prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import PyDAQmx import ctypes from enum import IntEnum import numpy as np from pymodaq.daq_utils.daq_utils import set_logger, get_module_name logger = set_logger(get_module_name(__file__)) class DAQ_NIDAQ_source(IntEnum): """ Enum class of NIDAQ_source =============== ========== **Attributes** **Type** *Analog_Input* int *Counter* int =============== ========== """ Analog_Input = 0 Counter = 1 Analog_Output = 2 Digital_Output = 3 Digital_Input = 4 Terminals = 5 @classmethod def names(cls): return [name for name, member in cls.__members__.items()] class DAQ_analog_types(IntEnum): """ Enum class of Ai types =============== ========== **Attributes** **Type** =============== ========== """ Voltage = PyDAQmx.DAQmx_Val_Voltage Current = PyDAQmx.DAQmx_Val_Current Thermocouple = PyDAQmx.DAQmx_Val_Temp_TC @classmethod def names(cls): return [name for name, member in cls.__members__.items()] @classmethod def values(cls): return [cls[name].value for name, member in cls.__members__.items()] class DAQ_thermocouples(IntEnum): """ Enum class of thermocouples type =============== ========== **Attributes** **Type** =============== ========== """ J = PyDAQmx.DAQmx_Val_J_Type_TC K = PyDAQmx.DAQmx_Val_K_Type_TC N = PyDAQmx.DAQmx_Val_N_Type_TC R = PyDAQmx.DAQmx_Val_R_Type_TC S = PyDAQmx.DAQmx_Val_S_Type_TC T = PyDAQmx.DAQmx_Val_T_Type_TC B = PyDAQmx.DAQmx_Val_B_Type_TC E = PyDAQmx.DAQmx_Val_E_Type_TC @classmethod def names(cls): return [name for name, member in cls.__members__.items()] class DAQ_termination(IntEnum): """ Enum class of thermocouples type =============== ========== **Attributes** **Type** =============== ========== """ Auto = PyDAQmx.DAQmx_Val_Cfg_Default RSE = PyDAQmx.DAQmx_Val_RSE NRSE = PyDAQmx.DAQmx_Val_NRSE Diff = PyDAQmx.DAQmx_Val_Diff Pseudodiff = PyDAQmx.DAQmx_Val_PseudoDiff @classmethod def names(cls): return [name for name, member in cls.__members__.items()] class Edge(IntEnum): """ """ Rising = PyDAQmx.DAQmx_Val_Rising Falling = PyDAQmx.DAQmx_Val_Falling @classmethod def names(cls): return [name for name, member in cls.__members__.items()] class ClockMode(IntEnum): """ """ Finite = PyDAQmx.DAQmx_Val_Rising Continuous = PyDAQmx.DAQmx_Val_Falling @classmethod def names(cls): return [name for name, member in cls.__members__.items()] class ClockSettingsBase: def __init__(self, Nsamples=1000, repetition=False): self.Nsamples = Nsamples self.repetition = repetition class ClockSettings(ClockSettingsBase): def __init__(self, source=None, frequency=1000, Nsamples=1000, edge=Edge.names()[0], repetition=False): super().__init__(Nsamples, repetition) self.source = source assert edge in Edge.names() self.frequency = frequency self.edge = edge class ChangeDetectionSettings(ClockSettingsBase): def __init__(self, Nsamples=1000, rising_channel='', falling_channel='', repetition=False): super().__init__(Nsamples, repetition) self.rising_channel = rising_channel self.falling_channel = falling_channel class TriggerSettings: def __init__(self, trig_source='', enable=False, edge=Edge.names()[0], level=0.1): assert edge in Edge.names() self.trig_source = trig_source self.enable = enable self.edge = edge self.level = level class Channel: def __init__(self, name='', source=DAQ_NIDAQ_source.names()[0]): """ Parameters ---------- """ self.name = name assert source in DAQ_NIDAQ_source.names() self.source = source class AChannel(Channel): def __init__(self, analog_type=DAQ_analog_types.names()[0], value_min=-10., value_max=+10., **kwargs): """ Parameters ---------- min: (float) minimum value for the configured input channel (could be voltage, amps, temperature...) max: (float) maximum value for the configured input channel """ super().__init__(**kwargs) self.value_min = value_min self.value_max = value_max self.analog_type = analog_type class AIChannel(AChannel): def __init__(self, termination=DAQ_termination.names()[0], **kwargs): super().__init__(**kwargs) assert termination in DAQ_termination.names() self.termination = termination class AIThermoChannel(AIChannel): def __init__(self, thermo_type=DAQ_thermocouples.names()[0], **kwargs): super().__init__(**kwargs) assert thermo_type in DAQ_thermocouples.names() self.thermo_type = thermo_type class AOChannel(AChannel): def __init__(self, **kwargs): super().__init__(**kwargs) class Counter(Channel): def __init__(self, edge=Edge.names()[0], **kwargs): assert edge in Edge.names() super().__init__(**kwargs) self.edge = edge class DigitalChannel(Channel): def __init__(self, **kwargs): super().__init__(**kwargs) class DOChannel(DigitalChannel): def __init__(self, **kwargs): super().__init__(**kwargs) class DIChannel(DigitalChannel): def __init__(self, **kwargs): super().__init__(**kwargs) def try_string_buffer(fun, *args): """ generic function to read string from a PyDAQmx function making sure the chosen buffer is large enough Parameters ---------- fun: (PyDAQmx function pointer) e.g. PyDAQmx.DAQmxGetSysDevNames kwargs Returns ------- """ buff_size = 1024 while True: buff = PyDAQmx.create_string_buffer(buff_size) try: if not not len(args): fun(args[0], buff, buff_size) else: fun(buff, buff_size) break except Exception as e: if isinstance(e, PyDAQmx.DAQmxFunctions.DAQException): if e.error == -200228: # BufferTooSmallForStringError buff_size = 2 * buff_size else: raise e else: raise e return buff.value.decode() class DAQmx: def __init__(self): super().__init__() self.devices = [] self.channels = [] self._device = None self._task = None self.update_NIDAQ_devices() self.update_NIDAQ_channels() self.c_callback = None self.callback_data = None self.is_scalar = True self.write_buffer = np.array([0.]) @property def task(self): return self._task @property def device(self): return self._device @device.setter def device(self, device): if device not in self.devices: raise IOError(f'your device: {device} is not known or connected') self._device = device def update_NIDAQ_devices(self): self.devices = self.get_NIDAQ_devices() @classmethod def get_NIDAQ_devices(cls): """Get list of NI connected devices Returns ------- list list of devices as strings to be used in subsequent commands """ try: string = try_string_buffer(PyDAQmx.DAQmxGetSysDevNames) devices = string.split(', ') if devices == ['']: devices = [] return devices except: return [] def update_NIDAQ_channels(self, source_type=None): self.channels = self.get_NIDAQ_channels(self.devices, source_type=source_type) @classmethod def get_NIDAQ_channels(cls, devices=None, source_type=None): """Get the list of available channels for all NiDAq connected devices Parameters ---------- devices: list list of strings, each one being a connected device source_type: str One of the entries of DAQ_NIDAQ_source enum Returns ------- List of str containing device and channel names """ if devices is None: devices = cls.get_NIDAQ_devices() if source_type is None: source_type = DAQ_NIDAQ_source.names() if not isinstance(source_type, list): source_type = [source_type] channels_tot = [] if not not devices: for device in devices: for source in source_type: if source == DAQ_NIDAQ_source['Analog_Input'].name: # analog input string = try_string_buffer(PyDAQmx.DAQmxGetDevAIPhysicalChans, device) elif source == DAQ_NIDAQ_source['Counter'].name: # counter string = try_string_buffer(PyDAQmx.DAQmxGetDevCIPhysicalChans, device) elif source == DAQ_NIDAQ_source['Analog_Output'].name: # analog output string = try_string_buffer(PyDAQmx.DAQmxGetDevAOPhysicalChans, device) elif source == DAQ_NIDAQ_source['Digital_Output'].name: # digital output string = try_string_buffer(PyDAQmx.DAQmxGetDevDOLines, device) elif source == DAQ_NIDAQ_source['Digital_Input'].name: # digital output string = try_string_buffer(PyDAQmx.DAQmxGetDevDILines, device) elif source == DAQ_NIDAQ_source['Terminals'].name: # digital output string = try_string_buffer(PyDAQmx.DAQmxGetDevTerminals, device) channels = string.split(', ') if channels != ['']: channels_tot.extend(channels) return channels_tot @classmethod def getAOMaxRate(cls, device): data = PyDAQmx.c_double() PyDAQmx.DAQmxGetDevAOMaxRate(device, PyDAQmx.byref(data)) return data.value @classmethod def getAIMaxRate(cls, device): data = PyDAQmx.c_double() PyDAQmx.DAQmxGetDevAIMaxSingleChanRate(device, PyDAQmx.byref(data)) return data.value @classmethod def isAnalogTriggeringSupported(cls, device): data = PyDAQmx.c_uint32() PyDAQmx.DAQmxGetDevAnlgTrigSupported(device, PyDAQmx.byref(data)) return bool(data.value) @classmethod def isDigitalTriggeringSupported(cls, device): data = PyDAQmx.c_uint32() PyDAQmx.DAQmxGetDevDigTrigSupported(device, PyDAQmx.byref(data)) return bool(data.value) @classmethod def getTriggeringSources(cls, devices=None): sources = [] if devices is None: devices = cls.get_NIDAQ_devices() for device in devices: if cls.isDigitalTriggeringSupported(device): string = try_string_buffer(PyDAQmx.DAQmxGetDevTerminals, device) channels = [chan for chan in string.split(', ') if 'PFI' in chan] if channels != ['']: sources.extend(channels) if cls.isAnalogTriggeringSupported(device): channels = cls.get_NIDAQ_channels(devices=[device], source_type='Analog_Input') if channels != ['']: sources.extend(channels) return sources def update_task(self, channels=[], clock_settings=ClockSettings(), trigger_settings=TriggerSettings()): """ """ try: if self._task is not None: if isinstance(self._task, PyDAQmx.Task): self._task.ClearTask() self._task = None self.c_callback = None self._task = PyDAQmx.Task() ## create all channels one task for one type of channels for channel in channels: if channel.source == 'Analog_Input': #analog input if channel.analog_type == "Voltage": err_code = self._task.CreateAIVoltageChan(channel.name, "", DAQ_termination[channel.termination].value, channel.value_min, channel.value_max, PyDAQmx.DAQmx_Val_Volts, None) elif channel.analog_type == "Current": err_code = self._task.CreateAICurrentChan(channel.name, "", DAQ_termination[channel.termination].value, channel.value_min, channel.value_max, PyDAQmx.DAQmx_Val_Amps, PyDAQmx.DAQmx_Val_Internal, 0., None) elif channel.analog_type == "Thermocouple": err_code = self._task.CreateAIThrmcplChan(channel.name, "", channel.value_min, channel.value_max, PyDAQmx.DAQmx_Val_DegC, DAQ_termination[channel.thermo_type].value, PyDAQmx.DAQmx_Val_BuiltIn, 0., "") elif channel.source == 'Counter': #counter err_code = self._task.CreateCICountEdgesChan(channel.name, "", Edge[channel.edge].value, 0, PyDAQmx.DAQmx_Val_CountUp) if not not err_code: status = self.DAQmxGetErrorString(err_code) raise IOError(status) elif channel.source == 'Analog_Output': # Analog_Output if channel.analog_type == "Voltage": err_code = self._task.CreateAOVoltageChan(channel.name, "", channel.value_min, channel.value_max, PyDAQmx.DAQmx_Val_Volts, None) if channel.analog_type == "Current": err_code = self._task.CreateAOCurrentChan(channel.name, "", channel.value_min, channel.value_max, PyDAQmx.DAQmx_Val_Amps, None) elif channel.source == 'Digital_Output': #Digital_Output err_code = self._task.CreateDOChan(channel.name, "", PyDAQmx.DAQmx_Val_ChanPerLine) if not not err_code: status = self.DAQmxGetErrorString(err_code) raise IOError(status) elif channel.source == 'Digital_Input': #Digital_Input err_code = self._task.CreateDIChan(channel.name, "", PyDAQmx.DAQmx_Val_ChanPerLine) if not not err_code: status = self.DAQmxGetErrorString(err_code) raise IOError(status) ## configure the timing if clock_settings.repetition: mode = PyDAQmx.DAQmx_Val_ContSamps else: mode = PyDAQmx.DAQmx_Val_FiniteSamps if clock_settings.Nsamples > 1 and err_code == 0: if isinstance(clock_settings, ClockSettings): err_code =\ self._task.CfgSampClkTiming(clock_settings.source, clock_settings.frequency, Edge[clock_settings.edge].value, mode, clock_settings.Nsamples) elif isinstance(clock_settings, ChangeDetectionSettings): err_code =\ self._task.CfgChangeDetectionTiming(clock_settings.rising_channel, clock_settings.falling_channel, mode, clock_settings.Nsamples) if not not err_code: status = self.DAQmxGetErrorString(err_code) raise IOError(status) # if channel.source == 'Analog_Input': # analog input # if isinstance(clock_settings, ClockSettings): # err_code =\ # self._task.CfgSampClkTiming(clock_settings.source, clock_settings.frequency, # Edge[clock_settings.edge].value, # mode, # clock_settings.Nsamples) # elif isinstance(clock_settings, ChangeDetectionSettings): # err_code =\ # self._task.CfgChangeDetectionTiming(clock_settings.source, # clock_settings.rising_channel, # clock_settings.falling_channel, # mode, # clock_settings.Nsamples) # # if not not err_code: # status = self.DAQmxGetErrorString(err_code) # raise IOError(status) # # elif channel.source == 'Counter': # counter # pass # # elif channel.source == 'Analog_Output': # Analog_Output # if clock_settings.Nsamples > 1 and err_code == 0: # # if isinstance(clock_settings, ClockSettings): # err_code = self._task.CfgSampClkTiming(clock_settings.source, # clock_settings.frequency, # Edge[clock_settings.edge].value, # mode, # clock_settings.Nsamples) # elif isinstance(clock_settings, ChangeDetectionSettings): # err_code = \ # self._task.CfgChangeDetectionTiming(clock_settings.source, # clock_settings.rising_channel, # clock_settings.falling_channel, # mode, # clock_settings.Nsamples) # # if not not err_code: # status = self.DAQmxGetErrorString(err_code) # raise IOError(status) # # else: # pass ##configure the triggering if not trigger_settings.enable: err = self._task.DisableStartTrig() if err != 0: raise IOError(self.DAQmxGetErrorString(err)) else: if 'PF' in trigger_settings.trig_source: self._task.CfgDigEdgeStartTrig(trigger_settings.trig_source, Edge[trigger_settings.edge].value) elif 'ai' in trigger_settings.trig_source: self._task.CfgAnlgEdgeStartTrig(trigger_settings.trig_source, Edge[trigger_settings.edge].value, PyDAQmx.c_double(trigger_settings.level)) else: raise IOError('Unsupported Trigger source') except Exception as e: print(e) def register_callback(self, callback, event='done', nsamples=1): if event == 'done': self.c_callback = PyDAQmx.DAQmxDoneEventCallbackPtr(callback) self._task.RegisterDoneEvent(0, self.c_callback, None) elif event == 'sample': self.c_callback = PyDAQmx.DAQmxSignalEventCallbackPtr(callback) self._task.RegisterSignalEvent(PyDAQmx.DAQmx_Val_SampleCompleteEvent, 0, self.c_callback, None) elif event == 'Nsamples': self.c_callback = PyDAQmx.DAQmxEveryNSamplesEventCallbackPtr(callback) self._task.RegisterEveryNSamplesEvent(PyDAQmx.DAQmx_Val_Acquired_Into_Buffer, nsamples, 0, self.c_callback, None) def get_last_write_index(self): if self.task is not None: index_buffer = PyDAQmx.c_uint64() ret = self._task.GetWriteCurrWritePos(PyDAQmx.byref(index_buffer)) if not not ret: raise IOError(self.DAQmxGetErrorString(ret)) else: return index_buffer.value else: return -1 def get_last_write(self): if self.is_scalar: return self.write_buffer[-1] else: index = self.get_last_write_index() if index != -1: return self.write_buffer[index % len(self.write_buffer)] else: return 0. def writeAnalog(self, Nsamples, Nchannels, values, autostart=False): """ Write Nsamples on N analog output channels Parameters ---------- Nsamples: (int) numver of samples to write on each channel Nchannels: (int) number of AO channels defined in the task values: (ndarray) 2D array (or flattened array) of size Nsamples * Nchannels Returns ------- """ if np.prod(values.shape) != Nsamples * Nchannels: raise ValueError(f'The shape of analog outputs values is incorrect, should be {Nsamples} x {Nchannels}') if len(values.shape) != 1: values = values.reshape((Nchannels * Nsamples)) self.write_buffer = values timeout = -1 if values.size == 1: self._task.WriteAnalogScalarF64(autostart, timeout, values[0], None) self.is_scalar = True else: self.is_scalar = False read = PyDAQmx.int32() self._task.WriteAnalogF64(Nsamples, autostart, timeout, PyDAQmx.DAQmx_Val_GroupByChannel, values, PyDAQmx.byref(read), None) if read.value != Nsamples: raise IOError(f'Insufficient number of samples have been written:{read.value}/{Nsamples}') def readAnalog(self, Nchannels, clock_settings): read = PyDAQmx.int32() N = clock_settings.Nsamples data = np.zeros(N * Nchannels, dtype=np.float64) timeout = N * Nchannels * 1 / clock_settings.frequency * 2 # set to twice the time it should take to acquire the data self._task.ReadAnalogF64(N, timeout, PyDAQmx.DAQmx_Val_GroupByChannel, data, len(data), PyDAQmx.byref(read), None) if read.value == N: return data else: raise IOError(f'Insufficient number of samples have been read:{read.value}/{N}') def readCounter(self, Nchannels, counting_time=10.): data_counter = np.zeros(Nchannels, dtype='uint32') read = PyDAQmx.int32() self._task.ReadCounterU32Ex(PyDAQmx.DAQmx_Val_Auto, 2*counting_time, PyDAQmx.DAQmx_Val_GroupByChannel, data_counter, Nchannels, PyDAQmx.byref(read), None) self._task.StopTask() if read.value == Nchannels: return data_counter else: raise IOError(f'Insufficient number of samples have been read:{read}/{Nchannels}') def readDigital(self, Nchannels): read = PyDAQmx.int32() bytes_sample = PyDAQmx.int32() data = np.zeros(Nchannels, dtype='uint8') self._task.ReadDigitalLines(Nchannels, 0, PyDAQmx.DAQmx_Val_GroupByChannel, data, Nchannels, PyDAQmx.byref(read), PyDAQmx.byref(bytes_sample), None); if read.value == Nchannels: return data else: raise IOError(f'Insufficient number of samples have been read:{read}/{Nchannels}') def writeDigital(self, Nchannels, values, autostart=False): if np.prod(values.shape) != Nchannels: raise ValueError(f'The shape of digital outputs values is incorrect, should be {Nchannels}') values.astype(np.uint8) written = PyDAQmx.int32() self._task.WriteDigitalLines(Nchannels, autostart, 0, PyDAQmx.DAQmx_Val_GroupByChannel, values, PyDAQmx.byref(written), None) if written.value != Nchannels: raise IOError(f'Insufficient number of samples have been written:{written}/{Nchannels}') def getAIVoltageRange(self, device='Dev1'): buff_size = 100 ranges = ctypes.pointer((buff_size*ctypes.c_double)()) ret = PyDAQmx.DAQmxGetDevAIVoltageRngs(device, ranges[0], buff_size) if ret == 0: return [tuple(ranges.contents[2*ind:2*(ind+1)]) for ind in range(int(buff_size/2-2)) if np.abs(ranges.contents[2*ind]) > 1e-12] return [(-10., 10.)] def getAOVoltageRange(self, device='Dev1'): buff_size = 100 ranges = ctypes.pointer((buff_size*ctypes.c_double)()) ret = PyDAQmx.DAQmxGetDevAOVoltageRngs(device, ranges[0], buff_size) if ret == 0: return [tuple(ranges.contents[2*ind:2*(ind+1)]) for ind in range(int(buff_size/2-2)) if
np.abs(ranges.contents[2*ind])
numpy.abs
import numpy as np import IPython from .module import Module from .parameter import Parameter from .activation import Sigmoid, Tanh, ReLU class RNN(Module): """Vanilla recurrent neural network layer. The single time step forward transformation is h[:,t+1] = tanh(Whh * h[:,t] + Whx * X[:,t] + bh) with the following dimensions X: (T, N, D) h: (N, H) Whx: (H, D) Whh: (H, H) b: (H) where D: input dimension T: input sequence length H: hidden dimension Parameters ---------- input_size : [type] [description] hidden_size : [type] [description] bias : [type] [description] nonlinearity : [type] [description] Returns ------- [type] [description] """ def __init__(self, input_size, hidden_size, output_size, bias=True, nonlinearity=Tanh(), time_first=True, bptt_truncate=0): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.nonlinearity = nonlinearity self.time_first = time_first self.bptt_truncate = bptt_truncate self.Wxh = Parameter(np.zeros((hidden_size, input_size))) self.Whh = Parameter(np.zeros((hidden_size, hidden_size))) self.Why = Parameter(np.zeros((output_size, hidden_size))) if bias: self.b = Parameter(np.zeros(hidden_size)) else: self.b = None if time_first: self.t_dim = 0 self.n_dim = 1 self.d_dim = 2 else: self.t_dim = 1 self.n_dim = 0 self.d_dim = 2 self.reset_parameters() def reset_parameters(self): stdhh = np.sqrt(1. / self.hidden_size) stdhx = np.sqrt(1. / self.input_size) self.Wxh.data = np.random.uniform(-stdhx, stdhx, size=(self.hidden_size, self.input_size)) self.Whh.data = np.random.uniform(-stdhh, stdhh, size=(self.hidden_size, self.hidden_size)) if self.b is not None: self.b.data = np.zeros(self.hidden_size) def forward_step(self, x, h): """Compute state k from the previous state (sk) and current input (xk), by use of the input weights (wx) and recursive weights (wRec). """ return self.nonlinearity.forward(h @ self.Whh.data.T + x @ self.Wxh.data.T + self.b.data) def forward(self, X, h0=None): """Unfold the network and compute all state activations given the input X, and input weights (wx) and recursive weights (wRec). Return the state activations in a matrix, the last column S[:,-1] contains the final activations. """ # Initialise the matrix that holds all states for all input sequences. # The initial state s0 is set to 0. if not self.time_first: X = X.transpose(self.n_dim, self.t_dim, self.n_dim) # [N, T, D] --> [T, N, D] h = np.zeros((X.shape[self.t_dim] + 1, X.shape[self.n_dim], self.hidden_size)) # (T, N, H) if h0: h[0] = h0 # Use the recurrence relation defined by forward_step to update the states trough time. for t in range(0, X.shape[self.t_dim]): h[t + 1] = self.nonlinearity.forward(np.dot(X[t], self.Wxh.data.T) + np.dot(h[t], self.Whh.data.T) + self.b.data) # h[t + 1] = self.forward_step(X[t, :], h[t]) # np.dot(self.Wxh.data, X[t][5]) # np.dot(X[t], self.Wxh.data.T) # Cache self.X = X self.h = h return h def backward_step_old_broken(self, dh, x_cache, h_cache): """Compute a single backwards time step. """ # https://gist.github.com/karpathy/d4dee566867f8291f086 # Activation dh = self.nonlinearity.backward(dh, h_cache) # Gradient of the linear layer parameters (accumulate) self.Whh.grad += dh.T @ h_cache # np.outer(dh, h_cache) self.Wxh.grad += dh.T @ x_cache # np.outer(dh, x_cache) if self.b is not None: self.b.grad += dh.sum(axis=0) # Gradient at the output of the previous layer dh_prev = dh @ self.Whh.data.T # self.Whh.data @ dh.T return dh_prev def backward_old_broken(self, delta): """Backpropagate the gradient computed at the output (delta) through the network. Accumulate the parameter gradients for `Whx` and `Whh` by for each layer by addition. Return the parameter gradients as a tuple, and the gradients at the output of each layer. """ # Initialise the array that stores the gradients of the cost with respect to the states. dh = np.zeros((self.X.shape[self.t_dim] + 1, self.X.shape[self.n_dim], self.hidden_size)) dh[-1] = delta for t in range(self.X.shape[self.t_dim], 0, -1): dh[t - 1, :] = self.backward_step_old_broken(dh[t, :], self.X[t - 1, :], self.h[t - 1, :]) return dh def backward(self, delta): """Backpropagate the gradient computed at the output (delta) through the network. Accumulate the parameter gradients for `Whx` and `Whh` by for each layer by addition. Return the parameter gradients as a tuple, and the gradients at the output of each layer. delta can be (N, H) (N, H, T) """ # http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/ # Initialise the array that stores the gradients of the cost with respect to the states. # dh = np.zeros((self.X.shape[self.t_dim] + 1, self.X.shape[self.n_dim], self.hidden_size)) # dh[-1] = delta dh_t = delta for t in range(self.X.shape[self.t_dim], 0, -1): # IPython.embed() # Initial delta calculation: dL/dz (TODO Don't really care about this) # dLdz = self.V.T.dot(delta_o[t]) * (1 - (self.h[t] ** 2)) # (1 - (self.h[t] ** 2)) is Tanh() dh_t = self.nonlinearity.backward(dh_t, self.h[t]) # Backpropagation through time (for at most self.bptt_truncate steps) for bptt_step in np.arange(max(0, t - self.bptt_truncate), t + 1)[::-1]: # print "Backpropagation step t=%d bptt step=%d " % (t, bptt_step) # Add to gradients at each previous step self.Whh.grad += np.einsum('NH,iNH->NH', dh_t, self.h[bptt_step - 1]) # self.Whh.grad += np.outer(dh_t, self.h[bptt_step - 1]) self.Wxh.grad[:, self.X[bptt_step]] += dh_t # self.Wxh.grad[:, self.X[bptt_step]] += dLdz # TODO Really want dh/dU # Update delta for next step dL/dz at t-1 dh_t = self.nonlinearity.backward(self.Whh.data.T.dot(dh_t), self.h[bptt_step-1]) # (1 - self.h[bptt_step-1] ** 2) # dh[t - 1, :] = self.backward_step(dh[t, :], self.X[t - 1, :], self.h[t - 1, :]) return dh_t def backward_step(self, dh, x_cache, h_cache): pass # return [dLdU, dLdV, dLdW] def bptt(self, x, y): T = len(y) # Perform forward propagation o, s = self.forward_propagation(x) # We accumulate the gradients in these variables dLdU = np.zeros(self.Wxh.shape) dLdV = np.zeros(self.V.shape) dLdW = np.zeros(self.Whh.shape) delta_o = o delta_o[np.arange(len(y)), y] -= 1. # For each output backwards... for t in np.arange(T)[::-1]: dLdV += np.outer(delta_o[t], s[t].T) # Initial delta calculation: dL/dz delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2)) # (1 - (s[t] ** 2)) is Tanh() # Backpropagation through time (for at most self.bptt_truncate steps) for bptt_step in np.arange(max(0, t - self.bptt_truncate), t + 1)[::-1]: # print "Backpropagation step t=%d bptt step=%d " % (t, bptt_step) # Add to gradients at each previous step dLdW += np.outer(delta_t, s[bptt_step - 1]) dLdU[:, x[bptt_step]] += delta_t # Update delta for next step dL/dz at t-1 delta_t = self.Whh.data.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2) return [dLdU, dLdV, dLdW] # http://willwolf.io/2016/10/18/recurrent-neural-network-gradients-and-lessons-learned-therein/ # https://github.com/go2carter/nn-learn/blob/master/grad-deriv-tex/rnn-grad-deriv.pdf # https://peterroelants.github.io/posts/rnn-implementation-part01/ # http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/ class GRU(Module): def __init__(self): pass class LSTM(Module): def __init__(self, input_size, hidden_size=128, bias=True, time_first=True): super(LSTM, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.time_first = time_first if time_first: self.t_dim = 0 self.n_dim = 1 self.d_dim = 2 else: self.t_dim = 1 self.n_dim = 0 self.d_dim = 2 D = self.input_size H = self.hidden_size Z = D + H # Concatenation self.Wf = Parameter(np.zeros((Z, H))) self.Wi = Parameter(np.zeros((Z, H))) self.Wc = Parameter(np.zeros((Z, H))) self.Wo = Parameter(np.zeros((Z, H))) self.Wy = Parameter(np.zeros((H, D))) if bias: self.bf = Parameter(np.zeros((1, H))) self.bi = Parameter(np.zeros((1, H))) self.bc = Parameter(np.zeros((1, H))) self.bo = Parameter(np.zeros((1, H))) self.by = Parameter(np.zeros((1, D))) else: self.bf = None self.bi = None self.bc = None self.bo = None self.by = None self.reset_parameters() def reset_parameters(self): # TODO Add orthogonal initialization D = self.input_size H = self.hidden_size Z = D + H # Concatenation self.Wf.data = np.random.randn(Z, H) / np.sqrt(Z / 2.) self.Wi.data = np.random.randn(Z, H) / np.sqrt(Z / 2.) self.Wc.data = np.random.randn(Z, H) / np.sqrt(Z / 2.) self.Wo.data = np.random.randn(Z, H) / np.sqrt(Z / 2.) self.Wy.data = np.random.randn(H, D) / np.sqrt(D / 2.) if self.bf is not None: self.bf.data = np.zeros((1, H)) self.bi.data = np.zeros((1, H)) self.bc.data = np.zeros((1, H)) self.bo.data = np.zeros((1, H)) self.by.data = np.zeros((1, D)) else: self.bf = None self.bi = None self.bc = None self.bo = None self.by = None self.sigmoidf = Sigmoid() self.sigmoidi = Sigmoid() self.sigmoido = Sigmoid() self.tanhc = Tanh() self.tanh = Tanh() def forward_step(self, x, state): h_old, c_old = state # # One-hot encode # X_one_hot = np.zeros(D) # X_one_hot[X] = 1. # X_one_hot = X_one_hot.reshape(1, -1) # Concatenate old state with current input hx = np.column_stack((h_old, x)) hf = self.sigmoidf.forward(hx @ self.Wf.data + self.bf.data) hi = self.sigmoidi.forward(hx @ self.Wi.data + self.bi.data) ho = self.sigmoido.forward(hx @ self.Wo.data + self.bo.data) hc = self.tanhc.forward(hx @ self.Wc.data + self.bc.data) c = hf * c_old + hi * hc h = ho * self.tanh.forward(c) # y = h @ Wy + by # prob = softmax(y) self.cache = dict(hx=[*self.cache['hx'], hx], hf=[*self.cache['hf'], hf], hi=[*self.cache['hi'], hi], ho=[*self.cache['ho'], ho], hc=[*self.cache['hc'], hc], c=[*self.cache['c'], c], c_old=[*self.cache['c_old'], c_old]) return (h, c) def forward(self, X): self.cache = dict(hx=[], hf=[], hi=[], ho=[], hc=[], c=[], c_old=[]) if not self.time_first: X = X.transpose(self.n_dim, self.t_dim, self.n_dim) # [N, T, D] --> [T, N, D] h = np.zeros((X.shape[self.t_dim] + 1, X.shape[self.n_dim], self.hidden_size)) # (T, N, H) c = np.zeros((X.shape[self.t_dim] + 1, X.shape[self.n_dim], self.hidden_size)) # (T, N, H) # Use the recurrence relation defined by forward_step to update the states trough time. for t in range(0, X.shape[self.t_dim]): h[t + 1], c[t + 1] = self.forward_step(X[t, :], (h[t], c[t])) return h[-1] def backward_step(self, dh_next, dc_next, t): # Unpack the cache variable to get the intermediate variables used in forward step hx = self.cache['hx'][t] hf = self.cache['hf'][t] hi = self.cache['hi'][t] ho = self.cache['ho'][t] hc = self.cache['hc'][t] c = self.cache['c'][t] c_old = self.cache['c_old'][t] IPython.embed() # # Softmax loss gradient # dy = prob.copy() # dy[1, y_train] -= 1. # # Hidden to output gradient # dWy = h.T @ dy # dby = dy # # Note we're adding dh_next here # dh = dy @ Wy.T + dh_next # Gradient for ho in h = ho * tanh(c) dho = self.tanh.forward(c) * dh_next dho = self.sigmoido.backward(ho) * dho # Gradient for c in h = ho * tanh(c), note we're adding dc_next here dc = ho * dh_next * self.tanh.backward(c) dc = dc + dc_next # Gradient for hf in c = hf * c_old + hi * hc dhf = c_old * dc dhf = self.sigmoidf.backward(hf) * dhf # Gradient for hi in c = hf * c_old + hi * hc dhi = hc * dc dhi = self.sigmoidi.backward(hi) * dhi # Gradient for hc in c = hf * c_old + hi * hc dhc = hi * dc dhc = self.tanhc.backward(hc) * dhc # Gate gradients, just a normal fully connected layer gradient self.Wf.grad += hx.T @ dhf self.bf.grad += dhf.sum(axis=0) dxf = dhf @ self.Wf.data.T self.Wi.grad += hx.T @ dhi self.bi.grad += dhi.sum(axis=0) dxi = dhi @ self.Wi.data.T self.Wo.grad += hx.T @ dho self.bo.grad += dho.sum(axis=0) dxo = dho @ self.Wo.data.T self.Wc.grad += hx.T @ dhc self.bc.grad += dhc.sum(axis=0) dxc = dhc @ self.Wc.data.T # As x was used in multiple gates, the gradient must be accumulated here dx = dxo + dxc + dxi + dxf # Split the concatenated X, so that we get our gradient of h_old dh_next = dx[:, :self.hidden_size] # Gradient for c_old in c = hf * c_old + hi * hc dc_next = hf * dc return dh_next, dc_next def backward(self, delta): # https://wiseodd.github.io/techblog/2016/08/12/lstm-backprop/ # https://gist.github.com/karpathy/d4dee566867f8291f086 dh_next = delta dc_next = np.zeros_like(dh_next) for t in range(len(self.cache['hx']) - 1, 0, -1): dh_next, dc_next = self.backward_step(dh_next, dc_next, t) def lstm_backward(prob, y_train, d_next, cache): # Unpack the cache variable to get the intermediate variables used in forward step # ... = cache dh_next, dc_next = d_next # Softmax loss gradient dy = prob.copy() dy[1, y_train] -= 1. # Hidden to output gradient dWy = h.T @ dy dby = dy # Note we're adding dh_next here dh = dy @ Wy.T + dh_next # Gradient for ho in h = ho * tanh(c) dho = tanh(c) * dh dho = dsigmoid(ho) * dho # Gradient for c in h = ho * tanh(c), note we're adding dc_next here dc = ho * dh * dtanh(c) dc = dc + dc_next # Gradient for hf in c = hf * c_old + hi * hc dhf = c_old * dc dhf = dsigmoid(hf) * dhf # Gradient for hi in c = hf * c_old + hi * hc dhi = hc * dc dhi = dsigmoid(hi) * dhi # Gradient for hc in c = hf * c_old + hi * hc dhc = hi * dc dhc = dtanh(hc) * dhc # Gate gradients, just a normal fully connected layer gradient dWf = X.T @ dhf dbf = dhf dXf = dhf @ Wf.T dWi = X.T @ dhi dbi = dhi dXi = dhi @ Wi.T dWo = X.T @ dho dbo = dho dXo = dho @ Wo.T dWc = X.T @ dhc dbc = dhc dXc = dhc @ Wc.T # As X was used in multiple gates, the gradient must be accumulated here dX = dXo + dXc + dXi + dXf # Split the concatenated X, so that we get our gradient of h_old dh_next = dX[:, :H] # Gradient for c_old in c = hf * c_old + hi * hc dc_next = hf * dc grad = dict(Wf=dWf, Wi=dWi, Wc=dWc, Wo=dWo, Wy=dWy, bf=dbf, bi=dbi, bc=dbc, bo=dbo, by=dby) state = (dh_next, dc_next) return grad, state import numpy as np import code class LSTM: # https://gist.github.com/karpathy/587454dc0146a6ae21fc @staticmethod def init(input_size, hidden_size, fancy_forget_bias_init = 3): """ Initialize parameters of the LSTM (both weights and biases in one matrix) One might way to have a positive fancy_forget_bias_init number (e.g. maybe even up to 5, in some papers) """ # +1 for the biases, which will be the first row of WLSTM WLSTM = np.random.randn(input_size + hidden_size + 1, 4 * hidden_size) / np.sqrt(input_size + hidden_size) WLSTM[0,:] = 0 # initialize biases to zero if fancy_forget_bias_init != 0: # forget gates get little bit negative bias initially to encourage them to be turned off # remember that due to Xavier initialization above, the raw output activations from gates before # nonlinearity are zero mean and on order of standard deviation ~1 WLSTM[0,hidden_size:2*hidden_size] = fancy_forget_bias_init return WLSTM @staticmethod def forward(X, WLSTM, c0 = None, h0 = None): """ X should be of shape (n,b,input_size), where n = length of sequence, b = batch size """ n,b,input_size = X.shape d = WLSTM.shape[1]/4 # hidden size if c0 is None: c0 = np.zeros((b,d)) if h0 is None: h0 = np.zeros((b,d)) # Perform the LSTM forward pass with X as the input xphpb = WLSTM.shape[0] # x plus h plus bias, lol Hin = np.zeros((n, b, xphpb)) # input [1, xt, ht-1] to each tick of the LSTM Hout = np.zeros((n, b, d)) # hidden representation of the LSTM (gated cell content) IFOG = np.zeros((n, b, d * 4)) # input, forget, output, gate (IFOG) IFOGf = np.zeros((n, b, d * 4)) # after nonlinearity C = np.zeros((n, b, d)) # cell content Ct = np.zeros((n, b, d)) # tanh of cell content for t in xrange(n): # concat [x,h] as input to the LSTM prevh = Hout[t-1] if t > 0 else h0 Hin[t,:,0] = 1 # bias Hin[t,:,1:input_size+1] = X[t] Hin[t,:,input_size+1:] = prevh # compute all gate activations. dots: (most work is this line) IFOG[t] = Hin[t].dot(WLSTM) # non-linearities IFOGf[t,:,:3*d] = 1.0/(1.0+np.exp(-IFOG[t,:,:3*d])) # sigmoids; these are the gates IFOGf[t,:,3*d:] = np.tanh(IFOG[t,:,3*d:]) # tanh # compute the cell activation prevc = C[t-1] if t > 0 else c0 C[t] = IFOGf[t,:,:d] * IFOGf[t,:,3*d:] + IFOGf[t,:,d:2*d] * prevc Ct[t] = np.tanh(C[t]) Hout[t] = IFOGf[t,:,2*d:3*d] * Ct[t] cache = {} cache['WLSTM'] = WLSTM cache['Hout'] = Hout cache['IFOGf'] = IFOGf cache['IFOG'] = IFOG cache['C'] = C cache['Ct'] = Ct cache['Hin'] = Hin cache['c0'] = c0 cache['h0'] = h0 # return C[t], as well so we can continue LSTM with prev state init if needed return Hout, C[t], Hout[t], cache @staticmethod def backward(dHout_in, cache, dcn = None, dhn = None): WLSTM = cache['WLSTM'] Hout = cache['Hout'] IFOGf = cache['IFOGf'] IFOG = cache['IFOG'] C = cache['C'] Ct = cache['Ct'] Hin = cache['Hin'] c0 = cache['c0'] h0 = cache['h0'] n,b,d = Hout.shape input_size = WLSTM.shape[0] - d - 1 # -1 due to bias # backprop the LSTM dIFOG = np.zeros(IFOG.shape) dIFOGf = np.zeros(IFOGf.shape) dWLSTM = np.zeros(WLSTM.shape) dHin = np.zeros(Hin.shape) dC = np.zeros(C.shape) dX = np.zeros((n,b,input_size)) dh0 = np.zeros((b, d)) dc0 = np.zeros((b, d)) dHout = dHout_in.copy() # make a copy so we don't have any funny side effects if dcn is not None: dC[n-1] += dcn.copy() # carry over gradients from later if dhn is not None: dHout[n-1] += dhn.copy() for t in reversed(xrange(n)): tanhCt = Ct[t] dIFOGf[t,:,2*d:3*d] = tanhCt * dHout[t] # backprop tanh non-linearity first then continue backprop dC[t] += (1-tanhCt**2) * (IFOGf[t,:,2*d:3*d] * dHout[t]) if t > 0: dIFOGf[t,:,d:2*d] = C[t-1] * dC[t] dC[t-1] += IFOGf[t,:,d:2*d] * dC[t] else: dIFOGf[t,:,d:2*d] = c0 * dC[t] dc0 = IFOGf[t,:,d:2*d] * dC[t] dIFOGf[t,:,:d] = IFOGf[t,:,3*d:] * dC[t] dIFOGf[t,:,3*d:] = IFOGf[t,:,:d] * dC[t] # backprop activation functions dIFOG[t,:,3*d:] = (1 - IFOGf[t,:,3*d:] ** 2) * dIFOGf[t,:,3*d:] y = IFOGf[t,:,:3*d] dIFOG[t,:,:3*d] = (y*(1.0-y)) * dIFOGf[t,:,:3*d] # backprop matrix multiply dWLSTM += np.dot(Hin[t].transpose(), dIFOG[t]) dHin[t] = dIFOG[t].dot(WLSTM.transpose()) # backprop the identity transforms into Hin dX[t] = dHin[t,:,1:input_size+1] if t > 0: dHout[t-1,:] += dHin[t,:,input_size+1:] else: dh0 += dHin[t,:,input_size+1:] return dX, dWLSTM, dc0, dh0 # ------------------- # TEST CASES # ------------------- def checkSequentialMatchesBatch(): """ check LSTM I/O forward/backward interactions """ n,b,d = (5, 3, 4) # sequence length, batch size, hidden size input_size = 10 WLSTM = LSTM.init(input_size, d) # input size, hidden size X = np.random.randn(n,b,input_size) h0 = np.random.randn(b,d) c0 = np.random.randn(b,d) # sequential forward cprev = c0 hprev = h0 caches = [{} for t in xrange(n)] Hcat = np.zeros((n,b,d)) for t in xrange(n): xt = X[t:t+1] _, cprev, hprev, cache = LSTM.forward(xt, WLSTM, cprev, hprev) caches[t] = cache Hcat[t] = hprev # sanity check: perform batch forward to check that we get the same thing H, _, _, batch_cache = LSTM.forward(X, WLSTM, c0, h0) assert np.allclose(H, Hcat), 'Sequential and Batch forward don''t match!' # eval loss wrand = np.random.randn(*Hcat.shape) loss = np.sum(Hcat * wrand) dH = wrand # get the batched version gradients BdX, BdWLSTM, Bdc0, Bdh0 = LSTM.backward(dH, batch_cache) # now perform sequential backward dX = np.zeros_like(X) dWLSTM = np.zeros_like(WLSTM) dc0 = np.zeros_like(c0) dh0 = np.zeros_like(h0) dcnext = None dhnext = None for t in reversed(xrange(n)): dht = dH[t].reshape(1, b, d) dx, dWLSTMt, dcprev, dhprev = LSTM.backward(dht, caches[t], dcnext, dhnext) dhnext = dhprev dcnext = dcprev dWLSTM += dWLSTMt # accumulate LSTM gradient dX[t] = dx[0] if t == 0: dc0 = dcprev dh0 = dhprev # and make sure the gradients match print('Making sure batched version agrees with sequential version: (should all be True)') print(np.allclose(BdX, dX)) print(np.allclose(BdWLSTM, dWLSTM)) print(np.allclose(Bdc0, dc0)) print(np.allclose(Bdh0, dh0)) def checkBatchGradient(): """ check that the batch gradient is correct """ # lets gradient check this beast n,b,d = (5, 3, 4) # sequence length, batch size, hidden size input_size = 10 WLSTM = LSTM.init(input_size, d) # input size, hidden size X = np.random.randn(n,b,input_size) h0 = np.random.randn(b,d) c0 = np.random.randn(b,d) # batch forward backward H, Ct, Ht, cache = LSTM.forward(X, WLSTM, c0, h0) wrand =
np.random.randn(*H.shape)
numpy.random.randn
