_Omega} @staticmethod def __stage_stiffness_matrix(stage): # Bearing stiffness sub-matrix: K_b_ = lambda x, y: diag([x, y, 0]) alpha_n = stage.alpha_n psi = lambda i: (i - 1)*(2*pi/stage.N_p) psi_s = lambda i: psi(i) - alpha_n # psi_r = lambda i: psi(i) + alpha_n # sun-sun mesh-stiffness matrix: K_s1 = lambda k, i: k*array([[ sin(psi_s(i))**2, -cos(psi_s(i))*sin(psi_s(i)), -sin(psi_s(i))], [-cos(psi_s(i))*sin(psi_s(i)) , cos(psi_s(i))**2 , cos(psi_s(i))], [- sin(psi_s(i)) , cos(psi_s(i)) , 1 ]]) # sun-planet mesh-stiffness matrix: K_s2 = lambda k, i: k*array([[ sin(psi_s(i))*sin(alpha_n), sin(psi_s(i))*cos(alpha_n), -sin(psi_s(i))], [-cos(psi_s(i))*sin(alpha_n), -cos(psi_s(i))*cos(alpha_n), cos(psi_s(i))], [- sin(alpha_n), - cos(alpha_n), 1 ]]) # planet-planet [?] mesh-stiffness matrix: K_s3 = lambda k : k*array([[ sin(alpha_n)**2 , sin(alpha_n)*cos(alpha_n), -sin(alpha_n)], [ sin(alpha_n)*cos(alpha_n), cos(alpha_n)**2 , -cos(alpha_n)], [-sin(alpha_n) , -cos(alpha_n) , 1 ]]) # [?] K_r3 = lambda k : k*array([[ sin(alpha_n)**2 , -
sin(alpha_n)
numpy.sin
""" Configuration and fixtures for pytest. https://docs.pytest.org/en/latest/fixture.html#conftest-py-sharing-fixture-functions """ from typing import Tuple from unittest.mock import MagicMock # pylint: disable=redefined-outer-name import numpy as np import pytest from pystork.activations import Relu, Tanh, Sigmoid from pystork.costs.binary_classfication import BinaryClassificationCost from pystork.initializers import RandomInitializer from pystork.layer import Layer from pystork.model import Model @pytest.fixture def layer() -> Layer: """ :return: a simple relu layer with configured parameters """ layer = Layer(units_number=2, inputs_number=2, activation_function=Relu()) layer.set_parameters(np.array([[1, 0], [0, 1]]), np.array([[0], [0]])) return layer @pytest.fixture def forward_propagation_model() -> Model: """ a simple model with one hidden layer used for forward propagation """ hidden_layer = Layer(units_number=4, inputs_number=2, activation_function=Tanh()) output_layer = Layer(units_number=1, inputs_number=4, activation_function=Sigmoid()) model = Model( layers=[hidden_layer, output_layer], cost_function=BinaryClassificationCost(), initializer=RandomInitializer(), ) hidden_layer.W = np.array( [ [-0.00416758, -0.00056267], [-0.02136196, 0.01640271], [-0.01793436, -0.00841747], [0.00502881, -0.01245288], ] ) hidden_layer.b = np.array([[1.74481176], [-0.7612069], [0.3190391], [-0.24937038]]) output_layer.W = np.array([-0.01057952, -0.00909008, 0.00551454, 0.02292208]) output_layer.b =
np.array([[-1.3]])
numpy.array
import numpy as np import scipy.signal as sig import matplotlib.pyplot as plt import sys import pprint as pp import numpy.random as random sys.path.append("../") import custom_tools.fftplot as fftplot import control as con import control.matlab as ctrl import custom_tools.handyfuncs as hf K = 1 GOLz = con.tf(0.83155 * K, [1, -1, 0], 1) plt.figure() real, imag, freq = con.nyquist_plot(GOLz, omega=np.linspace(0, np.pi, 1000)) plt.title('Nyquist plot of GOL with K={}'.format(K)) plt.axis([-1.4, .5, -10, 10]) # Modified Nyquist Plot: # A Nyquist Plot of -1/Gol will show the range of K for stability plt.figure() real, imag, freq = con.nyquist_plot(-1 / GOLz, omega=
np.linspace(0, np.pi, 1000)
numpy.linspace
"""DEP WEPP cli editor. One "tile" at a time. Usage: python daily_climate_editor.py <xtile> <ytile> <tilesz> <scenario> <YYYY> <mm> <dd> Where tiles start in the lower left corner and are 5x5 deg in size development laptop has data for 3 March 2019, 23 May 2009, and 8 Jun 2009 """ try: from zoneinfo import ZoneInfo # type: ignore except ImportError: from backports.zoneinfo import ZoneInfo # type: ignore from collections import namedtuple import datetime import sys import os from multiprocessing import cpu_count from multiprocessing.pool import ThreadPool from tqdm import tqdm import numpy as np from scipy.interpolate import NearestNDInterpolator from osgeo import gdal from pyiem import iemre from pyiem.dep import SOUTH, WEST, NORTH, EAST, get_cli_fname from pyiem.util import ncopen, logger, convert_value, utc LOG = logger() CENTRAL = ZoneInfo("America/Chicago") UTC = datetime.timezone.utc ST4PATH = "/mesonet/data/stage4" # used for breakpoint logic ZEROHOUR = datetime.datetime(2000, 1, 1, 0, 0) # How many CPUs are we going to burn CPUCOUNT = min([4, int(cpu_count() / 4)]) MEMORY = {"stamp": datetime.datetime.now()} BOUNDS = namedtuple("Bounds", ["south", "north", "east", "west"]) def get_sts_ets_at_localhour(date, local_hour): """Return a Day Interval in UTC for the given date at CST/CDT hour.""" # ZoneInfo is supposed to get this right at instanciation sts = datetime.datetime( date.year, date.month, date.day, local_hour, tzinfo=CENTRAL, ) date2 = datetime.date( date.year, date.month, date.day ) + datetime.timedelta(days=1) ets = datetime.datetime( date2.year, date2.month, date2.day, local_hour, tzinfo=CENTRAL, ) return ( sts.replace(hour=local_hour).astimezone(UTC), ets.replace(hour=local_hour).astimezone(UTC), ) def iemre_bounds_check(name, val, lower, upper): """Make sure our data is within bounds, if not, exit!""" if np.isnan(val).all(): LOG.warning("FATAL: iemre %s all NaN", name) sys.exit(3) minval = np.nanmin(val) maxval = np.nanmax(val) if minval < lower or maxval > upper: LOG.warning( "FATAL: iemre failure %s %.3f to %.3f [%.3f to %.3f]", name, minval, maxval, lower, upper, ) sys.exit(3) return val def load_iemre(nc, data, valid): """Use IEM Reanalysis for non-precip data 24km product is smoothed down to the 0.01 degree grid """ offset = iemre.daily_offset(valid) lats = nc.variables["lat"][:] lons = nc.variables["lon"][:] lons, lats = np.meshgrid(lons, lats) # Storage is W m-2, we want langleys per day ncdata = ( nc.variables["rsds"][offset, :, :].filled(np.nan) * 86400.0 / 1000000.0 * 23.9 ) # Default to a value of 300 when this data is missing, for some reason nn = NearestNDInterpolator( (np.ravel(lons), np.ravel(lats)), np.ravel(ncdata) ) data["solar"][:] = iemre_bounds_check( "rsds", nn(data["lon"], data["lat"]), 0, 1000 ) ncdata = convert_value( nc.variables["high_tmpk"][offset, :, :].filled(np.nan), "degK", "degC" ) nn = NearestNDInterpolator( (np.ravel(lons), np.ravel(lats)), np.ravel(ncdata) ) data["high"][:] = iemre_bounds_check( "high_tmpk", nn(data["lon"], data["lat"]), -60, 60 ) ncdata = convert_value( nc.variables["low_tmpk"][offset, :, :].filled(np.nan), "degK", "degC" ) nn = NearestNDInterpolator( (np.ravel(lons), np.ravel(lats)), np.ravel(ncdata) ) data["low"][:] = iemre_bounds_check( "low_tmpk", nn(data["lon"], data["lat"]), -60, 60 ) ncdata = convert_value( nc.variables["avg_dwpk"][offset, :, :].filled(np.nan), "degK", "degC" ) nn = NearestNDInterpolator( (np.ravel(lons), np.ravel(lats)), np.ravel(ncdata) ) data["dwpt"][:] = iemre_bounds_check( "avg_dwpk", nn(data["lon"], data["lat"]), -60, 60 ) # Wind is already in m/s, but could be masked ncdata = nc.variables["wind_speed"][offset, :, :].filled(np.nan) nn = NearestNDInterpolator( (np.ravel(lons), np.ravel(lats)), np.ravel(ncdata) ) data["wind"][:] = iemre_bounds_check( "wind_speed", nn(data["lon"], data["lat"]), 0, 30 ) def load_stage4(data, valid, xtile, ytile): """It sucks, but we need to load the stage IV data to give us something to benchmark the MRMS data against, to account for two things: 1) Wind Farms 2) Over-estimates """ LOG.debug("called") # The stage4 files store precip in the rears, so compute 1 AM one_am, tomorrow = get_sts_ets_at_localhour(valid, 1) sts_tidx = iemre.hourly_offset(one_am) ets_tidx = iemre.hourly_offset(tomorrow) LOG.debug( "stage4 sts_tidx:%s[%s] ets_tidx:%s[%s]", sts_tidx, one_am, ets_tidx, tomorrow, ) with ncopen(f"{ST4PATH}/{valid.year}_stage4_hourly.nc", "r") as nc: p01m = nc.variables["p01m"] lats = nc.variables["lat"][:] lons = nc.variables["lon"][:] # crossing jan 1 if ets_tidx < sts_tidx: LOG.debug("Exercise special stageIV logic for jan1!") totals = np.sum(p01m[sts_tidx:, :, :], axis=0) with ncopen(f"{ST4PATH}/{tomorrow.year}_stage4_hourly.nc") as nc2: p01m = nc2.variables["p01m"] totals += np.sum(p01m[:ets_tidx, :, :], axis=0) else: totals = np.sum(p01m[sts_tidx:ets_tidx, :, :], axis=0) if np.ma.max(totals) > 0: pass else: LOG.warning("No StageIV data found, aborting...") sys.exit(3) # set a small non-zero number to keep things non-zero totals = np.where(totals > 0.001, totals, 0.001) nn = NearestNDInterpolator( (lons.flatten(), lats.flatten()), totals.flatten() ) data["stage4"][:] = nn(data["lon"], data["lat"]) write_grid(data["stage4"], valid, xtile, ytile, "stage4") LOG.debug("finished") def qc_precip(data, valid, xtile, ytile): """Make some adjustments to the `precip` grid Not very sophisticated here, if the hires precip grid is within 33% of Stage IV, then we consider it good. If not, then we apply a multiplier to bring it to near the stage IV value. """ hires_total =
np.sum(data["precip"], 2)
numpy.sum
# ________ # / # \ / # \ / # \/ import random import textwrap import emd_mean import AdvEMDpy import emd_basis import emd_utils import numpy as np import pandas as pd import cvxpy as cvx import seaborn as sns import matplotlib.pyplot as plt from scipy.integrate import odeint from scipy.ndimage import gaussian_filter from emd_utils import time_extension, Utility from scipy.interpolate import CubicSpline from emd_hilbert import Hilbert, hilbert_spectrum from emd_preprocess import Preprocess from emd_mean import Fluctuation from AdvEMDpy import EMD # alternate packages from PyEMD import EMD as pyemd0215 import emd as emd040 sns.set(style='darkgrid') pseudo_alg_time = np.linspace(0, 2 * np.pi, 1001) pseudo_alg_time_series = np.sin(pseudo_alg_time) + np.sin(5 * pseudo_alg_time) pseudo_utils = Utility(time=pseudo_alg_time, time_series=pseudo_alg_time_series) # plot 0 - addition fig = plt.figure(figsize=(9, 4)) ax = plt.subplot(111) plt.gcf().subplots_adjust(bottom=0.10) plt.title('First Iteration of Sifting Algorithm') plt.plot(pseudo_alg_time, pseudo_alg_time_series, label=r'$h_{(1,0)}(t)$', zorder=1) plt.scatter(pseudo_alg_time[pseudo_utils.max_bool_func_1st_order_fd()], pseudo_alg_time_series[pseudo_utils.max_bool_func_1st_order_fd()], c='r', label=r'$M(t_i)$', zorder=2) plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) + 1, '--', c='r', label=r'$\tilde{h}_{(1,0)}^M(t)$', zorder=4) plt.scatter(pseudo_alg_time[pseudo_utils.min_bool_func_1st_order_fd()], pseudo_alg_time_series[pseudo_utils.min_bool_func_1st_order_fd()], c='c', label=r'$m(t_j)$', zorder=3) plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time) - 1, '--', c='c', label=r'$\tilde{h}_{(1,0)}^m(t)$', zorder=5) plt.plot(pseudo_alg_time, np.sin(pseudo_alg_time), '--', c='purple', label=r'$\tilde{h}_{(1,0)}^{\mu}(t)$', zorder=5) plt.yticks(ticks=[-2, -1, 0, 1, 2]) plt.xticks(ticks=[0, np.pi, 2 * np.pi], labels=[r'0', r'$\pi$', r'$2\pi$']) box_0 = ax.get_position() ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.95, box_0.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.savefig('jss_figures/pseudo_algorithm.png') plt.show() knots = np.arange(12) time = np.linspace(0, 11, 1101) basis = emd_basis.Basis(time=time, time_series=time) b_spline_basis = basis.cubic_b_spline(knots) chsi_basis = basis.chsi_basis(knots) # plot 1 plt.title('Non-Natural Cubic B-Spline Bases at Boundary') plt.plot(time[500:], b_spline_basis[2, 500:].T, '--', label=r'$ B_{-3,4}(t) $') plt.plot(time[500:], b_spline_basis[3, 500:].T, '--', label=r'$ B_{-2,4}(t) $') plt.plot(time[500:], b_spline_basis[4, 500:].T, '--', label=r'$ B_{-1,4}(t) $') plt.plot(time[500:], b_spline_basis[5, 500:].T, '--', label=r'$ B_{0,4}(t) $') plt.plot(time[500:], b_spline_basis[6, 500:].T, '--', label=r'$ B_{1,4}(t) $') plt.xticks([5, 6], [r'$ \tau_0 $', r'$ \tau_1 $']) plt.xlim(4.4, 6.6) plt.plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-') plt.plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-') plt.legend(loc='upper left') plt.savefig('jss_figures/boundary_bases.png') plt.show() # plot 1a - addition knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001) knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time) knots_uniform = np.linspace(0, 2 * np.pi, 51) emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series) imfs = emd.empirical_mode_decomposition(knots=knots_uniform, edge_effect='anti-symmetric', verbose=False)[0] fig, axs = plt.subplots(3, 1) fig.subplots_adjust(hspace=0.6) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Time Series and Uniform Knots') axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100) axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].set_title('IMF 1 and Uniform Knots') axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[2].set_title('IMF 2 and Uniform Knots') axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100) axs[2].set_yticks(ticks=[-2, 0, 2]) axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[0].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[0].legend(loc='lower left') axs[1].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[2].plot(knots_uniform[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') for i in range(3): for j in range(1, len(knots_uniform)): axs[i].plot(knots_uniform[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey') plt.savefig('jss_figures/knot_uniform.png') plt.show() # plot 1b - addition knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001) knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time) emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series) imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric', optimise_knots=1, verbose=False) fig, axs = plt.subplots(3, 1) fig.subplots_adjust(hspace=0.6) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Time Series and Statically Optimised Knots') axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100) axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].set_title('IMF 1 and Statically Optimised Knots') axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[2].set_title('IMF 2 and Statically Optimised Knots') axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100) axs[2].set_yticks(ticks=[-2, 0, 2]) axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[0].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[0].legend(loc='lower left') axs[1].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[2].plot(knots[0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') for i in range(3): for j in range(1, len(knots)): axs[i].plot(knots[j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey') plt.savefig('jss_figures/knot_1.png') plt.show() # plot 1c - addition knot_demonstrate_time = np.linspace(0, 2 * np.pi, 1001) knot_demonstrate_time_series = np.sin(knot_demonstrate_time) + np.sin(5 * knot_demonstrate_time) emd = EMD(time=knot_demonstrate_time, time_series=knot_demonstrate_time_series) imfs, _, _, _, knots, _, _ = emd.empirical_mode_decomposition(edge_effect='anti-symmetric', optimise_knots=2, verbose=False) fig, axs = plt.subplots(3, 1) fig.subplots_adjust(hspace=0.6) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Time Series and Dynamically Optimised Knots') axs[0].plot(knot_demonstrate_time, knot_demonstrate_time_series, Linewidth=2, zorder=100) axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].set_title('IMF 1 and Dynamically Knots') axs[1].plot(knot_demonstrate_time, imfs[1, :], Linewidth=2, zorder=100) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[1].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[2].set_title('IMF 2 and Dynamically Knots') axs[2].plot(knot_demonstrate_time, imfs[2, :], Linewidth=2, zorder=100) axs[2].set_yticks(ticks=[-2, 0, 2]) axs[2].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[2].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[0].plot(knots[0][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[0].legend(loc='lower left') axs[1].plot(knots[1][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') axs[2].plot(knots[2][0] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey', label='Knots') for i in range(3): for j in range(1, len(knots[i])): axs[i].plot(knots[i][j] * np.ones(101), np.linspace(-2, 2, 101), '--', c='grey') plt.savefig('jss_figures/knot_2.png') plt.show() # plot 1d - addition window = 81 fig, axs = plt.subplots(2, 1) fig.subplots_adjust(hspace=0.4) figure_size = plt.gcf().get_size_inches() factor = 0.8 plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1])) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Preprocess Filtering Demonstration') axs[1].set_title('Zoomed Region') preprocess_time = pseudo_alg_time.copy() np.random.seed(1) random.seed(1) preprocess_time_series = pseudo_alg_time_series + np.random.normal(0, 0.1, len(preprocess_time)) for i in random.sample(range(1000), 500): preprocess_time_series[i] += np.random.normal(0, 1) preprocess = Preprocess(time=preprocess_time, time_series=preprocess_time_series) axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)') axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12)) axs[0].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12)) axs[0].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13)) axs[0].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12)) axs[0].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize interpolation filter', 14)) axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey', label=textwrap.fill('Quantile window', 12)) axs[0].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey') axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black', label=textwrap.fill('Zoomed region', 10)) axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black') axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black') axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black') axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)') axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12)) axs[1].plot(preprocess_time, preprocess.mean_filter(window_width=window)[1], label=textwrap.fill('Mean filter', 12)) axs[1].plot(preprocess_time, preprocess.median_filter(window_width=window)[1], label=textwrap.fill('Median filter', 13)) axs[1].plot(preprocess_time, preprocess.winsorize(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize filter', 12)) axs[1].plot(preprocess_time, preprocess.winsorize_interpolate(window_width=window, a=0.8)[1], label=textwrap.fill('Windsorize interpolation filter', 14)) axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.90)[1], c='grey', label=textwrap.fill('Quantile window', 12)) axs[1].plot(preprocess_time, preprocess.quantile_filter(window_width=window, q=0.10)[1], c='grey') axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi) axs[1].set_ylim(-3, 3) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[np.pi]) axs[1].set_xticklabels(labels=[r'$\pi$']) box_0 = axs[0].get_position() axs[0].set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height]) axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15)) box_1 = axs[1].get_position() axs[1].set_position([box_1.x0 - 0.05, box_1.y0, box_1.width * 0.85, box_1.height]) plt.savefig('jss_figures/preprocess_filter.png') plt.show() # plot 1e - addition fig, axs = plt.subplots(2, 1) fig.subplots_adjust(hspace=0.4) figure_size = plt.gcf().get_size_inches() factor = 0.8 plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1])) plt.gcf().subplots_adjust(bottom=0.10) axs[0].set_title('Preprocess Smoothing Demonstration') axs[1].set_title('Zoomed Region') axs[0].plot(preprocess_time, preprocess_time_series, label='x(t)') axs[0].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12)) axs[0].plot(preprocess_time, preprocess.hp()[1], label=textwrap.fill('Hodrick-Prescott smoothing', 12)) axs[0].plot(preprocess_time, preprocess.hw(order=51)[1], label=textwrap.fill('Henderson-Whittaker smoothing', 13)) downsampled_and_decimated = preprocess.downsample() axs[0].plot(downsampled_and_decimated[0], downsampled_and_decimated[1], label=textwrap.fill('Downsampled & decimated', 11)) downsampled = preprocess.downsample(decimate=False) axs[0].plot(downsampled[0], downsampled[1], label=textwrap.fill('Downsampled', 13)) axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), -3 * np.ones(101), '--', c='black', label=textwrap.fill('Zoomed region', 10)) axs[0].plot(np.linspace(0.85 * np.pi, 1.15 * np.pi, 101), 3 * np.ones(101), '--', c='black') axs[0].plot(0.85 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black') axs[0].plot(1.15 * np.pi * np.ones(101), np.linspace(-3, 3, 101), '--', c='black') axs[0].set_yticks(ticks=[-2, 0, 2]) axs[0].set_xticks(ticks=[0, np.pi, 2 * np.pi]) axs[0].set_xticklabels(labels=['0', r'$\pi$', r'$2\pi$']) axs[1].plot(preprocess_time, preprocess_time_series, label='x(t)') axs[1].plot(pseudo_alg_time, pseudo_alg_time_series, '--', c='purple', label=textwrap.fill('Noiseless time series', 12)) axs[1].plot(preprocess_time, preprocess.hp()[1], label=textwrap.fill('Hodrick-Prescott smoothing', 12)) axs[1].plot(preprocess_time, preprocess.hw(order=51)[1], label=textwrap.fill('Henderson-Whittaker smoothing', 13)) axs[1].plot(downsampled_and_decimated[0], downsampled_and_decimated[1], label=textwrap.fill('Downsampled & decimated', 13)) axs[1].plot(downsampled[0], downsampled[1], label=textwrap.fill('Downsampled', 13)) axs[1].set_xlim(0.85 * np.pi, 1.15 * np.pi) axs[1].set_ylim(-3, 3) axs[1].set_yticks(ticks=[-2, 0, 2]) axs[1].set_xticks(ticks=[np.pi]) axs[1].set_xticklabels(labels=[r'$\pi$']) box_0 = axs[0].get_position() axs[0].set_position([box_0.x0 - 0.06, box_0.y0, box_0.width * 0.85, box_0.height]) axs[0].legend(loc='center left', bbox_to_anchor=(1, -0.15)) box_1 = axs[1].get_position() axs[1].set_position([box_1.x0 - 0.06, box_1.y0, box_1.width * 0.85, box_1.height]) plt.savefig('jss_figures/preprocess_smooth.png') plt.show() # plot 2 fig, axs = plt.subplots(1, 2, sharey=True) axs[0].set_title('Cubic B-Spline Bases') axs[0].plot(time, b_spline_basis[2, :].T, '--', label='Basis 1') axs[0].plot(time, b_spline_basis[3, :].T, '--', label='Basis 2') axs[0].plot(time, b_spline_basis[4, :].T, '--', label='Basis 3') axs[0].plot(time, b_spline_basis[5, :].T, '--', label='Basis 4') axs[0].legend(loc='upper left') axs[0].plot(5 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-') axs[0].plot(6 * np.ones(100), np.linspace(-0.2, 0.8, 100), 'k-') axs[0].set_xticks([5, 6]) axs[0].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $']) axs[0].set_xlim(4.5, 6.5) axs[1].set_title('Cubic Hermite Spline Bases') axs[1].plot(time, chsi_basis[10, :].T, '--') axs[1].plot(time, chsi_basis[11, :].T, '--') axs[1].plot(time, chsi_basis[12, :].T, '--') axs[1].plot(time, chsi_basis[13, :].T, '--') axs[1].plot(5 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-') axs[1].plot(6 * np.ones(100), np.linspace(-0.2, 1.2, 100), 'k-') axs[1].set_xticks([5, 6]) axs[1].set_xticklabels([r'$ \tau_k $', r'$ \tau_{k+1} $']) axs[1].set_xlim(4.5, 6.5) plt.savefig('jss_figures/comparing_bases.png') plt.show() # plot 3 a = 0.25 width = 0.2 time = np.linspace(0, (5 - a) * np.pi, 1001) time_series = np.cos(time) + np.cos(5 * time) utils = emd_utils.Utility(time=time, time_series=time_series) max_bool = utils.max_bool_func_1st_order_fd() maxima_x = time[max_bool] maxima_y = time_series[max_bool] min_bool = utils.min_bool_func_1st_order_fd() minima_x = time[min_bool] minima_y = time_series[min_bool] max_dash_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101) max_dash = maxima_y[-1] * np.ones_like(max_dash_time) min_dash_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101) min_dash = minima_y[-1] * np.ones_like(min_dash_time) dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101) dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101) max_discard = maxima_y[-1] max_discard_time = minima_x[-1] - maxima_x[-1] + minima_x[-1] max_discard_dash_time = np.linspace(max_discard_time - width, max_discard_time + width, 101) max_discard_dash = max_discard * np.ones_like(max_discard_dash_time) dash_2_time = np.linspace(minima_x[-1], max_discard_time, 101) dash_2 = np.linspace(minima_y[-1], max_discard, 101) end_point_time = time[-1] end_point = time_series[-1] time_reflect = np.linspace((5 - a) * np.pi, (5 + a) * np.pi, 101) time_series_reflect = np.flip(np.cos(np.linspace((5 - 2.6 * a) * np.pi, (5 - a) * np.pi, 101)) + np.cos(5 * np.linspace((5 - 2.6 * a) * np.pi, (5 - a) * np.pi, 101))) time_series_anti_reflect = time_series_reflect[0] - time_series_reflect utils = emd_utils.Utility(time=time, time_series=time_series_anti_reflect) anti_max_bool = utils.max_bool_func_1st_order_fd() anti_max_point_time = time_reflect[anti_max_bool] anti_max_point = time_series_anti_reflect[anti_max_bool] utils = emd_utils.Utility(time=time, time_series=time_series_reflect) no_anchor_max_time = time_reflect[utils.max_bool_func_1st_order_fd()] no_anchor_max = time_series_reflect[utils.max_bool_func_1st_order_fd()] point_1 = 5.4 length_distance = np.linspace(maxima_y[-1], minima_y[-1], 101) length_distance_time = point_1 * np.pi * np.ones_like(length_distance) length_time = np.linspace(point_1 * np.pi - width, point_1 * np.pi + width, 101) length_top = maxima_y[-1] * np.ones_like(length_time) length_bottom = minima_y[-1] * np.ones_like(length_time) point_2 = 5.2 length_distance_2 = np.linspace(time_series[-1], minima_y[-1], 101) length_distance_time_2 = point_2 * np.pi * np.ones_like(length_distance_2) length_time_2 = np.linspace(point_2 * np.pi - width, point_2 * np.pi + width, 101) length_top_2 = time_series[-1] * np.ones_like(length_time_2) length_bottom_2 = minima_y[-1] * np.ones_like(length_time_2) symmetry_axis_1_time = minima_x[-1] * np.ones(101) symmetry_axis_2_time = time[-1] * np.ones(101) symmetry_axis = np.linspace(-2, 2, 101) end_time = np.linspace(time[-1] - width, time[-1] + width, 101) end_signal = time_series[-1] * np.ones_like(end_time) anti_symmetric_time = np.linspace(time[-1] - 0.5, time[-1] + 0.5, 101) anti_symmetric_signal = time_series[-1] * np.ones_like(anti_symmetric_time) ax = plt.subplot(111) plt.gcf().subplots_adjust(bottom=0.10) plt.plot(time, time_series, LineWidth=2, label='Signal') plt.title('Symmetry Edge Effects Example') plt.plot(time_reflect, time_series_reflect, 'g--', LineWidth=2, label=textwrap.fill('Symmetric signal', 10)) plt.plot(time_reflect[:51], time_series_anti_reflect[:51], '--', c='purple', LineWidth=2, label=textwrap.fill('Anti-symmetric signal', 10)) plt.plot(max_dash_time, max_dash, 'k-') plt.plot(min_dash_time, min_dash, 'k-') plt.plot(dash_1_time, dash_1, 'k--') plt.plot(dash_2_time, dash_2, 'k--') plt.plot(length_distance_time, length_distance, 'k--') plt.plot(length_distance_time_2, length_distance_2, 'k--') plt.plot(length_time, length_top, 'k-') plt.plot(length_time, length_bottom, 'k-') plt.plot(length_time_2, length_top_2, 'k-') plt.plot(length_time_2, length_bottom_2, 'k-') plt.plot(end_time, end_signal, 'k-') plt.plot(symmetry_axis_1_time, symmetry_axis, 'r--', zorder=1) plt.plot(anti_symmetric_time, anti_symmetric_signal, 'r--', zorder=1) plt.plot(symmetry_axis_2_time, symmetry_axis, 'r--', label=textwrap.fill('Axes of symmetry', 10), zorder=1) plt.text(5.1 * np.pi, -0.7, r'$\beta$L') plt.text(5.34 * np.pi, -0.05, 'L') plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima') plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima') plt.scatter(max_discard_time, max_discard, c='purple', zorder=4, label=textwrap.fill('Symmetric Discard maxima', 10)) plt.scatter(end_point_time, end_point, c='orange', zorder=4, label=textwrap.fill('Symmetric Anchor maxima', 10)) plt.scatter(anti_max_point_time, anti_max_point, c='green', zorder=4, label=textwrap.fill('Anti-Symmetric maxima', 10)) plt.scatter(no_anchor_max_time, no_anchor_max, c='gray', zorder=4, label=textwrap.fill('Symmetric maxima', 10)) plt.xlim(3.9 * np.pi, 5.5 * np.pi) plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$')) plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2')) box_0 = ax.get_position() ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.savefig('jss_figures/edge_effects_symmetry_anti.png') plt.show() # plot 4 a = 0.21 width = 0.2 time = np.linspace(0, (5 - a) * np.pi, 1001) time_series = np.cos(time) + np.cos(5 * time) utils = emd_utils.Utility(time=time, time_series=time_series) max_bool = utils.max_bool_func_1st_order_fd() maxima_x = time[max_bool] maxima_y = time_series[max_bool] min_bool = utils.min_bool_func_1st_order_fd() minima_x = time[min_bool] minima_y = time_series[min_bool] max_dash_1 = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101) max_dash_2 = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101) max_dash_time_1 = maxima_x[-1] * np.ones_like(max_dash_1) max_dash_time_2 = maxima_x[-2] * np.ones_like(max_dash_1) min_dash_1 = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101) min_dash_2 = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101) min_dash_time_1 = minima_x[-1] * np.ones_like(min_dash_1) min_dash_time_2 = minima_x[-2] * np.ones_like(min_dash_1) dash_1_time = np.linspace(maxima_x[-1], minima_x[-1], 101) dash_1 = np.linspace(maxima_y[-1], minima_y[-1], 101) dash_2_time = np.linspace(maxima_x[-1], minima_x[-2], 101) dash_2 = np.linspace(maxima_y[-1], minima_y[-2], 101) s1 = (minima_y[-2] - maxima_y[-1]) / (minima_x[-2] - maxima_x[-1]) slope_based_maximum_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2]) slope_based_maximum = minima_y[-1] + (slope_based_maximum_time - minima_x[-1]) * s1 max_dash_time_3 = slope_based_maximum_time * np.ones_like(max_dash_1) max_dash_3 = np.linspace(slope_based_maximum - width, slope_based_maximum + width, 101) dash_3_time = np.linspace(minima_x[-1], slope_based_maximum_time, 101) dash_3 = np.linspace(minima_y[-1], slope_based_maximum, 101) s2 = (minima_y[-1] - maxima_y[-1]) / (minima_x[-1] - maxima_x[-1]) slope_based_minimum_time = minima_x[-1] + (minima_x[-1] - minima_x[-2]) slope_based_minimum = slope_based_maximum - (slope_based_maximum_time - slope_based_minimum_time) * s2 min_dash_time_3 = slope_based_minimum_time * np.ones_like(min_dash_1) min_dash_3 = np.linspace(slope_based_minimum - width, slope_based_minimum + width, 101) dash_4_time = np.linspace(slope_based_maximum_time, slope_based_minimum_time) dash_4 = np.linspace(slope_based_maximum, slope_based_minimum) maxima_dash = np.linspace(2.5 - width, 2.5 + width, 101) maxima_dash_time_1 = maxima_x[-2] * np.ones_like(maxima_dash) maxima_dash_time_2 = maxima_x[-1] * np.ones_like(maxima_dash) maxima_dash_time_3 = slope_based_maximum_time * np.ones_like(maxima_dash) maxima_line_dash_time = np.linspace(maxima_x[-2], slope_based_maximum_time, 101) maxima_line_dash = 2.5 * np.ones_like(maxima_line_dash_time) minima_dash = np.linspace(-3.4 - width, -3.4 + width, 101) minima_dash_time_1 = minima_x[-2] * np.ones_like(minima_dash) minima_dash_time_2 = minima_x[-1] * np.ones_like(minima_dash) minima_dash_time_3 = slope_based_minimum_time * np.ones_like(minima_dash) minima_line_dash_time = np.linspace(minima_x[-2], slope_based_minimum_time, 101) minima_line_dash = -3.4 * np.ones_like(minima_line_dash_time) # slightly edit signal to make difference between slope-based method and improved slope-based method more clear time_series[time >= minima_x[-1]] = 1.5 * (time_series[time >= minima_x[-1]] - time_series[time == minima_x[-1]]) + \ time_series[time == minima_x[-1]] improved_slope_based_maximum_time = time[-1] improved_slope_based_maximum = time_series[-1] improved_slope_based_minimum_time = slope_based_minimum_time improved_slope_based_minimum = improved_slope_based_maximum + s2 * (improved_slope_based_minimum_time - improved_slope_based_maximum_time) min_dash_4 = np.linspace(improved_slope_based_minimum - width, improved_slope_based_minimum + width, 101) min_dash_time_4 = improved_slope_based_minimum_time * np.ones_like(min_dash_4) dash_final_time = np.linspace(improved_slope_based_maximum_time, improved_slope_based_minimum_time, 101) dash_final = np.linspace(improved_slope_based_maximum, improved_slope_based_minimum, 101) ax = plt.subplot(111) figure_size = plt.gcf().get_size_inches() factor = 0.9 plt.gcf().set_size_inches((figure_size[0], factor * figure_size[1])) plt.gcf().subplots_adjust(bottom=0.10) plt.plot(time, time_series, LineWidth=2, label='Signal') plt.title('Slope-Based Edge Effects Example') plt.plot(max_dash_time_1, max_dash_1, 'k-') plt.plot(max_dash_time_2, max_dash_2, 'k-') plt.plot(max_dash_time_3, max_dash_3, 'k-') plt.plot(min_dash_time_1, min_dash_1, 'k-') plt.plot(min_dash_time_2, min_dash_2, 'k-') plt.plot(min_dash_time_3, min_dash_3, 'k-') plt.plot(min_dash_time_4, min_dash_4, 'k-') plt.plot(maxima_dash_time_1, maxima_dash, 'k-') plt.plot(maxima_dash_time_2, maxima_dash, 'k-') plt.plot(maxima_dash_time_3, maxima_dash, 'k-') plt.plot(minima_dash_time_1, minima_dash, 'k-') plt.plot(minima_dash_time_2, minima_dash, 'k-') plt.plot(minima_dash_time_3, minima_dash, 'k-') plt.text(4.34 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$') plt.text(4.74 * np.pi, -3.2, r'$\Delta{t^{min}_{m}}$') plt.text(4.12 * np.pi, 2, r'$\Delta{t^{max}_{M}}$') plt.text(4.50 * np.pi, 2, r'$\Delta{t^{max}_{M}}$') plt.text(4.30 * np.pi, 0.35, r'$s_1$') plt.text(4.43 * np.pi, -0.20, r'$s_2$') plt.text(4.30 * np.pi + (minima_x[-1] - minima_x[-2]), 0.35 + (minima_y[-1] - minima_y[-2]), r'$s_1$') plt.text(4.43 * np.pi + (slope_based_minimum_time - minima_x[-1]), -0.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$') plt.text(4.50 * np.pi + (slope_based_minimum_time - minima_x[-1]), 1.20 + (slope_based_minimum - minima_y[-1]), r'$s_2$') plt.plot(minima_line_dash_time, minima_line_dash, 'k--') plt.plot(maxima_line_dash_time, maxima_line_dash, 'k--') plt.plot(dash_1_time, dash_1, 'k--') plt.plot(dash_2_time, dash_2, 'k--') plt.plot(dash_3_time, dash_3, 'k--') plt.plot(dash_4_time, dash_4, 'k--') plt.plot(dash_final_time, dash_final, 'k--') plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima') plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima') plt.scatter(slope_based_maximum_time, slope_based_maximum, c='orange', zorder=4, label=textwrap.fill('Slope-based maximum', 11)) plt.scatter(slope_based_minimum_time, slope_based_minimum, c='purple', zorder=4, label=textwrap.fill('Slope-based minimum', 11)) plt.scatter(improved_slope_based_maximum_time, improved_slope_based_maximum, c='deeppink', zorder=4, label=textwrap.fill('Improved slope-based maximum', 11)) plt.scatter(improved_slope_based_minimum_time, improved_slope_based_minimum, c='dodgerblue', zorder=4, label=textwrap.fill('Improved slope-based minimum', 11)) plt.xlim(3.9 * np.pi, 5.5 * np.pi) plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$')) plt.yticks((-3, -2, -1, 0, 1, 2), ('-3', '-2', '-1', '0', '1', '2')) box_0 = ax.get_position() ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.85, box_0.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.savefig('jss_figures/edge_effects_slope_based.png') plt.show() # plot 5 a = 0.25 width = 0.2 time = np.linspace(0, (5 - a) * np.pi, 1001) time_series = np.cos(time) + np.cos(5 * time) utils = emd_utils.Utility(time=time, time_series=time_series) max_bool = utils.max_bool_func_1st_order_fd() maxima_x = time[max_bool] maxima_y = time_series[max_bool] min_bool = utils.min_bool_func_1st_order_fd() minima_x = time[min_bool] minima_y = time_series[min_bool] A2 = np.abs(maxima_y[-2] - minima_y[-2]) / 2 A1 = np.abs(maxima_y[-1] - minima_y[-1]) / 2 P2 = 2 * np.abs(maxima_x[-2] - minima_x[-2]) P1 = 2 * np.abs(maxima_x[-1] - minima_x[-1]) Huang_time = (P1 / P2) * (time[time >= maxima_x[-2]] - time[time == maxima_x[-2]]) + maxima_x[-1] Huang_wave = (A1 / A2) * (time_series[time >= maxima_x[-2]] - time_series[time == maxima_x[-2]]) + maxima_y[-1] Coughlin_time = Huang_time Coughlin_wave = A1 * np.cos(2 * np.pi * (1 / P1) * (Coughlin_time - Coughlin_time[0])) Average_max_time = maxima_x[-1] + (maxima_x[-1] - maxima_x[-2]) Average_max = (maxima_y[-2] + maxima_y[-1]) / 2 Average_min_time = minima_x[-1] + (minima_x[-1] - minima_x[-2]) Average_min = (minima_y[-2] + minima_y[-1]) / 2 utils_Huang = emd_utils.Utility(time=time, time_series=Huang_wave) Huang_max_bool = utils_Huang.max_bool_func_1st_order_fd() Huang_min_bool = utils_Huang.min_bool_func_1st_order_fd() utils_Coughlin = emd_utils.Utility(time=time, time_series=Coughlin_wave) Coughlin_max_bool = utils_Coughlin.max_bool_func_1st_order_fd() Coughlin_min_bool = utils_Coughlin.min_bool_func_1st_order_fd() Huang_max_time = Huang_time[Huang_max_bool] Huang_max = Huang_wave[Huang_max_bool] Huang_min_time = Huang_time[Huang_min_bool] Huang_min = Huang_wave[Huang_min_bool] Coughlin_max_time = Coughlin_time[Coughlin_max_bool] Coughlin_max = Coughlin_wave[Coughlin_max_bool] Coughlin_min_time = Coughlin_time[Coughlin_min_bool] Coughlin_min = Coughlin_wave[Coughlin_min_bool] max_2_x_time = np.linspace(maxima_x[-2] - width, maxima_x[-2] + width, 101) max_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101) max_2_x = maxima_y[-2] * np.ones_like(max_2_x_time) min_2_x_time = np.linspace(minima_x[-2] - width, minima_x[-2] + width, 101) min_2_x_time_side = np.linspace(5.3 * np.pi - width, 5.3 * np.pi + width, 101) min_2_x = minima_y[-2] * np.ones_like(min_2_x_time) dash_max_min_2_x = np.linspace(minima_y[-2], maxima_y[-2], 101) dash_max_min_2_x_time = 5.3 * np.pi * np.ones_like(dash_max_min_2_x) max_2_y = np.linspace(maxima_y[-2] - width, maxima_y[-2] + width, 101) max_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101) max_2_y_time = maxima_x[-2] * np.ones_like(max_2_y) min_2_y = np.linspace(minima_y[-2] - width, minima_y[-2] + width, 101) min_2_y_side = np.linspace(-1.8 - width, -1.8 + width, 101) min_2_y_time = minima_x[-2] * np.ones_like(min_2_y) dash_max_min_2_y_time = np.linspace(minima_x[-2], maxima_x[-2], 101) dash_max_min_2_y = -1.8 * np.ones_like(dash_max_min_2_y_time) max_1_x_time = np.linspace(maxima_x[-1] - width, maxima_x[-1] + width, 101) max_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101) max_1_x = maxima_y[-1] * np.ones_like(max_1_x_time) min_1_x_time = np.linspace(minima_x[-1] - width, minima_x[-1] + width, 101) min_1_x_time_side = np.linspace(5.4 * np.pi - width, 5.4 * np.pi + width, 101) min_1_x = minima_y[-1] * np.ones_like(min_1_x_time) dash_max_min_1_x = np.linspace(minima_y[-1], maxima_y[-1], 101) dash_max_min_1_x_time = 5.4 * np.pi * np.ones_like(dash_max_min_1_x) max_1_y = np.linspace(maxima_y[-1] - width, maxima_y[-1] + width, 101) max_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101) max_1_y_time = maxima_x[-1] * np.ones_like(max_1_y) min_1_y = np.linspace(minima_y[-1] - width, minima_y[-1] + width, 101) min_1_y_side = np.linspace(-2.1 - width, -2.1 + width, 101) min_1_y_time = minima_x[-1] * np.ones_like(min_1_y) dash_max_min_1_y_time = np.linspace(minima_x[-1], maxima_x[-1], 101) dash_max_min_1_y = -2.1 * np.ones_like(dash_max_min_1_y_time) ax = plt.subplot(111) plt.gcf().subplots_adjust(bottom=0.10) plt.title('Characteristic Wave Effects Example') plt.plot(time, time_series, LineWidth=2, label='Signal') plt.scatter(Huang_max_time, Huang_max, c='magenta', zorder=4, label=textwrap.fill('Huang maximum', 10)) plt.scatter(Huang_min_time, Huang_min, c='lime', zorder=4, label=textwrap.fill('Huang minimum', 10)) plt.scatter(Coughlin_max_time, Coughlin_max, c='darkorange', zorder=4, label=textwrap.fill('Coughlin maximum', 14)) plt.scatter(Coughlin_min_time, Coughlin_min, c='dodgerblue', zorder=4, label=textwrap.fill('Coughlin minimum', 14)) plt.scatter(Average_max_time, Average_max, c='orangered', zorder=4, label=textwrap.fill('Average maximum', 14)) plt.scatter(Average_min_time, Average_min, c='cyan', zorder=4, label=textwrap.fill('Average minimum', 14)) plt.scatter(maxima_x, maxima_y, c='r', zorder=4, label='Maxima') plt.scatter(minima_x, minima_y, c='b', zorder=4, label='Minima') plt.plot(Huang_time, Huang_wave, '--', c='darkviolet', label=textwrap.fill('Huang Characteristic Wave', 14)) plt.plot(Coughlin_time, Coughlin_wave, '--', c='darkgreen', label=textwrap.fill('Coughlin Characteristic Wave', 14)) plt.plot(max_2_x_time, max_2_x, 'k-') plt.plot(max_2_x_time_side, max_2_x, 'k-') plt.plot(min_2_x_time, min_2_x, 'k-') plt.plot(min_2_x_time_side, min_2_x, 'k-') plt.plot(dash_max_min_2_x_time, dash_max_min_2_x, 'k--') plt.text(5.16 * np.pi, 0.85, r'$2a_2$') plt.plot(max_2_y_time, max_2_y, 'k-') plt.plot(max_2_y_time, max_2_y_side, 'k-') plt.plot(min_2_y_time, min_2_y, 'k-') plt.plot(min_2_y_time, min_2_y_side, 'k-') plt.plot(dash_max_min_2_y_time, dash_max_min_2_y, 'k--') plt.text(4.08 * np.pi, -2.2, r'$\frac{p_2}{2}$') plt.plot(max_1_x_time, max_1_x, 'k-') plt.plot(max_1_x_time_side, max_1_x, 'k-') plt.plot(min_1_x_time, min_1_x, 'k-') plt.plot(min_1_x_time_side, min_1_x, 'k-') plt.plot(dash_max_min_1_x_time, dash_max_min_1_x, 'k--') plt.text(5.42 * np.pi, -0.1, r'$2a_1$') plt.plot(max_1_y_time, max_1_y, 'k-') plt.plot(max_1_y_time, max_1_y_side, 'k-') plt.plot(min_1_y_time, min_1_y, 'k-') plt.plot(min_1_y_time, min_1_y_side, 'k-') plt.plot(dash_max_min_1_y_time, dash_max_min_1_y, 'k--') plt.text(4.48 * np.pi, -2.5, r'$\frac{p_1}{2}$') plt.xlim(3.9 * np.pi, 5.6 * np.pi) plt.xticks((4 * np.pi, 5 * np.pi), (r'4$\pi$', r'5$\pi$')) plt.yticks((-2, -1, 0, 1, 2), ('-2', '-1', '0', '1', '2')) box_0 = ax.get_position() ax.set_position([box_0.x0 - 0.05, box_0.y0, box_0.width * 0.84, box_0.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.savefig('jss_figures/edge_effects_characteristic_wave.png') plt.show() # plot 6 t = np.linspace(5, 95, 100) signal_orig = np.cos(2 * np.pi * t / 50) + 0.6 * np.cos(2 * np.pi * t / 25) + 0.5 * np.sin(2 * np.pi * t / 200) util_nn = emd_utils.Utility(time=t, time_series=signal_orig) maxima = signal_orig[util_nn.max_bool_func_1st_order_fd()] minima = signal_orig[util_nn.min_bool_func_1st_order_fd()] cs_max = CubicSpline(t[util_nn.max_bool_func_1st_order_fd()], maxima) cs_min = CubicSpline(t[util_nn.min_bool_func_1st_order_fd()], minima) time = np.linspace(0, 5 * np.pi, 1001) lsq_signal = np.cos(time) + np.cos(5 * time) knots = np.linspace(0, 5 * np.pi, 101) time_extended = time_extension(time) time_series_extended = np.zeros_like(time_extended) / 0 time_series_extended[int(len(lsq_signal) - 1):int(2 * (len(lsq_signal) - 1) + 1)] = lsq_signal neural_network_m = 200 neural_network_k = 100 # forward -> P = np.zeros((int(neural_network_k + 1), neural_network_m)) for col in range(neural_network_m): P[:-1, col] = lsq_signal[(-(neural_network_m + neural_network_k - col)):(-(neural_network_m - col))] P[-1, col] = 1 # for additive constant t = lsq_signal[-neural_network_m:] # test - top seed_weights =
np.ones(neural_network_k)
numpy.ones
import os import sys BASE_DIR = os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(BASE_DIR) import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torchvision.ops import nms from simpleAICV.detection.models.anchor import RetinaAnchors, FCOSPositions, Yolov3Anchors, YoloxAnchors, TTFNetPositions __all__ = [ 'RetinaDecoder', 'FCOSDecoder', 'Yolov4Decoder', 'Yolov5Decoder', 'CenterNetDecoder', 'TTFNetDecoder', ] class DetNMSMethod: def __init__(self, nms_type='python_nms', nms_threshold=0.5): assert nms_type in ['torch_nms', 'python_nms', 'diou_python_nms'], 'wrong nms type!' self.nms_type = nms_type self.nms_threshold = nms_threshold def __call__(self, sorted_bboxes, sorted_scores): ''' sorted_bboxes:[anchor_nums,4],4:x_min,y_min,x_max,y_max sorted_scores:[anchor_nums],classification predict scores ''' if self.nms_type == 'torch_nms': sorted_bboxes, sorted_scores = torch.tensor(sorted_bboxes).cpu( ).detach(), torch.tensor(sorted_scores).cpu().detach() keep = nms(sorted_bboxes, sorted_scores, self.nms_threshold) keep = keep.cpu().detach().numpy() else: sorted_bboxes_wh = sorted_bboxes[:, 2:4] - sorted_bboxes[:, 0:2] sorted_bboxes_areas = sorted_bboxes_wh[:, 0] * sorted_bboxes_wh[:, 1] sorted_bboxes_areas = np.maximum(sorted_bboxes_areas, 0) indexes = np.array([i for i in range(sorted_scores.shape[0])], dtype=np.int32) keep = [] while indexes.shape[0] > 0: keep_idx = indexes[0] keep.append(keep_idx) indexes = indexes[1:] if len(indexes) == 0: break keep_box_area = sorted_bboxes_areas[keep_idx] overlap_area_top_left = np.maximum( sorted_bboxes[keep_idx, 0:2], sorted_bboxes[indexes, 0:2]) overlap_area_bot_right = np.minimum( sorted_bboxes[keep_idx, 2:4], sorted_bboxes[indexes, 2:4]) overlap_area_sizes = np.maximum( overlap_area_bot_right - overlap_area_top_left, 0) overlap_area = overlap_area_sizes[:, 0] * overlap_area_sizes[:, 1] # compute ious for top1 pred_bbox and the other pred_bboxes union_area = keep_box_area + sorted_bboxes_areas[ indexes] - overlap_area union_area = np.maximum(union_area, 1e-4) ious = overlap_area / union_area if self.nms_type == 'diou_python_nms': enclose_area_top_left = np.minimum( sorted_bboxes[keep_idx, 0:2], sorted_bboxes[indexes, 0:2]) enclose_area_bot_right = np.maximum( sorted_bboxes[keep_idx, 2:4], sorted_bboxes[indexes, 2:4]) enclose_area_sizes = np.maximum( enclose_area_bot_right - enclose_area_top_left, 0) # c2:convex diagonal squared c2 = ((enclose_area_sizes)**2).sum(axis=1) c2 = np.maximum(c2, 1e-4) # p2:center distance squared keep_box_ctr = (sorted_bboxes[keep_idx, 2:4] + sorted_bboxes[keep_idx, 0:2]) / 2 other_boxes_ctr = (sorted_bboxes[indexes, 2:4] + sorted_bboxes[indexes, 0:2]) / 2 p2 = (keep_box_ctr - other_boxes_ctr)**2 p2 = p2.sum(axis=1) ious = ious - p2 / c2 candidate_indexes = np.where(ious < self.nms_threshold)[0] indexes = indexes[candidate_indexes] keep = np.array(keep) return keep class DecodeMethod: def __init__(self, max_object_num=100, min_score_threshold=0.05, topn=1000, nms_type='python_nms', nms_threshold=0.5): self.max_object_num = max_object_num self.min_score_threshold = min_score_threshold self.topn = topn self.nms_function = DetNMSMethod(nms_type=nms_type, nms_threshold=nms_threshold) def __call__(self, cls_scores, cls_classes, pred_bboxes): batch_size = cls_scores.shape[0] batch_scores = np.ones( (batch_size, self.max_object_num), dtype=np.float32) * (-1) batch_classes = np.ones( (batch_size, self.max_object_num), dtype=np.float32) * (-1) batch_bboxes = np.zeros((batch_size, self.max_object_num, 4), dtype=np.float32) for i, (per_image_scores, per_image_score_classes, per_image_pred_bboxes) in enumerate( zip(cls_scores, cls_classes, pred_bboxes)): score_classes = per_image_score_classes[ per_image_scores > self.min_score_threshold].astype(np.float32) bboxes = per_image_pred_bboxes[ per_image_scores > self.min_score_threshold].astype(np.float32) scores = per_image_scores[ per_image_scores > self.min_score_threshold].astype(np.float32) if scores.shape[0] != 0: # descending sort sorted_indexes = np.argsort(-scores) sorted_scores = scores[sorted_indexes] sorted_score_classes = score_classes[sorted_indexes] sorted_bboxes = bboxes[sorted_indexes] if self.topn < sorted_scores.shape[0]: sorted_scores = sorted_scores[0:self.topn] sorted_score_classes = sorted_score_classes[0:self.topn] sorted_bboxes = sorted_bboxes[0:self.topn] # nms keep = self.nms_function(sorted_bboxes, sorted_scores) keep_scores = sorted_scores[keep] keep_classes = sorted_score_classes[keep] keep_bboxes = sorted_bboxes[keep] final_detection_num = min(self.max_object_num, keep_scores.shape[0]) batch_scores[ i, 0:final_detection_num] = keep_scores[0:final_detection_num] batch_classes[i, 0:final_detection_num] = keep_classes[ 0:final_detection_num] batch_bboxes[i, 0:final_detection_num, :] = keep_bboxes[ 0:final_detection_num, :] # batch_scores shape:[batch_size,max_object_num] # batch_classes shape:[batch_size,max_object_num] # batch_bboxes shape[batch_size,max_object_num,4] return [batch_scores, batch_classes, batch_bboxes] class RetinaDecoder: def __init__(self, areas=[[32, 32], [64, 64], [128, 128], [256, 256], [512, 512]], ratios=[0.5, 1, 2], scales=[2**0, 2**(1.0 / 3.0), 2**(2.0 / 3.0)], strides=[8, 16, 32, 64, 128], max_object_num=100, min_score_threshold=0.05, topn=1000, nms_type='python_nms', nms_threshold=0.5): assert nms_type in ['torch_nms', 'python_nms', 'diou_python_nms'], 'wrong nms type!' self.anchors = RetinaAnchors(areas=areas, ratios=ratios, scales=scales, strides=strides) self.decode_function = DecodeMethod( max_object_num=max_object_num, min_score_threshold=min_score_threshold, topn=topn, nms_type=nms_type, nms_threshold=nms_threshold) def __call__(self, preds): cls_preds, reg_preds = preds feature_size = [[ per_level_cls_pred.shape[2], per_level_cls_pred.shape[1] ] for per_level_cls_pred in cls_preds] one_image_anchors = self.anchors(feature_size) cls_preds = np.concatenate([ per_cls_pred.cpu().detach().numpy().reshape( per_cls_pred.shape[0], -1, per_cls_pred.shape[-1]) for per_cls_pred in cls_preds ], axis=1) reg_preds = np.concatenate([ per_reg_pred.cpu().detach().numpy().reshape( per_reg_pred.shape[0], -1, per_reg_pred.shape[-1]) for per_reg_pred in reg_preds ], axis=1) one_image_anchors = np.concatenate([ per_level_anchor.reshape(-1, per_level_anchor.shape[-1]) for per_level_anchor in one_image_anchors ], axis=0) batch_anchors = np.repeat(np.expand_dims(one_image_anchors, axis=0), cls_preds.shape[0], axis=0) cls_classes = np.argmax(cls_preds, axis=2) cls_scores = np.concatenate([ np.expand_dims(per_image_preds[np.arange(per_image_preds.shape[0]), per_image_cls_classes], axis=0) for per_image_preds, per_image_cls_classes in zip( cls_preds, cls_classes) ], axis=0) pred_bboxes = self.snap_txtytwth_to_x1y1x2y2(reg_preds, batch_anchors) [batch_scores, batch_classes, batch_bboxes] = self.decode_function(cls_scores, cls_classes, pred_bboxes) # batch_scores shape:[batch_size,max_object_num] # batch_classes shape:[batch_size,max_object_num] # batch_bboxes shape[batch_size,max_object_num,4] return [batch_scores, batch_classes, batch_bboxes] def snap_txtytwth_to_x1y1x2y2(self, reg_preds, anchors): ''' snap reg heads to pred bboxes reg_preds:[batch_size,anchor_nums,4],4:[tx,ty,tw,th] anchors:[batch_size,anchor_nums,4],4:[x_min,y_min,x_max,y_max] ''' anchors_wh = anchors[:, :, 2:4] - anchors[:, :, 0:2] anchors_ctr = anchors[:, :, 0:2] + 0.5 * anchors_wh pred_bboxes_wh = np.exp(reg_preds[:, :, 2:4]) * anchors_wh pred_bboxes_ctr = reg_preds[:, :, :2] * anchors_wh + anchors_ctr pred_bboxes_x_min_y_min = pred_bboxes_ctr - 0.5 * pred_bboxes_wh pred_bboxes_x_max_y_max = pred_bboxes_ctr + 0.5 * pred_bboxes_wh pred_bboxes = np.concatenate( [pred_bboxes_x_min_y_min, pred_bboxes_x_max_y_max], axis=2) pred_bboxes = pred_bboxes.astype(np.int32) # pred bboxes shape:[batch,anchor_nums,4] return pred_bboxes class FCOSDecoder: def __init__(self, strides=[8, 16, 32, 64, 128], max_object_num=100, min_score_threshold=0.05, topn=1000, nms_type='python_nms', nms_threshold=0.6): assert nms_type in ['torch_nms', 'python_nms', 'diou_python_nms'], 'wrong nms type!' self.positions = FCOSPositions(strides=strides) self.decode_function = DecodeMethod( max_object_num=max_object_num, min_score_threshold=min_score_threshold, topn=topn, nms_type=nms_type, nms_threshold=nms_threshold) def __call__(self, preds): cls_preds, reg_preds, center_preds = preds feature_size = [[ per_level_cls_pred.shape[2], per_level_cls_pred.shape[1] ] for per_level_cls_pred in cls_preds] one_image_positions = self.positions(feature_size) cls_preds = [ per_cls_pred.cpu().detach().numpy().reshape( per_cls_pred.shape[0], -1, per_cls_pred.shape[-1]) for per_cls_pred in cls_preds ] reg_preds = [ per_reg_pred.cpu().detach().numpy().reshape( per_reg_pred.shape[0], -1, per_reg_pred.shape[-1]) for per_reg_pred in reg_preds ] center_preds = [ per_center_pred.cpu().detach().numpy().reshape( per_center_pred.shape[0], -1, per_center_pred.shape[-1]) for per_center_pred in center_preds ] cls_preds = np.concatenate(cls_preds, axis=1) reg_preds =
np.concatenate(reg_preds, axis=1)
numpy.concatenate
#!/usr/bin/python # encoding: utf-8 import random import torch from torch.utils.data import Dataset from torch.utils.data import sampler import torchvision.transforms as transforms import lmdb import six import sys import bisect import warnings from PIL import Image import numpy as np import string import cv2 import os import re sys.path.append('../') from utils import str_filt from utils.labelmaps import get_vocabulary, labels2strs from IPython import embed from pyfasttext import FastText random.seed(0) from utils import utils_deblur from utils import utils_sisr as sr from utils import utils_image as util import imgaug.augmenters as iaa from scipy import io as sio scale = 0.90 kernel = utils_deblur.fspecial('gaussian', 15, 1.) noise_level_img = 0. def rand_crop(im): w, h = im.size p1 = (random.uniform(0, w*(1-scale)), random.uniform(0, h*(1-scale))) p2 = (p1[0] + scale*w, p1[1] + scale*h) return im.crop(p1 + p2) def central_crop(im): w, h = im.size p1 = (((1-scale)*w/2), (1-scale)*h/2) p2 = ((1+scale)*w/2, (1+scale)*h/2) return im.crop(p1 + p2) def buf2PIL(txn, key, type='RGB'): imgbuf = txn.get(key) buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) im = Image.open(buf).convert(type) return im class lmdbDataset_realBadSet(Dataset): def __init__(self, root=None, voc_type='upper', max_len=100, test=False, rotate=False): super(lmdbDataset_realBadSet, self).__init__() # root should be detailed by upper folder of images # anno_dir = os.path.join(root, "ANNOTATION") self.imlist = os.listdir(root) self.image_dir = root # self.impath_list = [] # self.anno_list = [] print("collect images from:", root) # mode = "train" if root.split("/")[-2] == "TRAIN" else "test" self.nSamples = len(self.imlist) print("Done, we have ", self.nSamples, "samples...") self.voc_type = voc_type self.max_len = max_len self.test = test def __len__(self): return self.nSamples def __getitem__(self, index): idx = index % self.nSamples imfile = self.imlist[index] image_path = os.path.join(self.image_dir, imfile) print("imfile:", imfile) word = imfile.split("_")[1] if len(imfile.split("_")) > 1 else "" if not os.path.isfile(image_path): print("File not found for", image_path) return self[index+1] try: img_HR = Image.open(image_path) img_lr = img_HR.copy() img_lr_np = np.array(img_lr).astype(np.uint8) img_lry = cv2.cvtColor(img_lr_np, cv2.COLOR_RGB2YUV)[..., 0] img_lry = Image.fromarray(img_lry) img_HR_np = np.array(img_HR).astype(np.uint8) img_HRy = cv2.cvtColor(img_HR_np, cv2.COLOR_RGB2YUV)[..., 0] img_HRy = Image.fromarray(img_HRy) if img_HR.size[0] < 2 or img_HR.size[1] < 2: print("img_HR:", img_HR.size) return self[(index + 1) % self.nSamples] except ValueError: print("File not found for", image_path) return self[(index + 1) % self.nSamples] # print("annos:", img_HR_np.shape, img_lr_np.shape) # label_str = str_filt(word, self.voc_type) return img_HR, img_lr, img_HRy, img_lry, imfile class lmdbDataset(Dataset): def __init__(self, root=None, voc_type='upper', max_len=31, test=True): super(lmdbDataset, self).__init__() self.env = lmdb.open( root, max_readers=1, readonly=True, lock=False, readahead=False, meminit=False) if not self.env: print('cannot creat lmdb from %s' % (root)) sys.exit(0) with self.env.begin(write=False) as txn: nSamples = int(txn.get(b'num-samples')) self.nSamples = nSamples self.max_len = max_len self.voc_type = voc_type def __len__(self): return self.nSamples def __getitem__(self, index): assert index <= len(self), 'index range error' index += 1 txn = self.env.begin(write=False) label_key = b'label-%09d' % index word = str(txn.get(label_key).decode()) try: img = buf2PIL(txn, b'image_hr-%09d' % index, 'RGB') except TypeError: img = buf2PIL(txn, b'image-%09d' % index, 'RGB') except IOError or len(label) > self.max_len: return self[index + 1] label_str = str_filt(word, self.voc_type) return img, label_str def get_Syn_800K_with_words(mode, dataset_dir, lang_seq=False): # if mode == 'train': # image_dir = os.path.join(dataset_dir, 'image_9000/') # gt_dir = os.path.join(dataset_dir, 'txt_9000/') # ./ICPR_dataset/update_ICPR_text_train_part1_20180316/train_1000/ # else: # image_dir = os.path.join(dataset_dir, 'image_1000/') # gt_dir = os.path.join(dataset_dir, 'txt_1000/') word2vec_mat = '../selected_smaller_dic.mat' #mat_data = sio.loadmat(word2vec_mat) #all_words = mat_data['selected_vocab'] #all_vecs = mat_data['selected_dict'] #w2v_dict = {} #print('Building w2v dictionary...') #for i in range(len(all_words)): # w2v_dict[all_words[i][0][0]] = all_vecs[i] #print('done') mat_file = os.path.join(dataset_dir, 'gt.mat') # print('mat_file:', mat_file) mat_f = sio.loadmat(mat_file) wordBBs = mat_f['wordBB'][0] txt_annos = mat_f['txt'][0] im_names = mat_f['imnames'][0] sam_size = len(txt_annos) # image_list = os.listdir(image_dir) # image_list.sort() im_infos = [] if mode == 'train': cache_pkl = './data_cache/Syn_800K_training' else: cache_pkl = './data_cache/Syn_800K_testing' if lang_seq: cache_pkl += "_lang_seq" cache_pkl += "_E2E.pkl" if os.path.isfile(cache_pkl): return pickle.load(open(cache_pkl, 'rb')) pro_cnt = 0 im_range = (0, 200000) if mode == "train" else (200000, 205000) for i in range(im_range[0], im_range[1]): txts = txt_annos[i] im_path = os.path.join(dataset_dir, im_names[i][0]) word_boxes = wordBBs[i] pro_cnt += 1 if pro_cnt % 2000 == 0: print('processed image:', str(pro_cnt) + '/' + str(im_range[1] - im_range[0])) cnt = 0 # print('word_boxes:', word_boxes.shape) im = cv2.imread(im_path) if len(word_boxes.shape) < 3: word_boxes = np.expand_dims(word_boxes, -1) words = [] boxes = [] word_vecs = [] for txt in txts: txtsp = txt.split('\n') for line in txtsp: line = line.replace('\n', '').replace('\n', '').replace('\r', '').replace('\t', '').split(' ') # print('line:', line) for w in line: # w = w if len(w) > 0: gt_ind = np.transpose(np.array(word_boxes[:, :, cnt], dtype=np.int32), (1, 0)).reshape(8) # print(imname, gt_ind, w) cnt += 1 ''' cv2.line(im, (box[0], box[1]), (box[2], box[3]), (0, 0, 255), 3) cv2.line(im, (box[2], box[3]), (box[4], box[5]), (0, 0, 255), 3) cv2.line(im, (box[4], box[5]), (box[6], box[7]), (0, 0, 255), 3) cv2.line(im, (box[6], box[7]), (box[0], box[1]), (0, 0, 255), 3) cv2.putText(im, w, (box[0], box[1]), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 122), 2) ''' pt1 = (int(gt_ind[0]), int(gt_ind[1])) pt2 = (int(gt_ind[2]), int(gt_ind[3])) pt3 = (int(gt_ind[4]), int(gt_ind[5])) pt4 = (int(gt_ind[6]), int(gt_ind[7])) edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[1]) * (pt1[1] - pt2[1])) edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[1]) * (pt2[1] - pt3[1])) angle = 0 if edge1 > edge2: width = edge1 height = edge2 if pt1[0] - pt2[0] != 0: angle = -np.arctan(float(pt1[1] - pt2[1]) / float(pt1[0] - pt2[0])) / 3.1415926 * 180 else: angle = 90.0 elif edge2 >= edge1: width = edge2 height = edge1 # print pt2[0], pt3[0] if pt2[0] - pt3[0] != 0: angle = -np.arctan(float(pt2[1] - pt3[1]) / float(pt2[0] - pt3[0])) / 3.1415926 * 180 else: angle = 90.0 if angle < -45.0: angle = angle + 180 x_ctr = float(pt1[0] + pt3[0]) / 2 # pt1[0] + np.abs(float(pt1[0] - pt3[0])) / 2 y_ctr = float(pt1[1] + pt3[1]) / 2 # pt1[1] + np.abs(float(pt1[1] - pt3[1])) / 2 if height * width * (800 / float(im.shape[0])) < 16 * 32 and mode == "train": continue if x_ctr >= im.shape[1] or x_ctr < 0 or y_ctr >= im.shape[0] or y_ctr < 0: continue #com_num = re.compile('[0-9]+') #com_prices = re.compile('[$¥€£]+') #match_num = re.findall(com_num, w) #match_prices = re.findall(com_prices, w) # choices: original, prices, others # 2 for English if lang_seq: w = ["1" for i in range(len(w))] w = "".join(w) words.append(w) ''' w = w.lower() if w in w2v_dict: word_vecs.append(w2v_dict[w.lower()]) elif match_prices and match_num: word_vecs.append(w2v_dict['price']) elif match_num and not match_prices: word_vecs.append(w2v_dict['ten']) else: print(im_path, w) word_vecs.append(np.zeros(100, dtype=np.float32) + 1e-10) ''' gt_ptx = gt_ind.reshape(-1, 2) xmax = np.max(gt_ptx[:, 0]) xmin = np.min(gt_ptx[:, 0]) ymax = np.max(gt_ptx[:, 1]) ymin = np.min(gt_ptx[:, 1]) # return to width, height boxes.append([xmin, ymin, xmax - xmin, ymax - ymin]) #x_ctr, y_ctr, width, height, angle, w cls_num = 2 len_of_bboxes = len(boxes) gt_boxes = np.zeros((len_of_bboxes, 4), dtype=np.int16) gt_classes = np.zeros((len_of_bboxes), dtype=np.int32) overlaps = np.zeros((len_of_bboxes, cls_num), dtype=np.float32) # text or non-text seg_areas = np.zeros((len_of_bboxes), dtype=np.float32) for idx in range(len(boxes)): gt_classes[idx] = 1 # cls_text overlaps[idx, 1] = 1.0 # prob seg_areas[idx] = (boxes[idx][2]) * (boxes[idx][3]) gt_boxes[idx, :] = [boxes[idx][0], boxes[idx][1], boxes[idx][2], boxes[idx][3]] #, boxes[idx][4] # print ("boxes_size:", gt_boxes.shape[0]) if gt_boxes.shape[0] > 0: max_overlaps = overlaps.max(axis=1) # gt class that had the max overlap max_classes = overlaps.argmax(axis=1) else: continue im_info = { 'gt_classes': gt_classes, 'max_classes': max_classes, 'image': im_path, 'boxes': gt_boxes, 'flipped': False, 'gt_overlaps': overlaps, 'seg_areas': seg_areas, 'height': im.shape[0], 'width': im.shape[1], 'gt_words': words, # 'gt_wordvec': np.array(word_vecs), 'max_overlaps': max_overlaps, 'rotated': True } im_infos.append(im_info) f_save_pkl = open(cache_pkl, 'wb') pickle.dump(im_infos, f_save_pkl) f_save_pkl.close() print("Save pickle done.") return im_infos class lmdbDataset_GlobalSR(Dataset): def __init__(self, root=None, voc_type='upper', max_len=31, test=False, rotate=False): super(lmdbDataset_GlobalSR, self).__init__() if test: mode = "test" else: mode = "train" self.image_dataset = get_Syn_800K_with_words(mode, dataset_dir=root, lang_seq=False) self.nSamples = len(self.image_dataset) def __len__(self): return self.nSamples def __getitem__(self, index): assert index <= len(self), 'index range error' # index += 1 ''' txn = self.env.begin(write=False) label_key = b'label-%09d' % index word = str(txn.get(label_key).decode()) try: img = buf2PIL(txn, b'image_hr-%09d' % index, 'RGB') except TypeError: img = buf2PIL(txn, b'image-%09d' % index, 'RGB') except IOError or len(label) > self.max_len: return self[index + 1] label_str = str_filt(word, self.voc_type) ''' image_info = self.image_dataset[index] impath = image_info['image'] image_pil = Image.open(impath) boxes = image_info['boxes'] gt_words = image_info['gt_words'] return image_pil, boxes, gt_words def gauss_unsharp_mask(rgb, shp_kernel, shp_sigma, shp_gain): LF = cv2.GaussianBlur(rgb, (shp_kernel, shp_kernel), shp_sigma) HF = rgb - LF RGB_peak = rgb + HF * shp_gain RGB_noise_NR_shp = np.clip(RGB_peak, 0.0, 255.0) return RGB_noise_NR_shp, LF def add_shot_gauss_noise(rgb, shot_noise_mean, read_noise): noise_var_map = shot_noise_mean * rgb + read_noise noise_dev_map = np.sqrt(noise_var_map) noise = np.random.normal(loc=0.0, scale = noise_dev_map, size=None) if (rgb.mean() > 252.0): noise_rgb = rgb else: noise_rgb = rgb + noise noise_rgb = np.clip(noise_rgb, 0.0, 255.0) return noise_rgb def degradation(src_img): # RGB Image input GT_RGB =
np.array(src_img)
numpy.array
# # Last modified on Thu Jan 31 10:27:11 PST 2002 by lindy # # $Header: /opt/cvs/python/packages/share1.5/mglutil/math/rmsdtest.py,v 1.4.12.1 2016/02/11 23:15:05 annao Exp $ # """Unit test for rmsd.py Requirements for rmsd: A. RMSDCalculator.__init__ 0. should .. B. RMSDCalculator.setRefCoords 0. should .. C. RMSDCalculator.computeRMSD 1. should return known result with known input 2. raise ValueError for input of unlike dimensions 3. for two random sets of points, rmsd(x,y) == rmsd(y,x) 4. raise ValueError if the reference coords have not been set D. """ from mglutil.math import rmsd import unittest, math import numpy from numpy import random as RandomArray class ComputedValues(unittest.TestCase): decimals = 4 # decimal places to round to for float comparison point_list_0 = numpy.zeros((5,3)) point_list_1 = numpy.ones( (5,3)) knowValues = ( (point_list_0, point_list_0, 0.0), (point_list_1, point_list_1, 0.0), (point_list_0, point_list_1, math.sqrt(3.0)), (point_list_1, point_list_0, math.sqrt(3.0))) def test_computeRMSD_KnowValues(self): """1. should return known result with known input""" for ref, input, known in self.knowValues: self.assertEqual(known, rmsd.RMSDCalculator(ref).computeRMSD(input)) def test_computeRMSD_RandomOffset(self): """5. offset point by random value returns offset*sqrt(3)""" min = -10000. max = 10000. num_points = 20 dimension = 3 point_list_1 = RandomArray.uniform(min, max, (num_points, dimension)) delta = point_list_1[0][0] point_list_2 = point_list_1 + delta answer = rmsd.RMSDCalculator(point_list_1).computeRMSD(point_list_2) self.assertEqual( round(answer, self.decimals), round(abs(delta)*math.sqrt(3.0), self.decimals)) def test_computeRMSD_Random(self): """3. for two random sets of points, rmsd(x,y) == rmsd(y,x)""" min = -10000. max = 10000. num_points = 20 dimension = 3 point_list_1 = RandomArray.uniform(min, max, (num_points, dimension)) point_list_2 = RandomArray.uniform(min, max, (num_points, dimension)) self.assertEqual( rmsd.RMSDCalculator(point_list_1).computeRMSD(point_list_2), rmsd.RMSDCalculator(point_list_2).computeRMSD(point_list_1)) class InputValues(unittest.TestCase): point_list_0 = numpy.zeros((3,3)) point_list_1 =
numpy.ones( (4,3))