# coding=utf-8 from __future__ import (division, print_function, absolute_import, unicode_literals) ''' GCE OMEGA (One-zone Model for the Evolution of Galaxies) module Functionality ============= This tool allows one to simulate the chemical evolution of single-zone galaxies. Having the star formation history as one of the input parameters, OMEGA can target local galaxies by using observational data found in the literature. Made by ======= FEB2015: <NAME>, <NAME> MAY2015: B. Cote The code inherits the chem_evol class, which contains common functions shared by SYGMA and OMEGA. The code in chem_evol has been developed by : v0.1 NOV2013: <NAME>, <NAME> v0.2 JAN2014: <NAME> v0.3 APR2014: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> & the NuGrid collaboration v0.4 FEB2015: <NAME>, B. Cote v0.5 MAR2015: B. Cote v0.6 OCT2016: B. Cote Stop keeking track of version from now on. MARCH2018: B. Cote - Switched to Python 3 - Capability to include radioactive isotopes FEB2019: A. Yagüe, B. Cote - Optimized to code to run faster Note ==== Please do not use "tabs" when introducing new lines of code. Usage ===== Import the module: >>> import omega as o Get help: >>> help o Get more information: >>> o.omega? Create a custom galaxy (closed box): >>> o1 = o.omega(cte_sfr=1.0, mgal=1.5e10) Simulate a known galaxy (open box): >>> o2 = o.omega(galaxy='sculptor', in_out_control=True, mgal=1e6, mass_loading=8, in_out_ratio=1.5) Analysis functions: See the Sphinx documentation ''' # Standard packages import copy import math import random import os # Define where is the working directory # This is where the NuPyCEE code will be extracted nupy_path = os.path.dirname(os.path.realpath(__file__)) # Import NuPyCEE codes import NuPyCEE.sygma as sygma from NuPyCEE.chem_evol import * class omega( chem_evol ): ''' Input parameters (OMEGA) ================ Important : By default, a closed box model is always assumed. galaxy : string Name of the target galaxy. By using a known galaxy, the code automatically selects the corresponding star formation history, stellar mass, and total mass (when available). By using 'none', the user has perfect control of these three last parameters. Choices : 'milky_way', 'milky_way_cte', 'sculptor', 'carina', 'fornax', 'none' Default value : 'none' Special note : The 'milky_way_cte' option uses the Milky Way's characteristics, but with a constant star formation history. cte_sfr : float Constant star formation history in [Mo/yr]. Default value : 1.0 rand_sfh : float Maximum possible ratio between the maximum and the minimum values of a star formation history that is randomly generated. Default value : 0.0 (deactivated) Special note : A value greater than zero automatically generates a random star formation history, which pypasses the use of the cte_sfr parameter. sfh_file : string Path to a file containing an input star formation history. The first and second columns must be the age of the galaxy in [yr] and the star formation rate in [Mo/yr]. Default value : 'none' (deactivated) Special note : When a path is specified, it by passes the cte_sfr and the and_sfh parameters. stellar_mass_0 : float Current stellar mass of the galaxy, in [Mo], at the end of the simulation. Default value : -1.0 (you need to specify a value with unknown galaxies) in_out_control : boolean The in_out_control implementation enables control of the outflow and the inflow rates independently by using constant values (see outflow_rate and inflow_rate) or by using a mass-loading factor that connects the rates to the star formation history (see mass_loading and in_out_ratio). Default value : False (deactivated) mass_loading : float Ratio between the outflow rate and the star formation rate. Default value : 1.0 outflow_rate : float Constant outflow rate in [Mo/yr]. Default value : -1.0 (deactivated) Special note : A value greater or equal to zero activates the constant utflow mode, which bypasses the use of the mass_loading parameter. in_out_ratio : float Used in : in_out_control mode Ratio between the inflow rate and the outflow rate. This parameter is used to calculate the inflow rate, not the outflow rate. Default value : 1.0 inflow_rate : float Used in : in_out_control mode Constant inflow rate in [Mo/yr]. Default value : -1.0 (deactivated) Special note : A value greater or equal to zero activates the constant inflow mode, which bypasses the use of the in_out_ratio parameter. SF_law : boolean The SF_law inplementation assumes a Kennicutt-Schmidt star formation law and combines it to the known input star formation history in order to derive the mass of the gas reservoir at every timestep. Default value : False (deactivated) sfe : float Used in : SF_law and DM_evolution modes Star formation efficiency present in the Kennicutt-Schmidt law. Default value : 0.1 f_dyn : float Used in : SF_law and DM_evolution modes Scaling factor used to calculate the star formation timescale present in the Kennicutt-Schmidt law. We assume that this timescale is equal to a fraction of the dynamical timescale of the virialized system (dark and baryonic matter), t_star = f_dyn * t_dyn. Default value : 0.1 m_DM_0 : float Used in : SF_law and DM_evolution modes Current dark matter halo mass of the galaxy, in [Mo], at the end of the simulations. Default value : 1.0e+11 t_star : float Used in : SF_law and DM_evolution modes Star formation timescale, in [yr], used in the Kennicutt-Schmidt law. Default value = -1.0 (deactivated) Special note : A positive value activates the use of this parameter, which bypasses the f_dyn parameter. DM_evolution : boolean The DM_evolution implementation is an extension of the SF_law option. In addition to using a Kennicutt-Schmidt star formation law, it assumes an evolution in the total mass of the galaxy as function of time. With this prescription, the mass-loading factor has a mass dependency. The mass_loading parameter then only represents the final value at the end of the simulation. Default value : False (deactivated) exp_ml : float Used in : DM_evolution mode Exponent of the mass dependency of the mass-loading factor. This last factor is proportional to M_vir**(-exp_ml/3), where M_vir is the sum of dark and baryonic matter. Default value : 2.0 ================ ''' #Combine docstrings from chem_evol with sygma docstring __doc__ = __doc__+chem_evol.__doc__ ############################################## ## Constructor ## ############################################## def __init__(self, galaxy='none', in_out_control=False, SF_law=False, \ DM_evolution=False, Z_trans=1e-20, f_dyn=0.1, sfe=0.1, \ outflow_rate=-1.0, inflow_rate=-1.0, rand_sfh=0.0, cte_sfr=1.0, \ m_DM_0=1.0e11, mass_loading=1.0, t_star=-1.0, sfh_file='none', \ in_out_ratio=1.0, stellar_mass_0=-1.0, \ z_dependent=True, exp_ml=2.0,nsmerger_bdys=[8, 100], \ imf_type='kroupa', alphaimf=2.35, imf_bdys=[0.1,100], \ sn1a_rate='power_law', iniZ=0.0, dt=1e6, special_timesteps=30, \ tend=13e9, mgal=1.0e10, transitionmass=8.0, iolevel=0, \ ini_alpha=True, nb_nsm_per_m=-1.0, t_nsm_coal=30.0e6,\ high_mass_extrapolation='copy',\ table='yield_tables/agb_and_massive_stars_nugrid_MESAonly_fryer12delay.txt', \ use_decay_module=False, yield_tables_dir='',\ f_network='isotopes_modified.prn', f_format=1,\ table_radio='', decay_file='', sn1a_table_radio='',\ bhnsmerger_table_radio='', nsmerger_table_radio='',\ hardsetZ=-1, sn1a_on=True, nsm_dtd_power=[],\ sn1a_table='yield_tables/sn1a_i99_W7.txt',\ ns_merger_on=False, f_binary=1.0, f_merger=0.0008,\ t_merger_max=1.3e10, m_ej_nsm = 2.5e-02, \ nsmerger_table = 'yield_tables/r_process_arnould_2007.txt', \ bhns_merger_on=False, m_ej_bhnsm=2.5e-02, \ bhnsmerger_table = 'yield_tables/r_process_arnould_2007.txt', \ iniabu_table='', extra_source_on=False, \ extra_source_table=['yield_tables/extra_source.txt'], \ f_extra_source=[1.0], pre_calculate_SSPs=False, \ extra_source_mass_range=[[8,30]], \ total_ejecta_interp=True, radio_refinement=100, \ extra_source_exclude_Z=[[]], beta_crit=1.0, \ pop3_table='yield_tables/popIII_heger10.txt', \ imf_bdys_pop3=[0.1,100], imf_yields_range_pop3=[10,30], \ imf_pop3_char_mass=40.0, \ starbursts=[], beta_pow=-1.0, gauss_dtd=[1e9,6.6e8],exp_dtd=2e9,\ nb_1a_per_m=1.0e-3, f_arfo=1, t_merge=-1.0,\ imf_yields_range=[1,30],exclude_masses=[], \ netyields_on=False,wiersmamod=False,skip_zero=False,\ redshift_f=0.0,print_off=False,long_range_ref=False,\ f_s_enhance=1.0,m_gas_f=-1.0, cl_SF_law=False,\ external_control=False, use_external_integration=False,\ calc_SSP_ej=False, tau_ferrini=False,\ input_yields=False, popIII_info_fast=True, t_sf_z_dep = 1.0,\ m_crit_on=False, norm_crit_m=8.0e+09, mass_frac_SSP=0.5,\ sfh_array_norm=-1.0, imf_rnd_sampling=False,\ out_follows_E_rate=False, yield_interp='lin',\ r_gas_star=-1.0, cte_m_gas = -1.0, t_dtd_poly_split=-1.0,\ stellar_param_on=False, delayed_extra_log=False,\ delayed_extra_yields_log_int=False,\ bhnsmerger_dtd_array=np.array([]), dt_in_SSPs=np.array([]), \ DM_array=np.array([]), nsmerger_dtd_array=np.array([]),\ sfh_array=np.array([]),ism_ini=np.array([]),\ ism_ini_radio=np.array([]),\ m_inflow_array=np.array([]), m_gas_array=np.array([]),\ mdot_ini=np.array([]), mdot_ini_t=np.array([]),\ ytables_in=np.array([]), zm_lifetime_grid_nugrid_in=np.array([]),\ isotopes_in=np.array([]), ytables_pop3_in=np.array([]),\ zm_lifetime_grid_pop3_in=np.array([]), ytables_1a_in=np.array([]),\ ytables_nsmerger_in=np.array([]), SSPs_in=np.array([]),\ dt_in=np.array([]), dt_split_info=np.array([]),\ ej_massive=np.array([]), ej_agb=np.array([]),\ ej_sn1a=np.array([]), ej_massive_coef=np.array([]),\ ej_agb_coef=np.array([]), ej_sn1a_coef=np.array([]),\ dt_ssp=np.array([]), r_vir_array=np.array([]),\ mass_sampled=np.array([]), scale_cor=np.array([]),\ mass_sampled_ssp=np.array([]), scale_cor_ssp=np.array([]),\ poly_fit_dtd_5th=np.array([]), poly_fit_range=np.array([]),\ m_tot_ISM_t_in=np.array([]), m_inflow_X_array=np.array([]),\ delayed_extra_dtd=np.array([]), delayed_extra_dtd_norm=np.array([]), \ delayed_extra_yields=np.array([]), delayed_extra_yields_norm=np.array([]),\ delayed_extra_yields_radio=np.array([]), \ delayed_extra_yields_norm_radio=np.array([]), \ ytables_radio_in=np.array([]), radio_iso_in=np.array([]), \ ytables_1a_radio_in=np.array([]), ytables_nsmerger_radio_in=np.array([]),\ omega_0=0.32, omega_b_0=0.05, lambda_0=0.68, H_0=67.11,\ test_clayton=np.array([]), inter_Z_points=np.array([]),\ nb_inter_Z_points=np.array([]), y_coef_M=np.array([]),\ y_coef_M_ej=np.array([]), y_coef_Z_aM=np.array([]),\ y_coef_Z_bM=np.array([]), y_coef_Z_bM_ej=np.array([]),\ tau_coef_M=np.array([]), tau_coef_M_inv=np.array([]),\ tau_coef_Z_aM=np.array([]), tau_coef_Z_bM=np.array([]),\ tau_coef_Z_aM_inv=np.array([]), tau_coef_Z_bM_inv=np.array([]),\ y_coef_M_pop3=np.array([]), y_coef_M_ej_pop3=np.array([]),\ tau_coef_M_pop3=np.array([]), tau_coef_M_pop3_inv=np.array([]),\ inter_lifetime_points_pop3=np.array([]),\ inter_lifetime_points_pop3_tree=np.array([]),\ nb_inter_lifetime_points_pop3=np.array([]),\ inter_lifetime_points=np.array([]), inter_lifetime_points_tree=np.array([]),\ nb_inter_lifetime_points=np.array([]), nb_inter_M_points_pop3=np.array([]),\ inter_M_points_pop3_tree=np.array([]), nb_inter_M_points=np.array([]),\ inter_M_points=np.array([]), y_coef_Z_aM_ej=np.array([])): # Get the name of the instance import traceback (filename,line_number,function_name,text)=traceback.extract_stack()[-2] self.inst_name = text[:text.find('=')].strip() # Announce the beginning of the simulation if not print_off: print ('OMEGA run in progress..') start_time = t_module.time() self.start_time = start_time # Call the init function of the class inherited by SYGMA chem_evol.__init__(self, imf_type=imf_type, alphaimf=alphaimf, \ imf_bdys=imf_bdys, sn1a_rate=sn1a_rate, iniZ=iniZ, dt=dt, \ special_timesteps=special_timesteps, tend=tend, mgal=mgal, \ transitionmass=transitionmass, iolevel=iolevel, \ ini_alpha=ini_alpha, table=table, hardsetZ=hardsetZ, \ sn1a_on=sn1a_on, sn1a_table=sn1a_table, nsm_dtd_power=nsm_dtd_power,\ ns_merger_on=ns_merger_on, f_binary=f_binary, f_merger=f_merger,\ nsmerger_table=nsmerger_table, t_merger_max=t_merger_max,\ m_ej_nsm = m_ej_nsm, nb_nsm_per_m=nb_nsm_per_m, t_nsm_coal=t_nsm_coal, \ bhns_merger_on=bhns_merger_on, m_ej_bhnsm=m_ej_bhnsm, \ bhnsmerger_table=bhnsmerger_table, \ table_radio=table_radio, decay_file=decay_file,\ sn1a_table_radio=sn1a_table_radio, \ bhnsmerger_table_radio=bhnsmerger_table_radio,\ nsmerger_table_radio=nsmerger_table_radio,\ iniabu_table=iniabu_table, extra_source_on=extra_source_on, \ extra_source_table=extra_source_table,f_extra_source=f_extra_source, \ extra_source_mass_range=extra_source_mass_range, \ extra_source_exclude_Z=extra_source_exclude_Z,\ pop3_table=pop3_table, \ imf_bdys_pop3=imf_bdys_pop3, \ imf_pop3_char_mass=imf_pop3_char_mass, \ total_ejecta_interp=total_ejecta_interp, \ imf_yields_range_pop3=imf_yields_range_pop3, \ starbursts=starbursts, beta_pow=beta_pow, \ gauss_dtd = gauss_dtd, exp_dtd = exp_dtd, \ nb_1a_per_m=nb_1a_per_m, Z_trans=Z_trans, f_arfo=f_arfo, \ imf_yields_range=imf_yields_range,exclude_masses=exclude_masses, \ netyields_on=netyields_on,wiersmamod=wiersmamod, \ input_yields=input_yields, ism_ini_radio=ism_ini_radio,\ tau_ferrini=tau_ferrini, t_dtd_poly_split=t_dtd_poly_split, \ t_merge=t_merge,popIII_info_fast=popIII_info_fast,\ out_follows_E_rate=out_follows_E_rate,\ use_external_integration=use_external_integration,\ stellar_param_on=stellar_param_on, pre_calculate_SSPs=pre_calculate_SSPs,\ print_off=print_off, yield_tables_dir=yield_tables_dir, \ ism_ini=ism_ini,ytables_in=ytables_in,\ delayed_extra_yields_log_int=delayed_extra_yields_log_int,\ zm_lifetime_grid_nugrid_in=zm_lifetime_grid_nugrid_in,\ isotopes_in=isotopes_in,ytables_pop3_in=ytables_pop3_in,\ zm_lifetime_grid_pop3_in=zm_lifetime_grid_pop3_in,\ ytables_1a_in=ytables_1a_in, dt_in_SSPs=dt_in_SSPs, \ delayed_extra_log=delayed_extra_log, \ nsmerger_dtd_array=nsmerger_dtd_array,\ bhnsmerger_dtd_array=bhnsmerger_dtd_array, \ ytables_nsmerger_in=ytables_nsmerger_in, dt_in=dt_in,\ dt_split_info=dt_split_info,ej_massive=ej_massive,\ ej_agb=ej_agb,ej_sn1a=ej_sn1a,\ ej_massive_coef=ej_massive_coef,ej_agb_coef=ej_agb_coef,\ ej_sn1a_coef=ej_sn1a_coef,dt_ssp=dt_ssp,\ yield_interp=yield_interp, SSPs_in=SSPs_in,\ poly_fit_dtd_5th=poly_fit_dtd_5th,poly_fit_range=poly_fit_range,\ delayed_extra_dtd=delayed_extra_dtd,\ delayed_extra_dtd_norm=delayed_extra_dtd_norm,\ delayed_extra_yields=delayed_extra_yields,\ delayed_extra_yields_norm=delayed_extra_yields_norm,\ delayed_extra_yields_radio=delayed_extra_yields_radio,\ delayed_extra_yields_norm_radio=delayed_extra_yields_norm_radio,\ ytables_radio_in=ytables_radio_in, radio_iso_in=radio_iso_in,\ ytables_1a_radio_in=ytables_1a_radio_in,\ ytables_nsmerger_radio_in=ytables_nsmerger_radio_in,\ test_clayton=test_clayton, radio_refinement=radio_refinement,\ use_decay_module=use_decay_module,\ f_network=f_network, f_format=f_format,\ high_mass_extrapolation=high_mass_extrapolation,\ inter_Z_points=inter_Z_points,\ nb_inter_Z_points=nb_inter_Z_points, y_coef_M=y_coef_M,\ y_coef_M_ej=y_coef_M_ej, y_coef_Z_aM=y_coef_Z_aM,\ y_coef_Z_bM=y_coef_Z_bM, y_coef_Z_bM_ej=y_coef_Z_bM_ej,\ tau_coef_M=tau_coef_M, tau_coef_M_inv=tau_coef_M_inv,\ tau_coef_Z_aM=tau_coef_Z_aM, tau_coef_Z_bM=tau_coef_Z_bM,\ tau_coef_Z_aM_inv=tau_coef_Z_aM_inv, tau_coef_Z_bM_inv=tau_coef_Z_bM_inv,\ y_coef_M_pop3=y_coef_M_pop3, y_coef_M_ej_pop3=y_coef_M_ej_pop3,\ tau_coef_M_pop3=tau_coef_M_pop3, tau_coef_M_pop3_inv=tau_coef_M_pop3_inv,\ inter_lifetime_points_pop3=inter_lifetime_points_pop3,\ inter_lifetime_points_pop3_tree=inter_lifetime_points_pop3_tree,\ nb_inter_lifetime_points_pop3=nb_inter_lifetime_points_pop3,\ inter_lifetime_points=inter_lifetime_points,\ inter_lifetime_points_tree=inter_lifetime_points_tree,\ nb_inter_lifetime_points=nb_inter_lifetime_points,\ nb_inter_M_points_pop3=nb_inter_M_points_pop3,\ inter_M_points_pop3_tree=inter_M_points_pop3_tree,\ nb_inter_M_points=nb_inter_M_points, inter_M_points=inter_M_points,\ y_coef_Z_aM_ej=y_coef_Z_aM_ej) # Quit if something bad happened in chem_evol .. if self.need_to_quit: return # Calculate the number of CC SNe per Msun formed if out_follows_E_rate: A_pop3 = 1.0 / self._imf(imf_bdys_pop3[0],imf_bdys_pop3[1],2) self.nb_ccsne_per_m_pop3 = \ A_pop3 * self._imf(imf_yields_range_pop3[0], \ imf_yields_range_pop3[1],1) A = 1.0 / self._imf(imf_bdys[0],imf_bdys[1],2) self.nb_ccsne_per_m = \ A * self._imf(transitionmass,imf_yields_range[1],1) # Attribute the input parameters to the current OMEGA object self.galaxy = galaxy self.in_out_control = in_out_control self.SF_law = SF_law self.DM_evolution = DM_evolution self.f_dyn = f_dyn self.sfe = sfe self.outflow_rate = outflow_rate self.inflow_rate = inflow_rate self.rand_sfh = rand_sfh self.cte_sfr = cte_sfr self.m_DM_0 = m_DM_0 self.mass_loading = mass_loading self.t_star = t_star self.sfh_file = sfh_file self.in_out_ratio = in_out_ratio self.stellar_mass_0 = stellar_mass_0 self.z_dependent = z_dependent self.exp_ml = exp_ml self.DM_too_low = False self.skip_zero = skip_zero self.redshift_f = redshift_f self.print_off = print_off self.long_range_ref = long_range_ref self.m_crit_on = m_crit_on self.norm_crit_m = norm_crit_m self.sfh_array_norm = sfh_array_norm self.DM_array = DM_array self.sfh_array = sfh_array self.mdot_ini = mdot_ini self.mdot_ini_t = mdot_ini_t self.r_gas_star = r_gas_star self.m_gas_f = m_gas_f self.cl_SF_law = cl_SF_law self.external_control = external_control self.mass_sampled = mass_sampled self.scale_cor = scale_cor self.imf_rnd_sampling = imf_rnd_sampling self.cte_m_gas = cte_m_gas self.t_sf_z_dep = t_sf_z_dep self.out_follows_E_rate = out_follows_E_rate self.m_tot_ISM_t_in = m_tot_ISM_t_in self.m_inflow_array = m_inflow_array self.len_m_inflow_array = len(m_inflow_array) self.m_inflow_X_array = m_inflow_X_array self.len_m_inflow_X_array = len(m_inflow_X_array) self.m_gas_array = m_gas_array self.len_m_gas_array = len(m_gas_array) self.beta_crit = beta_crit self.r_vir_array = r_vir_array self.pre_calculate_SSPs = pre_calculate_SSPs # If SSPs needs to be pre-calculated .. if self.pre_calculate_SSPs: # Calculate all SSPs self.__run_all_ssps() # Create the arrays that will contain the interpolated isotopes self.ej_SSP_int = np.zeros((self.nb_steps_table,self.nb_isotopes)) if self.len_decay_file > 0: self.ej_SSP_int_radio = np.zeros((self.nb_steps_table,self.nb_radio_iso)) # If the IMF will randomly be sampled ... if self.imf_rnd_sampling: # Print info about the IMF samplint self.m_pop_max = 1.0e4 print ('IMF random sampling for SSP with M < ',self.m_pop_max) # Calculate the stellar mass associated with the # highest IMF value (needed for Monte Carlo) # ONLY SAMPLING MASSIVE STARS self.A_rdm = 1.0 / self.transitionmass**(-2.3) self.m_frac_massive_rdm = self.A_rdm * \ self._imf(self.transitionmass, self.imf_bdys[1], 2) # Calculate the stellar mass associated with the # highest IMF value (needed for Monte Carlo) # SAMPLING ALL STARS (warning! --> Need to modify the code for this) #self.imf_norm_sampled = 10.0 #self.imfnorm = self.imf_norm_sampled #imf_temp = [] #m_temp = self.imf_bdys[0] #dm = 0.02 #while m_temp <= (self.imf_bdys[1]): # imf_temp.append(self._imf(1.0,2.0,0,mass=m_temp)) # m_temp += dm #self.imf_max = max(imf_temp) # Set cosmological parameters - Dunkley et al. (2009) #self.omega_0 = 0.257 # Current mass density parameter #self.omega_b_0 = 0.044 # Current baryonic mass density parameter #self.lambda_0 = 0.742 # Current dark energy density parameter #self.H_0 = 71.9 # Hubble constant [km s^-1 Mpc^-1] # Set cosmological parameters - as in Wise et al. 2012 #self.omega_0 = 0.266 # Current mass density parameter #self.omega_b_0 = 0.0449 # Current baryonic mass density parameter #self.lambda_0 = 0.734 # Current dark energy density parameter #self.H_0 = 71.0 # Hubble constant [km s^-1 Mpc^-1] # Set cosmological parameters - default is Planck 2013 (used in Caterpillar) self.omega_0 = omega_0 # Current mass density parameter self.omega_b_0 = omega_b_0 # Current baryonic mass density parameter self.lambda_0 = lambda_0 # Current dark energy density parameter self.H_0 = H_0 # Hubble constant [km s^-1 Mpc^-1] # Look for errors in the input parameters self.__check_inputs_omega() # Define whether the open box scenario is used or not if self.in_out_control or self.SF_law or self.DM_evolution: self.open_box = True else: self.open_box = False # Check if the timesteps need to be refined if self.SF_law or self.DM_evolution: self.t_SF_t = [] self.redshift_t = [] for k in range(self.nb_timesteps): self.t_SF_t.append(0.0) self.redshift_t.append(0.0) self.t_SF_t.append(0.0) self.redshift_t.append(0.0) self.calculate_redshift_t() self.__calculate_t_SF_t() need_t_raf = False for i_raf in range(self.nb_timesteps): if self.history.timesteps[i_raf] > self.t_SF_t[i_raf] / self.sfe: need_t_raf = True break if need_t_raf: if self.long_range_ref: self.__rafine_steps_lr() else: self.__rafine_steps() # Re-Create entries for the mass-loss rate of massive stars self.massive_ej_rate = [] self.sn1a_ej_rate = [] for k in range(self.nb_timesteps + 1): self.massive_ej_rate.append(0.0) self.sn1a_ej_rate.append(0.0) # Declare arrays used to follow the evolution of the galaxy self.__declare_evol_arrays() # If the mass fraction ejected by SSPs needs to be calculated ... # Need to be before self.__initialize_gal_prop()!! self.mass_frac_SSP = -1.0 if calc_SSP_ej: # Run SYGMA with five different metallicities Z = [0.02, 0.01, 0.006, 0.001, 0.0001] s_inst = [] self.mass_frac_SSP = 0.0 for i_Z_SSP in range(0,len(Z)): s_inst = sygma.sygma(imf_type=imf_type, alphaimf=alphaimf,\ imf_bdys=imf_bdys, sn1a_rate=sn1a_rate, iniZ=Z[i_Z_SSP], dt=dt, \ special_timesteps=special_timesteps, tend=tend, mgal=1.0, \ transitionmass=transitionmass, iolevel=iolevel, \ ini_alpha=ini_alpha, table=table, hardsetZ=hardsetZ, \ sn1a_on=sn1a_on, sn1a_table=sn1a_table, \ iniabu_table=iniabu_table, extra_source_on=extra_source_on, \ extra_source_table=extra_source_table, pop3_table=pop3_table, \ imf_bdys_pop3=imf_bdys_pop3, \ imf_yields_range_pop3=imf_yields_range_pop3, \ starbursts=starbursts, beta_pow=beta_pow, \ gauss_dtd = gauss_dtd, exp_dtd = exp_dtd, \ nb_1a_per_m=nb_1a_per_m, Z_trans=Z_trans, f_arfo=f_arfo, \ imf_yields_range=imf_yields_range,exclude_masses=exclude_masses,\ netyields_on=netyields_on,wiersmamod=wiersmamod) self.mass_frac_SSP += np.sum(s_inst.ymgal[-1]) # Calculate the average mass fraction returned self.mass_frac_SSP = self.mass_frac_SSP / len(Z) print ('Average SSP mass fraction returned = ',self.mass_frac_SSP) else: self.mass_frac_SSP = mass_frac_SSP # Set the general properties of the selected galaxy self.__initialize_gal_prop() # Fill arrays used to follow the evolution self.__fill_evol_arrays() # Read the primordial composition of the inflow gas if self.in_out_control or self.SF_law or self.DM_evolution: prim_comp_table = os.path.join('yield_tables', 'iniabu',\ 'iniab_bb_walker91.txt') self.prim_comp = ry.read_yield_sn1a_tables(os.path.join(nupy_path,\ prim_comp_table), self.history.isotopes) # In construction .. need to avoid altering default setups .. # Assume the baryonic ratio for the initial gas reservoir, if needed # if len(self.ism_ini) == 0 and not self.SF_law and not self.DM_evolution: # if self.bar_ratio and not self.cl_SF_law: # scale_m_tot = self.m_DM_0 * self.omega_b_0 / \ # (self.omega_0*np.sum(self.ymgal[0])) # for k_cm in range(len(self.ymgal[0])): # self.ymgal[0][k_cm] = self.ymgal[0][k_cm] * scale_m_tot # Add the stellar ejecta coming from external galaxies that just merged if len(self.mdot_ini) > 0: self.__add_ext_mdot() # Initialisation of the composition of the gas reservoir if len(self.ism_ini) > 0: for i_ini in range(0,self.len_ymgal): self.ymgal[0][i_ini] = self.ism_ini[i_ini] # Copy the outflow-vs-SFR array and re-initialize for delayed outflow if out_follows_E_rate: self.outflow_test = np.sum(self.m_outflow_t) self.m_outflow_t_vs_SFR = copy.copy(self.m_outflow_t) for i_ofer in range(0,self.nb_timesteps): self.m_outflow_t[i_ofer] = 0.0 # If the timestep are not control by an external program ... if not self.external_control: # Run the simulation self.__run_simulation(mass_sampled, scale_cor) ############################################## # Check Inputs OMEGA # ############################################## def __check_inputs_omega(self): ''' This function checks for incompatible input entries, and stops the simulation if needed. ''' # Input galaxy if not self.galaxy in ['none', 'milky_way', 'milky_way_cte', \ 'sculptor', 'fornax', 'carina']: print ('Error - Selected galaxy not available.') return # Random SFH if self.rand_sfh > 0.0 and self.stellar_mass_0 < 0.0: print ('Error - You need to choose a current stellar mass.') return # Inflow control when non-available if self.in_out_control and (self.SF_law or self.DM_evolution): print ('Error - Cannot control inflows and outflows when SF_law or'\ 'DM_evolution is equal to True.') return # Defined initial dark matter halo mass when non-available #if self.m_DM_ini > 0.0 and not self.DM_evolution: # print ('Warning - Can\'t control m_DM_ini when the mass of', \ # 'the dark matter halo is not evolving.') # Inflow and outflow control when the dark matter mass if evolving if (self.outflow_rate >= 0.0 or self.inflow_rate >= 0.0) and \ self.DM_evolution: print ('Error - Cannot fix inflow and outflow rates when the mass'\ 'of the dark matter halo is evolving.') return # Inflow array when input if self.len_m_inflow_array > 0: if not self.len_m_inflow_array == self.nb_timesteps: print ('Error - len(m_inflow_array) needs to equal nb_timesteps.') return # Inflow X array when input if self.len_m_inflow_X_array > 0: if not self.len_m_inflow_X_array == self.nb_timesteps: print ('Error - len(m_inflow_X_array) needs to equal nb_timesteps.') return if not len(self.m_inflow_X_array[0]) == self.nb_isotopes: print ('Error - len(m_inflow_X_array[i]) needs to equal nb_isotopes.') return # Mgas array when input if self.len_m_gas_array > 0: if not self.len_m_gas_array == (self.nb_timesteps+1): print ('Error - len(m_gas_array) needs to equal nb_timesteps+1.') return ############################################## # Refine Steps # ############################################## def __rafine_steps(self): ''' This function increases the number of timesteps if the star formation will eventually consume all the gas, which occurs when dt > (t_star/sfe). ''' # Declaration of the new timestep array if not self.print_off: print ('..Time refinement..') new_dt = [] # For every timestep ... for i_rs in range(0,len(self.history.timesteps)): # Calculate the critical time delay t_raf = self.t_SF_t[i_rs] / self.sfe # If the step needs to be refined ... if self.history.timesteps[i_rs] > t_raf: # Calculate the split factor nb_split = int(self.history.timesteps[i_rs] / t_raf) + 1 # Split the step for i_sp_st in range(0,nb_split): new_dt.append(self.history.timesteps[i_rs]/nb_split) # If ok, don't change anything else: new_dt.append(self.history.timesteps[i_rs]) # Update the timestep information self.nb_timesteps = len(new_dt) self.history.timesteps = new_dt # Update self.history.age self.history.age = [0] for ii in range(self.nb_timesteps): self.history.age.append(self.history.age[-1] + new_dt[ii]) self.history.age = np.array(self.history.age) # If a timestep needs to be added to be synchronized with # the external program managing merger trees ... if self.t_merge > 0.0: # Find the interval where the step needs to be added i_temp = 0 t_temp = new_dt[0] while t_temp / self.t_merge < 0.9999999: i_temp += 1 t_temp += new_dt[i_temp] # Keep the t_merger index in memory self.i_t_merger = i_temp # Update/redeclare all the arrays (stable isotopes) ymgal = self._get_iniabu() self.len_ymgal = len(ymgal) self.mdot, self.ymgal, self.ymgal_massive, self.ymgal_agb, \ self.ymgal_1a, self.ymgal_nsm, self.ymgal_bhnsm, \ self.ymgal_delayed_extra, self.mdot_massive, \ self.mdot_agb, self.mdot_1a, self.mdot_nsm, self.mdot_bhnsm, \ self.mdot_delayed_extra, \ self.sn1a_numbers, self.sn2_numbers, self.nsm_numbers, self.bhnsm_numbers,\ self.delayed_extra_numbers, self.imf_mass_ranges, \ self.imf_mass_ranges_contribution, self.imf_mass_ranges_mtot = \ self._get_storing_arrays(ymgal, len(self.history.isotopes)) # Update/redeclare all the arrays (unstable isotopes) if self.len_decay_file > 0: ymgal_radio = np.zeros(self.nb_radio_iso) # Initialisation of the storing arrays for radioactive isotopes self.mdot_radio, self.ymgal_radio, self.ymgal_massive_radio, \ self.ymgal_agb_radio, self.ymgal_1a_radio, self.ymgal_nsm_radio, \ self.ymgal_bhnsm_radio, self.ymgal_delayed_extra_radio, \ self.mdot_massive_radio, self.mdot_agb_radio, self.mdot_1a_radio, \ self.mdot_nsm_radio, self.mdot_bhnsm_radio,\ self.mdot_delayed_extra_radio, dummy, dummy, dummy, dummy, dummy, \ dummy, dummy, dummy = \ self._get_storing_arrays(ymgal_radio, self.nb_radio_iso) # Recalculate the simulation time (used in chem_evol) self.t_ce = [] self.t_ce.append(self.history.timesteps[0]) for i_init in range(1,self.nb_timesteps): self.t_ce.append(self.t_ce[i_init-1] + self.history.timesteps[i_init]) ############################################## # Rafine Steps LR # ############################################## def __rafine_steps_lr(self): ''' This function increases the number of timesteps if the star formation will eventually consume all the gas, which occurs when dt > (t_star/sfe). ''' # Declaration of the new timestep array if not self.print_off: print ('..Time refinement (long range)..') new_dt = [] # For every timestep ... for i_rs in range(0,len(self.history.timesteps)): # Calculate the critical time delay t_raf = self.t_SF_t[i_rs] / self.sfe # If the step needs to be refined ... if self.history.timesteps[i_rs] > t_raf: # Calculate the number of remaining steps nb_step_rem = len(self.history.timesteps) - i_rs t_rem = 0.0 for i_rs in range(0,len(self.history.timesteps)): t_rem += self.history.timesteps[i_rs] # Calculate the split factor nb_split = int(t_rem / t_raf) + 1 # Split the step for i_sp_st in range(0,nb_split): new_dt.append(t_rem/nb_split) # Quit the for loop break # If ok, don't change anything else: new_dt.append(self.history.timesteps[i_rs]) # Update the timestep information self.nb_timesteps = len(new_dt) self.history.timesteps = new_dt # Update self.history.age self.history.age = [0] for ii in range(self.nb_timesteps): self.history.age.append(self.history.age[-1] + new_dt[ii]) self.history.age = np.array(self.history.age) # If a timestep needs to be added to be synchronized with # the external program managing merger trees ... if self.t_merge > 0.0: # Find the interval where the step needs to be added i_temp = 0 t_temp = new_dt[0] while t_temp / self.t_merge < 0.9999999: i_temp += 1 t_temp += new_dt[i_temp] # Keep the t_merger index in memory self.i_t_merger = i_temp # Update/redeclare all the arrays (stable isotopes) ymgal = self._get_iniabu() self.len_ymgal = len(ymgal) self.mdot, self.ymgal, self.ymgal_massive, self.ymgal_agb, \ self.ymgal_1a, self.ymgal_nsm, self.ymgal_bhnsm, \ self.ymgal_delayed_extra, self.mdot_massive, \ self.mdot_agb, self.mdot_1a, self.mdot_nsm, self.mdot_bhnsm, \ self.mdot_delayed_extra, \ self.sn1a_numbers, self.sn2_numbers, self.nsm_numbers, self.bhnsm_numbers,\ self.delayed_extra_numbers, self.imf_mass_ranges, \ self.imf_mass_ranges_contribution, self.imf_mass_ranges_mtot = \ self._get_storing_arrays(ymgal, len(self.history.isotopes)) # Update/redeclare all the arrays (unstable isotopes) if self.len_decay_file > 0: ymgal_radio = np.zeros(self.nb_radio_iso) # Initialisation of the storing arrays for radioactive isotopes self.mdot_radio, self.ymgal_radio, self.ymgal_massive_radio, \ self.ymgal_agb_radio, self.ymgal_1a_radio, self.ymgal_nsm_radio, \ self.ymgal_bhnsm_radio, self.ymgal_delayed_extra_radio, \ self.mdot_massive_radio, self.mdot_agb_radio, self.mdot_1a_radio, \ self.mdot_nsm_radio, self.mdot_bhnsm_radio,\ self.mdot_delayed_extra_radio, dummy, dummy, dummy, dummy, dummy, \ dummy, dummy, dummy = \ self._get_storing_arrays(ymgal_radio, self.nb_radio_iso) # Recalculate the simulation time (used in chem_evol) self.t_ce = [] self.t_ce.append(self.history.timesteps[0]) for i_init in range(1,self.nb_timesteps): self.t_ce.append(self.t_ce[i_init-1] + self.history.timesteps[i_init]) ############################################## # Declare Evol Arrays # ############################################## def __declare_evol_arrays(self): ''' This function declares the arrays used to follow the evolution of the galaxy regarding its growth and the exchange of gas with its surrounding. ''' # Arrays with specific values at every timestep self.sfr_input = np.zeros(self.nb_timesteps+1) # Star formation rate [Mo yr^-1] self.m_DM_t = np.zeros(self.nb_timesteps+1) # Mass of the dark matter halo self.r_vir_DM_t= np.zeros(self.nb_timesteps+1) # Virial radius of the dark matter halo self.v_vir_DM_t= np.zeros(self.nb_timesteps+1) # Virial velocity of the halo self.m_tot_ISM_t = np.zeros(self.nb_timesteps+1) # Mass of the ISM in gas self.m_outflow_t = np.zeros(self.nb_timesteps) # Mass of the outflow at every timestep self.eta_outflow_t = np.zeros(self.nb_timesteps) # Mass-loading factor == M_outflow / SFR self.t_SF_t = np.zeros(self.nb_timesteps+1) # Star formation timescale at every timestep self.m_crit_t = np.zeros(self.nb_timesteps+1) # Critital ISM mass below which no SFR self.redshift_t = np.zeros(self.nb_timesteps+1) # Redshift associated to every timestep self.m_inflow_t = np.zeros(self.nb_timesteps) # Mass of the inflow at every timestep ############################################## # Initialize Gal Prop # ############################################## def __initialize_gal_prop(self): ''' This function sets the properties of the selected galaxy, such as its SFH, its total mass, and its stellar mass. ''' # No specific galaxy - Use input parameters if self.galaxy == 'none': #If an array is used for the SFH .. if len(self.sfh_array) > 0: self.__copy_sfr_array() # If an input file is used for the SFH ... elif not self.sfh_file == 'none': self.__copy_sfr_input(self.sfh_file) # If a star formation law is used in a closed box ... elif self.cl_SF_law and not self.open_box: self.__calculate_sfe_cl() # If a random SFH is chosen ... elif self.rand_sfh > 0.0: self.__generate_rand_sfh() # If the SFH is constant ... else: for i_cte_sfr in range(0, self.nb_timesteps+1): self.sfr_input[i_cte_sfr] = self.cte_sfr # Milky Way galaxy ... elif self.galaxy == 'milky_way' or self.galaxy == 'milky_way_cte': # Set the current dark and stellar masses (corrected for mass loss) self.m_DM_0 = 1.0e12 self.stellar_mass_0 = 5.0e10 # Read Chiappini et al. (2001) SFH if self.galaxy == 'milky_way': self.__copy_sfr_input('stellab_data/milky_way_data/sfh_mw_cmr01.txt') # Read constant SFH else: self.__copy_sfr_input('stellab_data/milky_way_data/sfh_cte.txt') # Sculptor dwarf galaxy ... elif self.galaxy == 'sculptor': # Set the current dark and stellar masses (corrected for mass loss) self.m_DM_0 = 1.5e9 self.stellar_mass_0 = 7.8e6 self.stellar_mass_0 = self.stellar_mass_0 * (1-self.mass_frac_SSP) # Read deBoer et al. (2012) SFH self.__copy_sfr_input('stellab_data/sculptor_data/sfh_deBoer12.txt') # Fornax dwarf galaxy ... elif self.galaxy == 'fornax': # Set the current dark and stellar masses (corrected for mass loss) self.m_DM_0 = 7.08e8 self.stellar_mass_0 = 4.3e7 self.stellar_mass_0 = self.stellar_mass_0 * (1-self.mass_frac_SSP) # Read deBoer et al. (2012) SFH self.__copy_sfr_input('stellab_data/fornax_data/sfh_fornax_deboer_et_al_2012.txt') # Carina dwarf galaxy ... elif self.galaxy == 'carina': # Set the current dark and stellar masses (corrected for mass loss) self.m_DM_0 = 3.4e6 self.stellar_mass_0 = 1.07e6 self.stellar_mass_0 = self.stellar_mass_0 * (1-self.mass_frac_SSP) # Read deBoer et al. (2014) SFH self.__copy_sfr_input('stellab_data/carina_data/sfh_deBoer14.txt') # Interpolate the last timestep if len(self.sfr_input) > 3: aa = (self.sfr_input[-2] - self.sfr_input[-3])/\ self.history.timesteps[-2] bb = self.sfr_input[-2]- (self.history.tend-self.history.timesteps[-1])*aa self.sfr_input[-1] = aa*self.history.tend + bb # Keep the SFH in memory self.history.sfr_abs = self.sfr_input ############################################## ## Copy SFR Array ## ############################################## def __copy_sfr_array(self): ''' See copy_sfr_input() for more info. ''' # Variable to keep track of the OMEGA's timestep i_dt_csa = 0 t_csa = 0.0 nb_dt_csa = self.nb_timesteps + 1 # Variable to keep track of the total stellar mass from the input SFH m_stel_sfr_in = 0.0 # For every timestep given in the array (starting at the second step) for i_csa in range(1,len(self.sfh_array)): # Calculate the SFR interpolation coefficient a_sfr = (self.sfh_array[i_csa][1] - self.sfh_array[i_csa-1][1]) / \ (self.sfh_array[i_csa][0] - self.sfh_array[i_csa-1][0]) b_sfr = self.sfh_array[i_csa][1] - a_sfr * self.sfh_array[i_csa][0] # While we stay in the same time bin ... while t_csa <= self.sfh_array[i_csa][0]: # Interpolate the SFR self.sfr_input[i_dt_csa] = a_sfr * t_csa + b_sfr # Cumulate the stellar mass formed m_stel_sfr_in += self.sfr_input[i_dt_csa] * \ self.history.timesteps[i_dt_csa] # Exit the loop if the array is full if i_dt_csa >= nb_dt_csa: break # Calculate the new time t_csa += self.history.timesteps[i_dt_csa] i_dt_csa += 1 # Exit the loop if the array is full if (i_dt_csa + 1) >= nb_dt_csa: break # If the array has been read completely, but the sfr_input array is # not full, fil the rest of the array with the last read value if self.sfh_array[-1][1] == 0.0: sfr_temp = 0.0 else: sfr_temp = self.sfr_input[i_dt_csa-1] while i_dt_csa < nb_dt_csa - 1: self.sfr_input[i_dt_csa] = sfr_temp m_stel_sfr_in += self.sfr_input[i_dt_csa] * \ self.history.timesteps[i_dt_csa] t_csa += self.history.timesteps[i_dt_csa] i_dt_csa += 1 # Normalise the SFR in order to be consistent with the integrated # input star formation array (no mass loss considered!) if self.sfh_array_norm > 0.0: norm_sfr_in = self.sfh_array_norm / m_stel_sfr_in for i_csa in range(0, nb_dt_csa): self.sfr_input[i_csa] = self.sfr_input[i_csa] * norm_sfr_in # Fill the missing last entry (extention of the last timestep, for tend) # Since we don't know dt starting at tend, it is not part of m_stel_sfr_in self.sfr_input[-1] = self.sfr_input[-2] ############################################## ## Calculate SFE Cl. ## ############################################## def __calculate_sfe_cl(self): ''' Calculate the star formation efficiency and the initial mass of gas for a closed box model, given the final gas mass and the current stellar mass. ''' # Get the average return gas fraction of SSPs if self.mass_frac_SSP == -1.0: f_ej = 0.35 else: f_ej = self.mass_frac_SSP # If the gas-to-stellar mass ratio is the selected input ... if self.r_gas_star > 0.0: # Calculate the final mass of gas self.m_gas_f = self.r_gas_star * self.stellar_mass_0 # Calculate the initial mass of gas m_gas_ini = self.m_gas_f + self.stellar_mass_0 # If the final mass of gas is the selected input ... elif self.m_gas_f > 0.0: # Calculate the initial mass of gas m_gas_ini = self.m_gas_f + self.stellar_mass_0 # If the initial mass of gas is the selected input ... else: # Use the input value for the initial mass of gas m_gas_ini = self.mgal # Calculate the final mass of gas self.m_gas_f = m_gas_ini - self.stellar_mass_0 # Verify if the final mass of gas is negative if self.m_gas_f < 0.0: self.not_enough_gas = True sfe_gcs = 1.0e-10 print ('!!Error - Try to have a negative final gas mass!!') if not self.not_enough_gas: # Scale the initial mass of all isotopes scale_m_tot = m_gas_ini / np.sum(self.ymgal[0]) for k_cm in range(len(self.ymgal[0])): self.ymgal[0][k_cm] = self.ymgal[0][k_cm] * scale_m_tot # Initialization for finding the right SFE sfe_gcs = 1.8e-10 sfe_max = 1.0 sfe_min = 0.0 m_gas_f_try = self.__get_m_gas_f(m_gas_ini, sfe_gcs, f_ej) # While the SFE is not the right one ... while abs(m_gas_f_try - self.m_gas_f) > 0.01: # If the SFE needs to be increased ... if (m_gas_f_try / self.m_gas_f) > 1.0: # Set the lower limit of the SFE interval sfe_min = sfe_gcs # If an upper limit is already defined ... if sfe_max < 1.0: # Set the SFE to the middle point of the interval sfe_gcs = (sfe_max + sfe_gcs) * 0.5 # If an upper limit is not already defined ... else: # Try a factor of 2 sfe_gcs = sfe_gcs * 2.0 # If the SFE needs to be decreased ... else: # Set the upper limit of the SFE interval sfe_max = sfe_gcs # If a lower limit is already defined ... if sfe_min > 0.0: # Set the SFE to the middle point of the interval sfe_gcs = (sfe_min + sfe_gcs) * 0.5 # If a lower limit is not already defined ... else: # Try a factor of 2 sfe_gcs = sfe_gcs * 0.5 # Get the approximated final mass of gas m_gas_f_try = self.__get_m_gas_f(m_gas_ini, sfe_gcs, f_ej) # Keep the SFE in memory self.sfe_gcs = sfe_gcs ############################################## ## Get M_gas_f ## ############################################## def __get_m_gas_f(self, m_gas_ini, sfe_gcs, f_ej): ''' Return the final mass of gas, given the initial mass of the gas reservoir and the star formation efficiency. The function uses a simple star formation law in the form of SFR(t) = sfe * M_gas(t) ''' # Initialisation of the integration m_gas_loop = m_gas_ini t_gmgf = 0.0 # For every timestep ... for i_gmgf in range(0,self.nb_timesteps): # Calculate the new mass of gass t_gmgf += self.history.timesteps[i_gmgf] #self.sfr_input[i_gmgf] = sfe_gcs * m_gas_loop m_gas_loop -= sfe_gcs * (1-f_ej) * m_gas_loop * \ self.history.timesteps[i_gmgf] # Return the final mass of gas return m_gas_loop ############################################## # Copy SFR Input # ############################################## def __copy_sfr_input(self, path_sfh_in): ''' This function reads a SFH input file and interpolates its values so it can be inserted in the array "sfr_input", which contains the SFR for each OMEGA timestep. Note ==== The input file does not need to have constant time step lengths, and does not need to have the same number of timesteps as the number of OMEGA timesteps. Important ========= In OMEGA and SYGMA, t += timestep[i] is the first thing done in the main loop. The loop calculates what happened between the previous t and the new t. This means the mass of stars formed must be SFR(previous t) * timestep[i]. Therefore, sfr_input[i] IS NOT the SFR at time t += timestep[i], but rather the SFR at previous time which is used for the current step i. Argument ======== path_sfh_in : Path of the input SFH file. ''' # Variable to keep track of the OMEGA timestep nb_dt_csi = self.nb_timesteps + 1 i_dt_csi = 0 t_csi = 0.0 # Not timesteps[0] because sfr_input[0] must be # used from t = 0 to t = timesteps[0] # Variable to keep track of the total stellar mass from the input SFH m_stel_sfr_in = 0.0 # Open the file containing the SFR vs time with open(os.path.join(nupy_path, path_sfh_in), 'r') as sfr_file: # Read the first line (col 0 : t, col 1 : SFR) line_1_str = sfr_file.readline() parts_1 = [float(x) for x in line_1_str.split()] # For every remaining line ... for line_2_str in sfr_file: # Extract data parts_2 = [float(x) for x in line_2_str.split()] # Calculate the interpolation coefficients (SFR = a*t + b) a_csi = (parts_2[1] - parts_1[1]) / (parts_2[0] - parts_1[0]) b_csi = parts_1[1] - a_csi * parts_1[0] # While we stay in the same time bin ... while t_csi <= parts_2[0]: # Calculate the right SFR for the specific OMEGA timestep #self.sfr_input[i_dt_csi] = a_csi * t_csi + b_csi # Calculate the average SFR for the specific OMEGA timestep if i_dt_csi < self.nb_timesteps: self.sfr_input[i_dt_csi] = a_csi * (t_csi + \ self.history.timesteps[i_dt_csi] * 0.5) + b_csi else: self.sfr_input[i_dt_csi] = a_csi * t_csi + b_csi # Cumulate the mass of stars formed if i_dt_csi < nb_dt_csi - 1: m_stel_sfr_in += self.sfr_input[i_dt_csi] * \ self.history.timesteps[i_dt_csi] # Calculate the new time t_csi += self.history.timesteps[i_dt_csi] # Go to the next time step i_dt_csi += 1 # Exit the loop if the array is full if i_dt_csi >= nb_dt_csi: break # Exit the loop if the array is full if i_dt_csi >= nb_dt_csi: break # Copie the last read line parts_1 = copy.copy(parts_2) # Close the file sfr_file.close() # If the file has been read completely, but the sfr_input array is # not full, fill the rest of the array with the last read value while i_dt_csi < nb_dt_csi: self.sfr_input[i_dt_csi] = self.sfr_input[i_dt_csi-1] if i_dt_csi < nb_dt_csi - 1: m_stel_sfr_in += self.sfr_input[i_dt_csi] * \ self.history.timesteps[i_dt_csi] i_dt_csi += 1 # Normalise the SFR in order to be consistent with the input current # stellar mass (if the stellar mass is known) if self.stellar_mass_0 > 0.0: norm_sfr_in = self.stellar_mass_0 / ((1-self.mass_frac_SSP) * m_stel_sfr_in) for i_csi in range(0, nb_dt_csi): self.sfr_input[i_csi] = self.sfr_input[i_csi] * norm_sfr_in ############################################## # Generate Rand SFH # ############################################## def __generate_rand_sfh(self): ''' This function generates a random SFH. This should only be used for testing purpose in order to look at how the uncertainty associated to the SFH can affects the results. The self.rand_sfh sets the maximum ratio between the maximum and the minimum values for the SFR. This parameter sets how "bursty" or constant a SFH is. self.rand_sfh = 1 means a constant SFH. ''' # Variable to keep track of the total stellar mass from the random SFH m_stel_sfr_in = 0.0 # For each timestep for i_csi in range(0,self.nb_timesteps+1): self.sfr_input[i_csi] = random.randrange(1,self.rand_sfh+1) # Cumulate the total mass of stars formed if i_csi < self.nb_timesteps: m_stel_sfr_in += self.sfr_input[i_csi] * \ self.history.timesteps[i_csi] # Normalise the SFR in order to be consistent with the input # current stellar mass norm_sfr_in = self.stellar_mass_0 / ((1-self.mass_frac_SSP) * m_stel_sfr_in) for i_csi in range(0,len(timesteps)+1): self.sfr_input[i_csi] = self.sfr_input[i_csi] * norm_sfr_in ############################################## # Fill Evol Arrays # ############################################## def __fill_evol_arrays(self): ''' This function fills the arrays used to follow the evolution of the galaxy regarding its growth and the exchange of gas with its surrounding. ''' # Execute this function only if needed if self.in_out_control or self.SF_law or self.DM_evolution: # Calculate the redshift for every timestep, if needed self.calculate_redshift_t() # Calculate the mass of the dark matter halo at every timestep self.__calculate_m_DM_t() # Calculate the virial radius and velocity at every timestep self.calculate_virial() # Calculate the critical, mass below which no SFR, at every dt self.__calculate_m_crit_t() # Calculate the star formation timescale at every timestep self.__calculate_t_SF_t() # Calculate the gas mass of the ISM at every timestep self.__calculate_m_tot_ISM_t() # Calculate the mass-loading factor and ouflow mass at every timestep self.__calculate_outflow_t() ############################################## # Get t From z # ############################################## def __get_t_from_z(self, z_gttfz): ''' This function returns the age of the Universe at a given redshift. Argument ======== z_gttfz : Redshift that needs to be converted into age. ''' # Return the age of the Universe temp_var = math.sqrt((self.lambda_0/self.omega_0)/(1.0+z_gttfz)**3) x_var = math.log( temp_var + math.sqrt( temp_var**2 + 1.0 ) ) return 2.0 / ( 3.0 * self.H_0 * math.sqrt(self.lambda_0)) * \ x_var * 9.77793067e11 ############################################## # Get z From t # ############################################## def __get_z_from_t(self, t_gtzft): ''' This function returns the redshift of a given Universe age. Argument ======== t_gtzft : Age of the Universe that needs to be converted into redshift. ''' # Return the redshift temp_var = 1.5340669e-12 * self.lambda_0**0.5 * self.H_0 * t_gtzft return (self.lambda_0 / self.omega_0)**0.3333333 / \ math.sinh(temp_var)**0.66666667 - 1.0 ############################################## # Calculate redshift(t) # ############################################## def calculate_redshift_t(self): ''' This function calculates the redshift associated to every timestep assuming that 'tend' represents redshift zero. ''' # Calculate the current age of the Universe (LambdaCDM - z = 0) current_age_czt = self.__get_t_from_z(self.redshift_f) # Calculate the age of the Universe when the galaxy forms age_formation_czt = current_age_czt - self.history.tend # Initiate the age of the galaxy t_czt = 0.0 # Initialize the linear interpolation coefficients self.redshift_t_coef = np.zeros((self.nb_timesteps,2)) #For each timestep for i_czt in range(0, self.nb_timesteps+1): #Calculate the age of the Universe at that time [yr] age_universe_czt = age_formation_czt + t_czt #Calculate the redshift at that time self.redshift_t[i_czt] = self.__get_z_from_t(age_universe_czt) # Calculate the interpolation coefficients # z = self.redshift_t_coef[0] * t + self.redshift_t_coef[1] if i_czt > 0: self.redshift_t_coef[i_czt-1][0] = \ (self.redshift_t[i_czt]-self.redshift_t[i_czt-1]) / \ self.history.timesteps[i_czt-1] self.redshift_t_coef[i_czt-1][1] = self.redshift_t[i_czt] - \ self.redshift_t_coef[i_czt-1][0] * t_czt #Udpate the age of the galaxy [yr] if i_czt < self.nb_timesteps: t_czt += self.history.timesteps[i_czt] #Correction for last digit error (e.g. z = -2.124325345e-8) if self.redshift_t[-1] < 0.0: self.redshift_t[-1] = 0.0 ############################################## # Run All SSPs # ############################################## def __run_all_ssps(self): ''' Create a SSP with SYGMA for each metallicity available in the yield tables. Each SSP has a total mass of 1 Msun, is it can easily be re-normalized. ''' # Copy the metallicities and put them in increasing order self.Z_table_SSP = copy.copy(self.ytables.metallicities) self.Z_table_first_nzero = min(self.Z_table_SSP) if self.popIII_info_fast and self.iniZ <= 0.0 and self.Z_trans > 0.0: self.Z_table_SSP.append(0.0) self.Z_table_SSP = sorted(self.Z_table_SSP) self.nb_Z_table_SSP = len(self.Z_table_SSP) # If the SSPs are not given as an input .. if len(self.SSPs_in) == 0: # Define the SSP timesteps len_dt_SSPs = len(self.dt_in_SSPs) if len_dt_SSPs == 0: dt_in_ras = self.history.timesteps len_dt_SSPs = self.nb_timesteps else: dt_in_ras = self.dt_in_SSPs # Declare the SSP ejecta arrays [Z][dt][iso] self.ej_SSP = np.zeros((self.nb_Z_table_SSP,len_dt_SSPs,self.nb_isotopes)) if self.len_decay_file > 0: self.ej_SSP_radio = \ np.zeros((self.nb_Z_table_SSP,len_dt_SSPs,self.nb_radio_iso)) # For each metallicity ... for i_ras in range(0,self.nb_Z_table_SSP): # Use a dummy iniabu file if the metallicity is not zero if self.Z_table_SSP[i_ras] == 0: iniabu_t = '' hardsetZ2 = self.hardsetZ else: iniabu_t='yield_tables/iniabu/iniab2.0E-02GN93.ppn' hardsetZ2 = self.Z_table_SSP[i_ras] # Run a SYGMA simulation (1 Msun SSP) sygma_inst = sygma.sygma(pre_calculate_SSPs=False, \ imf_type=self.imf_type, alphaimf=self.alphaimf, \ imf_bdys=self.history.imf_bdys, sn1a_rate=self.history.sn1a_rate, \ iniZ=self.Z_table_SSP[i_ras], dt=self.history.dt, \ special_timesteps=self.special_timesteps, \ nsmerger_bdys=self.nsmerger_bdys, tend=self.history.tend, \ mgal=1.0, transitionmass=self.transitionmass, \ table=self.table, hardsetZ=hardsetZ2, \ sn1a_on=self.sn1a_on, sn1a_table=self.sn1a_table, \ sn1a_energy=self.sn1a_energy, ns_merger_on=self.ns_merger_on, \ bhns_merger_on=self.bhns_merger_on, f_binary=self.f_binary, \ f_merger=self.f_merger, t_merger_max=self.t_merger_max, \ m_ej_nsm=self.m_ej_nsm, nsm_dtd_power=self.nsm_dtd_power,\ m_ej_bhnsm=self.m_ej_bhnsm, bhnsmerger_table=self.bhnsmerger_table, \ nsmerger_table=self.nsmerger_table, iniabu_table=iniabu_t, \ extra_source_on=self.extra_source_on, nb_nsm_per_m=self.nb_nsm_per_m, \ t_nsm_coal=self.t_nsm_coal, extra_source_table=self.extra_source_table, \ f_extra_source=self.f_extra_source, \ extra_source_mass_range=self.extra_source_mass_range, \ extra_source_exclude_Z=self.extra_source_exclude_Z, \ pop3_table=self.pop3_table, imf_bdys_pop3=self.imf_bdys_pop3, \ imf_yields_range_pop3=self.imf_yields_range_pop3, \ starbursts=self.starbursts, beta_pow=self.beta_pow, \ gauss_dtd=self.gauss_dtd, exp_dtd=self.exp_dtd, \ nb_1a_per_m=self.nb_1a_per_m, direct_norm_1a=self.direct_norm_1a, \ imf_yields_range=self.imf_yields_range, \ exclude_masses=self.exclude_masses, netyields_on=self.netyields_on, \ wiersmamod=self.wiersmamod, yield_interp=self.yield_interp, \ stellar_param_on=self.stellar_param_on, \ t_dtd_poly_split=self.t_dtd_poly_split, \ stellar_param_table=self.stellar_param_table, \ tau_ferrini=self.tau_ferrini, delayed_extra_log=self.delayed_extra_log, \ dt_in=dt_in_ras, nsmerger_dtd_array=self.nsmerger_dtd_array, \ bhnsmerger_dtd_array=self.bhnsmerger_dtd_array, \ poly_fit_dtd_5th=self.poly_fit_dtd_5th, \ poly_fit_range=self.poly_fit_range, \ delayed_extra_dtd=self.delayed_extra_dtd, \ delayed_extra_dtd_norm=self.delayed_extra_dtd_norm, \ delayed_extra_yields=self.delayed_extra_yields, \ delayed_extra_yields_norm=self.delayed_extra_yields_norm, \ table_radio=self.table_radio, decay_file=self.decay_file, \ sn1a_table_radio=self.sn1a_table_radio, \ bhnsmerger_table_radio=self.bhnsmerger_table_radio, \ nsmerger_table_radio=self.nsmerger_table_radio, \ ism_ini_radio=self.ism_ini_radio, \ delayed_extra_yields_radio=self.delayed_extra_yields_radio, \ delayed_extra_yields_norm_radio=self.delayed_extra_yields_norm_radio, \ ytables_radio_in=self.ytables_radio_in, radio_iso_in=self.radio_iso_in, \ ytables_1a_radio_in=self.ytables_1a_radio_in, \ ytables_nsmerger_radio_in=self.ytables_nsmerger_radio_in) # Copy the ejecta arrays from the SYGMA simulation self.ej_SSP[i_ras] = sygma_inst.mdot if self.len_decay_file > 0: self.ej_SSP_radio[i_ras] = sygma_inst.mdot_radio # If this is the last Z entry .. if i_ras == self.nb_Z_table_SSP - 1: # Keep in memory the number of timesteps in SYGMA self.nb_steps_table = len(sygma_inst.history.timesteps) self.dt_ssp = sygma_inst.history.timesteps # Keep the time of ssp in memory self.t_ssp = np.zeros(self.nb_steps_table) self.t_ssp[0] = self.dt_ssp[0] for i_ras in range(1,self.nb_steps_table): self.t_ssp[i_ras] = self.t_ssp[i_ras-1] + self.dt_ssp[i_ras] # Clear the memory del sygma_inst # Calculate the interpolation coefficients (between metallicities) self.__calculate_int_coef() # If the SSPs are given as an input .. else: # Copy the SSPs self.ej_SSP = self.SSPs_in[0] self.nb_steps_table = len(self.ej_SSP[0]) self.ej_SSP_coef = self.SSPs_in[1] self.dt_ssp = self.SSPs_in[2] self.t_ssp = self.SSPs_in[3] if len(self.SSPs_in) > 4: self.ej_SSP_radio = self.SSPs_in[4] self.ej_SSP_coef_radio = self.SSPs_in[5] self.decay_info = self.SSPs_in[6] self.len_decay_file = self.SSPs_in[7] self.nb_radio_iso = len(self.decay_info) self.nb_new_radio_iso = len(self.decay_info) del self.SSPs_in ############################################## # Calculate Int. Coef. # ############################################## def __calculate_int_coef(self): ''' Calculate the interpolation coefficients of each isotope between the different metallicities for every timestep considered in the SYGMA simulations. ejecta = a * log(Z) + b self.ej_x[Z][step][isotope][0 -> a, 1 -> b], where the Z index refers to the lower metallicity boundary of the interpolation. ''' # Declare the interpolation coefficients arrays self.ej_SSP_coef = \ np.zeros((2,self.nb_Z_table_SSP,self.nb_steps_table,self.nb_isotopes)) if self.len_decay_file > 0: self.ej_SSP_coef_radio = \ np.zeros((2,self.nb_Z_table_SSP,self.nb_steps_table,self.nb_radio_iso)) # For each metallicity interval ... for i_cic in range(0,self.nb_Z_table_SSP-1): # If the metallicity is not zero ... if not self.Z_table_SSP[i_cic] == 0.0: # Calculate the log(Z) for the boundary metallicities logZ_low = np.log10(self.Z_table_SSP[i_cic]) logZ_up = np.log10(self.Z_table_SSP[i_cic+1]) dif_logZ_inv = 1.0 / (logZ_up - logZ_low) # For each step ... for j_cic in range(0,self.nb_steps_table): # For every stable isotope .. for k_cic in range(0,self.nb_isotopes): # Copy the isotope mass for the boundary metallicities iso_low = self.ej_SSP[i_cic][j_cic][k_cic] iso_up = self.ej_SSP[i_cic+1][j_cic][k_cic] # Calculate the "a" and "b" coefficients self.ej_SSP_coef[0][i_cic][j_cic][k_cic] = \ (iso_up - iso_low) * dif_logZ_inv self.ej_SSP_coef[1][i_cic][j_cic][k_cic] = iso_up - \ self.ej_SSP_coef[0][i_cic][j_cic][k_cic] * logZ_up # For every radioactive isotope .. if self.len_decay_file > 0: for k_cic in range(0,self.nb_radio_iso): # Copy the isotope mass for the boundary metallicities iso_low = self.ej_SSP_radio[i_cic][j_cic][k_cic] iso_up = self.ej_SSP_radio[i_cic+1][j_cic][k_cic] # Calculate the "a" and "b" coefficients self.ej_SSP_coef_radio[0][i_cic][j_cic][k_cic] = \ (iso_up - iso_low) * dif_logZ_inv self.ej_SSP_coef_radio[1][i_cic][j_cic][k_cic] = iso_up - \ self.ej_SSP_coef_radio[0][i_cic][j_cic][k_cic] * logZ_up ############################################## # Calculate M_DM(t) # ############################################## def __calculate_m_DM_t(self): ''' This functions calculates the mass of the dark matter halo at each timestep. ''' # If the mass of the dark matter halo is kept at a constant value ... if not self.DM_evolution: # If the dark matter evolution is an input array ... if len(self.DM_array) > 0: # Copy the input values self.copy_DM_input() # Use the current value for every timestep else: for i_cmdt in range(0, self.nb_timesteps+1): self.m_DM_t[i_cmdt] = self.m_DM_0 # If the mass of the dark matter halo evolves with time ... else: # If the dark matter evolution is an input array ... if len(self.DM_array) > 0: # Copy the input values self.copy_DM_input() # If the dark matter evolution is taken from Millenium simulations ... else: # Calculate the polynomial coefficient for the evolution of # the dark matter mass poly_up_dm, poly_low_dm = self.__get_DM_bdy() # For each timestep ... for i_cmdt in range(0, self.nb_timesteps+1): # Calculate the lower and upper dark matter mass boundaries log_m_dm_up = poly_up_dm[0] * self.redshift_t[i_cmdt]**3 + \ poly_up_dm[1] * self.redshift_t[i_cmdt]**2 + poly_up_dm[2] * \ self.redshift_t[i_cmdt] + poly_up_dm[3] log_m_dm_low = poly_low_dm[0] * self.redshift_t[i_cmdt]**3 + \ poly_low_dm[1] * self.redshift_t[i_cmdt]**2 + poly_low_dm[2]*\ self.redshift_t[i_cmdt] + poly_low_dm[3] # If the dark matter mass is too low for the available fit ... if self.DM_too_low: # Scale the fit using the current input mass self.m_DM_t[i_cmdt] = 10**log_m_dm_low * \ self.m_DM_0 / 10**poly_low_dm[3] # If the dark matter mass can be interpolated else: # Use a linear interpolation with the log of the mass a = (log_m_dm_up - log_m_dm_low) / \ (poly_up_dm[3] - poly_low_dm[3]) b = log_m_dm_up - a * poly_up_dm[3] self.m_DM_t[i_cmdt] = 10**( a * math.log10(self.m_DM_0) + b ) # If the simulation does not stop at redshift zero ... if not self.redshift_f == 0.0: # Scale the DM mass (because the fits look at M_DM_0 at z=0) m_dm_scale = self.m_DM_0 / self.m_DM_t[-1] for i_cmdt in range(0, self.nb_timesteps+1): self.m_DM_t[i_cmdt] = self.m_DM_t[i_cmdt] * m_dm_scale # Create the interpolation coefficients # M_DM = self.m_DM_t_coef[0] * t + self.m_DM_t_coef[1] self.m_DM_t_coef = np.zeros((self.nb_timesteps,2)) for i_cmdt in range(0, self.nb_timesteps): self.m_DM_t_coef[i_cmdt][0] = (self.m_DM_t[i_cmdt+1] - \ self.m_DM_t[i_cmdt]) / self.history.timesteps[i_cmdt] self.m_DM_t_coef[i_cmdt][1] = self.m_DM_t[i_cmdt] - \ self.m_DM_t_coef[i_cmdt][0] * self.history.age[i_cmdt] ############################################## # Copy DM Input # ############################################## def copy_DM_input(self): ''' This function interpolates the DM masses from an input array and add the masses to the corresponding OMEGA step ''' # Variable to keep track of the OMEGA's timestep i_dt_csa = 0 t_csa = 0.0 nb_dt_csa = self.nb_timesteps # If just one entry ... if len(self.DM_array) == 1: self.m_DM_t[i_dt_csa] = self.DM_array[0][1] i_dt_csa += 1 # If DM values need to be interpolated ... else: # For every timestep given in the array (starting at the second step) for i_csa in range(1,len(self.DM_array)): # Calculate the DM interpolation coefficient a_DM = (self.DM_array[i_csa][1] - self.DM_array[i_csa-1][1]) / \ (self.DM_array[i_csa][0] - self.DM_array[i_csa-1][0]) b_DM = self.DM_array[i_csa][1] - a_DM * self.DM_array[i_csa][0] # While we stay in the same time bin ... while t_csa <= self.DM_array[i_csa][0]: # Interpolate the SFR self.m_DM_t[i_dt_csa] = a_DM * t_csa + b_DM # Exit the loop if the array is full if i_dt_csa >= nb_dt_csa: break # Calculate the new time t_csa += self.history.timesteps[i_dt_csa] i_dt_csa += 1 # Exit the loop if the array is full if i_dt_csa >= nb_dt_csa: break # If the array has been read completely, but the DM array is # not full, fil the rest of the array with the last input value while i_dt_csa < nb_dt_csa+1: self.m_DM_t[i_dt_csa] = self.DM_array[-1][1] #self.m_DM_t[i_dt_csa] = self.m_DM_t[i_dt_csa-1] i_dt_csa += 1 ############################################## # Copy R_vir Input # ############################################## def copy_r_vir_input(self): ''' This function interpolates the R_vir from an input array and add the radius to the corresponding OMEGA step ''' # Variable to keep track of the OMEGA's timestep i_dt_csa = 0 t_csa = 0.0 nb_dt_csa = self.nb_timesteps # If just one entry ... if len(self.r_vir_array) == 1: self.r_vir_DM_t[i_dt_csa] = self.r_vir_array[0][1] i_dt_csa += 1 # If r_vir values need to be interpolated ... else: # For every timestep given in the array (starting at the second step) for i_csa in range(1,len(self.r_vir_array)): # Calculate the DM interpolation coefficient a_r_vir = (self.r_vir_array[i_csa][1] - self.r_vir_array[i_csa-1][1]) / \ (self.r_vir_array[i_csa][0] - self.r_vir_array[i_csa-1][0]) b_r_vir = self.r_vir_array[i_csa][1] - a_r_vir * self.r_vir_array[i_csa][0] # While we stay in the same time bin ... while t_csa <= self.r_vir_array[i_csa][0]: # Interpolate r_vir self.r_vir_DM_t[i_dt_csa] = a_r_vir * t_csa + b_r_vir # Exit the loop if the array is full if i_dt_csa >= nb_dt_csa: break # Calculate the new time t_csa += self.history.timesteps[i_dt_csa] i_dt_csa += 1 # Exit the loop if the array is full if i_dt_csa >= nb_dt_csa: break # If the array has been read completely, but the r_vir array is # not full, fil the rest of the array with the last input value while i_dt_csa < nb_dt_csa+1: self.r_vir_DM_t[i_dt_csa] = self.r_vir_array[-1][1] #self.r_vir_DM_t[i_dt_csa] = self.r_vir_DM_t[i_dt_csa-1] i_dt_csa += 1 # Create the interpolation coefficients # R_vir = self.r_vir_DM_t_coef[0] * t + self.r_vir_DM_t_coef[1] self.r_vir_DM_t_coef = np.zeros((self.nb_timesteps,2)) for i_cmdt in range(0, self.nb_timesteps): self.r_vir_DM_t_coef[i_cmdt][0] = (self.r_vir_DM_t[i_cmdt+1] - \ self.r_vir_DM_t[i_cmdt]) / self.history.timesteps[i_cmdt] self.r_vir_DM_t_coef[i_cmdt][1] = self.r_vir_DM_t[i_cmdt] - \ self.r_vir_DM_t_coef[i_cmdt][0] * self.history.age[i_cmdt] ############################################## # Get DM Bdy # ############################################## # Return the fit coefficients for the interpolation of the dark matter mass def __get_DM_bdy(self): ''' This function calculates and returns the fit coefficients for the interpolation of the evolution of the dark matter mass as a function of time. ''' # Open the file containing the coefficient of the 3rd order polynomial fit with open(os.path.join(nupy_path, "m_dm_evolution", "poly3_fits.txt"),\ 'r') as m_dm_file: # Read the first line line_str = m_dm_file.readline() parts_1 = [float(x) for x in line_str.split()] # If the input dark matter mass is higher than the ones provided # by the fits ... if math.log10(self.m_DM_0) > parts_1[3]: # Use the highest dark matter mass available parts_2 = copy.copy(parts_1) print ('Warning - Current dark matter mass too high for' \ 'the available fits.') # If the input dark matter mass is in the available range ... # Find the mass boundary for the interpolation. else: # For every remaining line ... for line_str in m_dm_file: # Extract data parts_2 = [float(x) for x in line_str.split()] # If the read mass is lower than the input dark matter mass if math.log10(self.m_DM_0) > parts_2[3]: # Exit the loop and use the current interpolation boundary break # Copy the current read line parts_1 = copy.copy(parts_2) # Keep track if the input dark matter mass is too low ... if parts_1[3] == parts_2[3]: self.DM_too_low = True #Close the file m_dm_file.close() return parts_1, parts_2 ############################################## # Calculate Virial # ############################################## def calculate_virial(self): # If R_vir needs to be calculated .. if len(self.r_vir_array) == 0: # Average current mass density of the Universe [Mo Mpc^-3] rho_0_uni = 3.7765e10 # For each timestep ... for i_cv in range(0,len(self.history.timesteps)+1): # Calculate the virial radius of the dark matter halo [kpc] self.r_vir_DM_t[i_cv] = 1.0e3 * 0.106078 * \ (self.m_DM_t[i_cv] / rho_0_uni)**0.3333333 / \ (1 + self.redshift_t[i_cv]) # If R_vir is provided as an input .. else: # Use the input array and synchronize the timesteps self.copy_r_vir_input() # For each timestep ... for i_cv in range(0,len(self.history.timesteps)+1): #Calculate the virial velocity of the dark matter "particles" [km/s] self.v_vir_DM_t[i_cv] = ( 4.302e-6 * self.m_DM_t[i_cv] / \ self.r_vir_DM_t[i_cv] )** 0.5 # Create the interpolation coefficients # R_vir = self.r_vir_DM_t_coef[0] * t + self.r_vir_DM_t_coef[1] self.r_vir_DM_t_coef = np.zeros((self.nb_timesteps,2)) for i_cmdt in range(0, self.nb_timesteps): self.r_vir_DM_t_coef[i_cmdt][0] = (self.r_vir_DM_t[i_cmdt+1] - \ self.r_vir_DM_t[i_cmdt]) / self.history.timesteps[i_cmdt] self.r_vir_DM_t_coef[i_cmdt][1] = self.r_vir_DM_t[i_cmdt] - \ self.r_vir_DM_t_coef[i_cmdt][0] * self.history.age[i_cmdt] # Create the interpolation coefficients # v_vir = self.v_vir_DM_t_coef[0] * t + self.v_vir_DM_t_coef[1] self.v_vir_DM_t_coef = np.zeros((self.nb_timesteps,2)) for i_cmdt in range(0, self.nb_timesteps): self.v_vir_DM_t_coef[i_cmdt][0] = (self.v_vir_DM_t[i_cmdt+1] - \ self.v_vir_DM_t[i_cmdt]) / self.history.timesteps[i_cmdt] self.v_vir_DM_t_coef[i_cmdt][1] = self.v_vir_DM_t[i_cmdt] - \ self.v_vir_DM_t_coef[i_cmdt][0] * self.history.age[i_cmdt] ############################################## # Calculate M_crit_t # ############################################## def __calculate_m_crit_t(self): # Calculate the real constant # m_crit_final = self.norm_crit_m * (0.1/2000.0) * \ # (self.v_vir_DM_t[-1] * self.r_vir_DM_t[-1]) # the_constant = m_crit_final / ((0.1/2000.0) * \ # (self.v_vir_DM_t[-1] * self.r_vir_DM_t[-1])**self.beta_crit) the_constant = self.norm_crit_m #For each timestep ... for i_ctst in range(0,len(self.history.timesteps)+1): # If m_crit_t is wanted ... if self.m_crit_on: # Calculate the critical mass (Croton et al. 2006 .. modified) self.m_crit_t[i_ctst] = the_constant * (0.1/2000.0) * \ (self.v_vir_DM_t[i_ctst] * self.r_vir_DM_t[i_ctst])**self.beta_crit # If m_crit_t is not wanted ... else: # Set the critical mass to zero self.m_crit_t[i_ctst] = 0.0 # Create the interpolation coefficients # M_crit = self.m_crit_t_coef[0] * t + self.m_crit_t_coef[1] self.m_crit_t_coef = np.zeros((self.nb_timesteps,2)) for i_cmdt in range(0, self.nb_timesteps): self.m_crit_t_coef[i_cmdt][0] = (self.m_crit_t[i_cmdt+1] - \ self.m_crit_t[i_cmdt]) / self.history.timesteps[i_cmdt] self.m_crit_t_coef[i_cmdt][1] = self.m_crit_t[i_cmdt] - \ self.m_crit_t_coef[i_cmdt][0] * self.history.age[i_cmdt] ############################################## # Calculate t_SF(t) # ############################################## def __calculate_t_SF_t(self): ''' This function calculates the star formation timescale at every timestep. ''' # Execute this function only if needed if self.SF_law or self.DM_evolution: # If the star formation timescale is kept constant ... if self.t_star > 0: # Use the same value for every timestep for i_ctst in range(0, self.nb_timesteps+1): self.t_SF_t[i_ctst] = self.t_star # If the timescale follows the halo dynamical time ... else: # Set the timescale to a fraction of the halo dynamical time # See White & Frenk (1991); Springel et al. (2001) for i_ctst in range(0, self.nb_timesteps+1): # If the dark matter mass is evolving ... if self.DM_evolution: self.t_SF_t[i_ctst] = self.f_dyn * 0.1 * (1 + \ self.redshift_t[i_ctst])**((-1.5)*self.t_sf_z_dep) \ / self.H_0 * 9.7759839e11 # If the dark matter mass is not evolving ... else: self.t_SF_t[i_ctst] = self.f_dyn * 0.1 / self.H_0 * \ 9.7759839e11 # Create the interpolation coefficients # SF_t = self.t_SF_t_coef[0] * t + self.t_SF_t_coef[1] self.t_SF_t_coef = np.zeros((self.nb_timesteps,2)) for i_cmdt in range(0, self.nb_timesteps): self.t_SF_t_coef[i_cmdt][0] = (self.t_SF_t[i_cmdt+1] - \ self.t_SF_t[i_cmdt]) / self.history.timesteps[i_cmdt] self.t_SF_t_coef[i_cmdt][1] = self.t_SF_t[i_cmdt] - \ self.t_SF_t_coef[i_cmdt][0] * self.history.age[i_cmdt] ############################################## # Calculate M_tot ISM(t) # ############################################## def __calculate_m_tot_ISM_t(self): ''' This function calculates the mass of the gas reservoir at every timestep using a classical star formation law. ''' # If the evolution of the mass of the ISM is an input ... if len(self.m_tot_ISM_t_in) > 0: # Copy and adjust the input array for the OMEGA timesteps self.__copy_m_tot_ISM_input() # If the ISM has a constant mass ... elif self.cte_m_gas > 0.0: # For each timestep ... for i_cm in range(0, self.nb_timesteps+1): self.m_tot_ISM_t[i_cm] = self.cte_m_gas # If the mass of gas is tighted to the SFH ... elif self.SF_law or self.DM_evolution: # For each timestep ... for i_cm in range(0, self.nb_timesteps+1): # If it's the last timestep ... use the previous sfr_input if i_cm == self.nb_timesteps: # Calculate the total mass of the ISM using the previous SFR self.m_tot_ISM_t[i_cm] = self.sfr_input[i_cm-1] * \ self.t_SF_t[i_cm] / self.sfe + self.m_crit_t[i_cm] # If it's not the last timestep ... else: # Calculate the total mass of the ISM using the current SFR self.m_tot_ISM_t[i_cm] = self.sfr_input[i_cm] * \ self.t_SF_t[i_cm] / self.sfe + self.m_crit_t[i_cm] # If the IO model ... elif self.in_out_control: self.m_tot_ISM_t[0] = self.mgal # Scale the initial gas reservoir that was already set scale_m_tot = self.m_tot_ISM_t[0] / np.sum(self.ymgal[0]) for k_cm in range(len(self.ymgal[0])): self.ymgal[0][k_cm] = self.ymgal[0][k_cm] * scale_m_tot ############################################## # Copy M_tot_ISM Input # ############################################## def __copy_m_tot_ISM_input(self): ''' This function interpolates the gas masses from an input array and add the masses to the corresponding OMEGA step ''' # Variable to keep track of the OMEGA's timestep i_dt_csa = 0 t_csa = 0.0 nb_dt_csa = self.nb_timesteps + 1 # If just one entry ... if len(self.m_tot_ISM_t_in) == 1: self.m_tot_ISM_t[i_dt_csa] = self.m_tot_ISM_t_in[0][1] i_dt_csa += 1 # If DM values need to be interpolated ... else: # For every timestep given in the array (starting at the second step) for i_csa in range(1,len(self.m_tot_ISM_t_in)): # Calculate the DM interpolation coefficient a_gas = (self.m_tot_ISM_t_in[i_csa][1] - self.m_tot_ISM_t_in[i_csa-1][1]) / \ (self.m_tot_ISM_t_in[i_csa][0] - self.m_tot_ISM_t_in[i_csa-1][0]) b_gas = self.m_tot_ISM_t_in[i_csa][1] - a_gas * self.m_tot_ISM_t_in[i_csa][0] # While we stay in the same time bin ... while t_csa <= self.m_tot_ISM_t_in[i_csa][0]: # Interpolate the SFR self.m_tot_ISM_t[i_dt_csa] = a_gas * t_csa + b_gas # Exit the loop if the array is full if i_dt_csa >= nb_dt_csa: break # Calculate the new time t_csa += self.history.timesteps[i_dt_csa] i_dt_csa += 1 # Exit the loop if the array is full if i_dt_csa >= nb_dt_csa: break # If the array has been read completely, but the DM array is # not full, fil the rest of the array with the last read value while i_dt_csa < nb_dt_csa: self.m_tot_ISM_t[i_dt_csa] = self.m_tot_ISM_t_in[-1][1] i_dt_csa += 1 ############################################## # Calculate Outflow # ############################################## def __calculate_outflow_t(self): ''' This function calculates the mass-loading factor and the mass of outflow at every timestep. ''' # If the outflow rate is kept constant ... if self.outflow_rate >= 0.0: # Use the input value for each timestep for i_ceo in range(0, self.nb_timesteps): self.eta_outflow_t[i_ceo] = self.outflow_rate / \ self.sfr_input[i_ceo] self.m_outflow_t[i_ceo] = self.outflow_rate * \ self.history.timesteps[i_ceo] # If the outflow rate is connected to the SFR ... else: # If the mass of the dark matter halo is not evolving if not self.DM_evolution: #For each timestep ... for i_ceo in range(0, self.nb_timesteps): # Use the input mass-loading factor self.eta_outflow_t[i_ceo] = self.mass_loading self.m_outflow_t[i_ceo] = self.eta_outflow_t[i_ceo] * \ self.sfr_input[i_ceo] * self.history.timesteps[i_ceo] # If the mass of the dark matter halo is evolving else: # Use the input mass-loading factor to normalize the evolution # of this factor as a function of time eta_norm = self.mass_loading * \ self.m_DM_0**(self.exp_ml*0.33333)* \ (1+self.redshift_f)**(0.5*self.exp_ml) # For each timestep ... for i_ceo in range(0, self.nb_timesteps): # Calculate the mass-loading factor with redshift dependence if self.z_dependent: self.eta_outflow_t[i_ceo] = eta_norm * \ self.m_DM_t[i_ceo]**((-0.3333)*self.exp_ml) * \ (1+self.redshift_t[i_ceo])**(-(0.5)*self.exp_ml) # Calculate the mass-loading factor without redshift dependence else: self.eta_outflow_t[i_ceo] = eta_norm * \ self.m_DM_t[i_ceo]**((-0.3333)*self.exp_ml) # Calculate the outflow mass during the current timestep self.m_outflow_t[i_ceo] = self.eta_outflow_t[i_ceo] * \ self.sfr_input[i_ceo] * self.history.timesteps[i_ceo] # Create the interpolation coefficients # eta = self.eta_outflow_t_coef[0] * t + self.eta_outflow_t_coef[1] self.eta_outflow_t_coef = np.zeros((self.nb_timesteps,2)) for i_cmdt in range(self.nb_timesteps-1): self.eta_outflow_t_coef[i_cmdt][0] = (self.eta_outflow_t[i_cmdt+1] - \ self.eta_outflow_t[i_cmdt]) / self.history.timesteps[i_cmdt] self.eta_outflow_t_coef[i_cmdt][1] = self.eta_outflow_t[i_cmdt] - \ self.eta_outflow_t_coef[i_cmdt][0] * self.history.age[i_cmdt] self.eta_outflow_t_coef[-1][0] = self.eta_outflow_t_coef[-2][0] self.eta_outflow_t_coef[-1][1] = self.eta_outflow_t_coef[-2][1] ############################################## # Add Ext. M_dot # ############################################## def __add_ext_mdot(self): ''' This function adds the stellar ejecta of external galaxies that just merged in the mdot array of the current galaxy. This function assumes that the times and the number of timesteps of the merging galaxies are different from the current galaxy. Notes ===== i_ext : Step index in the "external" merging mdot array i_cur : Step index in the "current" galaxy mdot array t_cur_prev : Lower time limit in the current i_cur bin t_cur : Upper time limit in the current i_cur bin M_dot_ini has an extra slot in the isotopes for the time, which is t = 0.0 for i_ext = 0. ''' # For every merging galaxy (every branch of a merger tree) for i_merg in range(0,len(self.mdot_ini)): # Initialisation of the local variables i_ext = 0 i_cur = 0 t_cur_prev = 0.0 t_cur = self.history.timesteps[0] t_ext_prev = 0.0 t_ext = self.mdot_ini_t[i_merg][i_ext+1] # While the external ejecta has not been fully transfered... len_mdot_ini_i_merg = len(self.mdot_ini[i_merg]) while i_ext < len_mdot_ini_i_merg and i_cur < self.nb_timesteps: # While we need to change the external time bin ... while t_ext <= t_cur: # Calculate the overlap time between ext. and cur. bins dt_trans = t_ext - max([t_ext_prev, t_cur_prev]) # Calculate the mass fraction that needs to be transfered f_dt = dt_trans / (t_ext - t_ext_prev) # Transfer all isotopes in the current mdot array self.mdot[i_cur] += self.mdot_ini[i_merg][i_ext] * f_dt # Move to the next external bin i_ext += 1 if i_ext == (len_mdot_ini_i_merg): break t_ext_prev = t_ext t_ext = self.mdot_ini_t[i_merg][i_ext+1] # Quit the loop if all external bins have been considered if i_ext == (len_mdot_ini_i_merg): break # While we need to change the current time bin ... while t_cur < t_ext: # Calculate the overlap time between ext. and cur. bins dt_trans = t_cur - max([t_ext_prev, t_cur_prev]) # Calculate the mass fraction that needs to be transfered f_dt = dt_trans / (t_ext - t_ext_prev) # Transfer all isotopes in the current mdot array self.mdot[i_cur] += self.mdot_ini[i_merg][i_ext] * f_dt # Move to the next current bin i_cur += 1 if i_cur == self.nb_timesteps: break t_cur_prev = t_cur t_cur += self.history.timesteps[i_cur] ############################################## # Run Simulation # ############################################## def __run_simulation(self, mass_sampled=np.array([]), \ scale_cor=np.array([])): ''' This function calculates the evolution of the chemical abundances of a galaxy as a function of time. Argument ======== mass_sampled : Stars sampled in the IMF by an external program. scale_cor : Envelope correction for the IMF. ''' # if self.len_decay_file > 0: # print ('Warning, radioactive isotopes are missing in the outflows') # For every timestep i considered in the simulation ... for i in range(1, self.nb_timesteps+1): # If the IMF must be sampled ... if self.imf_rnd_sampling and self.m_pop_max >= \ (self.sfr_input[i-1] * self.history.timesteps[i-1]): # Get the sampled masses mass_sampled = self._get_mass_sampled(\ self.sfr_input[i-1] * self.history.timesteps[i-1]) # No mass sampled if using the full IMF ... else: mass_sampled = np.array([]) # Run a timestep using the input SFR self.run_step(i, self.sfr_input[i-1], \ mass_sampled=mass_sampled, scale_cor=scale_cor) # Calculate the last SFR at the end point of the simulation if self.cl_SF_law and not self.open_box: self.history.sfr_abs[-1] = self.sfe_gcs * np.sum(self.ymgal[i]) ############################################## # Run Step # ############################################## def run_step(self, i, sfr_rs, m_added = np.array([]), m_lost = 0.0, \ no_in_out = False, f_esc_yields=0.0, mass_sampled=np.array([]), scale_cor=np.array([])): ''' This function calculates the evolution of one single step in the chemical evolution. Argument ======== i : Index of the timestep. sfr_rs : Input star formation rate [Mo/yr] for the step i. m_added : Mass (and composition) added for the step i. m_lost : Mass lost for the step i. no_in_out : Cancel the open box "if" statement if True f_esc_yields: Fraction of non-contributing stellar ejecta mass_sampled : Stars sampled in the IMF by an external program. scale_cor : Envelope correction for the IMF. ''' # Make sure that the the number of timestep is not exceeded if not i == (self.nb_timesteps+1): # For testing .. if i == 1: self.sfr_test = sfr_rs # Calculate the current mass fraction of gas converted into stars, # but only if the star formation rate is not followed # within a self-consistent integration scheme. if not self.use_external_integration: self.__cal_m_frac_stars(i, sfr_rs) else: self.sfrin = sfr_rs # [Msun/yr] self.m_locked = self.sfrin * self.history.timesteps[i-1] # Run the timestep i (!need to be right after __cal_m_frac_stars!) self._evol_stars(i, f_esc_yields, mass_sampled, scale_cor) # Decay radioactive isotopes if self.len_decay_file > 0 and not self.use_external_integration: if self.use_decay_module: self._decay_radio_with_module(i) else: self._decay_radio(i) # Delay outflow is needed (following SNe rather than SFR) ... if self.out_follows_E_rate: self.