numpy.ones
from collections.abc import Iterable from collections import namedtuple from difflib import get_close_matches from numbers import Real from io import StringIO import itertools import os import re import tempfile from warnings import warn import numpy as np import h5py import openmc.checkvalue as cv from openmc.mixin import EqualityMixin from openmc.stats import Discrete, Tabular from . import HDF5_VERSION, HDF5_VERSION_MAJOR, endf from .data import K_BOLTZMANN, ATOMIC_SYMBOL, EV_PER_MEV, NATURAL_ABUNDANCE from .ace import Table, get_table, Library from .angle_energy import AngleEnergy from .function import Tabulated1D, Function1D from .njoy import make_ace_thermal from .thermal_angle_energy import (CoherentElasticAE, IncoherentElasticAE, IncoherentElasticAEDiscrete, IncoherentInelasticAEDiscrete, IncoherentInelasticAE) _THERMAL_NAMES = { 'c_Al27': ('al', 'al27', 'al-27'), 'c_Al_in_Sapphire': ('asap00',), 'c_Be': ('be', 'be-metal', 'be-met', 'be00'), 'c_BeO': ('beo',), 'c_Be_in_BeO': ('bebeo', 'be-beo', 'be-o', 'be/o', 'bbeo00'), 'c_Be_in_Be2C': ('bebe2c',), 'c_C6H6': ('benz', 'c6h6'), 'c_C_in_SiC': ('csic', 'c-sic'), 'c_Ca_in_CaH2': ('cah', 'cah00'), 'c_D_in_D2O': ('dd2o', 'd-d2o', 'hwtr', 'hw', 'dhw00'), 'c_D_in_D2O_ice': ('dice',), 'c_Fe56': ('fe', 'fe56', 'fe-56'), 'c_Graphite': ('graph', 'grph', 'gr', 'gr00'), 'c_Graphite_10p': ('grph10',), 'c_Graphite_30p': ('grph30',), 'c_H_in_CaH2': ('hcah2', 'hca00'), 'c_H_in_CH2': ('hch2', 'poly', 'pol', 'h-poly', 'pol00'), 'c_H_in_CH4_liquid': ('lch4', 'lmeth'), 'c_H_in_CH4_solid': ('sch4', 'smeth'), 'c_H_in_CH4_solid_phase_II': ('sch4p2',), 'c_H_in_H2O': ('hh2o', 'h-h2o', 'lwtr', 'lw', 'lw00'), 'c_H_in_H2O_solid': ('hice', 'h-ice', 'ice00'), 'c_H_in_C5O2H8': ('lucite', 'c5o2h8', 'h-luci'), 'c_H_in_Mesitylene': ('mesi00',), 'c_H_in_Toluene': ('tol00',), 'c_H_in_YH2': ('hyh2', 'h-yh2'), 'c_H_in_ZrH': ('hzrh', 'h-zrh', 'h-zr', 'h/zr', 'hzr', 'hzr00'), 'c_Mg24': ('mg', 'mg24', 'mg00'), 'c_O_in_Sapphire': ('osap00',), 'c_O_in_BeO': ('obeo', 'o-beo', 'o-be', 'o/be', 'obeo00'), 'c_O_in_D2O': ('od2o', 'o-d2o', 'ohw00'), 'c_O_in_H2O_ice': ('oice', 'o-ice'), 'c_O_in_UO2': ('ouo2', 'o-uo2', 'o2-u', 'o2/u', 'ouo200'), 'c_N_in_UN': ('n-un',), 'c_ortho_D': ('orthod', 'orthoD', 'dortho', 'od200'), 'c_ortho_H': ('orthoh', 'orthoH', 'hortho', 'oh200'), 'c_Si28': ('si00',), 'c_Si_in_SiC': ('sisic', 'si-sic'), 'c_SiO2_alpha': ('sio2', 'sio2a'), 'c_SiO2_beta': ('sio2b',), 'c_para_D': ('parad', 'paraD', 'dpara', 'pd200'), 'c_para_H': ('parah', 'paraH', 'hpara', 'ph200'), 'c_U_in_UN': ('u-un',), 'c_U_in_UO2': ('uuo2', 'u-uo2', 'u-o2', 'u/o2', 'uuo200'), 'c_Y_in_YH2': ('yyh2', 'y-yh2'), 'c_Zr_in_ZrH': ('zrzrh', 'zr-zrh', 'zr-h', 'zr/h') } def _temperature_str(T): # round() normally returns an int when called with a single argument, but # numpy floats overload rounding to return another float return "{}K".format(int(round(T))) def get_thermal_name(name): """Get proper S(a,b) table name, e.g. 'HH2O' -> 'c_H_in_H2O' Parameters ---------- name : str Name of an ACE thermal scattering table Returns ------- str GND-format thermal scattering name """ if name in _THERMAL_NAMES: return name else: for proper_name, names in _THERMAL_NAMES.items(): if name.lower() in names: return proper_name # Make an educated guess?? This actually works well for # JEFF-3.2 which stupidly uses names like lw00.32t, # lw01.32t, etc. for different temperatures # First, construct a list of all the values/keys in the names # dictionary all_names = itertools.chain(_THERMAL_NAMES.keys(), *_THERMAL_NAMES.values()) matches = get_close_matches(name, all_names, cutoff=0.5) if matches: # Figure out the key for the corresponding match match = matches[0] if match not in _THERMAL_NAMES: for key, value_list in _THERMAL_NAMES.items(): if match in value_list: match = key break warn('Thermal scattering material "{}" is not recognized. ' 'Assigning a name of {}.'.format(name, match)) return match else: # OK, we give up. Just use the ACE name. warn('Thermal scattering material "{0}" is not recognized. ' 'Assigning a name of c_{0}.'.format(name)) return 'c_' + name class CoherentElastic(Function1D): r"""Coherent elastic scattering data from a crystalline material The integrated cross section for coherent elastic scattering from a powdered crystalline material may be represented as: .. math:: \sigma(E,T) = \frac{1}{E} \sum\limits_{i=1}^{E_i < E} s_i(T) where :math:`s_i(T)` is proportional the structure factor in [eV-b] at the moderator temperature :math:`T` in Kelvin. Parameters ---------- bragg_edges : Iterable of float Bragg edge energies in eV factors : Iterable of float Partial sum of structure factors, :math:`\sum\limits_{i=1}^{E_i<E} s_i` Attributes ---------- bragg_edges : Iterable of float Bragg edge energies in eV factors : Iterable of float Partial sum of structure factors, :math:`\sum\limits_{i=1}^{E_i<E} s_i` """ def __init__(self, bragg_edges, factors): self.bragg_edges = bragg_edges self.factors = factors def __call__(self, E): idx =
np.searchsorted(self.bragg_edges, E)
numpy.searchsorted
# -*- coding: utf-8 -*- """ Created on Tue Oct 10 @author: jaehyuk """ import numpy as np import scipy.stats as ss import scipy.optimize as sopt import scipy.integrate as spint from . import normal from . import bsm import pyfeng as pf ''' MC model class for Beta=1 ''' class ModelBsmMC: beta = 1.0 # fixed (not used) vov, rho = 0.0, 0.0 sigma, intr, divr = None, None, None bsm_model = None ''' You may define more members for MC: time step, etc ''' def __init__(self, sigma, vov=0, rho=0.0, beta=1.0, intr=0, divr=0, time_steps=1_000, n_samples=10_000): self.sigma = sigma self.vov = vov self.rho = rho self.intr = intr self.divr = divr self.time_steps = time_steps self.n_samples = n_samples self.bsm_model = pf.Bsm(sigma, intr=intr, divr=divr) def bsm_vol(self, strike, spot, texp=None, sigma=None): ''' From the price from self.price() compute the implied vol this is the opposite of bsm_vol in ModelHagan class use bsm_model ''' if sigma is None: sigma = self.sigma price = self.price(strike, spot, texp, sigma) vol = self.bsm_model.impvol(price, strike, spot, texp) return vol def price(self, strike, spot, texp=None, sigma=None, cp=1, seed=None): ''' Your MC routine goes here Generate paths for vol and price first. Then get prices (vector) for all strikes You may fix the random number seed ''' if seed is not None: np.random.seed(seed) if sigma is None: sigma = self.sigma znorm_m = np.random.normal(size=(self.n_samples, )) X1 = np.random.normal(loc=0., scale=1., size=(self.n_samples,)) # generate path for vol n_intervals = np.linspace(0, texp, self.time_steps) vol_path = sigma * np.exp(self.vov * znorm_m - 1/2 * (self.vov**2) * n_intervals[:, None]) div_fac = np.exp(-texp * self.divr) disc_fac =
np.exp(-texp * self.intr)
numpy.exp
#! Python PyDoppler import numpy as np import imp import matplotlib.pyplot as plt import matplotlib.cm as cm from scipy.signal import savgol_filter import sys plt.rcParams.update({'font.size': 12}) import os plt.ion() class spruit: """ A class to store and process data for Doppler tomography code by <NAME>. ... Methods ------- foldspec() Reads the data and stores in spruit object sort(column, order='ascending') Sort by `column` """ def __init__(self,force_install = False): self.object = 'disc' self.wave = 0.0 self.flux = 0.0 self.pha = 0.0 self.input_files = 0.0 self.input_phase = 0.0 self.trsp = 0.0 self.nbins = 20 self.normalised_flux = 0.0 self.normalised_wave = 0.0 self.base_dir = '.' self.lam0 = 6562.83 self.delw = 80 self.list = 'phases.txt' self.overs = 0.3 self.gama = 0.0 self.delta_phase = 0.001 self.verbose = True ###### Plotting parameters self.psname='j0644' # Name of output plot file self.output='pdf' # Can choose between: pdf, eps or png self.data=False # If True then exit data will put in file *.txt self.plot=True # Plot in Python window self.plotlim=1.3 # Plot limits. 1 = close fit. self.overs=0.4 ####### Dop.in parameters self.ih = 0 self.iw = 0 self.pb0 = 0.95 self.pb1 = 1.05 self.ns = 7 self.ac = 8e-4 self.nim = 150 self.al0 = 0.002 self.alf = 1.7 self.nal = 0 self.clim = 1.6 self.ipri = 2 self.norm = 1 self.wid = 10e5 self.af = 0.0 # %%%%%%%%%%%%%%%%%% Doppler Options %%%%%%%%%%%%%%%%%% self.lobcol='white' # Stream color self.module_path = os.path.dirname(os.path.realpath(__file__)) #### Copy Fortran files to local directory if os.path.isfile("dop.f"): #print("Fortran code exists") if force_install: print("-- Force_Install --") os.system('cp '+self.module_path+'/fortran_code/* ./.') count = 0 dst_file = './sample_script.py' while os.path.exists(dst_file): count += 1 dst_file = './%s-%d%s' % ('sample_script', count, '.py') #print 'Renaming %s to %s' % (file, dst_file) print("PyDoppler scipt -->",dst_file) #os.rename(file, dst_file) os.system('cp '+self.module_path+'/test_data/sample_script.py '+\ dst_file) else: print("-- Copying fortran code --") os.system('cp '+self.module_path+'/fortran_code/* ./.') count = 0 dst_file = './sample_script.py' while os.path.exists(dst_file): count += 1 dst_file = './%s-%d%s' % ('sample_script', count, '.py') #print 'Renaming %s to %s' % (file, dst_file) print("PyDoppler scipt -->",dst_file) #os.rename(file, dst_file) os.system('cp '+self.module_path+'/test_data/sample_script.py '+\ dst_file) def Foldspec(self): """Foldspec. Prepares the spectra to be read by dopin. *** Remember to prepare the keywords before running *** Parameters ---------- None Returns ------- None """ try: f = open(self.base_dir+'/'+self.list) f.close() except IOError: print('Phase file - {} - is not accessible. Check "base_dir" and "list"'.format(self.base_dir+'/'+self.list)) inputs = np.loadtxt(self.base_dir+'/'+self.list,dtype={'names': ('files', 'phase'),'formats': ('S14', 'f4')}) # Check 1st spectrum and get wavelength to interpolate #print() #print(inputs['files'][0].astype('str')) w1st = np.loadtxt(self.base_dir+'/'+inputs['files'][0].astype('str'),unpack=True) if self.nbins==None: self.nbins=int(1.5/np.abs(inputs['phase'][2]-inputs['phase'][1])) #By default if self.verbose: print ("Number of Bins:",self.nbins,np.abs(inputs['phase'][2]-inputs['phase'][1])) wave,flux=[],[] for z,i in enumerate(inputs): w,f=np.loadtxt(self.base_dir+'/'+i['files'].astype('str'),unpack=True) print (str(z+1).zfill(3)+' '+i['files'].astype('str')+' '+str(i['phase'])+' '+str(w.size)) if z == 0: wo = w wave.append(w),flux.append(f) else: wave.append(wo),flux.append(np.interp(wo,w,f)) delp=1.0/self.nbins pha=np.arange(0,1,delp) bin=np.arange(self.nbins+1)/float(self.nbins) bin=np.concatenate((bin[:self.nbins]-1,bin)) wt=np.zeros(2*self.nbins) trsp=np.zeros((2*self.nbins,len(wo))) # Determine dph = delp for ph,il in zip(pha,np.arange(len(pha))): ph0=ph-dph/2 ph1=ph+dph/2 for ib in np.arange(2*(self.nbins)): r=bin[ib+1] l=bin[ib] if ph0 <= r and ph1> l: wph=min([r,ph1])-max([r,ph1]) #print [r,ph1],[r,ph1],wph wt[ib]=wt[ib]+wph trsp[ib]=trsp[ib]+wph*flux[il] wt[self.nbins:2*self.nbins]=wt[self.nbins:2*self.nbins]+wt[:self.nbins] wt = wt[self.nbins:2*self.nbins] trsp[self.nbins:2*self.nbins] = trsp[self.nbins:2*self.nbins] + trsp[:self.nbins] trsp=trsp[self.nbins:2*self.nbins] wt=wt/wt.sum()*float(self.nbins) #print(wt) self.wave = wave self.flux = flux self.pha = pha self.input_files = inputs['files'].astype('str') self.input_phase = inputs['phase'] self.trsp = trsp def Dopin(self,poly_degree=2, continnum_band=False, rebin=True,plot_median = False, rebin_wave= 0., xlim=None,two_orbits=True,vel_space=True, verbose=False): """Normalises each spectrum to a user-defined continnum. Optional, it plots a trail spectra Parameters ---------- poly_degree : int, Optional polynomial degree to fit the continuum. Default, 2. continnum_band : array-like, Define two wavelength bands (x1,x2) and (x3,x4) to fit the continuum. contiunnum_band = [x1,x2,x3,x4]. If False, an interactive plot will allow to select this four numbers - Default, False plot_median : bool, Plots above teh trail spectra a median of the dataset. - Defautl, False rebin_wave : float, TBD xlim : float, TBD two_orbits : float, TBD vel_space : float, TBD verbose : float, TBD Returns ------- None. """ lam=self.lam0 cl=2.997e5 xaxis='vel' cmaps = plt.cm.binary_r #cm.winter_r cm.Blues#cm.gist_stern medi=17 line_lbl='K I' if lam < min(self.wave[0]) or lam > max(self.wave[0]): print('Error: input wavelength out of bounds.') print('Must be between '+str(min(self.wave[0]))+' and '+str(max(self.wave[0]))+'.') sys.exit() ss=0 for i in np.arange(len(self.wave[0])-1): if lam >= self.wave[0][i] and lam <= self.wave[0][i+1]: ss=i fig=plt.figure(num="Average Spec",figsize=(6.57,8.57)) plt.clf() ax=fig.add_subplot(211) avgspec=np.sum(self.flux,axis=0) plt.plot(self.wave[0],avgspec/len(self.pha)) plt.draw() if not continnum_band: print( 'Choose 4 points to define continuum') xor=[] for i in np.arange(4): xx=plt.ginput(1,timeout=-1) xor.append(xx[0][0]) plt.axvline(x=xx[0][0],linestyle='--',color='k') plt.draw() else: xor = continnum_band lab1 = 'Cont Bands' for i in np.arange(4): if i != 0: lab1 = '' plt.axvline(x=xor[i],linestyle='--',color='k',label=lab1) plt.draw() lop = ((self.wave[0]>xor[0]) * (self.wave[0]<xor[1])) + ((self.wave[0]>xor[2]) * (self.wave[0]<xor[3])) yor=avgspec[lop]/len(self.pha) plt.ylim(avgspec[lop].min()/len(self.pha)*0.8,avgspec.max()/len(self.pha)*1.1) z = np.polyfit(self.wave[0][lop], yor, poly_degree) pz = np.poly1d(z) linfit = pz(self.wave[0]) plt.plot(self.wave[0],linfit,'r',label='Cont Fit') lg = plt.legend(fontsize=14) plt.xlim(xor[0]-10,xor[3]+10) plt.xlabel(r'Wavelength / $\AA$') plt.ylabel('Input flux') ax=fig.add_subplot(212) vell=((self.wave[0]/self.lam0)**2-1)*cl/(1+(self.wave[0]/self.lam0)**2) plt.plot(vell,avgspec/len(self.pha)-linfit,'k') plt.axhline(y=0,linestyle='--',color='k') plt.axvline(x=-self.delw/self.lam0*cl,linestyle='-',color='DarkOrange') plt.axvline(x= self.delw/self.lam0*cl,linestyle='-', color='DarkOrange',label='DopMap limits') lg = plt.legend(fontsize=14) plt.xlim(-self.delw/self.lam0*cl*1.5,self.delw/self.lam0*cl*1.5) qq = (np.abs(vell) < self.delw/self.lam0*cl*1.5) plt.ylim(-0.05*np.max(avgspec[qq]/len(self.pha)-linfit[qq] -1.0), np.max(avgspec[qq]/len(self.pha)-linfit[qq] -1.0)*1.1) plt.xlabel('Velocity km/s') plt.ylabel('Bkg subtracted Flux') plt.draw() plt.tight_layout() ######## Do individual fit on the blaze for ct,flu in enumerate(self.flux): #print(lop.sum) if ct == 0 : nufac=(1.0+self.gama/2.998e5) * np.sqrt(1.0-(self.gama/2.998e5)**2) lop = (self.wave[0]/nufac > self.lam0 - self.delw) * \ (self.wave[0]/nufac < self.lam0 + self.delw) self.normalised_wave = np.array(self.wave[0][lop]/nufac) # Interpolate in velocity space vell_temp=((self.normalised_wave/self.lam0)**2-1.0)*cl/(1.0 + \ (self.normalised_wave/self.lam0)**2) self.vell = np.linspace(vell_temp[0],vell_temp[-1],vell_temp.size) self.normalised_flux = np.zeros((len(self.flux),lop.sum())) polmask = ((self.wave[0]/nufac>xor[0]) * (self.wave[0]/nufac<xor[1])) +\ ((self.wave[0]/nufac>xor[2]) * (self.wave[0]/nufac<xor[3])) z = np.polyfit(self.wave[0][polmask]/nufac,flu[polmask], 3) pz = np.poly1d(z) linfit = pz(self.normalised_wave) self.normalised_flux[ct] = np.array(flu[lop]) - np.array(linfit) self.normalised_flux[ct] = np.interp(self.vell,vell_temp,self.normalised_flux[ct]) if self.verbose: print(">> Max/Min velocities in map: {} / {}".format(self.vell.min(), self.vell.max())) ## JVHS 2019 August 6 ## Add binning phase = np.linspace(0,2,self.nbins*2+1,endpoint=True) - 1./(self.nbins)/2. phase = np.concatenate((phase,[2.0+1./(self.nbins)/2.])) phase_dec = phase - np.floor(phase) #print(phase_dec) #rebin_trail(waver, flux, input_phase, nbins, delp, rebin_wave=None): trail,temp_phase = rebin_trail(self.vell, self.normalised_flux, self.input_phase, self.nbins, self.delta_phase, rebin_wave=None) self.pha = self.input_phase self.trsp = self.normalised_flux #print(">> SHAPES = ",self.pha.shape,self.trsp.shape) ## Phases of individual spectra #print("LAM_SIZE= {}, VELL_SIZE={}".format(self.normalised_wave.size,self.vell.size)) f=open('dopin','w') f.write("{:8.0f}{:8.0f}{:13.2f}\n".format(self.pha.size, self.vell.size, self.lam0)) # f.write(str(len(self.flux))+" "+str(self.nbins)+" "+str(self.lam0)+'\n') f.write("{:13.5f}{:8.0f}{:8.0f} {:}\n".format(self.gama*1e5,0,0, self.base_dir+'/'+self.list)) ctr = 0 for pp in self.pha: if ctr <5: f.write("{:13.6f}".format(pp)) ctr +=1 else: f.write("{:13.6f}\n".format(pp)) ctr=0 f.write("\n{:8.0f}\n".format(1)) ctr = 0 for pp in np.ones(self.pha.size)*self.delta_phase: if ctr <5: f.write("{:13.6f}".format(pp)) ctr +=1 else: f.write("{:13.6f}\n".format(pp)) ctr=0 if ctr != 0: f.write("\n") ## ctr = 0 for pp in self.vell: #print('velo size:',len(vell)) if ctr <5: f.write("{:13.5e}".format(pp*1e5)) ctr +=1 else: f.write("{:13.5e}\n".format(pp*1e5)) ctr=0 if ctr != 0: f.write("\n") ctr = 0 # Where we write the normalised flux for pp in np.array(self.trsp.T).flatten(): if ctr <5: f.write("{:13.5f}".format(pp)) ctr +=1 else: f.write("{:13.5f}\n".format(pp)) ctr=0 if ctr != 0: f.write("\n") f.close() if xlim == None: rr = np.ones(self.normalised_wave.size,dtype='bool') else: rr = (self.normalised_wave > xlim[0]) & (self.normalised_wave < xlim[1]) if rebin_wave == 0: waver = self.normalised_wave[rr] else: dw = (self.normalised_wave[rr][1] - self.normalised_wave[rr][0]) *\ rebin_wave print(dw , dw/rebin_wave) waver = np.arange(self.normalised_wave[rr][0], self.normalised_wave[rr][-1],dw ) """ trail = np.zeros((waver.size,phase.size)) tots = trail.copy() #print(phases.size) for i in range(self.input_phase.size): #print("spec phase = ",grid['phase'][i]) dist = phase_dec - (self.input_phase[i]+self.delta_phase/2.) #print(dist) dist[np.abs(dist)>1./self.nbins] = 0. #print(dist/delpha) dist[dist>0] = 0.0 #print(dist) weights = np.abs(dist)/(1./self.nbins) #print(weights) #print('---------------') dist = phase_dec - (self.input_phase[i]-self.delta_phase/2.) #print(dist) dist[np.abs(dist)>1./self.nbins] = 0.0 #print(dist) dist[dist>0] = 0.0 #print(dist/delpha) dist[np.abs(dist)>0] = 1.0 - (np.abs(dist[np.abs(dist)>0]))/(1./self.nbins) weights += dist #print(weights) temp = trail.copy().T for j in range(phase.size): if rebin_wave == 0: temp[j] = self.normalised_flux[i][rr] * weights[j] temp[j] = self.normalised_flux[i][rr] * weights[j] else: temp[j] = np.interp(waver,wave[rr], self.normalised_flux[i][rr]) * weights[j] temp[j] = np.interp(waver,wave[rr], self.normalised_flux[i][rr]) * weights[j] trail+=temp.T tots += weights trail /= tots """ if plot_median: si = 0 lo = 2 else: si = 2 lo = 0 plt.figure('Trail',figsize=(6.57,8.57)) plt.clf() if plot_median: ax1 = plt.subplot2grid((6, 1), (0, 0), rowspan=2) ax1.minorticks_on() if rebin_wave ==0: plt.plot(waver,np.nanmedian(self.normalised_flux,axis=0)[rr], label='Median',color='#8e44ad') else: print(dw) new_med = np.interp(waver,wave[rr], np.nanmedian(self.normalised_flux,axis=0)[rr]) plt.plot(waver,np.nanmedian(self.normalised_flux,axis=0)[rr], label='Median',color='k',alpha=1) plt.plot(waver,new_med, label='Median',color='#8e44ad',alpha=1) plt.axhline(y=0,ls='--',color='r',alpha=0.7) ax1.set_xticklabels([]) #plt.xlim(self.lam0 - self.delw, self.lam0 + self.delw) plt.ylim(-0.05,np.nanmax(np.nanmedian(self.normalised_flux, axis=0)[rr])*1.1) ### Print trail spectra if limits == None: limits=[np.nanmax(np.nanmedian(grid,axis=0)[rr])*0.35, np.nanmax(np.nanmedian(grid,axis=0)[rr])*1.1] ax2 = plt.subplot2grid((6, 1), (lo, 0), rowspan=4+si) ax2.minorticks_on() if vel_space: x1_lim = (min(waver)-self.lam0)/self.lam0*2.998e5 x2_lim = (max(waver)-self.lam0)/self.lam0*2.998e5 else: x1_lim = min(waver) x2_lim = max(waver) img = plt.imshow(trail.T,interpolation='nearest', cmap=plt.cm.binary, aspect='auto',origin='lower', extent=(x1_lim, x2_lim,phase[0],phase[-1]+1/self.nbins))# #vmin=limits[0],vmax=limits[1]) if vel_space: plt.xlim((self.lam0 - self.delw-self.lam0)/self.lam0*2.998e5, (self.lam0 + self.delw-self.lam0)/self.lam0*2.998e5) plt.xlabel('Velocity / km s$^{-1}$') else: plt.xlim(self.lam0 - self.delw, self.lam0 + self.delw) plt.xlabel('Wavelength / $\AA$') plt.axvline(x=self.lam0,ls='--',color='DarkOrange') if two_orbits: lim_two = 2 else: lim_two = 1 plt.ylim(phase[0],lim_two+1/self.nbins/2.) plt.ylabel('Orbital Phase') plt.tight_layout(h_pad=0) def Syncdop(self,nri=0.9,ndi=0.7): ''' Runs the fortran code dopp, using the output files from dopin Parameters ---------- None Returns ------- None. ''' compile_flag = True while compile_flag == True: f=open('dop.in','w') f.write("{} ih type of likelihood function (ih=1 for chi-squared)\n".format(self.ih)) f.write("{} iw iw=1 if error bars are to be read and used\n".format(self.iw)) f.write("{} {} pb0,pb1 range of phases to be ignored\n".format(self.pb0,self.pb1)) f.write("{} ns smearing width in default map\n".format(self.ns)) f.write("{:.1e} ac accuracy of convergence\n".format(self.ac)) f.write("{} nim max no of iterations\n".format(self.nim)) f.write("{} {} {} al0,alf,nal starting value, factor, max number of alfas\n".format(self.al0,self.alf,self.nal)) f.write("{} clim 'C-aim'\n".format(self.clim)) f.write("{} ipri printout control for standard output channel (ipr=2 for full)\n".format(self.ipri)) f.write("{} norm norm=1 for normalization to flat light curve\n".format(self.norm)) f.write("{:2.1e} {} wid,af width and amplitude central absorption fudge\n".format(self.wid,self.af)) f.write("end of parameter input file") f.close() f=open('dopin') lines=f.readlines() f.close() # np == npp npp,nvp=int(lines[0].split()[0]),int(lines[0].split()[1]) lines=[] f=open('emap_ori.par') lines=f.readlines() f.close() s=lines[0] npm=int(s[s.find('npm=')+len('npm='):s.rfind(',nvpm')]) nvpm=int(s[s.find('nvpm=')+len('nvpm='):s.rfind(',nvm')]) nvm=int(s[s.find('nvm=')+len('nvm='):s.rfind(')')]) nvp = self.vell.size print('nvp',nvp) print(self.trsp.shape) nv0=int(self.overs*nvp) nv=max([nv0,int(min([1.5*nv0,npp/3.]))]) print('nv',nv,nv0) if nv%2 == 1: nv+=1 #nv=120 nd = npm * nvpm nr = 0.8 * nv * nv nt = (nvpm * npm) + (nv * nvpm * 3) + (2 * npm * nv) prmsize = (0.9 * nv * nt) + (0.9 * nv * nt) print ('Estimated Memory required ',int(8*prmsize/1e6),' Mbytes') #print nv,nvm,np,npm,nvp,nvpm print("np={}; nvpm={}, nvm={}".format(npp, nvp, nv)) print('ND',nd) print('NR',nr) if nv != nvm or npp != npm or nvp !=nvpm: a1=' parameter (npm=%4d'% npp a2=',nvpm=%4d'%nvp a3=',nvm=%4d)'%nv a1=a1+a2+a3 f=open('emap.par','w') f.write(a1+'\n') for i,lino in enumerate(lines[1:]): #print(lino) if i == 2: tempo_str = ' parameter (nri={:.3f}*nvm*nt/nd,ndi={:.3f}*nvm*nt/nr)\n'.format(nri,ndi) #aprint(tempo_str) f.write(tempo_str) elif lino !=3: f.write(lino[:]) else: f.write(lino[:]+')') f.close() if self.verbose: print ('>> Computing MEM tomogram <<') print ('----------------------------') #os.system('gfortran -O -o dopp_input.txt dop.in dop.f clock.f') os.system('make dop.out') os.system('./dopp dopp.out') fo=open('dop.log') lines=fo.readlines() fo.close() #print(clim,rr) if self.verbose: print ('----------------------------') if lines[-1].split()[0] == 'projection': nri = np.float(lines[-1].split()[-1])/np.float(lines[-2].split()[-1]) ndi = np.float(lines[-1].split()[-2])/np.float(lines[-2].split()[-2]) print('>> PROJECTION MATRIX TOO SMALL <<') print('>> Recomputing with values from Spruit:') print('>> ndi = {}, nri = {}'.format(ndi,nri)) else: compile_flag=False clim,rr=lines[-2].split()[-1],lines[-2].split()[-2] if rr > clim: print ('>> NOT CONVERGED: Specified reduced chi^2 not reached: {} > {}'.format(rr,clim)) sys.exit() else: if self.verbose: print ('>> Succesful Dopmap!') def Dopmap(self,dopout = 'dop.out',cmaps = cm.Greys_r, limits=None, colorbar=False, negative=False,remove_mean=False, corrx=0,corry=0, smooth=False): """ Read output files from Henk Spruit's *.out and plot a Doppler map Parameters ---------- dopout : str, Optional Name of output file to be read. Default, dop.out cmaps : cmap function, Color scheme to use for Doppler map - Default, cm.Greys_r limits : array, Normalised limtis e.g. [.8,1.1] for colour display. if None, automatic Limits will be generated - Default, None colorbar : bool, Generates an interactive colorbar. (unstable...) - Default, True remove_mean : bool, Remove an azimuthal mean of the map - Default, False corrx, corry : float, float Pixel correction for center of removal of azimuthal mean map smooth : bool, Apply Gaussian filter to map. - Default, False Returns ------- cbar : object, Colorbar object for interactivity data : 2D-array, Data cube from Doppler map """ if self.verbose: print(">> Reading {} file".format(dopout)) fro=open(dopout,'r') lines=fro.readlines() fro.close() #READ ALL FILES nph,nvp,nv,w0,aa=int(lines[0].split()[0]),int(lines[0].split()[1]),int(lines[0].split()[2]),float(lines[0].split()[3]),float(lines[0].split()[4]) gamma,abso,atm,dirin=float(lines[1].split()[0]),lines[1].split()[1],lines[1].split()[2],lines[1].split()[3] new = ''.join(lines[2:len(lines)]) new = new.replace("E",'e') war = ''.join(new.splitlines()).split() #print(war) if self.verbose: print(">> Finished reading dop.out file") pha=np.array(war[:nph]).astype(np.float)/2.0/np.pi dum1=war[nph] dpha=np.array(war[nph+1:nph+1+nph]).astype(np.float)/2.0/np.pi last=nph+1+nph vp=np.array(war[last:last+nvp]).astype(np.float) dvp=vp[1]-vp[0] vp=vp-dvp/2.0 last=last+nvp dm=np.array(war[last:last+nvp*nph]).astype(np.float) dm=dm.reshape(nvp,nph) last=last+nvp*nph #print(war[last]) ih,iw,pb0,pb1,ns,ac,al,clim,norm,wid,af=int(war[last]),int(war[last+1]),float(war[last+2]),float(war[last+3]),int(war[last+4]),float(war[last+5]),float(war[last+6]),float(war[last+7]),int(war[last+8]),float(war[last+9]),float(war[last+10]) nv,va,dd=int(war[last+11]),float(war[last+12]),war[last+13] last=last+14 im=np.array(war[last:last+nv*nv]).astype(np.float) im=im.reshape(nv,nv) last=last+nv*nv ndum,dum2,dum3=int(war[last]),war[last+1],war[last+2] last=last+3 dmr=np.array(war[last:last+nvp*nph]).astype(np.float) dmr=dmr.reshape(nvp,nph) last=last+nvp*nph ndum,dum4,dum2,dum3=int(war[last]),int(war[last+1]),war[last+2],war[last+3] last=last+4 dpx=np.array(war[last:last+nv*nv]).astype(np.float) dpx=dpx.reshape(nv,nv) dpx = np.array(dpx) vp = np.array(vp)/1e5 data = im data[data == 0.0] = np.nan new_data = (data - np.nanmin(data) )/np.nanmax(data) #new_data = np.arcsinh(new_data) if limits == None: limits = [np.nanmax((new_data))*0.95,np.nanmax((new_data))*1.05] if self.verbose: print("Limits auto {:6.5f} {:6.5f}".format(np.nanmedian(data)*0.8,np.nanmedian(data)*1.2)) print("Limits user {:6.5f} {:6.5f}".format(limits[0],limits[1])) print("Limits min={:6.5f}, max={:6.5f}".format(np.nanmin(data),np.nanmax(data))) # Here comes the plotting fig = plt.figure(num='Doppler Map',figsize=(8.57,8.57)) plt.clf() ax = fig.add_subplot(111) ax.minorticks_on() ll = ~(np.isnan(data) ) #data[~ll] = np.nan delvp = vp[1]-vp[0] #print(">>> VP",min(vp),max(vp),delvp) vpmin, vpmax = min(vp)-.5/delvp,max(vp)+.5/delvp, if smooth: interp_mode = 'gaussian' else: interp_mode = 'nearest' if remove_mean: rad_prof = radial_profile(data,[data[0].size/2-corrx,data[0].size/2-corry]) meano = create_profile(data,rad_prof,[data[0].size/2-corrx,data[0].size/2-corry]) qq = ~np.isnan(data - meano) if negative: if remove_mean: #print data[ll].max(),meano[qq].max() img = plt.imshow((data - meano)/(data - meano)[qq].max(), interpolation=interp_mode, cmap=cmaps,aspect='equal', origin='lower',extent=(vpmin, vpmax,vpmin, vpmax ), vmin=limits[0],vmax=limits[1]) else: img = plt.imshow(-(data)/data[ll].max(), interpolation=interp_mode, cmap=cmaps,aspect='equal', origin='lower',extent=(vpmin, vpmax,vpmin, vpmax), vmin=-limits[1],vmax=-limits[0] ) else: if remove_mean: #print data[ll].max(),meano[qq].max() img = plt.imshow((data - meano)/(data - meano)[qq].max(), interpolation=interp_mode, cmap=cmaps,aspect='equal', origin='lower',extent=(vpmin, vpmax,vpmin, vpmax), vmin=limits[0],vmax=limits[1]) else: #print(np.nanmin(data),np.nanmax(data)) #new_data = (data - np.nanmin(data) )/np.nanmax(data) #new_data = data #print(np.nanmedian(data),np.nanstd(data)) print("Limits min={:6.3f}, max={:6.3f}".format(np.nanmin(new_data),np.nanmax(new_data))) img = plt.imshow(new_data,interpolation=interp_mode, cmap=cmaps,aspect='equal',origin='lower', extent=(vpmin, vpmax,vpmin, vpmax ), vmin=limits[0],vmax=limits[1] ) axlimits=[min(vp), max(vp),min(vp), max(vp) ] plt.axis(axlimits) #plt.axvline(x=0.0,linestyle='--',color='white') plt.xlabel('V$_x$ / km s$^{-1}$') plt.ylabel('V$_y$ / km s$^{-1}$') plt.tight_layout() plt.show() if colorbar: cbar = plt.colorbar(format='%.1f',orientation='vertical', fraction=0.046, pad=0.04) cbar.set_label('Normalised Flux') cbar.set_norm(MyNormalize(vmin=limits[0],vmax=limits[1], stretch='log')) cbar = DraggableColorbar(cbar,img) cbar.connect() else: cbar=1 ''' if remove_mean: #print data.size/2 rad_prof = radial_profile(data,[data[0].size/2,data[0].size/2]) mean = create_profile(data,rad_prof,[data[0].size/2,data[0].size/2]) ll = ~np.isnan(mean) fig = plt.figure('Mean') plt.clf() fig.add_subplot(211) plt.plot(rad_prof) fig.add_subplot(212) plt.show() ''' return cbar,new_data def Reco(self, cmaps=plt.cm.binary, limits=None, colorbar=True): """ Plot original and reconstructed trail spectra from Henk Spruit's *.out Parameters ---------- cmaps : cmap function, Color scheme to use for Doppler map - Default, cm.Greys_r limits : array, Normalised limtis e.g. [.8,1.1] for colour display. if None, automatic Limits will be generated - Default, None colorbar : bool, Generates an interactive colorbar. (unstable...) - Default, True Returns ------- cbar : object, Colorbar object for interactivity data : 2D-array, Data cube from reconstructed spectra """ fro=open('dop.out','r') lines=fro.readlines() fro.close() #READ ALL FILES nph,nvp,nv,w0,aa=int(lines[0].split()[0]),int(lines[0].split()[1]),int(lines[0].split()[2]),float(lines[0].split()[3]),float(lines[0].split()[4]) gamma,abso,atm,dirin=float(lines[1].split()[0]),lines[1].split()[1],lines[1].split()[2],lines[1].split()[3] #print(">> Reading dop.out file") #flag=0 #for i in np.arange(3,len(lines),1): # if flag==0: # temp=lines[i-1]+lines[i] # flag=1 # else: # temp=temp+lines[i] # war=temp.split() new = ''.join(lines[2:len(lines)]) new = new.replace("E",'e') war = ''.join(new.splitlines()).split() #print(war) #print(">> Finished reading dop.out file") pha=np.array(war[:nph]).astype(np.float)/2.0/np.pi dum1=war[nph] dpha=np.array(war[nph+1:nph+1+nph]).astype(np.float)/2.0/np.pi last=nph+1+nph vp=np.array(war[last:last+nvp]).astype(np.float) dvp=vp[1]-vp[0] vp=vp-dvp/2.0 last=last+nvp dm=np.array(war[last:last+nvp*nph]).astype(np.float) dm=dm.reshape(nvp,nph) last=last+nvp*nph #print(war[last]) ih,iw,pb0,pb1,ns,ac,al,clim,norm,wid,af=int(war[last]),int(war[last+1]),float(war[last+2]),float(war[last+3]),int(war[last+4]),float(war[last+5]),float(war[last+6]),float(war[last+7]),int(war[last+8]),float(war[last+9]),float(war[last+10]) nv,va,dd=int(war[last+11]),float(war[last+12]),war[last+13] last=last+14 im=np.array(war[last:last+nv*nv]).astype(np.float) im=im.reshape(nv,nv) last=last+nv*nv ndum,dum2,dum3=int(war[last]),war[last+1],war[last+2] last=last+3 dmr=np.array(war[last:last+nvp*nph]).astype(np.float) dmr=dmr.reshape(nvp,nph) last=last+nvp*nph ndum,dum4,dum2,dum3=int(war[last]),int(war[last+1]),war[last+2],war[last+3] last=last+4 dpx=np.array(war[last:last+nv*nv]).astype(np.float) dpx=dpx.reshape(nv,nv) dpx = np.array(dpx) vp = np.array(vp)/1e5 data = im data[data <= 0.0] = np.nan dpx[dpx <= 0.0] = np.nan #dmr[dmr <= 0.0] = np.nan #dm[dm <= 0.0] = np.nan #print(pha) #print(self.nbins) trail_dm,phase = rebin_trail(vp, dm.T, pha, self.nbins, self.delta_phase, rebin_wave=None) trail_dmr,phase = rebin_trail(vp, dmr.T, pha, self.nbins, self.delta_phase, rebin_wave=None) delvp = vp[1]-vp[0] x1_lim = min(vp) x2_lim = max(vp) #print(phase) if limits == None: limits = [np.median(dmr/np.nanmax(dmr))*0.8, np.median(dmr/np.nanmax(dmr))*1.2] # Now lets do the plotting figor = plt.figure('Reconstruction',figsize=(10,8)) plt.clf() ax1 = figor.add_subplot(121) print(np.nanmax(trail_dm)) imgo = plt.imshow(trail_dm.T/np.nanmax(trail_dm),interpolation='nearest', cmap=cmaps,aspect='auto',origin='upper', extent=(x1_lim,x2_lim,phase[0], phase[-1]+1/self.nbins), vmin=limits[0], vmax=limits[1]) ax1.set_xlabel('Velocity / km s$^{-1}$') ax1.set_ylabel('Orbital Phase') if colorbar: cbar2 = plt.colorbar(format='%.1e',orientation='vertical', fraction=0.046, pad=0.04) cbar2.set_label('Normalised Flux') cbar2.set_norm(MyNormalize(vmin=np.median(dm/np.nanmax(dm))*0.8, vmax=np.median(dm/np.nanmax(dm))*1.1, stretch='linear')) cbar2 = DraggableColorbar(cbar2,imgo) cbar2.connect() else: cbar2=1 ax2 = figor.add_subplot(122) print(np.nanmax(trail_dmr)) imgo = plt.imshow(trail_dmr.T/np.nanmax(trail_dmr),interpolation='nearest', cmap=cmaps,aspect='auto',origin='upper', extent=(x1_lim,x2_lim,phase[0], phase[-1]+1/self.nbins), vmin=limits[0], vmax=limits[1]) ax2.set_xlabel('Velocity / km s$^{-1}$') ax2.set_yticklabels([]) plt.tight_layout(w_pad=0) if colorbar: cbar3 = plt.colorbar(format='%.1e',orientation='vertical', fraction=0.046, pad=0.04) cbar3.set_label('Normalised Flux') cbar3.set_norm(MyNormalize(vmin=np.median(dmr/np.nanmax(dmr))*0.8, vmax=np.median(dmr/np.nanmax(dmr))*1.1, stretch='linear')) cbar3 = DraggableColorbar(cbar3,imgo) cbar3.connect() else: cbar3=1 return cbar2,cbar3,dmr,dm def rebin_trail(waver, flux, input_phase, nbins, delp, rebin_wave=None): """ """ phase = np.linspace(0,2,nbins*2+1,endpoint=True) - 1./(nbins)/2. phase = np.concatenate((phase,[2.0+1./(nbins)/2.])) phase_dec = phase - np.floor(phase) trail =
np.zeros((waver.size,phase.size))
numpy.zeros
from functools import partial import numpy as np import pytest import nengo import nengo.utils.numpy as npext from nengo.connection import ConnectionSolverParam from nengo.dists import Choice, UniformHypersphere from nengo.exceptions import BuildError, ValidationError from nengo.solvers import LstsqL2 from nengo.processes import Piecewise from nengo.transforms import Dense, NoTransform from nengo.utils.testing import signals_allclose def test_args(AnyNeuronType, seed, rng): N = 10 d1, d2 = 3, 2 with nengo.Network(seed=seed) as model: model.config[nengo.Ensemble].neuron_type = AnyNeuronType() A = nengo.Ensemble(N, dimensions=d1) B = nengo.Ensemble(N, dimensions=d2) nengo.Connection( A, B, eval_points=rng.normal(size=(500, d1)), synapse=0.01, function=np.sin, transform=rng.normal(size=(d2, d1)), ) def test_node_to_neurons(Simulator, PositiveNeuronType, plt, seed, allclose): N = 50 m = nengo.Network(seed=seed) with m: m.config[nengo.Ensemble].neuron_type = PositiveNeuronType() a = nengo.Ensemble(N, dimensions=1) inn = nengo.Node(output=np.sin) inh = nengo.Node(Piecewise({0: 0, 0.5: 1})) nengo.Connection(inn, a) nengo.Connection(inh, a.neurons, transform=[[-5]] * N) inn_p = nengo.Probe(inn, "output") a_p = nengo.Probe(a, "decoded_output", synapse=0.1) inh_p = nengo.Probe(inh, "output") with Simulator(m) as sim: sim.run(1.0) t = sim.trange() ideal = np.sin(t) ideal[t >= 0.5] = 0 plt.plot(t, sim.data[inn_p], label="Input") plt.plot(t, sim.data[a_p], label="Neuron approx, synapse=0.1") plt.plot(t, sim.data[inh_p], label="Inhib signal") plt.plot(t, ideal, label="Ideal output") plt.legend(loc="best", fontsize="small") assert allclose(sim.data[a_p][-10:], 0, atol=0.1, rtol=0.01) def test_ensemble_to_neurons(Simulator, PositiveNeuronType, plt, seed, allclose): with nengo.Network(seed=seed) as net: net.config[nengo.Ensemble].neuron_type = PositiveNeuronType() ens = nengo.Ensemble(40, dimensions=1) inhibitor = nengo.Ensemble(40, dimensions=1) stim = nengo.Node(output=np.sin) inhibition = nengo.Node(Piecewise({0: 0, 0.5: 1})) nengo.Connection(stim, ens) nengo.Connection(inhibition, inhibitor) nengo.Connection( inhibitor, ens.neurons, transform=-10 * np.ones((ens.n_neurons, 1)) ) stim_p = nengo.Probe(stim, "output") ens_p = nengo.Probe(ens, "decoded_output", synapse=0.05) inhibitor_p = nengo.Probe(inhibitor, "decoded_output", synapse=0.05) inhibition_p = nengo.Probe(inhibition, "output") with Simulator(net) as sim: sim.run(1.0) t = sim.trange() ideal = np.sin(t) ideal[t >= 0.5] = 0 plt.plot(t, sim.data[stim_p], label="Input") plt.plot(t, sim.data[ens_p], label="`ens` value, pstc=0.05") plt.plot(t, sim.data[inhibitor_p], label="`inhibitor` value, pstc=0.05") plt.plot(t, sim.data[inhibition_p], label="Inhibition signal") plt.plot(t, ideal, label="Ideal output") plt.legend(loc=0, prop={"size": 10}) assert allclose(sim.data[ens_p][-10:], 0, atol=0.1, rtol=0.01) assert allclose(sim.data[inhibitor_p][-10:], 1, atol=0.1, rtol=0.01) def test_node_to_ensemble(Simulator, NonDirectNeuronType, plt, seed, allclose): N = 50 m = nengo.Network(seed=seed) with m: m.config[nengo.Ensemble].neuron_type = NonDirectNeuronType() input_node = nengo.Node(output=lambda t: [np.sin(t * 3), np.cos(t * 3)]) a = nengo.Ensemble(N * 1, dimensions=1) b = nengo.Ensemble(N * 1, dimensions=1) c = nengo.Ensemble(N * 2, dimensions=2) d = nengo.Ensemble(N, neuron_type=nengo.Direct(), dimensions=3) nengo.Connection(input_node, a, function=lambda x: -x[0]) nengo.Connection(input_node[:1], b, function=lambda x: -x) nengo.Connection(input_node, c, function=lambda x: -(x ** 2)) nengo.Connection( input_node, d, function=lambda x: [-x[0], -(x[0] ** 2), -(x[1] ** 2)] ) a_p = nengo.Probe(a, "decoded_output", synapse=0.01) b_p = nengo.Probe(b, "decoded_output", synapse=0.01) c_p = nengo.Probe(c, "decoded_output", synapse=0.01) d_p = nengo.Probe(d, "decoded_output", synapse=0.01) with Simulator(m) as sim: sim.run(2.0) t = sim.trange() plt.plot(t, sim.data[a_p]) plt.plot(t, sim.data[b_p]) plt.plot(t, sim.data[c_p]) plt.plot(t, sim.data[d_p]) plt.legend( [ "-sin", "-sin", "-(sin ** 2)", "-(cos ** 2)", "-sin", "-(sin ** 2)", "-(cos ** 2)", ], loc="best", fontsize="small", ) assert allclose(sim.data[a_p][-10:], sim.data[d_p][-10:][:, 0], atol=0.1, rtol=0.01) assert allclose(sim.data[b_p][-10:], sim.data[d_p][-10:][:, 0], atol=0.1, rtol=0.01) assert allclose( sim.data[c_p][-10:], sim.data[d_p][-10:][:, 1:3], atol=0.1, rtol=0.01 ) def test_neurons_to_ensemble(Simulator, PositiveNeuronType, plt, seed): N = 20 m = nengo.Network(seed=seed) with m: m.config[nengo.Ensemble].neuron_type = PositiveNeuronType() a = nengo.Ensemble(N * 2, dimensions=2) b = nengo.Ensemble(N, dimensions=1) c = nengo.Ensemble(N, dimensions=N * 2) nengo.Connection(a.neurons, b, transform=-5 *
np.ones((1, N * 2))
numpy.ones
import folium import geopy.distance import math import matplotlib.pyplot as plt import numpy as np from scipy.signal import butter,filtfilt,sosfilt import os import sys import time import serial from pathlib import Path Path(__file__).parents[1] cwd = os.getcwd() input_file_path = str(Path(__file__).parents[1]) + '\Python\capturow_datalog.txt' class datalog: def __init__(self): self.elap_milli = [] self.current_sample = 0 self.ODR = [] self.latitude = [] self.longitude = [] self.num_strokes = 0 self.aX = [] self.aX_avg = 0 self.aY = [] self.aY_avg = 0 self.aZ = [] self.aZ_avg = 0 #self.distance = 0 self.num_logs = 0 self.num_samples_per_log = 0 self.num_valid_gps_coords = 0 def count_logs(): # Count logs/accel samples in file dlog.num_logs = sum(1 for odr in dlog.ODR) dlog.num_samples_per_log = dlog.ODR[-1] dlog.num_valid_gps_coords = sum(1 for lat in dlog.latitude) def plot_coords(sample_interval): m = folium.Map(location=[dlog.latitude[0], dlog.longitude[0]], max_zoom=19, zoom_start=19) for i in range (dlog.num_valid_gps_coords): if i % sample_interval == 0: folium.Marker([dlog.latitude[i], dlog.longitude[i]], icon=folium.Icon(color='red', icon='times', prefix='fa')).add_to(m) m.save('map.html') def calc_total_distance(): tot_distance = 0 for i in range (dlog.num_valid_gps_coords): if i > 0: coords_1 = (dlog.latitude[i-1], dlog.longitude[i-1]) coords_2 = (dlog.latitude[i], dlog.longitude[i]) meter_distance = geopy.distance.distance(coords_1, coords_2).m tot_distance += meter_distance print('Total Distance = ' + str(round(tot_distance, 2)) + ' m') def calc_max_speed(sample_interval): max_speed = 0 for i in range (dlog.num_logs): if ((i > 0) and (i % sample_interval == 0)): coords_1 = (dlog.latitude[i - sample_interval], dlog.longitude[i - sample_interval]) coords_2 = (dlog.latitude[i], dlog.longitude[i]) distance = geopy.distance.distance(coords_1, coords_2).m speed = distance / ((dlog.elap_milli[i] - (dlog.elap_milli[i - sample_interval])) / 1000) if (speed > max_speed): max_speed = speed print('Max Speed = ' + str(round(max_speed, 2)) + ' m/s') if max_speed != 0: factor = 500 / max_speed min_sec = factor / 60 mins = math.modf(min_sec)[1] frac_mins = math.modf(min_sec)[0] secs = 60 * frac_mins print('Max Speed = ' + str(round(mins,0)) + ' mins ' + str(round(secs, 2)) + ' secs/500m') else: print('Max Speed could not be determined or distance travelled = 0') # def calc_avg_speed(sample_interval): # avg_speed = 0 # for i in range (dlog.num_samples): # if ((i > 0) and (i % sample_interval == 0)): # coords_1 = (dlog.latitude[i-sample_interval], dlog.longitude[i-sample_interval]) # coords_2 = (dlog.latitude[i], dlog.longitude[i]) # distance = geopy.distance.distance(coords_1, coords_2).m # speed = distance / (sample_interval) # if (speed > max_speed): # max_speed = speed def plot_accel(plot_all_axes_sum = False, round_precision = 2, x_axis_step = 20, plot_avg = True, start_point = 0, end_point = 10000): aX_rounded = [] aY_rounded = [] aZ_rounded = [] for i in range(start_point, end_point): aX_rounded.append(round(float(dlog.aX[i]), round_precision)) aY_rounded.append(round(float(dlog.aY[i]), round_precision)) aZ_rounded.append(round(float(dlog.aZ[i]), round_precision)) x_points = np.arange(start_point, end_point, 1) if plot_all_axes_sum: plt.subplot(3,2,1) plt.plot(x_points, aX_rounded) plt.title('X-Axis Acceleration') plt.subplot(3,2,2) plt.plot(x_points, aY_rounded) plt.title('Y-Axis Acceleration') plt.subplot(3,2,3) plt.plot(x_points, aZ_rounded) plt.title('Z-Axis Acceleration') sum_rounded = [] for i in range(0, len(x_points)): sum_rounded.append((aX_rounded[i] + aY_rounded[i] + aZ_rounded[i])) plt.subplot(3,2,4) plt.plot(x_points, sum_rounded) plt.title('X-Axis + Y-Axis + Z-Axis Acceleration') sum_rounded = remove_offset(sum_rounded) zero_mrkr = generate_zero_mrkr(length=len(x_points)) plt.subplot(3,2,5) plt.plot(x_points, sum_rounded) plt.plot(x_points, zero_mrkr, ':') plt.title('All Axes Sum Gravity Calibrated-Out') plt.xlabel('Sample') plt.ylabel('Acceleration (2G normalized)') plt.subplot(3,2,6) #sum_rounded_lpf = lpf_data(data=sum_rounded, cutoff=1.67, sample_period=0.122) #sum_rounded_lpf = lpf_data(data=sum_rounded, cutoff=0.835, sample_period=0.122) sum_rounded_lpf = lpf_data(data=sum_rounded, cutoff=1.67, sample_period=1/(dlog.ODR[-1])) plt.plot(x_points, sum_rounded_lpf) plt.plot(x_points, zero_mrkr, ':') plt.title('All Axes Sum Low-Pass Filtered') plt.xlabel('Sample') plt.ylabel('Acceleration (2G normalized)') plt.show() # [t, dummy_data] = gen_dummy_data(f=0.34, sample_period=0.122, start_time=0, end_time=60) # plt.subplot(3,3,7) # plt.plot(t, dummy_data) # plt.title('Noisy Dummy Data') # plt.xlabel('Time') # plt.ylabel('Amplitude') # #lpf_dummy_data = lpf_data(data=dummy_data, cutoff=1.67, sample_period=0.122) # lpf_dummy_data = lpf_data(data=dummy_data, cutoff=0.5, sample_period=0.122) # plt.subplot(3,3,8) # plt.plot(t, lpf_dummy_data) # plt.title('LPF Noisy Dummy Data') # plt.xlabel('Time') # plt.ylabel('Amplitude') # plt.show() else: plt.subplot(3,1,1) plt.plot(x_points, aX_rounded) if plot_avg: plt.plot(x_points, np.full(end_point - start_point, dlog.aX_avg)) plt.title('X-Axis Acceleration') plt.xlabel('Sample') plt.ylabel('Acceleration (2G normalized)') plt.xticks(np.arange(start_point, end_point, step=x_axis_step)) plt.subplot(3,1,2) plt.plot(x_points, aY_rounded) if plot_avg: plt.plot(x_points, np.full(end_point - start_point, dlog.aY_avg)) plt.title('Y-Axis Acceleration') plt.xlabel('Sample') plt.ylabel('Acceleration (2G normalized)') plt.xticks(np.arange(start_point, end_point, step=x_axis_step)) plt.subplot(3,1,3) plt.plot(x_points, aZ_rounded) if plot_avg: plt.plot(x_points, np.full(end_point - start_point, dlog.aZ_avg)) plt.title('Z-Axis Acceleration') plt.xlabel('Sample') plt.ylabel('Acceleration (2G normalized)') plt.xticks(np.arange(start_point, end_point, step=x_axis_step)) plt.show() def avg_accel_data(): x_sum = 0 y_sum = 0 z_sum = 0 for i in range(0, dlog.num_samples_per_log): x_sum += float(dlog.aX[i]) y_sum += float(dlog.aY[i]) z_sum += float(dlog.aZ[i]) dlog.aX_avg = x_sum / dlog.num_samples_per_log dlog.aY_avg = y_sum / dlog.num_samples_per_log dlog.aZ_avg = z_sum / dlog.num_samples_per_log def find_g_axis(): # Determine which axis/axes gravity is more dominant on print('') def remove_offset(data): # Calibrate-out offset in accel data sum = 0 for value in data: sum += value mean = sum / len(data) for i, value in enumerate(data): data[i] = value - mean return data def generate_zero_mrkr(length): mrkr = np.zeros(length) return mrkr def gen_dummy_data(f, sample_period, start_time, end_time): # Generate dummy data for debug purposes. # Sine wave function (of freq (Hz)) = A*Sin(2*pi*f*t), we will take A as 1 fs = 1/sample_period t =
np.arange(start_time, end_time, 1/fs)
numpy.arange
#!/usr/bin/env python # Family size distribution of tags which were aligned to the reference genome # # Author: <NAME> & <NAME>, Johannes-Kepler University Linz (Austria) # Contact: <EMAIL> # # Takes at least one TABULAR file with tags before the alignment to the SSCS, # a BAM file with tags of reads that overlap the regions of the reference genome and # an optional BED file with chromosome, start and stop position of the regions as input. # The program produces a plot which shows the distribution of family sizes of the tags from the input files and # a tabular file with the data of the plot. # USAGE: python FSD_regions.py --inputFile filenameSSCS --inputName1 filenameSSCS # --bamFile DCSbamFile --rangesFile BEDfile --output_tabular outptufile_name_tabular # --output_pdf outputfile_name_pdf import argparse import collections import os.path import re import sys import matplotlib.pyplot as plt import numpy as np import pysam from matplotlib.backends.backend_pdf import PdfPages plt.switch_backend('agg') def readFileReferenceFree(file, delim): with open(file, 'r') as dest_f: data_array =
np.genfromtxt(dest_f, skip_header=0, delimiter=delim, comments='#', dtype=str)
numpy.genfromtxt
# Runs a simple Metropolis-Hastings (ie MCMC) algorithm to simulate two # jointly distributed random variables with probability density # p(x,y)=exp(-(x^2+y^2)/s^2)/consNorm, where s>0 and consNorm is a # normalization constant. # # Author: <NAME>, 2019. # Website: hpaulkeeler.com # Repository: github.com/hpaulkeeler/posts import numpy as np; # NumPy package for arrays, random number generation, etc import matplotlib.pyplot as plt # for plotting from matplotlib import cm # for heatmap plotting from mpl_toolkits import mplot3d # for 3-D plots from scipy import integrate # for integrating plt.close("all"); # close all previous plots # Simulation window parameters xMin = -1; xMax = 1; yMin = -1; yMax = 1; numbSim = 10 ** 5; # number of random variables simulated numbSteps = 25; # number of steps for the Markov process numbBins = 50; # number of bins for histogram sigma = 2; # standard deviation for normal random steps # probability density parameters s = .5; # scale parameter for distribution to be simulated def fun_lambda(x, y): return np.exp(-(x ** 2 + y ** 2) / s ** 2); # normalization constant consNorm = integrate.dblquad(fun_lambda, xMin, xMax, lambda x: yMin, lambda y: yMax)[0]; def fun_p(x, y): return (fun_lambda(x, y) / consNorm) * (x >= xMin) * (y >= yMin) * (x <= xMax) * (y <= yMax); xRand = np.random.uniform(xMin, xMax, numbSim); # random initial values yRand = np.random.uniform(yMin, yMax, numbSim); # random initial values probCurrent = fun_p(xRand, yRand); # current transition probabilities for jj in range(numbSteps): zxRand = xRand + sigma * np.random.normal(0, 1, numbSim); # take a (normally distributed) random step zyRand = yRand + sigma * np.random.normal(0, 1, numbSim); # take a (normally distributed) random step # Conditional random step needs to be symmetric in x and y # For example: Z|x ~ N(x,1) (or Y=x+N(0,1)) with probability density # p(z|x)=e(-(z-x)^2/2)/sqrt(2*pi) probProposal = fun_p(zxRand, zyRand); # proposed probability # acceptance rejection step booleAccept = np.random.uniform(0, 1, numbSim) < probProposal / probCurrent; # update state of random walk/Marjov chain xRand[booleAccept] = zxRand[booleAccept]; yRand[booleAccept] = zyRand[booleAccept]; # update transition probabilities probCurrent[booleAccept] = probProposal[booleAccept]; # for histogram, need to reshape as vectors xRand = np.reshape(xRand, numbSim); yRand =
np.reshape(yRand, numbSim)
numpy.reshape
'''Statistical tests for NDVars Common Attributes ----------------- The following attributes are always present. For ANOVA, they are lists with the corresponding items for different effects. t/f/... : NDVar Map of the statistical parameter. p_uncorrected : NDVar Map of uncorrected p values. p : NDVar | None Map of corrected p values (None if no correct was applied). clusters : Dataset | None Table of all the clusters found (None if no clusters were found, or if no clustering was performed). n_samples : None | int The actual number of permutations. If ``samples = -1``, i.e. a complete set or permutations is performed, then ``n_samples`` indicates the actual number of permutations that constitute the complete set. ''' from datetime import datetime, timedelta from functools import reduce, partial from itertools import chain, repeat from math import ceil from multiprocessing import Process, Event, SimpleQueue from multiprocessing.sharedctypes import RawArray import logging import operator import os import re import socket from time import time as current_time from typing import Union import numpy as np import scipy.stats from scipy import ndimage from tqdm import trange from .. import fmtxt, _info, _text from ..fmtxt import FMText from .._celltable import Celltable from .._config import CONFIG from .._data_obj import ( CategorialArg, CellArg, IndexArg, ModelArg, NDVarArg, VarArg, Dataset, Var, Factor, Interaction, NestedEffect, NDVar, Categorial, UTS, ascategorial, asmodel, asndvar, asvar, assub, cellname, combine, dataobj_repr) from .._exceptions import OldVersionError, WrongDimension, ZeroVariance from .._utils import LazyProperty, user_activity from .._utils.numpy_utils import FULL_AXIS_SLICE from . import opt, stats, vector from .connectivity import Connectivity, find_peaks from .connectivity_opt import merge_labels, tfce_increment from .glm import _nd_anova from .permutation import ( _resample_params, permute_order, permute_sign_flip, random_seeds, rand_rotation_matrices) from .t_contrast import TContrastRel from .test import star, star_factor __test__ = False def check_for_vector_dim(y: NDVar) -> None: for dim in y.dims: if dim._connectivity_type == 'vector': raise WrongDimension(f"{dim}: mass-univariate methods are not suitable for vectors. Consider using vector norm as test statistic, or using a testnd.Vector test function.") def check_variance(x): if x.ndim != 2: x = x.reshape((len(x), -1)) if opt.has_zero_variance(x): raise ZeroVariance("y contains data column with zero variance") class NDTest: """Baseclass for testnd test results Attributes ---------- p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). """ _state_common = ('y', 'match', 'sub', 'samples', 'tfce', 'pmin', '_cdist', 'tstart', 'tstop', '_dims') _state_specific = () _statistic = None _statistic_tail = 0 @property def _attributes(self): return self._state_common + self._state_specific def __init__(self, y, match, sub, samples, tfce, pmin, cdist, tstart, tstop): self.y = y.name self.match = dataobj_repr(match) if match else match self.sub = sub self.samples = samples self.tfce = tfce self.pmin = pmin self._cdist = cdist self.tstart = tstart self.tstop = tstop self._dims = y.dims[1:] def __getstate__(self): return {name: getattr(self, name, None) for name in self._attributes} def __setstate__(self, state): # backwards compatibility: if 'Y' in state: state['y'] = state.pop('Y') if 'X' in state: state['x'] = state.pop('X') for k, v in state.items(): setattr(self, k, v) # backwards compatibility: if 'tstart' not in state: cdist = self._first_cdist self.tstart = cdist.tstart self.tstop = cdist.tstop if '_dims' not in state: # 0.17 if 't' in state: self._dims = state['t'].dims elif 'r' in state: self._dims = state['r'].dims elif 'f' in state: self._dims = state['f'][0].dims else: raise RuntimeError("Error recovering old test results dims") self._expand_state() def __repr__(self): args = self._repr_test_args() if self.sub is not None: if isinstance(self.sub, np.ndarray): sub_repr = '<array>' else: sub_repr = repr(self.sub) args.append(f'sub={sub_repr}') if self._cdist: args += self._repr_cdist() else: args.append('samples=0') return f"<{self.__class__.__name__} {', '.join(args)}>" def _repr_test_args(self): """List of strings describing parameters unique to the test Will be joined with ``", ".join(repr_args)`` """ raise NotImplementedError() def _repr_cdist(self): """List of results (override for MultiEffectResult)""" return (self._cdist._repr_test_args(self.pmin) + self._cdist._repr_clusters()) def _expand_state(self): "Override to create secondary results" cdist = self._cdist if cdist is None: self.tfce_map = None self.p = None self._kind = None else: self.tfce_map = cdist.tfce_map self.p = cdist.probability_map self._kind = cdist.kind def _desc_samples(self): if self.samples == -1: return f"a complete set of {self.n_samples} permutations" elif self.samples is None: return "no permutations" else: return f"{self.n_samples} random permutations" def _desc_timewindow(self): tstart = self._time_dim.tmin if self.tstart is None else self.tstart tstop = self._time_dim.tstop if self.tstop is None else self.tstop return f"{_text.ms(tstart)} - {_text.ms(tstop)} ms" def _asfmtext(self): p = self.p.min() max_stat = self._max_statistic() return FMText((fmtxt.eq(self._statistic, max_stat, 'max', stars=p), ', ', fmtxt.peq(p))) def _default_plot_obj(self): raise NotImplementedError def _iter_cdists(self): yield (None, self._cdist) @property def _first_cdist(self): return self._cdist def _plot_model(self): "Determine x for plotting categories" return None def _plot_sub(self): if isinstance(self.sub, str) and self.sub == "<unsaved array>": raise RuntimeError("The sub parameter was not saved for previous " "versions of Eelbrain. Please recompute this " "result with the current version.") return self.sub def _assert_has_cdist(self): if self._cdist is None: raise RuntimeError("This method only applies to results of tests " "with threshold-based clustering and tests with " "a permutation distribution (samples > 0)") def masked_parameter_map(self, pmin=0.05, **sub): """Create a copy of the parameter map masked by significance Parameters ---------- pmin : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. Returns ------- masked_map : NDVar NDVar with data from the original parameter map wherever p <= pmin and 0 everywhere else. """ self._assert_has_cdist() return self._cdist.masked_parameter_map(pmin, **sub) def cluster(self, cluster_id): """Retrieve a specific cluster as NDVar Parameters ---------- cluster_id : int Cluster id. Returns ------- cluster : NDVar NDVar of the cluster, 0 outside the cluster. Notes ----- Clusters only have stable ids for thresholded cluster distributions. """ self._assert_has_cdist() return self._cdist.cluster(cluster_id) @LazyProperty def clusters(self): if self._cdist is None: return None else: return self.find_clusters(None, True) def find_clusters(self, pmin=None, maps=False, **sub): """Find significant regions or clusters Parameters ---------- pmin : None | scalar, 1 >= p >= 0 Threshold p-value. For threshold-based tests, all clusters with a p-value smaller than ``pmin`` are included (default 1); for other tests, find contiguous regions with ``p ≤ pmin`` (default 0.05). maps : bool Include in the output a map of every cluster (can be memory intensive if there are large statistical maps and/or many clusters; default ``False``). Returns ------- ds : Dataset Dataset with information about the clusters. """ self._assert_has_cdist() return self._cdist.clusters(pmin, maps, **sub) def find_peaks(self): """Find peaks in a threshold-free cluster distribution Returns ------- ds : Dataset Dataset with information about the peaks. """ self._assert_has_cdist() return self._cdist.find_peaks() def compute_probability_map(self, **sub): """Compute a probability map Returns ------- probability : NDVar Map of p-values. """ self._assert_has_cdist() return self._cdist.compute_probability_map(**sub) def info_list(self, computation=True): "List with information about the test" out = fmtxt.List("Mass-univariate statistics:") out.add_item(self._name()) dimnames = [dim.name for dim in self._dims] dimlist = out.add_sublist(f"Over {_text.enumeration(dimnames)}") if 'time' in dimnames: dimlist.add_item(f"Time interval: {self._desc_timewindow()}.") cdist = self._first_cdist if cdist is None: out.add_item("No inferential statistics") return out # inference l = out.add_sublist("Inference:") if cdist.kind == 'raw': l.add_item("Based on maximum statistic") elif cdist.kind == 'tfce': l.add_item("Based on maximum statistic with threshold-" "free cluster enhancement (Smith & Nichols, 2009)") elif cdist.kind == 'cluster': l.add_item("Based on maximum cluster mass statistic") sl = l.add_sublist("Cluster criteria:") for dim in dimnames: if dim == 'time': sl.add_item(f"Minimum cluster duration {_text.ms(cdist.criteria.get('mintime', 0))} ms") elif dim == 'source': sl.add_item(f"At least {cdist.criteria.get('minsource', 0)} contiguous sources.") elif dim == 'sensor': sl.add_item(f"At least {cdist.criteria.get('minsensor', 0)} contiguous sensors.") else: value = cdist.criteria.get(f'min{dim}', 0) sl.add_item(f"Minimum number of contiguous elements in {dim}: {value}") # n samples l.add_item(f"In {self._desc_samples()}") # computation if computation: out.add_item(cdist.info_list()) return out @property def _statistic_map(self): return getattr(self, self._statistic) def _max_statistic(self): tail = getattr(self, 'tail', self._statistic_tail) return self._max_statistic_from_map(self._statistic_map, self.p, tail) @staticmethod def _max_statistic_from_map(stat_map: NDVar, p_map: NDVar, tail: int): if tail == 0: func = stat_map.extrema elif tail == 1: func = stat_map.max else: func = stat_map.min if p_map: mask = p_map <= .05 if p_map.min() <= .05 else None else: mask = None return func() if mask is None else func(mask) @property def n_samples(self): if self.samples == -1: return self._first_cdist.samples else: return self.samples @property def _time_dim(self): for dim in self._first_cdist.dims: if isinstance(dim, UTS): return dim return None class t_contrast_rel(NDTest): """Mass-univariate contrast based on t-values Parameters ---------- y : NDVar Dependent variable. x : categorial Model containing the cells which are compared with the contrast. contrast : str Contrast specification: see Notes. match : Factor Match cases for a repeated measures test. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use a t-value equivalent to an uncorrected p-value for a related samples t-test (with df = len(match.cells) - 1). tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Notes ----- A contrast specifies the steps to calculate a map based on *t*-values. Contrast definitions can contain: - Comparisons using ``>`` or ``<`` and data cells to compute *t*-maps. For example, ``"cell1 > cell0"`` will compute a *t*-map of the comparison if ``cell1`` and ``cell0``, being positive where ``cell1`` is greater than ``cell0`` and negative where ``cell0`` is greater than ``cell1``. If the data is defined based on an interaction, cells are specified with ``|``, e.g. ``"a1 | b1 > a0 | b0"``. Cells can contain ``*`` to average multiple cells. Thus, if the second factor in the model has cells ``b1`` and ``b0``, ``"a1 | * > a0 | *"`` would compare ``a1`` to ``a0`` while averaging ``b1`` and ``b0`` within ``a1`` and ``a0``. - Unary numpy functions ``abs`` and ``negative``, e.g. ``"abs(cell1 > cell0)"``. - Binary numpy functions ``subtract`` and ``add``, e.g. ``"add(a>b, a>c)"``. - Numpy functions for multiple arrays ``min``, ``max`` and ``sum``, e.g. ``min(a>d, b>d, c>d)``. Cases with zero variance are set to t=0. Examples -------- To find cluster where both of two pairwise comparisons are reliable, i.e. an intersection of two effects, one could use ``"min(a > c, b > c)"``. To find a specific kind of interaction, where a is greater than b, and this difference is greater than the difference between c and d, one could use ``"(a > b) - abs(c > d)"``. """ _state_specific = ('x', 'contrast', 't', 'tail') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, x: CategorialArg, contrast: str, match: CategorialArg = None, sub: CategorialArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): if match is None: raise TypeError("The `match` parameter needs to be specified for repeated measures test t_contrast_rel") ct = Celltable(y, x, match, sub, ds=ds, coercion=asndvar, dtype=np.float64) check_for_vector_dim(ct.y) check_variance(ct.y.x) # setup contrast t_contrast = TContrastRel(contrast, ct.cells, ct.data_indexes) # original data tmap = t_contrast.map(ct.y.x) n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: df = len(ct.match.cells) - 1 threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None cdist = NDPermutationDistribution( ct.y, samples, threshold, tfce, tail, 't', "t-contrast", tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_order(len(ct.y), samples, unit=ct.match) run_permutation(t_contrast, cdist, iterator) # NDVar map of t-values info = _info.for_stat_map('t', threshold, tail=tail, old=ct.y.info) t = NDVar(tmap, ct.y.dims[1:], info, 't') # store attributes NDTest.__init__(self, ct.y, ct.match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = ('%'.join(ct.x.base_names) if isinstance(ct.x, Interaction) else ct.x.name) self.contrast = contrast self.tail = tail self.tmin = tmin self.t = t self._expand_state() def _name(self): if self.y: return "T-Contrast: %s ~ %s" % (self.y, self.contrast) else: return "T-Contrast: %s" % self.contrast def _plot_model(self): return self.x def _repr_test_args(self): args = [repr(self.y), repr(self.x), repr(self.contrast)] if self.tail: args.append("tail=%r" % self.tail) if self.match: args.append('match=%r' % self.match) return args class corr(NDTest): """Mass-univariate correlation Parameters ---------- y : NDVar Dependent variable. x : continuous The continuous predictor variable. norm : None | categorial Categories in which to normalize (z-score) x. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use an r-value equivalent to an uncorrected p-value. rmin : None | scalar Threshold for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). match : None | categorial When permuting data, only shuffle the cases within the categories of match. parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. r : NDVar Map of correlation values (with threshold contours). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). """ _state_specific = ('x', 'norm', 'n', 'df', 'r') _statistic = 'r' @user_activity def __init__( self, y: NDVarArg, x: VarArg, norm: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, pmin: float = None, rmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, match: CategorialArg = None, parc: str = None, **criteria): sub = assub(sub, ds) y = asndvar(y, sub=sub, ds=ds, dtype=np.float64) check_for_vector_dim(y) if not y.has_case: raise ValueError("Dependent variable needs case dimension") x = asvar(x, sub=sub, ds=ds) if norm is not None: norm = ascategorial(norm, sub, ds) if match is not None: match = ascategorial(match, sub, ds) name = "%s corr %s" % (y.name, x.name) # Normalize by z-scoring the data for each subject # normalization is done before the permutation b/c we are interested in # the variance associated with each subject for the z-scoring. y = y.copy() if norm is not None: for cell in norm.cells: idx = (norm == cell) y.x[idx] = scipy.stats.zscore(y.x[idx], None) # subtract the mean from y and x so that this can be omitted during # permutation y -= y.summary('case') x = x - x.mean() n = len(y) df = n - 2 rmap = stats.corr(y.x, x.x) n_threshold_params = sum((pmin is not None, rmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, rmin and tfce can be specified") else: if pmin is not None: threshold = stats.rtest_r(pmin, df) elif rmin is not None: threshold = abs(rmin) else: threshold = None cdist = NDPermutationDistribution( y, samples, threshold, tfce, 0, 'r', name, tstart, tstop, criteria, parc) cdist.add_original(rmap) if cdist.do_permutation: iterator = permute_order(n, samples, unit=match) run_permutation(stats.corr, cdist, iterator, x.x) # compile results info = _info.for_stat_map('r', threshold) r = NDVar(rmap, y.dims[1:], info, name) # store attributes NDTest.__init__(self, y, match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = x.name self.norm = None if norm is None else norm.name self.rmin = rmin self.n = n self.df = df self.r = r self._expand_state() def _expand_state(self): NDTest._expand_state(self) r = self.r # uncorrected probability pmap = stats.rtest_p(r.x, self.df) info = _info.for_p_map() p_uncorrected = NDVar(pmap, r.dims, info, 'p_uncorrected') self.p_uncorrected = p_uncorrected self.r_p = [[r, self.p]] if self.samples else None def _name(self): if self.y and self.x: return "Correlation: %s ~ %s" % (self.y, self.x) else: return "Correlation" def _repr_test_args(self): args = [repr(self.y), repr(self.x)] if self.norm: args.append('norm=%r' % self.norm) return args def _default_plot_obj(self): if self.samples: return self.masked_parameter_map() else: return self.r class NDDifferenceTest(NDTest): difference = None def _get_mask(self, p=0.05): self._assert_has_cdist() if not 1 >= p > 0: raise ValueError(f"p={p}: needs to be between 1 and 0") if p == 1: if self._cdist.kind != 'cluster': raise ValueError(f"p=1 is only a valid mask for threshold-based cluster tests") mask = self._cdist.cluster_map == 0 else: mask = self.p > p return self._cdist.uncrop(mask, self.difference, True) def masked_difference(self, p=0.05): """Difference map masked by significance Parameters ---------- p : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. """ mask = self._get_mask(p) return self.difference.mask(mask) class NDMaskedC1Mixin: def masked_c1(self, p=0.05): """``c1`` map masked by significance of the ``c1``-``c0`` difference Parameters ---------- p : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. """ mask = self._get_mask(p) return self.c1_mean.mask(mask) class ttest_1samp(NDDifferenceTest): """Mass-univariate one sample t-test Parameters ---------- y : NDVar Dependent variable. popmean : scalar Value to compare y against (default is 0). match : None | categorial Combine data for these categories before testing. sub : index Perform test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use a t-value equivalent to an uncorrected p-value. tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. difference : NDVar The difference value entering the test (``y`` if popmean is 0). n : int Number of cases. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. t : NDVar Map of t-values. tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). Notes ----- Data points with zero variance are set to t=0. """ _state_specific = ('popmean', 'tail', 'n', 'df', 't', 'difference') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, popmean: float = 0, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): ct = Celltable(y, match=match, sub=sub, ds=ds, coercion=asndvar, dtype=np.float64) check_for_vector_dim(ct.y) n = len(ct.y) df = n - 1 y = ct.y.summary() tmap = stats.t_1samp(ct.y.x) if popmean: raise NotImplementedError("popmean != 0") diff = y - popmean if np.any(diff < 0): diff.info['cmap'] = 'xpolar' else: diff = y n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None if popmean: y_perm = ct.y - popmean else: y_perm = ct.y n_samples, samples = _resample_params(len(y_perm), samples) cdist = NDPermutationDistribution( y_perm, n_samples, threshold, tfce, tail, 't', '1-Sample t-Test', tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_sign_flip(n, samples) run_permutation(opt.t_1samp_perm, cdist, iterator) # NDVar map of t-values info = _info.for_stat_map('t', threshold, tail=tail, old=ct.y.info) t = NDVar(tmap, ct.y.dims[1:], info, 't') # store attributes NDDifferenceTest.__init__(self, ct.y, ct.match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.popmean = popmean self.n = n self.df = df self.tail = tail self.t = t self.tmin = tmin self.difference = diff self._expand_state() def __setstate__(self, state): if 'diff' in state: state['difference'] = state.pop('diff') NDTest.__setstate__(self, state) def _expand_state(self): NDTest._expand_state(self) t = self.t pmap = stats.ttest_p(t.x, self.df, self.tail) info = _info.for_p_map(t.info) p_uncorr = NDVar(pmap, t.dims, info, 'p') self.p_uncorrected = p_uncorr def _name(self): if self.y: return "One-Sample T-Test: %s" % self.y else: return "One-Sample T-Test" def _repr_test_args(self): args = [repr(self.y)] if self.popmean: args.append(repr(self.popmean)) if self.match: args.append('match=%r' % self.match) if self.tail: args.append("tail=%i" % self.tail) return args def _default_plot_obj(self): if self.samples: return self.masked_difference() else: return self.difference def _independent_measures_args(y, x, c1, c0, match, ds, sub): "Interpret parameters for independent measures tests (2 different argspecs)" if isinstance(x, str): x = ds.eval(x) if isinstance(x, NDVar): assert c1 is None assert c0 is None assert match is None y1 = asndvar(y, sub, ds) y0 = asndvar(x, sub, ds) y = combine((y1, y0)) c1_name = y1.name c0_name = y0.name x_name = y0.name else: ct = Celltable(y, x, match, sub, cat=(c1, c0), ds=ds, coercion=asndvar, dtype=np.float64) c1, c0 = ct.cat c1_name = c1 c0_name = c0 x_name = ct.x.name match = ct.match y = ct.y y1 = ct.data[c1] y0 = ct.data[c0] return y, y1, y0, c1, c0, match, x_name, c1_name, c0_name class ttest_ind(NDDifferenceTest): """Mass-univariate independent samples t-test Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Combine cases with the same cell on ``x % match``. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold p value for forming clusters. None for threshold-free cluster enhancement. tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- c1_mean : NDVar Mean in the c1 condition. c0_mean : NDVar Mean in the c0 condition. clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. difference : NDVar Difference between the mean in condition c1 and condition c0. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. t : NDVar Map of t-values. tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). Notes ----- Cases with zero variance are set to t=0. """ _state_specific = ('x', 'c1', 'c0', 'tail', 't', 'n1', 'n0', 'df', 'c1_mean', 'c0_mean') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: CellArg = None, c0: CellArg = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): y, y1, y0, c1, c0, match, x_name, c1_name, c0_name = _independent_measures_args(y, x, c1, c0, match, ds, sub) check_for_vector_dim(y) n1 = len(y1) n = len(y) n0 = n - n1 df = n - 2 groups = np.arange(n) < n1 groups.dtype = np.int8 tmap = stats.t_ind(y.x, groups) n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None cdist = NDPermutationDistribution(y, samples, threshold, tfce, tail, 't', 'Independent Samples t-Test', tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_order(n, samples) run_permutation(stats.t_ind, cdist, iterator, groups) # store attributes NDDifferenceTest.__init__(self, y, match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = x_name self.c0 = c0 self.c1 = c1 self.n1 = n1 self.n0 = n0 self.df = df self.tail = tail info = _info.for_stat_map('t', threshold, tail=tail, old=y.info) self.t = NDVar(tmap, y.dims[1:], info, 't') self.tmin = tmin self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self._expand_state() def _expand_state(self): NDTest._expand_state(self) # difference diff = self.c1_mean - self.c0_mean if np.any(diff.x < 0): diff.info['cmap'] = 'xpolar' diff.name = 'difference' self.difference = diff # uncorrected p pmap = stats.ttest_p(self.t.x, self.df, self.tail) info = _info.for_p_map(self.t.info) p_uncorr = NDVar(pmap, self.t.dims, info, 'p') self.p_uncorrected = p_uncorr # composites if self.samples: diff_p = self.masked_difference() else: diff_p = self.difference self.all = [self.c1_mean, self.c0_mean, diff_p] def _name(self): if self.tail == 0: comp = "%s == %s" % (self.c1, self.c0) elif self.tail > 0: comp = "%s > %s" % (self.c1, self.c0) else: comp = "%s < %s" % (self.c1, self.c0) if self.y: return "Independent-Samples T-Test: %s ~ %s" % (self.y, comp) else: return "Independent-Samples T-Test: %s" % comp def _plot_model(self): return self.x def _plot_sub(self): return "(%s).isin(%s)" % (self.x, (self.c1, self.c0)) def _repr_test_args(self): if self.c1 is None: args = [f'{self.y!r} (n={self.n1})', f'{self.x!r} (n={self.n0})'] else: args = [f'{self.y!r}', f'{self.x!r}', f'{self.c1!r} (n={self.n1})', f'{self.c0!r} (n={self.n0})'] if self.match: args.append(f'match{self.match!r}') if self.tail: args.append(f'tail={self.tail}') return args def _default_plot_obj(self): if self.samples: diff = self.masked_difference() else: diff = self.difference return [self.c1_mean, self.c0_mean, diff] def _related_measures_args(y, x, c1, c0, match, ds, sub): "Interpret parameters for related measures tests (2 different argspecs)" if isinstance(x, str): if ds is None: raise TypeError(f"x={x!r} specified as str without specifying ds") x = ds.eval(x) if isinstance(x, NDVar): assert c1 is None assert c0 is None assert match is None y1 = asndvar(y, sub, ds) n = len(y1) y0 = asndvar(x, sub, ds, n) c1_name = y1.name c0_name = y0.name x_name = y0.name elif match is None: raise TypeError("The `match` argument needs to be specified for related measures tests") else: ct = Celltable(y, x, match, sub, cat=(c1, c0), ds=ds, coercion=asndvar, dtype=np.float64) c1, c0 = ct.cat c1_name = c1 c0_name = c0 if not ct.all_within: raise ValueError(f"conditions {c1!r} and {c0!r} do not have the same values on {dataobj_repr(ct.match)}") n = len(ct.y) // 2 y1 = ct.y[:n] y0 = ct.y[n:] x_name = ct.x.name match = ct.match return y1, y0, c1, c0, match, n, x_name, c1, c1_name, c0, c0_name class ttest_rel(NDMaskedC1Mixin, NDDifferenceTest): """Mass-univariate related samples t-test Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Units within which measurements are related (e.g. 'subject' in a within-subject comparison). sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. tail : 0 | 1 | -1 Which tail of the t-distribution to consider: 0: both (two-tailed, default); 1: upper tail (one-tailed); -1: lower tail (one-tailed). samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use a t-value equivalent to an uncorrected p-value. tmin : scalar Threshold for forming clusters as t-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- c1_mean : NDVar Mean in the c1 condition. c0_mean : NDVar Mean in the c0 condition. clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. difference : NDVar Difference between the mean in condition c1 and condition c0. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : NDVar Map of p-values uncorrected for multiple comparison. t : NDVar Map of t-values. tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). n : int Number of cases. Notes ----- In the permutation cluster test, permutations are done within the categories of ``match``. Cases with zero variance are set to t=0. """ _state_specific = ('x', 'c1', 'c0', 'tail', 't', 'n', 'df', 'c1_mean', 'c0_mean') _statistic = 't' @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: CellArg = None, c0: CellArg = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, tail: int = 0, samples: int = 10000, pmin: float = None, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, **criteria): y1, y0, c1, c0, match, n, x_name, c1, c1_name, c0, c0_name = _related_measures_args(y, x, c1, c0, match, ds, sub) check_for_vector_dim(y1) if n <= 2: raise ValueError("Not enough observations for t-test (n=%i)" % n) df = n - 1 diff = y1 - y0 tmap = stats.t_1samp(diff.x) n_threshold_params = sum((pmin is not None, tmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: threshold = cdist = None elif n_threshold_params > 1: raise ValueError("Only one of pmin, tmin and tfce can be specified") else: if pmin is not None: threshold = stats.ttest_t(pmin, df, tail) elif tmin is not None: threshold = abs(tmin) else: threshold = None n_samples, samples = _resample_params(len(diff), samples) cdist = NDPermutationDistribution( diff, n_samples, threshold, tfce, tail, 't', 'Related Samples t-Test', tstart, tstop, criteria, parc, force_permutation) cdist.add_original(tmap) if cdist.do_permutation: iterator = permute_sign_flip(n, samples) run_permutation(opt.t_1samp_perm, cdist, iterator) # NDVar map of t-values info = _info.for_stat_map('t', threshold, tail=tail, old=y1.info) t = NDVar(tmap, y1.dims[1:], info, 't') # store attributes NDDifferenceTest.__init__(self, y1, match, sub, samples, tfce, pmin, cdist, tstart, tstop) self.x = x_name self.c0 = c0 self.c1 = c1 self.n = n self.df = df self.tail = tail self.t = t self.tmin = tmin self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self._expand_state() def _expand_state(self): NDTest._expand_state(self) cdist = self._cdist t = self.t # difference diff = self.c1_mean - self.c0_mean if np.any(diff.x < 0): diff.info['cmap'] = 'xpolar' diff.name = 'difference' self.difference = diff # uncorrected p pmap = stats.ttest_p(t.x, self.df, self.tail) info = _info.for_p_map() self.p_uncorrected = NDVar(pmap, t.dims, info, 'p') # composites if self.samples: diff_p = self.masked_difference() else: diff_p = self.difference self.all = [self.c1_mean, self.c0_mean, diff_p] def _name(self): if self.tail == 0: comp = "%s == %s" % (self.c1, self.c0) elif self.tail > 0: comp = "%s > %s" % (self.c1, self.c0) else: comp = "%s < %s" % (self.c1, self.c0) if self.y: return "Related-Samples T-Test: %s ~ %s" % (self.y, comp) else: return "Related-Samples T-Test: %s" % comp def _plot_model(self): return self.x def _plot_sub(self): return "(%s).isin(%s)" % (self.x, (self.c1, self.c0)) def _repr_test_args(self): args = [repr(self.y), repr(self.x)] if self.c1 is not None: args.extend((repr(self.c1), repr(self.c0), repr(self.match))) args[-1] += " (n=%i)" % self.n if self.tail: args.append("tail=%i" % self.tail) return args def _default_plot_obj(self): if self.samples: diff = self.masked_difference() else: diff = self.difference return [self.c1_mean, self.c0_mean, diff] class MultiEffectNDTest(NDTest): def _repr_test_args(self): args = [repr(self.y), repr(self.x)] if self.match is not None: args.append('match=%r' % self.match) return args def _repr_cdist(self): args = self._cdist[0]._repr_test_args(self.pmin) for cdist in self._cdist: effect_args = cdist._repr_clusters() args.append("%r: %s" % (cdist.name, ', '.join(effect_args))) return args def _asfmtext(self): table = fmtxt.Table('llll') table.cells('Effect', fmtxt.symbol(self._statistic, 'max'), fmtxt.symbol('p'), 'sig') table.midrule() for i, effect in enumerate(self.effects): table.cell(effect) table.cell(fmtxt.stat(self._max_statistic(i))) pmin = self.p[i].min() table.cell(fmtxt.p(pmin)) table.cell(star(pmin)) return table def _expand_state(self): self.effects = tuple(e.name for e in self._effects) # clusters cdists = self._cdist if cdists is None: self._kind = None else: self.tfce_maps = [cdist.tfce_map for cdist in cdists] self.p = [cdist.probability_map for cdist in cdists] self._kind = cdists[0].kind def _effect_index(self, effect: Union[int, str]): if isinstance(effect, str): return self.effects.index(effect) else: return effect def _iter_cdists(self): for cdist in self._cdist: yield cdist.name.capitalize(), cdist @property def _first_cdist(self): if self._cdist is None: return None else: return self._cdist[0] def _max_statistic(self, effect: Union[str, int]): i = self._effect_index(effect) stat_map = self._statistic_map[i] tail = getattr(self, 'tail', self._statistic_tail) return self._max_statistic_from_map(stat_map, self.p[i], tail) def cluster(self, cluster_id, effect=0): """Retrieve a specific cluster as NDVar Parameters ---------- cluster_id : int Cluster id. effect : int | str Index or name of the effect from which to retrieve a cluster (default is the first effect). Returns ------- cluster : NDVar NDVar of the cluster, 0 outside the cluster. Notes ----- Clusters only have stable ids for thresholded cluster distributions. """ self._assert_has_cdist() i = self._effect_index(effect) return self._cdist[i].cluster(cluster_id) def compute_probability_map(self, effect=0, **sub): """Compute a probability map Parameters ---------- effect : int | str Index or name of the effect from which to use the parameter map (default is the first effect). Returns ------- probability : NDVar Map of p-values. """ self._assert_has_cdist() i = self._effect_index(effect) return self._cdist[i].compute_probability_map(**sub) def masked_parameter_map(self, effect=0, pmin=0.05, **sub): """Create a copy of the parameter map masked by significance Parameters ---------- effect : int | str Index or name of the effect from which to use the parameter map. pmin : scalar Threshold p-value for masking (default 0.05). For threshold-based cluster tests, ``pmin=1`` includes all clusters regardless of their p-value. Returns ------- masked_map : NDVar NDVar with data from the original parameter map wherever p <= pmin and 0 everywhere else. """ self._assert_has_cdist() i = self._effect_index(effect) return self._cdist[i].masked_parameter_map(pmin, **sub) def find_clusters(self, pmin=None, maps=False, effect=None, **sub): """Find significant regions or clusters Parameters ---------- pmin : None | scalar, 1 >= p >= 0 Threshold p-value. For threshold-based tests, all clusters with a p-value smaller than ``pmin`` are included (default 1); for other tests, find contiguous regions with ``p ≤ pmin`` (default 0.05). maps : bool Include in the output a map of every cluster (can be memory intensive if there are large statistical maps and/or many clusters; default ``False``). effect : int | str Index or name of the effect from which to find clusters (default is all effects). Returns ------- ds : Dataset Dataset with information about the clusters. """ self._assert_has_cdist() if effect is not None: i = self._effect_index(effect) return self._cdist[i].clusters(pmin, maps, **sub) dss = [] info = {} for cdist in self._cdist: ds = cdist.clusters(pmin, maps, **sub) ds[:, 'effect'] = cdist.name if 'clusters' in ds.info: info['%s clusters' % cdist.name] = ds.info.pop('clusters') dss.append(ds) out = combine(dss) out.info.update(info) return out def find_peaks(self): """Find peaks in a TFCE distribution Returns ------- ds : Dataset Dataset with information about the peaks. """ self._assert_has_cdist() dss = [] for cdist in self._cdist: ds = cdist.find_peaks() ds[:, 'effect'] = cdist.name dss.append(ds) return combine(dss) class anova(MultiEffectNDTest): """Mass-univariate ANOVA Parameters ---------- y : NDVar Dependent variable. x : Model Independent variables. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10,000). pmin : None | scalar (0 < pmin < 1) Threshold for forming clusters: use an f-value equivalent to an uncorrected p-value. fmin : scalar Threshold for forming clusters as f-value. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). replacement : bool whether random samples should be drawn with replacement or without tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). match : categorial | False When permuting data, only shuffle the cases within the categories of match. By default, ``match`` is determined automatically based on the random efects structure of ``x``. parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- effects : tuple of str Names of the tested effects, in the same order as in other attributes. clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. f : list of NDVar Maps of F values. p : list of NDVar | None Maps of p-values corrected for multiple comparison (or None if no correction was performed). p_uncorrected : list of NDVar Maps of p-values uncorrected for multiple comparison. tfce_maps : list of NDVar | None Maps of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). Examples -------- For information on model specification see the univariate :func:`~eelbrain.test.anova` examples. """ _state_specific = ('x', 'pmin', '_effects', '_dfs_denom', 'f') _statistic = 'f' _statistic_tail = 1 @user_activity def __init__( self, y: NDVarArg, x: ModelArg, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, pmin: float = None, fmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, match: Union[CategorialArg, bool] = None, parc: str = None, force_permutation: bool = False, **criteria): x_arg = x sub_arg = sub sub = assub(sub, ds) y = asndvar(y, sub, ds, dtype=np.float64) check_for_vector_dim(y) x = asmodel(x, sub, ds) if match is None: random_effects = [e for e in x.effects if e.random] if not random_effects: match = None elif len(random_effects) > 1: raise NotImplementedError( "Automatic match parameter for model with more than one " "random effect. Set match manually.") else: match = random_effects[0] elif match is not False: match = ascategorial(match, sub, ds) lm = _nd_anova(x) effects = lm.effects dfs_denom = lm.dfs_denom fmaps = lm.map(y.x) n_threshold_params = sum((pmin is not None, fmin is not None, bool(tfce))) if n_threshold_params == 0 and not samples: cdists = None thresholds = tuple(repeat(None, len(effects))) elif n_threshold_params > 1: raise ValueError("Only one of pmin, fmin and tfce can be specified") else: if pmin is not None: thresholds = tuple(stats.ftest_f(pmin, e.df, df_den) for e, df_den in zip(effects, dfs_denom)) elif fmin is not None: thresholds = tuple(repeat(abs(fmin), len(effects))) else: thresholds = tuple(repeat(None, len(effects))) cdists = [ NDPermutationDistribution( y, samples, thresh, tfce, 1, 'f', e.name, tstart, tstop, criteria, parc, force_permutation) for e, thresh in zip(effects, thresholds)] # Find clusters in the actual data do_permutation = 0 for cdist, fmap in zip(cdists, fmaps): cdist.add_original(fmap) do_permutation += cdist.do_permutation if do_permutation: iterator = permute_order(len(y), samples, unit=match) run_permutation_me(lm, cdists, iterator) # create ndvars dims = y.dims[1:] f = [] for e, fmap, df_den, f_threshold in zip(effects, fmaps, dfs_denom, thresholds): info = _info.for_stat_map('f', f_threshold, tail=1, old=y.info) f.append(NDVar(fmap, dims, info, e.name)) # store attributes MultiEffectNDTest.__init__(self, y, match, sub_arg, samples, tfce, pmin, cdists, tstart, tstop) self.x = x_arg if isinstance(x_arg, str) else x.name self._effects = effects self._dfs_denom = dfs_denom self.f = f self._expand_state() def _expand_state(self): # backwards compatibility if hasattr(self, 'effects'): self._effects = self.effects MultiEffectNDTest._expand_state(self) # backwards compatibility if hasattr(self, 'df_den'): df_den_temp = {e.name: df for e, df in self.df_den.items()} del self.df_den self._dfs_denom = tuple(df_den_temp[e] for e in self.effects) # f-maps with clusters pmin = self.pmin or 0.05 if self.samples: f_and_clusters = [] for e, fmap, df_den, cdist in zip(self._effects, self.f, self._dfs_denom, self._cdist): # create f-map with cluster threshold f0 = stats.ftest_f(pmin, e.df, df_den) info = _info.for_stat_map('f', f0) f_ = NDVar(fmap.x, fmap.dims, info, e.name) # add overlay with cluster if cdist.probability_map is not None: f_and_clusters.append([f_, cdist.probability_map]) else: f_and_clusters.append([f_]) self.f_probability = f_and_clusters # uncorrected probability p_uncorr = [] for e, f, df_den in zip(self._effects, self.f, self._dfs_denom): info = _info.for_p_map() pmap = stats.ftest_p(f.x, e.df, df_den) p_ = NDVar(pmap, f.dims, info, e.name) p_uncorr.append(p_) self.p_uncorrected = p_uncorr def _name(self): if self.y: return "ANOVA: %s ~ %s" % (self.y, self.x) else: return "ANOVA: %s" % self.x def _plot_model(self): return '%'.join(e.name for e in self._effects if isinstance(e, Factor) or (isinstance(e, NestedEffect) and isinstance(e.effect, Factor))) def _plot_sub(self): return super(anova, self)._plot_sub() def _default_plot_obj(self): if self.samples: return [self.masked_parameter_map(e) for e in self.effects] else: return self._statistic_map def table(self): """Table with effects and smallest p-value""" table = fmtxt.Table('rlr' + ('' if self.p is None else 'rl')) table.cells('#', 'Effect', 'f_max') if self.p is not None: table.cells('p', 'sig') table.midrule() for i in range(len(self.effects)): table.cell(i) table.cell(self.effects[i]) table.cell(fmtxt.stat(self.f[i].max())) if self.p is not None: pmin = self.p[i].min() table.cell(fmtxt.p(pmin)) table.cell(star(pmin)) return table class Vector(NDDifferenceTest): """Test a vector field for vectors with non-random direction Parameters ---------- y : NDVar Dependent variable (needs to include one vector dimension). match : None | categorial Combine data for these categories before testing. sub : index Perform test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables samples : int Number of samples for permutation test (default 10000). tmin : scalar Threshold value for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. norm : bool Use the vector norm as univariate test statistic (instead of Hotelling’s T-Square statistic). mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- n : int Number of cases. difference : NDVar The vector field averaged across cases. t2 : NDVar | None Hotelling T-Square map; ``None`` if the test used ``norm=True``. p : NDVar | None Map of p-values corrected for multiple comparison (or ``None`` if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. Notes ----- Vector tests are based on the Hotelling T-Square statistic. Computation of the T-Square statistic relies on [1]_. References ---------- .. [1] <NAME>. (2008). Efficient numerical diagonalization of hermitian 3 x 3 matrices. International Journal of Modern Physics C, 19(3), 523-548. `10.1142/S0129183108012303 <https://doi.org/10.1142/S0129183108012303>`_ """ _state_specific = ('difference', 'n', '_v_dim', 't2') @user_activity def __init__( self, y: NDVarArg, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, tmin: float = None, tfce: Union[float, bool] = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, norm: bool = False, **criteria): use_norm = bool(norm) ct = Celltable(y, match=match, sub=sub, ds=ds, coercion=asndvar, dtype=np.float64) n = len(ct.y) cdist = NDPermutationDistribution(ct.y, samples, tmin, tfce, 1, 'norm', 'Vector test', tstart, tstop, criteria, parc, force_permutation) v_dim = ct.y.dimnames[cdist._vector_ax + 1] v_mean = ct.y.mean('case') v_mean_norm = v_mean.norm(v_dim) if not use_norm: t2_map = self._vector_t2_map(ct.y) cdist.add_original(t2_map.x if v_mean.ndim > 1 else t2_map) if v_mean.ndim == 1: self.t2 = t2_map else: self.t2 = NDVar(t2_map, v_mean_norm.dims, _info.for_stat_map('t2'), 't2') else: cdist.add_original(v_mean_norm.x if v_mean.ndim > 1 else v_mean_norm) self.t2 = None if cdist.do_permutation: iterator = random_seeds(samples) vector_perm = partial(self._vector_perm, use_norm=use_norm) run_permutation(vector_perm, cdist, iterator) # store attributes NDTest.__init__(self, ct.y, ct.match, sub, samples, tfce, None, cdist, tstart, tstop) self.difference = v_mean self._v_dim = v_dim self.n = n self._expand_state() def __setstate__(self, state): if 'diff' in state: state['difference'] = state.pop('diff') NDTest.__setstate__(self, state) @property def _statistic(self): return 'norm' if self.t2 is None else 't2' def _name(self): if self.y: return f"Vector test: {self.y}" else: return "Vector test" def _repr_test_args(self): args = [] if self.y: args.append(repr(self.y)) if self.match: args.append(f'match={self.match!r}') return args @staticmethod def _vector_perm(y, out, seed, use_norm): n_cases, n_dims, n_tests = y.shape assert n_dims == 3 rotation = rand_rotation_matrices(n_cases, seed) if use_norm: return vector.mean_norm_rotated(y, rotation, out) else: return vector.t2_stat_rotated(y, rotation, out) @staticmethod def _vector_t2_map(y): dimnames = y.get_dimnames(first=('case', 'space')) x = y.get_data(dimnames) t2_map = stats.t2_1samp(x) if y.ndim == 2: return np.float64(t2_map) else: dims = y.get_dims(dimnames[2:]) return NDVar(t2_map, dims) class VectorDifferenceIndependent(Vector): """Test difference between two vector fields for non-random direction Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Combine cases with the same cell on ``x % match``. sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10000). tmin : scalar Threshold value for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. norm : bool Use the vector norm as univariate test statistic (instead of Hotelling’s T-Square statistic). mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- n : int Total number of cases. n1 : int Number of cases in ``c1``. n0 : int Number of cases in ``c0``. c1_mean : NDVar Mean in the c1 condition. c0_mean : NDVar Mean in the c0 condition. difference : NDVar Difference between the mean in condition c1 and condition c0. t2 : NDVar | None Hotelling T-Square map; ``None`` if the test used ``norm=True``. p : NDVar | None Map of p-values corrected for multiple comparison (or None if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. """ _state_specific = ('difference', 'c1_mean', 'c0_mean' 'n', '_v_dim', 't2') _statistic = 'norm' @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: str = None, c0: str = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, tmin: float = None, tfce: bool = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, norm: bool = False, **criteria): use_norm = bool(norm) y, y1, y0, c1, c0, match, x_name, c1_name, c0_name = _independent_measures_args(y, x, c1, c0, match, ds, sub) self.n1 = len(y1) self.n0 = len(y0) self.n = len(y) cdist = NDPermutationDistribution(y, samples, tmin, tfce, 1, 'norm', 'Vector test (independent)', tstart, tstop, criteria, parc, force_permutation) self._v_dim = v_dim = y.dimnames[cdist._vector_ax + 1] self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self.difference = self.c1_mean - self.c0_mean self.difference.name = 'difference' v_mean_norm = self.difference.norm(v_dim) if not use_norm: raise NotImplementedError("t2 statistic not implemented for VectorDifferenceIndependent") else: cdist.add_original(v_mean_norm.x if self.difference.ndim > 1 else v_mean_norm) self.t2 = None if cdist.do_permutation: iterator = random_seeds(samples) vector_perm = partial(self._vector_perm, use_norm=use_norm) run_permutation(vector_perm, cdist, iterator, self.n1) NDTest.__init__(self, y, match, sub, samples, tfce, None, cdist, tstart, tstop) self._expand_state() def _name(self): if self.y: return f"Vector test (independent): {self.y}" else: return "Vector test (independent)" @staticmethod def _vector_perm(y, n1, out, seed, use_norm): assert use_norm n_cases, n_dims, n_tests = y.shape assert n_dims == 3 # randomize directions rotation = rand_rotation_matrices(n_cases, seed) # randomize groups cases = np.arange(n_cases) np.random.shuffle(cases) # group 1 mean_1 = np.zeros((n_dims, n_tests)) for case in cases[:n1]: mean_1 += np.tensordot(rotation[case], y[case], ((1,), (0,))) mean_1 /= n1 # group 0 mean_0 = np.zeros((n_dims, n_tests)) for case in cases[n1:]: mean_0 += np.tensordot(rotation[case], y[case], ((1,), (0,))) mean_0 /= (n_cases - n1) # difference mean_1 -= mean_0 norm = scipy.linalg.norm(mean_1, 2, axis=0) if out is not None: out[:] = norm return norm class VectorDifferenceRelated(NDMaskedC1Mixin, Vector): """Test difference between two vector fields for non-random direction Parameters ---------- y : NDVar Dependent variable. x : categorial | NDVar Model containing the cells which should be compared, or NDVar to which ``y`` should be compared. In the latter case, the next three parameters are ignored. c1 : str | tuple | None Test condition (cell of ``x``). ``c1`` and ``c0`` can be omitted if ``x`` only contains two cells, in which case cells will be used in alphabetical order. c0 : str | tuple | None Control condition (cell of ``x``). match : categorial Units within which measurements are related (e.g. 'subject' in a within-subject comparison). sub : index Perform the test with a subset of the data. ds : None | Dataset If a Dataset is specified, all data-objects can be specified as names of Dataset variables. samples : int Number of samples for permutation test (default 10000). tmin : scalar Threshold value for forming clusters. tfce : bool | scalar Use threshold-free cluster enhancement. Use a scalar to specify the step of TFCE levels (for ``tfce is True``, 0.1 is used). tstart : scalar Start of the time window for the permutation test (default is the beginning of ``y``). tstop : scalar Stop of the time window for the permutation test (default is the end of ``y``). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation: bool Conduct permutations regardless of whether there are any clusters. norm : bool Use the vector norm as univariate test statistic (instead of Hotelling’s T-Square statistic). mintime : scalar Minimum duration for clusters (in seconds). minsource : int Minimum number of sources per cluster. Attributes ---------- n : int Number of cases. c1_mean : NDVar Mean in the ``c1`` condition. c0_mean : NDVar Mean in the ``c0`` condition. difference : NDVar Difference between the mean in condition ``c1`` and condition ``c0``. t2 : NDVar | None Hotelling T-Square map; ``None`` if the test used ``norm=True``. p : NDVar | None Map of p-values corrected for multiple comparison (or ``None`` if no correction was performed). tfce_map : NDVar | None Map of the test statistic processed with the threshold-free cluster enhancement algorithm (or None if no TFCE was performed). clusters : None | Dataset For cluster-based tests, a table of all clusters. Otherwise a table of all significant regions (or ``None`` if permutations were omitted). See also the :meth:`.find_clusters` method. See Also -------- Vector : One-sample vector test, notes on vector test implementation """ _state_specific = ('difference', 'c1_mean', 'c0_mean' 'n', '_v_dim', 't2') @user_activity def __init__( self, y: NDVarArg, x: Union[CategorialArg, NDVarArg], c1: str = None, c0: str = None, match: CategorialArg = None, sub: IndexArg = None, ds: Dataset = None, samples: int = 10000, tmin: float = None, tfce: bool = False, tstart: float = None, tstop: float = None, parc: str = None, force_permutation: bool = False, norm: bool = False, **criteria): use_norm = bool(norm) y1, y0, c1, c0, match, n, x_name, c1, c1_name, c0, c0_name = _related_measures_args(y, x, c1, c0, match, ds, sub) difference = y1 - y0 difference.name = 'difference' n_samples, samples = _resample_params(n, samples) cdist = NDPermutationDistribution(difference, n_samples, tmin, tfce, 1, 'norm', 'Vector test (related)', tstart, tstop, criteria, parc, force_permutation) v_dim = difference.dimnames[cdist._vector_ax + 1] v_mean = difference.mean('case') v_mean_norm = v_mean.norm(v_dim) if not use_norm: t2_map = self._vector_t2_map(difference) cdist.add_original(t2_map.x if v_mean.ndim > 1 else t2_map) if v_mean.ndim == 1: self.t2 = t2_map else: self.t2 = NDVar(t2_map, v_mean_norm.dims, _info.for_stat_map('t2'), 't2') else: cdist.add_original(v_mean_norm.x if v_mean.ndim > 1 else v_mean_norm) self.t2 = None if cdist.do_permutation: iterator = random_seeds(n_samples) vector_perm = partial(self._vector_perm, use_norm=use_norm) run_permutation(vector_perm, cdist, iterator) # store attributes NDTest.__init__(self, difference, match, sub, samples, tfce, None, cdist, tstart, tstop) self.difference = v_mean self.c1_mean = y1.mean('case', name=cellname(c1_name)) self.c0_mean = y0.mean('case', name=cellname(c0_name)) self._v_dim = v_dim self.n = n self._expand_state() def _name(self): if self.y: return f"Vector test (related): {self.y}" else: return "Vector test (related)" def flatten(array, connectivity): """Reshape SPM buffer array to 2-dimensional map for connectivity processing Parameters ---------- array : ndarray N-dimensional array (with non-adjacent dimension at first position). connectivity : Connectivity N-dimensional connectivity. Returns ------- flat_array : ndarray The input array reshaped if necessary, making sure that input and output arrays share the same underlying data buffer. """ if array.ndim == 2 or not connectivity.custom: return array else: out = array.reshape((array.shape[0], -1)) assert out.base is array return out def flatten_1d(array): if array.ndim == 1: return array else: out = array.ravel() assert out.base is array return out def label_clusters(stat_map, threshold, tail, connectivity, criteria): """Label clusters Parameters ---------- stat_map : array Statistical parameter map (non-adjacent dimension on the first axis). Returns ------- cmap : np.ndarray of uint32 Array with clusters labelled as integers. cluster_ids : np.ndarray of uint32 Identifiers of the clusters that survive the minimum duration criterion. """ cmap = np.empty(stat_map.shape, np.uint32) bin_buff = np.empty(stat_map.shape, np.bool8) cmap_flat = flatten(cmap, connectivity) if tail == 0: int_buff = np.empty(stat_map.shape, np.uint32) int_buff_flat = flatten(int_buff, connectivity) else: int_buff = int_buff_flat = None cids = _label_clusters(stat_map, threshold, tail, connectivity, criteria, cmap, cmap_flat, bin_buff, int_buff, int_buff_flat) return cmap, cids def _label_clusters(stat_map, threshold, tail, conn, criteria, cmap, cmap_flat, bin_buff, int_buff, int_buff_flat): """Find clusters on a statistical parameter map Parameters ---------- stat_map : array Statistical parameter map (non-adjacent dimension on the first axis). cmap : array of int Buffer for the cluster id map (will be modified). Returns ------- cluster_ids : np.ndarray of uint32 Identifiers of the clusters that survive the minimum duration criterion. """ # compute clusters if tail >= 0: bin_map_above = np.greater(stat_map, threshold, bin_buff) cids = _label_clusters_binary(bin_map_above, cmap, cmap_flat, conn, criteria) if tail <= 0: bin_map_below = np.less(stat_map, -threshold, bin_buff) if tail < 0: cids = _label_clusters_binary(bin_map_below, cmap, cmap_flat, conn, criteria) else: cids_l = _label_clusters_binary(bin_map_below, int_buff, int_buff_flat, conn, criteria) x = cmap.max() int_buff[bin_map_below] += x cids_l += x cmap += int_buff cids = np.concatenate((cids, cids_l)) return cids def label_clusters_binary(bin_map, connectivity, criteria=None): """Label clusters in a boolean map Parameters ---------- bin_map : numpy.ndarray Binary map. connectivity : Connectivity Connectivity corresponding to ``bin_map``. criteria : dict Cluster criteria. Returns ------- cmap : numpy.ndarray of uint32 Array with clusters labelled as integers. cluster_ids : numpy.ndarray of uint32 Sorted identifiers of the clusters that survive the selection criteria. """ cmap = np.empty(bin_map.shape, np.uint32) cmap_flat = flatten(cmap, connectivity) cids = _label_clusters_binary(bin_map, cmap, cmap_flat, connectivity, criteria) return cmap, cids def _label_clusters_binary(bin_map, cmap, cmap_flat, connectivity, criteria): """Label clusters in a binary array Parameters ---------- bin_map : np.ndarray Binary map of where the parameter map exceeds the threshold for a cluster (non-adjacent dimension on the first axis). cmap : np.ndarray Array in which to label the clusters. cmap_flat : np.ndarray Flat copy of cmap (ndim=2, only used when all_adjacent==False) connectivity : Connectivity Connectivity. criteria : None | list Cluster size criteria, list of (axes, v) tuples. Collapse over axes and apply v minimum length). Returns ------- cluster_ids : np.ndarray of uint32 Sorted identifiers of the clusters that survive the selection criteria. """ # find clusters n = ndimage.label(bin_map, connectivity.struct, cmap) if n <= 1: # in older versions, n is 1 even when no cluster is found if n == 0 or cmap.max() == 0: return np.array((), np.uint32) else: cids = np.array((1,), np.uint32) elif connectivity.custom: cids = merge_labels(cmap_flat, n, *connectivity.custom[0]) else: cids = np.arange(1, n + 1, 1, np.uint32) # apply minimum cluster size criteria if criteria and cids.size: for axes, v in criteria: cids = np.setdiff1d(cids, [i for i in cids if np.count_nonzero(np.equal(cmap, i).any(axes)) < v], True) if cids.size == 0: break return cids def tfce(stat_map, tail, connectivity, dh=0.1): tfce_im = np.empty(stat_map.shape, np.float64) tfce_im_1d = flatten_1d(tfce_im) bin_buff = np.empty(stat_map.shape, np.bool8) int_buff = np.empty(stat_map.shape, np.uint32) int_buff_flat = flatten(int_buff, connectivity) int_buff_1d = flatten_1d(int_buff) return _tfce(stat_map, tail, connectivity, tfce_im, tfce_im_1d, bin_buff, int_buff, int_buff_flat, int_buff_1d, dh) def _tfce(stat_map, tail, conn, out, out_1d, bin_buff, int_buff, int_buff_flat, int_buff_1d, dh=0.1, e=0.5, h=2.0): "Threshold-free cluster enhancement" out.fill(0) # determine slices if tail == 0: hs = chain(np.arange(-dh, stat_map.min(), -dh), np.arange(dh, stat_map.max(), dh)) elif tail < 0: hs = np.arange(-dh, stat_map.min(), -dh) else: hs = np.arange(dh, stat_map.max(), dh) # label clusters in slices at different heights # fill each cluster with total section value # each point's value is the vertical sum for h_ in hs: if h_ > 0: np.greater_equal(stat_map, h_, bin_buff) h_factor = h_ ** h else: np.less_equal(stat_map, h_, bin_buff) h_factor = (-h_) ** h c_ids = _label_clusters_binary(bin_buff, int_buff, int_buff_flat, conn, None) tfce_increment(c_ids, int_buff_1d, out_1d, e, h_factor) return out class StatMapProcessor: def __init__(self, tail, max_axes, parc): """Reduce a statistical map to the relevant maximum statistic""" self.tail = tail self.max_axes = max_axes self.parc = parc def max_stat(self, stat_map): if self.tail == 0: v = np.abs(stat_map, stat_map).max(self.max_axes) elif self.tail > 0: v = stat_map.max(self.max_axes) else: v = -stat_map.min(self.max_axes) if self.parc is None: return v else: return [v[idx].max() for idx in self.parc] class TFCEProcessor(StatMapProcessor): def __init__(self, tail, max_axes, parc, shape, connectivity, dh): StatMapProcessor.__init__(self, tail, max_axes, parc) self.shape = shape self.connectivity = connectivity self.dh = dh # Pre-allocate memory buffers used for cluster processing self._bin_buff = np.empty(shape, np.bool8) self._int_buff = np.empty(shape, np.uint32) self._tfce_im = np.empty(shape, np.float64) self._tfce_im_1d = flatten_1d(self._tfce_im) self._int_buff_flat = flatten(self._int_buff, connectivity) self._int_buff_1d = flatten_1d(self._int_buff) def max_stat(self, stat_map): v = _tfce( stat_map, self.tail, self.connectivity, self._tfce_im, self._tfce_im_1d, self._bin_buff, self._int_buff, self._int_buff_flat, self._int_buff_1d, self.dh, ).max(self.max_axes) if self.parc is None: return v else: return [v[idx].max() for idx in self.parc] class ClusterProcessor(StatMapProcessor): def __init__(self, tail, max_axes, parc, shape, connectivity, threshold, criteria): StatMapProcessor.__init__(self, tail, max_axes, parc) self.shape = shape self.connectivity = connectivity self.threshold = threshold self.criteria = criteria # Pre-allocate memory buffers used for cluster processing self._bin_buff = np.empty(shape, np.bool8) self._cmap = np.empty(shape, np.uint32) self._cmap_flat = flatten(self._cmap, connectivity) if tail == 0: self._int_buff = np.empty(shape, np.uint32) self._int_buff_flat = flatten(self._int_buff, connectivity) else: self._int_buff = self._int_buff_flat = None def max_stat(self, stat_map, threshold=None): if threshold is None: threshold = self.threshold cmap = self._cmap cids = _label_clusters(stat_map, threshold, self.tail, self.connectivity, self.criteria, cmap, self._cmap_flat, self._bin_buff, self._int_buff, self._int_buff_flat) if self.parc is not None: v = [] for idx in self.parc: clusters_v = ndimage.sum(stat_map[idx], cmap[idx], cids) if len(clusters_v): if self.tail <= 0: np.abs(clusters_v, clusters_v) v.append(clusters_v.max()) else: v.append(0) return v elif len(cids): clusters_v = ndimage.sum(stat_map, cmap, cids) if self.tail <= 0: np.abs(clusters_v, clusters_v) return clusters_v.max() else: return 0 def get_map_processor(kind, *args): if kind == 'tfce': return TFCEProcessor(*args) elif kind == 'cluster': return ClusterProcessor(*args) elif kind == 'raw': return StatMapProcessor(*args) else: raise ValueError("kind=%s" % repr(kind)) class NDPermutationDistribution: """Accumulate information on a cluster statistic. Parameters ---------- y : NDVar Dependent variable. samples : int Number of permutations. threshold : scalar > 0 Threshold-based clustering. tfce : bool | scalar Threshold-free cluster enhancement. tail : 1 | 0 | -1 Which tail(s) of the distribution to consider. 0 is two-tailed, whereas 1 only considers positive values and -1 only considers negative values. meas : str Label for the parameter measurement (e.g., 't' for t-values). name : None | str Name for the comparison. tstart, tstop : None | scalar Restrict the time window for finding clusters (None: use the whole epoch). criteria : dict Dictionary with threshold criteria for cluster size: 'mintime' (seconds) and 'minsource' (n_sources). parc : str Collect permutation statistics for all regions of the parcellation of this dimension. For threshold-based test, the regions are disconnected. force_permutation : bool Conduct permutations regardless of whether there are any clusters. Notes ----- Use of the NDPermutationDistribution proceeds in 3 steps: - initialize the NDPermutationDistribution object: ``cdist = NDPermutationDistribution(...)`` - use a copy of y cropped to the time window of interest: ``y = cdist.Y_perm`` - add the actual statistical map with ``cdist.add_original(pmap)`` - if any clusters are found (``if cdist.n_clusters``): - proceed to add statistical maps from permuted data with ``cdist.add_perm(pmap)``. Permutation data shape: case, [vector, ][non-adjacent, ] ... internal shape: [non-adjacent, ] ... """ tfce_warning = None def __init__(self, y, samples, threshold, tfce=False, tail=0, meas='?', name=None, tstart=None, tstop=None, criteria={}, parc=None, force_permutation=False): assert y.has_case assert parc is None or isinstance(parc, str) if tfce and threshold: raise RuntimeError(f"threshold={threshold!r}, tfce={tfce!r}: mutually exclusive parameters") elif tfce: if tfce is not True: tfce = abs(tfce) kind = 'tfce' elif threshold: threshold = float(threshold) kind = 'cluster' assert threshold > 0 else: kind = 'raw' # vector: will be removed for stat_map vector = [d._connectivity_type == 'vector' for d in y.dims[1:]] has_vector_ax = any(vector) if has_vector_ax: vector_ax = vector.index(True) else: vector_ax = None # prepare temporal cropping if (tstart is None) and (tstop is None): y_perm = y self._crop_for_permutation = False self._crop_idx = None else: t_ax = y.get_axis('time') - 1 y_perm = y.sub(time=(tstart, tstop)) # for stat-maps if vector_ax is not None and vector_ax < t_ax: t_ax -= 1 t_slice = y.time._array_index(slice(tstart, tstop)) self._crop_for_permutation = True self._crop_idx = FULL_AXIS_SLICE * t_ax + (t_slice,) dims = list(y_perm.dims[1:]) if has_vector_ax: del dims[vector_ax] # custom connectivity: move non-adjacent connectivity to first axis custom = [d._connectivity_type == 'custom' for d in dims] n_custom = sum(custom) if n_custom > 1: raise NotImplementedError("More than one axis with custom connectivity") nad_ax = None if n_custom == 0 else custom.index(True) if nad_ax: swapped_dims = list(dims) swapped_dims[0], swapped_dims[nad_ax] = dims[nad_ax], dims[0] else: swapped_dims = dims connectivity = Connectivity(swapped_dims, parc) assert connectivity.vector is None # cluster map properties ndim = len(dims) # prepare cluster minimum size criteria if criteria: criteria_ = [] for k, v in criteria.items(): m = re.match('min(\w+)', k) if m: dimname = m.group(1) if not y.has_dim(dimname): raise TypeError( "%r is an invalid keyword argument for this testnd " "function (no dimension named %r)" % (k, dimname)) ax = y.get_axis(dimname) - 1 if dimname == 'time': v = int(ceil(v / y.time.tstep)) else: raise TypeError("%r is an invalid keyword argument for this testnd function" % (k,)) if nad_ax: if ax == 0: ax = nad_ax elif ax == nad_ax: ax = 0 axes = tuple(i for i in range(ndim) if i != ax) criteria_.append((axes, v)) if kind != 'cluster': # here so that invalid keywords raise explicitly err = ("Can not use cluster size criteria when doing " "threshold free cluster evaluation") raise ValueError(err) else: criteria_ = None # prepare distribution samples = int(samples) if parc: for parc_ax, parc_dim in enumerate(swapped_dims): if parc_dim.name == parc: break else: raise ValueError("parc=%r (no dimension named %r)" % (parc, parc)) if parc_dim._connectivity_type == 'none': parc_indexes = np.arange(len(parc_dim)) elif kind == 'tfce': raise NotImplementedError( f"TFCE for parc={parc!r} ({parc_dim.__class__.__name__} dimension)") elif parc_dim._connectivity_type == 'custom': if not hasattr(parc_dim, 'parc'): raise NotImplementedError(f"parc={parc!r}: dimension has no parcellation") parc_indexes = tuple(np.flatnonzero(parc_dim.parc == cell) for cell in parc_dim.parc.cells) parc_dim = Categorial(parc, parc_dim.parc.cells) else: raise NotImplementedError(f"parc={parc!r}") dist_shape = (samples, len(parc_dim)) dist_dims = ('case', parc_dim) max_axes = tuple(chain(range(parc_ax), range(parc_ax + 1, ndim))) else: dist_shape = (samples,) dist_dims = None max_axes = None parc_indexes = None # arguments for the map processor shape = tuple(map(len, swapped_dims)) if kind == 'raw': map_args = (kind, tail, max_axes, parc_indexes) elif kind == 'tfce': dh = 0.1 if tfce is True else tfce map_args = (kind, tail, max_axes, parc_indexes, shape, connectivity, dh) else: map_args = (kind, tail, max_axes, parc_indexes, shape, connectivity, threshold, criteria_) self.kind = kind self.y_perm = y_perm self.dims = tuple(dims) # external stat map dims (cropped time) self.shape = shape # internal stat map shape self._connectivity = connectivity self.samples = samples self.dist_shape = dist_shape self._dist_dims = dist_dims self._max_axes = max_axes self.dist = None self.threshold = threshold self.tfce = tfce self.tail = tail self._nad_ax = nad_ax self._vector_ax = vector_ax self.tstart = tstart self.tstop = tstop self.parc = parc self.meas = meas self.name = name self._criteria = criteria_ self.criteria = criteria self.map_args = map_args self.has_original = False self.do_permutation = False self.dt_perm = None self._finalized = False self._init_time = current_time() self._host = socket.gethostname() self.force_permutation = force_permutation from .. import __version__ self._version = __version__ def _crop(self, im): "Crop an original stat_map" if self._crop_for_permutation: return im[self._crop_idx] else: return im def uncrop( self, ndvar: NDVar, # NDVar to uncrop to: NDVar, # NDVar that has the target time dimensions default: float = 0, # value to fill in uncropped area ): if self.tstart is None and self.tstop is None: return ndvar target_time = to.get_dim('time') t_ax = ndvar.get_axis('time') dims = list(ndvar.dims) dims[t_ax] = target_time shape = list(ndvar.shape) shape[t_ax] = len(target_time) t_slice = target_time._array_index(slice(self.tstart, self.tstop)) x = np.empty(shape, ndvar.x.dtype) x.fill(default) x[FULL_AXIS_SLICE * t_ax + (t_slice,)] = ndvar.x return NDVar(x, dims, ndvar.info, ndvar.name) def add_original(self, stat_map): """Add the original statistical parameter map. Parameters ---------- stat_map : array Parameter map of the statistic of interest (uncropped). """ if self.has_original: raise RuntimeError("Original pmap already added") logger = logging.getLogger(__name__) logger.debug("Adding original parameter map...") # crop/reshape stat_map stat_map = self._crop(stat_map) if self._nad_ax: stat_map = stat_map.swapaxes(0, self._nad_ax) # process map if self.kind == 'tfce': dh = 0.1 if self.tfce is True else self.tfce self.tfce_warning = max(stat_map.max(), -stat_map.min()) < dh cmap = tfce(stat_map, self.tail, self._connectivity, dh) cids = None n_clusters = cmap.max() > 0 elif self.kind == 'cluster': cmap, cids = label_clusters(stat_map, self.threshold, self.tail, self._connectivity, self._criteria) n_clusters = len(cids) # clean original cluster map idx = np.in1d(cmap, cids, invert=True).reshape(self.shape) cmap[idx] = 0 else: cmap = stat_map cids = None n_clusters = True self._t0 = current_time() self._original_cluster_map = cmap self._cids = cids self.n_clusters = n_clusters self.has_original = True self.dt_original = self._t0 - self._init_time self._original_param_map = stat_map if self.force_permutation or (self.samples and n_clusters): self._create_dist() self.do_permutation = True else: self.dist_array = None self.finalize() def _create_dist(self): "Create the distribution container" if CONFIG['n_workers']: n = reduce(operator.mul, self.dist_shape) dist_array = RawArray('d', n) dist = np.frombuffer(dist_array, np.float64, n) dist.shape = self.dist_shape else: dist_array = None dist = np.zeros(self.dist_shape) self.dist_array = dist_array self.dist = dist def _aggregate_dist(self, **sub): """Aggregate permutation distribution to one value per permutation Parameters ---------- [dimname] : index Limit the data for the distribution. Returns ------- dist : array, shape = (samples,) Maximum value for each permutation in the given region. """ dist = self.dist if sub: if self._dist_dims is None: raise TypeError("NDPermutationDistribution does not have parcellation") dist_ = NDVar(dist, self._dist_dims) dist_sub = dist_.sub(**sub) dist = dist_sub.x if dist.ndim > 1: axes = tuple(range(1, dist.ndim)) dist = dist.max(axes) return dist def __repr__(self): items = [] if self.has_original: dt = timedelta(seconds=round(self.dt_original)) items.append("%i clusters (%s)" % (self.n_clusters, dt)) if self.samples > 0 and self.n_clusters > 0: if self.dt_perm is not None: dt = timedelta(seconds=round(self.dt_perm)) items.append("%i permutations (%s)" % (self.samples, dt)) else: items.append("no data") return "<NDPermutationDistribution: %s>" % ', '.join(items) def __getstate__(self): if not self._finalized: raise RuntimeError("Cannot pickle cluster distribution before all " "permutations have been added.") state = { name: getattr(self, name) for name in ( 'name', 'meas', '_version', '_host', '_init_time', # settings ... 'kind', 'threshold', 'tfce', 'tail', 'criteria', 'samples', 'tstart', 'tstop', 'parc', # data properties ... 'dims', 'shape', '_nad_ax', '_vector_ax', '_criteria', '_connectivity', # results ... 'dt_original', 'dt_perm', 'n_clusters', '_dist_dims', 'dist', '_original_param_map', '_original_cluster_map', '_cids', )} state['version'] = 3 return state def __setstate__(self, state): # backwards compatibility version = state.pop('version', 0) if version == 0: if '_connectivity_src' in state: del state['_connectivity_src'] del state['_connectivity_dst'] if '_connectivity' in state: del state['_connectivity'] if 'N' in state: state['samples'] = state.pop('N') if '_version' not in state: state['_version'] = '< 0.11' if '_host' not in state: state['_host'] = 'unknown' if '_init_time' not in state: state['_init_time'] = None if 'parc' not in state: if state['_dist_dims'] is None: state['parc'] = None else: raise OldVersionError("This pickled file is from a previous version of Eelbrain and is not compatible anymore. Please recompute this test.") elif isinstance(state['parc'], tuple): if len(state['parc']) == 0: state['parc'] = None elif len(state['parc']) == 1: state['parc'] = state['parc'][0] else: raise OldVersionError("This pickled file is from a previous version of Eelbrain and is not compatible anymore. Please recompute this test.") nad_ax = state['_nad_ax'] state['dims'] = dims = state['dims'][1:] state['_connectivity'] = Connectivity( (dims[nad_ax],) + dims[:nad_ax] + dims[nad_ax + 1:], state['parc']) if version < 2: state['_vector_ax'] = None if version < 3: state['tfce'] = ['kind'] == 'tfce' for k, v in state.items(): setattr(self, k, v) self.has_original = True self.finalize() def _repr_test_args(self, pmin): "Argument representation for TestResult repr" args = ['samples=%r' % self.samples] if pmin is not None: args.append(f"pmin={pmin!r}") elif self.kind == 'tfce': arg = f"tfce={self.tfce!r}" if self.tfce_warning: arg = f"{arg} [WARNING: The TFCE step is larger than the largest value in the data]" args.append(arg) if self.tstart is not None: args.append(f"tstart={self.tstart!r}") if self.tstop is not None: args.append(f"tstop={self.tstop!r}") for k, v in self.criteria.items(): args.append(f"{k}={v!r}") return args def _repr_clusters(self): info = [] if self.kind == 'cluster': if self.n_clusters == 0: info.append("no clusters") else: info.append("%i clusters" % self.n_clusters) if self.n_clusters and self.samples: info.append(f"{fmtxt.peq(self.probability_map.min())}") return info def _package_ndvar(self, x, info=None, external_shape=False): "Generate NDVar from map with internal shape" if not self.dims: if isinstance(x, np.ndarray): return x.item() return x if not external_shape and self._nad_ax: x = x.swapaxes(0, self._nad_ax) if info is None: info = {} return NDVar(x, self.dims, info, self.name) def finalize(self): "Package results and delete temporary data" if self.dt_perm is None: self.dt_perm = current_time() - self._t0 # original parameter map param_contours = {} if self.kind == 'cluster': if self.tail >= 0: param_contours[self.threshold] = (0.7, 0.7, 0) if self.tail <= 0: param_contours[-self.threshold] = (0.7, 0, 0.7) info = _info.for_stat_map(self.meas, contours=param_contours) self.parameter_map = self._package_ndvar(self._original_param_map, info) # TFCE map if self.kind == 'tfce': self.tfce_map = self._package_ndvar(self._original_cluster_map) else: self.tfce_map = None # cluster map if self.kind == 'cluster': self.cluster_map = self._package_ndvar(self._original_cluster_map) else: self.cluster_map = None self._finalized = True def data_for_permutation(self, raw=True): """Retrieve data flattened for permutation Parameters ---------- raw : bool Return a RawArray and a shape tuple instead of a numpy array. """ # get data in the right shape x = self.y_perm.x if self._vector_ax: x = np.moveaxis(x, self._vector_ax + 1, 1) if self._nad_ax is not None: dst = 1 src = 1 + self._nad_ax if self._vector_ax is not None: dst += 1 if self._vector_ax > self._nad_ax: src += 1 if dst != src: x = x.swapaxes(dst, src) # flat y shape ndims = 1 + (self._vector_ax is not None) n_flat = 1 if x.ndim == ndims else reduce(operator.mul, x.shape[ndims:]) y_flat_shape = x.shape[:ndims] + (n_flat,) if not raw: return x.reshape(y_flat_shape) n = reduce(operator.mul, y_flat_shape) ra = RawArray('d', n) ra[:] = x.ravel() # OPT: don't copy data return ra, y_flat_shape, x.shape[ndims:] def _cluster_properties(self, cluster_map, cids): """Create a Dataset with cluster properties Parameters ---------- cluster_map : NDVar NDVar in which clusters are marked by bearing the same number. cids : array_like of int Numbers specifying the clusters (must occur in cluster_map) which should be analyzed. Returns ------- cluster_properties : Dataset Cluster properties. Which properties are included depends on the dimensions. """ ndim = cluster_map.ndim n_clusters = len(cids) # setup compression compression = [] for ax, dim in enumerate(cluster_map.dims): extents = np.empty((n_clusters, len(dim)), dtype=np.bool_) axes = tuple(i for i in range(ndim) if i != ax) compression.append((ax, dim, axes, extents)) # find extents for all clusters c_mask = np.empty(cluster_map.shape, np.bool_) for i, cid in enumerate(cids): np.equal(cluster_map, cid, c_mask) for ax, dim, axes, extents in compression: np.any(c_mask, axes, extents[i]) # prepare Dataset ds = Dataset() ds['id'] = Var(cids) for ax, dim, axes, extents in compression: properties = dim._cluster_properties(extents) if properties is not None: ds.update(properties) return ds def cluster(self, cluster_id): """Retrieve a specific cluster as NDVar Parameters ---------- cluster_id : int Cluster id. Returns ------- cluster : NDVar NDVar of the cluster, 0 outside the cluster. Notes ----- Clusters only have stable ids for thresholded cluster distributions. """ if self.kind != 'cluster': raise RuntimeError( f'Only cluster-based tests have clusters with stable ids, this ' f'is a {self.kind} distribution. Use the .find_clusters() ' f'method instead with maps=True.') elif cluster_id not in self._cids: raise ValueError(f'No cluster with id {cluster_id!r}') out = self.parameter_map * (self.cluster_map == cluster_id) properties = self._cluster_properties(self.cluster_map, (cluster_id,)) for k in properties: out.info[k] = properties[0, k] return out def clusters(self, pmin=None, maps=True, **sub): """Find significant clusters Parameters ---------- pmin : None | scalar, 1 >= p >= 0 Threshold p-value for clusters (for thresholded cluster tests the default is 1, for others 0.05). maps : bool Include in the output a map of every cluster (can be memory intensive if there are large statistical maps and/or many clusters; default True). [dimname] : index Limit the data for the distribution. Returns ------- ds : Dataset Dataset with information about the clusters. """ if pmin is None: if self.samples > 0 and self.kind != 'cluster': pmin = 0.05 elif self.samples == 0: msg = ("Can not determine p values in distribution without " "permutations.") if self.kind == 'cluster': msg += " Find clusters with pmin=None." raise RuntimeError(msg) if sub: param_map = self.parameter_map.sub(**sub) else: param_map = self.parameter_map if self.kind == 'cluster': if sub: cluster_map = self.cluster_map.sub(**sub) cids =
np.setdiff1d(cluster_map.x, [0])
numpy.setdiff1d