__delay_outflow(i) # Add the incoming gas (if any) if not self.use_external_integration: len_m_added = len(m_added) for k_op in range(0, len_m_added): self.ymgal[i][k_op] += m_added[k_op] # If no integration scheme is used to advance the system .. if not self.use_external_integration: # If gas needs to be removed ... if m_lost > 0.0: # Calculate the gas fraction lost f_lost = m_lost / sum(self.ymgal[i]) if f_lost > 1.0: f_lost = 1.0 if not self.print_off: print ('!!Warning -- Remove more mass than available!!') # Remove the mass for each isotope f_lost_2 = (1.0 - f_lost) self.ymgal[i] = f_lost_2 * self.ymgal[i] # Radioactive isotopes lost if self.len_decay_file > 0: self.ymgal_radio[i] = f_lost_2 * self.ymgal_radio[i] if not self.pre_calculate_SSPs: self.ymgal_agb[i] = f_lost_2 * self.ymgal_agb[i] self.ymgal_1a[i] = f_lost_2 * self.ymgal_1a[i] self.ymgal_nsm[i] = f_lost_2 * self.ymgal_nsm[i] self.ymgal_bhnsm[i] = f_lost_2 * self.ymgal_bhnsm[i] self.ymgal_massive[i] = f_lost_2 * self.ymgal_massive[i] for iiii in range(0,self.nb_delayed_extra): self.ymgal_delayed_extra[iiii][i] = \ f_lost_2 * self.ymgal_delayed_extra[iiii][i] # Radioactive isotopes lost if self.len_decay_file > 0: if self.radio_massive_agb_on: self.ymgal_massive_radio[i] = f_lost_2 * self.ymgal_massive_radio[i] self.ymgal_agb_radio[i] = f_lost_2 * self.ymgal_agb_radio[i] if self.radio_sn1a_on: self.ymgal_1a_radio[i] = f_lost_2 * self.ymgal_1a_radio[i] if self.radio_nsmerger_on: self.ymgal_nsm_radio[i] = f_lost_2 * self.ymgal_nsm_radio[i] if self.radio_bhnsmerger_on: self.ymgal_bhnsm_radio[i] = f_lost_2 * self.ymgal_bhnsm_radio[i] for iiii in range(0,self.nb_delayed_extra_radio): self.ymgal_delayed_extra_radio[iiii][i] = \ f_lost_2 * self.ymgal_delayed_extra_radio[iiii][i] # If the open box scenario is used (and it is not skipped) ... if self.open_box and (not no_in_out): # Calculate the total mass of the gas reservoir at timstep i # after the star formation and the stellar ejecta m_tot_current = sum(self.ymgal[i]) # Add inflows if self.len_m_inflow_X_array > 0.0: self.ymgal[i] += self.m_inflow_X_array[i-1] m_inflow_current = self.m_inflow_array[i-1] self.m_inflow_t[i-1] = float(m_inflow_current) else: # Get the current mass of inflow m_inflow_current = self.__get_m_inflow(i, m_tot_current) # Add primordial gas coming with the inflow if m_inflow_current > 0.0: ym_inflow = self.prim_comp.get(quantity='Yields') * \ m_inflow_current for k_op in range(0, self.nb_isotopes): self.ymgal[i][k_op] += ym_inflow[k_op] # Calculate the fraction of gas removed by the outflow if not (m_tot_current + m_inflow_current) == 0.0: if self.len_m_gas_array > 0: self.m_outflow_t[i-1] = (m_tot_current + m_inflow_current) - self.m_gas_array[i] frac_rem = self.m_outflow_t[i-1] / (m_tot_current + m_inflow_current) if frac_rem < 0.0: frac_rem = 0.0 # Add primordial gas coming with the inflow self.m_outflow_t[i-1] = 0.0 ym_inflow = self.prim_comp.get(quantity='Yields') * \ (-1.0) * self.m_outflow_t[i-1] for k_op in range(0, self.nb_isotopes): self.ymgal[i][k_op] += ym_inflow[k_op] else: frac_rem = self.m_outflow_t[i-1] / \ (m_tot_current + m_inflow_current) else: frac_rem = 0.0 # Limit the outflow mass to the amount of available gas if frac_rem > 1.0: frac_rem = 1.0 self.m_outflow_t[i-1] = m_tot_current + m_inflow_current if not self.print_off: print ('Warning - '\ 'Outflows eject more mass than available. ' \ 'It has been reduced to the amount of available gas.') # Remove mass from the ISM because of the outflow self.ymgal[i] *= (1.0 - frac_rem) if self.len_decay_file > 0: self.ymgal_radio[i] *= (1.0 - frac_rem) if not self.pre_calculate_SSPs: self.ymgal_agb[i] *= (1.0 - frac_rem) self.ymgal_1a[i] *= (1.0 - frac_rem) self.ymgal_nsm[i] *= (1.0 - frac_rem) self.ymgal_bhnsm[i] *= (1.0 - frac_rem) self.ymgal_massive[i] *= (1.0 - frac_rem) for iiii in range(0,self.nb_delayed_extra): self.ymgal_delayed_extra[iiii][i] *= (1.0 - frac_rem) # Radioactive isotopes lost if self.len_decay_file > 0: if self.radio_massive_agb_on: self.ymgal_massive_radio[i] *= (1.0 - frac_rem) self.ymgal_agb_radio[i] *= (1.0 - frac_rem) if self.radio_sn1a_on: self.ymgal_1a_radio[i] *= (1.0 - frac_rem) if self.radio_nsmerger_on: self.ymgal_nsm_radio[i] *= (1.0 - frac_rem) if self.radio_bhnsmerger_on: self.ymgal_bhnsm_radio[i] *= (1.0 - frac_rem) for iiii in range(0,self.nb_delayed_extra_radio): self.ymgal_delayed_extra_radio[iiii][i] *= (1.0 - frac_rem) # Get the new metallicity of the gas and update history class self.zmetal = self._getmetallicity(i) self._update_history(i) # If this is the last step ... if i == self.nb_timesteps: # Do the final update of the history class self._update_history_final() # Add the evolution arrays to the history class self.history.m_tot_ISM_t = self.m_tot_ISM_t self.history.eta_outflow_t = self.eta_outflow_t # If external control ... if self.external_control: self.history.sfr_abs[i] = self.history.sfr_abs[i-1] # Calculate the total mass of gas self.m_stel_tot = 0.0 for i_tot in range(0,len(self.history.timesteps)): self.m_stel_tot += self.history.sfr_abs[i_tot] * \ self.history.timesteps[i_tot] if self.m_stel_tot > 0.0: self.m_stel_tot = 1.0 / self.m_stel_tot self.f_m_stel_tot = [] m_temp = 0.0 for i_tot in range(0,len(self.history.timesteps)): m_temp += self.history.sfr_abs[i_tot] * \ self.history.timesteps[i_tot] self.f_m_stel_tot.append(m_temp*self.m_stel_tot) self.f_m_stel_tot.append(self.f_m_stel_tot[-1]) # Announce the end of the simulation print (' OMEGA run completed -',self._gettime()) # Error message else: print ('The simulation is already over.') ############################################## # Get Mass Sampled # ############################################## def _get_mass_sampled(self, m_pop): ''' This function samples randomly the IMF using a Monte Carlo approach and returns an array with all masses sampled (not in increasing or decreasing orders). Argument ======== m_pop : Mass of the considered stellar population ''' # Initialization of the sampling arrays mass_sampled_gms = [] m_tot_temp = 0.0 # Define the sampling precision in Msun precision = 0.01 * m_pop * self.m_frac_massive_rdm # Copy the lower and upper mass limit of the IMF m_low_imf = self.transitionmass m_up_imf = self.imf_bdys[1] dm_temp = m_up_imf - m_low_imf # While the total stellar mass is not formed ... while abs(m_tot_temp - m_pop) > precision: # Choose randomly a (m,nb) coordinate rand_m = m_low_imf + np.random.random_sample()*dm_temp rand_y = np.random.random_sample() # If the coordinate is below the IMF curve if rand_y <= (self.A_rdm * rand_m**(-2.3)): # Add the stellar mass only if it doesn't # form to much mass compared to m_pop if (m_tot_temp + rand_m) - m_pop <= precision: mass_sampled_gms.append(rand_m) m_tot_temp += rand_m # Stop if cannot fit a massive star if abs(m_tot_temp - m_pop) < self.transitionmass: break # Return the stellar masses sampled using Monte Carlo return mass_sampled_gms ############################################## # Cal M Frac Stars # ############################################## def __cal_m_frac_stars(self, i, sfr_rs): ''' This function calculates the mass fraction of the gas reservoir that is converted into stars at a given timestep. Argument ======== i : Index of the timestep. sfr_rs : Star formation rate [Mo/yr] for the timestep i ''' # If the SFR is calculated from a star formation law (closed box) if self.cl_SF_law and not self.open_box: self.history.sfr_abs[i-1] = self.sfe_gcs * np.sum(self.ymgal[i-1]) self.sfrin = self.history.sfr_abs[i-1] * self.history.timesteps[i-1] else: # Calculate the total mass of stars formed during this timestep self.sfrin = sfr_rs * self.history.timesteps[i-1] self.history.sfr_abs[i-1] = sfr_rs # Calculate the mass fraction of gas converted into stars mgal_tot = 0.0 for k_ml in range(0, self.nb_isotopes): mgal_tot += self.ymgal[i-1][k_ml] if mgal_tot <= 0.0: self.sfrin = 0.0 else: self.sfrin = self.sfrin / mgal_tot # Modify the history of SFR if there is not enough gas if self.sfrin > 1.0: self.history.sfr_abs[i-1] = mgal_tot / self.history.timesteps[i-1] ############################################## # Delay Outflow # ############################################## def __delay_outflow(self, i): ''' This function convert the instantaneous outflow rate (vs SFR) into a delayed rate where Mout follows the number of CC SNe. Argument ======== i : Index of the timestep. ''' # Calculate the 1 / (total number of CC SNe in the SSP) if self.m_locked <= 0.0: nb_cc_sne_inv = 1.0e+30 elif self.zmetal <= 0.0 and self.Z_trans > 0.0: nb_cc_sne_inv = 1.0 / (self.nb_ccsne_per_m_pop3 * self.m_locked) else: nb_cc_sne_inv = 1.0 / (self.nb_ccsne_per_m * self.m_locked) # Calculate the fraction of CC SNe in each future timesteps len_ssp_nb_cc_sne = len(self.ssp_nb_cc_sne) f_nb_cc = np.zeros(len_ssp_nb_cc_sne, np.float64) for i_nb_cc in range(0,len_ssp_nb_cc_sne): f_nb_cc[i_nb_cc] = self.ssp_nb_cc_sne[i_nb_cc] * nb_cc_sne_inv # Copy the original instanteneous mass outflow [Msun] m_out_inst = self.m_outflow_t_vs_SFR[i-1] # For each future timesteps including the current one ... for i_do in range(0,len_ssp_nb_cc_sne): # Add the delayed mass outflow #print (i, i_do, i+i_do, len(self.m_outflow_t)) self.m_outflow_t[i-1+i_do] += m_out_inst * f_nb_cc[i_do] ############################################## # Get M Inflow # ############################################## def __get_m_inflow(self, i, m_tot_current): ''' This function calculates and returns the inflow mass at a given timestep Argument ======== i : Index of the timestep. m_tot_current : Total mass of the gas reservoir at step i ''' # If an inflow mass in given at each timestep as an input ... if self.len_m_inflow_array > 0: m_inflow_current = self.m_inflow_array[i-1] # If the constant inflow rate is kept constant ... elif self.inflow_rate >= 0.0: # Use the input rate to calculate the inflow mass # Note : i-1 --> current timestep, see __copy_sfr_input() m_inflow_current = self.inflow_rate * self.history.timesteps[i-1] # If the inflow rate follows the outflow rate ... elif self.in_out_control: # Use the input scale factor to calculate the inflow mass if self.out_follows_E_rate: m_inflow_current = self.in_out_ratio * self.m_outflow_t_vs_SFR[i-1] else: m_inflow_current = self.in_out_ratio * self.m_outflow_t[i-1] # If the inflow rate is calculated from the main equation ... else: # If SFR = 0 and we do not want to use the main equation .. if self.sfr_input[i] == 0 and self.skip_zero: m_inflow_current = 0.0 else: # Calculate the mass of the inflow m_inflow_current = self.m_tot_ISM_t[i] - \ m_tot_current + self.m_outflow_t[i-1] # If the inflow mass is negative ... if m_inflow_current < 0.0: # Convert the negative inflow into positive outflow if not self.skip_zero: self.m_outflow_t[i-1] += (-1.0) * m_inflow_current if not self.print_off: print ('Warning - Negative inflow. ' \ 'The outflow rate has been increased.', i) # Assume no inflow m_inflow_current = 0.0 # Keep the mass of inflow in memory self.m_inflow_t[i-1] = float(m_inflow_current) return m_inflow_current ############################################################################################### ######################## Here start the analysis methods ###################################### ############################################################################################### #### trueman edits def mass_frac_plot(self,fig=0,species=['all'],sources=['agb','massive','1a'],\ cycle=-1, solar_ref='Asplund_et_al_2009',yscale='log'): ''' fractional contribution from each stellar source towards the galactic total relative to solar Parameters ---------- species : array of strings isotope or element name, e.g. ['H-1','He-4','Fe','Fe-56'] default = ['all'] sources : array of strings specifies the stellar sources to plot, e.g. ['agb','massive','1a'] cycle : float specifies cycle number to plot, e.g. 'cycle=-1' will plot last cycle solar_ref : string the solar abundances used as a reference default is Asplund et al. 2009 'Asplund_et_al_2009' 'Anders_Grevesse_1989' 'Grevesse_Noels_1993' 'Grevesse_Sauval_1998' 'Lodders_et_al_2009' yscale: string choose y axis scale 'log' or 'linear' Examples --------- >>> s.plot(['all']['agb','massive','1a'], cycle=-1, solar_ref='Lodders', yscale='log') ''' import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.patches import Patch f = open(os.path.join(nupy_path, 'stellab_data',\ 'solar_normalization', str(solar_ref) + '.txt'), 'r') g = open(os.path.join(nupy_path, 'stellab_data',\ 'solar_normalization', 'element_mass.txt'), 'r') h = open(os.path.join(nupy_path, 'stellab_data',\ 'solar_normalization', 'Asplund_et_al_2009_iso.txt'), 'r') lines=f.readlines() lines_g=g.readlines() lines_h=h.readlines() ele_mass = [] ele_nam = [] abu_sol = [] ele_sol = [] iso_nam =[] iso_frac =[] # items taken from Asplund # keys = element symbol, values = logarithmic solar abundnace for i in lines: ele_sol.append(i.split()[1]) abu_sol.append(float(i.split()[2])) f.close() sol_dict = dict(zip(ele_sol, abu_sol)) # items taken from online data table # keys = element symbol, values = element mass number for j in lines_g: ele_mass.append(float(j.split()[0])) ele_nam.append(j.split()[2]) g.close() ele_dict = dict(zip(ele_nam, ele_mass)) # items taken from Asplund # keys = isotope symbol, values = relative number fraction of isotope for k in lines_h: iso_nam.append(k.split()[0]) iso_frac.append(float(k.split()[1])/100) h.close() iso_frac_dict = dict(zip(iso_nam, iso_frac)) # Create a dictionary with keys = element symbol # and vals = solar mass fraction ele_mass_frac = {} for ele,mass in ele_dict.items(): for el,abu in sol_dict.items(): if ele == el: ele_mass_frac.update([(ele,10**(abu-12)*mass*0.7381)]) # Normalise the above dictionary so that mass fractions # sum to unity tot_mass_frac = sum(ele_mass_frac.values()) for ele,frac in ele_mass_frac.items(): sol_dict.update([(ele,frac/tot_mass_frac)]) # Create a dictionary with keys = isotope # vals = (mass fraction)/(isotope mass) new = {} for ele,mass in ele_dict.items(): for iso,frac in iso_frac_dict.items(): if ele == iso.split('-',1)[0]: new.update([(iso,frac/mass)]) # Create a dictionary with keys = isotope # vals = contribution towards total element mass fraction from each isotope weighted_iso_frac={} for ele,frac in sol_dict.items(): for iso,fracs in new.items(): if ele == iso.split('-',1)[0]: weighted_iso_frac.update([ (iso,frac*fracs*float(iso.split('-',1)[-1]))]) species_mass_frac_sol_dict = weighted_iso_frac species_mass_frac_sol_dict.update(sol_dict) # Remove species which have no solar mass data remove_keys = [] for key,val in species_mass_frac_sol_dict.items(): if val < 10e-30: remove_keys.append(key) for i in remove_keys: if i in species_mass_frac_sol_dict: del species_mass_frac_sol_dict[i] iso_mass_gal = dict(zip(self.history.isotopes, self.ymgal[cycle])) ele_dum=[] for iso,mass in iso_mass_gal.items(): # create a list of the elements ele = (iso.split('-',1)[0]) # from list of isotopes ele_dum.append(ele) elements = np.unique(ele_dum) ele_mass_gal = np.zeros(len(elements)) i=0 # add the mass contribution from each isotope to # make the total element mass for el in elements: for iso,mass in iso_mass_gal.items(): mass = float(mass) if el == iso.split('-', 1)[0]: ele_mass_gal[i] += mass i+=1 # create a dictionary which has keys = element/isotope and # vals = mass of species ele_mass_gal_dict = dict(zip(elements, ele_mass_gal)) species_mass_gal = iso_mass_gal species_mass_gal.update(ele_mass_gal_dict) iso_mass_agb = dict(zip(self.history.isotopes, self.ymgal_agb[cycle]/sum(self.ymgal[cycle]))) ele_mass_agb = np.zeros(len(elements)) i=0 for el in elements: for iso,mass in iso_mass_agb.items(): mass = float(mass) if el == iso.split('-',1)[0]: ele_mass_agb[i] += mass i+=1 ele_mass_agb_dict = dict(zip(elements, ele_mass_agb)) species_mass_agb = iso_mass_agb species_mass_agb.update(ele_mass_agb_dict) # This dictionary contains the mass fraction contribution toward the total # by AGB's for each species species_frac_agb = {k: species_mass_agb[k] / species_mass_gal[k] for k in species_mass_agb if k in species_mass_gal} iso_mass_massive = dict(zip(self.history.isotopes, self.ymgal_massive[cycle]/sum(self.ymgal[cycle]))) ele_mass_massive = np.zeros(len(elements)) i=0 for el in elements: for iso,mass in iso_mass_massive.items(): mass = float(mass) if el == iso.split('-',1)[0]: ele_mass_massive[i] += mass i+=1 ele_mass_massive_dict = dict(zip(elements, ele_mass_massive)) species_mass_massive = iso_mass_massive species_mass_massive.update(ele_mass_massive_dict) # This dictionary contains the mass fraction contribution toward the total # by SN1a's for each species species_frac_massive = {k: species_mass_massive[k] / species_mass_gal[k] for k in species_mass_massive if k in species_mass_gal} iso_mass_1a = dict(zip(self.history.isotopes, self.ymgal_1a[cycle]/sum(self.ymgal[cycle]))) ele_mass_1a = np.zeros(len(elements)) i=0 for el in elements: for iso,mass in iso_mass_1a.items(): mass = float(mass) if el == iso.split('-',1)[0]: ele_mass_1a[i] += mass i+=1 ele_mass_1a_dict = dict(zip(elements, ele_mass_1a)) species_mass_1a = iso_mass_1a species_mass_1a.update(ele_mass_1a_dict) # This dictionary contains the mass fraction contribution toward the total # by SN1a's for each species species_frac_1a = {k: species_mass_1a[k] / species_mass_gal[k] for k in species_mass_1a if k in species_mass_gal} iso_mass_bhnsm = dict(zip(self.history.isotopes, self.ymgal_bhnsm[cycle]/sum(self.ymgal[cycle]))) ele_mass_bhnsm = np.zeros(len(elements)) i=0 for el in elements: for iso,mass in iso_mass_bhnsm.items(): mass = float(mass) if el == iso.split('-',1)[0]: ele_mass_bhnsm[i] += mass i+=1 ele_mass_bhnsm_dict = dict(zip(elements, ele_mass_bhnsm)) species_mass_bhnsm = iso_mass_bhnsm species_mass_bhnsm.update(ele_mass_bhnsm_dict) map_str_dic = { "agb":species_mass_agb, "1a":species_mass_1a, "massive":species_mass_massive, "bhnsm":species_mass_bhnsm } source_proper_name = { "agb":'AGB', "1a":'SN1a', "massive":'Massive Stars', "bhnsm":'Black hole-neutron star merger' } colors = ['blue', 'orange', 'grey','navy','green'] if species == ['all']: species = species_mass_frac_sol_dict.keys() bar_bottom=[] for spec in species: bar_bottom.append(0) h=0 j=0 labels=[] for source in sources: labels.append(source_proper_name[source]) ii=0 for spe in species: if spe in species_mass_agb: source_frac = map_str_dic[source][spe] val = source_frac/species_mass_frac_sol_dict[spe] plt.bar(spe, val,bottom=bar_bottom[ii], color=colors[j]) bar_bottom[ii]+=val ii+=1 j+=1 legend_elements = [Patch(facecolor='blue', label='AGBs'), Patch(facecolor='orange', label='Massive Stars'), Patch(facecolor='grey', label='SN1a')] plt.legend(handles=legend_elements) plt.axhline(y=1, ls='--', color='k') plt.title('Galaxy Age: '+str(round(self.history.age[cycle]/10**6, 1))+' Myr') plt.xticks(rotation=90, fontsize=12) plt.yscale(yscale) plt.ylabel('$X/X_{\odot}$') plt.tick_params(right=True) def plot_mass(self,fig=0,specie='C',source='all',norm=False,label='',shape='',marker='',color='',markevery=20,multiplot=False,return_x_y=False,fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14,show_legend=True): ''' mass evolution (in Msun) of an element or isotope vs time. Parameters ---------- specie : string isotope or element name, in the form 'C' or 'C-12' source : string Specifies if yields come from all sources ('all'), including AGB+SN1a, massive stars. Or from distinctive sources: only agb stars ('agb'), only SN1a ('SN1a'), or only massive stars ('massive') norm : boolean If True, normalize to current total ISM mass label : string figure label marker : string figure marker shape : string line style color : string color of line fig : string,float to name the plot figure show_legend : boolean Default True. Show or not the legend Examples ---------- >>> s.plot('C-12') ''' import matplotlib import matplotlib.pyplot as plt yaxis=specie if len(label)<1: label=yaxis if source=='agb': label=yaxis+', AGB' if source=='massive': label=yaxis+', Massive' if source=='sn1a': label=yaxis+', SNIa' #Reserved for plotting if not return_x_y: shape,marker,color=self.__msc(source,shape,marker,color) x=self.history.age self.x=x y=[] yields_evol_all=self.history.ism_elem_yield if yaxis in self.history.elements: if source == 'all': yields_evol=self.history.ism_elem_yield elif source =='agb': yields_evol=self.history.ism_elem_yield_agb elif source == 'sn1a': yields_evol=self.history.ism_elem_yield_1a elif source == 'massive': yields_evol=self.history.ism_elem_yield_massive idx=self.history.elements.index(yaxis) elif yaxis in self.history.isotopes: if source == 'all': yields_evol=self.history.ism_iso_yield elif source =='agb': yields_evol=self.history.ism_iso_yield_agb elif source == 'sn1a': yields_evol=self.history.ism_iso_yield_1a elif source == 'massive': yields_evol=self.history.ism_iso_yield_massive idx=self.history.isotopes.index(yaxis) else: print ('Isotope or element not available') return 0 for k in range(0,len(yields_evol)): if norm == False: y.append(yields_evol[k][idx]) else: y.append( yields_evol[k][idx]/yields_evol_all[k][idx]) x=x[1:] y=y[1:] if multiplot==True: return x,y #Reserved for plotting if not return_x_y: plt.figure(fig, figsize=(fsize[0],fsize[1])) plt.xscale('log') plt.xlabel('log-scaled age [yrs]') if norm == False: plt.ylabel('yields [Msun]') plt.yscale('log') else: plt.ylabel('(IMF-weighted) fraction of ejecta') self.y=y #If x and y need to be returned ... if return_x_y: return x, y else: if show_legend: plt.plot(x,y,label=label,linestyle=shape,marker=marker,color=color,markevery=markevery) plt.legend() else: plt.plot(x,y,linestyle=shape,marker=marker,color=color,markevery=markevery) ax=plt.gca() self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize) plt.xlim(self.history.dt,self.history.tend) #return x,y #self.save_data(header=['Age[yrs]',specie],data=[x,y]) def plot_massfrac(self,fig=2,xaxis='age',yaxis='O-16',source='all',norm='no',label='',shape='',marker='',color='',markevery=20,fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14): ''' Plots mass fraction of isotope or element vs either time or other isotope or element. Parameters ---------- xaxis : string either 'age' for time or isotope name, in the form e.g. 'C-12' yaxis : string isotope name, in the same form as for xaxis source : string Specifies if yields come from all sources ('all'), including AGB+SN1a, massive stars. Or from distinctive sources: only agb stars ('agb'), only SN1a ('SN1a'), or only massive stars ('massive') norm : string if 'no', no normalization of mass fraction if 'ini', normalization ot initial abundance label : string figure label marker : string figure marker shape : string line style color : string color of line fig : string,float to name the plot figure Examples ---------- >>> s.plot_massfrac('age','C-12') ''' import matplotlib import matplotlib.pyplot as plt if len(label)<1: label=yaxis shape,marker,color=self.__msc(source,shape,marker,color) plt.figure(fig, figsize=(fsize[0],fsize[1])) #Input X-axis if '-' in xaxis: #to test the different contributions if source == 'all': yields_evol=self.history.ism_iso_yield elif source =='agb': yields_evol=self.history.ism_iso_yield_agb elif source == 'sn1a': yields_evol=self.history.ism_iso_yield_1a elif source == 'massive': yields_evol=self.history.ism_iso_yield_massive iso_idx=self.history.isotopes.index(xaxis) x=[] for k in range(1,len(yields_evol)): if norm=='no': x.append(yields_evol[k][iso_idx]/np.sum(yields_evol[k])) if norm=='ini': x.append(yields_evol[k][iso_idx]/np.sum(yields_evol[k])/yields_evol[0][iso_idx]) plt.xlabel('log-scaled X('+xaxis+')') plt.xscale('log') elif 'age' == xaxis: x=self.history.age#[1:] plt.xscale('log') plt.xlabel('log-scaled Age [yrs]') elif 'Z' == xaxis: x=self.history.metallicity#[1:] plt.xlabel('ISM metallicity') plt.xscale('log') elif xaxis in self.history.elements: if source == 'all': yields_evol=self.history.ism_elem_yield elif source =='agb': yields_evol=self.history.ism_elem_yield_agb elif source == 'sn1a': yields_evol=self.history.ism_elem_yield_1a elif source == 'massive': yields_evol=self.history.ism_elem_yield_massive iso_idx=self.history.elements.index(xaxis) x=[] for k in range(1,len(yields_evol)): if norm=='no': x.append(yields_evol[k][iso_idx]/np.sum(yields_evol[k])) if norm=='ini': x.append(yields_evol[k][iso_idx]/np.sum(yields_evol[k])/yields_evol[0][iso_idx]) print (yields_evol[0][iso_idx]) plt.xlabel('log-scaled X('+xaxis+')') plt.xscale('log') #Input Y-axis if '-' in yaxis: #to test the different contributions if source == 'all': yields_evol=self.history.ism_iso_yield elif source =='agb': yields_evol=self.history.ism_iso_yield_agb elif source == 'sn1a': yields_evol=self.history.ism_iso_yield_1a elif source == 'massive': yields_evol=self.history.ism_iso_yield_massive iso_idx=self.history.isotopes.index(yaxis) y=[] #change of xaxis array 'age 'due to continue statement below if xaxis=='age': x_age=x x=[] for k in range(1,len(yields_evol)): if np.sum(yields_evol[k]) ==0: continue if norm=='no': y.append(yields_evol[k][iso_idx]/np.sum(yields_evol[k])) if norm=='ini': y.append(yields_evol[k][iso_idx]/np.sum(yields_evol[k])/yields_evol[0][iso_idx]) x.append(x_age[k]) plt.ylabel('X('+yaxis+')') self.y=y plt.yscale('log') elif 'Z' == yaxis: y=self.history.metallicity plt.ylabel('ISM metallicity') plt.yscale('log') elif yaxis in self.history.elements: if source == 'all': yields_evol=self.history.ism_elem_yield elif source =='agb': yields_evol=self.history.ism_elem_yield_agb elif source == 'sn1a': yields_evol=self.history.ism_elem_yield_1a elif source == 'massive': yields_evol=self.history.ism_elem_yield_massive iso_idx=self.history.elements.index(yaxis) y=[] #change of xaxis array 'age 'due to continue statement below if xaxis=='age': x_age=x x=[] for k in range(1,len(yields_evol)): if np.sum(yields_evol[k]) ==0: continue if norm=='no': y.append(yields_evol[k][iso_idx]/np.sum(yields_evol[k])) if norm=='ini': y.append(yields_evol[k][iso_idx]/np.sum(yields_evol[k])/yields_evol[0][iso_idx]) x.append(x_age[k]) #plt.yscale('log') plt.ylabel('X('+yaxis+')') self.y=y plt.yscale('log') #To prevent 0 +log scale if 'age' == xaxis: x=x[1:] y=y[1:] plt.xlim(self.history.dt,self.history.tend) plt.plot(x,y,label=label,linestyle=shape,marker=marker,color=color,markevery=markevery) plt.legend() ax=plt.gca() self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize) self.save_data(header=[xaxis,yaxis],data=[x,y]) def plot_spectro(self,fig=3,xaxis='age',yaxis='[Fe/H]',source='all',label='',shape='-',marker='o',color='k',markevery=100,show_data=False,show_sculptor=False,show_legend=True,return_x_y=False,sub_plot=False,linewidth=3,sub=1,plot_data=False,fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14,only_one_iso=False,solar_ab='',sfr_thresh=0.0,m_formed_thresh=1.0,solar_norm=''): ''' Plots elements in spectroscopic notation: Parameters ---------- xaxis : string Elements spectroscopic notation e.g. [Fe/H] if 'age': time evolution in years yaxis : string Elements in spectroscopic notation, e.g. [C/Fe] source : string If yields come from all sources use 'all' (include AGB+SN1a, massive stars.) If yields come from distinctive source: only agb stars use 'agb', only SN1a ('SN1a'), or only massive stars ('massive') label : string figure label marker : string figure marker shape : string line style color : string color of line fig : string,float to name the plot figure Examples ---------- >>> plt.plot_spectro('[Fe/H]','[C/Fe]') ''' import matplotlib import matplotlib.pyplot as plt #Error message if there is the "subplot" has not been provided if sub_plot and sub == 1: print ('!! Error - You need to use the \'sub\' parameter and provide the frame for the plot !!') return #Operations associated with plot visual aspects if not return_x_y and not sub_plot: if len(label)<1: label=yaxis shape,marker,color=self.__msc(source,shape,marker,color) #Set the figure output if sub_plot: plt_ps = sub else: plt_ps = plt #Access solar abundance if len(solar_ab) > 0: iniabu=ry.iniabu(os.path.join(nupy_path, solar_ab)) else: iniabu=ry.iniabu(os.path.join(nupy_path, 'yield_tables', 'iniabu',\ 'iniab2.0E-02GN93.ppn')) # If a solar normalization is used .. if len(solar_norm) > 0: # Mass number of the most abundant isotopes el_norm = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne', 'Na', 'Mg',\ 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca', 'Sc', 'Ti', 'V', 'Cr',\ 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn', 'Ga', 'Ge', 'As', 'Se', 'Br',\ 'Kr', 'Rb', 'Sr', 'Y', 'Zr', 'Nb', 'Mo', 'Ru', 'Rh', 'Pd', 'Ag',\ 'Cd', 'In', 'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce',\ 'Pr', 'Nd', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er', 'Tm', 'Yb',\ 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt', 'Au', 'Hg', 'Tl',\ 'Pb', 'Bi', 'Th', 'U'] mn_norm = [1.0000200000000001, 3.999834, 6.924099999999999, 9.0, 10.801,\ 12.011061999999999, 14.00229, 16.004379000000004, 19.0, 20.13891,\ 23.0, 24.3202, 27.0, 28.108575891424106, 31.0, 32.094199999999994,\ 35.4844, 36.30859999999999, 39.13588999999999, 40.115629999999996,\ 45.0, 47.9183, 50.9975, 52.05541, 55.0, 55.90993, 59.0, 58.759575,\ 63.6166, 65.4682, 69.79784000000001, 72.69049999999999, 75.0, 79.0421,\ 79.9862, 83.88084, 85.58312, 87.71136299999999, 89.0, 91.31840000000001,\ 93.0, 96.05436999999998, 101.1598, 103.0, 106.5111, 107.96322,\ 112.508, 114.9142, 118.8077, 121.85580000000002, 127.69839999999999,\ 127.0, 131.28810000000001, 133.0, 137.42162, 138.99909000000002,\ 140.20986, 141.0, 144.33351666483335, 150.4481, 152.0438, 157.3281,\ 159.0, 162.57152999999997, 165.0, 167.32707000000002, 169.0,\ 173.11618838116186, 175.02820514102572, 178.54163, 180.99988000000002,\ 183.89069999999998, 186.28676, 190.28879711202887, 192.254,\ 195.11347999999998, 197.0, 200.6297, 204.40952, 207.34285, 209.0,\ 232.0, 237.27134] # Solar values sol_values_el = [] sol_values_ab = [] # Open the data file with open(os.path.join(nupy_path, 'stellab_data',\ 'solar_normalization', solar_norm + '.txt'), 'r') as data_file: # For every line (for each element) ... i_elem = 0 for line_1_str in data_file: # Split the line split = [str(x_split) for x_split in line_1_str.split()] # Copy the element and the solar value sol_values_el.append(str(split[1])) sol_values_ab.append(float(split[2])) # Go to the next element i_elem += 1 # Close the file data_file.close() x_ini_iso=iniabu.iso_abundance(self.history.isotopes) elements = self.history.elements x_ini = self._iso_abu_to_elem(x_ini_iso) #to test the different contributions if source == 'all': yields_evol=self.history.ism_elem_yield elif source =='agb': yields_evol=self.history.ism_elem_yield_agb elif source == 'sn1a': yields_evol=self.history.ism_elem_yield_1a elif source == 'massive': yields_evol=self.history.ism_elem_yield_massive #Operations associated with plot visual aspects if not return_x_y and not sub_plot: plt.figure(fig, figsize=(fsize[0],fsize[1])) if 'age' == xaxis: x=self.history.age #Operations associated with plot visual aspects if not return_x_y and not sub_plot: #plt.xscale('log') plt.xlabel('Age [yr]') self.x=x else: xaxis_elem1=xaxis.split('/')[0][1:] xaxis_elem2=xaxis.split('/')[1][:-1] #print (xaxis_elem1, xaxis_elem2) #X-axis ini values x_elem1_ini=x_ini[elements.index(xaxis_elem1)] x_elem2_ini=x_ini[elements.index(xaxis_elem2)] #X-axis gce values elem_idx1=self.history.elements.index(xaxis_elem1) elem_idx2=self.history.elements.index(xaxis_elem2) # Take only 56-Fe is needed if only_one_iso: if yaxis_elem1 == 'Fe': yields_evol = self.history.ism_iso_yield elem_idx1 = self.history.isotopes.index('Fe-56') x=[] for k in range(0,len(yields_evol)): if np.sum(yields_evol[k]) ==0: continue #in case no contribution during timestep x1=yields_evol[k][elem_idx1]/np.sum(yields_evol[k]) x2=yields_evol[k][elem_idx2]/np.sum(yields_evol[k]) if x1 <= 0.0 or x2 <= 0.0: spec = -30.0 else: if len(solar_norm) > 0: index_1 = el_norm.index(xaxis_elem1) index_2 = el_norm.index(xaxis_elem2) i_xx_sol_1 = sol_values_el.index(xaxis_elem1) i_xx_sol_2 = sol_values_el.index(xaxis_elem2) aaa = np.log10(yields_evol[k][elem_idx1]*mn_norm[index_2] /\ (yields_evol[k][elem_idx2]*mn_norm[index_1])) bbb = sol_values_ab[i_xx_sol_1] - sol_values_ab[i_xx_sol_2] spec= aaa - bbb else: spec=np.log10(x1/x2) - np.log10(x_elem1_ini/x_elem2_ini) x.append(spec) #Operations associated with plot visual aspects if not return_x_y and not sub_plot: plt.xlabel(xaxis) self.x=x yaxis_elem1=yaxis.split('/')[0][1:] yaxis_elem2=yaxis.split('/')[1][:-1] #y=axis ini values x_elem1_ini=x_ini[elements.index(yaxis_elem1)] x_elem2_ini=x_ini[elements.index(yaxis_elem2)] #print ('Fe_sol = ',x_elem1_ini,' , H_sol = ',x_elem2_ini) #Y-axis gce values elem_idx1=self.history.elements.index(yaxis_elem1) elem_idx2=self.history.elements.index(yaxis_elem2) # Take only 56-Fe is needed if only_one_iso: if yaxis_elem1 == 'Fe': yields_evol = self.history.ism_iso_yield elem_idx1 = self.history.isotopes.index('Fe-56') elif yaxis_elem2 == 'Fe': yields_evol = self.history.ism_iso_yield elem_idx2 = self.history.isotopes.index('Fe-56') y=[] if xaxis=='age': x_age=x x=[] for k in range(0,len(yields_evol)): if np.sum(yields_evol[k]) ==0: continue #in case no contribution during timestep x1=yields_evol[k][elem_idx1]/np.sum(yields_evol[k]) x2=yields_evol[k][elem_idx2]/np.sum(yields_evol[k]) if x1 <= 0.0 or x2 <= 0.0: spec = -30.0 else: #print ('Fe_sim = ',x1, ' , H_sim = ',x2) if len(solar_norm) > 0: index_1 = el_norm.index(yaxis_elem1) index_2 = el_norm.index(yaxis_elem2) i_xx_sol_1 = sol_values_el.index(yaxis_elem1) i_xx_sol_2 = sol_values_el.index(yaxis_elem2) aaa = np.log10(yields_evol[k][elem_idx1]*mn_norm[index_2] /\ (yields_evol[k][elem_idx2]*mn_norm[index_1])) bbb = sol_values_ab[i_xx_sol_1] - sol_values_ab[i_xx_sol_2] spec= aaa - bbb else: spec=np.log10(x1/x2) - np.log10(x_elem1_ini/x_elem2_ini) y.append(spec) if xaxis=='age': x.append(x_age[k]) if len(y)==0: print ('Y values all zero') #Operations associated with plot visual aspects if not return_x_y and not sub_plot: plt.ylabel(yaxis) self.y=y #To prevent 0 +log scale if 'age' == xaxis: x=x[1:] y=y[1:] #Operations associated with plot visual aspects if not return_x_y and not sub_plot: plt.xlim(self.history.dt,self.history.tend) #Remove values when SFR is zero, that is when no element is locked into stars i_rem = len(y) - 1 if m_formed_thresh < 1.0 or sfr_thresh > 0.0: while self.history.sfr_abs[i_rem] <= sfr_thresh or \ self.f_m_stel_tot[i_rem] >= m_formed_thresh: del y[-1] del x[-1] i_rem -= 1 else: while self.history.sfr_abs[i_rem] == 0.0: del y[-1] del x[-1] i_rem -= 1 if not plot_data: # Filtrate bad value x_temp = [] y_temp = [] for i_temp in range(0,len(x)): if np.isfinite(x[i_temp]) and np.isfinite(y[i_temp])\ and x[i_temp] > -20.0 and y[i_temp] > -20.0: x_temp.append(x[i_temp]) y_temp.append(y[i_temp]) x = x_temp y = y_temp #If this function is supposed to return the x, y arrays only ... if return_x_y: return x, y #If this is a sub-figure managed by an external module elif sub_plot: if self.galaxy == 'none': if show_legend: sub.plot(x,y,linestyle=shape,label=label,marker=marker,color=color,markevery=markevery,linewidth=linewidth) else: sub.plot(x,y,linestyle=shape,marker=marker,color=color,markevery=markevery,linewidth=linewidth) else: if show_legend: sub.plot(x,y,linestyle=shape,label=label,marker=marker,color=color,markevery=markevery,linewidth=linewidth) else: sub.plot(x,y,linestyle=shape,marker=marker,color=color,markevery=markevery,linewidth=linewidth) #If this function is supposed to plot ... else: #Plot a thicker line for specific galaxies, since they must be visible with all the obs. data if self.galaxy == 'none': if show_legend: plt.plot(x,y,linestyle=shape,label=label,marker=marker,color=color,markevery=markevery,linewidth=linewidth) else: plt.plot(x,y,linestyle=shape,marker=marker,color=color,markevery=markevery,linewidth=linewidth) else: if show_legend: plt.plot(x,y,linestyle=shape,label=label,marker=marker,color=color,markevery=markevery,linewidth=linewidth) else: plt.plot(x,y,linestyle=shape,marker=marker,color=color,markevery=markevery,linewidth=linewidth) #plt.plot([1.93,2.123123,3.23421321321],[4.123123132,5.214124142,6.11111],linestyle='--') #plt.plot([1.93,2.123123,3.23421321321],[4.123123132,5.214124142,6.11111],linestyle='--') if len(label)>0: plt.legend() ax=plt.gca() self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize) #self.save_data(header=[xaxis,yaxis],data=[x,y]) def plot_totmasses(self,fig=4,mass='gas',source='all',norm='no',label='',shape='',marker='',color='',markevery=20,log=True,fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14): ''' Plots either gas or star mass in fraction of total mass vs time. Parameters ---------- mass : string either 'gas' for ISM gas mass or 'stars' for gas locked away in stars (totalgas - ISM gas) norm : string normalization, either 'no' for no normalization (total gass mass in solar masses), for normalization to the initial gas mass (mgal) with 'ini', for normalization to the current total gas mass 'current'. The latter case makes sense when comparing different sources (see below) source : string specificies if yields come from all sources ('all'), including AGB+SN1a, massive stars. Or from distinctive sources: only agb stars ('agb'), only SN1a ('sn1a'), or only massive stars ('massive') log : boolean if true plot logarithmic y axis label : string figure label marker : string figure marker shape : string line style color : string color of line fig : string,float to name the plot figure Examples ---------- >>> s.plot_totmasses() ''' import matplotlib import matplotlib.pyplot as plt #if len(label)<1: # label=mass+', '+source plt.figure(fig, figsize=(fsize[0],fsize[1])) #Assume isotope input xaxis='age' if source =='all': if len(label)==0: label='All' if source == 'agb': if len(label)==0: label='AGB' if source =='massive': if len(label)==0: label='Massive' if source =='sn1a': if len(label)==0: label='SNIa' shape,marker,color=self.__msc(source,shape,marker,color) if 'age' == xaxis: x_all=self.history.age#[1:] plt.xscale('log') plt.xlabel('log-scaled '+xaxis+' [yrs]') #self.x=x gas_mass=self.history.gas_mass #to test the different contributions if source == 'all': gas_evol=self.history.gas_mass else: if source =='agb': yields_evol=self.history.ism_elem_yield_agb elif source == 'sn1a': yields_evol=self.history.ism_elem_yield_1a elif source == 'massive': yields_evol=self.history.ism_elem_yield_massive gas_evol=[] for k in range(len(yields_evol)): gas_evol.append(np.sum(yields_evol[k])) ism_gasm=[] star_m=[] x=[] #To prevent 0 +log scale if 'age' == xaxis: x_all=x_all[1:] gas_evol=gas_evol[1:] gas_mass=gas_mass[1:] for k in range(0,len(gas_evol)): if (gas_evol[k]==0) or (gas_mass[k]==0): continue x.append(x_all[k]) if norm=='ini': ism_gasm.append(gas_evol[k]/self.history.mgal) star_m.append((self.history.mgal-gas_evol[k])/self.history.mgal) if norm == 'current': if not self.history.gas_mass[k] ==0.: ism_gasm.append(gas_evol[k]/gas_mass[k]) star_m.append((self.history.mgal-gas_evol[k])/gas_mass[k]) #else: # ism_gasm.append(0.) # star_m.append(0.) elif norm == 'no': ism_gasm.append(gas_evol[k]) star_m.append(self.history.mgal-gas_evol[k]) if mass == 'gas': y=ism_gasm if mass == 'stars': y=star_m plt.plot(x,y,linestyle=shape,marker=marker,markevery=markevery,color=color,label=label) if len(label)>0: plt.legend() if norm=='current': plt.ylim(0,1.2) if not norm=='no': if mass=='gas': plt.ylabel('mass fraction') plt.title('Gas mass as a fraction of total gas mass') else: plt.ylabel('mass fraction') plt.title('Star mass as a fraction of total star mass') else: if mass=='gas': plt.ylabel('ISM gas mass [Msun]') else: plt.ylabel('mass locked in stars [Msun]') if mass=='gas': plt.ylabel('ISM gas mass [Msun]') else: plt.ylabel('Mass locked in stars [Msun]') if log==True: plt.yscale('log') if not norm=='no': plt.ylim(1e-4,1.2) ax=plt.gca() self.__fig_standard(ax=ax,fontsize=fontsize,labelsize=labelsize,rspace=rspace, bspace=bspace,legend_fontsize=legend_fontsize) plt.xlim(self.history.dt,self.history.tend) #self.save_data(header=['age','mass'],data=[x,y]) def plot_sn_distr(self,fig=5,rate=True,rate_only='',xaxis='time',fraction=False,label1='SNIa',label2='SN2',shape1=':',shape2='--',marker1='o',marker2='s',color1='k',color2='b',markevery=20,fsize=[10,4.5],fontsize=14,rspace=0.6,bspace=0.15,labelsize=15,legend_fontsize=14): ''' Plots the SN1a distribution: The evolution of the number of SN1a and SN2 #Add numbers/dt numbers/year... Parameters ---------- rate : boolean if true, calculate rate [1/century] else calculate numbers fraction ; boolean if true, ignorate rate and calculate number fraction of SNIa per WD rate_only : string if empty string, plot both rates (default) if 'sn1a', plot only SN1a rate if 'sn2', plot only SN2 rate xaxis: string if 'time' : time evolution if 'redshift': experimental! use with caution; redshift evolution label : string figure label marker : string figure marker shape : string line style color : string color of line fig : string,float to name the plot figure Examples ---------- >>> s.plot_sn_distr() ''' import matplotlib import matplotlib.pyplot as plt #For Wiersma09 Hubble_0=73. Omega_lambda=0.762 Omega_m=0.238 figure=plt.figure(fig, figsize=(fsize[0],fsize[1])) age=self.history.age sn1anumbers=self.history.sn1a_numbers#[:-1] sn2numbers=self.history.sn2_numbers if xaxis=='redshift': print ('this features is not tested yet.') return 0 age,idx=self.__time_to_z(age,Hubble_0,Omega_lambda,Omega_m) age=[0]+age plt.xlabel('Redshift z') timesteps=self.history.timesteps[idx-1:] sn2numbers=sn2numbers[idx:] sn1anumbers=sn1anumbers[idx:] else: plt.xlabel('Log-scaled age [yrs]') #plt.xscale('log') if rate and not fraction: if xaxis=='redshift': sn1a_rate=np.array(sn1anumbers)/ (np.array(timesteps)/100.) sn2_rate=np.array(sn2numbers)/ (np.array(timesteps)/100.) else: sn1a_rate=np.array(sn1anumbers[1:])/ (np.array(self.history.timesteps)/100.) sn2_rate=
np.array(sn2numbers[1:])
numpy.array
''' Module with a class to create a generator for low-frequency images. ''' # System imports import time # Standard imports import numpy as np import matplotlib.pyplot as plt import itertools class LowFreqGenerator(object): ''' A class to create a generator of low-frequency images. ''' def __init__(self, batch_size=128, N=4, im_size=64, discounting=1, constant_components=False): ''' Constructor ''' self.N = N self.im_size = im_size self.batch_size = batch_size # array with discretized Fourier eigenfunctions self._base = np.zeros(shape=(im_size, im_size, 2 * N + 1, 2 * N + 1), dtype=np.complex64) # Create Fourier coefficients if constant_components: self._fourier_components = get_constant_fourier_components(N) else: self._fourier_components = get_normal_fourier_components(N, discounting) # array with discretized Fourier eigenfunctions premultiplied with Fourier coefficients self._base_multiplied =
np.zeros(shape=(im_size, im_size, 2 * N + 1, 2 * N + 1), dtype=np.complex64)
numpy.zeros
import os import tempfile import numpy as np import scipy.ndimage.measurements as meas from functools import reduce import warnings import sys sys.path.append(os.path.abspath(r'../lib')) import NumCppPy as NumCpp # noqa E402 #################################################################################### def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) #################################################################################### def test_seed(): np.random.seed(1) #################################################################################### def test_abs(): randValue = np.random.randint(-100, -1, [1, ]).astype(np.double).item() assert NumCpp.absScaler(randValue) == np.abs(randValue) components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.absScaler(value), 9) == np.round(np.abs(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.absArray(cArray), np.abs(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.absArray(cArray), 9), np.round(np.abs(data), 9)) #################################################################################### def test_add(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) #################################################################################### def test_alen(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.alen(cArray) == shape.rows #################################################################################### def test_all(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1)) #################################################################################### def test_allclose(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) tolerance = 1e-5 data1 = np.random.randn(shape.rows, shape.cols) data2 = data1 + tolerance / 10 data3 = data1 + 1 cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) assert NumCpp.allclose(cArray1, cArray2, tolerance) and not NumCpp.allclose(cArray1, cArray3, tolerance) #################################################################################### def test_amax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1)) #################################################################################### def test_amin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1)) #################################################################################### def test_angle(): components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.angleScaler(value), 9) == np.round(np.angle(value), 9) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.angleArray(cArray), 9), np.round(np.angle(data), 9)) #################################################################################### def test_any(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1)) #################################################################################### def test_append(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.append(data1, data2)) shapeInput = np.random.randint(20, 100, [2, ]) numRows = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + numRows, shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.append(data1, data2, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) NumCppols = np.random.randint(1, 100, [1, ]).item() shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + NumCppols) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.append(data1, data2, axis=1)) #################################################################################### def test_arange(): start = np.random.randn(1).item() stop = np.random.randn(1).item() * 100 step = np.abs(np.random.randn(1).item()) if stop < start: step *= -1 data = np.arange(start, stop, step) assert np.array_equal(np.round(NumCpp.arange(start, stop, step).flatten(), 9), np.round(data, 9)) #################################################################################### def test_arccos(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9)) #################################################################################### def test_arccosh(): value = np.abs(np.random.rand(1).item()) + 1 assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) + 1 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9)) #################################################################################### def test_arcsin(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9)) #################################################################################### def test_arcsinh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9)) #################################################################################### def test_arctan(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9)) #################################################################################### def test_arctan2(): xy = np.random.rand(2) * 2 - 1 assert np.round(NumCpp.arctan2Scaler(xy[1], xy[0]), 9) == np.round(np.arctan2(xy[1], xy[0]), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArrayX = NumCpp.NdArray(shape) cArrayY = NumCpp.NdArray(shape) xy = np.random.rand(*shapeInput, 2) * 2 - 1 xData = xy[:, :, 0].reshape(shapeInput) yData = xy[:, :, 1].reshape(shapeInput) cArrayX.setArray(xData) cArrayY.setArray(yData) assert np.array_equal(np.round(NumCpp.arctan2Array(cArrayY, cArrayX), 9), np.round(np.arctan2(yData, xData), 9)) #################################################################################### def test_arctanh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9)) #################################################################################### def test_argmax(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1)) #################################################################################### def test_argmin(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1)) #################################################################################### def test_argsort(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) dataFlat = data.flatten() assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)], dataFlat[np.argsort(data, axis=None)]) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) dataFlat = data.flatten() assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)], dataFlat[np.argsort(data, axis=None)]) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pIdx = np.argsort(data, axis=0) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16) allPass = True for idx, row in enumerate(data.T): if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pIdx = np.argsort(data, axis=0) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16) allPass = True for idx, row in enumerate(data.T): if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]): allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) pIdx = np.argsort(data, axis=1) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16) allPass = True for idx, row in enumerate(data): if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]): # noqa allPass = False break assert allPass shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) pIdx = np.argsort(data, axis=1) cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16) allPass = True for idx, row in enumerate(data): if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]): allPass = False break assert allPass #################################################################################### def test_argwhere(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) randValue = np.random.randint(0, 100, [1, ]).item() data2 = data > randValue cArray.setArray(data2) assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten()) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag randValue = np.random.randint(0, 100, [1, ]).item() data2 = data > randValue cArray.setArray(data2) assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten()) #################################################################################### def test_around(): value = np.abs(np.random.rand(1).item()) * np.random.randint(1, 10, [1, ]).item() numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item() assert NumCpp.aroundScaler(value, numDecimalsRound) == np.round(value, numDecimalsRound) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * np.random.randint(1, 10, [1, ]).item() cArray.setArray(data) numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item() assert np.array_equal(NumCpp.aroundArray(cArray, numDecimalsRound), np.round(data, numDecimalsRound)) #################################################################################### def test_array_equal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) cArray3 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 100, shapeInput) data2 = np.random.randint(1, 100, shapeInput) cArray1.setArray(data1) cArray2.setArray(data1) cArray3.setArray(data2) assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) cArray3 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data1) cArray3.setArray(data2) assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3) #################################################################################### def test_array_equiv(): shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput3 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item()) shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) data1 = np.random.randint(1, 100, shapeInput1) data3 = np.random.randint(1, 100, shapeInput3) cArray1.setArray(data1) cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()])) cArray3.setArray(data3) assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3) shapeInput1 = np.random.randint(1, 100, [2, ]) shapeInput3 = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item()) shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item()) shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) cArray3 = NumCpp.NdArrayComplexDouble(shape3) real1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 real3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) imag3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data3 = real3 + 1j * imag3 cArray1.setArray(data1) cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()])) cArray3.setArray(data3) assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3) #################################################################################### def test_asarray(): values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVector2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVector2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayDeque2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayDeque2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointer2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointer2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data) values = np.random.randint(0, 100, [2, ]).astype(np.double) assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values) values = np.random.randint(0, 100, [2, ]).astype(np.double) data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data) real = np.random.randint(0, 100, [2, ]).astype(np.double) imag = np.random.randint(0, 100, [2, ]).astype(np.double) values = real + 1j * imag data = np.vstack([values, values]) assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) cArrayCast = NumCpp.astypeDoubleToUint32(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.uint32)) assert cArrayCast.dtype == np.uint32 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) cArrayCast = NumCpp.astypeDoubleToComplex(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.complex128)) assert cArrayCast.dtype == np.complex128 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) cArrayCast = NumCpp.astypeComplexToComplex(cArray).getNumpyArray() assert np.array_equal(cArrayCast, data.astype(np.complex64)) assert cArrayCast.dtype == np.complex64 shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) cArrayCast = NumCpp.astypeComplexToDouble(cArray).getNumpyArray() warnings.filterwarnings('ignore', category=np.ComplexWarning) assert np.array_equal(cArrayCast, data.astype(np.double)) warnings.filters.pop() # noqa assert cArrayCast.dtype == np.double #################################################################################### def test_average(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.round(NumCpp.average(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.average(data), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.round(NumCpp.average(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.average(data), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, axis=1), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, axis=1), 9)) #################################################################################### def test_averageWeighted(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cWeights = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) weights = np.random.randint(1, 5, [shape.rows, shape.cols]) cArray.setArray(data) cWeights.setArray(weights) assert np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.NONE).item(), 9) == \ np.round(np.average(data, weights=weights), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cWeights = NumCpp.NdArray(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag weights = np.random.randint(1, 5, [shape.rows, shape.cols]) cArray.setArray(data) cWeights.setArray(weights) assert np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.NONE).item(), 9) == \ np.round(np.average(data, weights=weights), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cWeights = NumCpp.NdArray(1, shape.cols) data = np.random.randint(0, 100, [shape.rows, shape.cols]) weights = np.random.randint(1, 5, [1, shape.rows]) cArray.setArray(data) cWeights.setArray(weights) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cWeights = NumCpp.NdArray(1, shape.cols) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag weights = np.random.randint(1, 5, [1, shape.rows]) cArray.setArray(data) cWeights.setArray(weights) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.ROW).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=0), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) cWeights = NumCpp.NdArray(1, shape.rows) data = np.random.randint(0, 100, [shape.rows, shape.cols]) weights = np.random.randint(1, 5, [1, shape.cols]) cWeights.setArray(weights) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=1), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) cWeights = NumCpp.NdArray(1, shape.rows) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag weights = np.random.randint(1, 5, [1, shape.cols]) cWeights.setArray(weights) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.COL).flatten(), 9), np.round(np.average(data, weights=weights.flatten(), axis=1), 9)) #################################################################################### def test_binaryRepr(): value = np.random.randint(0, np.iinfo(np.uint64).max, [1, ], dtype=np.uint64).item() assert NumCpp.binaryRepr(np.uint64(value)) == np.binary_repr(value, np.iinfo(np.uint64).bits) #################################################################################### def test_bincount(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) assert np.array_equal(NumCpp.bincount(cArray, 0).flatten(), np.bincount(data.flatten(), minlength=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) minLength = int(np.max(data) + 10) assert np.array_equal(NumCpp.bincount(cArray, minLength).flatten(), np.bincount(data.flatten(), minlength=minLength)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) cWeights = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) weights = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) cWeights.setArray(weights) assert np.array_equal(NumCpp.bincountWeighted(cArray, cWeights, 0).flatten(), np.bincount(data.flatten(), minlength=0, weights=weights.flatten())) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt32(shape) cWeights = NumCpp.NdArrayUInt32(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) weights = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16) cArray.setArray(data) cWeights.setArray(weights) minLength = int(np.max(data) + 10) assert np.array_equal(NumCpp.bincountWeighted(cArray, cWeights, minLength).flatten(), np.bincount(data.flatten(), minlength=minLength, weights=weights.flatten())) #################################################################################### def test_bitwise_and(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt64(shape) cArray2 = NumCpp.NdArrayUInt64(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.bitwise_and(cArray1, cArray2), np.bitwise_and(data1, data2)) #################################################################################### def test_bitwise_not(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt64(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray.setArray(data) assert np.array_equal(NumCpp.bitwise_not(cArray), np.bitwise_not(data)) #################################################################################### def test_bitwise_or(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt64(shape) cArray2 = NumCpp.NdArrayUInt64(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.bitwise_or(cArray1, cArray2), np.bitwise_or(data1, data2)) #################################################################################### def test_bitwise_xor(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayUInt64(shape) cArray2 = NumCpp.NdArrayUInt64(shape) data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.bitwise_xor(cArray1, cArray2), np.bitwise_xor(data1, data2)) #################################################################################### def test_byteswap(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayUInt64(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64) cArray.setArray(data) assert np.array_equal(NumCpp.byteswap(cArray).shape, shapeInput) #################################################################################### def test_cbrt(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cbrtArray(cArray), 9), np.round(np.cbrt(data), 9)) #################################################################################### def test_ceil(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.ceilArray(cArray), 9), np.round(np.ceil(data), 9)) #################################################################################### def test_center_of_mass(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.NONE).flatten(), 9), np.round(meas.center_of_mass(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) coms = list() for col in range(data.shape[1]): coms.append(np.round(meas.center_of_mass(data[:, col])[0], 9)) assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(coms, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000 cArray.setArray(data) coms = list() for row in range(data.shape[0]): coms.append(np.round(meas.center_of_mass(data[row, :])[0], 9)) assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(coms, 9)) #################################################################################### def test_clip(): value = np.random.randint(0, 100, [1, ]).item() minValue = np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() assert NumCpp.clipScaler(value, minValue, maxValue) == np.clip(value, minValue, maxValue) value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() minValue = np.random.randint(0, 10, [1, ]).item() + 1j * np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() assert NumCpp.clipScaler(value, minValue, maxValue) == np.clip(value, minValue, maxValue) # noqa shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) minValue = np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() assert np.array_equal(NumCpp.clipArray(cArray, minValue, maxValue), np.clip(data, minValue, maxValue)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) minValue = np.random.randint(0, 10, [1, ]).item() + 1j * np.random.randint(0, 10, [1, ]).item() maxValue = np.random.randint(90, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() assert np.array_equal(NumCpp.clipArray(cArray, minValue, maxValue), np.clip(data, minValue, maxValue)) # noqa #################################################################################### def test_column_stack(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.column_stack(cArray1, cArray2, cArray3, cArray4), np.column_stack([data1, data2, data3, data4])) #################################################################################### def test_complex(): real = np.random.rand(1).astype(np.double).item() value = complex(real) assert np.round(NumCpp.complexScaler(real), 9) == np.round(value, 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.complexScaler(components[0], components[1]), 9) == np.round(value, 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) realArray = NumCpp.NdArray(shape) real = np.random.rand(shape.rows, shape.cols) realArray.setArray(real) assert np.array_equal(np.round(NumCpp.complexArray(realArray), 9), np.round(real + 1j * np.zeros_like(real), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) realArray = NumCpp.NdArray(shape) imagArray = NumCpp.NdArray(shape) real = np.random.rand(shape.rows, shape.cols) imag = np.random.rand(shape.rows, shape.cols) realArray.setArray(real) imagArray.setArray(imag) assert np.array_equal(np.round(NumCpp.complexArray(realArray, imagArray), 9), np.round(real + 1j * imag, 9)) #################################################################################### def test_concatenate(): shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.NONE).flatten(), np.concatenate([data1.flatten(), data2.flatten(), data3.flatten(), data4.flatten()])) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape3 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) shape4 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.ROW), np.concatenate([data1, data2, data3, data4], axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) cArray3 = NumCpp.NdArray(shape3) cArray4 = NumCpp.NdArray(shape4) data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols]) data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols]) data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols]) cArray1.setArray(data1) cArray2.setArray(data2) cArray3.setArray(data3) cArray4.setArray(data4) assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.COL), np.concatenate([data1, data2, data3, data4], axis=1)) #################################################################################### def test_conj(): components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.conjScaler(value), 9) == np.round(np.conj(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.conjArray(cArray), 9), np.round(np.conj(data), 9)) #################################################################################### def test_contains(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) value = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert NumCpp.contains(cArray, value, NumCpp.Axis.NONE).getNumpyArray().item() == (value in data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert NumCpp.contains(cArray, value, NumCpp.Axis.NONE).getNumpyArray().item() == (value in data) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) value = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.COL).getNumpyArray().flatten(), np.asarray(truth)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.COL).getNumpyArray().flatten(), np.asarray(truth)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) value = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data.T: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.asarray(truth)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) truth = list() for row in data.T: truth.append(value in row) assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.asarray(truth)) #################################################################################### def test_copy(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.copy(cArray), data) #################################################################################### def test_copysign(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.copysign(cArray1, cArray2), np.copysign(data1, data2)) #################################################################################### def test_copyto(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray() data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) assert np.array_equal(NumCpp.copyto(cArray2, cArray1), data1) #################################################################################### def test_cos(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.cosScaler(value), 9) == np.round(np.cos(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.cosScaler(value), 9) == np.round(np.cos(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cosArray(cArray), 9), np.round(np.cos(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cosArray(cArray), 9), np.round(np.cos(data), 9)) #################################################################################### def test_cosh(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.coshScaler(value), 9) == np.round(np.cosh(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.coshScaler(value), 9) == np.round(np.cosh(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.coshArray(cArray), 9), np.round(np.cosh(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.coshArray(cArray), 9), np.round(np.cosh(data), 9)) #################################################################################### def test_count_nonzero(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert NumCpp.count_nonzero(cArray, NumCpp.Axis.NONE) == np.count_nonzero(data) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 3, [shape.rows, shape.cols]) imag = np.random.randint(1, 3, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.count_nonzero(cArray, NumCpp.Axis.NONE) == np.count_nonzero(data) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.ROW).flatten(), np.count_nonzero(data, axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 3, [shape.rows, shape.cols]) imag = np.random.randint(1, 3, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.ROW).flatten(), np.count_nonzero(data, axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.COL).flatten(), np.count_nonzero(data, axis=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 3, [shape.rows, shape.cols]) imag = np.random.randint(1, 3, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.COL).flatten(), np.count_nonzero(data, axis=1)) #################################################################################### def test_cross(): shape = NumCpp.Shape(1, 2) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).item() == np.cross(data1, data2).item() shape = NumCpp.Shape(1, 2) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).item() == np.cross(data1, data2).item() shape = NumCpp.Shape(2, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(2, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 2) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray().flatten(), np.cross(data1, data2, axis=1)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 2) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray().flatten(), np.cross(data1, data2, axis=1)) shape = NumCpp.Shape(1, 3) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.cross(data1, data2).flatten()) shape = NumCpp.Shape(1, 3) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(), np.cross(data1, data2).flatten()) shape = NumCpp.Shape(3, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(3, np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(), np.cross(data1, data2, axis=0)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 3) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.cross(data1, data2, axis=1)) shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 3) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(), np.cross(data1, data2, axis=1)) #################################################################################### def test_cube(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cube(cArray), 9), np.round(data * data * data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.cube(cArray), 9), np.round(data * data * data, 9)) #################################################################################### def test_cumprod(): shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols], dtype=np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.NONE).flatten(), data.cumprod()) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 4, [shape.rows, shape.cols]) imag = np.random.randint(1, 4, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.NONE).flatten(), data.cumprod()) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.ROW), data.cumprod(axis=0)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 4, [shape.rows, shape.cols]) imag = np.random.randint(1, 4, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.ROW), data.cumprod(axis=0)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 4, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.COL), data.cumprod(axis=1)) shapeInput = np.random.randint(1, 5, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 4, [shape.rows, shape.cols]) imag = np.random.randint(1, 4, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.COL), data.cumprod(axis=1)) #################################################################################### def test_cumsum(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.NONE).flatten(), data.cumsum()) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.NONE).flatten(), data.cumsum()) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.ROW), data.cumsum(axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.ROW), data.cumsum(axis=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.COL), data.cumsum(axis=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.COL), data.cumsum(axis=1)) #################################################################################### def test_deg2rad(): value = np.abs(np.random.rand(1).item()) * 360 assert np.round(NumCpp.deg2radScaler(value), 9) == np.round(np.deg2rad(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 360 cArray.setArray(data) assert np.array_equal(np.round(NumCpp.deg2radArray(cArray), 9), np.round(np.deg2rad(data), 9)) #################################################################################### def test_degrees(): value = np.abs(np.random.rand(1).item()) * 2 * np.pi assert np.round(NumCpp.degreesScaler(value), 9) == np.round(np.degrees(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) * 2 * np.pi cArray.setArray(data) assert np.array_equal(np.round(NumCpp.degreesArray(cArray), 9), np.round(np.degrees(data), 9)) #################################################################################### def test_deleteIndices(): shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) indices = NumCpp.Slice(0, 100, 4) indicesPy = slice(0, 99, 4) cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.NONE).flatten(), np.delete(data, indicesPy, axis=None)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) indices = NumCpp.Slice(0, 100, 4) indicesPy = slice(0, 99, 4) cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.ROW), np.delete(data, indicesPy, axis=0)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) indices = NumCpp.Slice(0, 100, 4) indicesPy = slice(0, 99, 4) cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.COL), np.delete(data, indicesPy, axis=1)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) index = np.random.randint(0, shape.size(), [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.NONE).flatten(), np.delete(data, index, axis=None)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) index = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.ROW), np.delete(data, index, axis=0)) shapeInput = np.asarray([100, 100]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 100, [shape.rows, shape.cols]) index = np.random.randint(0, 100, [1, ]).item() cArray.setArray(data) assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.COL), np.delete(data, index, axis=1)) #################################################################################### def test_diag(): shapeInput = np.random.randint(2, 25, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) k = np.random.randint(0, np.min(shapeInput), [1, ]).item() elements = np.random.randint(1, 100, shapeInput) cElements = NumCpp.NdArray(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diag(cElements, k).flatten(), np.diag(elements, k)) shapeInput = np.random.randint(2, 25, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) k = np.random.randint(0, np.min(shapeInput), [1, ]).item() real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) elements = real + 1j * imag cElements = NumCpp.NdArrayComplexDouble(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diag(cElements, k).flatten(), np.diag(elements, k)) #################################################################################### def test_diagflat(): numElements = np.random.randint(2, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() elements = np.random.randint(1, 100, [numElements, ]) cElements = NumCpp.NdArray(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) numElements = np.random.randint(2, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() real = np.random.randint(1, 100, [numElements, ]) imag = np.random.randint(1, 100, [numElements, ]) elements = real + 1j * imag cElements = NumCpp.NdArrayComplexDouble(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) numElements = np.random.randint(1, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() elements = np.random.randint(1, 100, [numElements, ]) cElements = NumCpp.NdArray(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) numElements = np.random.randint(1, 25, [1, ]).item() shape = NumCpp.Shape(1, numElements) k = np.random.randint(0, 10, [1, ]).item() real = np.random.randint(1, 100, [numElements, ]) imag = np.random.randint(1, 100, [numElements, ]) elements = real + 1j * imag cElements = NumCpp.NdArrayComplexDouble(shape) cElements.setArray(elements) assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k)) #################################################################################### def test_diagonal(): shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.ROW).flatten(), np.diagonal(data, offset, axis1=0, axis2=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.ROW).flatten(), np.diagonal(data, offset, axis1=0, axis2=1)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.COL).flatten(), np.diagonal(data, offset, axis1=1, axis2=0)) shapeInput = np.random.randint(1, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item() assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.COL).flatten(), np.diagonal(data, offset, axis1=1, axis2=0)) #################################################################################### def test_diff(): shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.NONE).flatten(), np.diff(data.flatten())) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.NONE).flatten(), np.diff(data.flatten())) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.ROW), np.diff(data, axis=0)) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.ROW), np.diff(data, axis=0)) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.uint32) cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.COL).astype(np.uint32), np.diff(data, axis=1)) shapeInput = np.random.randint(10, 50, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 50, [shape.rows, shape.cols]) imag = np.random.randint(1, 50, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.COL), np.diff(data, axis=1)) #################################################################################### def test_divide(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2[data2 == 0] = 1 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = 0 while value == 0: value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) data[data == 0] = 1 cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 data2[data2 == complex(0)] = complex(1) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = 0 while value == complex(0): value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag data[data == complex(0)] = complex(1) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2[data2 == 0] = 1 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 data2[data2 == complex(0)] = complex(1) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9), np.round(data1 / data2, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) while value == complex(0): value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) data[data == 0] = 1 cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = 0 while value == 0: value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9), np.round(data / value, 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag data[data == complex(0)] = complex(1) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9), np.round(value / data, 9)) #################################################################################### def test_dot(): size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 50, [shape.rows, shape.cols]) real2 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 50, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() size = np.random.randint(1, 100, [1, ]).item() shape = NumCpp.Shape(1, size) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 50, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 50, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 50, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item() shapeInput = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArray(shape1) cArray2 = NumCpp.NdArray(shape2) data1 = np.random.randint(1, 50, [shape1.rows, shape1.cols]) data2 = np.random.randint(1, 50, [shape2.rows, shape2.