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- """ ============= desitarget.io ============= Functions for reading, writing and manipulating files related to targeting. """ from __future__ import (absolute_import, division) # import numpy as np import fitsio from fitsio import FITS import os import re from . import __version__ as desitarget_version import numpy.lib.recfunctions as rfn import healpy as hp from glob import glob, iglob from time import time from desiutil import depend from desitarget.geomask import hp_in_box, box_area, is_in_box from desitarget.geomask import hp_in_cap, cap_area, is_in_cap from desitarget.geomask import is_in_hp, nside2nside, pixarea2nside from desitarget.targets import main_cmx_or_sv # ADM set up the DESI default logger from desiutil.log import get_logger log = get_logger() # ADM this is a lookup dictionary to map RELEASE to a simpler "North" or "South". # ADM photometric system. This will expand with the definition of RELEASE in the # ADM Data Model (e.g. https://desi.lbl.gov/trac/wiki/DecamLegacy/DR4sched). # ADM 7999 were the dr8a test reductions, for which only 'S' surveys were processed. releasedict = {3000: 'S', 4000: 'N', 5000: 'S', 6000: 'N', 7000: 'S', 7999: 'S', 8000: 'S', 8001: 'N', 9000: 'S', 9001: 'N'} # ADM This is an empty array of most of the TS data model columns and # ADM dtypes. Note that other columns are added in read_tractor and # ADM from the "addedcols" data models below. basetsdatamodel = np.array([], dtype=[ ('RELEASE', '>i2'), ('BRICKID', '>i4'), ('BRICKNAME', 'S8'), ('OBJID', '>i4'), ('TYPE', 'S4'), ('RA', '>f8'), ('RA_IVAR', '>f4'), ('DEC', '>f8'), ('DEC_IVAR', '>f4'), ('DCHISQ', '>f4', (5,)), ('EBV', '>f4'), ('FLUX_G', '>f4'), ('FLUX_R', '>f4'), ('FLUX_Z', '>f4'), ('FLUX_IVAR_G', '>f4'), ('FLUX_IVAR_R', '>f4'), ('FLUX_IVAR_Z', '>f4'), ('MW_TRANSMISSION_G', '>f4'), ('MW_TRANSMISSION_R', '>f4'), ('MW_TRANSMISSION_Z', '>f4'), ('FRACFLUX_G', '>f4'), ('FRACFLUX_R', '>f4'), ('FRACFLUX_Z', '>f4'), ('FRACMASKED_G', '>f4'), ('FRACMASKED_R', '>f4'), ('FRACMASKED_Z', '>f4'), ('FRACIN_G', '>f4'), ('FRACIN_R', '>f4'), ('FRACIN_Z', '>f4'), ('NOBS_G', '>i2'), ('NOBS_R', '>i2'), ('NOBS_Z', '>i2'), ('PSFDEPTH_G', '>f4'), ('PSFDEPTH_R', '>f4'), ('PSFDEPTH_Z', '>f4'), ('GALDEPTH_G', '>f4'), ('GALDEPTH_R', '>f4'), ('GALDEPTH_Z', '>f4'), ('FLUX_W1', '>f4'), ('FLUX_W2', '>f4'), ('FLUX_W3', '>f4'), ('FLUX_W4', '>f4'), ('FLUX_IVAR_W1', '>f4'), ('FLUX_IVAR_W2', '>f4'), ('FLUX_IVAR_W3', '>f4'), ('FLUX_IVAR_W4', '>f4'), ('MW_TRANSMISSION_W1', '>f4'), ('MW_TRANSMISSION_W2', '>f4'), ('MW_TRANSMISSION_W3', '>f4'), ('MW_TRANSMISSION_W4', '>f4'), ('ALLMASK_G', '>i2'), ('ALLMASK_R', '>i2'), ('ALLMASK_Z', '>i2'), ('FIBERFLUX_G', '>f4'), ('FIBERFLUX_R', '>f4'), ('FIBERFLUX_Z', '>f4'), ('FIBERTOTFLUX_G', '>f4'), ('FIBERTOTFLUX_R', '>f4'), ('FIBERTOTFLUX_Z', '>f4'), ('REF_EPOCH', '>f4'), ('WISEMASK_W1', '|u1'), ('WISEMASK_W2', '|u1'), ('MASKBITS', '>i2') ]) # ADM columns that are new for the DR9 data model. dr9addedcols = np.array([], dtype=[ ('LC_FLUX_W1', '>f4', (13,)), ('LC_FLUX_W2', '>f4', (13,)), ('LC_FLUX_IVAR_W1', '>f4', (13,)), ('LC_FLUX_IVAR_W2', '>f4', (13,)), ('LC_NOBS_W1', '>i2', (13,)), ('LC_NOBS_W2', '>i2', (13,)), ('LC_MJD_W1', '>f8', (13,)), ('LC_MJD_W2', '>f8', (13,)), ('SHAPE_R', '>f4'), ('SHAPE_E1', '>f4'), ('SHAPE_E2', '>f4'), ('SHAPE_R_IVAR', '>f4'), ('SHAPE_E1_IVAR', '>f4'), ('SHAPE_E2_IVAR', '>f4'), ('SERSIC', '>f4'), ('SERSIC_IVAR', '>f4') ]) # ADM columns that were deprecated in the DR8 data model. dr8addedcols = np.array([], dtype=[ ('FRACDEV', '>f4'), ('FRACDEV_IVAR', '>f4'), ('SHAPEDEV_R', '>f4'), ('SHAPEDEV_E1', '>f4'), ('SHAPEDEV_E2', '>f4'), ('SHAPEDEV_R_IVAR', '>f4'), ('SHAPEDEV_E1_IVAR', '>f4'), ('SHAPEDEV_E2_IVAR', '>f4'), ('SHAPEEXP_R', '>f4'), ('SHAPEEXP_E1', '>f4'), ('SHAPEEXP_E2', '>f4'), ('SHAPEEXP_R_IVAR', '>f4'), ('SHAPEEXP_E1_IVAR', '>f4'), ('SHAPEEXP_E2_IVAR', '>f4'), ]) def desitarget_nside(): """Default HEALPix Nside for all target selection algorithms.""" nside = 64 return nside def desitarget_resolve_dec(): """Default Dec cut to separate targets in BASS/MzLS from DECaLS.""" dec = 32.375 return dec def add_photsys(indata): """Add the PHOTSYS column to a sweeps-style array. Parameters ---------- indata : :class:`~numpy.ndarray` Numpy structured array to which to add PHOTSYS column. Returns ------- :class:`~numpy.ndarray` Input array with PHOTSYS added (and set using RELEASE). Notes ----- - The PHOTSYS column is only added if the RELEASE column is available in the passed `indata`. """ # ADM only add the PHOTSYS column if RELEASE exists. if 'RELEASE' in indata.dtype.names: # ADM add PHOTSYS to the data model. # ADM the fitsio check is a hack for the v0.9 to v1.0 transition # ADM (v1.0 now converts all byte strings to unicode strings). from distutils.version import LooseVersion if LooseVersion(fitsio.__version__) >= LooseVersion('1'): pdt = [('PHOTSYS', '<U1')] else: pdt = [('PHOTSYS', '|S1')] dt = indata.dtype.descr + pdt # ADM create a new numpy array with the fields from the new data model... nrows = len(indata) outdata = np.empty(nrows, dtype=dt) # ADM ...and populate them with the passed columns of data. for col in indata.dtype.names: outdata[col] = indata[col] # ADM add the PHOTSYS column. photsys = release_to_photsys(indata["RELEASE"]) outdata['PHOTSYS'] = photsys else: outdata = indata return outdata def read_tractor(filename, header=False, columns=None): """Read a tractor catalogue or sweeps file. Parameters ---------- filename : :class:`str` File name of one Tractor or sweeps file. header : :class:`bool`, optional If ``True``, return (data, header) instead of just data. columns: :class:`list`, optional Specify the desired Tractor catalog columns to read; defaults to desitarget.io.tsdatamodel.dtype.names + most of the columns in desitarget.gaiamatch.gaiadatamodel.dtype.names, where tsdatamodel is, e.g., basetsdatamodel + dr9addedcols. Returns ------- :class:`~numpy.ndarray` Array with the tractor schema, uppercase field names. """ check_fitsio_version() # ADM read in the file information. Due to fitsio header bugs # ADM near v1.0.0, make absolutely sure the user wants the header. if header: indata, hdr = fitsio.read(filename, upper=True, header=True, columns=columns) else: indata = fitsio.read(filename, upper=True, columns=columns) # ADM form the final data model in a manner that maintains # ADM backwards-compatability with DR8. if "FRACDEV" in indata.dtype.names: tsdatamodel = np.array( [], dtype=basetsdatamodel.dtype.descr + dr8addedcols.dtype.descr) else: tsdatamodel = np.array( [], dtype=basetsdatamodel.dtype.descr + dr9addedcols.dtype.descr) # ADM the full data model including Gaia columns. from desitarget.gaiamatch import gaiadatamodel from desitarget.gaiamatch import pop_gaia_coords, pop_gaia_columns gaiadatamodel = pop_gaia_coords(gaiadatamodel) # ADM special handling of the pre-DR7 Data Model. for gaiacol in ['GAIA_PHOT_BP_RP_EXCESS_FACTOR', 'GAIA_ASTROMETRIC_SIGMA5D_MAX', 'GAIA_ASTROMETRIC_PARAMS_SOLVED', 'REF_CAT']: if gaiacol not in indata.dtype.names: gaiadatamodel = pop_gaia_columns(gaiadatamodel, [gaiacol]) dt = tsdatamodel.dtype.descr + gaiadatamodel.dtype.descr dtnames = tsdatamodel.dtype.names + gaiadatamodel.dtype.names # ADM limit to just passed columns. if columns is not None: dt = [d for d, name in zip(dt, dtnames) if name in columns] # ADM set-up the output array. nrows = len(indata) data =
np.zeros(nrows, dtype=dt)
numpy.zeros
import pickle import unittest import numpy as np import hnswlib def get_dist(metric, pt1, pt2): if metric == 'l2': return np.sum((pt1-pt2)**2) elif metric == 'ip': return 1. - np.sum(np.multiply(pt1, pt2)) elif metric == 'cosine': return 1. - np.sum(np.multiply(pt1, pt2)) / (np.sum(pt1**2) * np.sum(pt2**2))**.5 def brute_force_distances(metric, items, query_items, k): dists = np.zeros((query_items.shape[0], items.shape[0])) for ii in range(items.shape[0]): for jj in range(query_items.shape[0]): dists[jj,ii] = get_dist(metric, items[ii, :], query_items[jj, :]) labels = np.argsort(dists, axis=1) # equivalent, but faster: np.argpartition(dists, range(k), axis=1) dists = np.sort(dists, axis=1) # equivalent, but faster: np.partition(dists, range(k), axis=1) return labels[:, :k], dists[:, :k] def check_ann_results(self, metric, items, query_items, k, ann_l, ann_d, err_thresh=0, total_thresh=0, dists_thresh=0): brute_l, brute_d = brute_force_distances(metric, items, query_items, k) err_total = 0 for jj in range(query_items.shape[0]): err = np.sum(
np.isin(brute_l[jj, :], ann_l[jj, :], invert=True)
numpy.isin
## # \brief Test copula mle fit with weighted samples from __future__ import print_function, division import unittest import numpy as np from scipy.stats import norm import seaborn as sns from six import iteritems import os import pandas as pd # starvine imports from starvine.bvcopula.pc_base import PairCopula from starvine.bvcopula.copula_factory import Copula from starvine.mvar.mv_plot import matrixPairPlot # pwd_ = os.getcwd() dataDir = pwd_ + "/tests/data/" np.random.seed(123) class TestWeightedReg(unittest.TestCase): def testWgtCopula(self): """! @brief Test ability to construct copula given samples with unequal weights. Compose two bivariate gauss dists, one with positive and one with negative depencence. Sample from dists. Assign large sample weights to positive gauss and low sample weights to neg gauss. Combine weighted samples into a single "X" shaped distribution. Refit weighted samples and ensure positive depencence """ np.random.seed(123) # construct gaussian margins; mu={0, 0}, sd={1.0, 2} # marg1 = Uvm("gauss")(1e-3, 1.) marg1 = norm(loc=1e-3, scale=1.0) # marg2 = Uvm("gauss")(1e-3, 2.) marg2 = norm(loc=1e-3, scale=2.0) # construct gaussian copula positive dep cop1 = Copula("gauss") cop1.fittedParams = [0.7] # construct gaussian copula neg dep cop2 = Copula("gauss") cop2.fittedParams = [-0.7] # draw 4000 samples from each model n = 4000 x1, y1 = cop1.sampleScale(marg1, marg2, n) x2, y2 = cop2.sampleScale(marg1, marg2, n) # assign weights to each gauss sample group cop1_wgts = np.ones(n) * 0.95 cop2_wgts = np.ones(n) * 0.05 # combine both gauss models into dbl gauss model x = np.append(x1, x2) y = np.append(y1, y2) wgts = np.append(cop1_wgts, cop2_wgts) # plot data = pd.DataFrame([x, y]).T matrixPairPlot(data, weights=wgts, savefig='x_gauss_original.png') # fit copula to weighted data copModel = PairCopula(x, y, wgts) copModel.copulaTournament() # verify that a positive dep copula was produced with a # dep parameter of slightly less than 0.7 x_wt, y_wt = copModel.copulaModel.sampleScale(marg1, marg2, n) self.assertTrue(copModel.copulaModel.kTau() > 0.) self.assertTrue((copModel.copulaModel.fittedParams[0] > 0.) & (copModel.copulaModel.fittedParams[0] < 0.7)) # plot data = pd.DataFrame([x_wt, y_wt]).T matrixPairPlot(data, savefig='x_gauss_weighted_fit.png') def testWgtResampledCopula(self): """! @brief Test ability to construct copula given samples with unequal weights using a resampling strat """ np.random.seed(123) # construct gaussian margins; mu={0, 0}, sd={1.0, 2} # marg1 = Uvm("gauss")(1e-3, 1.) marg1 = norm(loc=1e-3, scale=1.0) # marg2 = Uvm("gauss")(1e-3, 2.) marg2 = norm(loc=1e-3, scale=2.0) # construct gaussian copula positive dep cop1 = Copula("gauss") cop1.fittedParams = [0.7] # construct gaussian copula neg dep cop2 = Copula("gauss") cop2.fittedParams = [-0.7] # draw 1000 samples from each model n = 1000 x1, y1 = cop1.sampleScale(marg1, marg2, n) x2, y2 = cop2.sampleScale(marg1, marg2, n) # assign weights to each gauss sample group cop1_wgts = np.ones(n) * 0.95 cop2_wgts = np.ones(n) * 0.05 # combine both gauss models into dbl gauss model x = np.append(x1, x2) y =
np.append(y1, y2)
numpy.append
''' Basic sound functions ''' # pylint: disable=C0103, R0912, R0914 import numpy as np from matplotlib import pyplot as plt from scipy.signal import spectrogram as ss_spec def tdt50k(): ''' TDT "50k" sample rate ''' return 48828.125 def amp2level(amp): ''' Convert an amplitude multiplier to level in dB. E.g. a multiplier of 10 is +20dB ''' return 20*np.log10(amp) def level2amp(dB): ''' Convert a dB difference to amplitude. E.g. a difference of +10dB is a multiplier of 3.16 ''' return 10**(dB/20) def rms2dBSPL(rms_Pa): ''' Convert a sound RMS in Pascals to dB SPL. E.g. 1 Pa RMS = 94dB ''' return amp2level(rms_Pa)+94 def dBSPL2rms(dBSPL): ''' Convert dBSPL to RMS in Pascals E.g. 94dB = 1 Pa RMS ''' return level2amp(dBSPL-94) def puretone(fs, n_samples, freq=440, level_dB='max', phase=0): ''' Generate a pure tone ''' t = np.arange(n_samples) * 1/fs if level_dB == 'max': mult = 1 else: mult = np.sqrt(2) * dBSPL2rms(level_dB) return np.sin(2*np.pi*freq*t + phase) * mult def freq_sweep(fs, n_samples, f_min=200, f_max=1000, method='log', level_dB='max', phase=0): ''' Generate a frequency sweep ''' t = np.arange(n_samples)/fs if level_dB == 'max': mult = 1 else: mult = np.sqrt(2) * dBSPL2rms(level_dB) if method.lower().startswith('li'): c = (f_max-f_min)/(n_samples/fs) return np.sin(2*np.pi*(f_min*t + c/2*(t**2)) + phase) * mult # else: # method == 'log' k = (f_max/f_min)**(fs/n_samples) return np.sin(2*np.pi*f_min*(k**t-1)/np.log(k) + phase) * mult def whitenoise(n_samples, method='uniform', level_dB='max'): ''' Generate white noise -- NB method='normal', level_dB='max' will scale the range depending on the random numbers produced, so won't give a consistent sound level ''' if method.lower()[0] == 'u': # 'uniform' if level_dB == 'max': mult = 1 else: mult = np.sqrt(3) * dBSPL2rms(level_dB) return ((2*np.random.random((n_samples)))-1) * mult # elif method.lower()[0] == 'n': # 'normal' rand = np.random.randn((n_samples)) if level_dB == 'max': return rand / np.max(np.abs(rand)) # else: return np.random.randn((n_samples)) * dBSPL2rms(level_dB) def cosramp_on(n_samples, ramp_samples=None): ''' Ramp on - total length n_samples, ramp length ramp_samples ''' if ramp_samples is None: ramp_samples = n_samples t = np.minimum(np.arange(n_samples), ramp_samples) return np.sin(np.pi/2/ramp_samples*t) def cosramp_off(n_samples, ramp_samples=None): ''' Ramp off - total length n_samples, ramp length ramp_samples ''' if ramp_samples is None: ramp_samples = n_samples return cosramp_on(n_samples, ramp_samples)[::-1] def cosramp_onoff(n_samples, ramp_samples): ''' Ramp on and off - total length n_samples, ramp lengths ramp_samples ''' r = cosramp_on(n_samples, ramp_samples) return r * r[::-1] def make_diotic(snd, n_channels=2): ''' Duplicate sound to 2 or more channels ''' return np.tile(snd.ravel(), (n_channels, 1)) def apply_ild(snd, ild_dB=10): ''' Apply an ILD to a mono sound, and return stereo sound ''' left = snd right = snd * level2amp(ild_dB) return np.stack((left, right), axis=0) def apply_itd(fs, snd, itd_us=100): ''' Apply an ITD to a mono sound, and return stereo sound ''' shift_samples = np.int(np.abs(itd_us*1000/fs)) leading = np.concatenate((snd, np.zeros(shift_samples))) lagging = np.concatenate((np.zeros(shift_samples), snd)) if itd_us < 0: return np.stack((leading, lagging), axis=0) # else: itd_us >= 0 return np.stack((lagging, leading), axis=0) def ild_stimulus(fs, len_s, f0, ild_dB, level_dB='max'): ''' Make a pure-tone ILD stimulus ''' n_samples = np.int(len_s*fs) ramplen_ms = 5 snd_mono = puretone(fs, n_samples, f0, level_dB=level_dB) * \ cosramp_onoff(n_samples, ramp_samples=np.round(ramplen_ms/1000*fs)) return apply_ild(snd_mono, ild_dB=ild_dB) def itd_stimulus(fs, len_s, f0, itd_us, level_dB='max'): ''' Make a pure-tone ILD stimulus ''' n_samples = np.int(len_s*fs) ramplen_ms = 5 snd_mono = puretone(fs, n_samples, f0, level_dB=level_dB) * \ cosramp_onoff(n_samples, ramp_samples=np.round(ramplen_ms/1000*fs)) return apply_itd(fs, snd_mono, itd_us=itd_us) def binaural_beats(f_s, n_samples, f_l=520, f_r=530, level_dB='max'): ''' Binaural beat stimulus ''' return np.stack((puretone(f_s, n_samples, f_l, level_dB=level_dB), puretone(f_s, n_samples, f_r, level_dB=level_dB)), axis=0) def spectrogram(*args, **kwargs): ''' This is just to help find the scipy spectrogram function ''' return ss_spec(*args, **kwargs) def show_spectrogram(*args, **kwargs): ''' Show spectrogram using pyplot ''' f, t, s = ss_spec(*args, **kwargs) _, ax = plt.subplots(figsize=(10, 6)) ax.imshow(s, origin='lower', extent=[
np.min(t)
numpy.min
import copy import numpy as np from scipy import ndimage import gnomonic_projection as gp import spherical_coordinates as sc import polygon from logger import Logger log = Logger(__name__) log.logger.propagate = False """ Implement icosahedron projection and stitch with the Gnomonic projection (forward and reverse projection). Reference: [1]: https://mathworld.wolfram.com/GnomonicProjection.html """ def get_icosahedron_parameters(triangle_index, padding_size=0.0): """ Get icosahedron's tangent face's paramters. Get the tangent point theta and phi. Known as the theta_0 and phi_0. The erp image origin as top-left corner :return the tangent face's tangent point and 3 vertices's location. """ # reference: https://en.wikipedia.org/wiki/Regular_icosahedron radius_circumscribed = np.sin(2 * np.pi / 5.0) radius_inscribed = np.sqrt(3) / 12.0 * (3 + np.sqrt(5)) radius_midradius = np.cos(np.pi / 5.0) # the tangent point theta_0 = None phi_0 = None # the 3 points of tangent triangle in spherical coordinate triangle_point_00_theta = None triangle_point_00_phi = None triangle_point_01_theta = None triangle_point_01_phi = None triangle_point_02_theta = None triangle_point_02_phi = None # triangles' row/col range in the erp image # erp_image_row_start = None # erp_image_row_stop = None # erp_image_col_start = None # erp_image_col_stop = None theta_step = 2.0 * np.pi / 5.0 # 1) the up 5 triangles if 0 <= triangle_index <= 4: # tangent point of inscribed spheric theta_0 = - np.pi + theta_step / 2.0 + triangle_index * theta_step phi_0 = np.pi / 2 - np.arccos(radius_inscribed / radius_circumscribed) # the tangent triangle points coordinate in tangent image triangle_point_00_theta = -np.pi + triangle_index * theta_step triangle_point_00_phi = np.arctan(0.5) triangle_point_01_theta = -np.pi + np.pi * 2.0 / 5.0 / 2.0 + triangle_index * theta_step triangle_point_01_phi = np.pi / 2.0 triangle_point_02_theta = -np.pi + (triangle_index + 1) * theta_step triangle_point_02_phi = np.arctan(0.5) # # availied area of ERP image # erp_image_row_start = 0 # erp_image_row_stop = (np.pi / 2 - np.arctan(0.5)) / np.pi # erp_image_col_start = 1.0 / 5.0 * triangle_index_temp # erp_image_col_stop = 1.0 / 5.0 * (triangle_index_temp + 1) # 2) the middle 10 triangles # 2-0) middle-up triangles if 5 <= triangle_index <= 9: triangle_index_temp = triangle_index - 5 # tangent point of inscribed spheric theta_0 = - np.pi + theta_step / 2.0 + triangle_index_temp * theta_step phi_0 = np.pi / 2.0 - np.arccos(radius_inscribed / radius_circumscribed) - 2 * np.arccos(radius_inscribed / radius_midradius) # the tangent triangle points coordinate in tangent image triangle_point_00_theta = -np.pi + triangle_index_temp * theta_step triangle_point_00_phi = np.arctan(0.5) triangle_point_01_theta = -np.pi + (triangle_index_temp + 1) * theta_step triangle_point_01_phi = np.arctan(0.5) triangle_point_02_theta = -np.pi + theta_step / 2.0 + triangle_index_temp * theta_step triangle_point_02_phi = -np.arctan(0.5) # # availied area of ERP image # erp_image_row_start = (np.arccos(radius_inscribed / radius_circumscribed) + np.arccos(radius_inscribed / radius_midradius)) / np.pi # erp_image_row_stop = (np.pi / 2.0 + np.arctan(0.5)) / np.pi # erp_image_col_start = 1 / 5.0 * triangle_index_temp # erp_image_col_stop = 1 / 5.0 * (triangle_index_temp + 1) # 2-1) the middle-down triangles if 10 <= triangle_index <= 14: triangle_index_temp = triangle_index - 10 # tangent point of inscribed spheric theta_0 = - np.pi + triangle_index_temp * theta_step phi_0 = -(np.pi / 2.0 - np.arccos(radius_inscribed / radius_circumscribed) - 2 * np.arccos(radius_inscribed / radius_midradius)) # the tangent triangle points coordinate in tangent image triangle_point_00_phi = -np.arctan(0.5) triangle_point_00_theta = - np.pi - theta_step / 2.0 + triangle_index_temp * theta_step if triangle_index_temp == 10: # cross the ERP image boundary triangle_point_00_theta = triangle_point_00_theta + 2 * np.pi triangle_point_01_theta = -np.pi + triangle_index_temp * theta_step triangle_point_01_phi = np.arctan(0.5) triangle_point_02_theta = - np.pi + theta_step / 2.0 + triangle_index_temp * theta_step triangle_point_02_phi = -np.arctan(0.5) # # availied area of ERP image # erp_image_row_start = (np.pi / 2.0 - np.arctan(0.5)) / np.pi # erp_image_row_stop = (np.pi - np.arccos(radius_inscribed / radius_circumscribed) - np.arccos(radius_inscribed / radius_midradius)) / np.pi # erp_image_col_start = 1.0 / 5.0 * triangle_index_temp - 1.0 / 5.0 / 2.0 # erp_image_col_stop = 1.0 / 5.0 * triangle_index_temp + 1.0 / 5.0 / 2.0 # 3) the down 5 triangles if 15 <= triangle_index <= 19: triangle_index_temp = triangle_index - 15 # tangent point of inscribed spheric theta_0 = - np.pi + triangle_index_temp * theta_step phi_0 = - (np.pi / 2 - np.arccos(radius_inscribed / radius_circumscribed)) # the tangent triangle points coordinate in tangent image triangle_point_00_theta = - np.pi - theta_step / 2.0 + triangle_index_temp * theta_step triangle_point_00_phi = -np.arctan(0.5) triangle_point_01_theta = - np.pi + theta_step / 2.0 + triangle_index_temp * theta_step # cross the ERP image boundary if triangle_index_temp == 15: triangle_point_01_theta = triangle_point_01_theta + 2 * np.pi triangle_point_01_phi = -np.arctan(0.5) triangle_point_02_theta = - np.pi + triangle_index_temp * theta_step triangle_point_02_phi = -np.pi / 2.0 # # spherical coordinate (0,0) is in the center of ERP image # erp_image_row_start = (np.pi / 2.0 + np.arctan(0.5)) / np.pi # erp_image_row_stop = 1.0 # erp_image_col_start = 1.0 / 5.0 * triangle_index_temp - 1.0 / 5.0 / 2.0 # erp_image_col_stop = 1.0 / 5.0 * triangle_index_temp + 1.0 / 5.0 / 2.0 tangent_point = [theta_0, phi_0] # the 3 vertices in tangent image's gnomonic coordinate triangle_points_tangent = [] triangle_points_tangent.append(gp.gnomonic_projection(triangle_point_00_theta, triangle_point_00_phi, theta_0, phi_0)) triangle_points_tangent.append(gp.gnomonic_projection(triangle_point_01_theta, triangle_point_01_phi, theta_0, phi_0)) triangle_points_tangent.append(gp.gnomonic_projection(triangle_point_02_theta, triangle_point_02_phi, theta_0, phi_0)) # pading the tangent image triangle_points_tangent_no_pading = copy.deepcopy(triangle_points_tangent) # Needed for NN blending triangle_points_tangent_pading = polygon.enlarge_polygon(triangle_points_tangent, padding_size) # if padding_size != 0.0: triangle_points_tangent = copy.deepcopy(triangle_points_tangent_pading) # the points in spherical location triangle_points_sph = [] for index in range(3): tri_pading_x, tri_pading_y = triangle_points_tangent_pading[index] triangle_point_theta, triangle_point_phi = gp.reverse_gnomonic_projection(tri_pading_x, tri_pading_y, theta_0, phi_0) triangle_points_sph.append([triangle_point_theta, triangle_point_phi]) # compute bounding box of the face in spherical coordinate availied_sph_area = [] availied_sph_area = np.array(copy.deepcopy(triangle_points_sph)) triangle_points_tangent_pading = np.array(triangle_points_tangent_pading) point_insert_x = np.sort(triangle_points_tangent_pading[:, 0])[1] point_insert_y = np.sort(triangle_points_tangent_pading[:, 1])[1] availied_sph_area = np.append(availied_sph_area, [gp.reverse_gnomonic_projection(point_insert_x, point_insert_y, theta_0, phi_0)], axis=0) # the bounding box of the face with spherical coordinate availied_ERP_area_sph = [] # [min_longitude, max_longitude, min_latitude, max_lantitude] if 0 <= triangle_index <= 4: if padding_size > 0.0: availied_ERP_area_sph.append(-np.pi) availied_ERP_area_sph.append(np.pi) else: availied_ERP_area_sph.append(np.amin(availied_sph_area[:, 0])) availied_ERP_area_sph.append(
np.amax(availied_sph_area[:, 0])
numpy.amax
import json import pdb from pytorch_lightning.trainer import optimizers import six import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import pytorch_lightning as pl from model.pt_vl_transformer_encoder import encoder, pre_process_layer from utils.pl_metric import LitAUROC from utils.scheduler import GradualWarmupScheduler class ErnieVilConfig(object): """ configuration for ernie-vil """ def __init__(self, config_path): self._config_dict = self._parse(config_path) def _parse(self, config_path): try: with open(config_path) as json_file: config_dict = json.load(json_file) except Exception: raise IOError("Error in parsing Ernie model config file '%s'" % config_path) else: return config_dict def __getitem__(self, key): return self._config_dict[key] def print_config(self): """ print configuration value """ for arg, value in sorted(six.iteritems(self._config_dict)): print('%s: %s' % (arg, value)) print('------------------------------------------------') class ErnieVilModel(nn.Module): """ main class for ERNIE-ViL model """ def __init__(self, config, predict_feature=False, predict_class=True, use_attr=False, use_soft_label=True, fusion_method="mul", fusion_dropout=0.1, ): super().__init__() self.fusion_method = fusion_method self.fusion_dropout = fusion_dropout hidden_act_map = { 'gelu': F.gelu, } self._emb_size = config['hidden_size'] self._n_layer = config['num_hidden_layers'] self._n_head = config['num_attention_heads'] self._v_feat_size = 2048 self._v_head = config['v_num_attention_heads'] self._v_emb_size = config['v_hidden_size'] self._v_inter_hid = config['v_intermediate_size'] self._co_head = config['co_num_attention_heads'] self._co_emb_size = config['co_hidden_size'] self._co_inter_hid = config['co_intermediate_size'] self._voc_size = config['vocab_size'] self._class_size = config['class_size'] self._class_attr_size = config['class_attr_size'] self._max_position_seq_len = config['max_position_embeddings'] self._sent_types = config['sent_type_vocab_size'] self._task_types = config['task_type_vocab_size'] self._hidden_act = hidden_act_map[config['hidden_act']] self._prepostprocess_dropout = config['hidden_dropout_prob'] self._attention_dropout = config['attention_probs_dropout_prob'] self._v_biattention_id = config['v_biattention_id'] self._t_biattention_id = config['t_biattention_id'] self._predict_feature = predict_feature self._predict_class = predict_class self._use_attr = use_attr self._use_soft_label = use_soft_label self._word_emb_name = "word_embedding" self._pos_emb_name = "pos_embedding" self._sent_emb_name = "sent_embedding" self._image_emb_name = "image_embedding" self._loc_emb_name = "loc_embedding" self._dtype = "float32" self._emb_dtype = "float32" self._build_model() def load_paddle_weight(self, w_dict): translate_name = { nn.Embedding: { 'weight': '', }, nn.Linear: { 'weight': 'w_0', 'bias': 'b_0', } } new_state_dict = {} for mn, md in self.named_children(): if hasattr(md, 'load_paddle_weight'): print('v' * 10) md.load_paddle_weight(w_dict, "") print('^' * 10) else: # Native pytorch nn modules for n, p in md.named_parameters(): blocks = [ translate_name[type(md)][sn] if type(md) in translate_name else sn for sn in n.split('.') ] new_p_name = '.'.join(blocks) pd_full_name = '.'.join([mn, new_p_name]) if new_p_name else mn pt_full_name = f"{mn}.{n}" if pd_full_name in w_dict: new_state_dict[pt_full_name] = torch.tensor(w_dict[pd_full_name]) if 'weight' in pt_full_name and isinstance(md, nn.Linear): new_state_dict[pt_full_name] = new_state_dict[pt_full_name].T print(f'matched: {pd_full_name} -> {pt_full_name}', new_state_dict[pt_full_name].shape) else: print('not match: ', pd_full_name) import pdb; pdb.set_trace() mismatchs = self.load_state_dict(new_state_dict, strict=False) def _build_model(self, ): self.word_embedding = nn.Embedding(self._voc_size, self._emb_size) self.pos_embedding = nn.Embedding(self._max_position_seq_len, self._emb_size) self.sent_embedding = nn.Embedding(self._sent_types, self._emb_size) self.pre_encoder = pre_process_layer( 'nd', self._emb_size, dropout_rate=self._prepostprocess_dropout, postfix='pre_encoder', ) self.image_emb = nn.Linear(self._v_feat_size, self._v_emb_size, bias=True) self.image_loc = nn.Linear(5, self._v_emb_size, bias=True) self.vl_pre_encoder = pre_process_layer( 'nd', self._v_emb_size, dropout_rate=self._prepostprocess_dropout, postfix='vl_pre_encoder', ) self.encoder = encoder( n_layer=self._n_layer, n_head=self._n_head, d_key=self._emb_size // self._n_head, d_value=self._emb_size // self._n_head, d_model=self._emb_size, d_inner_hid=self._emb_size * 4, v_head=self._v_head, v_key=self._v_emb_size // self._v_head, v_value=self._v_emb_size // self._v_head, v_model=self._v_emb_size, v_inner_hid=self._v_inter_hid, co_head=self._co_head, co_key=self._co_emb_size // self._co_head, co_value=self._co_emb_size // self._co_head, co_model=self._co_emb_size, co_inner_hid=self._co_inter_hid, prepostprocess_dropout=self._prepostprocess_dropout, attention_dropout=self._attention_dropout, relu_dropout=0, hidden_act=self._hidden_act, preprocess_cmd="", postprocess_cmd="dan", v_biattention_id=self._v_biattention_id, t_biattention_id=self._t_biattention_id, name='encoder', ) self.pooled_fc_text = nn.Linear(self._emb_size, self._co_emb_size, bias=True) self.pooled_fc_image = nn.Linear(self._v_emb_size, self._co_emb_size, bias=True) self.emb_fuse_dropout = nn.Dropout(self.fusion_dropout) def get_pooled_output(self, _enc_out, _enc_vl_out): text_cls_feat = _enc_out[:, 0, :] text_cls_feat = self.pooled_fc_text(text_cls_feat) text_cls_feat = torch.relu(text_cls_feat) image_cls_feat = _enc_vl_out[:, 0, :] image_cls_feat = self.pooled_fc_image(image_cls_feat) image_cls_feat = torch.relu(image_cls_feat) return text_cls_feat, image_cls_feat def get_match_score(self, text, image, mode="mul"): if mode == "sum": emb_fuse = text + image elif mode == "mul": emb_fuse = text * image else: raise ValueError(f"current mode {mode} is not supported") emb_fuse = self.emb_fuse_dropout(emb_fuse) return emb_fuse def forward(self, src_ids, position_ids, sentence_ids, task_ids, input_mask, image_embeddings, image_loc, input_image_mask, pooled_output=False, match_score=False,): emb_out = self.word_embedding(src_ids) position_emb_out = self.pos_embedding(position_ids) sent_emb_out = self.sent_embedding(sentence_ids) emb_out = emb_out + position_emb_out emb_out = emb_out_0 = emb_out + sent_emb_out emb_out = emb_out_1 = self.pre_encoder(emb_out) self_attn_mask = torch.matmul(input_mask, input_mask.permute([0, 2, 1])) self_attn_mask = (self_attn_mask - 1.0) * 10000.0 n_head_self_attn_mask = torch.stack([self_attn_mask] * self._n_head, dim=1) n_head_self_attn_mask = n_head_self_attn_mask.detach() image_embeddings = self.image_emb(image_embeddings) loc_emb_out = self.image_loc(image_loc) emb_vl_out = image_embeddings + loc_emb_out emb_vl_out = self.vl_pre_encoder(emb_vl_out) self_attn_image_mask = torch.matmul( input_image_mask, input_image_mask.permute([0, 2, 1]) ) self_attn_image_mask = (self_attn_image_mask - 1.0) * 10000.0 n_head_self_attn_image_mask = torch.stack([self_attn_image_mask] * self._v_head, dim=1) n_head_self_attn_image_mask = n_head_self_attn_image_mask.detach() self_attn_vl_mask = torch.matmul( input_image_mask, input_mask.permute([0, 2, 1]) ) self_attn_vl_mask = (self_attn_vl_mask - 1.0) * 10000.0 n_head_self_attn_vl_mask = torch.stack([self_attn_vl_mask] * self._co_head, dim=1) n_head_self_attn_vl_mask = n_head_self_attn_vl_mask.detach() enc_out, enc_vl_out = self.encoder( emb_out, emb_vl_out, n_head_self_attn_mask, n_head_self_attn_image_mask, n_head_self_attn_vl_mask, ) if match_score: h_cls, h_img = self.get_pooled_output(enc_out, enc_vl_out) emb_fuse = self.get_match_score(h_cls, h_img, mode=self.fusion_method) return emb_fuse elif pooled_output: return self.pooled_output(enc_out, enc_vl_out) else: return enc_out, enc_vl_out class LitErnieVil(pl.LightningModule): def __init__(self, args, fusion_method="mul", fusion_dropout=0.1, cls_head='linear'): super().__init__() hparams = vars(args) hparams.update({ "fusion_method": fusion_method, "fusion_dropout": fusion_dropout, "cls_head": cls_head, }) self.hparams = hparams self.args = args self.train_accuracy = pl.metrics.classification.Accuracy() self.val_accuracy = pl.metrics.classification.Accuracy() self.val_auroc = LitAUROC() self.ernie_config = ErnieVilConfig(args.ernie_config_path) self.ernie_vil = ErnieVilModel( self.ernie_config, fusion_dropout=fusion_dropout, fusion_method=fusion_method, ) if cls_head == 'linear': self.fc = nn.Sequential( # nn.Linear(self.ernie_vil._co_emb_size, self.ernie_vil._co_emb_size * 2), nn.Linear(self.ernie_vil._co_emb_size, 2, bias=True), ) torch.nn.init.normal_(self.fc[0].weight, mean=0.0, std=0.02) # torch.nn.init.xavier_normal_(self.fc[0].weight) # torch.nn.init.constant_(self.fc[0].bias, 0.0) elif cls_head == 'mlm': self.fc = nn.Sequential( nn.Linear(self.ernie_vil._co_emb_size, self.ernie_vil._co_emb_size), nn.GELU(), nn.LayerNorm(self.ernie_vil._co_emb_size), nn.Dropout(fusion_dropout), nn.Linear(self.ernie_vil._co_emb_size, 2), ) else: raise ValueError(f'cls_head: {cls_head} is not supported!') def load_paddle_weight(self, npz_path): w_dict = np.load(npz_path) self.ernie_vil.load_paddle_weight(w_dict) def forward(self, src_ids, position_ids, sentence_ids, task_ids, input_mask, image_embeddings, image_loc, input_image_mask): emb_fuse = self.ernie_vil( src_ids, position_ids, sentence_ids, task_ids, input_mask, image_embeddings, image_loc, input_image_mask, match_score=True, ) cls_logit = self.fc(emb_fuse) return cls_logit def training_step(self, batch, batch_idx): (src_ids, src_pos, src_seg, src_task, src_masks, image_embeddings, image_loc, image_mask, labels, batch_anno_ids, _, _, _) = batch logits = self.forward( src_ids, src_pos, src_seg, src_task, src_masks, image_embeddings, image_loc, image_mask ) if labels.ndim == 2 and labels.dtype == torch.long: labels = torch.squeeze(labels, dim=-1) loss = F.cross_entropy(logits, labels).mean() self.log('train_loss', loss) self.log('train_acc_step', self.train_accuracy(logits, labels)) if hasattr(self, "scheduler"): lr = torch.tensor(self.scheduler.get_last_lr()[0]) self.log('lr', lr, prog_bar=True) return loss def validation_step(self, batch, batch_idx): (src_ids, src_pos, src_seg, src_task, src_masks, image_embeddings, image_loc, image_mask, labels, batch_anno_ids, _, _, _) = batch logits = self.forward( src_ids, src_pos, src_seg, src_task, src_masks, image_embeddings, image_loc, image_mask ) pred = F.softmax(logits, dim=-1) self.val_auroc(pred[..., 1], labels) self.val_accuracy(pred, labels) return { 'predict': pred, 'anno_idx': batch_anno_ids } def validation_epoch_end(self, validation_step_outputs): self.log('val_auroc_epoch', self.val_auroc.compute()) self.log('val_aucc_epoch', self.val_accuracy.compute()) def test_step(self, batch, batch_idx): return self.validation_step(batch, batch_idx) def test_epoch_end(self, test_outs): pass def configure_optimizers(self): optimizer = torch.optim.AdamW( self.parameters(), lr=self.args.learning_rate, weight_decay=self.args.weight_decay, ) T_0 = self.args.num_train_steps scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts( optimizer, T_0, T_mult=1, eta_min=1e-8) scheduler_warmup = GradualWarmupScheduler( optimizer, multiplier=1, total_epoch=self.args.warmup_steps, after_scheduler=scheduler ) self.scheduler = scheduler_warmup return [optimizer], [{ 'scheduler': scheduler_warmup, 'interval': 'step', }] def test_ernie_vil(): w_dict =
np.load('/home/ron_zhu/Disk2/ernie/ernie-vil-base-vcr.npz')
numpy.load
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4))) if parent_path not in sys.path: sys.path.append(parent_path) import unittest import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.dygraph import base import ppdet.modeling.ops as ops from ppdet.modeling.tests.test_base import LayerTest def make_rois(h, w, rois_num, output_size): rois = np.zeros((0, 4)).astype('float32') for roi_num in rois_num: roi = np.zeros((roi_num, 4)).astype('float32') roi[:, 0] = np.random.randint(0, h - output_size[0], size=roi_num) roi[:, 1] = np.random.randint(0, w - output_size[1], size=roi_num) roi[:, 2] = np.random.randint(roi[:, 0] + output_size[0], h) roi[:, 3] = np.random.randint(roi[:, 1] + output_size[1], w) rois = np.vstack((rois, roi)) return rois def softmax(x): # clip to shiftx, otherwise, when calc loss with # log(exp(shiftx)), may get log(0)=INF shiftx = (x - np.max(x)).clip(-64.) exps = np.exp(shiftx) return exps / np.sum(exps) class TestCollectFpnProposals(LayerTest): def test_collect_fpn_proposals(self): multi_bboxes_np = [] multi_scores_np = [] rois_num_per_level_np = [] for i in range(4): bboxes_np = np.random.rand(5, 4).astype('float32') scores_np = np.random.rand(5, 1).astype('float32') rois_num = np.array([2, 3]).astype('int32') multi_bboxes_np.append(bboxes_np) multi_scores_np.append(scores_np) rois_num_per_level_np.append(rois_num) with self.static_graph(): multi_bboxes = [] multi_scores = [] rois_num_per_level = [] for i in range(4): bboxes = paddle.static.data( name='rois' + str(i), shape=[5, 4], dtype='float32', lod_level=1) scores = paddle.static.data( name='scores' + str(i), shape=[5, 1], dtype='float32', lod_level=1) rois_num = paddle.static.data( name='rois_num' + str(i), shape=[None], dtype='int32') multi_bboxes.append(bboxes) multi_scores.append(scores) rois_num_per_level.append(rois_num) fpn_rois, rois_num = ops.collect_fpn_proposals( multi_bboxes, multi_scores, 2, 5, 10, rois_num_per_level=rois_num_per_level) feed = {} for i in range(4): feed['rois' + str(i)] = multi_bboxes_np[i] feed['scores' + str(i)] = multi_scores_np[i] feed['rois_num' + str(i)] = rois_num_per_level_np[i] fpn_rois_stat, rois_num_stat = self.get_static_graph_result( feed=feed, fetch_list=[fpn_rois, rois_num], with_lod=True) fpn_rois_stat = np.array(fpn_rois_stat) rois_num_stat = np.array(rois_num_stat) with self.dynamic_graph(): multi_bboxes_dy = [] multi_scores_dy = [] rois_num_per_level_dy = [] for i in range(4): bboxes_dy = base.to_variable(multi_bboxes_np[i]) scores_dy = base.to_variable(multi_scores_np[i]) rois_num_dy = base.to_variable(rois_num_per_level_np[i]) multi_bboxes_dy.append(bboxes_dy) multi_scores_dy.append(scores_dy) rois_num_per_level_dy.append(rois_num_dy) fpn_rois_dy, rois_num_dy = ops.collect_fpn_proposals( multi_bboxes_dy, multi_scores_dy, 2, 5, 10, rois_num_per_level=rois_num_per_level_dy) fpn_rois_dy = fpn_rois_dy.numpy() rois_num_dy = rois_num_dy.numpy() self.assertTrue(np.array_equal(fpn_rois_stat, fpn_rois_dy)) self.assertTrue(np.array_equal(rois_num_stat, rois_num_dy)) def test_collect_fpn_proposals_error(self): def generate_input(bbox_type, score_type, name): multi_bboxes = [] multi_scores = [] for i in range(4): bboxes = paddle.static.data( name='rois' + name + str(i), shape=[10, 4], dtype=bbox_type, lod_level=1) scores = paddle.static.data( name='scores' + name + str(i), shape=[10, 1], dtype=score_type, lod_level=1) multi_bboxes.append(bboxes) multi_scores.append(scores) return multi_bboxes, multi_scores with self.static_graph(): bbox1 = paddle.static.data( name='rois', shape=[5, 10, 4], dtype='float32', lod_level=1) score1 = paddle.static.data( name='scores', shape=[5, 10, 1], dtype='float32', lod_level=1) bbox2, score2 = generate_input('int32', 'float32', '2') self.assertRaises( TypeError, ops.collect_fpn_proposals, multi_rois=bbox1, multi_scores=score1, min_level=2, max_level=5, post_nms_top_n=2000) self.assertRaises( TypeError, ops.collect_fpn_proposals, multi_rois=bbox2, multi_scores=score2, min_level=2, max_level=5, post_nms_top_n=2000) paddle.disable_static() class TestDistributeFpnProposals(LayerTest): def test_distribute_fpn_proposals(self): rois_np = np.random.rand(10, 4).astype('float32') rois_num_np = np.array([4, 6]).astype('int32') with self.static_graph(): rois = paddle.static.data( name='rois', shape=[10, 4], dtype='float32') rois_num = paddle.static.data( name='rois_num', shape=[None], dtype='int32') multi_rois, restore_ind, rois_num_per_level = ops.distribute_fpn_proposals( fpn_rois=rois, min_level=2, max_level=5, refer_level=4, refer_scale=224, rois_num=rois_num) fetch_list = multi_rois + [restore_ind] + rois_num_per_level output_stat = self.get_static_graph_result( feed={'rois': rois_np, 'rois_num': rois_num_np}, fetch_list=fetch_list, with_lod=True) output_stat_np = [] for output in output_stat: output_np = np.array(output) if len(output_np) > 0: output_stat_np.append(output_np) with self.dynamic_graph(): rois_dy = base.to_variable(rois_np) rois_num_dy = base.to_variable(rois_num_np) multi_rois_dy, restore_ind_dy, rois_num_per_level_dy = ops.distribute_fpn_proposals( fpn_rois=rois_dy, min_level=2, max_level=5, refer_level=4, refer_scale=224, rois_num=rois_num_dy) output_dy = multi_rois_dy + [restore_ind_dy] + rois_num_per_level_dy output_dy_np = [] for output in output_dy: output_np = output.numpy() if len(output_np) > 0: output_dy_np.append(output_np) for res_stat, res_dy in zip(output_stat_np, output_dy_np): self.assertTrue(np.array_equal(res_stat, res_dy)) def test_distribute_fpn_proposals_error(self): with self.static_graph(): fpn_rois = paddle.static.data( name='data_error', shape=[10, 4], dtype='int32', lod_level=1) self.assertRaises( TypeError, ops.distribute_fpn_proposals, fpn_rois=fpn_rois, min_level=2, max_level=5, refer_level=4, refer_scale=224) paddle.disable_static() class TestROIAlign(LayerTest): def test_roi_align(self): b, c, h, w = 2, 12, 20, 20 inputs_np = np.random.rand(b, c, h, w).astype('float32') rois_num = [4, 6] output_size = (7, 7) rois_np = make_rois(h, w, rois_num, output_size) rois_num_np = np.array(rois_num).astype('int32') with self.static_graph(): inputs = paddle.static.data( name='inputs', shape=[b, c, h, w], dtype='float32') rois = paddle.static.data( name='rois', shape=[10, 4], dtype='float32') rois_num = paddle.static.data( name='rois_num', shape=[None], dtype='int32') output = ops.roi_align( input=inputs, rois=rois, output_size=output_size, rois_num=rois_num) output_np, = self.get_static_graph_result( feed={ 'inputs': inputs_np, 'rois': rois_np, 'rois_num': rois_num_np }, fetch_list=output, with_lod=False) with self.dynamic_graph(): inputs_dy = base.to_variable(inputs_np) rois_dy = base.to_variable(rois_np) rois_num_dy = base.to_variable(rois_num_np) output_dy = ops.roi_align( input=inputs_dy, rois=rois_dy, output_size=output_size, rois_num=rois_num_dy) output_dy_np = output_dy.numpy() self.assertTrue(np.array_equal(output_np, output_dy_np)) def test_roi_align_error(self): with self.static_graph(): inputs = paddle.static.data( name='inputs', shape=[2, 12, 20, 20], dtype='float32') rois = paddle.static.data( name='data_error', shape=[10, 4], dtype='int32', lod_level=1) self.assertRaises( TypeError, ops.roi_align, input=inputs, rois=rois, output_size=(7, 7)) paddle.disable_static() class TestROIPool(LayerTest): def test_roi_pool(self): b, c, h, w = 2, 12, 20, 20 inputs_np = np.random.rand(b, c, h, w).astype('float32') rois_num = [4, 6] output_size = (7, 7) rois_np = make_rois(h, w, rois_num, output_size) rois_num_np = np.array(rois_num).astype('int32') with self.static_graph(): inputs = paddle.static.data( name='inputs', shape=[b, c, h, w], dtype='float32') rois = paddle.static.data( name='rois', shape=[10, 4], dtype='float32') rois_num = paddle.static.data( name='rois_num', shape=[None], dtype='int32') output, _ = ops.roi_pool( input=inputs, rois=rois, output_size=output_size, rois_num=rois_num) output_np, = self.get_static_graph_result( feed={ 'inputs': inputs_np, 'rois': rois_np, 'rois_num': rois_num_np }, fetch_list=[output], with_lod=False) with self.dynamic_graph(): inputs_dy = base.to_variable(inputs_np) rois_dy = base.to_variable(rois_np) rois_num_dy = base.to_variable(rois_num_np) output_dy, _ = ops.roi_pool( input=inputs_dy, rois=rois_dy, output_size=output_size, rois_num=rois_num_dy) output_dy_np = output_dy.numpy() self.assertTrue(np.array_equal(output_np, output_dy_np)) def test_roi_pool_error(self): with self.static_graph(): inputs = paddle.static.data( name='inputs', shape=[2, 12, 20, 20], dtype='float32') rois = paddle.static.data( name='data_error', shape=[10, 4], dtype='int32', lod_level=1) self.assertRaises( TypeError, ops.roi_pool, input=inputs, rois=rois, output_size=(7, 7)) paddle.disable_static() class TestIoUSimilarity(LayerTest): def test_iou_similarity(self): b, c, h, w = 2, 12, 20, 20 inputs_np = np.random.rand(b, c, h, w).astype('float32') output_size = (7, 7) x_np = make_rois(h, w, [20], output_size) y_np = make_rois(h, w, [10], output_size) with self.static_graph(): x = paddle.static.data(name='x', shape=[20, 4], dtype='float32') y = paddle.static.data(name='y', shape=[10, 4], dtype='float32') iou = ops.iou_similarity(x=x, y=y) iou_np, = self.get_static_graph_result( feed={ 'x': x_np, 'y': y_np, }, fetch_list=[iou], with_lod=False) with self.dynamic_graph(): x_dy = base.to_variable(x_np) y_dy = base.to_variable(y_np) iou_dy = ops.iou_similarity(x=x_dy, y=y_dy) iou_dy_np = iou_dy.numpy() self.assertTrue(np.array_equal(iou_np, iou_dy_np)) class TestBipartiteMatch(LayerTest): def test_bipartite_match(self): distance = np.random.random((20, 10)).astype('float32') with self.static_graph(): x = paddle.static.data(name='x', shape=[20, 10], dtype='float32') match_indices, match_dist = ops.bipartite_match( x, match_type='per_prediction', dist_threshold=0.5) match_indices_np, match_dist_np = self.get_static_graph_result( feed={'x': distance, }, fetch_list=[match_indices, match_dist], with_lod=False) with self.dynamic_graph(): x_dy = base.to_variable(distance) match_indices_dy, match_dist_dy = ops.bipartite_match( x_dy, match_type='per_prediction', dist_threshold=0.5) match_indices_dy_np = match_indices_dy.numpy() match_dist_dy_np = match_dist_dy.numpy() self.assertTrue(np.array_equal(match_indices_np, match_indices_dy_np)) self.assertTrue(np.array_equal(match_dist_np, match_dist_dy_np)) class TestYoloBox(LayerTest): def test_yolo_box(self): # x shape [N C H W], C=K * (5 + class_num), class_num=10, K=2 np_x = np.random.random([1, 30, 7, 7]).astype('float32') np_origin_shape = np.array([[608, 608]], dtype='int32') class_num = 10 conf_thresh = 0.01 downsample_ratio = 32 scale_x_y = 1.2 # static with self.static_graph(): # x shape [N C H W], C=K * (5 + class_num), class_num=10, K=2 x = paddle.static.data( name='x', shape=[1, 30, 7, 7], dtype='float32') origin_shape = paddle.static.data( name='origin_shape', shape=[1, 2], dtype='int32') boxes, scores = ops.yolo_box( x, origin_shape, [10, 13, 30, 13], class_num, conf_thresh, downsample_ratio, scale_x_y=scale_x_y) boxes_np, scores_np = self.get_static_graph_result( feed={ 'x': np_x, 'origin_shape': np_origin_shape, }, fetch_list=[boxes, scores], with_lod=False) # dygraph with self.dynamic_graph(): x_dy = fluid.layers.assign(np_x) origin_shape_dy = fluid.layers.assign(np_origin_shape) boxes_dy, scores_dy = ops.yolo_box( x_dy, origin_shape_dy, [10, 13, 30, 13], 10, 0.01, 32, scale_x_y=scale_x_y) boxes_dy_np = boxes_dy.numpy() scores_dy_np = scores_dy.numpy() self.assertTrue(np.array_equal(boxes_np, boxes_dy_np)) self.assertTrue(np.array_equal(scores_np, scores_dy_np)) def test_yolo_box_error(self): with self.static_graph(): # x shape [N C H W], C=K * (5 + class_num), class_num=10, K=2 x = paddle.static.data( name='x', shape=[1, 30, 7, 7], dtype='float32') origin_shape = paddle.static.data( name='origin_shape', shape=[1, 2], dtype='int32') self.assertRaises( TypeError, ops.yolo_box, x, origin_shape, [10, 13, 30, 13], 10.123, 0.01, 32, scale_x_y=1.2) paddle.disable_static() class TestPriorBox(LayerTest): def test_prior_box(self): input_np = np.random.rand(2, 10, 32, 32).astype('float32') image_np = np.random.rand(2, 10, 40, 40).astype('float32') min_sizes = [2, 4] with self.static_graph(): input = paddle.static.data( name='input', shape=[2, 10, 32, 32], dtype='float32') image = paddle.static.data( name='image', shape=[2, 10, 40, 40], dtype='float32') box, var = ops.prior_box( input=input, image=image, min_sizes=min_sizes, clip=True, flip=True) box_np, var_np = self.get_static_graph_result( feed={ 'input': input_np, 'image': image_np, }, fetch_list=[box, var], with_lod=False) with self.dynamic_graph(): inputs_dy = base.to_variable(input_np) image_dy = base.to_variable(image_np) box_dy, var_dy = ops.prior_box( input=inputs_dy, image=image_dy, min_sizes=min_sizes, clip=True, flip=True) box_dy_np = box_dy.numpy() var_dy_np = var_dy.numpy() self.assertTrue(np.array_equal(box_np, box_dy_np)) self.assertTrue(
np.array_equal(var_np, var_dy_np)
numpy.array_equal
import os import sys import obspy import scipy import pyasdf import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.fftpack import next_fast_len from obspy.signal.filter import bandpass from seisgo import noise, stacking,utils import pygmt as gmt from obspy import UTCDateTime def plot_eventsequence(cat,figsize=(12,4),ytype='magnitude',figname=None, yrange=None,save=False,stem=True): if isinstance(cat,obspy.core.event.catalog.Catalog): cat=pd.DataFrame(utils.qml2list(cat)) elif isinstance(cat,list): cat=pd.DataFrame(cat) #All magnitudes greater than or equal to the limit will be plotted plt.figure(figsize=figsize) plt.title(ytype+" vs. time") plt.xlabel("Date (UTC)") plt.ylabel(ytype) if yrange is not None: ymin,ymax=yrange if ytype.lower()=="magnitude": cat2=cat[(cat.magnitude>=yrange[0]) & (cat.magnitude<=yrange[1]) ] elif ytype.lower()=="depth": cat2=cat[(cat.depth>=yrange[0]) & (cat.depth<=yrange[1]) ] else: cat2=cat if ytype.lower()=="magnitude": ymin=np.min(cat2.magnitude)*0.9 ymax=np.max(cat2.magnitude)*1.1 elif ytype.lower()=="depth": ymin=np.min(cat2.depth)*0.9 ymax=np.max(cat2.depth)*1.1 t=[] for i in range(len(cat2)): tTime=obspy.UTCDateTime(cat2.iloc[i]["datetime"]) t.append(tTime.datetime) if stem: if ytype.lower()=="magnitude": markerline, stemlines, baseline=plt.stem(t,cat2.magnitude,linefmt='k-',markerfmt="o", bottom=ymin) elif ytype.lower()=="depth": markerline, stemlines, baseline=plt.stem(t,cat2.depth,linefmt='k-',markerfmt="o", bottom=ymin) markerline.set_markerfacecolor('r') markerline.set_markeredgecolor('r') else: if ytype.lower()=="magnitude": plt.scatter(t,cat2.magnitude,5,'k') elif ytype.lower()=="depth": plt.scatter(t,cat2.depth,cat2.magnitude,'k') # plt.grid(axis="both") plt.ylim([ymin,ymax]) if save: if figname is not None: plt.savefig(figname) else: plt.savefig(ytype+"_vs_time.png") else: plt.show() def plot_stations(lon,lat,region,markersize="c0.2c",title="station map",style="fancy",figname=None, format='png',distance=None,projection="M5i", xshift="6i",frame="af"): """ lon, lat: could be list of vectors contaning multiple sets of stations. The number of sets must be the same as the length of the marker list. marker: a list specifying the symbols for each station set. region: [minlon,maxlon,minlat,maxlat] for map view """ nsta=len(lon) if isinstance(markersize,str): markersize=[markersize]*nsta fig = gmt.Figure() gmt.config(MAP_FRAME_TYPE=style) for i in range(nsta): if i==0: fig.coast(region=region, resolution="f",projection=projection, rivers='rivers', water="cyan",frame=frame,land="white", borders=["1/0.5p,gray,2/1p,gray"]) fig.basemap(frame='+t"'+title+'"') fig.plot( x=lon[i], y=lat[i], style=markersize[i], color="red", ) if figname is None: figname='stationmap.'+format fig.savefig(figname) print('plot was saved to: '+figname) ##plot power spectral density def plot_psd(data,dt,labels=None,xrange=None,cmap='jet',normalize=True,figsize=(13,5),\ save=False,figname=None,tick_inc=None): """ Plot the power specctral density of the data array. =PARAMETERS= data: 2-D array containing the data. the data to be plotted should be on axis 1 (second dimention) dt: sampling inverval in time. labels: row labels of the data, default is None. cmap: colormap, default is 'jet' time_format: format to show time marks, default is: '%Y-%m-%dT%H' normalize: whether normalize the PSD in plotting, default is True figsize: figure size, default: (13,5) """ data=np.array(data) if data.ndim > 2: raise ValueError('only plot 1-d arrya or 2d matrix for now. the input data has a dimention of %d'%(data.ndim)) f,psd=utils.psd(data,1/dt) f=f[1:] plt.figure(figsize=figsize) ax=plt.subplot(111) if data.ndim==2: nwin=data.shape[0] if tick_inc is None: if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 psdN=np.ndarray((psd.shape[0],psd.shape[1]-1)) for i in range(psd.shape[0]): if normalize: psdN[i,:]=psd[i,1:]/np.max(np.abs(psd[i,1:])) else: psdN[i,:]=psd[i,1:] plt.imshow(psdN,aspect='auto',extent=[f.min(),f.max(),psdN.shape[0],0],cmap=cmap) ax.set_yticks(np.arange(0,nwin,step=tick_inc)) if labels is not None: ax.set_yticklabels(labels[0:nwin:tick_inc]) if normalize: plt.colorbar(label='normalized PSD') else: plt.colorbar(label='PSD') else: if normalize: psdN=psd[1:]/np.max(np.abs(psd[1:])) else: psdN[i,:]=psd[1:] plt.plot(f,psdN) if xrange is None:plt.xlim([f[1],f[-1]]) else: plt.xlim(xrange) plt.xscale('log') plt.xlabel('frequency (Hz)') plt.title('PSD') if save: if figname is not None: plt.savefig(figname) else: plt.savefig("PSD.png") else: plt.show() ############################################################################# ############### PLOTTING RAW SEISMIC WAVEFORMS ########################## ############################################################################# ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_waveform(sfile,net,sta,freqmin,freqmax,save=False,figdir=None,format='pdf'): ''' display the downloaded waveform for station A PARAMETERS: ----------------------- sfile: containing all wavefrom data for a time-chunck in ASDF format net,sta,comp: network, station name and component freqmin: min frequency to be filtered freqmax: max frequency to be filtered USAGE: ----------------------- plot_waveform('temp.h5','CI','BLC',0.01,0.5) ''' # open pyasdf file to read try: ds = pyasdf.ASDFDataSet(sfile,mode='r') sta_list = ds.waveforms.list() except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() # check whether station exists tsta = net+'.'+sta if tsta not in sta_list: raise ValueError('no data for %s in %s'%(tsta,sfile)) tcomp = ds.waveforms[tsta].get_waveform_tags() ncomp = len(tcomp) if ncomp==0: print('no data found for the specified net.sta.') return None tr = ds.waveforms[tsta][tcomp[0]] dt = tr[0].stats.delta npts = tr[0].stats.npts tt = np.arange(0,npts)*dt if ncomp == 1: data = tr[0].data data = bandpass(data,freqmin,freqmax,int(1/dt),corners=4, zerophase=True) fig=plt.figure(figsize=(9,3)) plt.plot(tt,data,'k-',linewidth=1) plt.title('T\u2080:%s %s.%s.%s @%5.3f-%5.2f Hz' % (tr[0].stats.starttime,net,sta,tcomp[0].split('_')[0].upper(),freqmin,freqmax)) plt.xlabel('Time [s]') plt.ylabel('Amplitude') plt.tight_layout() plt.show() else: data = np.zeros(shape=(ncomp,npts),dtype=np.float32) for ii in range(ncomp): data[ii] = ds.waveforms[tsta][tcomp[ii]][0].data data[ii] = bandpass(data[ii],freqmin,freqmax,int(1/dt),corners=4, zerophase=True) fig=plt.figure(figsize=(9,6)) for c in range(ncomp): if c==0: plt.subplot(ncomp,1,1) plt.plot(tt,data[0],'k-',linewidth=1) plt.title('T\u2080:%s %s.%s @%5.3f-%5.2f Hz' % (tr[0].stats.starttime,net,sta,freqmin,freqmax)) plt.legend([tcomp[0].split('_')[0].upper()],loc='upper left') plt.xlabel('Time [s]') else: plt.subplot(ncomp,1,c+1) plt.plot(tt,data[c],'k-',linewidth=1) plt.legend([tcomp[c].split('_')[0].upper()],loc='upper left') plt.xlabel('Time [s]') fig.tight_layout() if save: if not os.path.isdir(figdir):os.mkdir(figdir) sfilebase=sfile.split('/')[-1] outfname = figdir+'/{0:s}_{1:s}.{2:s}'.format(sfilebase.split('.')[0],net,sta) fig.savefig(outfname+'.'+format, format=format, dpi=300) plt.close() else: fig.show() ############################################################################# ###############PLOTTING XCORR RESULTS AS THE OUTPUT OF SEISGO ########################## ############################################################################# def plot_xcorr_substack(sfile,freqmin,freqmax,lag=None,comp='ZZ', save=True,figdir=None): ''' display the 2D matrix of the cross-correlation functions for a certain time-chunck. PARAMETERS: -------------------------- sfile: cross-correlation functions outputed by SeisGo workflow freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: -------------------------- plot_xcorr_substack('temp.h5',0.1,1,100,True,'./') Note: IMPORTANT!!!! this script only works for cross-correlation with sub-stacks being set to True in S1. ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables spairs = ds.auxiliary_data.list() path_lists = ds.auxiliary_data[spairs[0]].list() flag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['substack'] dt = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['dt'] maxlag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() # only works for cross-correlation with substacks generated if not flag: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # lags for display if not lag:lag=maxlag lag0=np.min([1.0*lag,maxlag]) if lag>maxlag:raise ValueError('lag excceds maxlag!') # t is the time labels for plotting if lag>=5: tstep=int(int(lag)/5) t1=np.arange(-int(lag),0,step=tstep) t2=np.arange(0,int(lag+0.5*tstep),step=tstep) t=np.concatenate((t1,t2)) else: tstep=lag/5 t1=np.arange(-lag,0,step=tstep) t2=np.arange(0,lag+0.5*tstep,step=tstep) t=np.concatenate((t1,t2)) indx1 = int((maxlag-lag0)/dt) indx2 = indx1+2*int(lag0/dt)+1 for spair in spairs: ttr = spair.split('_') net1,sta1 = ttr[0].split('.') net2,sta2 = ttr[1].split('.') path_lists = ds.auxiliary_data[spair].list() for ipath in path_lists: chan1,chan2 = ipath.split('_') cc_comp=chan1[-1]+chan2[-1] if cc_comp == comp or comp=='all' or comp=='ALL': try: dist = ds.auxiliary_data[spair][ipath].parameters['dist'] ngood= ds.auxiliary_data[spair][ipath].parameters['ngood'] ttime= ds.auxiliary_data[spair][ipath].parameters['time'] except Exception: print('continue! something wrong with %s %s'%(spair,ipath)) continue # cc matrix timestamp = np.empty(ttime.size,dtype='datetime64[s]') data = ds.auxiliary_data[spair][ipath].data[:,indx1:indx2] # print(data.shape) nwin = data.shape[0] amax = np.zeros(nwin,dtype=np.float32) if nwin==0 or len(ngood)==1: print('continue! no enough substacks!');continue tmarks = [] data_normalizd=data # load cc for each station-pair for ii in range(nwin): data[ii] = bandpass(data[ii],freqmin,freqmax,1/dt,corners=4, zerophase=True) data[ii] = data[ii]-np.mean(data[ii]) amax[ii] = np.max(np.abs(data[ii])) data_normalizd[ii] = data[ii]/amax[ii] timestamp[ii] = obspy.UTCDateTime(ttime[ii]) tmarks.append(obspy.UTCDateTime(ttime[ii]).strftime('%Y-%m-%dT%H:%M:%S')) dstack_mean=np.mean(data,axis=0) dstack_robust=stacking.robust_stack(data)[0] # plotting if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig = plt.figure(figsize=(10,6)) ax = fig.add_subplot(5,1,(1,3)) ax.matshow(data_normalizd,cmap='seismic',extent=[-lag0,lag0,nwin,0],aspect='auto') ax.plot((0,0),(nwin,0),'k-') ax.set_title('%s.%s.%s %s.%s.%s dist:%5.2fkm' % (net1,sta1,chan1,net2,sta2,chan2,dist)) ax.set_xlabel('time [s]') ax.set_xticks(t) ax.set_yticks(np.arange(0,nwin,step=tick_inc)) # ax.set_yticklabels(np.arange(0,nwin,step=tick_inc)) ax.set_yticklabels(tmarks[0:nwin:tick_inc]) ax.set_xlim([-lag,lag]) ax.xaxis.set_ticks_position('bottom') ax1 = fig.add_subplot(5,1,(4,5)) ax1.set_title('stack at %4.2f-%4.2f Hz'%(freqmin,freqmax)) tstack=np.arange(-lag0,lag0+0.5*dt,dt) if len(tstack)>len(dstack_mean):tstack=tstack[:-1] ax1.plot(tstack,dstack_mean,'b-',linewidth=1,label='mean') ax1.plot(tstack,dstack_robust,'r-',linewidth=1,label='robust') ax1.set_xlabel('time [s]') ax1.set_xticks(t) ax1.set_xlim([-lag,lag]) ylim=ax1.get_ylim() ax1.plot((0,0),ylim,'k-') ax1.set_ylim(ylim) ax1.legend(loc='upper right') ax1.grid() # ax2 = fig.add_subplot(414) # ax2.plot(amax/min(amax),'r-') # ax2.plot(ngood,'b-') # ax2.set_xlabel('waveform number') # ax2.set_xticks(np.arange(0,nwin,step=tick_inc)) # ax2.set_xticklabels(tmarks[0:nwin:tick_inc]) # #for tick in ax[2].get_xticklabels(): # # tick.set_rotation(30) # ax2.legend(['relative amp','ngood'],loc='upper right') fig.tight_layout() # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.isdir(figdir):os.mkdir(figdir) outfname = figdir+\ '/{0:s}.{1:s}.{2:s}_{3:s}.{4:s}.{5:s}_{6:s}-{7:s}Hz.png'.format(net1,sta1,\ chan1,net2,\ sta2,chan2, str(freqmin),str(freqmax)) fig.savefig(outfname, format='png', dpi=400) print('saved to: '+outfname) plt.close() else: fig.show() def plot_corrfile(sfile,freqmin,freqmax,lag=None,comp='ZZ', save=True,figname=None,format='png',figdir=None): ''' display the 2D matrix of the cross-correlation functions for a certain time-chunck. PARAMETERS: -------------------------- sfile: cross-correlation functions outputed by SeisGo workflow freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: -------------------------- plot_corrfile('temp.h5',0.1,1,100,True,'./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') corrdict=noise.extract_corrdata(sfile,comp=comp) clist=list(corrdict.keys()) for c in clist: corr=corrdict[c] if comp in list(corr.keys()): corr[comp].plot(freqmin=freqmin,freqmax=freqmax,lag=lag,save=save,figdir=figdir, figname=figname,format=format) def plot_corrdata(corr,freqmin=None,freqmax=None,lag=None,save=False,figdir=None,figsize=(10,8)): ''' display the 2D matrix of the cross-correlation functions for a certain time-chunck. PARAMETERS: -------------------------- corr: : class:`~seisgo.types.CorrData` CorrData object containing the correlation functions and the metadata. freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: -------------------------- plot_corrdata(corr,0.1,1,100,save=True,figdir='./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') netstachan1 = corr.net[0]+'.'+corr.sta[0]+'.'+corr.loc[0]+'.'+corr.chan[0] netstachan2 = corr.net[1]+'.'+corr.sta[1]+'.'+corr.loc[1]+'.'+corr.chan[1] dt,maxlag,dist,ngood,ttime,substack = [corr.dt,corr.lag,corr.dist,corr.ngood,corr.time,corr.substack] # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') lag0=np.min([1.0*lag,maxlag]) # t is the time labels for plotting if lag>=5: tstep=int(int(lag)/5) t1=np.arange(-int(lag),0,step=tstep);t2=np.arange(0,int(lag+0.5*tstep),step=tstep) t=np.concatenate((t1,t2)) else: tstep=lag/5 t1=np.arange(-lag,0,step=tstep);t2=np.arange(0,lag+0.5*tstep,step=tstep) t=np.concatenate((t1,t2)) indx1 = int((maxlag-lag0)/dt);indx2 = indx1+2*int(lag0/dt)+1 # cc matrix if substack: data = corr.data[:,indx1:indx2] timestamp = np.empty(ttime.size,dtype='datetime64[s]') # print(data.shape) nwin = data.shape[0] amax = np.zeros(nwin,dtype=np.float32) if nwin==0 or len(ngood)==1: print('continue! no enough trace to plot!') return tmarks = [] data_normalizd=data # load cc for each station-pair for ii in range(nwin): if freqmin is not None and freqmax is not None: data[ii] = bandpass(data[ii],freqmin,freqmax,1/dt,corners=4, zerophase=True) data[ii] = data[ii]-np.mean(data[ii]) amax[ii] = np.max(np.abs(data[ii])) data_normalizd[ii] = data[ii]/amax[ii] timestamp[ii] = obspy.UTCDateTime(ttime[ii]) tmarks.append(obspy.UTCDateTime(ttime[ii]).strftime('%Y-%m-%dT%H:%M:%S')) dstack_mean=np.mean(data,axis=0) # dstack_robust=stack.robust_stack(data)[0] # plotting if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig = plt.figure(figsize=figsize) ax = fig.add_subplot(6,1,(1,4)) ax.matshow(data_normalizd,cmap='seismic',extent=[-lag0,lag0,nwin,0],aspect='auto') ax.plot((0,0),(nwin,0),'k-') if freqmin is not None and freqmax is not None: ax.set_title('%s-%s : dist : %5.2f km : %4.2f-%4.2f Hz' % (netstachan1,netstachan2, dist,freqmin,freqmax)) else: ax.set_title('%s-%s : dist : %5.2f km : unfiltered' % (netstachan1,netstachan2,dist)) ax.set_xlabel('time [s]') ax.set_xticks(t) ax.set_yticks(np.arange(0,nwin,step=tick_inc)) ax.set_yticklabels(tmarks[0:nwin:tick_inc]) ax.set_xlim([-lag,lag]) ax.xaxis.set_ticks_position('bottom') ax1 = fig.add_subplot(6,1,(5,6)) if freqmin is not None and freqmax is not None: ax1.set_title('stack at %4.2f-%4.2f Hz'%(freqmin,freqmax)) else: ax1.set_title('stack: unfiltered') tstack=np.arange(-lag0,lag0+0.5*dt,dt) if len(tstack)>len(dstack_mean):tstack=tstack[:-1] ax1.plot(tstack,dstack_mean,'b-',linewidth=1,label='mean') # ax1.plot(tstack,dstack_robust,'r-',linewidth=1,label='robust') ax1.set_xlabel('time [s]') ax1.set_xticks(t) ax1.set_xlim([-lag,lag]) ylim=ax1.get_ylim() ax1.plot((0,0),ylim,'k-') ax1.set_ylim(ylim) ax1.legend(loc='upper right') ax1.grid() fig.tight_layout() else: #only one trace available data = corr.data[indx1:indx2] # load cc for each station-pair if freqmin is not None and freqmax is not None: data = bandpass(data,freqmin,freqmax,1/dt,corners=4, zerophase=True) data = data-np.mean(data) amax = np.max(np.abs(data)) data /= amax timestamp = obspy.UTCDateTime(ttime) tmarks=obspy.UTCDateTime(ttime).strftime('%Y-%m-%dT%H:%M:%S') tx=np.arange(-lag0,lag0+0.5*dt,dt) if len(tx)>len(data):tx=tx[:-1] plt.figure(figsize=figsize) ax=plt.gca() plt.plot(tx,data,'k-',linewidth=1) if freqmin is not None and freqmax is not None: plt.title('%s-%s : dist : %5.2f km : %4.2f-%4.2f Hz' % (netstachan1,netstachan2, dist,freqmin,freqmax)) else: plt.title('%s-%s : dist : %5.2f km : unfiltered' % (netstachan1,netstachan2,dist)) plt.xlabel('time [s]') plt.xticks(t) ylim=ax.get_ylim() plt.plot((0,0),ylim,'k-') plt.ylim(ylim) plt.xlim([-lag,lag]) ax.grid() # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.isdir(figdir):os.mkdir(figdir) outfname = figdir+\ '/{0:s}_{1:s}_{2:s}-{3:s}Hz.png'.format(netstachan1,netstachan2, str(freqmin),str(freqmax)) plt.savefig(outfname, format='png', dpi=300) print('saved to: '+outfname) plt.close() else: plt.show() ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_xcorr_substack_spect(sfile,freqmin,freqmax,lag=None,save=True,figdir='./'): ''' display the amplitude spectrum of the cross-correlation functions for a time-chunck. PARAMETERS: ----------------------- sfile: cross-correlation functions outputed by S1 freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: ----------------------- plot_xcorr_substack_spect('temp.h5',0.1,1,200,True,'./') Note: IMPORTANT!!!! this script only works for the cross-correlation with sub-stacks in S1. ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables spairs = ds.auxiliary_data.list() path_lists = ds.auxiliary_data[spairs[0]].list() flag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['substack'] dt = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['dt'] maxlag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() # only works for cross-correlation with substacks generated if not flag: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') t = np.arange(-int(lag),int(lag)+dt,step=int(2*int(lag)/4)) indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 nfft = int(next_fast_len(indx2-indx1)) freq = scipy.fftpack.fftfreq(nfft,d=dt)[:nfft//2] for spair in spairs: ttr = spair.split('_') net1,sta1 = ttr[0].split('.') net2,sta2 = ttr[1].split('.') for ipath in path_lists: chan1,chan2 = ipath.split('_') try: dist = ds.auxiliary_data[spair][ipath].parameters['dist'] ngood= ds.auxiliary_data[spair][ipath].parameters['ngood'] ttime= ds.auxiliary_data[spair][ipath].parameters['time'] timestamp = np.empty(ttime.size,dtype='datetime64[s]') except Exception: print('continue! something wrong with %s %s'%(spair,ipath)) continue # cc matrix data = ds.auxiliary_data[spair][ipath].data[:,indx1:indx2] nwin = data.shape[0] amax = np.zeros(nwin,dtype=np.float32) spec = np.zeros(shape=(nwin,nfft//2),dtype=np.complex64) if nwin==0 or len(ngood)==1: print('continue! no enough substacks!');continue # load cc for each station-pair for ii in range(nwin): spec[ii] = scipy.fftpack.fft(data[ii],nfft,axis=0)[:nfft//2] spec[ii] /= np.max(np.abs(spec[ii]),axis=0) data[ii] = bandpass(data[ii],freqmin,freqmax,int(1/dt),corners=4, zerophase=True) amax[ii] = max(data[ii]) data[ii] /= amax[ii] timestamp[ii] = obspy.UTCDateTime(ttime[ii]) # plotting if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig,ax = plt.subplots(3,sharex=False) ax[0].matshow(data,cmap='seismic',extent=[-lag,lag,nwin,0],aspect='auto') ax[0].set_title('%s.%s.%s %s.%s.%s dist:%5.2f km' % (net1,sta1,chan1,net2,sta2,chan2,dist)) ax[0].set_xlabel('time [s]') ax[0].set_xticks(t) ax[0].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[0].set_yticklabels(timestamp[0:-1:tick_inc]) ax[0].xaxis.set_ticks_position('bottom') ax[1].matshow(np.abs(spec),cmap='seismic',extent=[freq[0],freq[-1],nwin,0],aspect='auto') ax[1].set_xlabel('freq [Hz]') ax[1].set_ylabel('amplitudes') ax[1].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[1].xaxis.set_ticks_position('bottom') ax[2].plot(amax/min(amax),'r-') ax[2].plot(ngood,'b-') ax[2].set_xlabel('waveform number') #ax[1].set_xticks(np.arange(0,nwin,int(nwin/5))) ax[2].legend(['relative amp','ngood'],loc='upper right') fig.tight_layout() # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.ifigdir(figdir):os.mkdir(figdir) outfname = figdir+'/{0:s}.{1:s}.{2:s}_{3:s}.{4:s}.{5:s}.pdf'.format(net1,sta1,chan1,net2,sta2,chan2) fig.savefig(outfname, format='pdf', dpi=400) plt.close() else: fig.show() ############################################################################# ###############PLOTTING THE POST-STACKING XCORR FUNCTIONS AS OUTPUT OF S2 STEP IN NOISEPY ########################## ############################################################################# ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_substack_all(sfile,freqmin,freqmax,comp,lag=None,save=False,figdir=None): ''' display the 2D matrix of the cross-correlation functions stacked for all time windows. PARAMETERS: --------------------- sfile: cross-correlation functions outputed by S2 freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display comp: cross component of the targeted cc functions USAGE: ---------------------- plot_substack_all('temp.h5',0.1,1,'ZZ',50,True,'./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') paths = comp try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables dtype_lists = ds.auxiliary_data.list() dt = ds.auxiliary_data[dtype_lists[0]][paths].parameters['dt'] dist = ds.auxiliary_data[dtype_lists[0]][paths].parameters['dist'] maxlag = ds.auxiliary_data[dtype_lists[0]][paths].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() if len(dtype_lists)==1: raise ValueError('Abort! seems no substacks have been done') # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') t = np.arange(-int(lag),int(lag)+dt,step=int(2*int(lag)/4)) indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 # other parameters to keep nwin = len(dtype_lists)-1 data = np.zeros(shape=(nwin,indx2-indx1),dtype=np.float32) ngood= np.zeros(nwin,dtype=np.int16) ttime= np.zeros(nwin,dtype=np.int) timestamp = np.empty(ttime.size,dtype='datetime64[s]') amax = np.zeros(nwin,dtype=np.float32) for ii,itype in enumerate(dtype_lists[2:]): timestamp[ii] = obspy.UTCDateTime(np.float(itype[1:])) try: ngood[ii] = ds.auxiliary_data[itype][paths].parameters['ngood'] ttime[ii] = ds.auxiliary_data[itype][paths].parameters['time'] #timestamp[ii] = obspy.UTCDateTime(ttime[ii]) # cc matrix data[ii] = ds.auxiliary_data[itype][paths].data[indx1:indx2] data[ii] = bandpass(data[ii],freqmin,freqmax,int(1/dt),corners=4, zerophase=True) amax[ii] = np.max(data[ii]) data[ii] /= amax[ii] except Exception as e: print(e);continue if len(ngood)==1: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # plotting if nwin>100: tick_inc = int(nwin/10) elif nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig,ax = plt.subplots(2,sharex=False) ax[0].matshow(data,cmap='seismic',extent=[-lag,lag,nwin,0],aspect='auto') ax[0].set_title('%s dist:%5.2f km filtered at %4.2f-%4.2fHz' % (sfile.split('/')[-1],dist,freqmin,freqmax)) ax[0].set_xlabel('time [s]') ax[0].set_ylabel('wavefroms') ax[0].set_xticks(t) ax[0].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[0].set_yticklabels(timestamp[0:nwin:tick_inc]) ax[0].xaxis.set_ticks_position('bottom') ax[1].plot(amax/max(amax),'r-') ax[1].plot(ngood,'b-') ax[1].set_xlabel('waveform number') ax[1].set_xticks(np.arange(0,nwin,nwin//5)) ax[1].legend(['relative amp','ngood'],loc='upper right') # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.ifigdir(figdir):os.mkdir(figdir) outfname = figdir+'/{0:s}_{1:4.2f}_{2:4.2f}Hz.pdf'.format(sfile.split('/')[-1],freqmin,freqmax) fig.savefig(outfname, format='pdf', dpi=400) plt.close() else: fig.show() ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_substack_all_spect(sfile,freqmin,freqmax,comp,lag=None,save=False,figdir=None): ''' display the amplitude spectrum of the cross-correlation functions stacked for all time windows. PARAMETERS: ----------------------- sfile: cross-correlation functions outputed by S2 freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display comp: cross component of the targeted cc functions USAGE: ----------------------- plot_substack_all('temp.h5',0.1,1,'ZZ',50,True,'./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') paths = comp try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables dtype_lists = ds.auxiliary_data.list() dt = ds.auxiliary_data[dtype_lists[0]][paths].parameters['dt'] dist = ds.auxiliary_data[dtype_lists[0]][paths].parameters['dist'] maxlag = ds.auxiliary_data[dtype_lists[0]][paths].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() if len(dtype_lists)==1: raise ValueError('Abort! seems no substacks have been done') # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') t = np.arange(-int(lag),int(lag)+dt,step=int(2*int(lag)/4)) indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 nfft = int(next_fast_len(indx2-indx1)) freq = scipy.fftpack.fftfreq(nfft,d=dt)[:nfft//2] # other parameters to keep nwin = len(dtype_lists)-1 data = np.zeros(shape=(nwin,indx2-indx1),dtype=np.float32) spec = np.zeros(shape=(nwin,nfft//2),dtype=np.complex64) ngood= np.zeros(nwin,dtype=np.int16) ttime= np.zeros(nwin,dtype=np.int) timestamp = np.empty(ttime.size,dtype='datetime64[s]') amax = np.zeros(nwin,dtype=np.float32) for ii,itype in enumerate(dtype_lists[1:]): timestamp[ii] = obspy.UTCDateTime(np.float(itype[1:])) try: ngood[ii] = ds.auxiliary_data[itype][paths].parameters['ngood'] ttime[ii] = ds.auxiliary_data[itype][paths].parameters['time'] #timestamp[ii] = obspy.UTCDateTime(ttime[ii]) # cc matrix tdata = ds.auxiliary_data[itype][paths].data[indx1:indx2] spec[ii] = scipy.fftpack.fft(tdata,nfft,axis=0)[:nfft//2] spec[ii] /= np.max(np.abs(spec[ii])) data[ii] = bandpass(tdata,freqmin,freqmax,int(1/dt),corners=4, zerophase=True) amax[ii] = np.max(data[ii]) data[ii] /= amax[ii] except Exception as e: print(e);continue if len(ngood)==1: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # plotting tick_inc = 50 fig,ax = plt.subplots(3,sharex=False) ax[0].matshow(data,cmap='seismic',extent=[-lag,lag,nwin,0],aspect='auto') ax[0].set_title('%s dist:%5.2f km' % (sfile.split('/')[-1],dist)) ax[0].set_xlabel('time [s]') ax[0].set_ylabel('wavefroms') ax[0].set_xticks(t) ax[0].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[0].set_yticklabels(timestamp[0:nwin:tick_inc]) ax[0].xaxis.set_ticks_position('bottom') ax[1].matshow(np.abs(spec),cmap='seismic',extent=[freq[0],freq[-1],nwin,0],aspect='auto') ax[1].set_xlabel('freq [Hz]') ax[1].set_ylabel('amplitudes') ax[1].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[1].set_yticklabels(timestamp[0:nwin:tick_inc]) ax[1].xaxis.set_ticks_position('bottom') ax[2].plot(amax/max(amax),'r-') ax[2].plot(ngood,'b-') ax[2].set_xlabel('waveform number') ax[2].set_xticks(np.arange(0,nwin,nwin//15)) ax[2].legend(['relative amp','ngood'],loc='upper right') # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.ifigdir(figdir):os.mkdir(figdir) outfname = figdir+'/{0:s}.pdf'.format(sfile.split('/')[-1]) fig.savefig(outfname, format='pdf', dpi=400) plt.close() else: fig.show() ''' Modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_xcorr_moveout_heatmap(sfiles,sta,dtype,freq,comp,dist_inc,lag=None,save=False,\ figsize=None,format='png',figdir=None): ''' display the moveout (2D matrix) of the cross-correlation functions stacked for all time chuncks. PARAMETERS: --------------------- sfile: cross-correlation functions outputed by S2 sta: station name as the virtual source. dtype: datatype either 'Allstack_pws' or 'Allstack_linear' freqmin: min frequency to be filtered freqmax: max frequency to be filtered comp: cross component dist_inc: distance bins to stack over lag: lag times for displaying save: set True to save the figures (in pdf format) figdir: diresied directory to save the figure (if not provided, save to default dir) USAGE: ---------------------- plot_xcorr_moveout_heatmap('temp.h5','sta','Allstack_pws',0.1,0.2,1,'ZZ',200,True,'./temp') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') if not isinstance(freq[0],list):freq=[freq] freq=np.array(freq) figlabels=['(a)','(b)','(c)','(d)','(e)','(f)','(g)','(h)','(i)'] if freq.shape[0]>9: raise ValueError('freq includes more than 9 (maximum allowed for now) elements!') elif freq.shape[0]==9: subplot=[3,3] figsize0=[14,7.5] elif freq.shape[0] >=7 and freq.shape[0] <=8: subplot=[2,4] figsize0=[18,10] elif freq.shape[0] >=5 and freq.shape[0] <=6: subplot=[2,3] figsize0=[14,7.5] elif freq.shape[0] ==4: subplot=[2,2] figsize0=[10,6] else: subplot=[1,freq.shape[0]] if freq.shape[0]==3: figsize0=[13,3] elif freq.shape[0]==2: figsize0=[8,3] else: figsize0=[4,3] if figsize is None:figsize=figsize0 path = comp receiver = sta+'.h5' stack_method = dtype.split('_')[-1] # extract common variables try: ds = pyasdf.ASDFDataSet(sfiles[0],mpi=False,mode='r') dt = ds.auxiliary_data[dtype][path].parameters['dt'] maxlag= ds.auxiliary_data[dtype][path].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfiles[0]);sys.exit() # lags for display if lag is None:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') t = np.arange(-int(lag),int(lag)+dt,step=(int(2*int(lag)/4))) indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 # cc matrix nwin = len(sfiles) data0 = np.zeros(shape=(nwin,indx2-indx1),dtype=np.float32) dist = np.zeros(nwin,dtype=np.float32) ngood= np.zeros(nwin,dtype=np.int16) # load cc and parameter matrix for ii in range(len(sfiles)): sfile = sfiles[ii] treceiver = sfile.split('_')[-1] ds = pyasdf.ASDFDataSet(sfile,mpi=False,mode='r') try: # load data to variables dist[ii] = ds.auxiliary_data[dtype][path].parameters['dist'] ngood[ii]= ds.auxiliary_data[dtype][path].parameters['ngood'] tdata = ds.auxiliary_data[dtype][path].data[indx1:indx2] if treceiver == receiver: tdata=np.flip(tdata,axis=0) except Exception: print("continue! cannot read %s "%sfile);continue data0[ii] = tdata ntrace = int(np.round(np.max(dist)+0.51)/dist_inc) fig=plt.figure(figsize=figsize) for f in range(len(freq)): freqmin=freq[f][0] freqmax=freq[f][1] data = np.zeros(shape=(nwin,indx2-indx1),dtype=np.float32) for i2 in range(data0.shape[0]): data[i2]=bandpass(data0[i2],freqmin,freqmax,1/dt,corners=4, zerophase=True) # average cc ndata = np.zeros(shape=(ntrace,indx2-indx1),dtype=np.float32) ndist = np.zeros(ntrace,dtype=np.float32) for td in range(ndata.shape[0]): tindx = np.where((dist>=td*dist_inc)&(dist<(td+1)*dist_inc))[0] if len(tindx): ndata[td] = np.mean(data[tindx],axis=0) ndist[td] = (td+0.5)*dist_inc # normalize waveforms indx = np.where(ndist>0)[0] ndata = ndata[indx] ndist = ndist[indx] for ii in range(ndata.shape[0]): # print(ii,np.max(np.abs(ndata[ii]))) ndata[ii] /= np.max(np.abs(ndata[ii])) # plotting figures ax=fig.add_subplot(subplot[0],subplot[1],f+1) ax.matshow(ndata,cmap='seismic',extent=[-lag,lag,ndist[-1],ndist[0]],aspect='auto') ax.set_title('%s %s stack %s %5.3f-%5.2f Hz'%(figlabels[f],sta,stack_method,freqmin,freqmax)) ax.set_xlabel('time [s]') ax.set_ylabel('distance [km]') ax.set_xticks(t) ax.xaxis.set_ticks_position('bottom') #ax.text(np.ones(len(ndist))*(lag-5),dist[ndist],ngood[ndist],fontsize=8) plt.tight_layout() # save figure or show if save: outfname = figdir+'/moveout_'+sta+'_heatmap_'+str(stack_method)+'_'+str(dist_inc)+'kmbin_'+comp+'.'+format plt.savefig(outfname, format=format, dpi=300) plt.close() else: plt.show() #test functions def plot_xcorr_moveout_wiggle(sfiles,sta,dtype,freq,ccomp=None,scale=1.0,lag=None,\ ylim=None,save=False,figsize=None,figdir=None,format='png',minsnr=None): ''' display the moveout waveforms of the cross-correlation functions stacked for all time chuncks. PARAMETERS: --------------------- sfile: cross-correlation functions outputed by S2 sta: source station name dtype: datatype either 'Allstack0pws' or 'Allstack0linear' freqmin: min frequency to be filtered freqmax: max frequency to be filtered ccomp: x-correlation component names, could be a string or a list of strings. scale: plot the waveforms with scaled amplitudes lag: lag times for displaying save: set True to save the figures (in pdf format) figdir: diresied directory to save the figure (if not provided, save to default dir) minsnr: mimumum SNR as a QC criterion, the SNR is computed as max(abs(trace))/mean(abs(trace)), without signal and noise windows. USAGE: ---------------------- plot_xcorr_moveout_wiggle('temp.h5','Allstack0pws',0.1,0.2,'ZZ',200,True,'./temp') ''' if not isinstance(freq[0],list):freq=[freq] freq=np.array(freq) figlabels=['(a)','(b)','(c)','(d)','(e)','(f)','(g)','(h)','(i)'] if freq.shape[0]>9: raise ValueError('freq includes more than 9 (maximum allowed for now) elements!') elif freq.shape[0]==9: subplot=[3,3] figsize0=[14,7.5] elif freq.shape[0] >=7 and freq.shape[0] <=8: subplot=[2,4] figsize0=[18,10] elif freq.shape[0] >=5 and freq.shape[0] <=6: subplot=[2,3] figsize0=[14,7.5] elif freq.shape[0] ==4: subplot=[2,2] figsize0=[10,6] else: subplot=[1,freq.shape[0]] if freq.shape[0]==3: figsize0=[13,3] elif freq.shape[0]==2: figsize0=[8,3] else: figsize0=[4,3] if figsize is None:figsize=figsize0 # qc=False if minsnr is not None: qc=True # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') receiver = sta+'.h5' stack_method = dtype.split('_')[-1] if isinstance(ccomp,str):ccomp=[ccomp] # extract common variables try: ds = pyasdf.ASDFDataSet(sfiles[0],mpi=False,mode='r') complist=ds.auxiliary_data[dtype].list() dt = ds.auxiliary_data[dtype][complist[0]].parameters['dt'] maxlag= ds.auxiliary_data[dtype][complist[0]].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfiles[0]);sys.exit() if ccomp is None:ccomp=complist # lags for display if lag is None:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') tt = np.arange(-lag,lag+dt,dt) indx0= int(maxlag/dt) #zero time index indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 # load cc and parameter matrix for ic in range(len(ccomp)): comp = ccomp[ic] data0 = np.zeros(shape=(len(sfiles),indx2-indx1),dtype=np.float32) dist = np.zeros(len(sfiles),dtype=np.float32) snrneg = np.zeros(len(sfiles),dtype=np.float32) snrpos = np.zeros(len(sfiles),dtype=np.float32) iflip = np.zeros(len(sfiles),dtype=np.int16) for ii in range(len(sfiles)): sfile = sfiles[ii] iflip[ii] = 0 treceiver = sfile.split('_')[-1] if treceiver == receiver: iflip[ii] = 1 ds = pyasdf.ASDFDataSet(sfile,mpi=False,mode='r') try: # load data to variables dist[ii] = ds.auxiliary_data[dtype][comp].parameters['dist'] ngood= ds.auxiliary_data[dtype][comp].parameters['ngood'] data0[ii] = ds.auxiliary_data[dtype][comp].data[indx1:indx2] if qc: #get the pseudo-SNR: maximum absolute amplitude/mean absolute amplitude. dneg=ds.auxiliary_data[dtype][comp].data[indx1:indx0-1] dpos=ds.auxiliary_data[dtype][comp].data[indx0+1:indx2] snrneg[ii]=np.max(np.abs(dneg))/np.mean(np.abs(dneg)) snrpos[ii]=np.max(np.abs(dpos))/np.mean(np.abs(dpos)) # print([snrneg,snrpos]) except Exception as e: print("continue! error working on %s "%sfile); print(e) continue mdist=
np.max(dist)
numpy.max
#!/usr/bin/env python ## Copyright 2002 by PyMMLib Development Group, http://pymmlib.sourceforge.net/ ## This code is part of the PyMMLib distribution and governed by ## its license. Please see the LICENSE_pymmlib file that should have been ## included as part of this package. """Symmetry operations as functions on vectors or arrays. """ import numpy ## 64 unique rotation matricies Rot_Z_mY_X = numpy.array([[ 0.0, 0.0, 1.0], [ 0.0,-1.0, 0.0], [ 1.0, 0.0, 0.0]], float) Rot_Y_mX_mZ = numpy.array([[ 0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [ 0.0, 0.0,-1.0]], float) Rot_XmY_X_mZ = numpy.array([[ 1.0,-1.0, 0.0], [ 1.0, 0.0, 0.0], [ 0.0, 0.0,-1.0]], float) Rot_mX_Y_mZ = numpy.array([[-1.0, 0.0, 0.0], [ 0.0, 1.0, 0.0], [ 0.0, 0.0,-1.0]], float) Rot_X_mZ_Y = numpy.array([[ 1.0, 0.0, 0.0], [ 0.0, 0.0,-1.0], [ 0.0, 1.0, 0.0]], float) Rot_Y_mXY_Z = numpy.array([[ 0.0, 1.0, 0.0], [-1.0, 1.0, 0.0], [ 0.0, 0.0, 1.0]], float) Rot_Y_mX_Z = numpy.array([[ 0.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [ 0.0, 0.0, 1.0]], float) Rot_XmY_X_Z = numpy.array([[ 1.0,-1.0, 0.0], [ 1.0, 0.0, 0.0], [ 0.0, 0.0, 1.0]], float) Rot_mX_mXY_mZ = numpy.array([[-1.0, 0.0, 0.0], [-1.0, 1.0, 0.0], [ 0.0, 0.0,-1.0]], float) Rot_Y_Z_X = numpy.array([[ 0.0, 1.0, 0.0], [ 0.0, 0.0, 1.0], [ 1.0, 0.0, 0.0]], float) Rot_mY_mZ_X = numpy.array([[ 0.0,-1.0, 0.0], [ 0.0, 0.0,-1.0], [ 1.0, 0.0, 0.0]], float) Rot_X_Z_mY = numpy.array([[ 1.0, 0.0, 0.0], [ 0.0, 0.0, 1.0], [ 0.0,-1.0, 0.0]], float) Rot_XmY_mY_Z = numpy.array([[ 1.0,-1.0, 0.0], [ 0.0,-1.0, 0.0], [ 0.0, 0.0, 1.0]], float) Rot_Y_X_mZ = numpy.array([[ 0.0, 1.0, 0.0], [ 1.0, 0.0, 0.0], [ 0.0, 0.0,-1.0]], float) Rot_Y_mZ_X = numpy.array([[ 0.0, 1.0, 0.0], [ 0.0, 0.0,-1.0], [ 1.0, 0.0, 0.0]], float) Rot_mXY_Y_Z = numpy.array([[-1.0, 1.0, 0.0], [ 0.0, 1.0, 0.0], [ 0.0, 0.0, 1.0]], float) Rot_mX_mY_mZ = numpy.array([[-1.0, 0.0, 0.0], [ 0.0,-1.0, 0.0], [ 0.0, 0.0,-1.0]], float) Rot_X_Y_mZ = numpy.array([[ 1.0, 0.0, 0.0], [ 0.0, 1.0, 0.0], [ 0.0, 0.0,-1.0]], float) Rot_mXY_mX_Z = numpy.array([[-1.0, 1.0, 0.0], [-1.0, 0.0, 0.0], [ 0.0, 0.0, 1.0]], float) Rot_mZ_mY_mX =
numpy.array([[ 0.0, 0.0,-1.0], [ 0.0,-1.0, 0.0], [-1.0, 0.0, 0.0]], float)
numpy.array
""" Generate a synthetic set of microsomes with different membrane bound proteins Input: - Data set parameters: + Number of tomograms (one microsome each) + Tomogram size + Resolution (pixel size) + SNR range + Missing wedge (semi-angle in degrees or input file) + binning factor for segmentation an particle picking - Microsome parameters: + Membrane thickness (in nm) + Density model for each protein type inserted + Averaged number of particles per microsome and per model + Model for protein insertion, available: CSRV, SRPV, 2CCSRV Output: - Tomograms generated with one microsome each: + Full resolution + Binned counterpart - A STAR file pairing the originals and the binned tomograms """ ################# Package import import os import sys import time import numpy as np import scipy as sp import multiprocessing as mp from pyorg import disperse_io, sub, spatial from pyorg.globals import * ###### Global variables __author__ = '<NAME>' ######################################################################################## # PARAMETERS ######################################################################################## ROOT_PATH = '' # Output directory out_dir = ROOT_PATH + '' out_stem = '' # Tomogram settings tm_nt = 10 # tomograms tm_size = (800, 800, 400) # pixels tm_res = 0.262 # nm/pixel tm_snr_rg = (0.01, 0.05) tm_wedge = 30 # semi-angle in degrees or input file tm_bin = 2 # Microsome parameters mc_mbt = 5 # nm mc_mbs = 1.5 # nm mc_ip_min_dst = 15 # nm # By default 1st model has clusters randomly distributed of radius mc_1st_crad and 2nd clusters of size 2*mc_3rd_crad, # 3rd is CSRV distributed, 4th particles are 2CCSRV placed at an averaged distance of mc_4th_dst, mc_1st_crad = 50 # nm mc_c_jump_prob = 0.1 mc_4th_dst = 20 # nm mc_in_models = ('', '', '', '', '', '', '', '') mc_avg_nparts = (20, 20, 20, 50, 50, 50, 30, 30) mc_3sg_nparts = 5 mc_zh = 0 ######################################################################################## # ADDITIONAL ROUTINES ######################################################################################## def gen_mask_msome(shape, rad1, rad2): """ Generates a microsome mask :param shape: 3-tuple for the output tomogram :param rad1: radius 1 for the microsome :param rad2: radius 2 for the microsome :return: the generated microme """ dx, dy, dz = float(shape[0]), float(shape[1]), float(shape[2]) dx2, dy2, dz2 = math.floor(.5 * dx), math.floor(.5 * dy), math.floor(.5 * dz) x_l, y_l, z_l = -dx2, -dy2, -dz2 x_h, y_h, z_h = -dx2 + dx, -dy2 + dy, -dz2 + dz X, Y, Z = np.meshgrid(np.arange(x_l, x_h), np.arange(y_l, y_h), np.arange(z_l, z_h), indexing='xy') R = X*X + Y*Y + Z*Z return (R >= (rad1*rad1)) & (R <= (rad2*rad2)) def add_dmb_msome(tomo, rad, res, mb_t, mb_s): """ Add a double Gaussian layered membrane of a microsome to a tomogram :param tomo: tomogram where the membrane is added :param rad: microsome radius :param res: tomograms resolution (nm/px) :param mb_t: membrane thickness in nm :param mb_s: Gaussian sigma for each layer in nm :return: None """ # Input parsing t_v, s_v, rad_v = .5 * (mb_t / res), mb_s / res, rad / res rad1, rad2 = rad_v - t_v, rad_v + t_v g_cte = 2 * s_v * s_v s_v_2 = .5 * s_v g_cte_2 = 2 * s_v_2 * s_v_2 # Getting membrane gray intensity from input tomogram tomo_bin = tomo > 0 tomo_vals = tomo(tomo_bin) tomo_mn = tomo_vals.mean() # Generating the bilayer dx, dy, dz = float(tomo.shape[0]), float(tomo.shape[1]), float(tomo.shape[2]) dx2, dy2, dz2 = math.floor(.5 * dx), math.floor(.5 * dy), math.floor(.5 * dz) x_l, y_l, z_l = -dx2, -dy2, -dz2 x_h, y_h, z_h = -dx2 + dx, -dy2 + dy, -dz2 + dz X, Y, Z = np.meshgrid(np.arange(x_l, x_h), np.arange(y_l, y_h), np.arange(z_l, z_h), indexing='xy') R = np.sqrt(X * X + Y * Y + Z * Z) G_u = tomo_mn * np.exp(-(R-rad1)**2 / g_cte) G_l = tomo_mn * np.exp(-(R-rad2)**2 / g_cte) # Creating the softmaks for the model structure BW = sp.ndimage.morphology.distance_transform_edt(
np.invert(tomo_bin)
numpy.invert
""" Build Training dataset give orderlist and polynomial type """ import numpy as np from .poly import Hermite, Plain, Legendre def build_xy(order_list, poly, x, y, xdev=[], dydx=[]): ''' build large X, Y for linear regression ''' X = expand_x(order_list, x, poly) Y = np.array(y).flatten() if len(xdev) != 0: Xdev = expand_dev_xy(order_list, xdev, poly) Dydx = np.array(dydx).flatten() X = np.vstack((X, Xdev)) Y = np.append(Y, Dydx) return X, Y def expand_dev_single(order_list, _x, Poly): nvar = len(_x) norder = len(order_list) no = len(order_list[0]) _XX = np.empty([nvar, norder], dtype=float) xx = np.empty((norder,), dtype=float) for i in range(nvar): xx = np.empty((norder,), dtype=float) for j in range(norder): order = order_list[j] _xx = 0 if order[i] != 0: _xx = 1 for k in range(no): o = order[k] if o != 0: if k != i: _xx *= Poly(order=o).evaluate(_x[k]) else: _xx *= Poly(order=o).der(m=1).evaluate(_x[k]) xx[j] = _xx _XX[i, :] = xx return _XX def expand_x(order_list, x, polytype): ''' expand x according to orderlist ''' if polytype == 'Herm': Poly = Hermite elif polytype == 'Plain': Poly = Plain elif polytype == 'Legd': Poly = Legendre else: raise ValueError("%s is not available" % polytype) ndata = np.shape(x)[0] nvar = np.shape(x)[1] norder = len(order_list) no = len(order_list[0]) X = np.empty((ndata, norder), dtype=float) # initialize the input matrix X xx = np.ones((ndata, ), dtype=float) for i in range(norder): order = order_list[i] xx = np.ones((ndata, ), dtype=float) for j in range(no): o = order[j] xx *= Poly(order=o).evaluate(x[:, j]) X[:, i] = xx return X def expand_dev_xy(order_list, xdev, polytype): if polytype == 'Herm': Poly = Hermite elif polytype == 'Plain': Poly = Plain elif polytype == 'Legd': Poly = Legendre else: raise ValueError("%s is not available" % polytype) nx = np.shape(xdev)[0] nvar = np.shape(xdev)[1] Xfull = [expand_dev_single(order_list, _x, Poly) for _x in xdev] Xfull =
np.concatenate(Xfull, axis=0)
numpy.concatenate
# -*- coding: utf-8 -*- """ Variation of Information Variation of Information (*VI*) [Meilla2007]_ is an information theoretic criterion for comparing two partitions. It is based on the classic notions of entropy and mutual information. In a nutshell, VI measures the amount of information that is lost or gained in changing from clustering :math:`A` to clustering :math:`B`. VI is a true metric, is always non-negative and symmetric. The following formula is used to compute the VI between two groups: .. math:: VI(A, B) = [H(A) - I(A, B)] + [H(B) - I(A, B)] Where :math:`H` denotes the entropy computed for each partition separately, and :math:`I` the mutual information between clusterings :math:`A` and :math:`B`. The resulting distance score can be adjusted to bound it between :math:`[0, 1]` as follows: .. math:: VI^{*}(A,B) = \\frac{1}{\\log{n}}VI(A, B) | ----- .. [Meilla2007] <NAME>. (2007). Comparing clusterings—an information based distance. Journal of multivariate analysis, 98(5), 873-895. .. [Dimitriadis2009] <NAME>., <NAME>., <NAME>, Y., & <NAME>. (2009). Characterizing dynamic functional connectivity across sleep stages from EEG. Brain topography, 22(2), 119-133. .. [Dimitriadis2012] <NAME>., <NAME>., <NAME>., & <NAME>. (2012). An EEG study of brain connectivity dynamics at the resting state. Nonlinear Dynamics-Psychology and Life Sciences, 16(1), 5. """ # Author: <NAME> <avra<EMAIL>> # Author: <NAME> <<EMAIL>> import numpy as np from dyconnmap.ts.entropy import entropy def variation_information(indices_a: np.ndarray, indices_b: np.ndarray) -> float: """ Variation of Information Parameters ---------- indices_a : array-like, shape(n_samples) Symbolic time series. indices_b : array-like, shape(n_samples) Symbolic time series. Returns ------- vi : float Variation of information. """ n1 = len(indices_a) n2 = len(indices_b) if n1 != n2: pass entropy1 = entropy(indices_a) entropy2 = entropy(indices_b) MI, _ = __mi(indices_a, -entropy1, indices_b, -entropy2) entropy1 = -entropy1 entropy2 = -entropy2 VI_value = entropy1 + entropy2 - 2 * MI NVI = VI_value / np.log(n1) return VI_value, NVI def __unique_symbols(indices): """ """ N = len(indices) unique, counts = np.unique(indices, return_counts=True) len_counts = len(counts) U = np.zeros((len_counts, N)) indices = indices.flatten() for i in range(len_counts): tmp = np.where(indices == unique[i]) U[i, tmp[0]] = 1 return U def __mi(indices_a, entropy_a, indices_b, entropy_b): """ """ N = len(indices_a) Ua = __unique_symbols(indices_a) Ub = __unique_symbols(indices_b) Sab = Ua.dot(Ub.T) / np.float32(N) Sa = np.diag(Ua.dot(Ua.T) / np.float32(N)) Sb = np.diag(Ub.dot(Ub.T) / np.float32(N)) # Add dummy dimension (needed for following computations). Sa =
np.expand_dims(Sa, axis=1)
numpy.expand_dims
""" Copyright 2017-2018 yhenon (https://github.com/yhenon/) Copyright 2017-2018 Fizyr (https://fizyr.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from generators.common import Generator import cv2 import numpy as np from PIL import Image from six import raise_from import csv import sys import os.path as osp from collections import OrderedDict from itertools import repeat from utils.bbox_transform import forward_convert from utils.bbox_transform import backward_convert from utils.bbox_transform import get_best_begin_point def _parse(value, function, fmt): """ Parse a string into a value, and format a nice ValueError if it fails. Returns `function(value)`. Any `ValueError` raised is catched and a new `ValueError` is raised with message `fmt.format(e)`, where `e` is the caught `ValueError`. """ try: return function(value) except ValueError as e: raise_from(ValueError(fmt.format(e)), None) def _read_classes(csv_reader): """ Parse the classes file given by csv_reader. """ result = OrderedDict() for line, row in enumerate(csv_reader): line += 1 try: class_name, class_id = row except ValueError: raise_from(ValueError('line {}: format should be \'class_name,class_id\''.format(line)), None) class_id = _parse(class_id, int, 'line {}: malformed class ID: {{}}'.format(line)) if class_name in result: raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name)) result[class_name] = class_id return result def _read_quadrangle_annotations(csv_reader, classes, detect_text=False): """ Read annotations from the csv_reader. Args: csv_reader: csv reader of args.annotations_path classes: list[str] all the class names read from args.classes_path Returns: result: dict, dict is like {image_path: [{'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2, 'x3': x3, 'y3': y3, 'x4': x4, 'y4': y4, 'class': class_name}]} """ result = OrderedDict() for line, row in enumerate(csv_reader, 1): try: img_file, x1, y1, x2, y2, x3, y3, x4, y4, class_name = row[:10] if img_file not in result: result[img_file] = [] # If a row contains only an image path, it's an image without annotations. if (x1, y1, x2, y2, x3, y3, x4, y4, class_name) == ('', '', '', '', '', '', '', '', ''): continue x1 = _parse(x1, float, 'line {}: malformed x1: {{}}'.format(line)) y1 = _parse(y1, float, 'line {}: malformed y1: {{}}'.format(line)) x2 = _parse(x2, float, 'line {}: malformed x2: {{}}'.format(line)) y2 = _parse(y2, float, 'line {}: malformed y2: {{}}'.format(line)) x3 = _parse(x3, float, 'line {}: malformed x3: {{}}'.format(line)) y3 = _parse(y3, float, 'line {}: malformed y3: {{}}'.format(line)) x4 = _parse(x4, float, 'line {}: malformed x4: {{}}'.format(line)) y4 = _parse(y4, float, 'line {}: malformed y4: {{}}'.format(line)) # check if the current class name is correctly present if detect_text: if class_name == '###': continue else: class_name = 'text' if class_name not in classes: raise ValueError(f'line {line}: unknown class name: \'{class_name}\' (classes: {classes})') result[img_file].append({'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2, 'x3': x3, 'y3': y3, 'x4': x4, 'y4': y4, 'class': class_name}) except ValueError: raise_from(ValueError( f'line {line}: format should be \'img_file,x1,y1,x2,y2,x3,y3,x4,y4,class_name\' or \'img_file,,,,,\''), None) return result def _read_annotations(csv_reader, classes): """ Read annotations from the csv_reader. Args: csv_reader: csv reader of args.annotations_path classes: list[str] all the class names read from args.classes_path Returns: result: dict, dict is like {image_path: [{'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2, 'class': class_name}]} """ result = OrderedDict() for line, row in enumerate(csv_reader, 1): try: img_file, x1, y1, x2, y2, class_name = row[:10] if img_file not in result: result[img_file] = [] # If a row contains only an image path, it's an image without annotations. if (x1, y1, x2, y2, class_name) == ('', '', '', '', ''): continue x1 = _parse(x1, int, 'line {}: malformed x1: {{}}'.format(line)) y1 = _parse(y1, int, 'line {}: malformed y1: {{}}'.format(line)) x2 = _parse(x2, int, 'line {}: malformed x2: {{}}'.format(line)) y2 = _parse(y2, int, 'line {}: malformed y2: {{}}'.format(line)) if class_name not in classes: raise ValueError(f'line {line}: unknown class name: \'{class_name}\' (classes: {classes})') result[img_file].append({'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2, 'class': class_name}) except ValueError: raise_from(ValueError( f'line {line}: format should be \'img_file,x1,y1,x2,y2,class_name\' or \'img_file,,,,,\''), None) return result def _open_for_csv(path): """ Open a file with flags suitable for csv.reader. This is different for python2 it means with mode 'rb', for python3 this means 'r' with "universal newlines". """ if sys.version_info[0] < 3: return open(path, 'rb') else: return open(path, 'r', newline='') def count_elements(seq) -> dict: """Tally elements from `seq`.""" hist = {} for i in seq: hist[i] = hist.get(i, 0) + 1 return hist class CSVGenerator(Generator): """ Generate data for a custom CSV dataset. See https://github.com/fizyr/keras-retinanet#csv-datasets for more information. """ def __init__( self, csv_data_file, csv_class_file, base_dir=None, detect_quadrangle=False, detect_text=False, **kwargs ): """ Initialize a CSV data generator. Args csv_data_file: Path to the CSV annotations file. csv_class_file: Path to the CSV classes file. detect_text: if do text detection base_dir: Directory w.r.t. where the files are to be searched (defaults to the directory containing the csv_data_file). """ self.image_names = [] self.image_data = {} self.base_dir = base_dir self.detect_quadrangle = detect_quadrangle self.detect_text = detect_text # Take base_dir from annotations file if not explicitly specified. if self.base_dir is None: if osp.exists(csv_data_file): self.base_dir = '' else: self.base_dir = osp.dirname(csv_data_file) # parse the provided class file try: with _open_for_csv(csv_class_file) as file: # class_name --> class_id self.classes = _read_classes(csv.reader(file, delimiter=',')) except ValueError as e: raise_from(ValueError('invalid CSV class file: {}: {}'.format(csv_class_file, e)), None) self.labels = {} # class_id --> class_name for key, value in self.classes.items(): self.labels[value] = key # csv with img_path, x1, y1, x2, y2, x3, y3, x4, y4, class_name try: with _open_for_csv(csv_data_file) as file: # {'img_path1':[{'x1':xx,'y1':xx,'x2':xx,'y2':xx,'x3':xx,'y3':xx,'x4':xx,'y4':xx, 'class':xx}...],...} if self.detect_quadrangle: self.image_data = _read_quadrangle_annotations(csv.reader(file, delimiter=','), self.classes, self.detect_text) else: self.image_data = _read_annotations(csv.reader(file, delimiter=','), self.classes) except ValueError as e: raise_from(ValueError('invalid CSV annotations file: {}: {}'.format(csv_data_file, e)), None) cls=list(self.classes.keys()) o=dict() y=dict() s=[] for cl in cls: b=0 p=list() for k,v in self.image_data.items(): for vv in v: if vv['class']==cl: b+=1 p.append(k) o[cl]=b y[cl]=p for k,v in y.items(): y[k]=set(v) if (o[k])<5000: new_list=[] new_list.extend( repeat(list(y[k]),np.ceil((5000/o[k])).astype(np.int)) ) y[k]=np.array(new_list).reshape(-1) s.append(count_elements(y[k])) a={} for ss in s: for sss in ss.keys(): if sss in a.keys(): a[sss]=max(a[sss],ss[sss]) else: a[sss]=ss[sss] image_list=[] for k,v in a.items(): image_list.extend(repeat(k,v)) self.image_names = image_list # self.image_names = list(self.image_data.keys()) super(CSVGenerator, self).__init__(detect_text=detect_text, detect_quadrangle=detect_quadrangle, **kwargs) def size(self): """ Size of the dataset. """ return len(self.image_names) def num_classes(self): """ Number of classes in the dataset. """ return max(self.classes.values()) + 1 def has_label(self, label): """ Return True if label is a known label. """ return label in self.labels def has_name(self, name): """ Returns True if name is a known class. """ return name in self.classes def name_to_label(self, name): """ Map name to label. """ return self.classes[name] def label_to_name(self, label): """ Map label to name. """ return self.labels[label] def image_path(self, image_index): """ Returns the image path for image_index. """ return osp.join(self.base_dir, self.image_names[image_index]) def image_aspect_ratio(self, image_index): """ Compute the aspect ratio for an image with image_index. """ # PIL is fast for metadata image = Image.open(self.image_path(image_index)) return float(image.width) / float(image.height) def load_image(self, image_index): """ Load an image at the image_index. """ image = cv2.imread(self.image_path(image_index)) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) return image def load_annotations(self, image_index): """ Load annotations for an image_index. """ path = self.image_names[image_index] annotations = {'labels': np.empty((0,), dtype=np.int32), 'bboxes':
np.empty((0, 4), dtype=np.float32)
numpy.empty
import numpy as np import time as tm import re import warnings from .. import Utils from discretize import TreeMesh def read_GOCAD_ts(tsfile): """ Read GOCAD triangulated surface (*.ts) file INPUT: tsfile: Triangulated surface OUTPUT: vrts : Array of vertices in XYZ coordinates [n x 3] trgl : Array of index for triangles [m x 3]. The order of the vertices is important and describes the normal n = cross( (P2 - P1 ) , (P3 - P1) ) Author: @fourndo .. note:: Remove all attributes from the GoCAD surface before exporting it! """ fid = open(tsfile) line = fid.readline() # Skip all the lines until the vertices VRTX, TRGL = [], [] while "END" not in line: while "VRTX" not in line: line = fid.readline() if "END\n" in line: return VRTX, TRGL vrtx = [] # Run down all the vertices and save in array while np.any(["VRTX" in line, "PVRTX" in line]): l_input = re.split(r"[\s*]", line) temp = np.array(l_input[2:5]) vrtx.append(temp.astype(np.float)) # Read next line line = fid.readline() VRTX += [np.asarray(vrtx)] # Skip lines to the triangles while "TRGL" not in line: line = fid.readline() # Run down the list of triangles trgl = [] # Run down all the vertices and save in array while "TRGL" in line: l_input = re.split(r"[\s*]", line) temp = np.array(l_input[1:4]) trgl.append(temp.astype(np.int)) # Read next line line = fid.readline() TRGL += [np.asarray(trgl)] return VRTX, TRGL def read_GOCAD_pl(plFile): """ Read GOCAD polyline file (*.pl) INPUT: plFile: Polyline object OUTPUT: vrts : List Array of vertices in XYZ coordinates [n x 3] segs : List Array of index for segments [m x 3]. The order of the vertices is important and describes the normal n = cross( (P2 - P1 ) , (P3 - P1) ) Author: @fourndo .. note:: Remove all attributes from the GoCAD surface before exporting it! """ fid = open(plFile) line = fid.readline() # Skip all the lines until the vertices VRTX, SEGS = [], [] while "END" not in line: while "VRTX" not in line: line = fid.readline() vrtx = [] # Run down all the vertices and save in array while np.any(["VRTX" in line, "PVRTX" in line]): l_input = re.split(r"[\s*]", line) temp = np.array(l_input[2:5]) vrtx.append(temp.astype(np.float)) # Read next line line = fid.readline() VRTX += [np.asarray(vrtx)] # Skip lines to the triangles while "SEG" not in line: line = fid.readline() # Run down the list of triangles segs = [] # Run down all the vertices and save in array while "SEG" in line: l_input = re.split(r"[\s*]", line) temp = np.array(l_input[1:3]) segs.append(temp.astype(np.int)) # Read next line line = fid.readline() SEGS += [np.asarray(segs)] return VRTX, SEGS def surface2inds(vrtx, trgl, mesh, boundaries=True, internal=True): """" Function to read gocad polystructure file and output indexes of mesh with in the structure. """ import vtk import vtk.util.numpy_support as npsup # Adjust the index trgl = trgl - 1 # Make vtk pts ptsvtk = vtk.vtkPoints() ptsvtk.SetData(npsup.numpy_to_vtk(vrtx, deep=1)) # Make the polygon connection polys = vtk.vtkCellArray() for face in trgl: poly = vtk.vtkPolygon() poly.GetPointIds().SetNumberOfIds(len(face)) for nrv, vert in enumerate(face): poly.GetPointIds().SetId(nrv, vert) polys.InsertNextCell(poly) # Make the polydata, structure of connections and vrtx polyData = vtk.vtkPolyData() polyData.SetPoints(ptsvtk) polyData.SetPolys(polys) # Make implicit func ImpDistFunc = vtk.vtkImplicitPolyDataDistance() ImpDistFunc.SetInput(polyData) # Convert the mesh vtkMesh = vtk.vtkRectilinearGrid() vtkMesh.SetDimensions(mesh.nNx, mesh.nNy, mesh.nNz) vtkMesh.SetXCoordinates(npsup.numpy_to_vtk(mesh.vectorNx, deep=1)) vtkMesh.SetYCoordinates(npsup.numpy_to_vtk(mesh.vectorNy, deep=1)) vtkMesh.SetZCoordinates(npsup.numpy_to_vtk(mesh.vectorNz, deep=1)) # Add indexes vtkInd = npsup.numpy_to_vtk(np.arange(mesh.nC), deep=1) vtkInd.SetName("Index") vtkMesh.GetCellData().AddArray(vtkInd) extractImpDistRectGridFilt = vtk.vtkExtractGeometry() # Object constructor extractImpDistRectGridFilt.SetImplicitFunction(ImpDistFunc) # extractImpDistRectGridFilt.SetInputData(vtkMesh) if boundaries is True: extractImpDistRectGridFilt.ExtractBoundaryCellsOn() else: extractImpDistRectGridFilt.ExtractBoundaryCellsOff() if internal is True: extractImpDistRectGridFilt.ExtractInsideOn() else: extractImpDistRectGridFilt.ExtractInsideOff() print("Extracting indices from grid...") # Executing the pipe extractImpDistRectGridFilt.Update() # Get index inside insideGrid = extractImpDistRectGridFilt.GetOutput() insideGrid = npsup.vtk_to_numpy(insideGrid.GetCellData().GetArray("Index")) # Return the indexes inside return insideGrid def download(url, folder=".", overwrite=False, verbose=True): """ Function to download all files stored in a cloud directory :param str url: url or list of urls for the file(s) to be downloaded ("https://...") :param str folder: folder to where the directory is created and files downloaded (default is the current directory) :param bool overwrite: overwrite if a file with the specified name already exists :param bool verbose: print out progress """ # Download from cloud import urllib import os import sys def rename_path(downloadpath): splitfullpath = downloadpath.split(os.path.sep) # grab just the filename fname = splitfullpath[-1] fnamesplit = fname.split(".") newname = fnamesplit[0] # check if we have already re-numbered newnamesplit = newname.split("(") # add (num) to the end of the filename if len(newnamesplit) == 1: num = 1 else: num = int(newnamesplit[-1][:-1]) num += 1 newname = "{}({}).{}".format(newnamesplit[0], num, fnamesplit[-1]) return os.path.sep.join(splitfullpath[:-1] + newnamesplit[:-1] + [newname]) # grab the correct url retriever urlretrieve = urllib.request.urlretrieve # ensure we are working with absolute paths and home directories dealt with folder = os.path.abspath(os.path.expanduser(folder)) # make the directory if it doesn't currently exist if not os.path.exists(folder): os.makedirs(folder) if isinstance(url, str): filenames = [url.split("/")[-1]] elif isinstance(url, list): filenames = [u.split("/")[-1] for u in url] downloadpath = [os.path.sep.join([folder, f]) for f in filenames] # check if the directory already exists for i, download in enumerate(downloadpath): if os.path.exists(download): if overwrite is True: if verbose is True: print(f"overwriting {download}") elif overwrite is False: while os.path.exists is True: download = rename_path(download) if verbose is True: print(f"file already exists, new file is called {download}") downloadpath[i] = download # download files urllist = url if isinstance(url, list) else [url] for u, f in zip(urllist, downloadpath): print(f"Downloading {u}") urlretrieve(u, f) print(" saved to: " + f) print("Download completed!") return downloadpath if isinstance(url, list) else downloadpath[0] def readUBCmagneticsObservations(obs_file): """ Read and write UBC mag file format INPUT: :param fileName, path to the UBC obs mag file OUTPUT: :param survey :param M, magnetization orentiaton (MI, MD) """ from geoapps.simpegPF.PF import BaseMag fid = open(obs_file) # First line has the inclination,declination and amplitude of B0 line = fid.readline() B = np.array(line.split(), dtype=float) # Second line has the magnetization orientation and a flag line = fid.readline() M = np.array(line.split(), dtype=float) # Third line has the number of rows line = fid.readline() ndat = int(line.strip()) # Pre-allocate space for obsx, obsy, obsz, data, uncert line = fid.readline() temp = np.array(line.split(), dtype=float) d = np.zeros(ndat, dtype=float) wd = np.zeros(ndat, dtype=float) locXYZ = np.zeros((ndat, 3), dtype=float) ii = 0 while ii < ndat: temp = np.array(line.split(), dtype=float) if len(temp) > 0: locXYZ[ii, :] = temp[:3] if len(temp) > 3: d[ii] = temp[3] if len(temp) == 5: wd[ii] = temp[4] ii += 1 line = fid.readline() rxLoc = BaseMag.RxObs(locXYZ) srcField = BaseMag.SrcField([rxLoc], param=(B[2], B[0], B[1])) survey = BaseMag.LinearSurvey(srcField) survey.dobs = d survey.std = wd return survey, M def writeUBCmagneticsObservations(filename, survey, d): """ writeUBCobs(filename,B,M,rxLoc,d,wd) Function writing an observation file in UBC-MAG3D format. INPUT filename : Name of out file including directory survey flag : dobs | dpred OUTPUT Obsfile Created on Dec, 27th 2015 @author: dominiquef """ B = survey.srcField.param rxLoc = survey.srcField.rxList[0].locs wd = survey.std if d.ndim == 2: d = d[0] data = np.c_[rxLoc, d, wd] head = ( "{:6.2f} {:6.2f} {:6.2f}\n".format(B[1], B[2], B[0]) + "{:6.2f} {:6.2f} {:6.2f}\n".format(B[1], B[2], 1) + "%i" % len(d) ) np.savetxt( filename, data, fmt="%e", delimiter=" ", newline="\n", header=head, comments="" ) def readUBCgravityObservations(obs_file): """ Read UBC grav file format INPUT: :param fileName, path to the UBC obs grav file OUTPUT: :param survey """ from geoapps.simpegPF.PF import BaseGrav fid = open(obs_file) # First line has the number of rows line = fid.readline() ndat = int(line.split()[0]) # Pre-allocate space for obsx, obsy, obsz, data, uncert line = fid.readline() d = np.zeros(ndat, dtype=float) wd = np.zeros(ndat, dtype=float) locXYZ = np.zeros((ndat, 3), dtype=float) ii = 0 while ii < ndat: temp = np.array(line.split(), dtype=float) if len(temp) > 0: locXYZ[ii, :] = temp[:3] d[ii] = temp[3] wd[ii] = temp[4] ii += 1 line = fid.readline() rxLoc = BaseGrav.RxObs(locXYZ) srcField = BaseGrav.SrcField([rxLoc]) survey = BaseGrav.LinearSurvey(srcField) survey.dobs = -d survey.std = wd return survey def writeUBCgravityObservations(filename, survey, d): """ Write UBC grav file format INPUT: :param: fileName, path to the UBC obs grav file :param: survey Gravity object :param: data array """ rxLoc = survey.srcField.rxList[0].locs wd = survey.std data = np.c_[rxLoc, -d, wd] head = "%i" % len(d) np.savetxt( filename, data, fmt="%e", delimiter=" ", newline="\n", header=head, comments="" ) def writeVectorUBC(mesh, fileName, model): """ Writes a vector model associated with a SimPEG TensorMesh to a UBC-GIF format model file. :param string fileName: File to write to :param numpy.ndarray model: The model """ if model.ndim == 1: # Catch the standard case that the model is (3*nC,1) instead of (nC,3) model = model.reshape((-1, 3), order="F") modelMatTR = np.zeros_like(model) if isinstance(mesh, TreeMesh): ubc_order = mesh._ubc_order for ii in range(3): modelMatTR[:, ii] = model[ubc_order, ii] else: for ii in range(3): # Reshape model to a matrix modelMat = mesh.r(model[:, ii], "CC", "CC", "M") # Transpose the axes modelMatT = modelMat.transpose((2, 0, 1)) # Flip z to positive down modelMatTR[:, ii] = Utils.mkvc(modelMatT[::-1, :, :]) # Flip Z for UBC file format modelMatTR[:, 2] *= -1 np.savetxt(fileName, modelMatTR) def readVectorUBC(mesh, fileName): """ Read a vector model associated with a SimPEG TensorMesh to a UBC-GIF format model file. :param string fileName: File to write to :param numpy.ndarray model: The model """ # f = open(fileName, 'r') model = np.loadtxt(fileName) vModel = np.zeros((mesh.nC, 3)) # f.close() if isinstance(mesh, TreeMesh): ubc_order = mesh._ubc_order for ii in range(3): vModel[ubc_order, ii] = model[:, ii] else: for ii in range(3): comp = np.reshape(model[:, ii], (mesh.nCz, mesh.nCx, mesh.nCy), order="F") comp = comp[::-1, :, :] comp =
np.transpose(comp, (1, 2, 0))
numpy.transpose
import numpy as np import pandas as pd import skfuzzy as fuzz from skfuzzy import control as ctrl ## Criando as variáveis do problema # Antecedentes design = ctrl.Antecedent(
np.arange(1, 6)
numpy.arange
# -*- coding: utf-8 -*- import numpy as np from . import fast_dawson import torch from torch import Tensor from typing import Tuple class Param_Container: """ args: _vol_rest: the rest voltage of a neuron _vol_th: the fire threshold of a neuron _t_ref: the refractory time of a neuoron after it fired _conductance: the conductance of a neuron's membrane _ratio: num Excitation neurons : num Inhibition neurons degree: from Balanced network, the in-degree of synaptic connection follows Poisson Distribution with mean and variance K """ def __init__(self): self.ratio = 0.0 self.L = 0.05 self.t_ref = 5.0 self.vol_th = 20.0 self.vol_rest = 0.0 self.eps = 1e-5 self.special_factor = 4 / np.sqrt(2 * np.pi * self.L) * 0.8862269251743827 self.correction_factor = 2 / np.sqrt(2 * self.L) self.cut_off = 10.0 self.ignore_t_ref = True self.degree = 100 def get_degree(self): return self.degree def set_degree(self, degree): self.degree = degree def get_ratio(self): return self.ratio def set_ratio(self, ratio): self.ratio = ratio def get_t_ref(self): return self.t_ref def set_t_ref(self, t_ref): self.t_ref = t_ref def get_vol_th(self): return self.vol_th def set_vol_th(self, vol_th): self.vol_th = vol_th def get_vol_rest(self): return self.vol_rest def set_vol_rest(self, vol_rest): self.vol_rest = vol_rest def get_conductance(self): return self.L def set_conductance(self, conductance): self.L = conductance self.correction_factor = 2 / np.sqrt(2 * self.L) self.special_factor = 4 / np.sqrt(2 * np.pi * self.L) * 0.8862269251743827 def get_special_factor(self): return self.special_factor def set_special_factor(self, factor): self.special_factor = factor def set_ignore_t_ref(self, flag: bool = True): self.ignore_t_ref = flag def is_ignore_t_ref(self): return self.ignore_t_ref def get_eps(self): return self.eps def set_eps(self, eps): self.eps = eps def get_cut_off(self): return self.cut_off def set_cut_off(self, cut_off): self.cut_off = cut_off def reset_params(self): self.ratio = 0.0 self.L = 0.05 self.t_ref = 5.0 self.vol_th = 20.0 self.vol_rest = 0.0 self.eps = 1e-5 self.special_factor = 4 / np.sqrt(2 * np.pi * self.L) * 0.8862269251743827 self.correction_factor = 2 / np.sqrt(2 * self.L) self.cut_off = 10.0 self.ignore_t_ref = True self.degree = 100 def print_params(self): print("Voltage threshold:", self.get_vol_th()) print("Voltage rest:", self.get_vol_rest()) print("Refractory time:", self.get_t_ref()) print("Membrane conductance:", self.get_conductance()) print("E-I ratio:", self.get_ratio()) print("eps: ", self.get_eps()) print("cut_off:", self.get_cut_off()) print("degree:", self.get_degree()) class Mnn_Core_Func(Param_Container): def __init__(self): super(Mnn_Core_Func, self).__init__() self.Dawson1 = fast_dawson.Dawson1() self.Dawson2 = fast_dawson.Dawson2() # compute the up and low bound of integral def compute_bound(self, ubar, sbar): indx0 = sbar > 0 with np.errstate(all="raise"): ub = (self.vol_th * self.L - ubar) / (np.sqrt(self.L) * sbar + ~indx0) lb = (self.vol_rest * self.L - ubar) / (sbar * np.sqrt(self.L) + ~indx0) return ub, lb, indx0 def forward_fast_mean(self, ubar, sbar): '''Calculates the mean output firing rate given the mean & std of input firing rate''' # Divide input domain to several regions indx0 = sbar > 0 indx1 = (self.vol_th * self.L - ubar) < (self.cut_off * np.sqrt(self.L) * sbar) indx2 = indx0 & indx1 mean_out = np.zeros(ubar.shape) # Region 0 is approx zero for sufficiently large cut_off # Region 1 is calculate normally ub = (self.vol_th * self.L - ubar[indx2]) / (sbar[indx2] * np.sqrt(self.L)) lb = (self.vol_rest * self.L - ubar[indx2]) / (sbar[indx2] * np.sqrt(self.L)) temp_mean = 2 / self.L * (self.Dawson1.int_fast(ub) - self.Dawson1.int_fast(lb)) mean_out[indx2] = 1 / (temp_mean + self.t_ref) # Region 2 is calculated with analytical limit as sbar --> 0 indx3 = np.logical_and(~indx0, ubar <= self.vol_th * self.L) indx4 = np.logical_and(~indx0, ubar > self.vol_th * self.L) mean_out[indx3] = 0.0 mean_out[indx4] = 1 / (self.t_ref - 1 / self.L * np.log(1 - 1 / ubar[indx4])) return mean_out def backward_fast_mean(self, ubar, sbar, u_a): indx0 = sbar > 0 indx1 = (self.vol_th * self.L - ubar) < (self.cut_off * np.sqrt(self.L) * sbar) indx2 = indx0 & indx1 grad_uu = np.zeros(ubar.shape) # Fano factor # Region 0 is approx zero for sufficiently large cut_off # Region 1 is calculate normally ub = (self.vol_th * self.L - ubar[indx2]) / (sbar[indx2] * np.sqrt(self.L)) lb = (self.vol_rest * self.L - ubar[indx2]) / (sbar[indx2] * np.sqrt(self.L)) delta_g = self.Dawson1.dawson1(ub) - self.Dawson1.dawson1(lb) grad_uu[indx2] = u_a[indx2] * u_a[indx2] / sbar[indx2] * delta_g * 2 / self.L / np.sqrt(self.L) # Region 2 is calculated with analytical limit as sbar --> 0 indx6 = np.logical_and(~indx0, ubar <= 1) indx4 = np.logical_and(~indx0, ubar > 1) grad_uu[indx6] = 0.0 grad_uu[indx4] = self.vol_th * u_a[indx4] * u_a[indx4] / ubar[indx4] / (ubar[indx4] - self.vol_th * self.L) # --------------- grad_us = np.zeros(ubar.shape) temp = self.Dawson1.dawson1(ub) * ub - self.Dawson1.dawson1(lb) * lb grad_us[indx2] = u_a[indx2] * u_a[indx2] / sbar[indx2] * temp * 2 / self.L return grad_uu, grad_us def forward_fast_std(self, ubar, sbar, u_a): '''Calculates the std of output firing rate given the mean & std of input firing rate''' # Divide input domain to several regions indx0 = sbar > 0 indx1 = (self.vol_th * self.L - ubar) < (self.cut_off * np.sqrt(self.L) * sbar) indx2 = indx0 & indx1 fano_factor = np.zeros(ubar.shape) # Fano factor # Region 0 is approx zero for sufficiently large cut_off # Region 1 is calculate normally ub = (self.vol_th * self.L - ubar[indx2]) / (sbar[indx2] * np.sqrt(self.L)) lb = (self.vol_rest * self.L - ubar[indx2]) / (sbar[indx2] * np.sqrt(self.L)) # cached mean used varT = 8 / self.L / self.L * (self.Dawson2.int_fast(ub) - self.Dawson2.int_fast(lb)) fano_factor[indx2] = varT * u_a[indx2] * u_a[indx2] # Region 2 is calculated with analytical limit as sbar --> 0 fano_factor[~indx0] = (ubar[~indx0] < 1) + 0.0 std_out = np.sqrt(fano_factor * u_a) return std_out def backward_fast_std(self, ubar, sbar, u_a, s_a): '''Calculates the gradient of the std of the firing rate with respect to the mean & std of input firing rate''' # Divide input domain to several regions indx0 = sbar > 0 indx1 = (self.vol_th * self.L - ubar) < (self.cut_off *
np.sqrt(self.L)
numpy.sqrt
# Utility Functions # Authors: <NAME> # Edited by: <NAME> ''' Used by the user to define channels that are hard coded for analysis. ''' # Imports necessary for this function import numpy as np import re from itertools import combinations def splitpatient(patient): stringtest = patient.find('seiz') if stringtest == -1: stringtest = patient.find('sz') if stringtest == -1: stringtest = patient.find('aw') if stringtest == -1: stringtest = patient.find('aslp') if stringtest == -1: stringtest = patient.find('_') if stringtest == -1: print("Not sz, seiz, aslp, or aw! Please add additional naming possibilities, or tell data gatherers to rename datasets.") else: pat_id = patient[0:stringtest] seiz_id = patient[stringtest:] # remove any underscores pat_id = re.sub('_', '', pat_id) seiz_id = re.sub('_', '', seiz_id) return pat_id, seiz_id def returnindices(pat_id, seiz_id=None): included_indices, onsetelecs, clinresult = returnnihindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returnlaindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returnummcindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returnjhuindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returntngindices( pat_id, seiz_id) return included_indices, onsetelecs, clinresult def returntngindices(pat_id, seiz_id): included_indices = np.array([]) onsetelecs = None clinresult = -1 if pat_id == 'id001ac': # included_indices = np.concatenate((np.arange(0,4), np.arange(5,55), # np.arange(56,77), np.arange(78,80))) included_indices = np.array([0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79]) elif pat_id == 'id002cj': # included_indices = np.array(np.arange(0,184)) included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 47, 48, 49, 50, 51, 52, 53, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 85, 86, 87, 88, 89, 90, 91, 92, 93, 100, 101, 102, 103, 104, 105, 106, 107, 108, 115, 116, 117, 118, 119, 120, 121, 122, 123, 129, 130, 131, 132, 133, 134, 135, 136, 137, # np.arange(143, 156) 143, 144, 145, 146, 147, 148, 149, 150, 151, 157, 158, 159, 160, 161, 162, 163, 164, 165, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182]) elif pat_id == 'id003cm': included_indices = np.concatenate((np.arange(0,13), np.arange(25,37), np.arange(40,50), np.arange(55,69), np.arange(70,79))) elif pat_id == 'id004cv': # removed OC'10, SC'5, CC'14/15 included_indices = np.concatenate((np.arange(0,23), np.arange(25,39), np.arange(40,59), np.arange(60,110))) elif pat_id == 'id005et': included_indices = np.concatenate((np.arange(0,39), np.arange(39,47), np.arange(52,62), np.arange(62,87))) elif pat_id == 'id006fb': included_indices = np.concatenate((np.arange(10,19), np.arange(40,50), np.arange(115,123))) elif pat_id == 'id008gc': included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111]) elif pat_id == 'id009il': included_indices = np.concatenate((np.arange(0,10), np.arange(10,152))) elif pat_id == 'id010js': included_indices = np.concatenate((np.arange(0,14), np.arange(15,29), np.arange(30,42), np.arange(43,52), np.arange(53,65), np.arange(66,75), np.arange(76,80), np.arange(81,85), np.arange(86,94), np.arange(95,98), np.arange(99,111), np.arange(112,124))) elif pat_id == 'id011ml': included_indices = np.concatenate((np.arange(0,18), np.arange(21,68), np.arange(69,82), np.arange(82,125))) elif pat_id == 'id012pc': included_indices = np.concatenate((np.arange(0,4), np.arange(9,17), np.arange(18,28), np.arange(31,41), np.arange(44,56), np.arange(57,69), np.arange(70,82), np.arange(83,96), np.arange(97,153))) elif pat_id == 'id013pg': included_indices = np.array([2, 3, 4, 5, 15, 18, 19, 20, 21, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78]) elif pat_id == 'id014rb': included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164]) elif pat_id == 'id015sf': included_indices = np.concatenate((np.arange(0,37), np.arange(38,77), np.arange(78,121))) return included_indices, onsetelecs, clinresult def returnnihindices(pat_id, seiz_id): included_indices = np.array([]) onsetelecs = None clinresult = -1 if pat_id == 'pt1': included_indices = np.concatenate((np.arange(0, 36), np.arange(41, 43), np.arange(45, 69), np.arange(71, 95))) onsetelecs = set(['ATT1', 'ATT2', 'AD1', 'AD2', 'AD3', 'AD4', 'PD1', 'PD2', 'PD3', 'PD4']) resectelecs = set(['ATT1', 'ATT2', 'ATT3', 'ATT4', 'ATT5', 'ATT6', 'ATT7', 'ATT8', 'AST1', 'AST2', 'AST3', 'AST4', 'PST1', 'PST2', 'PST3', 'PST4', 'AD1', 'AD2', 'AD3', 'AD4', 'PD1', 'PD2', 'PD3', 'PD4', 'PLT5', 'PLT6', 'SLT1']) clinresult = 1 elif pat_id == 'pt2': # [1:14 16:19 21:25 27:37 43 44 47:74] included_indices = np.concatenate((np.arange(0, 14), np.arange(15, 19), np.arange( 20, 25), np.arange( 26, 37), np.arange( 42, 44), np.arange(46, 74))) onsetelecs = set(['MST1', 'PST1', 'AST1', 'TT1']) resectelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'TT6', 'TT6', 'G1', 'G2', 'G3', 'G4', 'G9', 'G10', 'G11', 'G12', 'G18', 'G19', 'G20', 'G26', 'G27', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 1 elif pat_id == 'pt3': # [1:19 21:37 42:43 46:69 71:107] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37), np.arange(41, 43), np.arange(45, 69), np.arange(70, 107))) onsetelecs = set(['SFP1', 'SFP2', 'SFP3', 'IFP1', 'IFP2', 'IFP3', 'MFP2', 'MFP3', 'OF1', 'OF2', 'OF3', 'OF4']) resectelecs = set(['FG1', 'FG2', 'FG9', 'FG10', 'FG17', 'FG18', 'FG25', 'SFP1', 'SFP2', 'SFP3', 'SFP4', 'SFP5', 'SFP6', 'SFP7', 'SFP8', 'MFP1', 'MFP2', 'MFP3', 'MFP4', 'MFP5', 'MFP6', 'IFP1', 'IFP2', 'IFP3', 'IFP4', 'OF3', 'OF4']) clinresult = 1 elif pat_id == 'pt4': # [1:19 21:37 42:43 46:69 71:107] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 26), np.arange(28, 36))) onsetelecs = set([]) resectelecs = set([]) clinresult = -1 elif pat_id == 'pt5': included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 26), np.arange(28, 36))) onsetelecs = set([]) resectelecs = set([]) clinresult = -1 elif pat_id == 'pt6': # [1:36 42:43 46 52:56 58:71 73:95] included_indices = np.concatenate((np.arange(0, 36), np.arange(41, 43), np.arange(45, 46), np.arange(51, 56), np.arange(57, 71), np.arange(72, 95))) onsetelecs = set(['LA1', 'LA2', 'LA3', 'LA4', 'LAH1', 'LAH2', 'LAH3', 'LAH4', 'LPH1', 'LPH2', 'LPH3', 'LPH4']) resectelecs = set(['LALT1', 'LALT2', 'LALT3', 'LALT4', 'LALT5', 'LALT6', 'LAST1', 'LAST2', 'LAST3', 'LAST4', 'LA1', 'LA2', 'LA3', 'LA4', 'LPST4', 'LAH1', 'LAH2', 'LAH3', 'LAH4', 'LPH1', 'LPH2']) clinresult = 2 elif pat_id == 'pt7': # [1:17 19:35 37:38 41:62 67:109] included_indices = np.concatenate((np.arange(0, 17), np.arange(18, 35), np.arange(36, 38), np.arange(40, 62), np.arange(66, 109))) onsetelecs = set(['MFP1', 'LFP3', 'PT2', 'PT3', 'PT4', 'PT5', 'MT2', 'MT3', 'AT3', 'AT4', 'G29', 'G30', 'G39', 'G40', 'G45', 'G46']) resectelecs = set(['G28', 'G29', 'G30', 'G36', 'G37', 'G38', 'G39', 'G41', 'G44', 'G45', 'G46', 'LFP1', 'LFP2', 'LSF3', 'LSF4']) clinresult = 3 elif pat_id == 'pt8': # [1:19 21 23 30:37 39:40 43:64 71:76] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 21), np.arange( 22, 23), np.arange( 29, 37), np.arange( 38, 40), np.arange(42, 64), np.arange(70, 76))) onsetelecs = set(['G19', 'G23', 'G29', 'G30', 'G31', 'TO6', 'TO5', 'MST3', 'MST4', 'O8', 'O9']) resectelecs = set(['G22', 'G23', 'G27', 'G28', 'G29', 'G30', 'G31', 'MST2', 'MST3', 'MST4', 'PST2', 'PST3', 'PST4']) clinresult = 1 elif pat_id == 'pt10': # [1:3 5:19 21:35 48:69] included_indices = np.concatenate((np.arange(0, 3), np.arange(4, 19), np.arange(20, 35), np.arange(47, 69))) onsetelecs = set(['TT1', 'TT2', 'TT4', 'TT6', 'MST1', 'AST2']) resectelecs = set(['G3', 'G4', 'G5', 'G6', 'G11', 'G12', 'G13', 'G14', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4']) clinresult = 2 elif pat_id == 'pt11': # [1:19 21:35 37 39 40 43:74 76:81 83:84] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 35), np.arange( 36, 37), np.arange( 38, 40), np.arange( 42, 74), np.arange(75, 81), np.arange(82, 84))) onsetelecs = set(['RG29', 'RG30', 'RG31', 'RG37', 'RG38', 'RG39', 'RG44', 'RG45']) resectelecs = set(['RG4', 'RG5', 'RG6', 'RG7', 'RG12', 'RG13', 'RG14', 'RG15', 'RG21', 'RG22', 'RG23', 'RG29', 'RG30', 'RG31', 'RG37', 'RG38', 'RG39', 'RG45', 'RG46', 'RG47']) resectelecs = set(['RG4', 'RG5', 'RG6', 'RG7', 'RG12', 'RG13', 'RG14', 'RG15', 'RG21', 'RG22', 'RG23', 'RG29', 'RG30', 'RG31', 'RG37', 'RG38', 'RG39', 'RG45', 'RG46', 'RG47']) clinresult = 1 elif pat_id == 'pt12': # [1:15 17:33 38:39 42:61] included_indices = np.concatenate((np.arange(0, 15), np.arange(16, 33), np.arange(37, 39), np.arange(41, 61))) onsetelecs = set(['AST1', 'AST2', 'TT2', 'TT3', 'TT4', 'TT5']) resectelecs = set(['G19', 'G20', 'G21', 'G22', 'G23', 'G27', 'G28', 'G29', 'G30', 'G31', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 2 elif pat_id == 'pt13': # [1:36 39:40 43:66 69:74 77 79:94 96:103 105:130] included_indices = np.concatenate((np.arange(0, 36), np.arange(38, 40), np.arange( 42, 66), np.arange( 68, 74), np.arange( 76, 77), np.arange(78, 94), np.arange(95, 103), np.arange(104, 130))) onsetelecs = set(['G1', 'G2', 'G9', 'G10', 'G17', 'G18']) resectelecs = set(['G1', 'G2', 'G3', 'G4', 'G9', 'G10', 'G11', 'G17', 'G18', 'G19', 'AP2', 'AP3', 'AP4']) clinresult = 1 elif pat_id == 'pt14': # [1:19 21:37 41:42 45:61 68:78] included_indices = np.concatenate((np.arange(0, 3), np.arange(6, 10), np.arange( 11, 17), np.arange( 18, 19), np.arange( 20, 37), np.arange(40, 42), np.arange(44, 61), np.arange(67, 78))) onsetelecs = set(['MST1', 'MST2', 'TT1', 'TT2', 'TT3', 'AST1', 'AST2']) resectelecs = set(['TT1', 'TT2', 'TT3', 'AST1', 'AST2', 'MST1', 'MST2', 'PST1']) clinresult = 4 elif pat_id == 'pt15': # [2:7 9:30 32:36 41:42 45:47 49:66 69 71:85]; included_indices = np.concatenate((np.arange(1, 7), np.arange(8, 30), np.arange( 31, 36), np.arange( 40, 42), np.arange( 44, 47), np.arange(48, 66), np.arange(68, 69), np.arange(70, 85))) onsetelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'MST1', 'MST2', 'AST1', 'AST2', 'AST3']) resectelecs = set(['G2', 'G3', 'G4', 'G5', 'G10', 'G11', 'G12', 'G13', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 1 elif pat_id == 'pt16': # [1:19 21:37 42:43 46:53] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37), np.arange(41, 43), np.arange(45, 53))) onsetelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST3', 'MST4', 'G26', 'G27', 'G28', 'G18', 'G19', 'G20', 'OF4']) resectelecs = set(['G18', 'G19', 'G20', 'G26', 'G27', 'G28', 'G29', 'G30', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4' ]) clinresult = 1 elif pat_id == 'pt17': # [1:19 21:37 42:43 46:51] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37), np.arange(41, 43), np.arange(45, 51))) onsetelecs = set(['TT1', 'TT2']) resectelecs = set(['G27', 'G28', 'G29', 'G30', 'TT', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 1 return included_indices, onsetelecs, clinresult def returnlaindices(pat_id, seiz_id): included_indices = np.array([]) onsetelecs = None clinresult = -1 spreadelecs = None if pat_id == 'la01': # [1 3 7:8 11:13 17:19 22:26 32 34:35 37 42 50:55 58 ... # 62:65 70:72 77:81 84:97 100:102 105:107 110:114 120:121 130:131]; # onset_electrodes = {'Y''1', 'X''4', ... # 'T''5', 'T''6', 'O''1', 'O''2', 'B1', 'B2',...% rare onsets # } included_indices = np.concatenate((np.arange(0, 3), np.arange(6, 8), np.arange(10, 13), np.arange( 16, 19), np.arange( 21, 26), np.arange( 31, 32), np.arange( 33, 35), np.arange( 36, 37), np.arange( 41, 42), np.arange( 49, 55), np.arange( 57, 58), np.arange( 61, 65), np.arange( 69, 72), np.arange( 76, 81), np.arange( 83, 97), np.arange( 99, 102), np.arange( 104, 107), np.arange( 109, 114), np.arange(119, 121), np.arange(129, 131))) onsetelecs = ["X'4", "T'5", "T'6", "O'1", "O'2", "B1", "B2"] spreadelecs = ["P1", "P2", 'P6', "X1", "X8", "X9", "E'2", "E'3" "T'1"] if seiz_id == 'inter2': included_indices = np.concatenate((np.arange(0, 1), np.arange(7, 16), np.arange(21, 28), np.arange( 33, 36), np.arange( 39, 40), np.arange( 42, 44), np.arange( 46, 50), np.arange( 56, 58), np.arange( 62, 65), np.arange( 66, 68), np.arange( 69, 75), np.arange(76, 83), np.arange(85, 89), np.arange(96, 103), np.arange(106, 109), np.arange(111, 115), np.arange(116, 117), np.arange(119, 123), np.arange(126, 127), np.arange(130, 134), np.arange(136, 137), np.arange(138, 144), np.arange(146, 153))) if seiz_id == 'ictal2': included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 19), np.arange(20, 33), np.arange( 34, 37), np.arange( 38, 40), np.arange( 42, 98), np.arange(107, 136), np.arange(138, 158))) onsetelecs = ["Y'1"] clinresult = 1 elif pat_id == 'la02': # [1:4 7 9 11:12 15:18 21:28 30:34 47 50:62 64:67 ... # 70:73 79:87 90 95:99] included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 7), np.arange(8, 9), np.arange( 10, 12), np.arange( 14, 18), np.arange( 20, 28), np.arange( 29, 34), np.arange( 46, 47), np.arange( 49, 62), np.arange( 63, 67), np.arange( 69, 73), np.arange( 78, 87), np.arange(89, 90), np.arange(94, 99))) onsetelecs = ["L'2", "L'3", "L'4"] clinresult = 1 elif pat_id == 'la03': # [1:3 6:33 36:68 77:163] included_indices = np.concatenate((np.arange(0, 3), np.arange(5, 33), np.arange(35, 68), np.arange(76, 163))) onsetelecs = ["L7"] clinresult = 2 elif pat_id == 'la04': # [1:4 9:13 15:17 22 24:32 44:47 52:58 60 63:64 ... # 67:70 72:74 77:84 88:91 94:96 98:101 109:111 114:116 121 123:129]; included_indices = np.concatenate((np.arange(0, 4), np.arange(8, 13), np.arange( 14, 17), np.arange( 21, 22), np.arange( 23, 32), np.arange(43, 47), np.arange(51, 58), np.arange(59, 60), np.arange(62, 64), np.arange(66, 70), np.arange(71, 74), np.arange(76, 84), np.arange(87, 91), np.arange(93, 96), np.arange(97, 101), np.arange(108, 111), np.arange(113, 116), np.arange(120, 121), np.arange(122, 129))) # FIRST ABLATION WAS A FAILURE onsetelecs = ["L'4", "G'1", # 2ND RESECTION REMOVED ALL OF M' ELECTRODES "M'1", "M'2", "M'3", "M'4", "M'5", "M'6", "M'7", "M'8", "M'9", "M'10", "M'11", "M'12", "M'13", "M'14", "M'15", "M'16"] clinresult = 2 elif pat_id == 'la05': # [2:4 7:15 21:39 42:82 85:89 96:101 103:114 116:121 ... # 126:145 147:152 154:157 160:161 165:180 182:191]; included_indices = np.concatenate((np.arange(1, 4), np.arange(6, 15), np.arange( 20, 39), np.arange( 41, 82), np.arange( 84, 89), np.arange(95, 101), np.arange(102, 114), np.arange(115, 121), np.arange(125, 145), np.arange(146, 152), np.arange(153, 157), np.arange(159, 161), np.arange(164, 180), np.arange(181, 191))) onsetelecs = ["T'1", "T'2", "D'1", "D'2"] clinresult = 1 elif pat_id == 'la06': # [1:4 7:12 14:17 19 21:33 37 46:47 50:58 61:62 70:73 77:82 ... # 84:102 104:112 114:119]; included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 12), np.arange( 13, 17), np.arange( 18, 19), np.arange( 20, 33), np.arange(36, 37), np.arange(45, 47), np.arange(49, 58), np.arange(60, 62), np.arange(69, 73), np.arange(76, 82), np.arange(83, 102), np.arange(103, 112), np.arange(113, 119))) onsetelecs = ["Q'3", "Q'4", "R'3", "R'4"] clinresult = 2 elif pat_id == 'la07': # [1:18 22:23 25 34:37 44 48:51 54:55 57:69 65:66 68:78 ... # 82:83 85:93 96:107 114:120]; included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 18), np.arange(21, 23), np.arange( 24, 25), np.arange( 33, 37), np.arange( 43, 44), np.arange(47, 51), np.arange(53, 55), np.arange(56, 69), np.arange(64, 66), np.arange(67, 78), np.arange(81, 83), np.arange(84, 93), np.arange(95, 107), np.arange(113, 120))) onsetelecs = ["T'1", "T'3", "R'8", "R'9"] clinresult = 1 elif pat_id == 'la08': # [1:2 8:13 15:19 22 25 27:30 34:35 46:48 50:57 ... # 65:68 70:72 76:78 80:84 87:93 100:102 105:108 110:117 123:127 130:131 133:137 ... # 140:146] included_indices = np.concatenate((np.arange(0, 2), np.arange(7, 13), np.arange( 14, 19), np.arange( 21, 22), np.arange( 24, 25), np.arange(26, 30), np.arange(33, 35), np.arange(45, 48), np.arange(49, 57), np.arange(64, 68), np.arange(69, 72), np.arange(75, 78), np.arange(79, 84), np.arange(86, 93), np.arange(99, 102), np.arange(104, 108), np.arange(109, 117), np.arange(122, 127), np.arange(129, 131), np.arange(132, 137), np.arange(139, 146))) onsetelecs = ["Q2"] clinresult = 2 elif pat_id == 'la09': # [3:4 7:17 21:28 33:38 42:47 51:56 58:62 64:69 ... # 73:80 82:84 88:92 95:103 107:121 123 126:146 150:161 164:169 179:181 ... # 183:185 187:191] # 2/7/18 - got rid of F10 = looking at edf was super noisy included_indices = np.concatenate((np.arange(2, 3), np.arange(6, 17), np.arange( 20, 28), np.arange( 32, 38), np.arange( 41, 47), np.arange( 50, 56), np.arange( 57, 62), np.arange( 63, 66), np.arange( 67, 69), np.arange(72, 80), np.arange(81, 84), np.arange(87, 92), np.arange(94, 103), np.arange(106, 121), np.arange(122, 123), np.arange(125, 146), np.arange(149, 161), np.arange(163, 169), np.arange(178, 181), np.arange(182, 185), np.arange(186, 191))) onsetelecs = ["X'1", "X'2", "X'3", "X'4", "U'1", "U'2"] if seiz_id == 'ictal2': included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 19), np.arange(20, 39), np.arange(41, 189))) onsetelecs = ["P'1", "P'2"] clinresult = 2 elif pat_id == 'la10': # [1:4 7:13 17:19 23:32 36:37 46:47 50 54:59 62:66 68:79 82:96 ... # 99:106 108:113 117:127 135:159 163:169 172:173 176:179 181:185]; included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 13), np.arange( 16, 19), np.arange( 22, 32), np.arange( 35, 37), np.arange(45, 47), np.arange(49, 50), np.arange(53, 59), np.arange(61, 66), np.arange(67, 79), np.arange(81, 96), np.arange(98, 106), np.arange(107, 113), np.arange(116, 127), np.arange(134, 159), np.arange(162, 169), np.arange(171, 173), np.arange(175, 179), np.arange(180, 185))) onsetelecs = ["S1", "S2", "R2", "R3"] clinresult = 2 elif pat_id == 'la11': # [3:4 7:16 22:30 33:39 42 44:49 53:62 64:87 91:100 ... # 102:117 120:127 131:140 142:191]; included_indices = np.concatenate((np.arange(2, 4), np.arange(6, 16), np.arange( 21, 30), np.arange( 32, 39), np.arange( 41, 42), np.arange( 43, 49), np.arange( 52, 62), np.arange( 63, 87), np.arange( 90, 100), np.arange( 101, 117), np.arange(119, 127), np.arange(130, 140), np.arange(141, 191))) onsetelecs = ["D6", "Z10"] clinresult = 2 elif pat_id == 'la12': included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 15), np.arange( 19, 23), np.arange( 24, 31), np.arange( 34, 36), np.arange( 42, 44), np.arange( 47, 48), np.arange( 49, 59), np.arange( 61, 66), np.arange( 68, 86), np.arange( 87, 90), np.arange( 91, 100), np.arange( 101, 119), np.arange( 121, 129), np.arange( 131, 134), np.arange(136, 150), np.arange(153, 154), np.arange(156, 161), np.arange(167, 178), np.arange(187, 191))) onsetelecs = ["S1", "S2", "R2", "R3"] clinresult = 3 elif pat_id == 'la13': # [1:4 7:12 23:33 36:37 44:45 48:70 72:93] included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 12), np.arange( 22, 33), np.arange( 35, 37), np.arange( 43, 45), np.arange(47, 70), np.arange(71, 93))) onsetelecs = ["Y13", "Y14"] clinresult = 2 elif pat_id == 'la15': # included_channels = [1:4 9:12 15:19 21:27 30:34 36:38 43:57 62:66 ... # 68:71 76:85 89:106 108:112 114:115 118:124 127:132 135:158 ... # 161:169 171:186] included_indices = np.concatenate((np.arange(0, 4), np.arange(8, 12), np.arange( 14, 19), np.arange( 20, 27), np.arange( 29, 34), np.arange(35, 38), np.arange(42, 57), np.arange(61, 66), np.arange(67, 71), np.arange(75, 85), np.arange(88, 106), np.arange(107, 112), np.arange(113, 115), np.arange(117, 124), np.arange(126, 132), np.arange(134, 158), np.arange(160, 169), np.arange(170, 186))) if seiz_id == 'ictal': included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 19), np.arange( 20, 39), np.arange( 41, 95), np.arange( 96, 112), np.arange(113, 132), np.arange(134, 187))) onsetelecs = ["R1", "R2", "R3"] clinresult = 4 elif pat_id == 'la16': # [1:3 10:16 23:24 28 31:35 37:39 42:44 46:47 ... # 49:54 58:62 64:65 68:70 76:89 93:98 100:101 105:124 126 128:130 ... # 132:134 136:140 142:144 149:156 158:163 165:166 168:170 173:181 # 183:189]; included_indices = np.concatenate((np.arange(0, 3), np.arange(9, 16), np.arange( 22, 24), np.arange( 27, 28), np.arange( 30, 35), np.arange(36, 39), np.arange(41, 44), np.arange(45, 47), np.arange(48, 54), np.arange(57, 62), np.arange(63, 65),
np.arange(67, 70)
numpy.arange
# - * - coding: utf-8 - * - import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.signal from ..signal import signal_smooth from ..signal import signal_zerocrossings def ecg_findpeaks(ecg_cleaned, sampling_rate=1000, method="neurokit", show=False): """Find R-peaks in an ECG signal. Low-level function used by `ecg_peaks()` to identify R-peaks in an ECG signal using a different set of algorithms. See `ecg_peaks()` for details. Parameters ---------- ecg_cleaned : list, array or Series The cleaned ECG channel as returned by `ecg_clean()`. sampling_rate : int The sampling frequency of `ecg_signal` (in Hz, i.e., samples/second). Defaults to 1000. method : string The algorithm to be used for R-peak detection. Can be one of 'neurokit' (default), 'pamtompkins1985', 'hamilton2002', 'christov2004', 'gamboa2008', 'elgendi2010', 'engzeemod2012', 'kalidas2017', 'martinez2003' or 'rodrigues2020'. show : bool If True, will return a plot to visualizing the thresholds used in the algorithm. Useful for debugging. Returns ------- info : dict A dictionary containing additional information, in this case the samples at which R-peaks occur, accessible with the key "ECG_R_Peaks". See Also -------- ecg_clean, signal_fixpeaks, ecg_peaks, ecg_rate, ecg_process, ecg_plot Examples -------- >>> import neurokit2 as nk >>> >>> ecg = nk.ecg_simulate(duration=10, sampling_rate=1000) >>> cleaned = nk.ecg_clean(ecg, sampling_rate=1000) >>> info = nk.ecg_findpeaks(cleaned) >>> nk.events_plot(info["ECG_R_Peaks"], cleaned) >>> >>> # Different methods >>> neurokit = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="neurokit"), method="neurokit") >>> pantompkins1985 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="pantompkins1985"), method="pantompkins1985") >>> hamilton2002 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="hamilton2002"), method="hamilton2002") >>> christov2004 = nk.ecg_findpeaks(cleaned, method="christov2004") >>> gamboa2008 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="gamboa2008"), method="gamboa2008") >>> elgendi2010 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="elgendi2010"), method="elgendi2010") >>> engzeemod2012 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="engzeemod2012"), method="engzeemod2012") >>> kalidas2017 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="kalidas2017"), method="kalidas2017") >>> martinez2003 = nk.ecg_findpeaks(cleaned, method="martinez2003") >>> >>> # Visualize >>> nk.events_plot([neurokit["ECG_R_Peaks"], pantompkins1985["ECG_R_Peaks"], hamilton2002["ECG_R_Peaks"], christov2004["ECG_R_Peaks"], gamboa2008["ECG_R_Peaks"], elgendi2010["ECG_R_Peaks"], engzeemod2012["ECG_R_Peaks"], kalidas2017["ECG_R_Peaks"]], martinez2003["ECG_R_Peaks"]], cleaned) References -------------- - <NAME>. (2008). Multi-modal behavioral biometrics based on hci and electrophysiology. PhD ThesisUniversidade. - <NAME>, <NAME>, <NAME>, and <NAME>. An open-source algorithm to detect onset of arterial blood pressure pulses. In Computers in Cardiology, 2003, pages 259–262, 2003. - Hamilton, Open Source ECG Analysis Software Documentation, E.P.Limited, 2002. - <NAME> and <NAME>. A Real-Time QRS Detection Algorithm. In: IEEE Transactions on Biomedical Engineering BME-32.3 (1985), pp. 230–236. - <NAME>, A single scan algorithm for QRS detection and feature extraction, IEEE Comp. in Cardiology, vol. 6, pp. 37-42, 1979 - <NAME>, <NAME>, <NAME>, <NAME> and <NAME>, "Real Time Electrocardiogram Segmentation for Finger Based ECG Biometrics", BIOSIGNALS 2012, pp. 49-54, 2012. """ # Try retrieving right column if isinstance(ecg_cleaned, pd.DataFrame): try: ecg_cleaned = ecg_cleaned["ECG_Clean"] except NameError: try: ecg_cleaned = ecg_cleaned["ECG_Raw"] except NameError: ecg_cleaned = ecg_cleaned["ECG"] method = method.lower() # remove capitalised letters # Run peak detection algorithm if method in ["nk", "nk2", "neurokit", "neurokit2"]: rpeaks = _ecg_findpeaks_neurokit(ecg_cleaned, sampling_rate, show=show) elif method in ["pantompkins", "pantompkins1985"]: rpeaks = _ecg_findpeaks_pantompkins(ecg_cleaned, sampling_rate) elif method in ["gamboa2008", "gamboa"]: rpeaks = _ecg_findpeaks_gamboa(ecg_cleaned, sampling_rate) elif method in ["ssf", "slopesumfunction", "zong", "zong2003"]: rpeaks = _ecg_findpeaks_ssf(ecg_cleaned, sampling_rate) elif method in ["hamilton", "hamilton2002"]: rpeaks = _ecg_findpeaks_hamilton(ecg_cleaned, sampling_rate) elif method in ["christov", "christov2004"]: rpeaks = _ecg_findpeaks_christov(ecg_cleaned, sampling_rate) elif method in ["engzee", "engzee2012", "engzeemod", "engzeemod2012"]: rpeaks = _ecg_findpeaks_engzee(ecg_cleaned, sampling_rate) elif method in ["elgendi", "elgendi2010"]: rpeaks = _ecg_findpeaks_elgendi(ecg_cleaned, sampling_rate) elif method in ["kalidas2017", "swt", "kalidas", "kalidastamil", "kalidastamil2017"]: rpeaks = _ecg_findpeaks_kalidas(ecg_cleaned, sampling_rate) elif method in ["martinez2003", "martinez"]: rpeaks = _ecg_findpeaks_WT(ecg_cleaned, sampling_rate) elif method in ["rodrigues2020", "rodrigues", "asi"]: rpeaks = _ecg_findpeaks_rodrigues(ecg_cleaned, sampling_rate) else: raise ValueError("NeuroKit error: ecg_findpeaks(): 'method' should be " "one of 'neurokit' or 'pamtompkins'.") # Prepare output. info = {"ECG_R_Peaks": rpeaks} return info # ============================================================================= # NeuroKit # ============================================================================= def _ecg_findpeaks_neurokit(signal, sampling_rate=1000, smoothwindow=.1, avgwindow=.75, gradthreshweight=1.5, minlenweight=0.4, mindelay=0.3, show=False): """ All tune-able parameters are specified as keyword arguments. The `signal` must be the highpass-filtered raw ECG with a lowcut of .5 Hz. """ if show is True: fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True) # Compute the ECG's gradient as well as the gradient threshold. Run with # show=True in order to get an idea of the threshold. grad = np.gradient(signal) absgrad = np.abs(grad) smooth_kernel = int(np.rint(smoothwindow * sampling_rate)) avg_kernel = int(np.rint(avgwindow * sampling_rate)) smoothgrad = signal_smooth(absgrad, kernel="boxcar", size=smooth_kernel) avggrad = signal_smooth(smoothgrad, kernel="boxcar", size=avg_kernel) gradthreshold = gradthreshweight * avggrad mindelay = int(np.rint(sampling_rate * mindelay)) if show is True: ax1.plot(signal) ax2.plot(smoothgrad) ax2.plot(gradthreshold) # Identify start and end of QRS complexes. qrs = smoothgrad > gradthreshold beg_qrs = np.where(np.logical_and(np.logical_not(qrs[0:-1]), qrs[1:]))[0] end_qrs = np.where(np.logical_and(qrs[0:-1], np.logical_not(qrs[1:])))[0] # Throw out QRS-ends that precede first QRS-start. end_qrs = end_qrs[end_qrs > beg_qrs[0]] # Identify R-peaks within QRS (ignore QRS that are too short). num_qrs = min(beg_qrs.size, end_qrs.size) min_len = np.mean(end_qrs[:num_qrs] - beg_qrs[:num_qrs]) * minlenweight peaks = [0] for i in range(num_qrs): beg = beg_qrs[i] end = end_qrs[i] len_qrs = end - beg if len_qrs < min_len: continue if show is True: ax2.axvspan(beg, end, facecolor="m", alpha=0.5) # Find local maxima and their prominence within QRS. data = signal[beg:end] locmax, props = scipy.signal.find_peaks(data, prominence=(None, None)) if locmax.size > 0: # Identify most prominent local maximum. peak = beg + locmax[np.argmax(props["prominences"])] # Enforce minimum delay between peaks. if peak - peaks[-1] > mindelay: peaks.append(peak) peaks.pop(0) if show is True: ax1.scatter(peaks, signal[peaks], c="r") peaks = np.asarray(peaks).astype(int) # Convert to int return peaks # ============================================================================= # Pan & Tompkins (1985) # ============================================================================= def _ecg_findpeaks_pantompkins(signal, sampling_rate=1000): """ From https://github.com/berndporr/py-ecg-detectors/ - <NAME> and <NAME>. A Real-Time QRS Detection Algorithm. In: IEEE Transactions on Biomedical Engineering BME-32.3 (1985), pp. 230–236. """ diff = np.diff(signal) squared = diff * diff N = int(0.12 * sampling_rate) mwa = _ecg_findpeaks_MWA(squared, N) mwa[:int(0.2 * sampling_rate)] = 0 mwa_peaks = _ecg_findpeaks_peakdetect(mwa, sampling_rate) mwa_peaks = np.array(mwa_peaks, dtype='int') return mwa_peaks # ============================================================================= # Hamilton (2002) # ============================================================================= def _ecg_findpeaks_hamilton(signal, sampling_rate=1000): """ From https://github.com/berndporr/py-ecg-detectors/ - Hamilton, Open Source ECG Analysis Software Documentation, E.P.Limited, 2002. """ diff = abs(np.diff(signal)) b = np.ones(int(0.08 * sampling_rate)) b = b/int(0.08 * sampling_rate) a = [1] ma = scipy.signal.lfilter(b, a, diff) ma[0:len(b) * 2] = 0 n_pks = [] n_pks_ave = 0.0 s_pks = [] s_pks_ave = 0.0 QRS = [0] RR = [] RR_ave = 0.0 th = 0.0 i = 0 idx = [] peaks = [] for i in range(len(ma)): if i > 0 and i < len(ma) - 1: if ma[i-1] < ma[i] and ma[i + 1] < ma[i]: peak = i peaks.append(i) if ma[peak] > th and (peak-QRS[-1]) > 0.3 * sampling_rate: QRS.append(peak) idx.append(i) s_pks.append(ma[peak]) if len(n_pks) > 8: s_pks.pop(0) s_pks_ave = np.mean(s_pks) if RR_ave != 0.0: if QRS[-1]-QRS[-2] > 1.5 * RR_ave: missed_peaks = peaks[idx[-2] + 1:idx[-1]] for missed_peak in missed_peaks: if missed_peak - peaks[idx[-2]] > int(0.360 * sampling_rate) and ma[missed_peak] > 0.5 * th: QRS.append(missed_peak) QRS.sort() break if len(QRS) > 2: RR.append(QRS[-1]-QRS[-2]) if len(RR) > 8: RR.pop(0) RR_ave = int(np.mean(RR)) else: n_pks.append(ma[peak]) if len(n_pks) > 8: n_pks.pop(0) n_pks_ave = np.mean(n_pks) th = n_pks_ave + 0.45 * (s_pks_ave-n_pks_ave) i += 1 QRS.pop(0) QRS = np.array(QRS, dtype='int') return QRS # ============================================================================= # Slope Sum Function (SSF) - Zong et al. (2003) # ============================================================================= def _ecg_findpeaks_ssf(signal, sampling_rate=1000, threshold=20, before=0.03, after=0.01): """ From https://github.com/PIA-Group/BioSPPy/blob/e65da30f6379852ecb98f8e2e0c9b4b5175416c3/biosppy/signals/ecg.py#L448 - <NAME>, <NAME>, <NAME>, and <NAME>. An open-source algorithm to detect onset of arterial blood pressure pulses. In Computers in Cardiology, 2003, pages 259–262, 2003. """ # TODO: Doesn't really seems to work # convert to samples winB = int(before * sampling_rate) winA = int(after * sampling_rate) Rset = set() length = len(signal) # diff dx = np.diff(signal) dx[dx >= 0] = 0 dx = dx ** 2 # detection idx, = np.nonzero(dx > threshold) idx0 = np.hstack(([0], idx)) didx = np.diff(idx0) # search sidx = idx[didx > 1] for item in sidx: a = item - winB if a < 0: a = 0 b = item + winA if b > length: continue r = np.argmax(signal[a:b]) + a Rset.add(r) # output rpeaks = list(Rset) rpeaks.sort() rpeaks = np.array(rpeaks, dtype='int') return rpeaks # ============================================================================= # Christov (2004) # ============================================================================= def _ecg_findpeaks_christov(signal, sampling_rate=1000): """ From https://github.com/berndporr/py-ecg-detectors/ - <NAME>, Real time electrocardiogram QRS detection using combined adaptive threshold, BioMedical Engineering OnLine 2004, vol. 3:28, 2004. """ total_taps = 0 b = np.ones(int(0.02 * sampling_rate)) b = b/int(0.02 * sampling_rate) total_taps += len(b) a = [1] MA1 = scipy.signal.lfilter(b, a, signal) b = np.ones(int(0.028 * sampling_rate)) b = b/int(0.028 * sampling_rate) total_taps += len(b) a = [1] MA2 = scipy.signal.lfilter(b, a, MA1) Y = [] for i in range(1, len(MA2)-1): diff = abs(MA2[i + 1]-MA2[i-1]) Y.append(diff) b = np.ones(int(0.040 * sampling_rate)) b = b/int(0.040 * sampling_rate) total_taps += len(b) a = [1] MA3 = scipy.signal.lfilter(b, a, Y) MA3[0:total_taps] = 0 ms50 = int(0.05 * sampling_rate) ms200 = int(0.2 * sampling_rate) ms1200 = int(1.2 * sampling_rate) ms350 = int(0.35 * sampling_rate) M = 0 newM5 = 0 M_list = [] MM = [] M_slope = np.linspace(1.0, 0.6, ms1200-ms200) F = 0 F_list = [] R = 0 RR = [] Rm = 0 R_list = [] MFR = 0 MFR_list = [] QRS = [] for i in range(len(MA3)): # M if i < 5 * sampling_rate: M = 0.6 * np.max(MA3[:i + 1]) MM.append(M) if len(MM) > 5: MM.pop(0) elif QRS and i < QRS[-1] + ms200: newM5 = 0.6 * np.max(MA3[QRS[-1]:i]) if newM5 > 1.5 * MM[-1]: newM5 = 1.1 * MM[-1] elif QRS and i == QRS[-1] + ms200: if newM5 == 0: newM5 = MM[-1] MM.append(newM5) if len(MM) > 5: MM.pop(0) M = np.mean(MM) elif QRS and i > QRS[-1] + ms200 and i < QRS[-1] + ms1200: M = np.mean(MM) * M_slope[i-(QRS[-1] + ms200)] elif QRS and i > QRS[-1] + ms1200: M = 0.6 * np.mean(MM) # F if i > ms350: F_section = MA3[i-ms350:i] max_latest = np.max(F_section[-ms50:]) max_earliest = np.max(F_section[:ms50]) F = F + ((max_latest-max_earliest)/150.0) # R if QRS and i < QRS[-1] + int((2.0/3.0 * Rm)): R = 0 elif QRS and i > QRS[-1] + int((2.0/3.0 * Rm)) and i < QRS[-1] + Rm: dec = (M-np.mean(MM))/1.4 R = 0 + dec MFR = M + F + R M_list.append(M) F_list.append(F) R_list.append(R) MFR_list.append(MFR) if not QRS and MA3[i] > MFR: QRS.append(i) elif QRS and i > QRS[-1] + ms200 and MA3[i] > MFR: QRS.append(i) if len(QRS) > 2: RR.append(QRS[-1] - QRS[-2]) if len(RR) > 5: RR.pop(0) Rm = int(np.mean(RR)) QRS.pop(0) QRS = np.array(QRS, dtype='int') return QRS # ============================================================================= # Gamboa (2008) # ============================================================================= def _ecg_findpeaks_gamboa(signal, sampling_rate=1000, tol=0.002): """ From https://github.com/PIA-Group/BioSPPy/blob/e65da30f6379852ecb98f8e2e0c9b4b5175416c3/biosppy/signals/ecg.py#L834 - <NAME>. (2008). Multi-modal behavioral biometrics based on hci and electrophysiology. PhD ThesisUniversidade. """ # convert to samples v_100ms = int(0.1 * sampling_rate) v_300ms = int(0.3 * sampling_rate) hist, edges = np.histogram(signal, 100, density=True) TH = 0.01 F = np.cumsum(hist) v0 = edges[np.nonzero(F > TH)[0][0]] v1 = edges[np.nonzero(F < (1 - TH))[0][-1]] nrm = max([abs(v0), abs(v1)]) norm_signal = signal / float(nrm) d2 = np.diff(norm_signal, 2) b = np.nonzero((np.diff(np.sign(np.diff(-d2)))) == -2)[0] + 2 b = np.intersect1d(b, np.nonzero(-d2 > tol)[0]) if len(b) < 3: rpeaks = [] else: b = b.astype('float') rpeaks = [] previous = b[0] for i in b[1:]: if i - previous > v_300ms: previous = i rpeaks.append(np.argmax(signal[int(i):int(i + v_100ms)]) + i) rpeaks = sorted(list(set(rpeaks))) rpeaks = np.array(rpeaks, dtype='int') return rpeaks # ============================================================================= # Engzee Modified (2012) # ============================================================================= def _ecg_findpeaks_engzee(signal, sampling_rate=1000): """ From https://github.com/berndporr/py-ecg-detectors/ - <NAME>, A single scan algorithm for QRS detection and feature extraction, IEEE Comp. in Cardiology, vol. 6, pp. 37-42, 1979 - <NAME>, <NAME>, <NAME>, <NAME> and <NAME>, "Real Time Electrocardiogram Segmentation for Finger Based ECG Biometrics", BIOSIGNALS 2012, pp. 49-54, 2012. """ engzee_fake_delay = 0 diff = np.zeros(len(signal)) for i in range(4, len(diff)): diff[i] = signal[i]-signal[i-4] ci = [1, 4, 6, 4, 1] low_pass = scipy.signal.lfilter(ci, 1, diff) low_pass[:int(0.2 * sampling_rate)] = 0 ms200 = int(0.2 * sampling_rate) ms1200 = int(1.2 * sampling_rate) ms160 = int(0.16 * sampling_rate) neg_threshold = int(0.01 * sampling_rate) M = 0 M_list = [] neg_m = [] MM = [] M_slope = np.linspace(1.0, 0.6, ms1200-ms200) QRS = [] r_peaks = [] counter = 0 thi_list = [] thi = False thf_list = [] thf = False for i in range(len(low_pass)): # M if i < 5 * sampling_rate: M = 0.6 * np.max(low_pass[:i + 1]) MM.append(M) if len(MM) > 5: MM.pop(0) elif QRS and i < QRS[-1] + ms200: newM5 = 0.6 * np.max(low_pass[QRS[-1]:i]) if newM5 > 1.5 * MM[-1]: newM5 = 1.1 * MM[-1] elif QRS and i == QRS[-1] + ms200: MM.append(newM5) if len(MM) > 5: MM.pop(0) M = np.mean(MM) elif QRS and i > QRS[-1] + ms200 and i < QRS[-1] + ms1200: M = np.mean(MM) * M_slope[i-(QRS[-1] + ms200)] elif QRS and i > QRS[-1] + ms1200: M = 0.6 * np.mean(MM) M_list.append(M) neg_m.append(-M) if not QRS and low_pass[i] > M: QRS.append(i) thi_list.append(i) thi = True elif QRS and i > QRS[-1] + ms200 and low_pass[i] > M: QRS.append(i) thi_list.append(i) thi = True if thi and i < thi_list[-1] + ms160: if low_pass[i] < -M and low_pass[i-1] > -M: # thf_list.append(i) thf = True if thf and low_pass[i] < -M: thf_list.append(i) counter += 1 elif low_pass[i] > -M and thf: counter = 0 thi = False thf = False elif thi and i > thi_list[-1] + ms160: counter = 0 thi = False thf = False if counter > neg_threshold: unfiltered_section = signal[thi_list[-1] - int(0.01 * sampling_rate):i] r_peaks.append(engzee_fake_delay + np.argmax(unfiltered_section) + thi_list[-1] - int(0.01 * sampling_rate)) counter = 0 thi = False thf = False r_peaks = np.array(r_peaks, dtype='int') return r_peaks # ============================================================================= # Stationary Wavelet Transform (SWT) - Kalidas and Tamil (2017) # ============================================================================= def _ecg_findpeaks_kalidas(signal, sampling_rate=1000): """ From https://github.com/berndporr/py-ecg-detectors/ - <NAME> and <NAME> (2017). Real-time QRS detector using Stationary Wavelet Transform for Automated ECG Analysis. In: 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE). Uses the Pan and Tompkins thresolding. """ # Try loading pywt try: import pywt except ImportError: raise ImportError("NeuroKit error: ecg_findpeaks(): the 'PyWavelets' " "module is required for this method to run. ", "Please install it first (`pip install PyWavelets`).") swt_level = 3 padding = -1 for i in range(1000): if (len(signal) + i) % 2 ** swt_level == 0: padding = i break if padding > 0: signal = np.pad(signal, (0, padding), 'edge') elif padding == -1: print("Padding greater than 1000 required\n") swt_ecg = pywt.swt(signal, 'db3', level=swt_level) swt_ecg = np.array(swt_ecg) swt_ecg = swt_ecg[0, 1, :] squared = swt_ecg * swt_ecg f1 = 0.01/sampling_rate f2 = 10/sampling_rate b, a = scipy.signal.butter(3, [f1 * 2, f2 * 2], btype='bandpass') filtered_squared = scipy.signal.lfilter(b, a, squared) filt_peaks = _ecg_findpeaks_peakdetect(filtered_squared, sampling_rate) filt_peaks = np.array(filt_peaks, dtype='int') return filt_peaks # ============================================================================= # Elgendi et al. (2010) # ============================================================================= def _ecg_findpeaks_elgendi(signal, sampling_rate=1000): """ From https://github.com/berndporr/py-ecg-detectors/ - <NAME> & <NAME> & <NAME>. (2010). Frequency Bands Effects on QRS Detection. The 3rd International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS2010). 428-431. """ window1 = int(0.12 * sampling_rate) mwa_qrs = _ecg_findpeaks_MWA(abs(signal), window1) window2 = int(0.6 * sampling_rate) mwa_beat = _ecg_findpeaks_MWA(abs(signal), window2) blocks = np.zeros(len(signal)) block_height = np.max(signal) for i in range(len(mwa_qrs)): if mwa_qrs[i] > mwa_beat[i]: blocks[i] = block_height else: blocks[i] = 0 QRS = [] for i in range(1, len(blocks)): if blocks[i-1] == 0 and blocks[i] == block_height: start = i elif blocks[i-1] == block_height and blocks[i] == 0: end = i-1 if end-start > int(0.08 * sampling_rate): detection = np.argmax(signal[start:end + 1]) + start if QRS: if detection-QRS[-1] > int(0.3 * sampling_rate): QRS.append(detection) else: QRS.append(detection) QRS = np.array(QRS, dtype='int') return QRS # ============================================================================= # Continuous Wavelet Transform (CWT) - Martinez et al. (2003) # ============================================================================= # def _ecg_findpeaks_WT(signal, sampling_rate=1000): # Try loading pywt try: import pywt except ImportError: raise ImportError("NeuroKit error: ecg_delineator(): the 'PyWavelets' " "module is required for this method to run. ", "Please install it first (`pip install PyWavelets`).") # first derivative of the Gaissian signal scales = np.array([1, 2, 4, 8, 16]) cwtmatr, freqs = pywt.cwt(signal, scales, 'gaus1', sampling_period=1.0/sampling_rate) # For wt of scale 2^4 signal_4 = cwtmatr[4, :] epsilon_4 = np.sqrt(np.mean(np.square(signal_4))) peaks_4, _ = scipy.signal.find_peaks(np.abs(signal_4), height=epsilon_4) # For wt of scale 2^3 signal_3 = cwtmatr[3, :] epsilon_3 = np.sqrt(np.mean(np.square(signal_3))) peaks_3, _ = scipy.signal.find_peaks(np.abs(signal_3), height=epsilon_3) # Keep only peaks_3 that are nearest to peaks_4 peaks_3_keep = np.zeros_like(peaks_4) for i in range(len(peaks_4)): peaks_distance = abs(peaks_4[i] - peaks_3) peaks_3_keep[i] = peaks_3[np.argmin(peaks_distance)] # For wt of scale 2^2 signal_2 = cwtmatr[2, :] epsilon_2 = np.sqrt(np.mean(np.square(signal_2))) peaks_2, _ = scipy.signal.find_peaks(np.abs(signal_2), height=epsilon_2) # Keep only peaks_2 that are nearest to peaks_3 peaks_2_keep = np.zeros_like(peaks_4) for i in range(len(peaks_4)): peaks_distance = abs(peaks_3_keep[i] - peaks_2) peaks_2_keep[i] = peaks_2[
np.argmin(peaks_distance)
numpy.argmin
#!/usr/local/bin/python """ Node objective functions Algorithms implemented: 1. naive_greedy_parallel - In each iteration pick 1 node greedily. 2. naive_greedy_heuristic - Pick all k nodes at once greedily. 3. smart_greedy_parallel - In each iteration pick 1 node smart greedily. """ from __future__ import division from markov_chain import MarkovChain import copy import random import numpy as np import networkx as nx from multiprocessing import Pool from multiprocessing import cpu_count from itertools import combinations import argparse np.seterr(all="raise") cores = cpu_count() # ------------------------------------------------------------ # Naive Greedy algorithm # ------------------------------------------------------------ def calculate_F(S): F = np.float128(0.0) V_minus_S = set(mc.G.nodes()) - set(S) predecessors = [] for i in V_minus_S: predecessors += mc.G.predecessors(i) predecessors = set(predecessors) for u in predecessors: F_u = np.float128(0.0) successors = mc.G[u] # Calculate rho rho = np.float128(0.0) for v in successors: if v in S: rho += successors[v]['weight'] # Calculate F_u x_dash = mc.G.node[u]['num_items'] * ( 1 - rho) for v in successors: if v not in S: P_dash = mc.G.edge[u][v]['weight'] / (1 - rho) F_u += P_dash * (1 - P_dash) F_u = x_dash * F_u if np.abs(F_u) < 1e-5: F += 0 else: F += F_u return (S, F) def naive_greedy_parallel(k): pool = Pool(cores) picked_set = [] for i in xrange(k): candidate_nodes = set(mc.G.nodes()) - set(picked_set) candidate_sets = [picked_set + [v] for v in candidate_nodes] objective_values = pool.imap(calculate_F, candidate_sets) objective_values = sorted(objective_values, key=lambda x: x[1]) picked_set = objective_values[0][0] pool.close() pool.join() return calculate_F(picked_set) def naive_greedy_heuristic(k): pool = Pool(cores) picked_set = [] candidate_nodes = [[x] for x in set(mc.G.nodes()) - set(picked_set)] objective_values = pool.imap(calculate_F, candidate_nodes) objective_values = sorted(objective_values, key=lambda x: x[1]) picked_set = [x[0][0] for x in objective_values[:k]] pool.close() pool.join() return calculate_F(picked_set) # ------------------------------------------------------------ # Smart Greedy algorithm # ------------------------------------------------------------ def calculate_smart_F(args): v = args[0] rho_dict = args[1] B_dict = args[2] picked_set = list(args[3]) + list([v]) F =
np.float128(0.0)
numpy.float128
import numpy as np from scipy import signal def data_quality_check(array): """ Check whether the input signal contains NaN, print relevant information input: array: numpy array. The temporal signal with 1d or with multiple dimensions return: None or dict. Dict stores indicator of Nan/Abnormal values. If there is no NaN in signal, return None, else return the index where NaN occurs """ print("*** Data Quality Check ***") def check_nan(array): return np.isnan(array).any() def check_abnormal(array): """ Todo: Define what kinds of EEG data are abnormal in some kinds? """ return None if not check_nan(array) and check_abnormal(array): print("*** Data Quality Check Passed ***") return None else: # return format: tuple(array([a,b,c,...]), array([j,k,l,...]), ...) # Each element in tuple indicates the index list dict = {} if check_nan(array): print("Nan Values appear in data") print("The percentage of Nan Values is {val}%").format(val=sum(np.isnan(array)) / array.shape[0]) print("The location is at {tuple}").format(tuple=np.where(np.isnan(array))) dict["nan"] = np.where(np.isnan(array)) if check_abnormal(array): #Todo: add abnormal values' locations to dict. pass return dict def savgol(array, window_size=5, polyorder=2): """ Apply the Savitzky-Golay fiklter to smooth signals. We support both 1d array input and DEEG standard input (p,m,e). For the later format, we calculate DE on dim "e" and return a (p,m) numpy array. Input ------- array: numpy array or list window_size: int the length of the filter window (i.e., the number of coefficients). window_length` must be a positive odd integer. default is 5. polyorder : int the order of the polynomial used to fit the samples. polyorder must be less than window_length. default is 2. Return ------- y :ndarray same shape as x. The filtered data. """ def create_x(size, rank): # creat weighting coefficients x = [] for i in range(2 * size + 1): m = i - size row = [m ** j for j in range(rank)] x.append(row) x = np.mat(x) return x def SG(array, window_size, polyorder): if window_size % 2 != 1: raise ValueError("window_size must be odd") if polyorder >= window_size: raise ValueError("polyorder must be less than window_lengthd") m = int((window_size - 1) / 2) odata = np.array(array).tolist() for i in range(m): odata.insert(0, odata[0]) odata.insert(len(odata), odata[len(odata) - 1]) # creat X matrix x = create_x(m, polyorder) # calculate the weighting coefficients b = (x * (x.T * x).I) * x.T a0 = b[m] a0 = a0.T # calculate the filtered signal filtered_signal = [] for i in range(len(array)): y = [odata[i + j] for j in range(window_size)] y1 = np.mat(y) * a0 y1 = float(y1) filtered_signal.append(y1) return np.array(filtered_signal) if len(np.array(array).shape) == 1: return SG(array, window_size, polyorder) else: return np.apply_along_axis(SG, axis=-1, arr=array, window_size=window_size, polyorder=polyorder) def filter(array, name="delta", order=5): """ A band-pass filter to suppress signal out of frequency band input: array: numpy array. The input temporal signal with 1d name: str. Specify the filter type commonly used in EEG analysis. (delta, theta, alpha, beta, gamma) order: int. The order of Butterworth filter. Default is 5 return: ts: numpy array. Filtered signal in temporal domain """ if name == "delta": band = [1,3] elif name == "theta": band = [4,7] elif name == "alpha": band = [8,13] elif name == "beta": band = [14,30] elif name == "gamma": band = [31,50] else: raise(Exception("Invalid filter name!")) sos = signal.butter(order, band, 'bp', fs=1000, output='sos') ts = signal.sosfilt(sos, array) return ts def band(array): """ Filter temporal signal by all the 5 filters commonly used in EEG analysis input: signal: numpy array. The input temporal signal. 1d or with multiple dimensions return ts_dict: dictionary. Keys are filter name and values are filtered signal in temporal domain. """ ts_dict = {} if len(array.shape) < 2: for name in ["delta","theta","alpha","beta","gamma"]: ts_dict[name] = filter(array) else: for name in ["delta","theta","alpha","beta","gamma"]: ts_dict[name] =
np.apply_along_axis(filter, -1, array, name)
numpy.apply_along_axis
from __future__ import print_function from __future__ import division __author__ = """Alex "<NAME>""" ## double-quotes will be silently removed, single quotes will be left, eg, O'Connor import numpy as np import itertools #to calculate all subsets from copy import deepcopy from math import atan, pi, cos, sin, sqrt, ceil import time, sys, platform, os, StringIO, gc from psychopy import visual, core import random #If you run this code stand-alone, it will do a demo of the basic stimulus it is designed to provide #BEGIN helper functions from primes.py def gcd(a,b): """Return greatest common divisor using Euclid's Algorithm.""" while b: a, b = b, a % b return a def lcm(a,b): """Return lowest common multiple.""" return (a*b)/gcd(a,b) def LCM(terms): "Return lcm of a list of numbers." return reduce(lambda a,b: lcm(a,b), terms) #END helper functions from primes.py def calcCondsPerNumTargets(numRings,numTargets): #numRings is number of rings, each of which can have up to one target #numTargets is list or array of numTarget conditions, e.g. 1,2,3 means the experiment includes 1, 2, and 3 targets #Each target can be placed randomly in any of the rings. #Want all possibilities to be covered equally often. That means each target number condition has to include all the combinations # of places that number of targets can go. #So that some targetNum conditinos don't have more trials than others, have to scale up each targetNum condition to the worst case. #Actually it's worse than that. To make them fit evenly, have to use least common multiple #3 rings choose 2 for targets, 3 rings choose 1 for target, have to have as many conditions as the maximum. #To find maximum, determine length of each. ringNums = np.arange(numRings) numPossibilitiesEach = list() for k in numTargets: numPossibilitiesCouldPutKtargets = len( list(itertools.combinations(ringNums,k)) ) #print(numPossibilitiesCouldPutKtargets) numPossibilitiesEach.append( numPossibilitiesCouldPutKtargets ) m = max( numPossibilitiesEach ) #because the worst case (number of targets) requires this many, have to have this many for all. Actually, leastCommonMultiple = LCM( numPossibilitiesEach ) #to have equal number of trials per numtargets, would have to use this figure for each #print('biggest=',m, ' Least common multiple=', leastCommonMultiple) return leastCommonMultiple def accelerateComputer(slowFast, process_priority, disable_gc): # process_priority = 'normal' 'high' or 'realtime' if slowFast: if process_priority == 'normal': pass elif process_priority == 'high': core.rush(True) elif process_priority == 'realtime': # Only makes a diff compared to 'high' on Windows. core.rush(True, realtime = True) else: print('Invalid process priority:',process_priority,"Process running at normal.") process_priority = 'normal' if disable_gc: gc.disable() if slowFast==0: #turn off the speed-up if disable_gc: gc.enable() core.rush(False) def openMyStimWindow(monitorSpec,widthPix,heightPix,bgColor,allowGUI,units,fullscr,scrn,waitBlank): #make it a function because have to do it several times, want to be sure is identical each time myWin = visual.Window(monitor=monitorSpec,size=(widthPix,heightPix),allowGUI=allowGUI,units=units,color=bgColor,colorSpace='rgb',fullscr=fullscr,screen=scrn,waitBlanking=waitBlank) #Holcombe lab monitor if myWin is None: print('ERROR: Failed to open window in openMyStimWindow!') core.quit() return myWin def constructRingsAsGratings(myWin,numRings,radii,ringRadialMaskEachRing,numObjects,patchAngle,colors,stimColorIdxsOrder,gratingTexPix,blobToCueEachRing,ppLog): #Originally to construct a grating formed of the colors in order of stimColorIdxsOrder antialiasGrating = True autoLogging = False texEachRing=list() #texture which will draw the ring of objects via openGL texture on grating cueTexEachRing=list() #making a separate grating for the cue, wherein everything background color except the location of the cue ringsRadial=list(); #after making the rings of object, put them in this list cueRings=list() #after making grating for each cue, put it in this cue stimColorIdxsOrder= stimColorIdxsOrder[::-1] #reverse order of indices, because grating texture is rendered in reverse order than is blobs version radialMaskEachRing=[[0,0,0,1,1,] ,[0,0,0,0,0,0,1,1,],[0,0,0,0,0,0,0,0,0,0,1,1,]] numUniquePatches= len( max(stimColorIdxsOrder,key=len) ) numCycles =(1.0*numObjects) / numUniquePatches angleSegment = 360./(numUniquePatches*numCycles) if gratingTexPix % numUniquePatches >0: #gratingTexPix contains numUniquePatches. numCycles will control how many total objects there are around circle ppLog.warn('Warning: could not exactly render a '+str(numUniquePatches)+'-segment pattern radially, will be off by '+str( (gratingTexPix%numUniquePatches)*1.0 /gratingTexPix ) ) if numObjects % numUniquePatches >0: msg= 'Warning: numUniquePatches ('+str(numUniquePatches)+') not go evenly into numObjects'; ppLog.warn(msg) #create texture for red-green-blue-red-green-blue etc. radial grating for i in range(numRings): #myTex.append(np.zeros([gratingTexPix,gratingTexPix,3])+[1,-1,1]) texEachRing.append( np.zeros([gratingTexPix,gratingTexPix,3])+bgColor[0] ) #start with all channels in all locs = bgColor cueTexEachRing.append( np.ones([gratingTexPix,gratingTexPix,3])*bgColor[0] ) if patchAngle > angleSegment: msg='Error: patchAngle requested ('+str(patchAngle)+') bigger than maximum possible ('+str(angleSegment)+') numUniquePatches='+str(numUniquePatches)+' numCycles='+str(numCycles); print(msg); ppLog.error(msg) oneCycleAngle = 360./numCycles segmentSizeTexture = angleSegment/oneCycleAngle *gratingTexPix #I call it segment because includes spaces in between, that I'll write over subsequently patchSizeTexture = patchAngle/oneCycleAngle *gratingTexPix patchSizeTexture = round(patchSizeTexture) #best is odd number, even space on either size patchFlankSize = (segmentSizeTexture-patchSizeTexture)/2. patchAngleActual = patchSizeTexture / gratingTexPix * oneCycleAngle if abs(patchAngleActual - patchAngle) > .01: msg = 'Desired patchAngle = '+str(patchAngle)+' but closest can get with '+str(gratingTexPix)+' gratingTexPix is '+str(patchAngleActual); ppLog.warn(msg) for colrI in range(numUniquePatches): #for that portion of texture, set color start = colrI*segmentSizeTexture end = start + segmentSizeTexture start = round(start) #don't round until after do addition, otherwise can fall short end = round(end) ringColr=list(); for i in range(numRings): ringColr.append(colors[ stimColorIdxsOrder[i][colrI] ]) for colorChannel in range(3): for i in range(numRings): texEachRing[i][:, start:end, colorChannel] = ringColr[i][colorChannel]; for cycle in range(int(round(numCycles))): base = cycle*gratingTexPix/numCycles for i in range(numRings): cueTexEachRing[i][:, base+start/numCycles:base+end/numCycles, colorChannel] = ringColr[1][colorChannel] #draw bgColor area (emptySizeEitherSideOfPatch) by overwriting first and last entries of segment for i in range(numRings): texEachRing[i][:, start:start+patchFlankSize, :] = bgColor[0]; #one flank texEachRing[i][:, end-1-patchFlankSize:end, :] = bgColor[0]; #other flank for cycle in range(int(round(numCycles))): base = cycle*gratingTexPix/numCycles for i in range(numRings): cueTexEachRing[i][:,base+start/numCycles:base+(start+patchFlankSize)/numCycles,:] =bgColor[0]; cueTexEachRing[i][:,base+(end-1-patchFlankSize)/numCycles:base+end/numCycles,:] =bgColor[0] #color the segment to be cued white. First, figure out cue segment len segmentLen = gratingTexPix/numCycles*1/numUniquePatches WhiteCueSizeAdj=0 # adust the white cue marker wingAdd 20110923 if numObjects==3:WhiteCueSizeAdj=110 elif numObjects==6:WhiteCueSizeAdj=25 elif numObjects==12:WhiteCueSizeAdj=-15 elif numObjects==2:WhiteCueSizeAdj=200 for i in range(numRings): #color cue position white if blobToCueEachRing[i] >=0: #-999 means dont cue anything blobToCueCorrectForRingReversal = numObjects-1 - blobToCueEachRing[i] #grating seems to be laid out in opposite direction than blobs, this fixes postCueNumBlobsAway so positive is in direction of motion if blobToCueCorrectForRingReversal==0 and numObjects==12: WhiteCueSizeAdj=0 cueStartEntry = blobToCueCorrectForRingReversal*segmentLen+WhiteCueSizeAdj cueEndEntry = cueStartEntry + segmentLen-2*WhiteCueSizeAdj cueTexEachRing[i][:, cueStartEntry:cueEndEntry, :] = -1*bgColor[0] #-1*bgColor is that what makes it white? blackGrains = round( .25*(cueEndEntry-cueStartEntry) )#number of "pixels" of texture at either end of cue sector to make black. Need to update this to reflect patchAngle cueTexEachRing[i][:, cueStartEntry:cueStartEntry+blackGrains, :] = bgColor[0]; #this one doesn't seem to do anything? cueTexEachRing[i][:, cueEndEntry-1-blackGrains:cueEndEntry, :] = bgColor[0]; angRes = 100 #100 is default. I have not seen any effect. This is currently not printed to log file! for i in range(numRings): ringsRadial.append(visual.RadialStim(myWin, tex=texEachRing[i], color=[1,1,1],size=radii[i],#myTexInner is the actual colored pattern. radial grating used to make it an annulus mask=ringRadialMaskEachRing[i], # this is a 1-D mask dictating the behaviour from the centre of the stimulus to the surround. radialCycles=0, angularCycles=numObjects*1.0/numUniquePatches, angularRes=angRes, interpolate=antialiasGrating, autoLog=autoLogging)) #the mask is radial and indicates that should show only .3-.4 as one moves radially, creating an annulus #end preparation of colored rings #draw cueing grating for tracking task. Have entire grating be empty except for one white sector cueRings.append(visual.RadialStim(myWin, tex=cueTexEachRing[i], color=[1,1,1],size=radii[i], #cueTexInner is white. Only one sector of it shown by mask mask = radialMaskEachRing[i], radialCycles=0, angularCycles=1, #only one cycle because no pattern actually repeats- trying to highlight only one sector angularRes=angRes, interpolate=antialiasGrating, autoLog=autoLogging) )#depth doesn't seem to work, just always makes it invisible? currentlyCuedBlobEachRing = blobToCueEachRing #this will mean that don't have to redraw return ringsRadial,cueRings,currentlyCuedBlobEachRing ######### End constructRingAsGrating ########################################################### ######################################### def constructThickThinWedgeRingsTargetAndCue(myWin,radius,radialMask,radialMaskTarget,cueRadialMask,visibleWedge,numObjects,patchAngleThick,patchAngleThin,bgColor, thickWedgeColor,thinWedgeColor,targetAngleOffset,targetRadialOffset,gratingTexPix,cueColor,objToCue,ppLog): #Construct a grating formed of the colors in order of stimColorIdxsOrder #Also construct a similar cueRing grating with same colors, but one blob potentially highlighted. #cueRing Has different spacing than ringRadial, not sure why, I think because calculations tend to be off as it's #always one cycle. #radialMask doesn't seem to eliminate very-central part, bizarre antialiasGrating = False #Don't set this to true because in present context, it's like imposing a radial Gaussian ramp on each object autoLogging = False numCycles = numObjects segmentAngle = 360./numCycles #create texture for red-green-blue-red-green-blue etc. radial grating #2-D texture which will draw the ring of objects via openGL texture on grating ringTex =
np.zeros([gratingTexPix,gratingTexPix,3])
numpy.zeros
import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.tests.frame.common import zip_frames def test_agg_transform(axis, float_frame): other_axis = 1 if axis in {0, "index"} else 0 with
np.errstate(all="ignore")
numpy.errstate
""" This module contains methods used our implementation of the Asynchronously Parallel Optimization Solver for finding Multiple Minima (APOSMM) method described in detail in the paper `https://doi.org/10.1007/s12532-017-0131-4 <https://doi.org/10.1007/s12532-017-0131-4>`_ """ from __future__ import division from __future__ import absolute_import __all__ = ['aposmm_logic','initialize_APOSMM', 'decide_where_to_start_localopt', 'update_history_dist'] import sys, os, traceback import numpy as np # import scipy as sp from scipy.spatial.distance import cdist from mpi4py import MPI from numpy.lib.recfunctions import merge_arrays from math import log, gamma, pi, sqrt from petsc4py import PETSc import nlopt def aposmm_logic(H,persis_info,gen_specs,_): """ APOSMM as a libEnsemble generation function. Coordinates multiple local optimization runs, starting from points which do not have a better point nearby them. This generation function produces/requires the following fields in ``H``: - ``'x' [n floats]``: Parameters being optimized over - ``'x_on_cube' [n floats]``: Parameters scaled to the unit cube - ``'f' [float]``: Objective function being minimized - ``'local_pt' [bool]``: True if point from a local optimization run, false if it is a sample point - ``'dist_to_unit_bounds' [float]``: Distance to domain boundary - ``'dist_to_better_l' [float]``: Distance to closest better local optimization point - ``'dist_to_better_s' [float]``: Distance to closest better sample optimization point - ``'ind_of_better_l' [int]``: Index of point ``'dist_to_better_l``' away - ``'ind_of_better_s' [int]``: Index of point ``'dist_to_better_s``' away - ``'started_run' [bool]``: True if point has started a local optimization run - ``'num_active_runs' [int]``: Counts number of non-terminated local runs the point is in - ``'local_min' [float]``: True if point has been ruled a local minima and optionally - ``'priority' [float]``: Value quantifying a point's desirability - ``'f_i' [float]``: Value of ith objective component (if calculated one at a time) - ``'fvec' [m floats]``: All objective components (if calculated together) - ``'obj_component' [int]``: Index corresponding to value in ``'f_i``' - ``'pt_id' [int]``: Identify the point When using libEnsemble to do individual objective component evaluations, APOSMM will return ``gen_specs['components']`` copies of each point, but each component=0 version of the point will only be considered when - deciding where to start a run, - best nearby point, - storing the order of the points is the run - storing the combined objective function value - etc Necessary quantities in ``gen_specs`` are: - ``'lb' [n floats]``: Lower bound on search domain - ``'ub' [n floats]``: Upper bound on search domain - ``'initial_sample_size' [int]``: Number of uniformly sampled points that must be returned (with a non-nan value) before a local optimization run is started. - ``'localopt_method' [str]``: Name of an NLopt or PETSc/TAO method Optional ``gen_specs`` entries are: - ``'sample_points' [int]``: The points to be sampled (in the original domain) - ``'combine_component_func' [func]``: Function to combine objective components - ``'components' [int]``: Number of objective components - ``'dist_to_bound_multiple' [float in (0,1]]``: What fraction of the distance to the nearest boundary should the initial step size be in localopt runs - ``'high_priority_to_best_localopt_runs': [bool]``: True if localopt runs with smallest observed function value are given priority - ``'lhs_divisions' [int]``: Number of Latin hypercube sampling partitions (0 or 1 results in uniform sampling) - ``'min_batch_size' [int]``: Lower bound on the number of points given every time APOSMM is called - ``'mu' [float]``: Distance from the boundary that all localopt starting points must satisfy - ``'nu' [float]``: Distance from identified minima that all starting points must satisfy - ``'single_component_at_a_time' [bool]``: True if single objective components will be evaluated at a time - ``'rk_const' [float]``: And ``gen_specs`` convergence tolerances for NLopt and PETSc/TAO: - ``'fatol' [float]``: - ``'ftol_abs' [float]``: - ``'ftol_rel' [float]``: - ``'gatol' [float]``: - ``'grtol' [float]``: - ``'xtol_abs' [float]``: - ``'xtol_rel' [float]``: :Note: ``gen_specs['combine_component_func']`` must be defined when there are multiple objective components. :Note: APOSMM critically uses ``persis_info`` to store information about active runs, order of points in each run, etc. The allocation function must ensure it's always given. :See: ``libensemble/tests/regression_tests/test_branin_aposmm.py`` for basic APOSMM usage. :See: ``libensemble/tests/regression_tests/test_chwirut_aposmm_one_residual_at_a_time.py`` for an example of APOSMM coordinating multiple local optimization runs for an objective with more than one component. """ """ Description of intermediate variables in aposmm_logic: n: domain dimension c_flag: True if giving libEnsemble individual components of fvec to evaluate. (Note if c_flag is True, APOSMM will only use the com n_s: the number of complete evaluations (not just component evaluations) updated_inds: indices of H that have been updated (and so all their information must be sent back to libE manager to update) O: new points to be sent back to the history x_new: when re-running a local opt method to get the next point: stores the first new point requested by a local optimization method pt_in_run: when re-running a local opt method to get the next point: counts function evaluations to know when a new point is given total_pts_in_run: when re-running a local opt method to get the next point: total evaluations in run to be incremented starting_inds: indices where a runs should be started. active_runs: indices of active local optimization runs (currently saved to disk between calls to APOSMM) sorted_run_inds: indices of the considered run (in the order they were requested by the localopt method) x_opt: the reported minimum from a localopt run (disregarded unless exit_code isn't 0) exit_code: 0 if a new localopt point has been found, otherwise it's the NLopt/POUNDERS code samples_needed: counts the number of additional uniformly drawn samples needed """ n, n_s, c_flag, O, rk_const, lhs_divisions, mu, nu = initialize_APOSMM(H, gen_specs) # np.savez('H'+str(len(H)),H=H,gen_specs=gen_specs,persis_info=persis_info) if n_s < gen_specs['initial_sample_size']: updated_inds = set() else: global x_new, pt_in_run, total_pts_in_run # Used to generate a next local opt point updated_inds = update_history_dist(H, gen_specs, c_flag) starting_inds = decide_where_to_start_localopt(H, n_s, rk_const, lhs_divisions, mu, nu) updated_inds.update(starting_inds) for ind in starting_inds: # Find the run number if not np.any(H['started_run']): persis_info['active_runs'] = set() persis_info['run_order'] = {} persis_info['total_runs'] = 0 new_run_num = persis_info['total_runs'] H['started_run'][ind] = 1 H['num_active_runs'][ind] += 1 persis_info['run_order'][new_run_num] = [ind] persis_info['active_runs'].update([new_run_num]) persis_info['total_runs'] +=1 inactive_runs = set() # Find next point in any uncompleted runs using information stored in persis_info for run in persis_info['active_runs']: x_opt, exit_code, persis_info, sorted_run_inds = advance_localopt_method(H, gen_specs, c_flag, run, persis_info) if np.isinf(x_new).all(): assert exit_code>0, "Exit code not zero, but no information in x_new.\n Local opt run " + str(run) + " after " + str(len(sorted_run_inds)) + " evaluations.\n Worker crashing!" # No new point was added. Hopefully at a minimum update_history_optimal(x_opt, H, sorted_run_inds) inactive_runs.add(run) updated_inds.update(sorted_run_inds) else: matching_ind = np.where(np.equal(x_new,O['x_on_cube']).all(1))[0] if len(matching_ind) == 0: persis_info = add_points_to_O(O, x_new, H, gen_specs, c_flag, persis_info, local_flag=1, sorted_run_inds=sorted_run_inds, run=run) else: assert len(matching_ind) == 1, "This point shouldn't have ended up in the O twice!" persis_info['run_order'][run].append(O['sim_id'][matching_ind[0]]) for i in inactive_runs: persis_info['active_runs'].remove(i) persis_info['run_order'].pop(i) # Deletes any information about this run if len(H) == 0: samples_needed = gen_specs['initial_sample_size'] elif 'min_batch_size' in gen_specs: samples_needed = gen_specs['min_batch_size'] - len(O) else: samples_needed = int(not bool(len(O))) # 1 if len(O)==0, 0 otherwise if samples_needed > 0: if 'sample_points' in gen_specs: v = sum(H['local_pt']) x_new = gen_specs['sample_points'][v:v+samples_needed] on_cube = False # We assume the points are on the original domain, not unit cube else: x_new = persis_info['rand_stream'].uniform(0,1,(samples_needed,n)) on_cube = True persis_info = add_points_to_O(O, x_new, H, gen_specs, c_flag, persis_info, on_cube=on_cube) O = np.append(H[np.array(list(updated_inds),dtype=int)][[o[0] for o in gen_specs['out']]],O) return O, persis_info def add_points_to_O(O, pts, H, gen_specs, c_flag, persis_info, local_flag=0, sorted_run_inds=[], run=[], on_cube=True): """ Adds points to O, the numpy structured array to be sent back to the manager """ assert not local_flag or len(pts) == 1, "add_points_to_O does not support this functionality" original_len_O = len(O) len_H = len(H) ub = gen_specs['ub'] lb = gen_specs['lb'] if c_flag: m = gen_specs['components'] assert len_H % m == 0, "Number of points in len_H not congruent to 0 mod 'components'" pt_ids = np.sort(np.tile(np.arange((len_H+original_len_O)/m,(len_H+original_len_O)/m + len(pts)),(1,m))) pts = np.tile(pts,(m,1)) num_pts = len(pts) O.resize(len(O)+num_pts,refcheck=False) # Adds (num_pts) rows of zeros to O if on_cube: O['x_on_cube'][-num_pts:] = pts O['x'][-num_pts:] = pts*(ub-lb)+lb else: O['x_on_cube'][-num_pts:] = (pts-lb)/(ub-lb) O['x'][-num_pts:] = pts O['sim_id'][-num_pts:] = np.arange(len_H+original_len_O,len_H+original_len_O+num_pts) O['local_pt'][-num_pts:] = local_flag O['dist_to_unit_bounds'][-num_pts:] = np.inf O['dist_to_better_l'][-num_pts:] = np.inf O['dist_to_better_s'][-num_pts:] = np.inf O['ind_of_better_l'][-num_pts:] = -1 O['ind_of_better_s'][-num_pts:] = -1 if c_flag: O['obj_component'][-num_pts:] = np.tile(range(0,m),(1,num_pts//m)) O['pt_id'][-num_pts:] = pt_ids if local_flag: O['num_active_runs'][-num_pts] += 1 # O['priority'][-num_pts:] = 1 # O['priority'][-num_pts:] = np.random.uniform(0,1,num_pts) if 'high_priority_to_best_localopt_runs' in gen_specs and gen_specs['high_priority_to_best_localopt_runs']: O['priority'][-num_pts:] = -min(H['f'][persis_info['run_order'][run]]) # Give highest priority to run with lowest function value else: O['priority'][-num_pts:] = persis_info['rand_stream'].uniform(0,1,num_pts) persis_info['run_order'][run].append(O[-num_pts]['sim_id']) else: if c_flag: # p_tmp = np.sort(np.tile(np.random.uniform(0,1,num_pts/m),(m,1))) # If you want all "duplicate points" to have the same priority (meaning libEnsemble gives them all at once) # p_tmp = np.random.uniform(0,1,num_pts) p_tmp = persis_info['rand_stream'].uniform(0,1,num_pts) else: # p_tmp = np.random.uniform(0,1,num_pts) # persis_info['rand_stream'].uniform(lb,ub,(1,n)) if 'high_priority_to_best_localopt_runs' in gen_specs and gen_specs['high_priority_to_best_localopt_runs']: p_tmp = -np.inf*np.ones(num_pts) else: p_tmp = persis_info['rand_stream'].uniform(0,1,num_pts) O['priority'][-num_pts:] = p_tmp # O['priority'][-num_pts:] = 1 return persis_info def update_history_dist(H, gen_specs, c_flag): """ Updates distances/indices after new points that have been evaluated. :See: ``/libensemble/alloc_funcs/start_persistent_local_opt_gens.py`` """ n = len(H['x_on_cube'][0]) updated_inds = set() new_inds = np.where(~H['known_to_aposmm'])[0] if c_flag: for v in np.unique(H['pt_id'][new_inds]): inds = H['pt_id']==v H['f'][inds] = np.inf H['f'][np.where(inds)[0][0]] = gen_specs['combine_component_func'](H['f_i'][inds]) p = np.logical_and.reduce((H['returned'],H['obj_component']==0,~np.isnan(H['f']))) else: p = np.logical_and.reduce((H['returned'],~np.isnan(H['f']))) for new_ind in new_inds: # Loop over new returned points and update their distances if p[new_ind]: H['known_to_aposmm'][new_ind] = True # These points are now known to APOSMM # Compute distance to boundary H['dist_to_unit_bounds'][new_ind] = min(min(np.ones(n) - H['x_on_cube'][new_ind]),min(H['x_on_cube'][new_ind] - np.zeros(n))) dist_to_all = cdist(H['x_on_cube'][[new_ind]], H['x_on_cube'][p], 'euclidean').flatten() new_better_than = H['f'][new_ind] < H['f'][p] # Update any other points if new_ind is closer and better if H['local_pt'][new_ind]: inds_of_p = np.logical_and(dist_to_all < H['dist_to_better_l'][p], new_better_than) updates = np.where(p)[0][inds_of_p] H['dist_to_better_l'][updates] = dist_to_all[inds_of_p] H['ind_of_better_l'][updates] = new_ind else: inds_of_p = np.logical_and(dist_to_all < H['dist_to_better_s'][p], new_better_than) updates = np.where(p)[0][inds_of_p] H['dist_to_better_s'][updates] = dist_to_all[inds_of_p] H['ind_of_better_s'][updates] = new_ind updated_inds.update(updates) # Since we allow equality when deciding better_than_new_l and # better_than_new_s, we have to prevent new_ind from being its own # better point. better_than_new_l = np.logical_and.reduce((~new_better_than, H['local_pt'][p], H['sim_id'][p] != new_ind)) better_than_new_s = np.logical_and.reduce((~new_better_than, ~H['local_pt'][p], H['sim_id'][p] != new_ind)) # Who is closest to ind and better if np.any(better_than_new_l): ind = dist_to_all[better_than_new_l].argmin() H['ind_of_better_l'][new_ind] = H['sim_id'][p][np.nonzero(better_than_new_l)[0][ind]] H['dist_to_better_l'][new_ind] = dist_to_all[better_than_new_l][ind] if np.any(better_than_new_s): ind = dist_to_all[better_than_new_s].argmin() H['ind_of_better_s'][new_ind] = H['sim_id'][p][np.nonzero(better_than_new_s)[0][ind]] H['dist_to_better_s'][new_ind] = dist_to_all[better_than_new_s][ind] # if not ignore_L8: # r_k = calc_rk(len(H['x_on_cube'][0]), n_s, rk_const, lhs_divisions) # H['worse_within_rk'][new_ind][p] = np.logical_and.reduce((H['f'][new_ind] <= H['f'][p], dist_to_all <= r_k)) # # Add trues if new point is 'worse_within_rk' # inds_to_change = np.logical_and.reduce((H['dist_to_all'][p,new_ind] <= r_k, H['f'][new_ind] >= H['f'][p], H['sim_id'][p] != new_ind)) # H['worse_within_rk'][inds_to_change,new_ind] = True # if not H['local_pt'][new_ind]: # H['worse_within_rk'][H['dist_to_all'] > r_k] = False updated_inds.update(new_inds) return updated_inds def update_history_optimal(x_opt, H, run_inds): """ Updated the history after any point has been declared a local minimum """ opt_ind = np.where(np.logical_and(np.equal(x_opt,H['x_on_cube']).all(1),~np.isinf(H['f'])))[0] assert len(opt_ind) == 1, "Why isn't there exactly one optimal point?" assert opt_ind in run_inds, "Why isn't the run optimum a point in the run?" H['local_min'][opt_ind] = 1 H['num_active_runs'][run_inds] -= 1 def advance_localopt_method(H, gen_specs, c_flag, run, persis_info): """ Moves a local optimization method one iteration forward. We currently do this by feeding all past evaluations from a run to the method and then storing the first new point generated """ global x_new, pt_in_run, total_pts_in_run # Used to generate a next local opt point while 1: sorted_run_inds = persis_info['run_order'][run] assert all(H['returned'][sorted_run_inds]) x_new = np.ones((1,len(gen_specs['ub'])))*np.inf; pt_in_run = 0; total_pts_in_run = len(sorted_run_inds) if gen_specs['localopt_method'] in ['LN_SBPLX', 'LN_BOBYQA', 'LN_NELDERMEAD', 'LD_MMA']: if gen_specs['localopt_method'] in ['LD_MMA']: fields_to_pass = ['x_on_cube','f','grad'] else: fields_to_pass = ['x_on_cube','f'] try: x_opt, exit_code = set_up_and_run_nlopt(H[fields_to_pass][sorted_run_inds], gen_specs) except Exception as e: exit_code = 0 print(e.__doc__) print(e.args) print("These are the points in the run that has failed:", H['x_on_cube'][sorted_run_inds]) _, _, tb = sys.exc_info() traceback.print_tb(tb) # Fixed format tb_info = traceback.extract_tb(tb) filename, line, func, text = tb_info[-1] print('An error occurred on line {} in statement {}'.format(line, text)) elif gen_specs['localopt_method'] in ['pounders']: if c_flag: Run_H_F = np.zeros(len(sorted_run_inds),dtype=[('fvec',float,gen_specs['components'])]) for i,ind in enumerate(sorted_run_inds): for j in range(gen_specs['components']): Run_H_F['fvec'][i][j] = H['f_i'][