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.dot(cArray1, cArray2), np.dot(data1, data2)) shapeInput = np.random.randint(1, 100, [2, ]) shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) shape2 = NumCpp.Shape(shapeInput[1].item(), np.random.randint(1, 100, [1, ]).item()) cArray1 = NumCpp.NdArrayComplexDouble(shape1) cArray2 = NumCpp.NdArrayComplexDouble(shape2) real1 = np.random.randint(1, 50, [shape1.rows, shape1.cols]) imag1 = np.random.randint(1, 50, [shape1.rows, shape1.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 50, [shape2.rows, shape2.cols]) imag2 = np.random.randint(1, 50, [shape2.rows, shape2.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.dot(cArray1, cArray2), np.dot(data1, data2)) #################################################################################### def test_empty(): shapeInput = np.random.randint(1, 100, [2, ]) cArray = NumCpp.emptyRowCol(shapeInput[0].item(), shapeInput[1].item()) assert cArray.shape[0] == shapeInput[0] assert cArray.shape[1] == shapeInput[1] assert cArray.size == shapeInput.prod() shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.emptyShape(shape) assert cArray.shape[0] == shape.rows assert cArray.shape[1] == shape.cols assert cArray.size == shapeInput.prod() shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.empty_like(cArray1) assert cArray2.shape().rows == shape.rows assert cArray2.shape().cols == shape.cols assert cArray2.size() == shapeInput.prod() #################################################################################### def test_endianess(): shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) assert NumCpp.endianess(cArray) == NumCpp.Endian.NATIVE #################################################################################### def test_equal(): shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(0, 10, [shape.rows, shape.cols]) data2 = np.random.randint(0, 10, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.equal(cArray1, cArray2), np.equal(data1, data2)) shapeInput = np.random.randint(1, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.equal(cArray1, cArray2), np.equal(data1, data2)) #################################################################################### def test_exp2(): value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.expScaler(value), 9) == np.round(np.exp(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.expScaler(value), 9) == np.round(np.exp(value), 9) value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.exp2Scaler(value), 9) == np.round(np.exp2(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.exp2Array(cArray), 9), np.round(np.exp2(data), 9)) #################################################################################### def test_exp(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expArray(cArray), 9), np.round(np.exp(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expArray(cArray), 9), np.round(np.exp(data), 9)) value = np.abs(np.random.rand(1).item()) assert np.round(NumCpp.expm1Scaler(value), 9) == np.round(np.expm1(value), 9) components = np.random.rand(2).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.expm1Scaler(value), 9) == np.round(np.expm1(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.rand(shape.rows, shape.cols) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expm1Array(cArray), 9), np.round(np.expm1(data), 9)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.rand(shape.rows, shape.cols) imag = np.random.rand(shape.rows, shape.cols) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(np.round(NumCpp.expm1Array(cArray), 9), np.round(np.expm1(data), 9)) #################################################################################### def test_eye(): shapeInput = np.random.randint(1, 100, [1, ]).item() randK = np.random.randint(0, shapeInput, [1, ]).item() assert np.array_equal(NumCpp.eye1D(shapeInput, randK), np.eye(shapeInput, k=randK)) shapeInput = np.random.randint(1, 100, [1, ]).item() randK = np.random.randint(0, shapeInput, [1, ]).item() assert np.array_equal(NumCpp.eye1DComplex(shapeInput, randK), np.eye(shapeInput, k=randK) + 1j * np.zeros([shapeInput, shapeInput])) shapeInput = np.random.randint(10, 100, [2, ]) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eye2D(shapeInput[0].item(), shapeInput[1].item(), randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK)) shapeInput = np.random.randint(10, 100, [2, ]) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eye2DComplex(shapeInput[0].item(), shapeInput[1].item(), randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK) + 1j * np.zeros(shapeInput)) shapeInput = np.random.randint(10, 100, [2, ]) cShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eyeShape(cShape, randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK)) shapeInput = np.random.randint(10, 100, [2, ]) cShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) randK = np.random.randint(0, np.min(shapeInput), [1, ]).item() assert np.array_equal(NumCpp.eyeShapeComplex(cShape, randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK) + 1j * np.zeros(shapeInput)) #################################################################################### def test_fill_diagonal(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) NumCpp.fillDiagonal(cArray, 666) np.fill_diagonal(data, 666) assert np.array_equal(cArray.getNumpyArray(), data) #################################################################################### def test_find(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) value = data.mean() cMask = NumCpp.operatorGreater(cArray, value) cMaskArray = NumCpp.NdArrayBool(cMask.shape[0], cMask.shape[1]) cMaskArray.setArray(cMask) idxs = NumCpp.find(cMaskArray).astype(np.int64) idxsPy = np.nonzero((data > value).flatten())[0] assert np.array_equal(idxs.flatten(), idxsPy) #################################################################################### def test_findN(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randn(shape.rows, shape.cols) * 100 cArray.setArray(data) value = data.mean() cMask = NumCpp.operatorGreater(cArray, value) cMaskArray = NumCpp.NdArrayBool(cMask.shape[0], cMask.shape[1]) cMaskArray.setArray(cMask) idxs = NumCpp.findN(cMaskArray, 8).astype(np.int64) idxsPy = np.nonzero((data > value).flatten())[0] assert np.array_equal(idxs.flatten(), idxsPy[:8]) #################################################################################### def fix(): value = np.random.randn(1).item() * 100 assert NumCpp.fixScaler(value) ==
np.fix(value)
numpy.fix
from __future__ import print_function, division import os import numpy as np from . import get_data_home from . import fetch_sdss_S82standards from .tools import download_with_progress_bar DATA_URL = ("https://github.com/astroML/astroML-data/raw/master/datasets/" "RRLyrae.fit") def fetch_rrlyrae_mags(data_home=None, download_if_missing=True): """Loader for RR-Lyrae data Parameters ---------- data_home : optional, default=None Specify another download and cache folder for the datasets. By default all astroML data is stored in '~/astroML_data'. download_if_missing : optional, default=True If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- data : recarray, shape = (483,) record array containing imaging data Examples -------- >>> from astroML.datasets import fetch_rrlyrae_mags >>> data = fetch_rrlyrae_mags() # doctest: +IGNORE_OUTPUT >>> data.shape # number of objects in dataset (483,) Notes ----- This data is from table 1 of Sesar et al 2010 ApJ 708:717 """ # fits is an optional dependency: don't import globally from astropy.io import fits data_home = get_data_home(data_home) archive_file = os.path.join(data_home, os.path.basename(DATA_URL)) if not os.path.exists(archive_file): if not download_if_missing: raise IOError('data not present on disk. ' 'set download_if_missing=True to download') fitsdata = download_with_progress_bar(DATA_URL) open(archive_file, 'wb').write(fitsdata) hdulist = fits.open(archive_file) return np.asarray(hdulist[1].data) def fetch_rrlyrae_combined(data_home=None, download_if_missing=True): """Loader for RR-Lyrae combined data This returns the combined RR-Lyrae colors and SDSS standards colors. The RR-Lyrae sample is confirmed through time-domain observations; this result in a nice dataset for testing classification routines. Parameters ---------- data_home : optional, default=None Specify another download and cache folder for the datasets. By default all astroML data is stored in '~/astroML_data'. download_if_missing : optional, default=True If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- X : ndarray a shape (n_samples, 4) array. Columns are u-g, g-r, r-i, i-z y : ndarray a shape (n_samples,) array of labels. 1 indicates an RR Lyrae, 0 indicates a background star. """ # ---------------------------------------------------------------------- # Load data kwds = dict(data_home=data_home, download_if_missing=download_if_missing) rrlyrae = fetch_rrlyrae_mags(**kwds) standards = fetch_sdss_S82standards(**kwds) # ------------------------------------------------------------ # perform color cuts on standard stars # these come from eqns 1-4 of Sesar et al 2010, ApJ 708:717 u_g = standards['mmu_u'] - standards['mmu_g'] g_r = standards['mmu_g'] - standards['mmu_r'] r_i = standards['mmu_r'] - standards['mmu_i'] i_z = standards['mmu_i'] - standards['mmu_z'] standards = standards[(u_g > 0.7) & (u_g < 1.35) & (g_r > -0.15) & (g_r < 0.4) & (r_i > -0.15) & (r_i < 0.22) & (i_z > -0.21) & (i_z < 0.25)] # ---------------------------------------------------------------------- # get magnitudes and colors; split into train and test sets mags_rr =
np.vstack([rrlyrae[f + 'mag'] for f in 'ugriz'])
numpy.vstack
import pytest import numpy as np from qibo import K from numpy.random import random as rand METHODS = [ ("to_complex", [rand(3), rand(3)]), ("cast", [rand(4)]), ("diag", [rand(4)]), ("copy", [rand(5)]), ("zeros_like", [rand((4, 4))]), ("ones_like", [rand((4, 4))]), ("real", [rand(5)]), ("imag", [rand(5)]), ("conj", [rand(5)]), ("exp", [rand(5)]), ("sin", [rand(5)]), ("cos", [rand(5)]), ("square", [rand(5)]), ("sqrt", [rand(5)]), ("log", [rand(5)]), ("abs", [rand(5)]), ("trace", [rand((6, 6))]), ("sum", [rand((4, 4))]), ("matmul", [rand((4, 6)), rand((6, 5))]), ("outer", [rand((4,)), rand((3,))]), ("eigvalsh", [rand((4, 4))]), ("less", [rand(10), rand(10)]), ("array_equal", [
rand(10)
numpy.random.random
import sys import numpy as np from scipy.stats import multivariate_normal from sklearn.base import BaseEstimator, ClassifierMixin, ClusterMixin from sklearn.utils import check_X_y from sklearn.utils.validation import check_array, check_is_fitted EPS = 1e-10 FLOAT_MAX = sys.float_info.max def normalize(v): v_norm = np.linalg.norm(v) if (v_norm == 0) and (EPS <= 0): v = np.zeros_like(v) else: v = v / (v_norm + EPS) return v class ART1(BaseEstimator, ClusterMixin): """ART1. Parameters ---------- max_iter : int Maximum number of iterations of the ART2 algorithm to run. max_class : int Maximum number of the class to classify. rho : float, default=0.75 Threshold for degree of match. L : float, default=0.75 Larger values of L bias the selection of inactive nodes over active ones. alpha : float, default=1e-5 Choice parameter. """ def __init__( self, max_iter=10, max_class=100, rho=0.75, L=1.5, alpha=1e-5): super().__init__() self.max_iter = max_iter self.max_class = max_class self.rho = rho self.L = L self.alpha = alpha def _check_params(self, X): # max_iter if self.max_iter <= 0: raise ValueError( f"max_iter must be > 0, got {self.max_iter} instead.") # max_class if self.max_class <= 0: raise ValueError( f"max_class must be > 0, got {self.max_class} instead.") # rho if not (0.0 < self.rho < 1.0): raise ValueError( f"rho must be in range (0, 1), got {self.rho} instead.") # L if self.L <= 0: raise ValueError( f"L must be > 0, got {self.L} instead.") # alpha if self.alpha <= 0: raise ValueError( f"alpha must be > 0, got {self.alpha} instead.") def _initialize(self, X): self.history_ = {"gap": [], "similarity": []} self._n_features = X.shape[1] self._b = np.ones((self.max_class, self._n_features)) * \ self.L / (self.L - 1 + self._n_features) * 0.5 self._t = np.ones((self.max_class, self._n_features)) self._active_list = [False] * self.max_class def fit(self, X): """Compute ART1 clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) Training instances to cluster. Returns ------- self Fitted estimator. """ X = check_array(X) self._check_params(X) self._initialize(X) for _ in range(self.max_iter): y = self._resonance_iter(X) self.labels_ = y return self def partial_fit_predict(self, X): check_is_fitted(self) self.labels_ = self._resonance_iter(X) return self.labels_ def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : array-like of shape (n_samples, n_features) New data to predict. Returns ------- labels : ndarray of shape (n_samples,) Index of the cluster each sample belongs to. Returns -1 label if the match class does not exist. """ check_is_fitted(self) X = check_array(X) return self._resonance_iter(X, should_update=False) def _resonance_iter(self, X, should_update=True): y = -1 * np.ones(X.shape[0], dtype=np.int32) for idx, s in enumerate(X): # F1 T = np.sum(s * self._b, axis=1) / \ (self.alpha + np.sum(self._b, axis=1)) # Search match for _ in range(self.max_class): # F2 : Code selection J = np.argmax(T) # similarity = How much s is contained in t similarity = np.sum(s * self._t[J]) / (self.alpha + np.sum(s)) # Match if (not self._active_list[J]) or (similarity >= self.rho): if should_update: y[idx] = J # Updata parameters self._b[J] = self.L * s * self._t[J] / \ (self.L - 1 + np.sum(s * self._t[J])) self._t[J] = s * self._t[J] gap = np.mean(np.abs(self._b - self._t)) # logging self.history_["gap"].append(gap) self.history_["similarity"].append(similarity) self._active_list[J] = True else: if self._active_list[J]: y[idx] = J break # Do not match else: T[J] = 0 continue return y class ART2(BaseEstimator, ClusterMixin): """ART2. Parameters ---------- max_iter : int, default=10 Maximum number of iterations of the ART2 algorithm to run. max_class : int, default=100 Maximum number of the class to classify. rho : float, default=0.95 Threshold for degree of match. a : float, default=0.1 Degree of retaining memory of previous data. b : float, default=0.1 Degree of retaining memory of the last classified class. c : float, default=0.1 Control the range of degree of match. d : float, default=0.9 Learning rata.. theta : float, default=0.0 Noise reduction threshold for normalized data. alpha : float, default=None Initialization factor of LTM Trace. """ def __init__( self, max_iter=10, max_class=100, rho=0.95, a=0.1, b=0.1, c=0.1, d=0.9, theta=0.0, alpha=None): super().__init__() self.max_iter = max_iter self.max_class = max_class self.rho = rho self.a = a self.b = b self.c = c self.d = d self.theta = theta self.alpha = alpha self._big_m = 1 def _check_params(self, X): # max_iter if self.max_iter <= 0: raise ValueError( f"max_iter must be > 0, got {self.max_iter} instead.") # max_class if self.max_class <= 0: raise ValueError( f"max_class must be > 0, got {self.max_class} instead.") # rho if not (0.0 < self.rho < 1.0): raise ValueError( f"rho must be in range (0, 1), got {self.rho} instead.") # a if self.a < 0: raise ValueError( f"a must be >= 0, got {self.a} instead.") # b if self.b < 0: raise ValueError( f"b must be >= 0, got {self.b} instead.") # c if self.c <= 0: raise ValueError( f"c must be > 0, got {self.c} instead.") # d if not (0.0 < self.d < 1.0): raise ValueError( f"d must be in range (0, 1), got {self.d} instead.") # theta if not (0.0 <= self.theta < 1.0): raise ValueError( f"theta must be in range [0, 1), got {self.theta} instead.") # alpha alpha = 1 / ((1 - self.d) * X.shape[1]**0.5) if self.alpha is None: self.alpha = alpha elif not (0.0 < self.theta < alpha): raise ValueError( f"theta must be in range (0, 1/((1-d)*sqrt(M)) ), got {self.alpha} instead.") # constraint check sigma = self.c * self.d / (1 - self.d) if sigma > 1: raise ValueError( f"cd/(1-d) must be <= 1, got {sigma} instead.") def _initialize(self, X): self.history_ = {"gap": [], "r_norm": []} self._n_features = X.shape[1] self._u = np.zeros(self._n_features) self._p = np.zeros(self._n_features) self._z = self.alpha * np.ones((self._n_features, self.max_class)) self._active_list = [False] * self.max_class def fit(self, X): """Compute ART2 clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) Training instances to cluster. Returns ------- self Fitted estimator. """ # validation X = check_array(X) self._check_params(X) self._initialize(X) # learning for _ in range(self.max_iter): y = self._resonance_iter(X) self.labels_ = y return self def partial_fit_predict(self, X): check_is_fitted(self) self.labels_ = self._resonance_iter(X) return self.labels_ def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : array-like of shape (n_samples, n_features) New data to predict. Returns ------- labels : ndarray of shape (n_samples,) Index of the cluster each sample belongs to. Returns -1 label if the match class does not exist. """ check_is_fitted(self) X = check_array(X) return self._resonance_iter(X, should_update=False) def _resonance_iter(self, X, should_update=True): y = -1 * np.ones(X.shape[0], dtype=np.int32) for idx, s in enumerate(X): # F1 : Update the value of each node w = s + self.a * self._u x = normalize(w) q = normalize(self._p) v = self._activate(x) + self.b * self._activate(q) u = normalize(v) T = np.dot(u, self._z) # Search match for _ in range(self.max_class): # F2 : Code selection J = np.argmax(T) # Caluculate degree of match p = u + self.d * self._z[:, J] r = (u + self.c * p) / \ (np.linalg.norm(u) + np.linalg.norm(self.c * p)) r_norm = np.linalg.norm(r) # Match if (not self._active_list[J]) or (r_norm >= self.rho): self._u = u self._p = p if should_update: y[idx] = J # Updata parameters z_previous = self._z.copy() self._z[:, J] = (1 - self.d) * \ self._z[:, J] + self.d * self._p gap = np.mean(np.abs(z_previous - self._z)) # logging self.history_["gap"].append(gap) self.history_["r_norm"].append(r_norm) self._active_list[J] = True else: if self._active_list[J]: y[idx] = J break # Do not match else: T[J] = - self._big_m continue return y def _activate(self, x): x[np.abs(x) < self.theta] = 0 return x class ART2A(BaseEstimator, ClusterMixin): """ART2-A. Parameters ---------- max_iter : int Maximum number of iterations of the ART2 algorithm to run. max_class : int Maximum number of the class to classify. rho_star : float, default=0.95 Threshold for degree of match. eta : float, default=0.1 Learning rata. theta : float, default=0.0 Noise reduction threshold for normalized data. alpha : float, default=None Initialization factor of LTM Trace. """ def __init__( self, max_iter=10, max_class=100, rho_star=0.95, eta=0.1, theta=0.01, alpha=None): super().__init__() self.max_iter = max_iter self.max_class = max_class self.theta = theta self.alpha = alpha self.eta = eta self.rho_star = rho_star self._big_m = 1 def _check_params(self, X): # max_iter if self.max_iter <= 0: raise ValueError( f"max_iter must be > 0, got {self.max_iter} instead.") # max_class if self.max_class <= 0: raise ValueError( f"max_class must be > 0, got {self.max_class} instead.") # rho if not (0.0 < self.rho_star < 1.0): raise ValueError( f"rho must be in range (0, 1), got {self.rho} instead.") # eta if not (0.0 < self.eta < 1.0): raise ValueError( f"eta must be in range (0, 1), got {self.eta} instead.") # theta if not (0.0 <= self.theta < 1.0): raise ValueError( f"theta must be in range [0, 1), got {self.theta} instead.") # alpha alpha = 1 / (X.shape[1]**0.5) if self.alpha is None: self.alpha = alpha elif not (0.0 < self.theta <= alpha): raise ValueError( f"theta must be in range (0, 1/sqrt(M)], got {self.alpha} instead.") def _initialize(self, X): self.history_ = {"gap": [], "similarity": []} self._n_features = X.shape[1] self._z = self.alpha * np.ones((self._n_features, self.max_class)) self._active_list = [False] * self.max_class def fit(self, X): """Compute ART2 clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) Training instances to cluster. Returns ------- self Fitted estimator. """ X = check_array(X) self._check_params(X) self._initialize(X) for _ in range(self.max_iter): y = self._resonance_iter(X) self.labels_ = y return self def partial_fit_predict(self, X): check_is_fitted(self) self.labels_ = self._resonance_iter(X) return self.labels_ def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : array-like of shape (n_samples, n_features) New data to predict. Returns ------- labels : ndarray of shape (n_samples,) Index of the cluster each sample belongs to. Returns -1 label if the match class does not exist. """ check_is_fitted(self) X = check_array(X) return self._resonance_iter(X, should_update=False) def _resonance_iter(self, X, should_update=True): y = -1 * np.ones(X.shape[0], dtype=np.int32) for idx, s in enumerate(X): # F1 : Update the value of each node u = normalize(self._activate(normalize(s))) T = np.dot(u, self._z) # Search match for _ in range(self.max_class): # F2 : Code selection J = np.argmax(T) # Match if (not self._active_list[J]) or (T[J] >= self.rho_star): if should_update: y[idx] = J # Updata parameters z_previous = self._z.copy() if self._active_list[J]: psi = u.copy() psi[self._z[:, J] <= self.theta] = 0 self._z[:, J] = normalize( self.eta * psi + (1 - self.eta) * self._z[:, J]) else: self._z[:, J] = u gap = np.mean(np.abs(z_previous - self._z)) # logging self.history_["gap"].append(gap) self.history_["similarity"].append(T[J]) self._active_list[J] = True else: if self._active_list[J]: y[idx] = J break # Do not match else: T[J] = - self._big_m continue return y def _activate(self, x): x[np.abs(x) < self.theta] = 0 return x class FuzzyART(BaseEstimator, ClusterMixin): """FuzzyART. Parameters ---------- max_iter : int Maximum number of iterations of the ART2 algorithm to run. max_class : int Maximum number of the class to classify. rho : float, default=0.75 Threshold for degree of match. alpha : float, default=1e-5 Choice parameter. beta : float, default=0.1 Learning rata. """ def __init__( self, max_iter=10, max_class=100, rho=0.75, alpha=1e-5, beta=0.1): super().__init__() self.max_iter = max_iter self.max_class = max_class self.rho = rho self.alpha = alpha self.beta = beta self._big_m = 1 def _check_params(self, X): # max_iter if self.max_iter <= 0: raise ValueError( f"max_iter must be > 0, got {self.max_iter} instead.") # max_class if self.max_class <= 0: raise ValueError( f"max_class must be > 0, got {self.max_class} instead.") # rho if not (0.0 < self.rho < 1.0): raise ValueError( f"rho must be in range (0, 1), got {self.rho} instead.") # alpha if self.alpha <= 0: raise ValueError( f"alpha must be > 0, got {self.alpha} instead.") # beta if not (0.0 < self.beta < 1.0): raise ValueError( f"beta must be in range (0, 1), got {self.beta} instead.") def _initialize(self, X): self.history_ = {"gap": [], "similarity": []} self._n_features = X.shape[1] self._w = np.ones((self.max_class, self._n_features)) self._active_list = [False] * self.max_class def fit(self, X): """Compute FuzzyART clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) Training instances to cluster. Returns ------- self Fitted estimator. """ X = check_array(X) self._check_params(X) self._initialize(X) for _ in range(self.max_iter): y = self._resonance_iter(X) self.labels_ = y return self def partial_fit_predict(self, X): check_is_fitted(self) self.labels_ = self._resonance_iter(X) return self.labels_ def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : array-like of shape (n_samples, n_features) New data to predict. Returns ------- labels : ndarray of shape (n_samples,) Index of the cluster each sample belongs to. Returns -1 label if the match class does not exist. """ check_is_fitted(self) X = check_array(X) return self._resonance_iter(X, should_update=False) def _resonance_iter(self, X, should_update=True): y = -1 * np.ones(X.shape[0], dtype=np.int32) for idx, s in enumerate(X): # F1 T = np.sum(np.minimum(s, self._w), axis=1) / \ (self.alpha + np.sum(self._w, axis=1)) # Search match for _ in range(self.max_class): # F2 : Code selection J = np.argmax(T) similarity = np.sum(np.minimum(s, self._w[J])) / np.sum(s) # Match if (not self._active_list[J]) or (similarity >= self.rho): if should_update: y[idx] = J # Updata parameters w_previous = self._w.copy() if self._active_list[J]: self._w[J] = self.beta * \ np.minimum(s, self._w[J]) + (1 - self.beta) * self._w[J] else: self._w[J] = np.minimum(s, self._w[J]) gap = np.mean(np.abs(w_previous - self._w)) # logging self.history_["gap"].append(gap) self.history_["similarity"].append(similarity) self._active_list[J] = True else: if self._active_list[J]: y[idx] = J break # Do not match else: T[J] = - self._big_m continue return y class SFAM(BaseEstimator, ClassifierMixin): """SFAM. Parameters ---------- max_iter : int Maximum number of iterations of the ART2 algorithm to run. max_class : int Maximum number of the class to classify. rho : float, default=0.75 Threshold for degree of match. alpha : float, default=1e-5 Choice parameter. beta : float, default=0.1 Learning rata. epsilon : float, default=0.0001 Paramter to increase vigilance rho. """ def __init__( self, max_iter=10, max_class=100, rho=0.75, alpha=1e-5, beta=0.1, epsilon=0.0001): super().__init__() self.max_iter = max_iter self.max_class = max_class self.rho = rho self.alpha = alpha self.beta = beta self.epsilon = epsilon self._big_m = 1 def _check_params(self, X): # max_iter if self.max_iter <= 0: raise ValueError( f"max_iter must be > 0, got {self.max_iter} instead.") # max_class if self.max_class <= 0: raise ValueError( f"max_class must be > 0, got {self.max_class} instead.") # rho if not (0.0 < self.rho < 1.0): raise ValueError( f"rho must be in range (0, 1), got {self.rho} instead.") # alpha if self.alpha <= 0: raise ValueError( f"alpha must be > 0, got {self.alpha} instead.") # beta if not (0.0 < self.beta < 1.0): raise ValueError( f"beta must be in range (0, 1), got {self.beta} instead.") # epsilon if self.epsilon <= 0: raise ValueError( f"epsilon must be > 0, got {self.epsilon} instead.") def _initialize(self, X): self.history_ = {"gap": [], "similarity": []} self._n_features = X.shape[1] self._w = np.ones((self.max_class, self._n_features)) self._active_list = [False] * self.max_class self._inner_label2y = dict() def fit(self, X, y): """Compute SFAM clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) Training instances to cluster. y : array-like of shape (n_samples, ) Label vector relative to X. Returns ------- self Fitted estimator. """ X, y = check_X_y(X, y) self._check_params(X) self._initialize(X) for _ in range(self.max_iter): self._resonance_iter(X, y) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : array-like of shape (n_samples, n_features) New data to predict. Returns ------- y : ndarray of shape (n_samples,) Class labels for samples in X. Returns -1 label if the match class does not exist. """ check_is_fitted(self) X = check_array(X) y = -1 * np.ones(X.shape[0], dtype=np.int32) for idx, s in enumerate(X): T = np.sum(np.minimum(s, self._w), axis=1) / \ (self.alpha + np.sum(self._w, axis=1)) for _ in range(self.max_class): J = np.argmax(T) similarity = np.sum(np.minimum(s, self._w[J])) / np.sum(s) # Do resonance if (self._active_list[J]) and (similarity >= self.rho): # Do resonance y[idx] = self._inner_label2y[J] # inactive or dont resonance else: T[J] = - self._big_m continue return y def _resonance_iter(self, X, y): for idx, s in enumerate(X): # F1 rho = self.rho T = np.sum(np.minimum(s, self._w), axis=1) / \ (self.alpha + np.sum(self._w, axis=1)) w_previous = self._w.copy() # Search match for _ in range(self.max_class): # Data mismatch if rho > 1: break # F2 : Code selection J = np.argmax(T) similarity = np.sum(np.minimum(s, self._w[J])) / np.sum(s) # active if self._active_list[J]: # Do resonance if similarity >= self.rho: # Class match if self._inner_label2y[J] == y[idx]: self._w[J] = self.beta * \ np.minimum(s, self._w[J]) + (1 - self.beta) * self._w[J] break # Class does not match else: T[J] = - self._big_m rho += self.epsilon continue # Do not resonance else: T[J] = - self._big_m continue # inactive else: self._inner_label2y[J] = y[idx] self._w[J] = np.minimum(s, self._w[J]) self._active_list[J] = True break else: pass # break then logging gap = np.mean(np.abs(w_previous - self._w)) self.history_["gap"].append(gap) self.history_["similarity"].append(similarity) class BayesianART(BaseEstimator, ClusterMixin): """BayesianART. Parameters ---------- max_iter : int Maximum number of iterations of the ART2 algorithm to run. max_class : int Maximum number of the class to classify. rho : float, default=0.75 Threshold for degree of match. sigma : float, default=0.1 Choice parameter. max_hyper_volume : float, default=None Maximum allowed hyper-volume of classes. """ def __init__(self, max_iter=10, max_class=100, rho=0.75, sigma=0.1, max_hyper_volume=FLOAT_MAX): super().__init__() self.max_iter = max_iter self.max_class = max_class self.rho = rho self.sigma = sigma self.max_hyper_volume = max_hyper_volume self._big_m = 1 def _check_params(self, X): # max_iter if self.max_iter <= 0: raise ValueError( f"max_iter must be > 0, got {self.max_iter} instead.") # max_class if self.max_class <= 0: raise ValueError( f"max_class must be > 0, got {self.max_class} instead.") # rho if not (0.0 < self.rho < 1.0): raise ValueError( f"rho must be in range (0, 1), got {self.rho} instead.") # sigma if self.sigma <= 0: raise ValueError( f"sigma must be > 0, got {self.sigma} instead.") # max_hyper_volume if self.max_hyper_volume <= 0: raise ValueError( f"max_hyper_volume must be > 0, got {self.max_hyper_volume} instead.") def _initialize(self, X): self.history_ = {"gap_mu": [], "gap_cov": [], "likelihood": [], "hyper_volume": []} self._n_features = X.shape[1] self._mu = np.zeros((self.max_class, self._n_features)) self._cov = np.repeat( np.diag([self.sigma**2] * self._n_features)[None, ...], self.max_class, axis=0) self._counter = np.array([0] * self.max_class) # constraint if self.sigma**2 > np.power(self.rho, 1 / self._n_features): raise ValueError( f"sigma**2 must be < rho**(1/n_feature), sigma**2={self.sigma**2}, rho**(1/n_feature)={np.power(self.rho, 1 / self._n_features)}") def fit(self, X): """Compute FuzzyART clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) Training instances to cluster. Returns ------- self Fitted estimator. """ X = check_array(X) self._check_params(X) self._initialize(X) for _ in range(self.max_iter): y = self._resonance_iter(X) self.labels_ = y return self def partial_fit_predict(self, X): check_is_fitted(self) self.labels_ = self._resonance_iter(X) return self.labels_ def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : array-like of shape (n_samples, n_features) New data to predict. Returns ------- labels : ndarray of shape (n_samples,) Index of the cluster each sample belongs to. Returns -1 label if the match class does not exist. """ check_is_fitted(self) X = check_array(X) return self._resonance_iter(X, should_update=False) def _gaussian(self, x, j): return multivariate_normal.pdf(x, mean=self._mu[j], cov=self._cov[j]) def _resonance_iter(self, X, should_update=True): y = -1 * np.ones(X.shape[0], dtype=np.int32) # first trial begin = 0 if self._counter[0] == 0: self._mu[0] = X[0].copy() self._counter[0] = 1 begin = 1 for idx in range(begin, len(X)): s = X[idx].copy() # F1 T_denominator = np.sum( [ self._gaussian( s, j) * self._counter[j] / np.sum( self._counter) for j in np.where( self._counter > 0)[0]]) T = np.array([self._gaussian(s, j) * self._counter[j] / np.sum(self._counter) / T_denominator for j in np.where(self._counter > 0)[0]]) # Search match for _ in range(len(T)): # F2 : Code selection J = np.argmax(T) likelihood = self._gaussian(s, J) hyper_volume = np.power(np.linalg.det(self._cov[J]), 1 / (2 * self._n_features)) # Match if ((likelihood >= self.rho) and (hyper_volume <= self.max_hyper_volume)): y[idx] = J if should_update: mu_previous = self._mu.copy() cov_previous = self._cov.copy() # Updata parameters self._counter[J] += 1 self._mu[J] = (1 - 1 / self._counter[J]) * \ self._mu[J] + 1 / self._counter[J] * s self._cov[J] = (1 - 1 / self._counter[J]) * self._cov[J] + 1 / \ self._counter[J] *
np.outer(s - self._mu[J], s - self._mu[J])
numpy.outer
from __future__ import division, print_function, absolute_import print('Importing libraries...') import numpy as np import imageio import math import pandas as pd import tensorflow as tf from PIL import Image from skimage import transform #For downsizing images from sklearn.model_selection import train_test_split print('Done') #---------------------------------------------------------------------------------------------------------------- #--------------------------------------------------DATA PREPARATION---------------------------------------------- #---------------------------------------------------------------------------------------------------------------- def scale_range (input, min, max): input += -(np.min(input)) input /=
np.max(input)
numpy.max
import time from sklearn.model_selection import train_test_split,KFold from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC import numpy as np from sklearn.decomposition import PCA start=time.clock() # 显示程序开始运行时的时间 with open('K9.data') as df: #打开文件 dataMat=[]; labels=[] for line in df.readlines(): #逐行读取文件 lineArr=line.strip().split(',') #文件以','分隔每一行的因素 if '?' not in lineArr: #数据中有部分缺失的数据用?替代了,在训练模型的时候应该无视这些样本 dataMat.append(lineArr[:-2]) #每一行中倒数第二个元素之前的都是输入变量 labels.append(lineArr[-2]) #倒数第二个为分类标签,而倒数第一个为',' pca=PCA(n_components=20) # 保留20个主成分 X_pca=pca.fit_transform(dataMat) # 降维后的数据 explained=sum(pca.explained_variance_ratio_) #方差累计贡献率 print('方差贡献率累计:%f' %explained) X=
np.array(X_pca)
numpy.array
###################################################################################### # # Authors : <NAME>, <NAME> # KTH # Email : <EMAIL>, <EMAIL> # # computations.py: implements, for the SEM, necessary computational methods ##################################################################################### import numpy as np import networkx as nx # define each letter of alphabet as a vector nuc_vec = {'A': [1., 0., 0., 0.], 'C': [0., 1., 0., 0.], 'G': [0., 0., 1., 0.], 'T': [0., 0., 0., 1.]} alphabet_size = 4 # number of letters in alphabet # compute upward messages def compute_up_messages(data, tree, evo_model): n_leaves, n_sites = data.shape root = len(tree) - 1 # store up message for each node internal+external = 2n-1 up_table = np.ones((len(tree), alphabet_size, n_sites)) for i in range(n_leaves): up_table[i] =
np.transpose([nuc_vec[c] for c in data[i]])
numpy.transpose
#!/usr/bin/python """ Student name: <NAME> Student ID: 21230987 Github URL: https://github.com/SaiPramodh128/ARC """ import os, sys import json import numpy as np import re ### YOUR CODE HERE: write at least three functions which solve ### specific tasks by transforming the input x and returning the ### result. Name them according to the task ID as in the three ### examples below. Delete the three examples. The tasks you choose ### must be in the data/training directory, not data/evaluation. """ Summary : In the resoning corpus, here we are supposed to indentify patterns and predict the output for the patterns that might be missing. As we are suposed to write functions to predict the patterns based on the train dataset I have written to solve few shapes based on pattern , with colour occurance and boundary pattern. I have used numpy a lot on working in this assignment I had the chance to go through a lot in numpy libraries. Helped in better understanding of working with arrays in python. """ # ====================================Task solve_5ad4f10b============================================ """ On analysis here the input contains two unique colour, one scattered all over the grid and other appears to be grid of square shape. The square shaped grid consists of random colour which appears to be in m x n but the output is in 3 x 3 grid. The subgrid which is inside the main input grid is then transformed to 3 x 3, difference with swap of the unique colours found in input. Pattern: 1. The background colour of the input here appears to be black(0) which will the background of the output grid too. 2. The scattered colour are found initial as I think scattered appears first in the input before the subgrid. There might be also be a scenario where scatterd occurs less than the subgrid colour. 3. The subgrid may be in any m x n which is always square matrix array. It appears to be a grid with unique colours filling the m x n which is resembles a 3 x 3 matric with missing same unique colours. Transformation: 1. The scattered colour and the subgrid colour are found which are later going to be swapped. 2.The boundary of the subgrid is found by the first occurence of the subgrid color in the input by gramming the index as top left and bottom right occurance of the subgrid colour 3. Then framing the output grid with the stepsize of 3 since the output grid is a 3 x 3 grid. 4. The subgrid values are swapped with scattered colour value in the output grid which is filled. With spliting the row in three parts. These three parts resembles the output grid and black(0) as the missing value """ def solve_5ad4f10b(x): #the unique colours with index which is used to identify the scatterd and grid colours unique_elem_list, indexes = np.unique(x, return_index=True) map_color_index = zip(unique_elem_list, indexes) sorted_color = sorted(map_color_index, key=lambda y: y[1]) unique_elems = [sorted_color[i][0] for i in range(len(sorted_color))] #Removing black as it is the background colour unique_elems = np.delete(unique_elems, 0) # calling a method to get the boundaries of the unique colour value which might be of m x n grid. sub_grid = get_boundaries(x, unique_elems[1]) #splitting the subgrid into three parts step_size = (int)(len(sub_grid) / 3) output = [] # filling the output array with rows of array with the scattered colour value. for y in range(0, len(sub_grid), step_size): row_arr = [] for x in range(0, len(sub_grid), step_size): if sub_grid[y][x] == unique_elems[1]: row_arr.append(unique_elems[0]) else: row_arr.append(0) output.append(row_arr) return np.array(output) # used to get the boundaries of the value def get_boundaries(X, unique_elem): row , col = X.shape for y in range(row): if (unique_elem in X[y]): top = y break; for y in range(row): yval = row - (y + 1) if (unique_elem in X[yval]): bottom = yval break; t = np.transpose(X) for x in range(col): if (unique_elem in t[x]): left = x break; for x in range(col): xval = col - (x + 1) if (unique_elem in t[xval]): right = xval break; return np.array(X)[top:bottom + 1, left:right + 1] # ====================================Task solve_5ad4f10b=============================================== # ====================================Task solve_1b60fb0c=============================================== """ On analysis the input and output are going to the same. The background of the input are mostly black (0) and has blue shapes of pattern and the missing pattern are in red. Patterns: 1. If we consider in a symetrical view of lets say top and bottom halves both are symetrical to each other similarly the left and right should also be symetrical. 2. For this input if we consider the top and bottom parts if they are adjusted, the left and right will also follow the same funcionality since they are symetrical. On Comparing the first and last rows, as well as the first + 1 and last - 1 rows On Comparing the first and last columns, as well as the first + 1 and last - 1 columns Transformations : 1. The goal is to fill the empty blue cells in the output grid with red to satisfy the pattern criteria. 2. If the bottom row of the grid is displaced by one along the x axis as compared to the top row, when compared to the right column of the grid, the left column is displaced by one along the y axis. The pattern shape is iterated in a loop to fill the colour same as the symetrical side. """ def solve_1b60fb0c(x): output = np.copy(x) # Getting the unique values and occurence of them unique_elem_list, no_of_times = np.unique(x, return_counts=True) map_color_count = zip(unique_elem_list, no_of_times) sorted_color_count = sorted(map_color_count, key=lambda y: y[1]) unique_color = 0 for i in sorted_color_count: # since black(0) is the background colour the other unique colour is fetched. which is the pattern's colour if i[0] != 0: unique_color = i[0] m, n = output.shape b = m - 1 t = 0 r = n - 1 l = 0 # Here the colour that is missing in the pattern is replaced with red(2) color_to_be_filled = 2 # Iterate the loop till the center of the grid to get the missing values while t < m / 2: if unique_color in output[b][:]: if unique_color in output[t][:]: previous_shape = output[t:b, l] if (output[b, l:r] == output[t, l:r]).all(): new_shape = output[t:b, r] else: # Here roll method is used rotate over the axis new_shape = np.roll(output[t:b, r], axis=0, shift=1) output[t:b, l] = np.where(previous_shape == new_shape, previous_shape, color_to_be_filled) else: t = t + 1 l = l + 1 continue b = b - 1 t = t + 1 l = l + 1 r = r - 1 return output # ====================================Task solve_1b60fb0c================================================== # ====================================Task solve_c8cbb738================================================== """ On analysis the input may be of any size m x n. The output size depends on the input as of the biggest sub pattern in the input Patterns: 1. Two or more distinct colors, with one color notably found in the input grid cells 2. By connecting the same coloured cells, you can make shapes like squares, rectangles, and diamonds. Transformation: 1. Calculate the size of the largest square-shaped colored cells and create an output grid with that size and dominant color as the background colour. 2. Now, start looking at the various colored cells and map them in the output grid in the same form (rectangle, diamond, square) with the same color and size as the input grid. """ def solve_c8cbb738(x): # Getting the unique values and occurence of them unique_elem_list, no_of_times = np.unique(x, return_counts=True) map_color_count = zip(unique_elem_list, no_of_times) sorted_color_count = sorted(map_color_count, key=lambda y: y[1]) # max occurence colour which will the background colour of the output max_num, max_count = sorted_color_count[len(sorted_color_count) - 1] min_num, min_count = sorted_color_count[0] # Find the indexes of the less frequent color and determine the maximum distance in X axis. # Using the calculated distance, find the centre position and generate the output grid with dominant color m, n = np.where(x == min_num) output_size = np.max(m) - np.min(m) + 1 mid_point = int(np.floor(output_size / 2)) output = np.full((output_size, output_size), max_num) for color in unique_elem_list: if color != max_num: m, n = np.where(x == color) if len(