np.logical_and(H['pt_id']==H['pt_id'][ind], H['obj_component']==j)
numpy.logical_and
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import random import numpy as np from six.moves import xrange import tensorflow as tf from tensorflow.python.framework import random_seed from tefla.core import rnn_cell class RNN_CellTest(tf.test.TestCase): @classmethod def setUpClass(cls): tf.set_random_seed(1) def testAttentionCellFailures(self): with self.assertRaisesRegexp(TypeError, "The parameter cell is not RNNCell."): rnn_cell.AttentionCell(None, 0, None) num_units = 8 with tf.Graph().as_default(): lstm_cell = rnn_cell.LSTMCell(num_units, None) with self.assertRaisesRegexp(ValueError, "attn_length should be greater than zero, got 0"): rnn_cell.AttentionCell(lstm_cell, 0, None) with self.assertRaisesRegexp(ValueError, "attn_length should be greater than zero, got -1"): rnn_cell.AttentionCell(lstm_cell, -1, True) def testAttentionCellZeros(self): num_units = 8 attn_length = 16 batch_size = 3 input_size = 4 with tf.Graph().as_default(): with self.test_session() as sess: with tf.variable_scope("state_is_tuple"): lstm_cell = rnn_cell.LSTMCell(num_units, None) cell = rnn_cell.AttentionCell(lstm_cell, attn_length, None) zeros = tf.zeros([batch_size, num_units], dtype=np.float32) attn_state_zeros = tf.zeros([batch_size, attn_length * num_units], dtype=np.float32) zero_state = ((zeros, zeros), zeros, attn_state_zeros) inputs = tf.zeros([batch_size, input_size], dtype=tf.float32) output, state = cell(inputs, zero_state) self.assertEquals(output.get_shape(), [batch_size, num_units]) self.assertEquals(len(state), 3) self.assertEquals(len(state[0]), 2) self.assertEquals(state[0][0].get_shape(), [batch_size, num_units]) self.assertEquals(state[0][1].get_shape(), [batch_size, num_units]) self.assertEquals(state[1].get_shape(), [batch_size, num_units]) self.assertEquals(state[2].get_shape(), [batch_size, attn_length * num_units]) tensors = [output] + list(state) zero_result = sum([tf.reduce_sum(tf.abs(x)) for x in tensors]) sess.run(tf.global_variables_initializer()) self.assertTrue(sess.run(zero_result) < 1e-6) def testAttentionCellValues(self): num_units = 8 attn_length = 16 batch_size = 3 with tf.Graph().as_default(): with self.test_session() as sess: with tf.variable_scope("state_is_tuple"): lstm_cell = rnn_cell.LSTMCell(num_units, None) cell = rnn_cell.AttentionCell(lstm_cell, attn_length, None) zeros = tf.constant( 0.1 * np.ones([batch_size, num_units], dtype=np.float32), dtype=tf.float32) attn_state_zeros = tf.constant( 0.1 * np.ones([batch_size, attn_length * num_units], dtype=np.float32), dtype=tf.float32) zero_state = ((zeros, zeros), zeros, attn_state_zeros) inputs = tf.constant( np.array([[1., 1., 1., 1.], [2., 2., 2., 2.], [3., 3., 3., 3.]], dtype=np.float32), dtype=tf.float32) output, state = cell(inputs, zero_state) concat_state = tf.concat([state[0][0], state[0][1], state[1], state[2]], 1) sess.run(tf.global_variables_initializer()) output, state = sess.run([output, concat_state]) for i in range(1, batch_size): self.assertTrue(float(np.linalg.norm((output[0, :] - output[i, :]))) > 1e-6) self.assertTrue(float(np.linalg.norm((state[0, :] - state[i, :]))) > 1e-6) def testMultiRNNCellWithStateTuple(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 2]) m_bad = tf.zeros([1, 4]) m_good = (tf.zeros([1, 2]), tf.zeros([1, 2])) # Test incorrectness of state with self.assertRaisesRegexp(ValueError, "Expected state .* a tuple"): rnn_cell.MultiRNNCell( [rnn_cell.GRUCell(2, None) for _ in range(2)], state_is_tuple=True)(x, m_bad) _, ml = rnn_cell.MultiRNNCell( [rnn_cell.GRUCell(2, None) for _ in range(2)], state_is_tuple=True)(x, m_good) sess.run([tf.global_variables_initializer()]) res = sess.run( ml, { x.name: np.array([[1., 1.]]), m_good[0].name: np.array([[0.1, 0.1]]), m_good[1].name: np.array([[0.1, 0.1]]) }) def testHighwayWrapper(self): with self.test_session() as sess: with tf.variable_scope("base_cell", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 3]) m = tf.zeros([1, 3]) base_cell = rnn_cell.GRUCell(3, None, w_init=tf.constant_initializer(0.5)) g, m_new = base_cell(x, m) with tf.variable_scope("hw_cell", initializer=tf.constant_initializer(0.5)): hw_cell = rnn_cell.HighwayCell( rnn_cell.GRUCell(3, None, w_init=tf.constant_initializer(0.5)), None, carry_bias_init=-100.0) g_res, m_new_res = hw_cell(x, m) sess.run([tf.global_variables_initializer()]) res = sess.run([g, g_res, m_new, m_new_res], { x: np.array([[1., 1., 1.]]), m: np.array([[0.1, 0.1, 0.1]]) }) # As carry_bias_init is very negative, the carry gate is 'open' and the # transform gate is 'closed'. This means the output equals the input. self.assertAllClose(res[1], res[0]) # States are left untouched self.assertAllClose(res[2], res[3]) def testNASCell(self): num_units = 6 batch_size = 3 expected_output = np.array([[0.576751, 0.576751, 0.576751, 0.576751, 0.576751, 0.576751], [0.618936, 0.618936, 0.618936, 0.618936, 0.618936, 0.618936], [0.627393, 0.627393, 0.627393, 0.627393, 0.627393, 0.627393]]) expected_state = np.array([[ 0.71579772, 0.71579772, 0.71579772, 0.71579772, 0.71579772, 0.71579772, 0.57675087, 0.57675087, 0.57675087, 0.57675087, 0.57675087, 0.57675087 ], [ 0.78041625, 0.78041625, 0.78041625, 0.78041625, 0.78041625, 0.78041625, 0.6189357, 0.6189357, 0.61893570, 0.6189357, 0.6189357, 0.6189357 ], [ 0.79457647, 0.79457647, 0.79457647, 0.79457647, 0.79457653, 0.79457653, 0.62739348, 0.62739348, 0.62739348, 0.62739348, 0.62739348, 0.62739348 ]]) with self.test_session() as sess: with tf.variable_scope("nas_test", initializer=tf.constant_initializer(0.5)): cell = rnn_cell.NASCell(num_units, None, w_init=tf.constant_initializer(0.5)) inputs = tf.constant( np.array([[1., 1., 1., 1.], [2., 2., 2., 2.], [3., 3., 3., 3.]], dtype=np.float32), dtype=tf.float32) state_value = tf.constant( 0.1 * np.ones((batch_size, num_units), dtype=np.float32), dtype=tf.float32) init_state = rnn_cell.core_rnn_cell.LSTMStateTuple(state_value, state_value) output, state = cell(inputs, init_state) sess.run([tf.global_variables_initializer()]) res = sess.run([output, state]) # This is a smoke test: Only making sure expected values not change. self.assertEqual(len(res), 2) self.assertAllClose(res[0], expected_output) # There should be 2 states in the tuple. self.assertEqual(len(res[1]), 2) # Checking the shape of each state to be batch_size * num_units new_c, new_h = res[1] self.assertEqual(new_c.shape[0], batch_size) self.assertEqual(new_c.shape[1], num_units) self.assertEqual(new_h.shape[0], batch_size) self.assertEqual(new_h.shape[1], num_units) self.assertAllClose(np.concatenate(res[1], axis=1), expected_state) def testNASCellProj(self): num_units = 6 batch_size = 3 num_proj = 5 expected_output = np.array([[1.697418, 1.697418, 1.697418, 1.697418, 1.697418], [1.840037, 1.840037, 1.840037, 1.840037, 1.840037], [1.873985, 1.873985, 1.873985, 1.873985, 1.873985]]) expected_state = np.array([[ 0.69855207, 0.69855207, 0.69855207, 0.69855207, 0.69855207, 0.69855207, 1.69741797, 1.69741797, 1.69741797, 1.69741797, 1.69741797 ], [ 0.77073824, 0.77073824, 0.77073824, 0.77073824, 0.77073824, 0.77073824, 1.84003687, 1.84003687, 1.84003687, 1.84003687, 1.84003687 ], [ 0.78973997, 0.78973997, 0.78973997, 0.78973997, 0.78973997, 0.78973997, 1.87398517, 1.87398517, 1.87398517, 1.87398517, 1.87398517 ]]) with self.test_session() as sess: with tf.variable_scope("nas_proj_test", initializer=tf.constant_initializer(0.5)): cell = rnn_cell.NASCell( num_units, None, w_init=tf.constant_initializer(0.5), num_proj=num_proj) inputs = tf.constant( np.array([[1., 1., 1., 1.], [2., 2., 2., 2.], [3., 3., 3., 3.]], dtype=np.float32), dtype=tf.float32) state_value_c = tf.constant( 0.1 * np.ones((batch_size, num_units), dtype=np.float32), dtype=tf.float32) state_value_h = tf.constant( 0.1 * np.ones((batch_size, num_proj), dtype=np.float32), dtype=tf.float32) init_state = rnn_cell.core_rnn_cell.LSTMStateTuple(state_value_c, state_value_h) output, state = cell(inputs, init_state) sess.run([tf.global_variables_initializer()]) res = sess.run([output, state]) # This is a smoke test: Only making sure expected values not change. self.assertEqual(len(res), 2) self.assertAllClose(res[0], expected_output) # There should be 2 states in the tuple. self.assertEqual(len(res[1]), 2) # Checking the shape of each state to be batch_size * num_units new_c, new_h = res[1] self.assertEqual(new_c.shape[0], batch_size) self.assertEqual(new_c.shape[1], num_units) self.assertEqual(new_h.shape[0], batch_size) self.assertEqual(new_h.shape[1], num_proj) self.assertAllClose(np.concatenate(res[1], axis=1), expected_state) def testConv1DLSTMCell(self): with self.test_session() as sess: shape = [2, 1] filter_size = [3] num_features = 1 batch_size = 2 expected_state_c = np.array( [[[1.80168676], [1.80168676]], [[2.91189098], [2.91189098]]], dtype=np.float32) expected_state_h = np.array( [[[0.83409756], [0.83409756]], [[0.94695842], [0.94695842]]], dtype=np.float32) with tf.variable_scope("root", initializer=tf.constant_initializer(1.0 / 2.0)): x = tf.placeholder(tf.float32, [None, None, 1]) cell = rnn_cell.Conv1DLSTMCell( input_shape=shape, kernel_shape=filter_size, output_channels=num_features, reuse=None, w_init=tf.constant_initializer(1.0 / 2.0)) hidden = cell.zero_state(tf.shape(x)[0], tf.float32) output, state = cell(x, hidden) sess.run([tf.global_variables_initializer()]) res = sess.run( [output, state], { hidden[0].name: np.array([[[1.], [1.]], [[2.], [2.]]]), x.name: np.array([[[1.], [1.]], [[2.], [2.]]]), }) # This is a smoke test, making sure expected values are unchanged. self.assertEqual(len(res), 2) self.assertAllClose(res[0], res[1].h) self.assertAllClose(res[1].c, expected_state_c) self.assertAllClose(res[1].h, expected_state_h) def test_without_residuals(self): inputs = tf.constant(np.random.randn(1, 2), dtype=tf.float32) state = (tf.constant(np.random.randn(1, 2), dtype=tf.float32), tf.constant(np.random.randn(1, 2), dtype=tf.float32)) with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): standard_cell = rnn_cell.MultiRNNCell( [rnn_cell.GRUCell(2, None, w_init=tf.constant_initializer(0.5)) for _ in range(2)], state_is_tuple=True) res_standard = standard_cell(inputs, state, scope="standard") test_cell = rnn_cell.ExtendedMultiRNNCell( [rnn_cell.GRUCell(2, None, w_init=tf.constant_initializer(0.5)) for _ in range(2)]) res_test = test_cell(inputs, state, scope="test") with self.test_session() as sess: sess.run([tf.global_variables_initializer()]) res_standard_, res_test_, = sess.run([res_standard, res_test]) # Make sure it produces the same results as the standard cell self.assertAllClose(res_standard_[0], res_test_[0]) self.assertAllClose(res_standard_[1][0], res_test_[1][0]) self.assertAllClose(res_standard_[1][1], res_test_[1][1]) def _test_with_residuals(self, inputs, **kwargs): """Runs the cell in a session""" inputs = tf.convert_to_tensor(inputs, dtype=tf.float32) state = (tf.constant(np.random.randn(1, 2), dtype=tf.float32), tf.constant(np.random.randn(1, 2), dtype=tf.float32)) with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): test_cell = rnn_cell.ExtendedMultiRNNCell( [rnn_cell.GRUCell(2, None, w_init=tf.constant_initializer(0.5)) for _ in range(2)], residual_connections=True, **kwargs) res_test = test_cell(inputs, state, scope="test") with self.test_session() as sess: sess.run([tf.global_variables_initializer()]) return sess.run(res_test) def _test_constant_shape(self, combiner): """Tests a residual combiner whose shape doesn't change with depth""" inputs =
np.random.randn(1, 2)
numpy.random.randn
import os import numpy as np import cv2 from util import draw_flow from flow_mode_detect import determine_flow_mode, Direction, Motion_pattern import flow_vis def downsample_flow(flow, n_grid_x, n_grid_y, smoothing=True): h, w, _ = flow.shape if h < n_grid_y or w < n_grid_x: # TODO pass linspace_x = np.linspace(0, w, num=n_grid_x+1, endpoint=True) linspace_y = np.linspace(0, h, num=n_grid_y+1, endpoint=True) grids_x = np.round(linspace_x).astype(int) grids_y = np.round(linspace_y).astype(int) if smoothing: flow = cv2.GaussianBlur(flow, ksize=(3,3), sigmaX=3, sigmaY=3, borderType=cv2.BORDER_REPLICATE) flow_vector = np.zeros((n_grid_y, n_grid_x, 2)) for i in range(n_grid_x): x1, x2 = grids_x[i:i+2] for j in range(n_grid_y): y1, y2 = grids_y[j:j+2] flow_vector[i, j] = np.mean(flow[y1:y2, x1:x2, :], axis=(0,1)) return flow_vector def forward_flow(h, w, cx, cy, random=False): grid = np.mgrid[0:h, 0:w] grid[0] -= cy grid[1] -= cx # grid = grid.transpose(1,2,0) flow = np.zeros((h, w, 2)) flow[:, :, 0] = grid[1] / int(h/100) flow[:, :, 1] = grid[0] / int(w/100) if random: flow += np.random.random(flow.shape) * 20 - 10 return flow / 2 def yaw_flow(h, w, cx, cy, random=False): grid = np.mgrid[0:h, 0:w] grid[0] -= cy grid[1] -= cx # grid = grid.transpose(1,2,0) flow = np.zeros((h, w, 2)) flow[:, :, 0] = grid[0] / int(h/100) flow[:, :, 1] = -grid[1] / int(w/100) if random: flow += np.random.random(flow.shape) * 20 - 10 return flow def uniform_flow(h, w, mx, my, random=False): flow = np.zeros((h, w, 2)) flow[:, :, 0] = mx flow[:, :, 1] = my if random: # # TODO independent gaussian random is not a good idea for flow # flow = np.random.normal(loc=[mx, my], scale=[0.05*mx, 0.05*my], size=(h, w, 2)) min_mag = min(mx, my) min_mag = max(min_mag, 10) flow += np.random.random(flow.shape) * (0.5*min_mag) - 0.25*min_mag return flow if __name__ == '__main__': cv2.destroyAllWindows() h, w = 601, 971 h0, w0 = 256, 832 # h0, w0 = 61, 200 cx, cy = int(w/2), int(h/2) if False: mode_name = 'Ascending' # flow = forward_flow(h, w, cx, cy, False) flow = uniform_flow(h, w, mx=50, my=10, random=True) # flow = yaw_flow(h, w, cx, cy, False) # flow = yaw_flow(h, w, cx-50, cy-50, False) # n_grid = 16 # step = (int(flow.shape[0] / n_grid), int(flow.shape[1] / n_grid)) step = 32 flow = cv2.resize(flow, (w0, h0)) arrows_only = draw_flow(np.ones((h0, w0, 3)) * 255, flow, step=step, color=(0, 0, 0), random=True) # arrows_only = cv2.resize(arrows_only, (832, 256)) cv2.imshow('flow arrows', arrows_only) flow_color = flow_vis.flow_to_color(flow, convert_to_bgr=False) # flow_color = cv2.resize(flow_color, (832, 256)) cv2.imshow('flow color', flow_color) key = cv2.waitKey(0) if key == 32: # if False: # save this frame save_file = 'flow_pattern_vector_' + mode_name + '.png' # cv2.imwrite(save_file, img_arrows) cv2.imwrite(save_file, arrows_only) print(save_file, 'saved') save_file = 'flow_pattern_color_' + mode_name + '.png' cv2.imwrite(save_file, flow_color) print('\t', save_file, 'saved') exit(0) else: # Ubuntu flow_dir = '/home/yu/datasets/KITTI/dataset/sequences/00/flow/' img_dir = '/home/yu/datasets/KITTI/dataset/sequences/00/image_2_reshape/' # XPS # flow_dir = r'C:\D_Drive\datasets\kitti\dataset\sequences\00\flow' # img_dir = r'C:\D_Drive\datasets\kitti\dataset\sequences\00\image_2_reshape' flow_files = sorted([f for f in os.listdir(flow_dir) if 'fwd' in f]) img_files = sorted(os.listdir(img_dir)) # pattern_sum = np.zeros((4,4)) # pattern_cnt = 0 last_motion_mode = None # stds = [] start = 98 end = 99 n_grid = 8 # for flow_filename, img_filename in zip(flow_files[100:250], img_files[101:251]): # for flow_filename, img_filename in zip(flow_files[0:85], img_files[1:86]): for flow_filename, img_filename in zip(flow_files[start:end], img_files[start+1:end+1]): # for flow_filename, img_filename in zip(flow_files, img_files[1:]): flow = np.load(os.path.join(flow_dir, flow_filename)) flow = flow[0].transpose(1,2,0) # resize flow # # h_new, w_new = int(flow.shape[0]/n_grid), int(flow.shape[1]/n_grid) # # flow = cv2.resize(flow, (w_new, h_new), interpolation=cv2.INTER_NEAREST) # flow = cv2.resize(flow, (n_grid, n_grid), interpolation=cv2.INTER_NEAREST) flow_vector = downsample_flow(flow, n_grid, n_grid, smoothing=True) motion_mode, retval = determine_flow_mode(flow_vector) print(flow_filename, motion_mode, retval) # pattern, trend = determine_flow_mode(flow) # pattern_sum = pattern_sum + pattern # pattern_cnt += 1 # flow = cv2.resize(flow, (w, h), interpolation=cv2.INTER_NEAREST) step = (int(flow.shape[0]/n_grid), int(flow.shape[1]/n_grid)) # step = 32 # # draw on white background # img_arrows = draw_flow(np.ones((flow.shape[0], flow.shape[1], 3))*255, flow, step=step, random=True) # # draw on color images img = cv2.imread(os.path.join(img_dir, img_filename)) # img_arrows = draw_flow(img, flow, step=step, color=(0,255,0), random=True) flow_color = flow_vis.flow_to_color(flow * 2, convert_to_bgr=False) arrows_only = draw_flow(
np.ones_like(img)
numpy.ones_like
from collections import defaultdict from pathlib import Path from textwrap import dedent import networkx as nx import numpy as np from Qiber3D import Render, Figure, IO from Qiber3D import config, helper class Segment: """ Class representing the small element in a network :param point: ordered list of points forming the Segment :type point: ndarray :param radius: radii (same order as `point`) :type radius: ndarray :param segment_index: unique identifier :type segment_index: int :ivar sid: unique segment identifier :vartype aid: int :ivar point: ordered points forming the Segment :vartype point: ndarray :ivar x: ordered list of x coordinates :vartype x: ndarray :ivar y: ordered list of y coordinates :vartype y: ndarray :ivar z: ordered list of z coordinates :vartype z: ndarray :ivar radius: radii in same order as `point` (also available as **r**) :vartype radius: ndarray :ivar average_radius: average radius :vartype average_radius: float :ivar cylinder_radius: radius if segment is interpreted as single cylinder :vartype cylinder_radius: float :ivar diameter: diameters in same order as `point` (also available as **d**) :vartype diameter: ndarray :ivar average_diameter: average diameters :vartype average_diameter: float :ivar start: start point coordinates :vartype start: tuple :ivar end: end point coordinates :vartype end: tuple :ivar vector: vectors between points :vartype vector: ndarray :ivar direction: vector pointing from `start` to `end` :vartype direction: ndarray :ivar length: length from `start` to `end` :vartype length: float :ivar volume: Segment volume modeled as truncated cones :vartype volume: float """ def __init__(self, point, radius, segment_index): self.sid = segment_index if len(point) < 2: raise ValueError self.point = point self.radius = radius self.start = tuple(round(p, 4) for p in self.point[0]) self.end = tuple(round(p, 4) for p in self.point[-1]) self.vector = np.diff(self.point, axis=0) self.direction = np.sum(self.vector, axis=0) self.length = np.sum(np.linalg.norm(self.vector, axis=1)) self._color = config.render.color self.volume = np.sum(np.linalg.norm(self.vector, axis=1) * np.pi / 3 * ( self.radius[1:] ** 2 + self.radius[:-1] ** 2 + (self.radius[1:]) * (self.radius[:-1]))) @property def r(self): return self.radius @property def diameter(self): return self.radius * 2.0 @property def d(self): return self.diameter @property def average_diameter(self): return np.average(self.diameter) @property def average_radius(self): return np.average(self.radius) @property def cylinder_radius(self): return np.sqrt((self.volume/self.length)/np.pi) @property def x(self): return self.point[:, 0] @property def y(self): return self.point[:, 1] @property def z(self): return self.point[:, 2] def __len__(self): return len(self.point) def __str__(self): info = f"""\ Segment ID: {self.sid} Number of parts: {len(self)} Total length: {self.length:.2f} Total volume: {self.volume:.2f} Average radius: {self.average_radius:.2f} Cylinder radius: {self.cylinder_radius:.2f}""" return dedent(info) def __repr__(self): return f'Segment {self.sid} l={self.length:.2f}, V={self.volume:.2f}' class Fiber: """ Class representing the large elements in a network :param network: overarching network :type network: :class:`Network` :param fiber_id: unique fiber identifier :type fiber_id: int :param segment_ids: list of segment identifier forming the **Fiber** :type segment_ids: list :ivar fid: unique fiber identifier :vartype aid: int :ivar segment: directory of :class:`Segment` forming the :class:`Fiber` :vartype aid: dict :ivar average_radius: average radius :vartype average_radius: float :ivar cylinder_radius: radius if segment is interpreted as single cylinder :vartype cylinder_radius: float :ivar average_diameter: average diameters :vartype average_diameter: float :ivar length: overall length :vartype length: float :ivar volume: overall volume modeled as truncated cones :vartype volume: float :ivar graph: :class:`Fiber` represented as networkx graph :vartype graph: nx.Graph """ def __init__(self, network, fiber_id, segment_ids): self.fid = fiber_id self.sid_list = list(segment_ids) self.segment = {sid: network.segment[sid] for sid in segment_ids} self.graph = nx.Graph() for segment in self.segment.values(): self.graph.add_edge(network.node_lookup[segment.start], network.node_lookup[segment.end], length=segment.length, radius=segment.cylinder_radius, volume=segment.volume, tree_max_length=-segment.length, tree_max_volume=-segment.volume, sid=segment.sid) @property def volume(self): return sum([segment.volume for segment in self.segment.values()]) @property def length(self): return sum([segment.length for segment in self.segment.values()]) @property def cylinder_radius(self): return np.sqrt((self.volume / self.length) / np.pi) @property def average_radius(self): return np.average([segment.average_radius for segment in self.segment.values()]) @property def average_diameter(self): return 2.0 * np.average([segment.average_radius for segment in self.segment.values()]) def __len__(self): return len(self.sid_list) def __str__(self): info = f"""\ Fiber ID: {self.fid} Number of segments: {len(self)} Total length: {self.length:.2f} Total volume: {self.volume:.2f} Average radius: {self.average_radius:.2f} Cylinder radius: {self.cylinder_radius:.2f}""" return dedent(info) def __repr__(self): return f'Fiber {self.fid} l={self.length:.2f}, V={self.volume:.2f}' class Network: """ Class representing the complete network :param data: metadata and segment data collection :type data: dict :ivar segment: directory of :class:`Segment` forming the :class:`Network` :vartype aid: dict :ivar fiber: directory of :class:`Fiber` forming the :class:`Network` :vartype aid: dict :ivar average_radius: average radius :vartype average_radius: float :ivar cylinder_radius: radius if segment is interpreted as single cylinder :vartype cylinder_radius: float :ivar average_diameter: average diameters :vartype average_diameter: float :ivar length: overall length :vartype length: float :ivar volume: overall volume modeled as truncated cones :vartype volume: float :ivar number_of_fibers: fiber count :vartype volume: int :ivar vector: vectors between points :vartype vector: ndarray :ivar direction: vector pointing from `start` to `end` :vartype direction: ndarray :ivar bbox: bounding box corners :vartype bbox: ndarray :ivar bbox_volume: bounding box volume :vartype bbox: float :ivar center: bounding box center :vartype center: ndarray :ivar bbox_size: bounding box size :vartype bbox_size: ndarray """ def __init__(self, data): self.logger = helper.get_logger() if isinstance(data['path'], Path): self.input_file = data['path'] self.input_file_name = self.input_file.name else: if data['path'] is None: self.input_file_name = 'memory' self.input_file = None else: self.input_file_name = Path(data['path']) self.input_file = self.input_file.name self.name = data['name'] raw_segments = data['segments'] self.extractor_steps = None self.extractor_data = None self.segment = {} points = set() self.available_segments = list(raw_segments.keys()) self.available_segments.sort() self.cross_point_dict = defaultdict(list) for i in self.available_segments: i = int(i) try: self.segment[i] = Segment(raw_segments[i]['points'], raw_segments[i]['radius'], i) for point in self.segment[i].point: self.cross_point_dict[(round(point[0], 4), round(point[1], 4), round(point[2], 4))].append(i) points.add((point[0], point[1], point[2])) except ValueError: self.logger.warning('Missing Segment {i}') pass self.cross_point_dict = {point: tuple(sids) for point, sids in self.cross_point_dict.items() if len(sids) > 1} self.node_lookup = helper.LookUp() node_id = 0 for segment in self.segment.values(): for key in ('start', 'end'): point = getattr(segment, key) if point not in self.node_lookup: self.node_lookup[point] = node_id node_id += 1 self.fiber = self.__cluster_segments() self.separate_segments = [fiber.sid_list[0] for fiber in self.fiber.values() if len(fiber) == 1] self.clustered_segments = [fiber.sid_list for fiber in self.fiber.values() if len(fiber) > 1] self.point = np.array(list(points)) self.bbox = np.zeros((2, 3), dtype='f8') self.bbox[0] = np.min(self.point, axis=0) self.bbox[1] = np.max(self.point, axis=0) self.center = self.bbox[0] + (self.bbox[1] - self.bbox[0]) / 2.0 self.bbox_size = self.bbox[1] - self.bbox[0] self.bbox_volume = np.product(self.bbox_size) self.vector = np.vstack([seg.vector for seg in self.segment.values()]) self.direction = np.array([seg.direction for seg in self.segment.values()]) self.spherical_vector = helper.convert_to_spherical(helper.remove_direction(self.vector)) self.spherical_direction = helper.convert_to_spherical(helper.remove_direction(self.direction)) self.render = Render(self) self.figure = Figure(self) pass def save(self, out_path='.', overwrite=False, save_steps=False): """ Save network to file. :param out_path: file or folder path where to save the network :type out_path: str, Path :param overwrite: allow file overwrite :type overwrite: bool :param save_steps: add extraction steps to the saved file :type save_steps: bool :return: path to saved file :rtype: Path """ out_path = IO.export.binary(self, out_path=out_path, overwrite=overwrite, save_steps=save_steps) if out_path is not None: self.logger.info(f"Network saved to {out_path.absolute()}") return out_path def export(self, out_path='.', overwrite=False, mode=None, **kwargs): """ Export the network data. Available file types: :file:`.json`, :file:`.qiber`, :file:`.swc`, :file:`.xlsx`, :file:`.csv`, :file:`.static`, :file:`.tif` or :file:`.mv3d`. For more details see :class:`Qiber3D.io.IO`. :param out_path: file or folder path where to save the network :type out_path: str, Path :param overwrite: :param mode: :param kwargs: :return: """ out_path = IO.export(self, out_path, overwrite=overwrite, mode=mode, **kwargs) if out_path is not None: self.logger.info(f"Network exported to {out_path.absolute()}") return out_path @staticmethod def load(path, **kwargs): """ Load a :class:`Network`. Available file types: :file:`.tif`, :file:`.nd2`, :file:`.json`, :file:`.qiber`, :file:`.swc`, :file:`.ntr`, :file:`.csv`, or :file:`.mv3d`. For more details see :class:`Qiber3D.io.IO`. :param path: file path to input file :type path: str, Path :return: :class:`Qiber3D.Network` """ return IO.load(path, **kwargs) def __cluster_segments(self): clusters = [] sid_connections = set(self.cross_point_dict.values()) work_list = set(self.available_segments) while work_list: i = work_list.pop() new_cluster = {i} connections_to_clean = True while connections_to_clean: connections_to_clean = [] for connection in sid_connections: for part in connection: if part in new_cluster: new_cluster.update(connection) connections_to_clean.append(connection) break for connection in connections_to_clean: sid_connections.remove(connection) clusters.append(new_cluster) work_list = work_list.difference(new_cluster) fibers = {} for fid, cluster in enumerate(clusters): fibers[fid] = Fiber(self, fid, cluster) return fibers @property def volume(self): return sum([segment.volume for segment in self.segment.values()]) @property def raster_volume(self): raw_volume =
np.sum(self.render.raster)
numpy.sum
import os from collections import defaultdict import numpy as np import xml.dom.minidom import math from datetime import datetime as dt from datetime import timezone from echopype.convert.utils.set_groups import SetGroups from struct import unpack from echopype._version import get_versions ECHOPYPE_VERSION = get_versions()['version'] del get_versions class ConvertAZFP: """Class for converting AZFP `.01A` files """ def __init__(self, _path='', _xml_path=''): self.path = _path self.xml_path = _xml_path self.file_name = os.path.basename(self.path) self.FILE_TYPE = 64770 self.HEADER_SIZE = 124 self.HEADER_FORMAT = ">HHHHIHHHHHHHHHHHHHHHHHHHHHHHHHHHHHBBBBHBBBBBBBBHHHHHHHHHHHHHHHHHHHH" self.parameters = { # a dict container for various params # FILE LOADING AND AVERAGING: # WJ: choice of folder and file should be explicit in from Class Convert, so comment out the below # 'proc_dir': 1, # 1 will prompt for an entire directory to process # 0 will prompt to load individual files in a directory # WJ: remove the hard-coded filenames and require user to specify as inputs # 'data_file_name': "12022316.01A", # "" will prompt for hourly AZFP files to load # "" will prompt for XML filename if no XML file exists in the directory # 'xml_file_name': "12022310.XML", 'platform_name': "", # Name of the platform. Set with actual value 'platform_type': "", # Type of platform. Set with actual value 'platform_code_ICES': "", # Code for the platform. Set with actual value # WJ: there's setter and getter for salinity and pressure, so comment out below for now # 'salinity': 29.6, # Salinity in psu # 'pressure': 60, # in dbars (~ depth of instrument in meters) # can be approximate. Used in soundspeed and absorption calc # 'hourly_avg_temp': 5, # Default value if no AZFP temperature is found. # Used to calculate sound-speed and range # we require users to explicitly set temp for calculating ss and range in mode class # PLOTTING WJ: delete plot/channel/value_2_plot below since plotting is in viz module # 'plot': 1, # Show an echogram plot for each channel # 'channel': 1, # freq to plot #1-4, Default = 1 # 'value_2_plot': 2, # 1,2,3,4 = Counts, Sv, TS, Temperature/Tilts, default 2 # for Sv and Ts plotting only, values with counts < NoiseFloor will set to -150, # can use individual values for each frequency, ex. "noise_floor: [10000,11000,11000,11500]" # 'noise_floor': 10000, # Default = 10000 WJ: this should be in model module, have made a note there # Instrument on the bottom looking up (range bins), 1 at surface looking down (depth bins). # This changes the y dir on the echogram plots only. # 'orientation': 1, # Default = 1 WJ: not used as echogram plotting is in viz module # Use tilt corrected ranges for the echogram plots # Will give a warning if the tilt magnitudes are unreasonable (>20 deg) # 'use_tilt_corr': 0 # Default = 0 WJ: now an input flag for in AZFP model method calc_range } # Adds to self.parameters the contents of the xml file self.loadAZFPxml() # Initialize variables that'll be filled later self.nc_path = None self.unpacked_data = None def loadAZFPxml(self): """Parses the AZFP XML file. """ def get_value_by_tag_name(tag_name, element=0): """Returns the value in an XML tag given the tag name and the number of occurrences.""" return px.getElementsByTagName(tag_name)[element].childNodes[0].data # TODO: consider writing a ParamAZFPxml class for storing parameters px = xml.dom.minidom.parse(self.xml_path) self.parameters['num_freq'] = int(get_value_by_tag_name('NumFreq')) self.parameters['serial_number'] = int(get_value_by_tag_name('SerialNumber')) self.parameters['burst_interval'] = float(get_value_by_tag_name('BurstInterval')) self.parameters['pings_per_burst'] = int(get_value_by_tag_name('PingsPerBurst')) self.parameters['average_burst_pings'] = int(get_value_by_tag_name('AverageBurstPings')) # Temperature coeff self.parameters['ka'] = float(get_value_by_tag_name('ka')) self.parameters['kb'] = float(get_value_by_tag_name('kb')) self.parameters['kc'] = float(get_value_by_tag_name('kc')) self.parameters['A'] = float(get_value_by_tag_name('A')) self.parameters['B'] = float(get_value_by_tag_name('B')) self.parameters['C'] = float(get_value_by_tag_name('C')) # tilts self.parameters['X_a'] = float(get_value_by_tag_name('X_a')) self.parameters['X_b'] = float(get_value_by_tag_name('X_b')) self.parameters['X_c'] = float(get_value_by_tag_name('X_c')) self.parameters['X_d'] = float(get_value_by_tag_name('X_d')) self.parameters['Y_a'] = float(get_value_by_tag_name('Y_a')) self.parameters['Y_b'] = float(get_value_by_tag_name('Y_b')) self.parameters['Y_c'] = float(get_value_by_tag_name('Y_c')) self.parameters['Y_d'] = float(get_value_by_tag_name('Y_d')) # Initializing fields for each transducer frequency self.parameters['dig_rate'] = [] self.parameters['lock_out_index'] = [] self.parameters['gain'] = [] self.parameters['pulse_length'] = [] self.parameters['DS'] = [] self.parameters['EL'] = [] self.parameters['TVR'] = [] self.parameters['VTX'] = [] self.parameters['BP'] = [] self.parameters['range_samples'] = [] self.parameters['range_averaging_samples'] = [] # Get parameters for each transducer frequency for freq_ch in range(self.parameters['num_freq']): self.parameters['range_samples'].append(int(get_value_by_tag_name('RangeSamples', freq_ch))) self.parameters['range_averaging_samples'].append(int(get_value_by_tag_name('RangeAveragingSamples', freq_ch))) self.parameters['dig_rate'].append(float(get_value_by_tag_name('DigRate', freq_ch))) self.parameters['lock_out_index'].append(float(get_value_by_tag_name('LockOutIndex', freq_ch))) self.parameters['gain'].append(float(get_value_by_tag_name('Gain', freq_ch))) self.parameters['pulse_length'].append(float(get_value_by_tag_name('PulseLen', freq_ch))) self.parameters['DS'].append(float(get_value_by_tag_name('DS', freq_ch))) self.parameters['EL'].append(float(get_value_by_tag_name('EL', freq_ch))) self.parameters['TVR'].append(float(get_value_by_tag_name('TVR', freq_ch))) self.parameters['VTX'].append(float(get_value_by_tag_name('VTX0', freq_ch))) self.parameters['BP'].append(float(get_value_by_tag_name('BP', freq_ch))) self.parameters['sensors_flag'] = float(get_value_by_tag_name('SensorsFlag')) @staticmethod def get_fields(): """Returns the fields contained in each header of the raw file.""" _fields = ( ('profile_flag', 'u2'), ('profile_number', 'u2'), ('serial_number', 'u2'), ('ping_status', 'u2'), ('burst_int', 'u4'), ('year', 'u2'), # Year ('month', 'u2'), # Month ('day', 'u2'), # Day ('hour', 'u2'), # Hour ('minute', 'u2'), # Minute ('second', 'u2'), # Second ('hundredths', 'u2'), # Hundredths of a second ('dig_rate', 'u2', 4), # Digitalization rate for each channel ('lockout_index', 'u2', 4), # Lockout index for each channel ('num_bins', 'u2', 4), # Number of bins for each channel ('range_samples_per_bin', 'u2', 4), # Range samples per bin for each channel ('ping_per_profile', 'u2'), # Number of pings per profile ('avg_pings', 'u2'), # Flag indicating whether the pings average in time ('num_acq_pings', 'u2'), # Pings acquired in the burst ('ping_period', 'u2'), # Ping period in seconds ('first_ping', 'u2'), ('last_ping', 'u2'), ('data_type', "u1", 4), # Datatype for each channel 1=Avg unpacked_data (5bytes), 0=raw (2bytes) ('data_error', 'u2'), # Error number is an error occurred ('phase', 'u1'), # Phase number used to acquire this profile ('overrun', 'u1'), # 1 if an overrun occurred ('num_chan', 'u1'), # 1, 2, 3, or 4 ('gain', 'u1', 4), # gain channel 1-4 ('spare_chan', 'u1'), # spare channel ('pulse_length', 'u2', 4), # Pulse length chan 1-4 uS ('board_num', 'u2', 4), # The board the data came from channel 1-4 ('frequency', 'u2', 4), # frequency for channel 1-4 in kHz ('sensor_flag', 'u2'), # Flag indicating if pressure sensor or temperature sensor is available ('ancillary', 'u2', 5), # Tilt-X, Y, Battery, Pressure, Temperature ('ad', 'u2', 2) # AD channel 6 and 7 ) return _fields # TODO: move these setter and getter to the Convert class """Setters and getters for platform information""" @property def platform_name(self): return self.parameters['platform_name'] @platform_name.setter def platform_name(self, platform_name): self.parameters['platform_name'] = platform_name @property def platform_type(self): return self.parameters['platform_type'] @platform_type.setter def platform_type(self, platform_type): self.parameters['platform_type'] = platform_type @property def platform_code_ICES(self): return self.parameters['platform_code_ICES'] @platform_code_ICES.setter def platform_code_ICES(self, platform_code_ICES): self.parameters['platform_code_ICES'] = platform_code_ICES def _split_header(self, raw, header_unpacked, ping_num, unpacked_data, fields): """Splits the header information into a dictionary. Parameters ---------- raw open binary file header_unpacked output of struct unpack of raw file ping_num ping number unpacked_data current unpacked data fields fields to be unpacked for each ping, defined in ``get_fields`` Returns ------- True or False depending on whether the unpacking was successful """ if header_unpacked[0] != self.FILE_TYPE: # first field should match hard-coded FILE_TYPE from manufacturer check_eof = raw.read(1) if check_eof: print("Error: Unknown file type") return False header_byte_cnt = 0 firmware_freq_len = 4 # fields with num_freq data still takes 4 bytes, the extra bytes contain random numbers field_w_freq = ('dig_rate', 'lockout_index', 'num_bins', 'range_samples_per_bin', # fields with num_freq data 'data_type', 'gain', 'pulse_length', 'board_num', 'frequency') for field in fields: if field[0] in field_w_freq: # fields with num_freq data unpacked_data[field[0]].append( header_unpacked[header_byte_cnt:header_byte_cnt + self.parameters['num_freq']]) # unpacked_data[ping_num][field[0]] = \ # header_unpacked[header_byte_cnt:header_byte_cnt + self.parameters['num_freq']] header_byte_cnt += firmware_freq_len elif len(field) == 3: # other longer fields ('ancillary' and 'ad') unpacked_data[field[0]].append(header_unpacked[header_byte_cnt:header_byte_cnt + field[2]]) # unpacked_data[ping_num][field[0]] = \ # header_unpacked[header_byte_cnt:header_byte_cnt + field[2]] header_byte_cnt += field[2] else: unpacked_data[field[0]].append(header_unpacked[header_byte_cnt]) # unpacked_data[ping_num][field[0]] = header_unpacked[header_byte_cnt] header_byte_cnt += 1 return True def _add_counts(self, raw, ping_num, unpacked_data): """Unpacks the echosounder raw data. Modifies unpacked_data in place. Parameters ---------- raw open binary file ping_num ping number unpacked_data current unpacked data """ vv_tmp = [[]] * unpacked_data['num_chan'][ping_num] for freq_ch in range(unpacked_data['num_chan'][ping_num]): counts_byte_size = unpacked_data['num_bins'][ping_num][freq_ch] if unpacked_data['data_type'][ping_num][freq_ch]: if unpacked_data['avg_pings'][ping_num]: # if pings are averaged over time divisor = unpacked_data['ping_per_profile'][ping_num] * \ unpacked_data['range_samples_per_bin'][ping_num][freq_ch] else: divisor = unpacked_data['range_samples_per_bin'][ping_num][freq_ch] ls = unpack(">" + "I" * counts_byte_size, raw.read(counts_byte_size * 4)) # Linear sum lso = unpack(">" + "B" * counts_byte_size, raw.read(counts_byte_size * 1)) # linear sum overflow v = (np.array(ls) + np.array(lso) * 4294967295) / divisor v = (np.log10(v) - 2.5) * (8 * 65535) * self.parameters['DS'][freq_ch] v[np.isinf(v)] = 0 vv_tmp[freq_ch] = v else: counts_chunk = raw.read(counts_byte_size * 2) counts_unpacked = unpack(">" + "H" * counts_byte_size, counts_chunk) vv_tmp[freq_ch] = counts_unpacked unpacked_data['counts'].append(vv_tmp) def _print_status(self, path, unpacked_data): """Prints message to console giving information about the raw file being parsed Parameters ---------- path path to the 01A file unpacked_data current unpacked data """ filename = os.path.basename(path) timestamp = dt(unpacked_data['year'][0], unpacked_data['month'][0], unpacked_data['day'][0], unpacked_data['hour'][0], unpacked_data['minute'][0], int(unpacked_data['second'][0] + unpacked_data['hundredths'][0] / 100)) timestr = timestamp.strftime("%Y-%b-%d %H:%M:%S") (pathstr, xml_name) = os.path.split(self.xml_path) print(f"{dt.now().strftime('%H:%M:%S')} converting file {filename} with {xml_name}, " f"time of first ping {timestr}") def check_uniqueness(self): """Check for ping-by-ping consistency of sampling parameters and reduce if identical. Those included in this function should be identical throughout all pings. Therefore raise error if not identical. """ if not self.unpacked_data: self.parse_raw() field_w_freq = ('dig_rate', 'lockout_index', 'num_bins', 'range_samples_per_bin', # fields with num_freq data 'data_type', 'gain', 'pulse_length', 'board_num', 'frequency') field_include = ('profile_flag', 'serial_number', # fields to reduce size if the same for all pings 'burst_int', 'ping_per_profile', 'avg_pings', 'ping_period', 'phase', 'num_chan', 'spare_chan') for field in field_w_freq: uniq = np.unique(self.unpacked_data[field], axis=0) if uniq.shape[0] == 1: self.unpacked_data[field] = uniq.squeeze() else: raise ValueError(f"Header value {field} is not constant for each ping") for field in field_include: uniq = np.unique(self.unpacked_data[field]) if uniq.shape[0] == 1: self.unpacked_data[field] = uniq.squeeze() else: raise ValueError(f"Header value {field} is not constant for each ping") def parse_raw(self): """Parses a raw AZFP file of the 01A file format""" # Start of computation subfunctions def compute_temp(counts): """Returns the temperature in celsius given from xml data and the counts from ancillary""" v_in = 2.5 * (counts / 65535) R = (self.parameters['ka'] + self.parameters['kb'] * v_in) / (self.parameters['kc'] - v_in) T = 1 / (self.parameters['A'] + self.parameters['B'] * (math.log(R)) + self.parameters['C'] * (math.log(R) ** 3)) - 273 return T def compute_tilt(N, a, b, c, d): return a + b * N + c * N**2 + d * N**3 with open(self.path, 'rb') as raw: ping_num = 0 fields = self.get_fields() unpacked_data = defaultdict(list) eof = False while not eof: header_chunk = raw.read(self.HEADER_SIZE) if header_chunk: header_unpacked = unpack(self.HEADER_FORMAT, header_chunk) # Reading will stop if the file contains an unexpected flag if self._split_header(raw, header_unpacked, ping_num, unpacked_data, fields): # Appends the actual 'data values' to unpacked_data self._add_counts(raw, ping_num, unpacked_data) if ping_num == 0: # Display information about the file that was loaded in self._print_status(self.file_name, unpacked_data) # Compute temperature from unpacked_data[ii]['ancillary][4] unpacked_data['temperature'].append(compute_temp(unpacked_data['ancillary'][ping_num][4])) # compute x tilt from unpacked_data[ii]['ancillary][0] unpacked_data['tilt_x'].append( compute_tilt(unpacked_data['ancillary'][ping_num][0], self.parameters['X_a'], self.parameters['X_b'], self.parameters['X_c'], self.parameters['X_d'])) # Compute y tilt from unpacked_data[ii]['ancillary][1] unpacked_data['tilt_y'].append( compute_tilt(unpacked_data['ancillary'][ping_num][1], self.parameters['Y_a'], self.parameters['Y_b'], self.parameters['Y_c'], self.parameters['Y_d'])) # Compute cos tilt magnitude from tilt x and y values unpacked_data['cos_tilt_mag'].append( math.cos((math.sqrt(unpacked_data['tilt_x'][ping_num] ** 2 + unpacked_data['tilt_y'][ping_num] ** 2)) * math.pi / 180)) else: break else: # End of file eof = True ping_num += 1 self.unpacked_data = unpacked_data def get_ping_time(self): """Returns the ping times""" if not self.unpacked_data: self.parse_raw() ping_time = [] for ping_num, year in enumerate(self.unpacked_data['year']): ping_time.append(dt(year, self.unpacked_data['month'][ping_num], self.unpacked_data['day'][ping_num], self.unpacked_data['hour'][ping_num], self.unpacked_data['minute'][ping_num], int(self.unpacked_data['second'][ping_num] + self.unpacked_data['hundredths'][ping_num] / 100) ).replace(tzinfo=timezone.utc).timestamp()) return ping_time def raw2nc(self): """Save data from raw 01A format to netCDF4 .nc format """ # Subfunctions to set various dictionaries def calc_Sv_offset(f, pulse_length): """Calculate a compensation for the effects of finite response times of both the receiving and transmitting parts of the transducer. The correction magnitude depends on the length of the transmitted pulse and the response time (transmission and reception) of the transducer. Called by ``_set_beam_dict()`` Parameters ---------- f frequency in Hz pulse_length pulse length in ms """ if f > 38000: if pulse_length == 300: return 1.1 elif pulse_length == 500: return 0.8 elif pulse_length == 700: return 0.5 elif pulse_length == 900: return 0.3 elif pulse_length == 1000: return 0.3 else: if pulse_length == 500: return 1.1 elif pulse_length == 1000: return 0.7 def _set_toplevel_dict(): out_dict = dict(conventions='CF-1.7, SONAR-netCDF4-1.0, ACDD-1.3', keywords='AZFP', sonar_convention_authority='ICES', sonar_convention_name='SONAR-netCDF4', sonar_convention_version='1.0', summary='', title='') return out_dict def _set_env_dict(): out_dict = dict(temperature=self.unpacked_data['temperature'], # temperature measured at instrument ping_time=ping_time) return out_dict def _set_platform_dict(): out_dict = dict(platform_name=self.parameters['platform_name'], platform_type=self.parameters['platform_type'], platform_code_ICES=self.parameters['platform_code_ICES']) return out_dict def _set_prov_dict(): attrs = ('conversion_software_name', 'conversion_software_version', 'conversion_time') vals = ('echopype', ECHOPYPE_VERSION, dt.utcnow().isoformat(timespec='seconds') + 'Z') # use UTC time return dict(zip(attrs, vals)) def _set_sonar_dict(): attrs = ('sonar_manufacturer', 'sonar_model', 'sonar_serial_number', 'sonar_software_name', 'sonar_software_version', 'sonar_type') vals = ('ASL Environmental Sciences', 'Acoustic Zooplankton Fish Profiler', self.unpacked_data['serial_number'], # should have only 1 value (identical for all pings) 'Based on AZFP Matlab Toolbox', '1.4', 'echosounder') return dict(zip(attrs, vals)) def _set_beam_dict(): anc = np.array(self.unpacked_data['ancillary']) # convert to np array for easy slicing dig_rate = self.unpacked_data['dig_rate'] # dim: freq # Build variables in the output xarray Dataset N = [] # for storing backscatter_r values for each frequency Sv_offset =
np.zeros(freq.shape)
numpy.zeros
import numpy as np import matplotlib.pyplot as plt import torch def plot_weight_graph(epochs, loss_lists, labels, name=''): epochs_array = np.arange(epochs) ax = plt.axes(xlabel='epoch', ylabel='weight', xticks=
np.arange(0, epochs, 10)
numpy.arange
import pickle import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt from scipy.signal import find_peaks from scipy.optimize import curve_fit from scipy.interpolate import InterpolatedUnivariateSpline from astropy.convolution import Box1DKernel, Gaussian1DKernel, convolve, convolve_fft from pysyd import functions from pysyd import models from pysyd import utils from pysyd import plots class Target: def __init__(self, star, args): """ A pySYD pipeline target. Initialization stores all the relevant information and checks/loads in data for the given target. pySYD no longer requires BOTH the time series data and the power spectrum, but requires additional information via CLI if the former is not provided i.e. cadence or nyquist frequency, the oversampling factor (if relevant), etc. Attributes ---------- star : int the star ID params : Dict[str,object] the pipeline parameters findex : Dict[str,object] the parameters of the find excess routine fitbg : Dict[str,object] the parameters relevant for the background-fitting procedure globe : Dict[str,object] parameters relevant for estimating global asteroseismic parameters numax and dnu verbose : bool if true, turns on the verbose output Parameters ---------- args : argparse.Namespace the parsed and updated command line arguments Methods ------- TODO: Add methods """ self.name = star self.params = args.params self.findex = args.findex self.fitbg = args.fitbg self.globe = args.globe self.verbose = args.verbose self = utils.load_data(self, args) def run_syd(self): """ Run the pySYD pipeline routines sequentially: 1) the find excess module to identify the any solar-like oscillations 2) estimates the stellar background contributions before estimating the global asteroseismic parameters Returns ------- None """ # Run the find excess routine if self.params[self.name]['excess']: self = utils.get_findex(self) self.find_excess() # Run the global fitting routine if utils.check_fitbg(self): self = utils.get_fitbg(self) self.fit_global() if self.params['show']: note='' if self.verbose: note+=' - displaying figures' print(note) plt.show(block=False) input(' - press RETURN to exit') if not self.verbose: print('') def find_excess(self): """ Automatically finds power excess due to solar-like oscillations using a frequency-resolved, collapsed autocorrelation function (ACF). Returns ------- None """ # Make sure the binning is specified, otherwise it cannot run if self.findex['binning'] is not None: # Smooth the power in log-space self.bin_freq, self.bin_pow, self.bin_pow_err = functions.bin_data(self.freq, self.pow, width=self.findex['binning'], log=True, mode=self.findex['mode']) # Smooth the power in linear-space self.smooth_freq, self.smooth_pow, self.smooth_pow_err = functions.bin_data(self.bin_freq, self.bin_pow, width=self.findex['smooth_width']) if self.verbose: print('------------------------------------------------------') print('Running find_excess module:') print('PS binned to %d datapoints' % len(self.smooth_freq)) # Interpolate and divide to get a crude background-corrected power spectrum s = InterpolatedUnivariateSpline(self.smooth_freq, self.smooth_pow, k=1) self.interp_pow = s(self.freq) self.bgcorr_pow = self.pow/self.interp_pow # Calculate collapsed ACF using different box (or bin) sizes self.findex['results'][self.name] = {} self.compare = [] for b in range(self.findex['n_trials']): self.collapsed_acf(b) # Select trial that resulted with the highest SNR detection self.findex['results'][self.name]['best'] = self.compare.index(max(self.compare))+1 if self.verbose: print('selecting model %d'%self.findex['results'][self.name]['best']) utils.save_findex(self) plots.plot_excess(self) self.pickles.append('excess.pickle') def collapsed_acf(self, b, start=0, max_iterations=5000, max_snr=100.): """ Computes a collapsed autocorrelation function (ACF). Parameters ---------- b : int the trial number start : int what index of the frequency array to start with, which is `0` by default. max_iterations : int maximum number of times to run the scipy.optimization before calling it quits j : int index at which to start storing the cumulative sum and mean of ACF. Default value is `0`. start : int index at which to start masking the frequency and power spectrum. Default value is `0`. max_iterations : int maximum number of interations to try in curve fitting routine. Default value is `5000`. max_snr : float maximum SNR corresponding to power excess. Default value is `100.0`. Returns ------- None """ constants = utils.Constants() # Computes a collapsed ACF using different "box" (or bin) sizes self.findex['results'][self.name][b+1] = {} subset = np.ceil(self.boxes[b]/self.resolution) steps = np.ceil((self.boxes[b]*self.findex['step'])/self.resolution) cumsum = [] md = [] # Iterates through entire power spectrum using box width while True: if (start+subset) > len(self.freq): break p = self.bgcorr_pow[int(start):int(start+subset)] auto = np.real(np.fft.fft(np.fft.ifft(p)*np.conj(np.fft.ifft(p)))) cumsum.append(np.sum(np.absolute(auto-np.mean(auto)))) md.append(np.mean(self.freq[int(start):int(start+subset)])) start += steps # subtract/normalize the summed ACF and take the max md = np.array(md) cumsum = np.array(cumsum)-min(cumsum) csum = list(cumsum/max(cumsum)) # Pick the maximum value as an initial guess for numax idx = csum.index(max(csum)) csum = np.array(csum) self.findex['results'][self.name][b+1].update({'x':md,'y':csum,'maxx':md[idx],'maxy':csum[idx]}) # Fit Gaussian to get estimate value for numax try: best_vars, _ = curve_fit(models.gaussian, md, csum, p0=[np.median(csum), 1.0-
np.median(csum)
numpy.median
#!/usr/bin/env python # Built-in imports import math import cmath # General module imports import numpy as np # Own imports import baxter_essentials.denavit_hartenberg as dh class BaxterIPK: """ Calculate Baxter's Inverse Pose Kinematics for each limb and with the desired degrees of freedom for the total joints. :param TM_w0_tool: Transformation Matrix from W0 (origin of the workspace), to Baxter's Tool (end of the arm). :param baxter_distances: list of baxter_distances from BaxterClass. :param baxter_transformation_matrices: list of baxter_transformation_matrices from BaxterClass. :param limb: arm to calculate fpk. example: "left" or "right". :param elbow_disposition: Elbow disposition for the mathematical ipk solution. example: "up", "down". """ def __init__(self, baxter_distances, baxter_transformation_matrices, TM_w0_tool, limb, elbow_disposition): self.TM_w0_tool = TM_w0_tool self.baxter_distances = baxter_distances self.baxter_transformation_matrices = baxter_transformation_matrices self.calibrate_baxter_transformation_matrices() self.limb = limb self.elbow_disposition = elbow_disposition def calibrate_baxter_transformation_matrices(self): X_OFFSET = 0 Y_OFFSET = 0 Z_OFFSET = - 0.06012 calibration_matrix = np.array( [[1, 0, 0, X_OFFSET], [0, 1, 0, Y_OFFSET], [0, 0, 1, Z_OFFSET], [0, 0, 0, 1]] ) # Add extra tool distance for Baxter's right limb (spoon) self.baxter_transformation_matrices[1] = \ np.dot(self.baxter_transformation_matrices[1], calibration_matrix) def ipk(self): """ Main method to calculate the inverse pose kinematics. :returns: list of joint-values to calculate fpk. example: [value_limb_s0, value_limb_s1, value_limb_left_e0, value_limb_left_e1, value_limb_left_w0, value_limb_left_w1, value_limb_left_w2] """ # Simplified name for clarity in process (to avoid long initial name) TM_list = self.baxter_transformation_matrices # Transformation matrix from 0 to 6 (main Baxter-joints) if self.limb == 'left': TM_0_6 = np.dot( np.dot( np.linalg.inv(
np.dot(TM_list[0], TM_list[2])
numpy.dot
import lib import datetime import torch import argparse import sys import utils import logging from tensorboardX import SummaryWriter from lib.model.mpnn import mp_sequential, mp_conv_residual, mp_conv_type, mp_conv_v2, global_pooling import numpy as np import time import os from utils.types import str2bool from tqdm import tqdm import statistics as st def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--chain_length', type=int, default=30, help="The length of generated chain structured MRF") parser.add_argument( '--hop_cap', type=int, default=5, help="The seed to generate parameter of budget factors") parser.add_argument('--nfactors', type=int, default=8, help="Number of higher order factors") parser.add_argument('--hop_order', type=int, default=9, help="Order of higher order factors") parser.add_argument('--train_epoches', type=int, default=10, help="training epoches") parser.add_argument('--model_path', type=str, default='gnn', help="Saved model path") parser.add_argument('--model_name', type=str, default='mp_nn', help="model name (PointNet, GNN)") parser.add_argument('--neighbour', type=int, default=8, help="number of neighbour in the graph") parser.add_argument('--log_level', type=str, default='info', help="log level") parser.add_argument('--use_cuda', type=str2bool, default=True, help="Use cuda or not") parser.add_argument('--train_path', type=str, default="synthetic_data/raw_train.dat", help="path of the training dataset") parser.add_argument('--test_path', type=str, default="synthetic_data/raw_test.dat", help="path of the testing dataset") parser.add_argument('--train_size', type=int, default=90000, help="size of training dataset") parser.add_argument('--test_size', type=int, default=10000, help="size of testing dataset") parser.add_argument('--batch_size', type=int, default=32) return parser.parse_args() def generate_knn_table(n, k): nn_idx = np.zeros([n, k]).astype(np.int64) efeature = np.zeros([1, n, k]).astype(np.float32) hk = k // 2 for i in range(n): arr = list(range(i-hk, i)) + list(range(i+1, i+hk)) for idx, j in enumerate(arr): if j < 0: j = 0 if j >= n: j = n - 1 nn_idx[i, idx] = j efeature[0, i, idx] = i - j nn_idx = torch.from_numpy(np.expand_dims(nn_idx, 0)) efeature = torch.from_numpy(np.expand_dims(efeature, 0)) return nn_idx, efeature def worker_init_fn(idx): t = int(time.time() * 1000.0) + idx np.random.seed(((t & 0xff000000) >> 24) + ((t & 0x00ff0000) >> 8) + ((t & 0x0000ff00) << 8) + ((t & 0x000000ff) << 24)) def main(): args = parse_args() subdir = f'raw_nn_{args.neighbour}_at_{datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S")}' utils.init_logger('./logs/', subdir, print_log=False) logging.info(str(args)) writer = SummaryWriter(log_dir=f'./tf_logs/{subdir}') nfeature_dim = 2 print(nfeature_dim) if args.model_name == 'mp_nn': model = mp_sequential( mp_conv_v2(nfeature_dim, 64, 16, extension=mp_conv_type.ORIG_WITH_NEIGHBOR), mp_conv_residual(64, 64, 16), torch.nn.Conv2d(64, 128, 1), torch.nn.BatchNorm2d(128), torch.nn.ReLU(inplace=True), mp_conv_residual(128, 64, 16), torch.nn.Conv2d(128, 256, 1), torch.nn.BatchNorm2d(256), torch.nn.ReLU(inplace=True), mp_conv_residual(256, 64, 16), torch.nn.Conv2d(256, 128, 1), torch.nn.BatchNorm2d(128), torch.nn.ReLU(inplace=True), mp_conv_residual(128, 64, 16), torch.nn.Conv2d(128, 64, 1), torch.nn.BatchNorm2d(64), torch.nn.ReLU(inplace=True), mp_conv_residual(64, 64, 16), torch.nn.Conv2d(64, 2, 1)) emodel = torch.nn.Sequential(torch.nn.Conv2d(1, 64, 1), torch.nn.ReLU(inplace=True), torch.nn.Conv2d(64, 16, 1)) elif args.model_name == 'mp_nn_comp': model = mp_sequential( mp_conv_v2(nfeature_dim, 64, 16, extension=mp_conv_type.ORIG_WITH_NEIGHBOR), mp_conv_residual(64, 64, 16), torch.nn.Conv2d(64, 128, 1), torch.nn.BatchNorm2d(128), torch.nn.ReLU(inplace=True), mp_conv_residual(128, 64, 16), torch.nn.Conv2d(128, 256, 1), torch.nn.BatchNorm2d(256), torch.nn.ReLU(inplace=True), mp_conv_residual(256, 64, 16), mp_conv_residual(256, 64, 16), mp_conv_residual(256, 64, 16), mp_conv_residual(256, 64, 16), mp_conv_residual(256, 64, 16), torch.nn.Conv2d(256, 128, 1), torch.nn.BatchNorm2d(128), torch.nn.ReLU(inplace=True), mp_conv_residual(128, 64, 16), torch.nn.Conv2d(128, 64, 1), torch.nn.BatchNorm2d(64), torch.nn.ReLU(inplace=True), mp_conv_residual(64, 64, 16), torch.nn.Conv2d(64, 2, 1)) emodel = torch.nn.Sequential(torch.nn.Conv2d(1, 64, 1), torch.nn.ReLU(inplace=True), torch.nn.Conv2d(64, 16, 1)) elif args.model_name == 'simple_gnn': model = mp_sequential( mp_conv_v2(nfeature_dim, 64, 16, extension=mp_conv_type.ORIG_WITH_NEIGHBOR), mp_conv_residual(64, 64, 16), torch.nn.Conv2d(64, 2, 1)) emodel = torch.nn.Sequential(torch.nn.Conv2d(1, 64, 1), torch.nn.ReLU(inplace=True), torch.nn.Conv2d(64, 16, 1)) elif args.model_name == 'iid': model = mp_sequential(torch.nn.Conv2d(nfeature_dim, 64, 1), torch.nn.ReLU(True), torch.nn.Conv2d(64, 2, 1)) emodel = torch.nn.Sequential(torch.nn.Conv2d(1, 64, 1), torch.nn.ReLU(inplace=True), torch.nn.Conv2d(64, 16, 1)) logging.info('model {} created'.format(str(model)))