np.unique(m)
numpy.unique
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 6 17:54:53 2018 @author: haskig """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: yan Check registration quality by varying translation or rotation. Compare with MI in the same time. """ # %% from utils import registration_reader as rr from utils import volume_data_generator as vdg from utils import volume_resampler_3d as vr3d import glob from keras.models import load_model from matplotlib import pyplot as plt import numpy as np from os import path import SimpleITK as sitk from resizeimage import resizeimage from PIL import Image import random import scipy from utils import volume_resampler_3d as vr3D from stl import mesh from keras import backend as K # %% input image dimensions img_rows, img_cols = 96, 96 depth = 32 # img_channels = 2 batch_size = 64 tmp_folder = '/home/haskig/tmp' # %% a=0.1 if not 'deep_network' in globals(): print('Loading deep network...') #fn_model = 'trained_binary_model_3d.h5' """ fn_model = 'trained_3d_regression_20170627_refined.h5' folder_model = '/home/data/models' fn_full = path.join(folder_model, fn_model) """ fn_model = '/zion/common/experimental_results/haskins_mrus_reg/trained_3d_regression_new_data.h5' deep_network = load_model(fn_model) #fn_model = '/home/haskig/tmp/trained_3d_regression_OG_smooth_stdev.h5' #deep_network = load_model(fn_model, custom_objects={'mse_var_reg':mse_var_reg}) print('Deep network loaded from <{}>'.format(fn_model)) # %% data_folder = '/home/data/uronav_data' """ if not 'vdg_train' in globals(): vdg_train = vdg.VolumeDataGenerator(data_folder, (1,500)) print('{} cases for using'.format(vdg_train.get_num_cases())) """ vdg_train = vdg.VolumeDataGenerator(data_folder, (71,750)) print('{} cases for using'.format(vdg_train.get_num_cases())) #trainGen = vdg_train.generate_batch_with_parameters(batch_size=batch_size, shape=(img_cols,img_rows,depth)) # %% Generate samples and check predict values case_idx = 1 case_folder = 'Case{:04d}'.format(case_idx) full_case_path = path.join(data_folder, case_folder) fn_stl = path.join(full_case_path, 'segmentationrtss.uronav.stl') segMesh = mesh.Mesh.from_file(fn_stl) folder = '/home/haskig/data/uronav_data' """ US_mat_path = path.join(folder, 'Case{:04}/SSC_US'.format(case_idx)) MR_mat_path = path.join(folder, 'Case{:04}/SSC_MR'.format(case_idx)) SSC_moving = scipy.io.loadmat(US_mat_path)['US_SSC'] SSC_fixed = scipy.io.loadmat(MR_mat_path)['MR_SSC'] """ def get_array_from_itk_matrix(itk_mat): mat = np.reshape(np.asarray(itk_mat), (3,3)) return mat fns = glob.glob(path.join(full_case_path, '*.txt')) if len(fns) < 1: print('No registration file found!') fn_gt = fns[0] for fn_registration in fns: if 'refined' in fn_registration: fn_gt = fn_registration trans_gt = rr.load_registration(fn_gt) print(trans_gt) R = sitk.ImageRegistrationMethod() R.SetMetricAsJointHistogramMutualInformation() scores = [] mis = [] var_range = np.arange(-20, 20, 0.5) n = 1 e = 0 for x in var_range: trans = np.copy(trans_gt) trans0 = np.copy(trans_gt) x0 = x score = 0 for j in range(n): if j == 0: trans0[2,3] = trans_gt[2,3] + x sample0 = vdg_train.create_sample(case_idx, (img_cols,img_rows,depth), trans0) sampledFixed0 = sample0[0] sampledMoving0 = sample0[1] x += random.uniform(-e,e) trans[2,3] = trans_gt[2,3] + x sample = vdg_train.create_sample(case_idx, (img_cols,img_rows,depth), trans) sampledFixed = sample[0] sampledMoving = sample[1] x = sitk.GetArrayFromImage(sampledFixed) y = sitk.GetArrayFromImage(sampledMoving) #pos_neg = sample[2] error_trans = sample[2] (angleX, angleY, angleZ, tX, tY, tZ) = sample[3] sample4D = np.zeros((1, 32, 96, 96, 2), dtype=np.ubyte) #print(sample4D.shape) sample4D[0, :,:,:, 0] = sitk.GetArrayFromImage(sampledFixed) sample4D[0, :,:,:, 1] = sitk.GetArrayFromImage(sampledMoving) prediction = deep_network.predict(sample4D) score_dl = prediction[0,0] score += score_dl x=x0 score /= n scores.append(score) """ SSD = 0 trans[2,3] = trans_gt[2,3] + x for i in range(SSC_fixed.shape[3]): resampler3D = vr3D.VolumeResampler(sitk.GetImageFromArray(SSC_fixed[:,:,:,i]), segMesh, sitk.GetImageFromArray(SSC_moving[:,:,:,i]), trans) resampler3D.set_transform(trans) sampledFixed, sampledMoving = resampler3D.resample(96, 96, 32) fixed_img = sitk.GetArrayFromImage(sampledFixed) moving_img = sitk.GetArrayFromImage(sampledMoving) diff = np.subtract(fixed_img, moving_img) sq_diff = np.square(diff) SSD += np.sum(sq_diff) SSC = SSD """ score_mi = R.MetricEvaluate(sampledFixed0, sampledMoving0) mis.append(score_mi) print('DL: %.4g <--> MI: %.4g' % (score, score_mi)) # %% fig, ax1 = plt.subplots() #num_pts = len(scores) ax1.plot(var_range, scores, c='b', label='DL') ax1.set_title('Translation along Z-axis', fontsize=14) ax1.set_xlabel('Translation along Z axis (mm)'.format(n,e), fontsize=14) # Make the y-axis label, ticks and tick labels match the line color. ax1.set_ylabel('CNN score (mm)', color='b', fontsize=14) ax1.tick_params('y', colors='b') ax1.legend(loc='lower left',prop={'size': 11}) ax2 = ax1.twinx() ax2.plot(var_range, -np.asarray(mis), c='r', label='MI') ax2.set_ylabel('Mutual Information', color='r', fontsize=14) ax2.tick_params('y', colors='r') ax2.legend(loc="lower right",prop={'size': 11}) fig.tight_layout() plt.savefig('/home/haskig/Pictures/MIvLM_trans_bad_case_56.pdf', dpi=600, format='pdf') # %% Rotations #import transformations as tfms scores = [] mis = [] var_range = np.arange(-20, 20, 0.5) n = 1 e = 0 for x in var_range: x0 = x trans = np.copy(trans_gt) trans0 = np.copy(trans_gt) score = 0 #trans[2,3] = trans_gt[2,3] + x #mat_rot = tfms.rotation_matrix(x/180.0 * np.pi, (0,0,1)) #trans = mat_rot.dot(trans) rot0, t0 = vdg_train.create_transform(x0, x0, x0, 0, 0, 0, trans_gt) trans0[:3,:3] = rot0 trans0[:3, 3] = t0 + trans_gt[:3,3] sample0 = vdg_train.create_sample(case_idx, (img_cols,img_rows,depth), trans0) sampledFixed0 = sample0[0] sampledMoving0 = sample0[1] #pos_neg = sample[2] error_trans0 = sample0[2] (angleX, angleY, angleZ, tX, tY, tZ) = sample0[3] for j in range(n): x += random.uniform(-e,e) rot, t = vdg_train.create_transform(x, x, x, 0, 0, 0, trans_gt) trans[:3,:3] = rot trans[:3, 3] = t + trans_gt[:3,3] sample = vdg_train.create_sample(case_idx, (img_cols,img_rows,depth), trans) sampledFixed = sample[0] sampledMoving = sample[1] #pos_neg = sample[2] error_trans0 = sample[2] (angleX, angleY, angleZ, tX, tY, tZ) = sample[3] sample4D = np.zeros((1, 32, 96, 96, 2), dtype=np.ubyte) #print(sample4D.shape) sample4D[0, :,:,:, 0] = sitk.GetArrayFromImage(sampledFixed) sample4D[0, :,:,:, 1] = sitk.GetArrayFromImage(sampledMoving) prediction = deep_network.predict(sample4D) score_dl = prediction[0,0] score += score_dl score /= n scores.append(score) score_mi = R.MetricEvaluate(sampledFixed0, sampledMoving0) mis.append(score_mi) print('DL: %.4g <--> MI: %.4g' % (score_dl, score_mi)) # % fig, ax1 = plt.subplots() #num_pts = len(scores) ax1.plot(var_range, scores, c='b', label='DL') ax1.set_title('Rotation around all axes simultaneously', fontsize=14) ax1.set_xlabel('Rotation around all axes (degree)'.format(n,e), fontsize=14) # Make the y-axis label, ticks and tick labels match the line color. ax1.set_ylabel('CNN score (mm)', color='b', fontsize=14) ax1.tick_params('y', colors='b') ax1.legend(loc='lower left',prop={'size': 11}) ax2 = ax1.twinx() ax2.plot(var_range, -
np.asarray(mis)
numpy.asarray
############################################################################ # Copyright ESIEE Paris (2020) # # # # Contributor(s) : <NAME> # # # # Distributed under the terms of the CECILL-B License. # # # # The full license is in the file LICENSE, distributed with this software. # ############################################################################ import unittest import numpy as np import higra as hg class TestTreeMonotonicRegression(unittest.TestCase): def test_tree_monotonic_regression_trivial(self): tree = hg.Tree((7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11)) altitudes = np.asarray((0, 1, 0, 2, 0, 0, 0, 2, 3, 0, 5, 10)) res = hg.tree_monotonic_regression(tree, altitudes, "max") self.assertTrue(np.all(altitudes == res)) res = hg.tree_monotonic_regression(tree, altitudes, "min") self.assertTrue(np.all(altitudes == res)) res = hg.tree_monotonic_regression(tree, altitudes, "least_square") self.assertTrue(np.all(altitudes == res)) res = hg.tree_monotonic_regression(tree, altitudes, "max") self.assertTrue(np.all(altitudes == res)) with self.assertRaises(Exception): hg.tree_monotonic_regression(tree, altitudes, "truc") def test_tree_monotonic_regression_max(self): tree = hg.Tree((7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11)) altitudes = np.asarray((0, 3, 0, 2, 0, 0, 0, 2, 3, 0, 5, 4)) ref = np.asarray((0, 3, 0, 2, 0, 0, 0, 3, 3, 0, 5, 5)) res = hg.tree_monotonic_regression(tree, altitudes, "max") self.assertTrue(np.all(ref == res)) def test_tree_monotonic_regression_min(self): tree = hg.Tree((7, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 11)) altitudes = np.asarray((0, 3, 0, 2, 0, 0, 0, 2, 3, 0, 5, 4)) ref = np.asarray((0, 2, 0, 2, 0, 0, 0, 2, 3, 0, 4, 4)) res = hg.tree_monotonic_regression(tree, altitudes, "min") self.assertTrue(
np.all(ref == res)
numpy.all
import time from collections import deque import cv2 import math import queue import threading import traceback import curses import numpy as np from joblib import load import logging from detect import Detector import olympe from olympe.messages.ardrone3.Piloting import TakeOff, Landing, moveBy, CancelMoveBy from olympe.messages.ardrone3.PilotingState import FlyingStateChanged from olympe.messages.ardrone3.PilotingSettings import MaxTilt from olympe.messages.ardrone3.SpeedSettings import MaxVerticalSpeed, MaxRotationSpeed olympe.log.update_config({"loggers": {"olympe": {"level": "ERROR"}}}) logging.basicConfig(filename='log.log', level=logging.INFO, format="%(asctime)s.%(msecs)03d;%(levelname)s;%(message)s;", datefmt='%Y-%m-%d,%H:%M:%S') logging.info("message;distance;time(seconds)") DRONE_IP = "192.168.42.1" event_time = time.time() # get euclidean distance between two points in instances def get_point_distance(instances, one, two): p1 = instances[0][one] p2 = instances[0][two] return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) # get a point as tuple def get_point(instances, number): point = instances[0][number] return int(point[0]), int(point[1]) # remove outliers from two-dimensional array a def remove_outliers(a): if len(a.shape) == 2: q1 = np.percentile(a, 25, interpolation='midpoint', axis=0) q3 = np.percentile(a, 75, interpolation='midpoint', axis=0) iqr = q3 - q1 out1 = np.where(a + (1.5 * iqr) - q1 < 0)[0] out2 = np.where(a - (1.5 * iqr) - q3 > 0)[0] out = np.unique(np.append(out1, out2)) a = np.delete(a, out, axis=0) return a class FlightListener(olympe.EventListener): @olympe.listen_event(FlyingStateChanged()) def onStateChanged(self, event, scheduler): # log flight state logging.error("{};{};{:.3f}".format(event.message.name, event.args["state"], time.time() - event_time)) def get_distance_height(height): return 211.08 * math.pow(height, -1.045) def get_distance_width(width): return 223.05 * math.pow(width, -1.115) class MainClass(threading.Thread): def __init__(self): # Create the olympe.Drone object from its IP address self.drone = olympe.Drone(DRONE_IP) # subscribe to flight listener listener = FlightListener(self.drone) listener.subscribe() self.last_frame = np.zeros((1, 1, 3), np.uint8) self.frame_queue = queue.Queue() self.flush_queue_lock = threading.Lock() self.detector = Detector() self.keypoints_image = np.zeros((1, 1, 3), np.uint8) self.keypoints = deque(maxlen=5) self.faces = deque(maxlen=10) self.f = open("distances.csv", "w") self.face_distances = deque(maxlen=10) self.image_width = 1280 self.image_height = 720 self.half_face_detection_size = 150 self.poses_model = load("models/posesmodel.joblib") self.pose_predictions = deque(maxlen=5) self.pause_finding_condition = threading.Condition(threading.Lock()) self.pause_finding_condition.acquire() self.pause_finding = True self.person_thread = threading.Thread(target=self.fly_to_person) self.person_thread.start() # flight parameters in meter self.flight_height = 0.0 self.max_height = 1.0 self.min_dist = 1.5 # keypoint map self.nose = 0 self.left_eye = 1 self.right_eye = 2 self.left_ear = 3 self.right_ear = 4 self.left_shoulder = 5 self.right_shoulder = 6 self.left_elbow = 7 self.right_elbow = 8 self.left_wrist = 9 self.right_wrist = 10 self.left_hip = 11 self.right_hip = 12 self.left_knee = 13 self.right_knee = 14 self.left_ankle = 15 self.right_ankle = 16 # person distance self.eye_dist = 0.0 # save images self.save_image = False self.image_counter = 243 self.pose_file = open("poses.csv", "w") super().__init__() super().start() def start(self): self.drone.connect() # Setup your callback functions to do some live video processing self.drone.set_streaming_callbacks( raw_cb=self.yuv_frame_cb, start_cb=self.start_cb, end_cb=self.end_cb, flush_raw_cb=self.flush_cb, ) # Start video streaming self.drone.start_video_streaming() # set maximum speeds print("rotation", self.drone(MaxRotationSpeed(1)).wait().success()) print("vertical", self.drone(MaxVerticalSpeed(0.1)).wait().success()) print("tilt", self.drone(MaxTilt(5)).wait().success()) def stop(self): # Properly stop the video stream and disconnect self.drone.stop_video_streaming() self.drone.disconnect() def yuv_frame_cb(self, yuv_frame): """ This function will be called by Olympe for each decoded YUV frame. :type yuv_frame: olympe.VideoFrame """ yuv_frame.ref() self.frame_queue.put_nowait(yuv_frame) def flush_cb(self): with self.flush_queue_lock: while not self.frame_queue.empty(): self.frame_queue.get_nowait().unref() return True def start_cb(self): pass def end_cb(self): pass def show_yuv_frame(self, window_name, yuv_frame): # the VideoFrame.info() dictionary contains some useful information # such as the video resolution info = yuv_frame.info() height, width = info["yuv"]["height"], info["yuv"]["width"] # yuv_frame.vmeta() returns a dictionary that contains additional # metadata from the drone (GPS coordinates, battery percentage, ...) # convert pdraw YUV flag to OpenCV YUV flag cv2_cvt_color_flag = { olympe.PDRAW_YUV_FORMAT_I420: cv2.COLOR_YUV2BGR_I420, olympe.PDRAW_YUV_FORMAT_NV12: cv2.COLOR_YUV2BGR_NV12, }[info["yuv"]["format"]] # yuv_frame.as_ndarray() is a 2D numpy array with the proper "shape" # i.e (3 * height / 2, width) because it's a YUV I420 or NV12 frame # Use OpenCV to convert the yuv frame to RGB cv2frame = cv2.cvtColor(yuv_frame.as_ndarray(), cv2_cvt_color_flag) # show video stream cv2.imshow(window_name, cv2frame) cv2.moveWindow(window_name, 0, 500) # show other windows self.show_face_detection(cv2frame) self.show_keypoints() cv2.waitKey(1) def show_keypoints(self): if len(self.keypoints) > 2: # display eye distance cv2.putText(self.keypoints_image, 'Distance(eyes): ' + "{:.2f}".format(self.eye_dist) + "m", (0, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) # display nose height cv2.putText(self.keypoints_image, 'Nose: ' + "{:.2f}".format( get_point(np.average(self.keypoints, axis=0), self.nose)[1] / self.image_height) , (0, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) cv2.imshow("keypoints", self.keypoints_image) cv2.moveWindow("keypoints", 500, 0) def show_face_detection(self, cv2frame): # get sub image img = self.get_face_detection_crop(cv2frame) # get face rectangle face, img = self.detector.detect_face(img) if face.size > 0: self.faces.append(face) width = face[2] - face[0] height = face[3] - face[1] # get distances for rectangle width and height width = get_distance_width(width) height = get_distance_height(height) # display distances cv2.putText(img, 'width: ' + "{:.2f}".format(width), (0, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) cv2.putText(img, 'height: ' + "{:.2f}".format(height), (0, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) cv2.putText(img, 'mean: ' + "{:.2f}".format(np.mean(np.array([width, height]))), (0, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) # append outlier free distance to log self.face_distances.append(self.get_face_distance()) elif len(self.faces) > 0: # remove from dequeue if no face was detected self.faces.popleft() # show detection cv2.imshow("face", img) cv2.moveWindow("face", 0, 0) # get 300*300 crop of frame based on nose location or from the middle def get_face_detection_crop(self, cv2frame): if len(self.keypoints) > 0: x, y = get_point(np.array(self.keypoints, dtype=object)[-1], self.nose) else: x = cv2frame.shape[1] / 2 y = cv2frame.shape[0] / 2 x = max(self.half_face_detection_size, x) y = max(self.half_face_detection_size, y) x = min(cv2frame.shape[1] - self.half_face_detection_size, x) y = min(cv2frame.shape[0] - self.half_face_detection_size, y) img = cv2frame[int(y - self.half_face_detection_size):int(y + self.half_face_detection_size), int(x - self.half_face_detection_size):int(x + self.half_face_detection_size)] return img def get_face_distance(self): if len(self.faces) > 2: try: faces = remove_outliers(np.array(self.faces, dtype=object)) face = np.mean(faces, axis=0) width = face[2] - face[0] height = face[3] - face[1] width = get_distance_width(width) height = get_distance_height(height) return np.mean(np.array([width, height])) except ZeroDivisionError: logging.error("ZeroDivisionError in get_face_distance()") logging.error(self.faces) return -1 def run(self): window_name = "videostream" cv2.namedWindow(window_name, cv2.WINDOW_NORMAL) main_thread = next( filter(lambda t: t.name == "MainThread", threading.enumerate()) ) while main_thread.is_alive(): with self.flush_queue_lock: try: yuv_frame = self.frame_queue.get(timeout=0.01) except queue.Empty: continue try: # the VideoFrame.info() dictionary contains some useful information # such as the video resolution info = yuv_frame.info() height, width = info["yuv"]["height"], info["yuv"]["width"] # yuv_frame.vmeta() returns a dictionary that contains additional # metadata from the drone (GPS coordinates, battery percentage, ...) # convert pdraw YUV flag to OpenCV YUV flag cv2_cvt_color_flag = { olympe.PDRAW_YUV_FORMAT_I420: cv2.COLOR_YUV2BGR_I420, olympe.PDRAW_YUV_FORMAT_NV12: cv2.COLOR_YUV2BGR_NV12, }[info["yuv"]["format"]] # yuv_frame.as_ndarray() is a 2D numpy array with the proper "shape" # i.e (3 * height / 2, width) because it's a YUV I420 or NV12 frame # Use OpenCV to convert the yuv frame to RGB cv2frame = cv2.cvtColor(yuv_frame.as_ndarray(), cv2_cvt_color_flag) self.last_frame = cv2frame self.show_yuv_frame(window_name, yuv_frame) except Exception: # We have to continue popping frame from the queue even if # we fail to show one frame traceback.print_exc() finally: # Don't forget to unref the yuv frame. We don't want to # starve the video buffer pool yuv_frame.unref() cv2.destroyWindow(window_name) def command_window_thread(self, win): win.nodelay(True) key = "" win.clear() win.addstr("Detected key:") while 1: try: key = win.getkey() win.clear() win.addstr("Detected key:") win.addstr(str(key)) # disconnect drone if str(key) == "c": win.clear() win.addstr("c, stopping") self.f.close() self.pose_file.close() self.drone.disconnect() # takeoff if str(key) == "t": win.clear() win.addstr("takeoff") assert self.drone(TakeOff()).wait().success() win.addstr("completed") # land if str(key) == "l": win.clear() win.addstr("landing") assert self.drone(Landing()).wait().success() # turn left if str(key) == "q": win.clear() win.addstr("turning left") assert self.drone( moveBy(0, 0, 0, -math.pi / 4) >> FlyingStateChanged(state="hovering", _timeout=5) ).wait().success() win.addstr("completed") # turn right if str(key) == "e": win.clear() win.addstr("turning right") assert self.drone( moveBy(0, 0, 0, math.pi / 4) >> FlyingStateChanged(state="hovering", _timeout=5) ).wait().success() win.addstr("completed") # move front if str(key) == "w": win.clear() win.addstr("front") assert self.drone( moveBy(0.2, 0, 0, 0) >> FlyingStateChanged(state="hovering", _timeout=5) ).wait().success() win.addstr("completed") # move back if str(key) == "s": win.clear() win.addstr("back") assert self.drone( moveBy(-0.2, 0, 0, 0) >> FlyingStateChanged(state="hovering", _timeout=5) ).wait().success() win.addstr("completed") # move up if str(key) == "r": win.clear() win.addstr("up") assert self.drone( moveBy(0, 0, -0.15, 0) >> FlyingStateChanged(state="hovering", _timeout=5) ).wait().success() win.addstr("completed") # move down if str(key) == "f": win.clear() win.addstr("down") assert self.drone( moveBy(0, 0, 0.15, 0) >> FlyingStateChanged(state="hovering", _timeout=5) ).wait().success() win.addstr("completed") # move left if str(key) == "a": win.clear() win.addstr("left") assert self.drone( moveBy(0, -0.2, 0, 0) >> FlyingStateChanged(state="hovering", _timeout=5) ).wait().success() win.addstr("completed") # move right if str(key) == "d": win.clear() win.addstr("right") assert self.drone( moveBy(0, 0.2, 0, 0) >> FlyingStateChanged(state="hovering", _timeout=5) ).wait().success() win.addstr("completed") # start person detection thread if str(key) == "p": win.clear() pause = self.check_for_pause() if pause: win.addstr("cannot start because of stop gesture") else: win.addstr("start detecting") self.pause_finding = False self.pause_finding_condition.notify() self.pause_finding_condition.release() # pause person detecting thread if str(key) == "o": win.clear() win.addstr("stop detecting") self.pause_finding = True self.pause_finding_condition.acquire() # self.person_thread.stop = True # win.addstr("joined") # measure distances if str(key) == "x": win.clear() win.addstr("distances:") arr = np.array(self.keypoints, dtype=object) string = "" for i in range(arr.shape[0]): string += "{:.6f};".format(get_point_distance(arr[i], self.left_eye, self.right_eye)) win.addstr(string) self.f.write(string + "\n") # measure faces if str(key) == "y": win.clear() win.addstr("distances:") arr = np.array(self.faces, dtype=object) width = "" height = "" for i in range(arr.shape[0]): width += str(arr[i][2] - arr[i][0]) + ";" height += str(arr[i][3] - arr[i][1]) + ";" win.addstr(width + height) self.f.write(width + "\n") self.f.write(height + "\n") # log user gesture if str(key) == "g": win.clear() win.addstr("gesture made") global event_time event_time = time.time() logging.info("stop gesture by user;{:.3f};{:.3f}".format(self.get_face_distance(), time.time())) # log face distances if str(key) == "k": win.clear() win.addstr("distances logged") string = "" arr = np.array(self.face_distances, dtype=object) win.addstr(str(len(arr))) for i in range(len(arr)): string += "{:.2f}".format(arr[i]) + ";" logging.info("distances;{}".format(string)) win.addstr(string) except Exception as e: # No input pass def fly_to_person(self): t = threading.currentThread() while not getattr(t, "stop", False): with self.pause_finding_condition: # wait if thread is paused while self.pause_finding: self.pause_finding_condition.wait() arr = np.array(self.keypoints, dtype=object) if len(arr) > 2: pose_predictions =
np.array(self.pose_predictions, dtype=object)
numpy.array
""" cnvpytor.root class Root: main CNVpytor class """ from __future__ import absolute_import, print_function, division from .io import * from .bam import Bam from .vcf import Vcf from .fasta import Fasta from .genome import Genome from .viewer import anim_plot_likelihood, anim_plot_rd, anim_plot_rd_likelihood import numpy as np import logging import os.path import matplotlib.pyplot as plt _logger = logging.getLogger("cnvpytor.root") class Root: def __init__(self, filename, create=False, max_cores=8): """ Class constructor opens CNVpytor file. The class implements all core CNVpytor calculations. Parameters ---------- filename : str CNVpytor filename create : bool Creates cnvpytor file if not exists max_cores : int Maximal number of cores used in parallel calculations """ _logger.debug("App class init: filename '%s'; max cores %d." % (filename, max_cores)) self.io = IO(filename, create=create) self.max_cores = max_cores self.io_gc = self.io self.io_mask = self.io if self.io.signal_exists(None, None, "reference genome") and self.io.signal_exists(None, None, "use reference"): rg_name = np.array(self.io.get_signal(None, None, "reference genome")).astype("str")[0] if rg_name in Genome.reference_genomes: rg_use = self.io.get_signal(None, None, "use reference") if "gc_file" in Genome.reference_genomes[rg_name] and rg_use[0] == 1: _logger.debug("Using GC content from database for reference genome '%s'." % rg_name) self.io_gc = IO(Genome.reference_genomes[rg_name]["gc_file"], ro=True, buffer=True) if "mask_file" in Genome.reference_genomes[rg_name] and rg_use[1] == 1: _logger.debug("Using strict mask from database for reference genome '%s'." % rg_name) self.io_mask = IO(Genome.reference_genomes[rg_name]["mask_file"], ro=True, buffer=True) def _read_bam(self, bf, chroms, reference_filename=False, overwrite=False): bamf = Bam(bf, reference_filename=reference_filename) if bamf.reference_genome: self.io.create_signal(None, None, "reference genome", np.array([np.string_(bamf.reference_genome)])) self.io.create_signal(None, None, "use reference", np.array([1, 1]).astype("uint8")) def read_chromosome(x): chrs, lens = x _logger.info("Reading data for chromosome %s with length %d" % (chrs, lens)) l_rd_p, l_rd_u, l_his_read_frg = bamf.read_chromosome(chrs) return l_rd_p, l_rd_u, l_his_read_frg chrname, chrlen = bamf.get_chr_len() chr_len = [(c, l) for (c, l) in zip(chrname, chrlen) if len(chroms) == 0 or c in chroms] if self.max_cores == 1: count = 0 cum_his_read_frg = None for cl in chr_len: rd_p, rd_u, his_read_frg = read_chromosome(cl) if not rd_p is None: if cum_his_read_frg is None: cum_his_read_frg = his_read_frg else: cum_his_read_frg += his_read_frg if (cl[0] in self.io.rd_chromosomes()) and not overwrite: self.io.add_rd(cl[0], rd_p, rd_u) else: self.io.save_rd(cl[0], rd_p, rd_u, chromosome_length=cl[1]) count += 1 if not cum_his_read_frg is None: self.io.create_signal(None, None, "read frg dist", cum_his_read_frg) return count else: from .pool import parmap res = parmap(read_chromosome, chr_len, cores=self.max_cores) count = 0 cum_his_read_frg = None for c, r in zip(chr_len, res): if not r[0] is None: if cum_his_read_frg is None: cum_his_read_frg = r[2] else: cum_his_read_frg += r[2] if (c[0] in self.io.rd_chromosomes()) and not overwrite: self.io.add_rd(c[0], r[0], r[1]) else: self.io.save_rd(c[0], r[0], r[1], chromosome_length=c[1]) count += 1 if not cum_his_read_frg is None: self.io.create_signal(None, None, "read frg dist", cum_his_read_frg) return count def rd_stat(self, chroms=[]): """ Calculate RD statistics for 100 bp bins. Parameters ---------- chroms : list of str List of chromosomes. Calculates for all available if empty. """ rd_stat = [] auto, sex, mt = False, False, False rd_gc_chromosomes = {} for c in self.io_gc.gc_chromosomes(): rd_name = self.io.rd_chromosome_name(c) if not rd_name is None: rd_gc_chromosomes[rd_name] = c for c in rd_gc_chromosomes: if (len(chroms) == 0 or c in chroms): rd_p, rd_u = self.io.read_rd(c) max_bin = max(int(10 * np.mean(rd_u) + 1), int(10 * np.mean(rd_p) + 1)) dist_p, bins = np.histogram(rd_p, bins=range(max_bin + 1)) dist_u, bins = np.histogram(rd_u, bins=range(max_bin + 1)) n_p, m_p, s_p = fit_normal(bins[1:-1], dist_p[1:])[0] n_u, m_u, s_u = fit_normal(bins[1:-1], dist_u[1:])[0] _logger.info( "Chromosome '%s' stat - RD parity distribution gaussian fit: %.2f +- %.2f" % (c, m_p, s_p)) _logger.info( "Chromosome '%s' stat - RD unique distribution gaussian fit: %.2f +- %.2f" % (c, m_u, s_u)) rd_stat.append((c, m_p, s_p, m_u, s_u)) auto = auto or Genome.is_autosome(c) sex = sex or Genome.is_sex_chrom(c) mt = mt or Genome.is_mt_chrom(c) if auto: max_bin_auto = int( max(map(lambda x: 5 * x[1] + 5 * x[2], filter(lambda x: Genome.is_autosome(x[0]), rd_stat)))) _logger.debug("Max RD for autosomes calculated: %d" % max_bin_auto) dist_p_auto = np.zeros(max_bin_auto) dist_u_auto = np.zeros(max_bin_auto) dist_p_gc_auto = np.zeros((max_bin_auto, 101)) bins_auto = range(max_bin_auto + 1) if sex: max_bin_sex = int( max(map(lambda x: 5 * x[1] + 5 * x[2], filter(lambda x: Genome.is_sex_chrom(x[0]), rd_stat)))) _logger.debug("Max RD for sex chromosomes calculated: %d" % max_bin_sex) dist_p_sex = np.zeros(max_bin_sex) dist_u_sex = np.zeros(max_bin_sex) dist_p_gc_sex = np.zeros((max_bin_sex, 101)) bins_sex = range(max_bin_sex + 1) if mt: max_bin_mt = int( max(map(lambda x: 5 * x[1] + 5 * x[2], filter(lambda x: Genome.is_mt_chrom(x[0]), rd_stat)))) _logger.debug("Max RD for mitochondria calculated: %d" % max_bin_mt) if max_bin_mt < 100: max_bin_mt = 100 bin_size_mt = max_bin_mt // 100 bins_mt = range(0, max_bin_mt // bin_size_mt * bin_size_mt + bin_size_mt, bin_size_mt) n_bins_mt = len(bins_mt) - 1 _logger.debug("Using %d bin size, %d bins for mitochondria chromosome." % (bin_size_mt, n_bins_mt)) dist_p_mt = np.zeros(n_bins_mt) dist_u_mt = np.zeros(n_bins_mt) dist_p_gc_mt = np.zeros((n_bins_mt, 101)) for c in rd_gc_chromosomes: if len(chroms) == 0 or c in chroms: _logger.info("Chromosome '%s' stat " % c) rd_p, rd_u = self.io.read_rd(c) if Genome.is_autosome(c): dist_p, bins = np.histogram(rd_p, bins=bins_auto) dist_u, bins = np.histogram(rd_u, bins=bins_auto) gcat = self.io_gc.get_signal(rd_gc_chromosomes[c], None, "GC/AT") gcp = gcp_decompress(gcat) dist_p_gc, xbins, ybins = np.histogram2d(rd_p, gcp, bins=(bins_auto, range(102))) dist_p_auto += dist_p dist_u_auto += dist_u dist_p_gc_auto += dist_p_gc elif Genome.is_sex_chrom(c): dist_p, bins = np.histogram(rd_p, bins=bins_sex) dist_u, bins = np.histogram(rd_u, bins=bins_sex) gcat = self.io_gc.get_signal(rd_gc_chromosomes[c], None, "GC/AT") gcp = gcp_decompress(gcat) dist_p_gc, xbins, ybins = np.histogram2d(rd_p, gcp, bins=(bins_sex, range(102))) dist_p_sex += dist_p dist_u_sex += dist_u dist_p_gc_sex += dist_p_gc elif Genome.is_mt_chrom(c): dist_p, bins = np.histogram(rd_p, bins=bins_mt) dist_u, bins = np.histogram(rd_u, bins=bins_mt) gcat = self.io_gc.get_signal(rd_gc_chromosomes[c], None, "GC/AT") gcp = gcp_decompress(gcat) dist_p_gc, xbins, ybins = np.histogram2d(rd_p, gcp, bins=(bins_mt, range(102))) dist_p_mt += dist_p dist_u_mt += dist_u dist_p_gc_mt += dist_p_gc if auto: n_auto, m_auto, s_auto = fit_normal(np.array(bins_auto[1:-1]), dist_p_auto[1:])[0] _logger.info("Autosomes stat - RD parity distribution gaussian fit: %.2f +- %.2f" % (m_auto, s_auto)) stat_auto = np.array([max_bin_auto, 1, max_bin_auto, n_auto, m_auto, s_auto]) self.io.create_signal(None, 100, "RD p dist", dist_p_auto, flags=FLAG_AUTO) self.io.create_signal(None, 100, "RD u dist", dist_u_auto, flags=FLAG_AUTO) self.io.create_signal(None, 100, "RD GC dist", dist_p_gc_auto, flags=FLAG_AUTO) self.io.create_signal(None, 100, "RD stat", stat_auto, flags=FLAG_AUTO) gc_corr_auto = calculate_gc_correction(dist_p_gc_auto, m_auto, s_auto) self.io.create_signal(None, 100, "GC corr", gc_corr_auto, flags=FLAG_AUTO) if sex: n_sex, m_sex, s_sex = fit_normal(np.array(bins_sex[1:-1]), dist_p_sex[1:])[0] _logger.info("Sex chromosomes stat - RD parity distribution gaussian fit: %.2f +- %.2f" % (m_sex, s_sex)) stat_sex = np.array([max_bin_sex, 1, max_bin_sex, n_sex, m_sex, s_sex]) self.io.create_signal(None, 100, "RD p dist", dist_p_sex, flags=FLAG_SEX) self.io.create_signal(None, 100, "RD u dist", dist_u_sex, flags=FLAG_SEX) self.io.create_signal(None, 100, "RD GC dist", dist_p_gc_sex, flags=FLAG_SEX) self.io.create_signal(None, 100, "RD stat", stat_sex, flags=FLAG_SEX) gc_corr_sex = calculate_gc_correction(dist_p_gc_sex, m_sex, s_sex) self.io.create_signal(None, 100, "GC corr", gc_corr_sex, flags=FLAG_SEX) if mt: n_mt, m_mt, s_mt = fit_normal(np.array(bins_mt[1:-1]), dist_p_mt[1:])[0] _logger.info("Mitochondria stat - RD parity distribution gaussian fit: %.2f +- %.2f" % (m_mt, s_mt)) if auto: _logger.info("Mitochondria stat - number of mitochondria per cell: %.2f +- %.2f" % ( 2. * m_mt / m_auto, 2. * s_mt / m_auto + s_auto * m_mt / (m_auto * m_auto))) stat_mt = np.array([max_bin_mt, bin_size_mt, n_bins_mt, n_mt, m_mt, s_mt]) self.io.create_signal(None, 100, "RD p dist", dist_p_mt, flags=FLAG_MT) self.io.create_signal(None, 100, "RD u dist", dist_u_mt, flags=FLAG_MT) self.io.create_signal(None, 100, "RD GC dist", dist_p_gc_mt, flags=FLAG_MT) self.io.create_signal(None, 100, "RD stat", stat_mt, flags=FLAG_MT) gc_corr_mt = calculate_gc_correction(dist_p_gc_mt, m_mt, s_mt, bin_size_mt) self.io.create_signal(None, 100, "GC corr", gc_corr_mt, flags=FLAG_MT) def _read_vcf(self, vcf_file, chroms, sample='', use_index=False, no_counts=False, ad_tag="AD", gt_tag="GT", filter=True, callset=None): vcff = Vcf(vcf_file) chrs = [c for c in vcff.get_chromosomes() if len(chroms) == 0 or c in chroms] use_index = use_index and os.path.exists(vcf_file + ".tbi") def save_data(chr, pos, ref, alt, nref, nalt, gt, flag, qual): if (len(chroms) == 0 or chr in chroms) and (not pos is None) and (len(pos) > 0): self.io.save_snp(chr, pos, ref, alt, nref, nalt, gt, flag, qual, callset=callset, chromosome_length=vcff.lengths[chr]) # TODO: Stop reading if all from chrom list are read. def save_data_no_counts(chr, pos, ref, alt, gt, flag, qual): if (len(chroms) == 0 or chr in chroms) and (not pos is None) and (len(pos) > 0): self.io.save_snp(chr, pos, ref, alt, np.zeros_like(pos), np.zeros_like(pos), gt, flag, qual, callset=callset, chromosome_length=vcff.lengths[chr]) if use_index: count = 0 for c in chrs: _logger.info("Reading variant data for chromosome %s" % c) if no_counts: pos, ref, alt, gt, flag, qual = vcff.read_chromosome_snp_no_counts(c, sample, gt_tag=gt_tag, filter=filter) nref, nalt = np.zeros_like(pos), np.zeros_like(pos) else: pos, ref, alt, nref, nalt, gt, flag, qual = vcff.read_chromosome_snp(c, sample, ad_tag=ad_tag, gt_tag=gt_tag, filter=filter) if not pos is None and len(pos) > 0: self.io.save_snp(c, pos, ref, alt, nref, nalt, gt, flag, qual, callset=callset, chromosome_length=vcff.lengths[c]) count += 1 return count else: if no_counts: return vcff.read_all_snp_no_counts(save_data_no_counts, sample, gt_tag=gt_tag, filter=filter) else: return vcff.read_all_snp(save_data, sample, ad_tag=ad_tag, gt_tag=gt_tag, filter=filter) def rd(self, bamfiles, chroms=[], reference_filename=False, overwrite=False): """ Read chromosomes from bam/sam/cram file(s) and store in cnvpytor file. Parameters ---------- bamfiles : list of str List of bam/sam/cram files chroms : list of str List of chromosomes. Import all available if empty. reference_filename : str Only for CRAM files - reference genome filename """ for bf in bamfiles: self._read_bam(bf, chroms, reference_filename=reference_filename, overwrite=overwrite) self.io.add_meta_attribute("BAM", bf) if self.io.signal_exists(None, None, "reference genome"): rg_name = np.array(self.io.get_signal(None, None, "reference genome")).astype("str")[0] if "mask_file" in Genome.reference_genomes[rg_name]: _logger.info("Strict mask for reference genome '%s' found in database." % rg_name) self.io_mask = IO(Genome.reference_genomes[rg_name]["mask_file"]) if "gc_file" in Genome.reference_genomes[rg_name]: _logger.info("GC content for reference genome '%s' found in database." % rg_name) self.io_gc = IO(Genome.reference_genomes[rg_name]["gc_file"]) self.rd_stat() def vcf(self, vcf_files, chroms=[], sample='', no_counts=False, ad_tag="AD", gt_tag="GT", filter=True, callset=None, use_index=True): """ Read SNP data from variant file(s) and store in .cnvpytor file Parameters ---------- vcf_files : list of str List of variant filenames. chroms : list of str List of chromosomes. Import all available if empty. sample : str Name of the sample. It will read first sample if empty string is provided. no_counts : bool Do not read