np.random.seed(23456)
numpy.random.seed
#!/usr/bin/env python """ dynspec.py ---------------------------------- Dynamic spectrum class """ from __future__ import (absolute_import, division, print_function, unicode_literals) import time import os from os.path import split import numpy as np import matplotlib.pyplot as plt import scipy.constants as sc from copy import deepcopy as cp from scint_models import scint_acf_model, scint_sspec_model, tau_acf_model,\ dnu_acf_model, tau_sspec_model, dnu_sspec_model,\ fit_parabola, fit_log_parabola from scint_utils import is_valid from scipy.ndimage import map_coordinates from scipy.interpolate import griddata, interp1d from scipy.signal import convolve2d, medfilt, savgol_filter from scipy.io import loadmat class Dynspec: def __init__(self, filename=None, dyn=None, verbose=True, process=True, lamsteps=False): """" Initialise a dynamic spectrum object by either reading from file or from existing object """ if filename: self.load_file(filename, verbose=verbose, process=process, lamsteps=lamsteps) elif dyn: self.load_dyn_obj(dyn, verbose=verbose, process=process, lamsteps=lamsteps) else: print("Error: No dynamic spectrum file or object") def __add__(self, other): """ Defines dynamic spectra addition, which is concatination in time, with the gaps filled """ print("Now adding {} ...".format(other.name)) if self.freq != other.freq \ or self.bw != other.bw or self.df != other.df: print("WARNING: Code does not yet account for different \ frequency properties") # Set constant properties bw = self.bw df = self.df freqs = self.freqs freq = self.freq nchan = self.nchan dt = self.dt # Calculate properties for the gap timegap = round((other.mjd - self.mjd)*86400 - self.tobs, 1) # time between two dynspecs extratimes = np.arange(self.dt/2, timegap, dt) if timegap < dt: extratimes = [0] nextra = 0 else: nextra = len(extratimes) dyngap = np.zeros([np.shape(self.dyn)[0], nextra]) # Set changed properties name = self.name.split('.')[0] + "+" + other.name.split('.')[0] \ + ".dynspec" header = self.header + other.header # times = np.concatenate((self.times, self.times[-1] + extratimes, # self.times[-1] + extratimes[-1] + other.times)) nsub = self.nsub + nextra + other.nsub tobs = self.tobs + timegap + other.tobs # Note: need to check "times" attribute for added dynspec times = np.linspace(0, tobs, nsub) mjd = np.min([self.mjd, other.mjd]) # mjd for earliest dynspec newdyn = np.concatenate((self.dyn, dyngap, other.dyn), axis=1) # Get new dynspec object with these properties newdyn = BasicDyn(newdyn, name=name, header=header, times=times, freqs=freqs, nchan=nchan, nsub=nsub, bw=bw, df=df, freq=freq, tobs=tobs, dt=dt, mjd=mjd) return Dynspec(dyn=newdyn, verbose=False, process=False) def load_file(self, filename, verbose=True, process=True, lamsteps=False): """ Load a dynamic spectrum from psrflux-format file """ start = time.time() # Import all data from filename if verbose: print("LOADING {0}...".format(filename)) head = [] with open(filename, "r") as file: for line in file: if line.startswith("#"): headline = str.strip(line[1:]) head.append(headline) if str.split(headline)[0] == 'MJD0:': # MJD of start of obs self.mjd = float(str.split(headline)[1]) self.name = os.path.basename(filename) self.header = head rawdata = np.loadtxt(filename).transpose() # read file self.times = np.unique(rawdata[2]*60) # time since obs start (secs) self.freqs = rawdata[3] # Observing frequency in MHz. fluxes = rawdata[4] # fluxes fluxerrs = rawdata[5] # flux errors self.nchan = int(np.unique(rawdata[1])[-1]) # number of channels self.bw = self.freqs[-1] - self.freqs[0] # obs bw self.df = round(self.bw/self.nchan, 5) # channel bw self.bw = round(self.bw + self.df, 2) # correct bw self.nchan += 1 # correct nchan self.nsub = int(np.unique(rawdata[0])[-1]) + 1 self.tobs = self.times[-1]+self.times[0] # initial estimate of tobs self.dt = self.tobs/self.nsub if self.dt > 1: self.dt = round(self.dt) else: self.times = np.linspace(self.times[0], self.times[-1], self.nsub) self.tobs = self.dt * self.nsub # recalculated tobs # Now reshape flux arrays into a 2D matrix self.freqs = np.unique(self.freqs) self.freq = round(np.mean(self.freqs), 2) fluxes = fluxes.reshape([self.nsub, self.nchan]).transpose() fluxerrs = fluxerrs.reshape([self.nsub, self.nchan]).transpose() if self.df < 0: # flip things self.df = -self.df self.bw = -self.bw # Flip flux matricies since self.freqs is now in ascending order fluxes = np.flip(fluxes, 0) fluxerrs = np.flip(fluxerrs, 0) # Finished reading, now setup dynamic spectrum self.dyn = fluxes # initialise dynamic spectrum self.lamsteps = lamsteps if process: self.default_processing(lamsteps=lamsteps) # do default processing end = time.time() if verbose: print("...LOADED in {0} seconds\n".format(round(end-start, 2))) self.info() def load_dyn_obj(self, dyn, verbose=True, process=True, lamsteps=False): """ Load in a dynamic spectrum object of different type. """ start = time.time() # Import all data from filename if verbose: print("LOADING DYNSPEC OBJECT {0}...".format(dyn.name)) self.name = dyn.name self.header = dyn.header self.times = dyn.times # time since obs start (secs) self.freqs = dyn.freqs # Observing frequency in MHz. self.nchan = dyn.nchan # number of channels self.nsub = dyn.nsub self.bw = dyn.bw # obs bw self.df = dyn.df # channel bw self.freq = dyn.freq self.tobs = dyn.tobs # initial estimate of tobs self.dt = dyn.dt self.mjd = dyn.mjd self.dyn = dyn.dyn self.lamsteps = lamsteps if process: self.default_processing(lamsteps=lamsteps) # do default processing end = time.time() if verbose: print("...LOADED in {0} seconds\n".format(round(end-start, 2))) self.info() def default_processing(self, lamsteps=False): """ Default processing of a Dynspec object """ self.trim_edges() # remove zeros on band edges self.refill() # refill with linear interpolation self.calc_acf() # calculate the ACF if lamsteps: self.scale_dyn() self.calc_sspec(lamsteps=lamsteps) # Calculate secondary spectrum def plot_dyn(self, lamsteps=False, input_dyn=None, filename=None, input_x=None, input_y=None, trap=False, display=True): """ Plot the dynamic spectrum """ plt.figure(1, figsize=(12, 6)) if input_dyn is None: if lamsteps: if not hasattr(self, 'lamdyn'): self.scale_dyn() dyn = self.lamdyn elif trap: if not hasattr(self, 'trapdyn'): self.scale_dyn(scale='trapezoid') dyn = self.trapdyn else: dyn = self.dyn else: dyn = input_dyn medval = np.median(dyn[is_valid(dyn)*np.array(np.abs( is_valid(dyn)) > 0)]) minval = np.min(dyn[is_valid(dyn)*np.array(np.abs( is_valid(dyn)) > 0)]) # standard deviation std = np.std(dyn[is_valid(dyn)*np.array(np.abs( is_valid(dyn)) > 0)]) vmin = minval vmax = medval+5*std if input_dyn is None: if lamsteps: plt.pcolormesh(self.times/60, self.lam, dyn, vmin=vmin, vmax=vmax) plt.ylabel('Wavelength (m)') else: plt.pcolormesh(self.times/60, self.freqs, dyn, vmin=vmin, vmax=vmax) plt.ylabel('Frequency (MHz)') plt.xlabel('Time (mins)') # plt.colorbar() # arbitrary units else: plt.pcolormesh(input_x, input_y, dyn, vmin=vmin, vmax=vmax) if filename is not None: plt.savefig(filename, dpi=200, papertype='a4', bbox_inches='tight', pad_inches=0.1) plt.close() elif input_dyn is None and display: plt.show() def plot_acf(self, contour=False, filename=None, input_acf=None, input_t=None, input_f=None, fit=True, display=True): """ Plot the ACF """ if not hasattr(self, 'acf'): self.calc_acf() if not hasattr(self, 'tau') and input_acf is None and fit: self.get_scint_params() if input_acf is None: arr = self.acf tspan = self.tobs fspan = self.bw else: arr = input_acf tspan = max(input_t) - min(input_t) fspan = max(input_f) - min(input_f) arr = np.fft.ifftshift(arr) wn = arr[0][0] - arr[0][1] # subtract the white noise spike arr[0][0] = arr[0][0] - wn # Set the noise spike to zero for plotting arr = np.fft.fftshift(arr) t_delays = np.linspace(-tspan/60, tspan/60, np.shape(arr)[1]) f_shifts = np.linspace(-fspan, fspan, np.shape(arr)[0]) if input_acf is None: # Also plot scintillation scales axes fig, ax1 = plt.subplots() if contour: im = ax1.contourf(t_delays, f_shifts, arr) else: im = ax1.pcolormesh(t_delays, f_shifts, arr) ax1.set_ylabel('Frequency lag (MHz)') ax1.set_xlabel('Time lag (mins)') miny, maxy = ax1.get_ylim() if fit: ax2 = ax1.twinx() ax2.set_ylim(miny/self.dnu, maxy/self.dnu) ax2.set_ylabel('Frequency lag / (dnu_d = {0})'. format(round(self.dnu, 2))) ax3 = ax1.twiny() minx, maxx = ax1.get_xlim() ax3.set_xlim(minx/(self.tau/60), maxx/(self.tau/60)) ax3.set_xlabel('Time lag/(tau_d={0})'.format(round( self.tau/60, 2))) fig.colorbar(im, pad=0.15) else: # just plot acf without scales if contour: plt.contourf(t_delays, f_shifts, arr) else: plt.pcolormesh(t_delays, f_shifts, arr) plt.ylabel('Frequency lag (MHz)') plt.xlabel('Time lag (mins)') if filename is not None: plt.savefig(filename, bbox_inches='tight', pad_inches=0.1) plt.close() elif input_acf is None and display: plt.show() def plot_sspec(self, lamsteps=False, input_sspec=None, filename=None, input_x=None, input_y=None, trap=False, prewhite=True, plotarc=False, maxfdop=np.inf, delmax=None, ref_freq=1400, cutmid=0, startbin=0, display=True): """ Plot the secondary spectrum """ if input_sspec is None: if lamsteps: if not hasattr(self, 'lamsspec'): self.calc_sspec(lamsteps=lamsteps, prewhite=prewhite) sspec = cp(self.lamsspec) elif trap: if not hasattr(self, 'trapsspec'): self.calc_sspec(trap=trap, prewhite=prewhite) sspec = cp(self.trapsspec) else: if not hasattr(self, 'sspec'): self.calc_sspec(lamsteps=lamsteps, prewhite=prewhite) sspec = cp(self.sspec) xplot = cp(self.fdop) else: sspec = input_sspec xplot = input_x medval = np.median(sspec[is_valid(sspec)*np.array(np.abs(sspec) > 0)]) # std = np.std(sspec[is_valid(sspec)*np.array(np.abs(sspec) > 0)]) maxval = np.max(sspec[is_valid(sspec)*np.array(np.abs(sspec) > 0)]) vmin = medval - 3 vmax = maxval - 3 # Get fdop plotting range indicies = np.argwhere(np.abs(xplot) < maxfdop) xplot = xplot[indicies].squeeze() sspec = sspec[:, indicies].squeeze() nr, nc = np.shape(sspec) sspec[:, int(nc/2-np.floor(cutmid/2)):int(nc/2 + np.ceil(cutmid/2))] = np.nan sspec[:startbin, :] = np.nan # Maximum value delay axis (us @ ref_freq) delmax = np.max(self.tdel) if delmax is None else delmax delmax = delmax*(ref_freq/self.freq)**2 ind = np.argmin(abs(self.tdel-delmax)) if input_sspec is None: if lamsteps: plt.pcolormesh(xplot, self.beta[:ind], sspec[:ind, :], vmin=vmin, vmax=vmax) plt.ylabel(r'$f_\lambda$ (m$^{-1}$)') else: plt.pcolormesh(xplot, self.tdel[:ind], sspec[:ind, :], vmin=vmin, vmax=vmax) plt.ylabel(r'$f_\nu$ ($\mu$s)') plt.xlabel(r'$f_t$ (mHz)') bottom, top = plt.ylim() if plotarc: if lamsteps: eta = self.betaeta else: eta = self.eta plt.plot(xplot, eta*np.power(xplot, 2), 'r--', alpha=0.5) plt.ylim(bottom, top) plt.colorbar() else: plt.pcolormesh(xplot, input_y, sspec, vmin=vmin, vmax=vmax) plt.colorbar() if filename is not None: plt.savefig(filename, bbox_inches='tight', pad_inches=0.1) plt.close() elif input_sspec is None and display: plt.show() def plot_all(self, dyn=1, sspec=3, acf=2, norm_sspec=4, colorbar=True, lamsteps=False, filename=None, display=True): """ Plots multiple figures in one """ # Dynamic Spectrum plt.subplot(2, 2, dyn) self.plot_dyn(lamsteps=lamsteps) plt.title("Dynamic Spectrum") # Autocovariance Function plt.subplot(2, 2, acf) self.plot_acf(subplot=True) plt.title("Autocovariance") # Secondary Spectrum plt.subplot(2, 2, sspec) self.plot_sspec(lamsteps=lamsteps) plt.title("Secondary Spectrum") # Normalised Secondary Spectrum plt.subplot(2, 2, norm_sspec) self.norm_sspec(plot=True, scrunched=False, lamsteps=lamsteps, plot_fit=False) plt.title("Normalised fdop secondary spectrum") if filename is not None: plt.savefig(filename, bbox_inches='tight', pad_inches=0.1) plt.close() elif display: plt.show() def fit_arc(self, method='norm_sspec', asymm=False, plot=False, delmax=None, numsteps=1e4, startbin=3, cutmid=3, lamsteps=True, etamax=None, etamin=None, low_power_diff=-3, high_power_diff=-1.5, ref_freq=1400, constraint=[0, np.inf], nsmooth=5, filename=None, noise_error=True, display=True): """ Find the arc curvature with maximum power along it constraint: Only search for peaks between constraint[0] and constraint[1] """ if not hasattr(self, 'tdel'): self.calc_sspec() delmax = np.max(self.tdel) if delmax is None else delmax delmax = delmax*(ref_freq/self.freq)**2 # adjust for frequency if lamsteps: if not hasattr(self, 'lamsspec'): self.calc_sspec(lamsteps=lamsteps) sspec = np.array(cp(self.lamsspec)) yaxis = cp(self.beta) ind = np.argmin(abs(self.tdel-delmax)) ymax = self.beta[ind] # cut beta at equivalent value to delmax else: if not hasattr(self, 'sspec'): self.calc_sspec() sspec = np.array(cp(self.sspec)) yaxis = cp(self.tdel) ymax = delmax nr, nc = np.shape(sspec) # Estimate noise in secondary spectrum a = np.array(sspec[int(nr/2):, int(nc/2 + np.ceil(cutmid/2)):].ravel()) b = np.array(sspec[int(nr/2):, 0:int(nc/2 - np.floor(cutmid/2))].ravel()) noise = np.std(np.concatenate((a, b))) # Adjust secondary spectrum ind = np.argmin(abs(self.tdel-delmax)) sspec[0:startbin, :] = np.nan # mask first N delay bins # mask middle N Doppler bins sspec[:, int(nc/2 - np.floor(cutmid/2)):int(nc/2 + np.ceil(cutmid/2))] = np.nan sspec = sspec[0:ind, :] # cut at delmax yaxis = yaxis[0:ind] # noise of mean out to delmax noise = np.sqrt(np.sum(np.power(noise, 2)))/len(yaxis[startbin:]) if etamax is None: etamax = ymax/((self.fdop[1]-self.fdop[0])*cutmid)**2 if etamin is None: etamin = (yaxis[1]-yaxis[0])*startbin/(max(self.fdop))**2 try: len(etamin) etamin_array = np.array(etamin).squeeze() etamax_array = np.array(etamax).squeeze() except TypeError: # Force to be arrays for iteration etamin_array = np.array([etamin]) etamax_array = np.array([etamax]) # At 1mHz for 1400MHz obs, the maximum arc terminates at delmax max_sqrt_eta = np.sqrt(np.max(etamax_array)) min_sqrt_eta = np.sqrt(np.min(etamin_array)) # Create an array with equal steps in sqrt(curvature) sqrt_eta_all = np.linspace(min_sqrt_eta, max_sqrt_eta, numsteps) for iarc in range(0, len(etamin_array)): if len(etamin_array) == 1: etamin = etamin etamax = etamax else: etamin = etamin_array.squeeze()[iarc] etamax = etamax_array.squeeze()[iarc] if not lamsteps: c = 299792458.0 # m/s beta_to_eta = c*1e6/((ref_freq*10**6)**2) etamax = etamax/(self.freq/ref_freq)**2 # correct for freq etamax = etamax*beta_to_eta etamin = etamin/(self.freq/ref_freq)**2 etamin = etamin*beta_to_eta constraint = constraint/(self.freq/ref_freq)**2 constraint = constraint*beta_to_eta sqrt_eta = sqrt_eta_all[(sqrt_eta_all <= np.sqrt(etamax)) * (sqrt_eta_all >= np.sqrt(etamin))] numsteps_new = len(sqrt_eta) # Define data x = self.fdop y = yaxis z = sspec # initiate arrays sumpowL = [] sumpowR = [] etaArray = [] if method == 'gridmax': for ii in range(0, len(sqrt_eta)): ieta = sqrt_eta[ii]**2 etaArray.append(ieta) ynew = ieta*np.power(x, 2) # tdel coordinates to sample # convert to pixel coordinates xpx = ((x-np.min(x))/(max(x) - np.min(x)))*np.shape(z)[1] ynewpx = ((ynew-np.min(ynew)) / (max(y) - np.min(ynew)))*np.shape(z)[0] # left side ind = np.where(x < 0) # find -ve doppler ynewL = ynew[ind] xnewpxL = xpx[ind] ynewpxL = ynewpx[ind] ind = np.where(ynewL < np.max(y)) # inds below tdel cutoff xnewL = xnewpxL[ind] ynewL = ynewpxL[ind] xynewL = np.array([[ynewL[ii], xnewL[ii]] for ii in range(0, len(xnewL))]).T znewL = map_coordinates(z, xynewL, order=1, cval=np.nan) sumpowL.append(np.mean(znewL[~np.isnan(znewL)])) # Right side ind = np.where(x > 0) # find +ve doppler ynewR = ynew[ind] xnewpxR = xpx[ind] ynewpxR = ynewpx[ind] ind = np.where(ynewR < np.max(y)) # inds below tdel cutoff xnewR = xnewpxR[ind] ynewR = ynewpxR[ind] xynewR = np.array([[ynewR[ii], xnewR[ii]] for ii in range(0, len(xnewR))]).T znewR = map_coordinates(z, xynewR, order=1, cval=np.nan) sumpowR.append(np.mean(znewR[~np.isnan(znewR)])) # Total sumpow = np.add(sumpowL, sumpowR)/2 # average # Ignore nan sums and smooth indicies = np.argwhere(is_valid(sumpow)).ravel() etaArray = np.array(etaArray)[indicies] sumpow = np.array(sumpow)[indicies] sumpowL = np.array(sumpowL)[indicies] sumpowR = np.array(sumpowR)[indicies] sumpow_filt = savgol_filter(sumpow, nsmooth, 1) sumpowL_filt = savgol_filter(sumpowL, nsmooth, 1) sumpowR_filt = savgol_filter(sumpowR, nsmooth, 1) indrange = np.argwhere((etaArray > constraint[0]) * (etaArray < constraint[1])) sumpow_inrange = sumpow_filt[indrange] sumpowL_inrange = sumpow_filt[indrange] sumpowR_inrange = sumpow_filt[indrange] ind = np.argmin(np.abs(sumpow_filt - np.max(sumpow_inrange))) indL = np.argmin(np.abs(sumpow_filt - np.max(sumpowL_inrange))) indR = np.argmin(np.abs(sumpow_filt - np.max(sumpowR_inrange))) eta = etaArray[ind] etaL = etaArray[indL] etaR = etaArray[indR] # Now find eta and estimate error by fitting parabola # Data from -3db on low curvature side to -1.5db on high side max_power = sumpow_filt[ind] power = max_power ind1 = 1 while (power > max_power + low_power_diff and ind + ind1 < len(sumpow_filt)-1): # -3db, or half power ind1 += 1 power = sumpow_filt[ind - ind1] power = max_power ind2 = 1 while (power > max_power + high_power_diff and ind + ind2 < len(sumpow_filt)-1): # -1db power ind2 += 1 power = sumpow_filt[ind + ind2] # Now select this region of data for fitting xdata = etaArray[int(ind-ind1):int(ind+ind2)] ydata = sumpow[int(ind-ind1):int(ind+ind2)] # Do the fit # yfit, eta, etaerr = fit_parabola(xdata, ydata) yfit, eta, etaerr = fit_log_parabola(xdata, ydata) if np.mean(np.gradient(np.diff(yfit))) > 0: raise ValueError('Fit returned a forward parabola.') eta = eta if noise_error: # Now get error from the noise in secondary spectra instead etaerr2 = etaerr power = max_power ind1 = 1 while (power > max_power - noise and ind + ind1 < len(sumpow_filt)-1): # -3db ind1 += 1 power = sumpow_filt[ind - ind1] power = max_power ind2 = 1 while (power > max_power - noise and ind + ind2 < len(sumpow_filt)-1): # -1db power ind2 += 1 power = sumpow_filt[ind + ind2] etaerr = np.ptp(etaArray[int(ind-ind1):int(ind+ind2)])/2 # Now plot if plot and iarc == 0: if asymm: plt.subplot(2, 1, 1) plt.plot(etaArray, sumpowL) plt.plot(etaArray, sumpowL_filt) bottom, top = plt.ylim() plt.plot([etaL, etaL], [bottom, top]) plt.ylabel('mean power (db)') plt.xscale('log') plt.subplot(2, 1, 2) plt.plot(etaArray, sumpowR) plt.plot(etaArray, sumpowR_filt) bottom, top = plt.ylim() plt.plot([etaR, etaR], [bottom, top]) else: plt.plot(etaArray, sumpow) plt.plot(etaArray, sumpow_filt) plt.plot(xdata, yfit) bottom, top = plt.ylim() plt.axvspan(xmin=eta-etaerr, xmax=eta+etaerr, facecolor='C2', alpha=0.5) if lamsteps: plt.xlabel(r'Arc curvature, $\eta$ (${\rm m}^{-1}\,' '{\rm mHz}^{-2}$)') else: plt.xlabel('eta (tdel)') plt.ylabel('mean power (dB)') plt.xscale('log') elif plot: plt.axvspan(xmin=eta-etaerr, xmax=eta+etaerr, facecolor='C{0}'.format(str(int(3+iarc))), alpha=0.3) if plot and iarc == len(etamin_array) - 1: if filename is not None: plt.savefig(filename, figsize=(6, 6), dpi=150, bbox_inches='tight', pad_inches=0.1) plt.close() elif display: plt.show() elif method == 'norm_sspec': # Get the normalised secondary spectrum, set for minimum eta as # normalisation. Then calculate peak as self.norm_sspec(eta=etamin, delmax=delmax, plot=False, startbin=startbin, maxnormfac=1, cutmid=cutmid, lamsteps=lamsteps, scrunched=True, plot_fit=False, numsteps=numsteps_new) norm_sspec = self.normsspecavg.squeeze() etafrac_array = np.linspace(-1, 1, len(norm_sspec)) ind1 = np.argwhere(etafrac_array > 1/(2*len(norm_sspec))) ind2 = np.argwhere(etafrac_array < -1/(2*len(norm_sspec))) norm_sspec_avg = np.add(norm_sspec[ind1], np.flip(norm_sspec[ind2], axis=0))/2 norm_sspec_avg = norm_sspec_avg.squeeze() etafrac_array_avg = 1/etafrac_array[ind1].squeeze() # Make sure is valid filt_ind = is_valid(norm_sspec_avg) norm_sspec_avg = np.flip(norm_sspec_avg[filt_ind], axis=0) etafrac_array_avg = np.flip(etafrac_array_avg[filt_ind], axis=0) # Form eta array and cut at maximum etaArray = etamin*etafrac_array_avg**2 ind = np.argwhere(etaArray < etamax) etaArray = etaArray[ind].squeeze() norm_sspec_avg = norm_sspec_avg[ind].squeeze() # Smooth data norm_sspec_avg_filt = \ savgol_filter(norm_sspec_avg, nsmooth, 1) # search for peaks within constraint range indrange = np.argwhere((etaArray > constraint[0]) * (etaArray < constraint[1])) sumpow_inrange = norm_sspec_avg_filt[indrange] ind = np.argmin(np.abs(norm_sspec_avg_filt - np.max(sumpow_inrange))) # Now find eta and estimate error by fitting parabola # Data from -3db on low curvature side to -1.5db on high side max_power = norm_sspec_avg_filt[ind] power = max_power ind1 = 1 while (power > max_power + low_power_diff and ind + ind1 < len(norm_sspec_avg_filt)-1): # -3db ind1 += 1 power = norm_sspec_avg_filt[ind - ind1] power = max_power ind2 = 1 while (power > max_power + high_power_diff and ind + ind2 < len(norm_sspec_avg_filt)-1): # -1db power ind2 += 1 power = norm_sspec_avg_filt[ind + ind2] # Now select this region of data for fitting xdata = etaArray[int(ind-ind1):int(ind+ind2)] ydata = norm_sspec_avg[int(ind-ind1):int(ind+ind2)] # Do the fit # yfit, eta, etaerr = fit_parabola(xdata, ydata) yfit, eta, etaerr = fit_parabola(xdata, ydata) if np.mean(np.gradient(np.diff(yfit))) > 0: raise ValueError('Fit returned a forward parabola.') eta = eta if noise_error: # Now get error from the noise in secondary spectra instead etaerr2 = etaerr # error from parabola fit power = max_power ind1 = 1 while (power > max_power - noise and ind + ind1 < len(norm_sspec_avg_filt)-1): # -3db ind1 += 1 power = norm_sspec_avg_filt[ind - ind1] power = max_power ind2 = 1 while (power > max_power - noise and # -1db power ind + ind2 < len(norm_sspec_avg_filt)-1): ind2 += 1 power = norm_sspec_avg_filt[ind + ind2] etaerr = np.ptp(etaArray[int(ind-ind1):int(ind+ind2)])/2 if plot and iarc == 0: plt.plot(etaArray, norm_sspec_avg) plt.plot(etaArray, norm_sspec_avg_filt) plt.plot(xdata, yfit) plt.axvspan(xmin=eta-etaerr, xmax=eta+etaerr, facecolor='C2', alpha=0.5) plt.xscale('log') if lamsteps: plt.xlabel(r'Arc curvature, ' r'$\eta$ (${\rm m}^{-1}\,{\rm mHz}^{-2}$)') else: plt.xlabel('eta (tdel)') plt.ylabel('Mean power (dB)') elif plot: plt.plot(xdata, yfit, color='C{0}'.format(str(int(3+iarc)))) plt.axvspan(xmin=eta-etaerr, xmax=eta+etaerr, facecolor='C{0}'.format(str(int(3+iarc))), alpha=0.3) if plot and iarc == len(etamin_array)-1: if filename is not None: plt.savefig(filename, figsize=(6, 6), dpi=150, bbox_inches='tight', pad_inches=0.1) plt.close() elif display: plt.show() else: raise ValueError('Unknown arc fitting method. Please choose \ from gidmax or norm_sspec') if iarc == 0: # save primary if lamsteps: self.betaeta = eta self.betaetaerr = etaerr self.betaetaerr2 = etaerr2 else: self.eta = eta self.etaerr = etaerr self.etaerr2 = etaerr2 def norm_sspec(self, eta=None, delmax=None, plot=False, startbin=1, maxnormfac=2, cutmid=3, lamsteps=False, scrunched=True, plot_fit=True, ref_freq=1400, numsteps=None, filename=None, display=True, unscrunched=True, powerspec=True): """ Normalise fdop axis using arc curvature """ # Maximum value delay axis (us @ ref_freq) delmax = np.max(self.tdel) if delmax is None else delmax delmax = delmax*(ref_freq/self.freq)**2 if lamsteps: if not hasattr(self, 'lamsspec'): self.calc_sspec(lamsteps=lamsteps) sspec = cp(self.lamsspec) yaxis = cp(self.beta) if not hasattr(self, 'betaeta') and eta is None: self.fit_arc(lamsteps=lamsteps, delmax=delmax, plot=plot, startbin=startbin) else: if not hasattr(self, 'sspec'): self.calc_sspec() sspec = cp(self.sspec) yaxis = cp(self.tdel) if not hasattr(self, 'eta') and eta is None: self.fit_arc(lamsteps=lamsteps, delmax=delmax, plot=plot, startbin=startbin) if eta is None: if lamsteps: eta = self.betaeta else: eta = self.eta else: # convert to beta if not lamsteps: c = 299792458.0 # m/s beta_to_eta = c*1e6/((ref_freq*10**6)**2) eta = eta/(self.freq/ref_freq)**2 # correct for frequency eta = eta*beta_to_eta medval = np.median(sspec[is_valid(sspec)*np.array(np.abs(sspec) > 0)]) std = np.std(sspec[is_valid(sspec)*np.array(np.abs(sspec) > 0)]) maxval = np.max(sspec[is_valid(sspec)*np.array(np.abs(sspec) > 0)]) vmin = medval - std vmax = maxval - 3 ind = np.argmin(abs(self.tdel-delmax)) sspec = sspec[startbin:ind, :] # cut first N delay bins and at delmax # sspec[0:startbin] = np.nan nr, nc = np.shape(sspec) # mask out centre bins sspec[:, int(nc/2 - np.floor(cutmid/2)):int(nc/2 + np.floor(cutmid/2))] = np.nan tdel = yaxis[startbin:ind] # tdel = yaxis[:ind] fdop = self.fdop maxfdop = maxnormfac*np.sqrt(tdel[-1]/eta) # Maximum fdop for plot if maxfdop > max(fdop): maxfdop = max(fdop) # Number of fdop bins to use. Oversample by factor of 2 nfdop = 2*len(fdop[abs(fdop) <= maxfdop]) if numsteps is None else numsteps fdopnew = np.linspace(-maxnormfac, maxnormfac, nfdop) # norm fdop normSspec = [] isspectot = np.zeros(np.shape(fdopnew)) for ii in range(0, len(tdel)): itdel = tdel[ii] imaxfdop = maxnormfac*np.sqrt(itdel/eta) ifdop = fdop[abs(fdop) <= imaxfdop]/np.sqrt(itdel/eta) isspec = sspec[ii, abs(fdop) <= imaxfdop] # take the iith row ind = np.argmin(abs(fdopnew)) normline = np.interp(fdopnew, ifdop, isspec) normSspec.append(normline) isspectot = np.add(isspectot, normline) isspecavg = np.nanmean(normSspec, axis=0) # make average powerspectrum = np.nanmean(normSspec, axis=1) ind1 = np.argmin(abs(fdopnew-1)-2) if isspecavg[ind1] < 0: isspecavg = isspecavg + 2 # make 1 instead of -1 if plot: # Plot delay-scrunched "power profile" if scrunched: plt.plot(fdopnew, isspecavg) bottom, top = plt.ylim() plt.xlabel("Normalised $f_t$") plt.ylabel("Mean power (dB)") if plot_fit: plt.plot([1, 1], [bottom*0.9, top*1.1], 'r--', alpha=0.5) plt.plot([-1, -1], [bottom*0.9, top*1.1], 'r--', alpha=0.5) plt.ylim(bottom*0.9, top*1.1) # always plot from zero! plt.xlim(-maxnormfac, maxnormfac) if filename is not None: filename_name = filename.split('.')[0] filename_extension = filename.split('.')[1] plt.savefig(filename_name + '_1d.' + filename_extension, bbox_inches='tight', pad_inches=0.1) plt.close() elif display: plt.show() # Plot 2D normalised secondary spectrum if unscrunched: plt.pcolormesh(fdopnew, tdel, normSspec, vmin=vmin, vmax=vmax) if lamsteps: plt.ylabel(r'$f_\lambda$ (m$^{-1}$)') else: plt.ylabel(r'$f_\nu$ ($\mu$s)') bottom, top = plt.ylim() plt.xlabel("Normalised $f_t$") if plot_fit: plt.plot([1, 1], [bottom, top], 'r--', alpha=0.5) plt.plot([-1, -1], [bottom, top], 'r--', alpha=0.5) plt.ylim(bottom, top) plt.colorbar() if filename is not None: plt.savefig(filename, bbox_inches='tight', pad_inches=0.1) plt.close() elif display: plt.show() # plot power spectrum if powerspec: plt.loglog(np.sqrt(tdel), powerspectrum) if lamsteps: plt.xlabel(r'$f_\lambda^{1/2}$ (m$^{-1/2}$)') else: plt.xlabel(r'$f_\nu^{1/2}$ ($\mu$s$^{1/2}$)') plt.ylabel("Mean power (dB)") if filename is not None: filename_name = filename.split('.')[0] filename_extension = filename.split('.')[1] plt.savefig(filename_name + '_power.' + filename_extension, bbox_inches='tight', pad_inches=0.1) plt.close() elif display: plt.show() self.normsspecavg = isspecavg self.normsspec = np.array(normSspec).squeeze() self.normsspec_tdel = tdel return def get_scint_params(self, method="acf1d", plot=False, alpha=5/3, mcmc=False, display=True): """ Measure the scintillation timescale Method: acf1d - takes a 1D cut through the centre of the ACF for sspec - measures timescale from the power spectrum acf2d - uses an analytic approximation to the ACF including phase gradient """ from lmfit import Minimizer, Parameters import corner if not hasattr(self, 'acf'): self.calc_acf() if not hasattr(self, 'sspec'): self.calc_sspec() if method == 'acf1d': scint_model = scint_acf_model ydata_f = self.acf[int(self.nchan):, int(self.nsub)] xdata_f = self.df*np.linspace(0, len(ydata_f), len(ydata_f)) ydata_t = self.acf[int(self.nchan), int(self.nsub):] xdata_t = self.dt*np.linspace(0, len(ydata_t), len(ydata_t)) elif method == 'sspec': scint_model = scint_sspec_model arr = cp(self.acf) arr = np.fft.ifftshift(arr) # sspec = np.fft.fft2(arr) # concatenate x and y arrays xdata = np.array(np.concatenate((xdata_t, xdata_f))) ydata = np.array(np.concatenate((ydata_t, ydata_f))) weights = np.ones(np.shape(ydata)) # Get initial parameter values nt = len(xdata_t) # number of t-lag samples # Estimate amp and white noise level wn = min([ydata_f[0]-ydata_f[1], ydata_t[0]-ydata_t[1]]) amp = max([ydata_f[1], ydata_t[1]]) # Estimate tau for initial guess. Closest index to 1/e power tau = xdata_t[np.argmin(abs(ydata_t - amp/np.e))] # Estimate dnu for initial guess. Closest index to 1/2 power dnu = xdata_f[np.argmin(abs(ydata_f - amp/2))] # Define fit parameters params = Parameters() params.add('tau', value=tau, min=0.0, max=np.inf) params.add('dnu', value=dnu, min=0.0, max=np.inf) params.add('amp', value=amp, min=0.0, max=np.inf) params.add('wn', value=wn, min=0.0, max=np.inf) params.add('nt', value=nt, vary=False) if alpha is None: params.add('alpha', value=5/3, min=0, max=8) else: params.add('alpha', value=alpha, vary=False) # Do fit func = Minimizer(scint_model, params, fcn_args=(xdata, ydata, weights)) results = func.minimize() if mcmc: print('Doing mcmc posterior sample') mcmc_results = func.emcee() results = mcmc_results self.tau = results.params['tau'].value self.tauerr = results.params['tau'].stderr self.dnu = results.params['dnu'].value self.dnuerr = results.params['dnu'].stderr self.talpha = results.params['alpha'].value if alpha is None: self.talphaerr = results.params['alpha'].stderr if plot: # get models: if method == 'acf1d': # Get tau model tmodel_res = tau_acf_model(results.params, xdata_t, ydata_t, weights[:nt]) tmodel = ydata_t - tmodel_res/weights[:nt] # Get dnu model fmodel_res = dnu_acf_model(results.params, xdata_f, ydata_f, weights[nt:]) fmodel = ydata_f - fmodel_res/weights[nt:] plt.subplot(2, 1, 1) plt.plot(xdata_t, ydata_t) plt.plot(xdata_t, tmodel) plt.xlabel('Time lag (s)') plt.subplot(2, 1, 2) plt.plot(xdata_f, ydata_f) plt.plot(xdata_f, fmodel) plt.xlabel('Frequency lag (MHz)') if display: plt.show() if mcmc: corner.corner(mcmc_results.flatchain, labels=mcmc_results.var_names, truths=list(mcmc_results.params. valuesdict().values())) if display: plt.show() return def cut_dyn(self, tcuts=0, fcuts=0, plot=False, filename=None, lamsteps=False, maxfdop=np.inf, figsize=(8, 13), display=True): """ Cuts the dynamic spectrum into tcuts+1 segments in time and fcuts+1 segments in frequency """ if filename is not None: plt.ioff() # turn off interactive plotting nchan = len(self.freqs) # re-define in case of trimming nsub = len(self.times) fnum = np.floor(nchan/(fcuts + 1)) tnum = np.floor(nsub/(tcuts + 1)) cutdyn = np.empty(shape=(fcuts+1, tcuts+1, int(fnum), int(tnum))) # find the right fft lengths for rows and columns nrfft = int(2**(np.ceil(np.log2(int(fnum)))+1)/2) ncfft = int(2**(np.ceil(np.log2(int(tnum)))+1)) cutsspec = np.empty(shape=(fcuts+1, tcuts+1, nrfft, ncfft)) cutacf = np.empty(shape=(fcuts+1, tcuts+1, 2*int(fnum), 2*int(tnum))) plotnum = 1 for ii in reversed(range(0, fcuts+1)): # plot from high to low for jj in range(0, tcuts+1): cutdyn[int(ii)][int(jj)][:][:] =\ self.dyn[int(ii*fnum):int((ii+1)*fnum), int(jj*tnum):int((jj+1)*tnum)] input_dyn_x = self.times[int(jj*tnum):int((jj+1)*tnum)] input_dyn_y = self.freqs[int(ii*fnum):int((ii+1)*fnum)] input_sspec_x, input_sspec_y, cutsspec[int(ii)][int(jj)][:][:]\ = self.calc_sspec(input_dyn=cutdyn[int(ii)][int(jj)][:][:], lamsteps=lamsteps) cutacf[int(ii)][int(jj)][:][:] \ = self.calc_acf(input_dyn=cutdyn[int(ii)][int(jj)][:][:]) if plot: # Plot dynamic spectra plt.figure(1, figsize=figsize) plt.subplot(fcuts+1, tcuts+1, plotnum) self.plot_dyn(input_dyn=cutdyn[int(ii)][int(jj)][:][:], input_x=input_dyn_x/60, input_y=input_dyn_y) plt.xlabel('t (mins)') plt.ylabel('f (MHz)') # Plot acf plt.figure(2, figsize=figsize) plt.subplot(fcuts+1, tcuts+1, plotnum) self.plot_acf(input_acf=cutacf[int(ii)][int(jj)][:][:], input_t=input_dyn_x, input_f=input_dyn_y) plt.xlabel('t lag (mins)') plt.ylabel('f lag ') # Plot secondary spectra plt.figure(3, figsize=figsize) plt.subplot(fcuts+1, tcuts+1, plotnum) self.plot_sspec(input_sspec=cutsspec[int(ii)] [int(jj)][:][:], input_x=input_sspec_x, input_y=input_sspec_y, lamsteps=lamsteps, maxfdop=maxfdop) plt.xlabel(r'$f_t$ (mHz)') if lamsteps: plt.ylabel(r'$f_\lambda$ (m$^{-1}$)') else: plt.ylabel(r'$f_\nu$ ($\mu$s)') plotnum += 1 if plot: plt.figure(1) if filename is not None: filename_name = filename.split('.')[0] filename_extension = filename.split('.')[1] plt.savefig(filename_name + '_dynspec.' + filename_extension, figsize=(6, 10), dpi=150, bbox_inches='tight', pad_inches=0.1) plt.close() elif display: plt.show() plt.figure(2) if filename is not None: plt.savefig(filename_name + '_acf.' + filename_extension, figsize=(6, 10), dpi=150, bbox_inches='tight', pad_inches=0.1) plt.close() elif display: plt.show() plt.figure(3) if filename is not None: plt.savefig(filename_name + '_sspec.' + filename_extension, figsize=(6, 10), dpi=150, bbox_inches='tight', pad_inches=0.1) plt.close() elif display: plt.show() self.cutdyn = cutdyn self.cutsspec = cutsspec def trim_edges(self): """ Find and remove the band edges """ rowsum = sum(abs(self.dyn[0][:])) # Trim bottom while rowsum == 0 or np.isnan(rowsum): self.dyn = np.delete(self.dyn, (0), axis=0) self.freqs = np.delete(self.freqs, (0)) rowsum = sum(abs(self.dyn[0][:])) rowsum = sum(abs(self.dyn[-1][:])) # Trim top while rowsum == 0 or np.isnan(rowsum): self.dyn = np.delete(self.dyn, (-1), axis=0) self.freqs = np.delete(self.freqs, (-1)) rowsum = sum(abs(self.dyn[-1][:])) # Trim left colsum = sum(abs(self.dyn[:][0])) while colsum == 0 or np.isnan(rowsum): self.dyn = np.delete(self.dyn, (0), axis=1) self.times = np.delete(self.times, (0)) colsum = sum(abs(self.dyn[:][0])) colsum = sum(abs(self.dyn[:][-1])) # Trim right while colsum == 0 or np.isnan(rowsum): self.dyn = np.delete(self.dyn, (-1), axis=1) self.times = np.delete(self.times, (-1)) colsum = sum(abs(self.dyn[:][-1])) self.nchan = len(self.freqs) self.bw = round(max(self.freqs) - min(self.freqs) + self.df, 2) self.freq = round(np.mean(self.freqs), 2) self.nsub = len(self.times) self.tobs = round(max(self.times) - min(self.times) + self.dt, 2) self.mjd = self.mjd + self.times[0]/86400 def refill(self, linear=True, zeros=True): """ Replaces the nan values in array. Also replaces zeros by default """ if zeros: self.dyn[self.dyn == 0] = np.nan array = cp(self.dyn) x = np.arange(0, array.shape[1]) y = np.arange(0, array.shape[0]) if linear: # do linear interpolation # mask invalid values array = np.ma.masked_invalid(array) xx, yy = np.meshgrid(x, y) # get only the valid values x1 = xx[~array.mask] y1 = yy[~array.mask] newarr = np.ravel(array[~array.mask]) self.dyn = griddata((x1, y1), newarr, (xx, yy), method='linear') # Fill remainder with the mean meanval = np.mean(self.dyn[is_valid(self.dyn)]) self.dyn[np.isnan(self.dyn)] = meanval def correct_band(self, frequency=True, time=False, lamsteps=False, nsmooth=5): """ Correct for the bandpass """ if lamsteps: if not self.lamsteps: self.scale_dyn() dyn = self.lamdyn else: dyn = self.dyn dyn[np.isnan(dyn)] = 0 if frequency: self.bandpass = np.mean(dyn, axis=1) # Make sure there are no zeros self.bandpass[self.bandpass == 0] = np.mean(self.bandpass) if nsmooth is not None: bandpass = savgol_filter(self.bandpass, nsmooth, 1) else: bandpass = self.bandpass dyn = np.divide(dyn, np.reshape(bandpass, [len(bandpass), 1])) if time: timestructure = np.mean(dyn, axis=0) # Make sure there are no zeros timestructure[timestructure == 0] = np.mean(timestructure) if nsmooth is not None: timestructure = savgol_filter(timestructure, nsmooth, 1) dyn = np.divide(dyn, np.reshape(timestructure, [1, len(timestructure)])) if lamsteps: self.lamdyn = dyn else: self.dyn = dyn def calc_sspec(self, prewhite=True, plot=False, lamsteps=False, input_dyn=None, input_x=None, input_y=None, trap=False, window='blackman', window_frac=0.1): """ Calculate secondary spectrum """ if input_dyn is None: # use self dynamic spectrum if lamsteps: if not self.lamsteps: self.scale_dyn() dyn = cp(self.lamdyn) elif trap: if not hasattr(self, 'trap'): self.scale_dyn(scale='trapezoid') dyn = cp(self.trapdyn) else: dyn = cp(self.dyn) else: dyn = input_dyn # use imput dynamic spectrum nf = np.shape(dyn)[0] nt = np.shape(dyn)[1] dyn = dyn - np.mean(dyn) # subtract mean if window is not None: # Window the dynamic spectrum if window == 'hanning': cw = np.hanning(np.floor(window_frac*nt)) sw = np.hanning(np.floor(window_frac*nf)) elif window == 'hamming': cw = np.hamming(np.floor(window_frac*nt)) sw = np.hamming(np.floor(window_frac*nf)) elif window == 'blackman': cw = np.blackman(np.floor(window_frac*nt)) sw = np.blackman(np.floor(window_frac*nf)) elif window == 'bartlett': cw = np.bartlett(np.floor(window_frac*nt)) sw = np.bartlett(np.floor(window_frac*nf)) else: print('Window unknown.. Please add it!') chan_window = np.insert(cw, int(np.ceil(len(cw)/2)), np.ones([nt-len(cw)])) subint_window = np.insert(sw, int(np.ceil(len(sw)/2)), np.ones([nf-len(sw)])) dyn = np.multiply(chan_window, dyn) dyn = np.transpose(np.multiply(subint_window, np.transpose(dyn))) # find the right fft lengths for rows and columns nrfft = int(2**(np.ceil(np.log2(nf))+1)) ncfft = int(2**(np.ceil(np.log2(nt))+1)) dyn = dyn - np.mean(dyn) # subtract mean if prewhite: simpw = convolve2d([[1, -1], [-1, 1]], dyn, mode='valid') else: simpw = dyn simf = np.fft.fft2(simpw, s=[nrfft, ncfft]) simf = np.real(np.multiply(simf, np.conj(simf))) # is real sec = np.fft.fftshift(simf) # fftshift sec = sec[int(nrfft/2):][:] # crop td = np.array(list(range(0, int(nrfft/2)))) fd = np.array(list(range(int(-ncfft/2), int(ncfft/2)))) fdop = np.reshape(
np.multiply(fd, 1e3/(ncfft*self.dt))
numpy.multiply
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> and <NAME> # -------------------------------------------------------- """Compute minibatch blobs for training a Fast R-CNN network.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path as osp import numpy as np import numpy.random as npr import cv2 import sys sys.path.insert(0, osp.join(osp.dirname(__file__), "..")) from model.config import cfg from utils.blob import prep_im_for_blob, im_list_to_blob from datasets.Liver_Kits import METType, abdominal_mask, raw_reader def get_minibatch(roidb, num_classes): """Given a roidb, construct a minibatch sampled from it.""" num_images = len(roidb) # Sample random scales to use for each image in this batch random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES), size=num_images) assert(cfg.TRAIN.BATCH_SIZE % num_images == 0), \ 'num_images ({}) must divide BATCH_SIZE ({})'. \ format(num_images, cfg.TRAIN.BATCH_SIZE) # Get the input image blob, formatted for caffe if not cfg.MED_IMG: im_blob, im_scales = _get_image_blob(roidb, random_scale_inds) else: im_blob, abdo_mask = _get_medical_image_blob(roidb) im_scales = [1] # compatible with original version blobs = {"data": im_blob, "abdo_mask": abdo_mask} assert len(im_scales) == 1, "Single batch only" assert len(roidb) == 1, "Single batch only" # gt boxes: (x1, y1, x2, y2, cls) if cfg.TRAIN.USE_ALL_GT: # Include all ground truth boxes gt_inds = np.where(roidb[0]['gt_classes'] != 0)[0] else: # For the COCO ground truth boxes, exclude the ones that are ''iscrowd'' gt_inds = np.where(roidb[0]['gt_classes'] != 0 & np.all( roidb[0]['gt_overlaps'].toarray() > -1.0, axis=1))[0] gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32) gt_boxes[:, 0:4] = roidb[0]['boxes'][gt_inds, :] * im_scales[0] gt_boxes[:, 4] = roidb[0]['gt_classes'][gt_inds] blobs['gt_boxes'] = gt_boxes blobs['im_info'] = np.array( [im_blob.shape[1], im_blob.shape[2], im_scales[0]], dtype=np.float32) return blobs def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in range(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales def _get_medical_image_blob(roidb): """ Builds an input blob from the medical image in the roidb """ num_images = len(roidb) processed_ims = [] pre_ims = [] post_ims = [] abdo_masks = [] for i in range(num_images): im = raw_reader(roidb[i]["image"], cfg.MET_TYPE, [roidb[i]["height"], roidb[i]["width"]]) if roidb[i]['flipped']: im = im[:, ::-1] processed_ims.append(im) mask = abdominal_mask(im.copy()) abdo_masks.append(mask) if cfg.THREE_SLICES: # get pre-image basename = osp.basename(roidb[i]["image"]) names = basename[:-4].split("_") slice_num = int(names[-1]) if slice_num == 0: pre_im = im else: slice_num -= 1 names[-1] = str(slice_num) basename = "_".join(names) + ".raw" pre_path = osp.join(osp.dirname(roidb[i]["image"]), basename) pre_im = raw_reader(pre_path, cfg.MET_TYPE, [roidb[i]["height"], roidb[i]["width"]]) if roidb[i]['flipped']: pre_im = pre_im[:, ::-1] pre_ims.append(pre_im) # get post-image basename = osp.basename(roidb[i]["image"]) names = basename[:-4].split("_") names[-1] = str(int(names[-1]) + 1) basename = "_".join(names) + ".raw" post_path = osp.join(osp.dirname(roidb[i]["image"]), basename) try: post_im = raw_reader(post_path, cfg.MET_TYPE, [roidb[i]["height"], roidb[i]["width"]]) if roidb[i]['flipped']: post_im = post_im[:, ::-1] except FileNotFoundError: post_im = im post_ims.append(post_im) num_images = len(processed_ims) blob = np.zeros((num_images, cfg.TRAIN.MAX_SIZE, cfg.TRAIN.MAX_SIZE, 3), dtype=np.float32) abdo_mask = np.zeros((num_images, cfg.TRAIN.MAX_SIZE, cfg.TRAIN.MAX_SIZE), dtype=np.bool) if cfg.THREE_SLICES: for i in range(num_images): blob[i,:,:,0] = pre_ims[i] blob[i,:,:,1] = processed_ims[i] blob[i,:,:,2] = post_ims[i] abdo_mask[i,:,:] = abdo_masks[i] else: for i in range(num_images): blob[i,:,:,0] = processed_ims[i] blob[i,:,:,1] = processed_ims[i] blob[i,:,:,2] = processed_ims[i] abdo_mask[i,:,:] = abdo_masks[i] if cfg.USE_WIDTH_LEVEL: win, wind2, lev = cfg.WIDTH, cfg.WIDTH / 2, cfg.LEVEL blob = (np.clip(blob, lev - wind2, lev + wind2) - (lev - wind2)) / 2**16 * win else: blob /= cfg.MED_IMG_UPPER blob =
np.clip(blob, -1., 1.)
numpy.clip
# Copyright 2017 Regents of the University of California # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with # the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os, sys, time, copy, collections, math, json import numpy as np import scipy as sp import matplotlib from matplotlib import pyplot as plt import llops as yp # Custom scale bar object from matplotlib_scalebar.scalebar import ScaleBar # Libwallerlab imports from llops import display from llops import Roi class StopAndStareAcquisition(): # Initialization def __init__(self, hardware_controller_list, system_metadata, illumination_type='bf', illumination_sequence=None, frame_spacing_mm=1, object_size_mm=(0.5, 0.5), reuse_illumination_sequence=True, max_exposure_time_s=2, exposure_time_pad_s=0.0, velocity_mm_s=None, exposure_time_s=None, debug=False, trigger_mode='software', motion_acceleration_mm_s_2=1e3, flip_pathway=False, acquisition_timeout_s=3, illumination_na_pad=0.03, illumination_color={'w': 127}, settle_time_s=0): # Parse options self.illumination_type = illumination_type self.settle_time_s = settle_time_s self.object_size_mm = object_size_mm self.frame_spacing_mm = frame_spacing_mm self.flip_pathway = flip_pathway self.exposure_time_pad_s = exposure_time_pad_s self.debug = debug self.motion_acceleration_mm_s_2 = motion_acceleration_mm_s_2 self.velocity_mm_s = velocity_mm_s self.max_exposure_time_s = max_exposure_time_s self.illumination_na_pad = illumination_na_pad self.illumination_color = illumination_color self.acquisition_timeout_s = acquisition_timeout_s # Define controller objects, which act as hardware interfaces. # These should be in an ordered dictionary because the order which they # are initialized matters when using a mix of hardware and software triggering. self.hardware_controller_list = collections.OrderedDict() # First add hardware triggered elements so they perform their set-up before we trigger software elements for controller in hardware_controller_list: if controller.trigger_mode is 'hardware': self.hardware_controller_list[controller.type] = controller controller.reset() controller.seq_clear() # Then, add software triggered elements for controller in hardware_controller_list: if controller.trigger_mode is 'software': self.hardware_controller_list[controller.type] = controller controller.reset() controller.seq_clear() # Check to be sure a sequence acquisition is not running assert 'camera' in self.hardware_controller_list, 'Did not find camera controller!' # Store metadata object self.metadata = system_metadata # Ensure we have all necessary metadata for basic acquisition assert self.metadata.objective.na is not None, 'Missing objective.na in metadata.' assert self.metadata.objective.mag is not None, 'Missing objective.mag in metadata.' assert self.metadata.camera.pixel_size_um is not None, 'Missing pixel size in metadata.' # Update effective pixel size (for scale bar) self.metadata.system.eff_pixel_size_um = self.metadata.camera.pixel_size_um / (self.metadata.objective.mag * self.metadata.system.mag) # Trigger Constants self.TRIG_MODE_EVERY_PATTERN = 1 self.TRIG_MODE_ITERATION = -1 self.TRIG_MODE_START = -2 # Frame state time sequence, will default to a sequence of one exposure time per frame if left as None self.time_sequence_s = None self.exposure_time_s = None self.hardware_sequence_timing = None # Turn off fast sequencing for illumination by default since this is only avaolable with certain LED arrays if 'illumination' in self.hardware_controller_list: self.hardware_controller_list['illumination'].use_fast_sequence = False # print(type(self.)) self.metadata.type = 'stop and stare' assert 'illumination' in self.hardware_controller_list, 'Stop and Stare acquisition requires programmable light source' assert 'position' in self.hardware_controller_list, 'Stop and Stare acquisition requires programmable positioning device' # Generate motion pathway self.hardware_controller_list['position'].state_sequence = self.genStopAndStarePathwayRaster( self.object_size_mm, self.frame_spacing_mm) # Generate illumination sequence illuminaiton_pattern_sequence = [self.illumination_type] * \ len(self.hardware_controller_list['position'].state_sequence) self.hardware_controller_list['illumination'].state_sequence = self.genMultiContrastSequence( illuminaiton_pattern_sequence) # Tell device not to use feedback self.hardware_controller_list['illumination'].trigger_wait_flag = False self.hardware_controller_list['illumination'].command('trs.0.500.0') self.hardware_controller_list['illumination'].command('trs.1.500.0') self.hardware_controller_list['position'].goToPosition((0,0)) self.hardware_controller_list['position'].command('ENCODER X 1') self.hardware_controller_list['position'].command('ENCODER Y 1') self.hardware_controller_list['position'].command('ENCW X 100') self.hardware_controller_list['position'].command('ENCW Y 100') def acquire(self, exposure_time_ms=50): # Allocate memory for frames if self.hardware_controller_list['camera'].isSequenceRunning(): self.hardware_controller_list['camera'].sequenceStop() self.hardware_controller_list['camera'].setBufferSizeMb( 20 * len(self.hardware_controller_list['position'].state_sequence)) # Set camera exposure self.hardware_controller_list['camera'].setExposure(exposure_time_ms / 1e3) self.hardware_controller_list['camera'].setTriggerMode('hardware') self.hardware_controller_list['camera'].runSequence() self.hardware_controller_list['illumination'].bf() # Snap one image to ensure all acquisitons are started self.hardware_controller_list['camera'].snap() # generate frame_list t0 = time.time() frames_acquired = 0 frame_list = [] for frame in yp.display.progressBar(self.hardware_controller_list['position'].state_sequence, name='Frames Acquired'): pos = frame['states'] x = pos[0][0]['value']['x'] y = pos[0][0]['value']['y'] self.hardware_controller_list['position'].goToPosition((x, y), blocking=True) time.sleep(self.settle_time_s) frame_list.append(self.hardware_controller_list['camera'].snap()) frames_acquired += 1 # print('Acquired %d of %d frames' % (frames_acquired, len(self.hardware_controller_list['position'].state_sequence))) t_acq_sns = time.time() - t0 print("Acquisition took %.4f seconds" % (t_acq_sns)) # Create dataset from htdeblur.mddataset import MotionDeblurDataset dataset = MotionDeblurDataset() # Assign acquisition time self.metadata.acquisition_time_s = t_acq_sns # Apply simple geometric transformations if self.metadata.camera.transpose: frame_list = frame_list.transpose(0, 2, 1) if self.metadata.camera.flip_x: frame_list = np.flip(frame_list, 2) if self.metadata.camera.flip_y: frame_list = np.flip(frame_list, 1) # Assign dataset.frame_list = [frame for frame in frame_list] # Set frame state list self.n_frames = len(self.hardware_controller_list['position'].state_sequence) frame_state_list = [] for frame_index in range(self.n_frames): single_frame_state_list = {} # Loop over hardware controllers and record their state sequences for hardware_controller_name in self.hardware_controller_list: hardware_controller = self.hardware_controller_list[hardware_controller_name] if hardware_controller.state_sequence is not None: single_frame_state_list[hardware_controller_name] = hardware_controller.state_sequence[frame_index] # Record time_sequence_s single_frame_state_list['time_sequence_s'] = [0] # Add to list of all frames frame_state_list.append(single_frame_state_list) dataset.metadata = self.metadata dataset.type = 'stop_and_stare' dataset.frame_state_list = frame_state_list return dataset def genStopAndStarePathwayRaster(self, object_size_mm, frame_spacing_mm, major_axis=1, include_minor_axis=False): # Determine major axis if major_axis is None: major_axis = np.argmax(np.asarray(object_size_mm)) if object_size_mm[0] == object_size_mm[1]: major_axis = 1 # Detemine number of measurements measurement_count = np.ceil(np.asarray(object_size_mm) / np.asarray(frame_spacing_mm) ).astype(np.int) # two components in x and y # Determine slightly smaller frame spacing for optimal coverage of object frame_spacing_mm = (object_size_mm[0] / measurement_count[0], object_size_mm[1] / measurement_count[1]) # Error checking assert np.any(measurement_count > 1), "image_size must be smaller than object_size!" print("Image size requires %d x %d images" % (measurement_count[0], measurement_count[1])) # This variable will be populated by the loop below raster_segments = np.zeros((measurement_count[0] * 2, 2)) # Generate raster points raster_end_point_list = [] pathway = [] linear_segment_index = 0 # This variable keeps track of linear segments, for use with path planning for row in np.arange(measurement_count[0]): if row % 2 == 0: for index, col in enumerate(range(measurement_count[1])): # Add pathway to list pathway.append({'x_start': frame_spacing_mm[1] * col, 'y_start': frame_spacing_mm[0] * row, 'x_end': frame_spacing_mm[1] * col, 'y_end': frame_spacing_mm[0] * row, 'linear_segment_index': linear_segment_index}) else: for index, col in enumerate(reversed(range(measurement_count[1]))): # Add pathway to list frame_spacing_mm[0] * row pathway.append({'x_start': frame_spacing_mm[1] * col, 'y_start': frame_spacing_mm[0] * row, 'x_end': frame_spacing_mm[1] * col, 'y_end': frame_spacing_mm[0] * row, 'linear_segment_index': linear_segment_index}) linear_segment_index += 1 # make the center the mean of the pathway path_means = [] for path in pathway: path_mean = ((path['y_start']), (path['x_start'])) path_means.append(path_mean) # mean = np.sum(np.asarray(path_means), axis=1) / len(path_means) mean = np.sum(np.asarray(path_means), axis=0) / len(path_means) for path in pathway: path['x_start'] -= mean[1] path['x_end'] -= mean[1] path['y_start'] -= mean[0] path['y_end'] -= mean[0] # return pathway state_sequence = [] for path in pathway: # Store common information about this frame common_state_dict = {} common_state_dict['frame_time'] = self.hardware_controller_list['camera'].getExposure() common_state_dict['led_update_rate_us'] = None common_state_dict['linear_segment_index'] = None common_state_dict['frame_distance'] = 0 common_state_dict['exposure_distance'] = 0 common_state_dict['velocity'] = self.velocity_mm_s common_state_dict['acceleration'] = self.motion_acceleration_mm_s_2 common_state_dict['n_blur_positions_exposure'] = 1 common_state_dict['position_delta_x_mm'] = 0 common_state_dict['position_delta_y_mm'] = 0 path_dict = {'value': {'time_index' : 0, 'x': path['x_start'], 'y': path['y_start']}} state_sequence.append({'states' : [[path_dict]], 'common' : common_state_dict}) return(state_sequence) def plotPathway(self): sequence_list = self.hardware_controller_list['position'].state_sequence point_list_start = [] point_list_end = [] for sequence in sequence_list: start_pos = (sequence['states'][0][0]['value']['x'], sequence['states'][0][0]['value']['y']) end_pos = (sequence['states'][-1][0]['value']['x'], sequence['states'][-1][0]['value']['y']) point_list_start.append(start_pos) point_list_end.append(end_pos) point_list_start = np.asarray(point_list_start) point_list_end = np.asarray(point_list_end) plt.figure() for index in range(len(point_list_start)): plt.scatter(point_list_start[index, 0], point_list_start[index, 1], c='b') plt.scatter(point_list_end[index, 0], point_list_end[index, 1], c='r') plt.plot([point_list_start[index, 0], point_list_end[index, 0]], [point_list_start[index, 1], point_list_end[index, 1]], c='y') plt.xlabel('Position X (mm)') plt.ylabel('Position Y (mm)') plt.title('Pathway (b is start, y/o is end)') plt.gca().invert_yaxis() def genMultiContrastSequence(self, illumination_pattern_sequence, n_acquisitions=1, darkfield_annulus_width_na=0.1): led_list = np.arange(self.metadata.illumination.state_list.design.shape[0]) bf_mask = self.metadata.illumination.state_list.design[:, 0] ** 2 \ + self.metadata.illumination.state_list.design[:, 1] ** 2 < ( self.metadata.objective.na + self.illumination_na_pad) ** 2 led_list_bf = led_list[bf_mask] led_list_df = led_list[~bf_mask] led_list_an = led_list[~bf_mask & (self.metadata.illumination.state_list.design[:, 0] ** 2 + self.metadata.illumination.state_list.design[:, 1] ** 2 < (self.metadata.objective.na + darkfield_annulus_width_na) ** 2)] illumination_sequence = [] self.pattern_type_list = [] pattern_dict = {'dpc.top': np.ndarray.tolist(led_list_bf[self.metadata.illumination.state_list.design[bf_mask, 1] > 0]), 'dpc.bottom': np.ndarray.tolist(led_list_bf[self.metadata.illumination.state_list.design[bf_mask, 1] < 0]), 'dpc.left':
np.ndarray.tolist(led_list_bf[self.metadata.illumination.state_list.design[bf_mask, 0] > 0])
numpy.ndarray.tolist
# -*- coding: utf-8 -*- """ Created on Tue Oct 5 17:56:11 2021 v0.8 28Oct21 @author: <NAME> CHANGE POINT DETECTOR This module takes a time series and returns the uunderlying linear trend and changpoints. It uses EVT as described in https://www.robots.ox.ac.uk/~sjrob/Pubs/LeeRoberts_EVT.pdf INSTRUCTIONS: 1. from ChangePointDetector import ChangePointDetector 2. Prepare your time series as data plus Panda dates 3. Create the necessary Kalman representation by creating a "session" object by calling the ChangePoint class, e.g.: Session=ChangePointDetector.ChangePointDetectorSession(data,dates). - 'SeasonalityPeriods' is an optional input, e.g 12 = calendar month seasonality - 'ForecastPeriods' is another optional input, indicating how many periods to forecast. Default = 3 4. Determine the changepoints by running the ChangePointDetectorFunction on your "session", e.g. Results=Session.ChangePointDetectorFunction() 5. This will return a "Results" object that contains the following: - ChangePoints. This is a list of 0s and 1s the length of the data, where 1s represent changepoints - Prediction. This is the Kalman smoothed actuals, plus a 3 period forecast. Note no forecast will be made if there is a changepoint in the last 3 dates - PredictionVariance - ExtendedDates. These are the original dates plus 3 exta for the forecast (if a forecast has been made) - Trend. This is the linear change factor - TrendVariance. Variance of the trend """ import numpy as np from numpy.linalg import inv from statsmodels.tsa.statespace.mlemodel import MLEModel # import math from math import sqrt, log, exp,pi from scipy.stats.distributions import chi2 from dateutil.relativedelta import relativedelta class ModuleResults: def __init__(self,Trend,TrendVariance,ChangePoints,Prediction,PredictionVariance,ExtendedDates): self.Trend=Trend self.TrendVariance=TrendVariance self.ChangePoints=ChangePoints self.Prediction=Prediction self.ExtendedDates=ExtendedDates self.PredictionVariance=PredictionVariance class TimeSeriesData: def __init__(self,data,dates): self.data=data self.dates=dates #Determine periodicity Delta=(dates[1]-dates[0]) if Delta in range(27,32): Period = "months" elif Delta ==1: Period = 'days' elif Delta ==7: Period = 'weeks' else: Period ="months" self.Period=Period class SeasonalStateArrays: def __init__(self,SeasonalityPeriods): if SeasonalityPeriods ==0: A=np.diag(np.ones(1)) H=np.ones(1) elif SeasonalityPeriods ==1: A=np.array([[1,1],[0,1]]) H=np.array([1,0]) else: A=np.diag(np.ones(SeasonalityPeriods+1)) B=np.zeros((SeasonalityPeriods+1,1)) C=-1*
np.ones(SeasonalityPeriods+2)
numpy.ones
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import os import unittest from copy import deepcopy from typing import List from unittest.mock import Mock, patch import numpy as np import reagent.core.types as rlt import torch from reagent.preprocessing import transforms from reagent.preprocessing.types import InputColumn class TestTransforms(unittest.TestCase): def setUp(self): # add custom compare function for torch.Tensor self.addTypeEqualityFunc(torch.Tensor, TestTransforms.are_torch_tensor_equal) @staticmethod def are_torch_tensor_equal(tensor_0, tensor_1, msg=None): if torch.all(tensor_0 == tensor_1): return True raise TestTransforms.failureException("non-equal pytorch tensors found", msg) def assertTorchTensorEqual(self, tensor_0, tensor_1, msg=None): self.assertIsInstance( tensor_0, torch.Tensor, "first argument is not a torch.Tensor" ) self.assertIsInstance( tensor_1, torch.Tensor, "second argument is not a torch.Tensor" ) self.assertEqual(tensor_0, tensor_1, msg=msg) def assertDictComparatorEqual(self, a, b, cmp): """ assertDictEqual() compares args with ==. This allows caller to override comparator via cmp argument. """ self.assertIsInstance(a, dict, "First argument is not a dictionary") self.assertIsInstance(b, dict, "Second argument is not a dictionary") self.assertSequenceEqual(a.keys(), b.keys()) for key in a.keys(): self.assertTrue(cmp(a[key], b[key]), msg=f"Different at key {key}") def assertDictOfTensorEqual(self, a, b): """ Helper method to compare dicts with values of type Tensor. Cannot use assertDictEqual when values are of type Tensor since tensor1 == tensor2 results in a tensor of bools. Use this instead. """ def _tensor_cmp(a, b): return torch.all(a == b) self.assertDictComparatorEqual(a, b, _tensor_cmp) def test_Compose(self): t1, t2 = Mock(return_value=2), Mock(return_value=3) compose = transforms.Compose(t1, t2) data = 1 out = compose(data) t1.assert_called_with(1) t2.assert_called_with(2) self.assertEqual(out, 3) def test_ValuePresence(self): vp = transforms.ValuePresence() d1 = {"a": 1, "a_presence": 0, "b": 2} d2 = {"a_presence": 0, "b": 2} o1 = vp(d1) o2 = vp(d2) self.assertEqual(o1, {"a": (1, 0), "b": 2}) self.assertEqual(o2, {"a_presence": 0, "b": 2}) def test_MaskByPresence(self): keys = ["a", "b"] mbp = transforms.MaskByPresence(keys) data = { "a": (torch.tensor(1), torch.tensor(0)), "b": (torch.tensor(3), torch.tensor(1)), } expected = {"a": torch.tensor(0), "b": torch.tensor(3)} out = mbp(data) self.assertEqual(out["a"], expected["a"]) self.assertEqual(out["b"], expected["b"]) with self.assertRaisesRegex(Exception, "Not valid value"): data2 = { "a": torch.tensor(1), "b": (torch.tensor(3), torch.tensor(1)), } out = mbp(data2) with self.assertRaisesRegex(Exception, "Unmatching value shape"): data3 = { "a": (torch.tensor(1), torch.tensor([0, 2])), "b": (torch.tensor(3), torch.tensor(1)), } out = mbp(data3) def test_StackDenseFixedSizeArray(self): # happy path: value is type Tensor; check cast to float value = torch.eye(4).to(dtype=torch.int) # start as int data = {"a": value} out = transforms.StackDenseFixedSizeArray(data.keys(), size=4)(data) expected = {"a": value.to(dtype=torch.float)} self.assertDictOfTensorEqual(out, expected) self.assertTrue(out["a"].dtype == torch.float, msg="dtype != float") # happy path: value is list w/ elements type Tuple[Tensor, Tensor] presence = torch.tensor([[1, 1, 1], [1, 1, 1]]) data = { "a": [ (torch.tensor([[0, 0, 0], [1, 1, 1]]), presence), (torch.tensor([[2, 2, 2], [3, 3, 3]]), presence), ], "b": [ (torch.tensor([[3, 3, 3], [2, 2, 2]]), presence), (torch.tensor([[1, 1, 1], [0, 0, 0]]), presence), ], } out = transforms.StackDenseFixedSizeArray(data.keys(), size=3)(data) expected = { "a": torch.tile(torch.arange(4).view(-1, 1).to(dtype=torch.float), (1, 3)), "b": torch.tile( torch.arange(4).flip(dims=(0,)).view(-1, 1).to(dtype=torch.float), (1, 3), ), } self.assertDictOfTensorEqual(out, expected) # raise for tensor wrong shape with self.assertRaisesRegex(ValueError, "Wrong shape"): sdf = transforms.StackDenseFixedSizeArray(["a"], size=3) sdf({"a": torch.ones(2)}) # raise for tensor wrong ndim with self.assertRaisesRegex(ValueError, "Wrong shape"): sdf = transforms.StackDenseFixedSizeArray(["a"], size=2) sdf({"a": torch.zeros(2, 2, 2)}) def test_Lambda(self): lam = transforms.Lambda(keys=["a", "b", "c"], fn=lambda x: x + 1) data = {"a": 1, "b": 2, "c": 3, "d": 4} out = lam(data) self.assertEqual(out, {"a": 2, "b": 3, "c": 4, "d": 4}) def test_SelectValuePresenceColumns(self): block = np.reshape(
np.arange(16)
numpy.arange
import numpy as np import time import subprocess import sys, os import copy import matplotlib.pyplot as plt class Evaluator(object): # Each evaluator must contain two major functions: set_params(params) and evaluate(params) def set_params(self, params): # Set the params to the desired component raise NotImplementedError def evaluate(self, params): # Execute and collect reward. raise NotImplementedError def visualize(self, final_params): # visualize the learned final params. pass @property def log(self): return "" class TestEvaluator(Evaluator): # Each evaluator must contain two major functions: set_params(params) and evaluate(params) def __init__(self): self.x = 0 def evaluate(self, params): # Execute and collect reward. self.x = params[0] return -(self.x - 1)** 2 def visualize(self, final_params): xs = np.linspace(-3, 3, 100) ys = -(xs - 1) ** 2 plt.plot(xs, ys) plt.vlines(x=final_params[0], ymin=-15, ymax=3, label="Learned", colors="g") plt.vlines(x=1, ymin=-15, ymax=3, label="Optima", colors="r", linestyles=":") plt.legend() plt.show() @property def log(self): return "x = " + str(self.x) class PDEvaluator(Evaluator): # Each evaluator must contain two major functions: set_params(params) and evaluate(params) def __init__(self): self.xf = [10,0] self.dt = 0.01 def simulation(self, kp, kd): x =
np.zeros(2)
numpy.zeros