AD counts if true. ad_tag : str AD tag (default 'AD'). gt_tag : str GT tag (default 'GT'). filter : bool If True it will read only variants with PASS filter, otherwise all callset : str or None It will assume SNP data if None. Otherwise it will assume SNV data and store under the name provided by callset variable. use_index : bool Use index file for vcf parsing. Default is False. """ for vcf_file in vcf_files: self._read_vcf(vcf_file, chroms, sample, no_counts=no_counts, ad_tag=ad_tag, gt_tag=gt_tag, filter=filter, callset=callset, use_index=use_index) self.io.add_meta_attribute("VCF", vcf_file) def rd_from_vcf(self, vcf_file, chroms=[], sample='', ad_tag="AD", dp_tag="DP", use_index=False): """ Read RD from variant file(s) and store in .cnvpytor file Parameters ---------- vcf_file : str Variant filename chroms : list of str List of chromosomes. Imports all available if empty. sample : str Name of the sample. It will read first sample if empty string is provided. ad_tag : str AD tag (default 'AD') dp_tag : str DP tag (default 'DP') use_index : bool Use index file for vcf parsing. Default is False. """ vcff = Vcf(vcf_file) chrs = [c for c in vcff.get_chromosomes() if len(chroms) == 0 or c in chroms] def save_data(chr, rd_p, rd_u): if (len(chroms) == 0 or chr in chroms) and (not rd_p is None) and (len(rd_p) > 0): self.io.save_rd(chr, rd_p, rd_u, chromosome_length=vcff.lengths[chr]) # TODO: Stop reading if all from chroms list are already read. if use_index: count = 0 for c in chrs: _logger.info("Reading variant data for chromosome %s" % c) rd_p, rd_u = vcff.read_chromosome_rd(c, sample, ad_tag=ad_tag, dp_tag=dp_tag) if not rd_p is None and len(rd_p) > 0: self.io.save_rd(chr, rd_p, rd_u, chromosome_length=vcff.lengths[chr]) count += 1 self.io.add_meta_attribute("RD from VCF", vcf_file) return count else: count = vcff.read_all_rd(save_data, sample, ad_tag=ad_tag, dp_tag=dp_tag) self.io.add_meta_attribute("RD from VCF", vcf_file) return count def _pileup_bam(self, bamfile, chroms, pos, ref, alt, nref, nalt, reference_filename): _logger.info("Calculating pileup from bam file '%s'." % bamfile) bamf = Bam(bamfile, reference_filename=reference_filename) def pileup_chromosome(x): c, l, snpc = x _logger.info("Pileup chromosome %s with length %d" % (c, l)) return bamf.pileup(c, pos[snpc], ref[snpc], alt[snpc]) chrname, chrlen = bamf.get_chr_len() chr_len = [(c, l, self.io.snp_chromosome_name(c)) for (c, l) in zip(chrname, chrlen) if self.io.snp_chromosome_name(c) in chroms] if self.max_cores == 1: for cl in chr_len: r = pileup_chromosome(cl) nref[cl[2]] = [x + y for x, y in zip(nref[cl[2]], r[0])] nalt[cl[2]] = [x + y for x, y in zip(nalt[cl[2]], r[1])] else: from .pool import parmap res = parmap(pileup_chromosome, chr_len, cores=self.max_cores) for cl, r in zip(chr_len, res): nref[cl[2]] = [x + y for x, y in zip(nref[cl[2]], r[0])] nalt[cl[2]] = [x + y for x, y in zip(nalt[cl[2]], r[1])] def pileup(self, bamfiles, chroms=[], reference_filename=False): """ Read bam/sam/cram file(s) and pile up SNP counts at positions imported with vcf(vcf_files, ...) method Parameters ---------- bamfiles : list of str Bam files. chroms : list of str List of chromosomes. Calculates for all available if empty. reference_filename : str Only for CRAM files - reference genome filename """ chrs = [c for c in self.io.snp_chromosomes() if (len(chroms) == 0 or c in chroms)] pos, ref, alt, nref, nalt, gt, flag, qual = {}, {}, {}, {}, {}, {}, {}, {} for c in chrs: _logger.info("Decompressing and setting all SNP counts to zero for chromosome '%s'." % c) pos[c], ref[c], alt[c], nref[c], nalt[c], gt[c], flag[c], qual[c] = self.io.read_snp(c) nref[c] = [0] * len(nref[c]) nalt[c] = [0] * len(nalt[c]) for bf in bamfiles: self._pileup_bam(bf, chrs, pos, ref, alt, nref, nalt, reference_filename=reference_filename) for c in chrs: _logger.info("Saving SNP data for chromosome '%s' in file '%s'." % (c, self.io.filename)) self.io.save_snp(c, pos[c], ref[c], alt[c], nref[c], nalt[c], gt[c], flag[c], qual[c]) def rd_from_snp(self, chroms=[], use_mask=True, use_id=False, callset=None): """ Create RD signal from already imported SNP signal Parameters ---------- chroms : list of str List of chromosomes. Calculates for all available if empty. use_mask : bool Use P-mask filter if True. Default: True. use_id : bool Use id flag filter if True. Default: False. callset : str or None It will assume SNP data if None. Otherwise it will assume SNV data stored under the name provided by callset variable. Returns ------- """ chromosomes = [c for c in self.io.snp_chromosomes() if (len(chroms) == 0 or c in chroms)] snp_mask_chromosomes = {} for c in self.io_mask.mask_chromosomes(): snp_name = self.io.snp_chromosome_name(c) if snp_name is not None: snp_mask_chromosomes[snp_name] = c for c in chromosomes: _logger.info("Calculating RD signal for chromosome '%s' using SNP counts." % c) pos, ref, alt, nref, nalt, gt, flag, qual = self.io.read_snp(c, callset=callset) n = self.io.get_chromosome_length(c) // 100 + 1 rd = np.zeros(n) ncg = self.io.get_chromosome_length(c) // 10000 + 1 rdcg = np.zeros(ncg) rdc = np.zeros(ncg) for p, c1, c2, f in zip(pos, nref, nalt, flag): if (c1 + c2) > 0 and (not use_id or (f & 1)) and (not use_mask or (f & 2)): rdcg[(p - 1) // 10000] += c1 + c2 rdc[(p - 1) // 10000] += 1 rdcg = rdcg / rdc for i in range(n): rd[i] = rdcg[i // 100] self.io.save_rd(c, rd, rd) def gc(self, filename, chroms=[], make_gc_genome_file=False): """ Read GC content from reference fasta file and store in .cnvnator file Arguments: * FASTA filename * list of chromosome names """ fasta = Fasta(filename) chrname, chrlen = fasta.get_chr_len() chr_len_rdn = [] if make_gc_genome_file: _logger.debug("GC data for all reference genome contigs will be read and stored in cnvnator file.") for (c, l) in zip(chrname, chrlen): chr_len_rdn.append((c, l, c)) else: for (c, l) in zip(chrname, chrlen): rd_name = self.io.rd_chromosome_name(c) if len(chroms) == 0 or (rd_name in chroms) or (c in chroms): if rd_name is None: _logger.debug("Not found RD signal for chromosome '%s'. Skipping..." % c) else: _logger.debug("Found RD signal for chromosome '%s' with name '%s'." % (c, rd_name)) chr_len_rdn.append((c, l, rd_name)) count = 0 for c, l, rdn in chr_len_rdn: _logger.info("Reading data for chromosome '%s' with length %d" % (c, l)) gc, at = fasta.read_chromosome_gc(c) if not gc is None: self.io.create_signal(rdn, None, "GC/AT", gc_at_compress(gc, at)) count += 1 _logger.info("GC data for chromosome '%s' saved in file '%s'." % (rdn, self.io.filename)) if count > 0: _logger.info("Running RD statistics on chromosomes with imported GC data.") self.rd_stat() return count def copy_gc(self, filename, chroms=[]): """ Copy GC content from another cnvnator file Arguments: * cnvnator filename * list of chromosome names """ io_src = IO(filename) chr_rdn = [] for c in io_src.chromosomes_with_signal(None, "GC/AT"): rd_name = self.io.rd_chromosome_name(c) if len(chroms) == 0 or (rd_name in chroms) or (c in chroms): if rd_name is None: _logger.debug("Not found RD signal for chromosome '%s'. Skipping..." % c) else: _logger.debug("Found RD signal for chromosome '%s' with name '%s'." % (c, rd_name)) chr_rdn.append((c, rd_name)) count = 0 for c, rdn in chr_rdn: _logger.info( "Copying GC data for chromosome '%s' from file '%s' in file '%s'." % (c, filename, self.io.filename)) self.io.create_signal(rdn, None, "GC/AT", io_src.get_signal(c, None, "GC/AT").astype(dtype="uint8")) return count def mask(self, filename, chroms=[], make_mask_genome_file=False): """ Read strict mask fasta file and store in .cnvnator file Arguments: * FASTA filename * list of chromosome names """ fasta = Fasta(filename) chrname, chrlen = fasta.get_chr_len() chr_len_rdn = [] if make_mask_genome_file: _logger.debug("Strict mask data for all reference genome contigs will be read and stored in cnvnator file.") for (c, l) in zip(chrname, chrlen): chr_len_rdn.append((c, l, c)) else: for (c, l) in zip(chrname, chrlen): rd_name = self.io.rd_chromosome_name(c) snp_name = self.io.snp_chromosome_name(c) if len(chroms) == 0 or (rd_name in chroms) or (snp_name in chroms) or (c in chroms): if (rd_name is None) and (snp_name is None): _logger.debug("Not found RD or SNP signal for chromosome '%s'. Skipping..." % c) elif (rd_name is None): _logger.debug("Found SNP signal for chromosome '%s' with name '%s'." % (c, snp_name)) chr_len_rdn.append((c, l, snp_name)) else: _logger.debug("Found RD signal for chromosome '%s' with name '%s'." % (c, rd_name)) chr_len_rdn.append((c, l, rd_name)) count = 0 for c, l, rdn in chr_len_rdn: _logger.info("Reading data for chromosome '%s' with length %d" % (c, l)) mask = fasta.read_chromosome_mask_p_regions(c) if not mask is None: self.io.create_signal(rdn, None, "mask", mask_compress(mask)) count += 1 _logger.info("Strict mask data for chromosome '%s' saved in file '%s'." % (rdn, self.io.filename)) return count def copy_mask(self, filename, chroms=[]): """ Copy strict mask data from another cnvnator file Arguments: * cnvnator filename * list of chromosome names """ io_src = IO(filename) chr_rdn = [] for c in io_src.chromosomes_with_signal(None, "mask"): rd_name = self.io.rd_chromosome_name(c) snp_name = self.snp_chromosome_name(c) if len(chroms) == 0 or (rd_name in chroms) or (snp_name in chroms) or (c in chroms): if (rd_name is None) and (snp_name is None): _logger.debug("Not found RD or SNP signal for chromosome '%s'. Skipping..." % c) elif (rd_name is None): _logger.debug("Found SNP signal for chromosome '%s' with name '%s'." % (c, snp_name)) chr_rdn.append((c, snp_name)) else: _logger.debug("Found RD signal for chromosome '%s' with name '%s'." % (c, rd_name)) chr_rdn.append((c, rd_name)) count = 0 for c, rdn in chr_rdn: _logger.info( "Copying strict mask data for chromosome '%s' from file '%s' in file '%s'." % ( c, filename, self.io.filename)) self.io.create_signal(rdn, None, "mask", io_src.get_signal(c, None, "mask").astype(dtype="uint32")) return count def set_reference_genome(self, rg): """ Manually sets reference genome. Parameters ---------- rg: str Name of reference genome Returns ------- True if genome exists in database """ if rg in Genome.reference_genomes: _logger.info("Reference genome '%s' found in database." % rg) self.io.create_signal(None, None, "reference genome", np.array([np.string_(rg)])) self.io.create_signal(None, None, "use reference", np.array([1, 1]).astype("uint8")) if "mask_file" in Genome.reference_genomes[rg]: _logger.info("Strict mask for reference genome '%s' found in database." % rg) if "gc_file" in Genome.reference_genomes[rg]: _logger.info("GC content for reference genome '%s' found in database." % rg) else: _logger.warning("Reference genome '%s' not found in database." % rg) def calculate_histograms(self, bin_sizes, chroms=[]): """ Calculates RD histograms and store data into cnvpytor file. Parameters ---------- bin_sizes : list of int List of histogram bin sizes chroms : list of str List of chromosomes. Calculates for all available if empty. """ rd_gc_chromosomes = {} for c in self.io_gc.gc_chromosomes(): rd_name = self.io.rd_chromosome_name(c) if not rd_name is None and (len(chroms) == 0 or (rd_name in chroms) or (c in chroms)): rd_gc_chromosomes[rd_name] = c rd_mask_chromosomes = {} for c in self.io_mask.mask_chromosomes(): rd_name = self.io.rd_chromosome_name(c) if not rd_name is None and (len(chroms) == 0 or (rd_name in chroms) or (c in chroms)): rd_mask_chromosomes[rd_name] = c for bin_size in bin_sizes: his_stat = [] auto, sex, mt = False, False, False bin_ratio = bin_size // 100 for c in self.io.rd_chromosomes(): if c in rd_gc_chromosomes: _logger.info("Calculating histograms using bin size %d for chromosome '%s'." % (bin_size, c)) flag = FLAG_MT if Genome.is_mt_chrom(c) else FLAG_SEX if Genome.is_sex_chrom(c) else FLAG_AUTO rd_p, rd_u = self.io.read_rd(c) his_p = np.concatenate( (rd_p, np.zeros(bin_ratio - len(rd_p) + (len(rd_p) // bin_ratio * bin_ratio)))) his_p.resize((len(his_p) // bin_ratio, bin_ratio)) his_p = his_p.sum(axis=1) his_u = np.concatenate( (rd_u, np.zeros(bin_ratio - len(rd_u) + (len(rd_u) // bin_ratio * bin_ratio)))) his_u.resize((len(his_u) // bin_ratio, bin_ratio)) his_u = his_u.sum(axis=1) if bin_ratio == 1: his_p = his_p[:-1] his_u = his_u[:-1] self.io.create_signal(c, bin_size, "RD", his_p) self.io.create_signal(c, bin_size, "RD unique", his_u) max_bin = max(int(10 * np.mean(his_u) + 1), int(10 * np.mean(his_p) + 1)) if max_bin < 10000: max_bin = 10000 rd_bin_size = max_bin // 10000 rd_bins = range(0, max_bin // rd_bin_size * rd_bin_size + rd_bin_size, rd_bin_size) dist_p, bins = np.histogram(his_p, bins=rd_bins) dist_u, bins = np.histogram(his_u, bins=rd_bins) n_p, m_p, s_p = fit_normal(bins[1:-1], dist_p[1:])[0] n_u, m_u, s_u = fit_normal(bins[1:-1], dist_u[1:])[0] _logger.info( "Chromosome '%s' bin size %d stat - RD parity distribution gaussian fit: %.2f +- %.2f" % ( c, bin_size, m_p, s_p)) _logger.info( "Chromosome '%s' bin size %d stat - RD unique distribution gaussian fit: %.2f +- %.2f" % ( c, bin_size, m_u, s_u)) his_stat.append((c, m_p, s_p, m_u, s_u)) auto = auto or Genome.is_autosome(c) sex = sex or Genome.is_sex_chrom(c) mt = mt or Genome.is_mt_chrom(c) mt = mt and (bin_size <= 1000) if auto: max_bin_auto = int( max(map(lambda x: 5 * x[1] + 5 * x[2], filter(lambda x: Genome.is_autosome(x[0]), his_stat)))) _logger.debug("Max RD for autosome histograms calculated: %d." % max_bin_auto) if max_bin_auto < 1000: max_bin_auto = 1000 bin_size_auto = max_bin_auto // 1000 bins_auto = range(0, max_bin_auto // bin_size_auto * bin_size_auto + bin_size_auto, bin_size_auto) n_bins_auto = len(bins_auto) - 1 _logger.debug( "Using %d RD bin size, %d bins for autosome RD - GC distributions." % (bin_size_auto, n_bins_auto)) dist_p_auto = np.zeros(n_bins_auto) dist_p_gccorr_auto = np.zeros(n_bins_auto) dist_u_auto = np.zeros(n_bins_auto) dist_p_gc_auto = np.zeros((n_bins_auto, 101)) if sex: max_bin_sex = int( max(map(lambda x: 5 * x[1] + 5 * x[2], filter(lambda x: Genome.is_sex_chrom(x[0]), his_stat)))) _logger.debug("Max RD for sex chromosome histograms calculated: %d." % max_bin_sex) if max_bin_sex < 1000: max_bin_sex = 1000 bin_size_sex = max_bin_sex // 1000 bins_sex = range(0, max_bin_sex // bin_size_sex * bin_size_sex + bin_size_sex, bin_size_sex) n_bins_sex = len(bins_sex) - 1 _logger.debug( "Using %d RD bin size, %d bins for sex chromosome RD - GC distributions." % ( bin_size_sex, n_bins_sex)) dist_p_sex = np.zeros(n_bins_sex) dist_p_gccorr_sex = np.zeros(n_bins_sex) dist_u_sex = np.zeros(n_bins_sex) dist_p_gc_sex = np.zeros((n_bins_sex, 101)) if mt: max_bin_mt = int( max(map(lambda x: 5 * x[1] + 5 * x[2], filter(lambda x: Genome.is_mt_chrom(x[0]), his_stat)))) _logger.debug("Max RD for mitochondria histogram calculated: %d." % max_bin_mt) if max_bin_mt < 1000: max_bin_mt = 1000 bin_size_mt = max_bin_mt // 1000 bins_mt = range(0, max_bin_mt // bin_size_mt * bin_size_mt + bin_size_mt, bin_size_mt) n_bins_mt = len(bins_mt) - 1 _logger.debug("Using %d bin size, %d bins for mitochondria chromosome." % (bin_size_mt, n_bins_mt)) dist_p_mt = np.zeros(n_bins_mt) dist_p_gccorr_mt = np.zeros(n_bins_mt) dist_u_mt = np.zeros(n_bins_mt) dist_p_gc_mt = np.zeros((n_bins_mt, 101)) _logger.info("Calculating global statistics.") for c in self.io.rd_chromosomes(): if c in rd_gc_chromosomes: _logger.debug("Chromosome '%s'." % c) his_p = self.io.get_signal(c, bin_size, "RD") his_u = self.io.get_signal(c, bin_size, "RD unique") if Genome.is_autosome(c): dist_p, bins = np.histogram(his_p, bins=bins_auto) dist_u, bins = np.histogram(his_u, bins=bins_auto) gcat = self.io_gc.get_signal(rd_gc_chromosomes[c], None, "GC/AT") dist_p_gc, xbins, ybins = np.histogram2d(his_p, gcp_decompress(gcat, bin_ratio), bins=(bins_auto, range(102))) dist_p_auto += dist_p dist_u_auto += dist_u dist_p_gc_auto += dist_p_gc elif Genome.is_sex_chrom(c): dist_p, bins = np.histogram(his_p, bins=bins_sex) dist_u, bins = np.histogram(his_u, bins=bins_sex) gcat = self.io_gc.get_signal(rd_gc_chromosomes[c], None, "GC/AT") dist_p_gc, xbins, ybins = np.histogram2d(his_p, gcp_decompress(gcat, bin_ratio), bins=(bins_sex, range(102))) dist_p_sex += dist_p dist_u_sex += dist_u dist_p_gc_sex += dist_p_gc elif Genome.is_mt_chrom(c) and mt: dist_p, bins = np.histogram(his_p, bins=bins_mt) dist_u, bins = np.histogram(his_u, bins=bins_mt) gcat = self.io_gc.get_signal(rd_gc_chromosomes[c], None, "GC/AT") dist_p_gc, xbins, ybins = np.histogram2d(his_p, gcp_decompress(gcat, bin_ratio), bins=(bins_mt, range(102))) dist_p_mt += dist_p dist_u_mt += dist_u dist_p_gc_mt += dist_p_gc if auto: n_auto, m_auto, s_auto = fit_normal(np.array(bins_auto[1:-1]), dist_p_auto[1:])[0] _logger.info("Autosomes stat - RD parity distribution gaussian fit: %.2f +- %.2f" % (m_auto, s_auto)) stat_auto = np.array([max_bin_auto, bin_size_auto, n_bins_auto, n_auto, m_auto, s_auto]) self.io.create_signal(None, bin_size, "RD p dist", dist_p_auto, flags=FLAG_AUTO) self.io.create_signal(None, bin_size, "RD u dist", dist_u_auto, flags=FLAG_AUTO) self.io.create_signal(None, bin_size, "RD GC dist", dist_p_gc_auto, flags=FLAG_AUTO) self.io.create_signal(None, bin_size, "RD stat", stat_auto, flags=FLAG_AUTO) gc_corr_auto = calculate_gc_correction(dist_p_gc_auto, m_auto, s_auto, bin_size_auto) self.io.create_signal(None, bin_size, "GC corr", gc_corr_auto, flags=FLAG_AUTO) if sex: n_sex, m_sex, s_sex = fit_normal(np.array(bins_sex[1:-1]), dist_p_sex[1:])[0] _logger.info( "Sex chromosomes stat - RD parity distribution gaussian fit: %.2f +- %.2f" % (m_sex, s_sex)) stat_sex = np.array([max_bin_sex, bin_size_sex, n_bins_sex, n_sex, m_sex, s_sex]) self.io.create_signal(None, bin_size, "RD p dist", dist_p_sex, flags=FLAG_SEX) self.io.create_signal(None, bin_size, "RD u dist", dist_u_sex, flags=FLAG_SEX) self.io.create_signal(None, bin_size, "RD GC dist", dist_p_gc_sex, flags=FLAG_SEX) self.io.create_signal(None, bin_size, "RD stat", stat_sex, flags=FLAG_SEX) gc_corr_sex = calculate_gc_correction(dist_p_gc_sex, m_sex, s_sex, bin_size_sex) self.io.create_signal(None, bin_size, "GC corr", gc_corr_sex, flags=FLAG_SEX) if mt: n_mt, m_mt, s_mt = fit_normal(np.array(bins_mt[1:-1]), dist_p_mt[1:])[0] _logger.info("Mitochondria stat - RD parity distribution gaussian fit: %.2f +- %.2f" % (m_mt, s_mt)) if auto: _logger.info("Mitochondria stat - number of mitochondria per cell: %.2f +- %.2f" % ( 2. * m_mt / m_auto, 2. * s_mt / m_auto + s_auto * m_mt / (m_auto * m_auto))) stat_mt = np.array([max_bin_mt, bin_size_mt, n_bins_mt, n_mt, m_mt, s_mt]) self.io.create_signal(None, bin_size, "RD p dist", dist_p_mt, flags=FLAG_MT) self.io.create_signal(None, bin_size, "RD u dist", dist_u_mt, flags=FLAG_MT) self.io.create_signal(None, bin_size, "RD GC dist", dist_p_gc_mt, flags=FLAG_MT) self.io.create_signal(None, bin_size, "RD stat", stat_mt, flags=FLAG_MT) gc_corr_mt = calculate_gc_correction(dist_p_gc_mt, m_mt, s_mt, bin_size_mt) self.io.create_signal(None, bin_size, "GC corr", gc_corr_mt, flags=FLAG_MT) for c in self.io.rd_chromosomes(): if c in rd_gc_chromosomes and (mt or not Genome.is_mt_chrom(c)): _logger.info( "Calculating GC corrected RD histogram using bin size %d for chromosome '%s'." % (bin_size, c)) flag = FLAG_MT if Genome.is_mt_chrom(c) else FLAG_SEX if Genome.is_sex_chrom(c) else FLAG_AUTO his_p = self.io.get_signal(c, bin_size, "RD") _logger.debug("Calculating GC corrected RD") gc_corr = self.io.get_signal(None, bin_size, "GC corr", flag) gcat = self.io_gc.get_signal(rd_gc_chromosomes[c], None, "GC/AT") his_p_corr = his_p / np.array(list(map(lambda x: gc_corr[int(x)], gcp_decompress(gcat, bin_ratio)))) self.io.create_signal(c, bin_size, "RD", his_p_corr, flags=FLAG_GC_CORR) if Genome.is_autosome(c): dist_p_gc, bins = np.histogram(his_p_corr, bins=bins_auto) dist_p_gccorr_auto += dist_p_gc elif Genome.is_sex_chrom(c): dist_p_gc, bins = np.histogram(his_p_corr, bins=bins_sex) dist_p_gccorr_sex += dist_p_gc elif Genome.is_mt_chrom(c) and mt: dist_p_gc, bins = np.histogram(his_p_corr, bins=bins_mt) dist_p_gccorr_mt += dist_p_gc if auto: n_auto, m_auto, s_auto = fit_normal(np.array(bins_auto[1:-1]), dist_p_gccorr_auto[1:])[0] _logger.info( "Autosomes stat - RD parity distribution gaussian fit after GC correction: %.2f +- %.2f" % ( m_auto, s_auto)) stat_auto = np.array([max_bin_auto, bin_size_auto, n_bins_auto, n_auto, m_auto, s_auto]) self.io.create_signal(None, bin_size, "RD p dist", dist_p_gccorr_auto, flags=(FLAG_AUTO | FLAG_GC_CORR)) self.io.create_signal(None, bin_size, "RD stat", stat_auto, flags=(FLAG_AUTO | FLAG_GC_CORR)) if sex: n_sex, m_sex, s_sex = fit_normal(np.array(bins_sex[1:-1]), dist_p_gccorr_sex[1:])[0] _logger.info( "Sex chromosomes stat - RD parity distribution gaussian fit after GC correction: %.2f +- %.2f" % ( m_sex, s_sex)) stat_sex = np.array([max_bin_sex, bin_size_sex, n_bins_sex, n_sex, m_sex, s_sex]) self.io.create_signal(None, bin_size, "RD p dist", dist_p_gccorr_sex, flags=(FLAG_SEX | FLAG_GC_CORR)) self.io.create_signal(None, bin_size, "RD stat", stat_sex, flags=(FLAG_SEX | FLAG_GC_CORR)) if mt: n_mt, m_mt, s_mt = fit_normal(np.array(bins_mt[1:-1]), dist_p_gccorr_mt[1:])[0] _logger.info( "Mitochondria stat - RD parity distribution gaussian fit after GC correction: %.2f +- %.2f" % ( m_mt, s_mt)) if auto: _logger.info( "Mitochondria stat - number of mitochondria per cell after GC correction: %.2f +- %.2f" % ( 2. * m_mt / m_auto, 2. * s_mt / m_auto + s_auto * m_mt / (m_auto * m_auto))) stat_mt = np.array([max_bin_mt, bin_size_mt, n_bins_mt, n_mt, m_mt, s_mt]) self.io.create_signal(None, bin_size, "RD p dist", dist_p_gccorr_mt, flags=(FLAG_MT | FLAG_GC_CORR)) self.io.create_signal(None, bin_size, "RD stat", stat_mt, flags=(FLAG_MT | FLAG_GC_CORR)) for c in self.io.rd_chromosomes(): if (c in rd_gc_chromosomes) and (c in rd_mask_chromosomes): _logger.info("Calculating P-mask histograms using bin size %d for chromosome '%s'." % (bin_size, c)) flag = FLAG_MT if Genome.is_mt_chrom(c) else FLAG_SEX if Genome.is_sex_chrom(c) else FLAG_AUTO rd_p, rd_u = self.io.read_rd(c) mask = mask_decompress(self.io_mask.get_signal(rd_mask_chromosomes[c], None, "mask")) bin_ratio = bin_size // 100 n_bins = len(rd_p) // bin_ratio + 1 his_p = np.zeros(n_bins) his_p_corr = np.zeros(n_bins) his_u = np.zeros(n_bins) his_count = np.zeros(n_bins) for (b, e) in mask: for p in range((b - 1) // 100 + 2, (e - 1) // 100): his_p[p // bin_ratio] += rd_p[p] his_u[p // bin_ratio] += rd_u[p] his_count[p // bin_ratio] += 1 np.seterr(divide='ignore', invalid='ignore') his_p = his_p / his_count * bin_ratio his_u = his_u / his_count * bin_ratio if bin_ratio == 1: his_p = his_p[:-1] his_u = his_u[:-1] gc_corr = self.io.get_signal(None, bin_size, "GC corr", flag) gcat = self.io_gc.get_signal(rd_gc_chromosomes[c], None, "GC/AT") his_p_corr = his_p / np.array(list(map(lambda x: gc_corr[int(x)], gcp_decompress(gcat, bin_ratio)))) self.io.create_signal(c, bin_size, "RD", his_p, flags=FLAG_USEMASK) self.io.create_signal(c, bin_size, "RD unique", his_u, flags=FLAG_USEMASK) self.io.create_signal(c, bin_size, "RD", his_p_corr, flags=FLAG_GC_CORR | FLAG_USEMASK) def partition(self, bin_sizes, chroms=[], use_gc_corr=True, use_mask=False, repeats=3, genome_size=2.9e9): """ Calculates segmentation of RD signal. Parameters ---------- bin_sizes : list of int List of histogram bin sizes chroms : list of str List of chromosomes. Calculates for all available if empty. use_gc_corr : bool Use GC corrected signal if True. Default: True. use_mask : bool Use P-mask filter if True. Default: False. """ bin_bands = [2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128] rd_gc_chromosomes = {} for c in self.io_gc.gc_chromosomes(): rd_name = self.io.rd_chromosome_name(c) if not rd_name is None: rd_gc_chromosomes[rd_name] = c rd_mask_chromosomes = {} for c in self.io_mask.mask_chromosomes(): rd_name = self.io.rd_chromosome_name(c) if not rd_name is None: rd_mask_chromosomes[rd_name] = c for bin_size in bin_sizes: for c in self.io.rd_chromosomes(): if (c in rd_gc_chromosomes or not use_gc_corr) and (c in rd_mask_chromosomes or not use_mask) and ( len(chroms) == 0 or (c in chroms)): flag_stat = FLAG_MT if Genome.is_mt_chrom(c) else FLAG_SEX if Genome.is_sex_chrom(c) else FLAG_AUTO if use_gc_corr: flag_stat |= FLAG_GC_CORR flag_rd = (FLAG_GC_CORR if use_gc_corr else 0) | (FLAG_USEMASK if use_mask else 0) if self.io.signal_exists(c, bin_size, "RD stat", flag_stat) and self.io.signal_exists(c, bin_size, "RD", flag_rd): _logger.info("Calculating partition using bin size %d for chromosome '%s'." % (bin_size, c)) stat = self.io.get_signal(c, bin_size, "RD stat", flag_stat) mean = stat[4] std = stat[5] rd = self.io.get_signal(c, bin_size, "RD", flag_rd) rd = np.nan_to_num(rd) masked = np.zeros_like(rd, dtype=bool) levels = np.copy(rd) for bin_band in bin_bands: _logger.debug("Bin band is %d." % bin_band) levels[np.logical_not(masked)] = rd[np.logical_not(masked)] nm_levels = levels[np.logical_not(masked)] mask_borders = [0] count = 0 for i in range(len(masked)): if masked[i]: if count > 0: mask_borders.append(mask_borders[-1] + count - 1) count = 0 else: count += 1 mask_borders = mask_borders[1:] kk = np.arange(3 * bin_band + 1) exp_kk = kk * np.exp(-0.5 * kk ** 2 / bin_band ** 2) for step in range(repeats): isig = np.ones_like(nm_levels) * 4. / std ** 2 isig[nm_levels >= (mean / 4)] = mean / std ** 2 / nm_levels[nm_levels >= (mean / 4)] def calc_grad(k): if k < len(nm_levels): t1 = np.concatenate(( np.exp(-0.5 * (nm_levels - np.roll(nm_levels, -k)) ** 2 * isig)[:-k], [0] * k)) t2 = np.concatenate(([0] * k, np.exp(-0.5 * (nm_levels - np.roll(nm_levels, k)) ** 2 * isig)[k:])) return exp_kk[k] * (t1 - t2) else: return np.zeros_like(nm_levels) grad = np.sum([calc_grad(k) for k in range(1, 3 * bin_band + 1)], axis=0) border = [i for i in range(grad.size - 1) if grad[i] < 0 and grad[i + 1] >= 0] border.append(grad.size - 1) border = sorted(list(set(border + mask_borders))) # border = sorted(list(set([0]+border+[len(nm_levels)-1]))) pb = 0 for b in border: nm_levels[pb:b + 1] = np.mean(nm_levels[pb:b + 1]) pb = b + 1 levels[np.logical_not(masked)] = nm_levels border = [0] + list(np.argwhere(np.abs(np.diff(levels)) > 0.01)[:, 0] + 1) + [levels.size] masked = np.zeros_like(rd, dtype=bool) for i in range(1, len(border)): seg = [border[i - 1], border[i]] seg_left = [border[i - 1], border[i - 1]] if i > 1: seg_left[0] = border[i - 2] else: continue seg_right = [border[i], border[i]] if i < (len(border) - 1): seg_right[1] = border[i + 1] else: continue n = seg[1] - seg[0] n_left = seg_left[1] - seg_left[0] n_right = seg_right[1] - seg_right[0] if n <= 1: continue seg_mean = np.mean(levels[seg[0]:seg[1]]) seg_std = np.std(levels[seg[0]:seg[1]]) if (n_right <= 15) or (n_left <= 15) or (n <= 15): ns = 1.8 * np.sqrt(levels[seg_left[0]] / mean) * std if np.abs(levels[seg_left[0]] - levels[seg[0]]) < ns: continue ns = 1.8 * np.sqrt(levels[seg_right[0]] / mean) * std if np.abs(levels[seg_right[0]] - levels[seg[0]]) < ns: continue else: seg_left_mean = np.mean(levels[seg_left[0]:seg_left[1]]) seg_left_std = np.std(levels[seg_left[0]:seg_left[1]]) seg_right_mean = np.mean(levels[seg_right[0]:seg_right[1]]) seg_right_std = np.std(levels[seg_right[0]:seg_right[1]]) if t_test_2_samples(seg_mean, seg_std, n, seg_left_mean, seg_left_std, n_left) > ( 0.01 / genome_size * bin_size * (n + n_left)): continue if t_test_2_samples(seg_mean, seg_std, n, seg_right_mean, seg_right_std, n_right) > ( 0.01 / genome_size * bin_size * (n + n_right)): continue if t_test_1_sample(mean, seg_mean, seg_std, n) > 0.05: continue masked[seg[0]:seg[1]] = True levels[seg[0]:seg[1]] = np.mean(rd[seg[0]:seg[1]]) self.io.create_signal(c, bin_size, "RD partition", levels, flags=flag_rd) def call(self, bin_sizes, chroms=[], print_calls=False, use_gc_corr=True, use_mask=False, genome_size=2.9e9, genome_cnv_fraction=0.01): """ CNV caller based on the segmented RD signal. Parameters ---------- bin_sizes : list of int List of histogram bin sizes chroms : list of str List of chromosomes. Calculates for all available if empty. print_calls : bool Print to stdout list of calls if true. use_gc_corr : bool Use GC corrected signal if True. Default: True. use_mask : bool Use P-mask filter if True. Default: False. Returns ------- calls: dist Dictionary bin_size -> list of calls Each call is list with values: type ("deletion" or "duplication"), chromosome name, start, end, size, cnv level e1, e2, e3, e4 - estimations of p-Value q0 - percentage of uniquely mapped reads in cnv region """ ret = {} normal_genome_size = genome_size * (1 - genome_cnv_fraction) rd_gc_chromosomes = {} for c in self.io_gc.gc_chromosomes(): rd_name = self.io.rd_chromosome_name(c) if not rd_name is None: rd_gc_chromosomes[rd_name] = c rd_mask_chromosomes = {} for c in self.io_mask.mask_chromosomes(): rd_name = self.io.rd_chromosome_name(c) if not rd_name is None: rd_mask_chromosomes[rd_name] = c for bin_size in bin_sizes: ret[bin_size] = [] for c in self.io.rd_chromosomes(): if (c in rd_gc_chromosomes or not use_gc_corr) and (c in rd_mask_chromosomes or not use_mask) and ( len(chroms) == 0 or (c in chroms)): flag_stat = FLAG_MT if Genome.is_mt_chrom(c) else FLAG_SEX if Genome.is_sex_chrom(c) else FLAG_AUTO flag_auto = FLAG_AUTO if use_gc_corr: flag_stat |= FLAG_GC_CORR flag_auto |= FLAG_GC_CORR flag_rd = (FLAG_GC_CORR if use_gc_corr else 0) | (FLAG_USEMASK if use_mask else 0) if self.io.signal_exists(c, bin_size, "RD stat", flag_stat) and \ self.io.signal_exists(c, bin_size, "RD", flag_rd) and \ self.io.signal_exists(c, bin_size, "RD partition", flag_rd): _logger.debug("Calculating CNV calls using bin size %d for chromosome '%s'." % (bin_size, c)) calls_list = [] stat = self.io.get_signal(c, bin_size, "RD stat", flag_stat) mean = stat[4] std = stat[5] rd = self.io.get_signal(c, bin_size, "RD", flag_rd) rd = np.nan_to_num(rd) gc, at, NN, distN = False, False, False, False if c in rd_gc_chromosomes and self.io_gc.signal_exists(rd_gc_chromosomes[c], None, "GC/AT"): gcat = self.io_gc.get_signal(rd_gc_chromosomes[c], None, "GC/AT") gc, at = gc_at_decompress(gcat) NN = 100 - np.array(gc) - np.array(at) distN = np.zeros_like(NN,dtype="long") - 1 distN[NN == 100] = 0 prev = 0 for Ni in range(0, distN.size): if distN[Ni] == -1: prev += 100 distN[Ni] = prev else: prev = 0 prev = 0 for Ni in range(distN.size - 1, -1, -1): if distN[Ni] > 0: prev += 100 if prev < distN[Ni]: distN[Ni] = prev else: prev = 0 levels = self.io.get_signal(c, bin_size, "RD partition", flag_rd) delta = 0.25 if Genome.is_sex_chrom(c) and self.io.signal_exists(c, bin_size, "RD stat", flag_auto): stat_auto = self.io.get_signal(c, bin_size, "RD stat", flag_auto) if stat_auto[4] * 0.66 > mean: _logger.debug("Assuming male individual!") delta *= 2 _logger.debug("Merging levels with relative difference smaller than %f.", delta) delta *= mean done = False while not done: done = True # border - list of borders between segments border = [0] + list(np.argwhere(np.abs(np.diff(levels)) > 0.01)[:, 0] + 1) + [levels.size] for ix in range(len(border) - 2): if ix < len(border) - 2: v1 = np.abs(levels[border[ix]] - levels[border[ix + 1]]) if v1 < delta: v2 = v1 + 1 v3 = v1 + 1 if ix > 0: v2 = np.abs(levels[border[ix]] - levels[border[ix - 1]]) if ix < len(border) - 3: v3 = np.abs(levels[border[ix + 1]] - levels[border[ix + 2]]) if v1 < v2 and v1 < v3: done = False levels[border[ix]:border[ix + 2]] = np.mean( levels[border[ix]:border[ix + 2]]) del border[ix + 1] _logger.debug("Calling segments") min = mean - delta max = mean + delta flags = [""] * len(levels) segments = [] b = 0 while b < len(levels): b0 = b bs = b while b < len(levels) and levels[b] < min: b += 1 be = b if be > bs + 1: adj = adjustToEvalue(mean, std, rd, bs, be, 0.05 * bin_size / normal_genome_size) if adj is not None: bs, be = adj segments.append([bs, be, -1]) flags[bs:be] = ["D"] * (be - bs) bs = b while b < len(levels) and levels[b] > max: b += 1 be = b if be > bs + 1: adj = adjustToEvalue(mean, std, rd, bs, be, 0.05 * bin_size / normal_genome_size) if adj is not None: bs, be = adj segments.append([bs, be, +1]) flags[bs:be] = ["A"] * (be - bs) if b == b0: b += 1 _logger.debug("Calling additional deletions") b = 0 while b < len(levels): while b < len(levels) and flags[b] != "": b += 1 bs = b while b < len(levels) and levels[b] < min: b += 1 be = b if be > bs + 1: if gaussianEValue(mean, std, rd, bs, be) < 0.05 / normal_genome_size: segments.append([bs, be, -1]) flags[bs:be] = ["d"] * (be - bs) b -= 1 b += 1 b = 0 if b < len(levels): cf = flags[b] bs = 0 merge = rd.copy() while b < len(levels): while flags[b] == cf: b += 1 if b >= len(flags): break if b > bs: merge[bs:b] = np.mean(merge[bs:b]) if b < len(levels): cf = flags[b] bs = b self.io.create_signal(c, bin_size, "RD call", merge, flags=flag_rd) _logger.debug("Calculate/print calls") b = 0 while b < len(levels): cf = flags[b] if cf == "": b += 1 continue bs = b while b < len(levels) and cf == flags[b]: b += 1 cnv = np.mean(rd[bs:b]) / mean if cf.upper() == "D": etype = "deletion" netype = -1 else: etype = "duplication" netype = 1 start = bin_size * bs + 1 end = bin_size * b size = end - start + 1 e1 = getEValue(mean, std, rd, bs, b) * normal_genome_size / bin_size e2 = gaussianEValue(mean, std, rd, bs, b) * normal_genome_size e3, e4 = 1, 1 tmp = int(1000. / bin_size + 0.5) if bs + tmp < b - tmp: e3 = getEValue(mean, std, rd, bs + tmp, b - tmp) * normal_genome_size / bin_size e4 = gaussianEValue(mean, std, rd, bs + tmp, b - tmp) * normal_genome_size rd_p = self.io.get_signal(c, bin_size, "RD") rd_u = self.io.get_signal(c, bin_size, "RD unique") q0 = -1 if sum(rd_p[bs:b]) > 0: q0 = (sum(rd_p[bs:b]) - sum(rd_u[bs:b])) / sum(rd_p[bs:b]) pN = -1 dG = -1 if gc: pN = (size - sum(gc[start // 100:end // 100]) - sum(at[start // 100:end // 100])) / size dG = np.min(distN[start // 100:end // 100]) if print_calls: print("%s\t%s:%d-%d\t%d\t%.4f\t%e\t%e\t%e\t%e\t%.4f\t%.4f\t%d" % ( etype, c, start, end, size, cnv, e1, e2, e3, e4, q0, pN, dG)) ret[bin_size].append([etype, c, start, end, size, cnv, e1, e2, e3, e4, q0, pN, dG]) calls_list.append({ "type": netype, "start": start, "end": end, "size": size, "cnv": cnv, "p_val": e1, "p_val_2": e2, "p_val_3": e3, "p_val_4": e4, "Q0": q0, "pN": pN, "dG": dG }) self.io.save_calls(c, bin_size, "calls", calls_list, flags=flag_rd) return ret def call_mosaic(self, bin_sizes, chroms=[], use_gc_corr=True, use_mask=False, omin=None, max_distance=0.3, anim=""): """ CNV caller based on likelihood merger. Parameters ---------- bin_sizes : list of int List of histogram bin sizes chroms : list of str List of chromosomes. Calculates for all available if empty. use_gc_corr : bool Use GC corrected signal if True. Default: True. use_mask : bool Use P-mask filter if True. Default: False. """ rd_gc_chromosomes = {} for c in self.io_gc.gc_chromosomes(): rd_name = self.io.rd_chromosome_name(c) if not rd_name is None: rd_gc_chromosomes[rd_name] = c rd_mask_chromosomes = {} for c in self.io_mask.mask_chromosomes(): rd_name = self.io.rd_chromosome_name(c) if not rd_name is None: rd_mask_chromosomes[rd_name] = c for bin_size in bin_sizes: if omin is None: overlap_min = 0.05 * bin_size / 3e9 else: overlap_min = omin for c in self.io.rd_chromosomes(): if (c in rd_gc_chromosomes or not use_gc_corr) and (c in rd_mask_chromosomes or not use_mask) and ( len(chroms) == 0 or (c in chroms)): flag_stat = FLAG_MT if Genome.is_mt_chrom(c) else FLAG_SEX if Genome.is_sex_chrom(c) else FLAG_AUTO flag_auto = FLAG_AUTO if use_gc_corr: flag_stat |= FLAG_GC_CORR flag_auto |= FLAG_GC_CORR flag_rd = (FLAG_GC_CORR if use_gc_corr else 0) | (FLAG_USEMASK if use_mask else 0) if self.io.signal_exists(c, bin_size, "RD stat", flag_stat) and \ self.io.signal_exists(c, bin_size, "RD", flag_rd): _logger.info("Calculating mosaic calls using bin size %d for chromosome '%s'." % (bin_size, c)) stat = self.io.get_signal(c, bin_size, "RD stat", flag_stat) mean = stat[4] std = stat[5] rd = self.io.get_signal(c, bin_size, "RD", flag_rd) bins = len(rd) valid = np.isfinite(rd) level = rd[valid] error = np.sqrt(level) ** 2 + std ** 2 loc_fl = np.min(list(zip(np.abs(np.diff(level))[:-1], np.abs(np.diff(level))[1:])), axis=1) loc_fl = np.concatenate(([0], loc_fl, [0])) error += (loc_fl / 2) ** 2 error = np.sqrt(error) level = list(level) error = list(error) segments = [[i] for i in range(bins) if np.isfinite(rd[i])] overlaps = [normal_overlap(level[i], error[i], level[i + 1], error[i + 1]) for i in range(len(segments) - 1)] iter = 0 if anim != "": anim_plot_rd(level, error, segments, bins, iter, anim + c + "_0_" + str(bin_size), 0, 0, mean) while len(overlaps) > 0: maxo = max(overlaps) if maxo < overlap_min: break i = overlaps.index(maxo) nl, ne = normal_merge(level[i], error[i], level[i + 1], error[i + 1]) level[i] = nl error[i] = ne segments[i] += segments[i + 1] del level[i + 1] del error[i + 1] del segments[i + 1] del overlaps[i] if i < len(overlaps): overlaps[i] = normal_overlap(level[i], error[i], level[i + 1], error[i + 1]) if i > 0: overlaps[i - 1] = normal_overlap(level[i - 1], error[i - 1], level[i], error[i]) iter = iter + 1 if anim != "" and (iter % 100) == 0: anim_plot_rd(level, error, segments, bins, iter, anim + c + "_0_" + str(bin_size), maxo, mino, mean) iter = 0 ons = -1 _logger.info("Second stage. Number of segments: %d." % len(level)) while True: overlaps = [normal_overlap(level[i], error[i], level[j], error[j]) for i in range(len(level)) for j in range(i + 1, len(level)) if (segments[j][0] - segments[i][-1]) < max_distance * ( len(segments[i]) + len(segments[j]))] if len(overlaps) == 0: break maxo = max(overlaps) if maxo < overlap_min: break i, j = 0, 1 while i < len(segments) - 1: if (segments[j][0] - segments[i][-1]) < max_distance * ( len(segments[i]) + len(segments[j])) and normal_overlap(level[i], error[i], level[j], error[j]) == maxo: nl, ne = normal_merge(level[i], error[i], level[j], error[j]) level[i] = nl error[i] = ne segments[i] += segments[j] segments[i] = sorted(segments[i]) del level[j] del error[j] del segments[j] if j >= len(segments): i += 1 j = i + 1 else: j += 1 if j >= len(segments): i += 1 j = i + 1 iter = iter + 1 if anim != "" and (iter % 100) == 0: anim_plot_rd(level, error, segments, bins, iter, anim + c + "_1_" + str(bin_size), maxo, mino, mean) _logger.info("Iteration: %d. Number of segments: %d." % (iter, len(level))) if ons == len(segments): break ons = len(segments) for i in range(len(segments)): i1 = level[i] / mean i2 = t_test_1_sample(mean, level[i], error[i], len(segments[i])) if i2 is not None and i2 < (0.05 * bin_size / 3e9) and abs(i1 - 1.) > 0.01: print(c + ":" + str(segments[i][0] * bin_size + 1) + "-" + str( segments[i][-1] * bin_size + bin_size), (segments[i][-1] - segments[i][0] + 1) * bin_size, bin_size, len(segments[i]), i1, i2) self.io.create_signal(c, bin_size, "RD mosaic segments", data=segments_code(segments), flags=flag_rd) self.io.create_signal(c, bin_size, "RD mosaic call", data=np.array([level, error], dtype="float32"), flags=flag_rd) def mask_snps(self, callset=None): """ Flags SNPs in P-region (sets second bit of the flag to 1 for SNP inside P region, or to 0 otherwise). Requires imported mask data or recognized reference genome with mask data. Parameters ---------- callset : str or None It will assume SNP data if None. Otherwise it will assume SNV data stored under the name provided by callset variable. """ snp_mask_chromosomes = {} for c in self.io_mask.mask_chromosomes(): snp_name = self.io.snp_chromosome_name(c) if snp_name is not None: snp_mask_chromosomes[snp_name] = c for c in self.io.snp_chromosomes(): if c in snp_mask_chromosomes: _logger.info("Masking SNP data for chromosome '%s'." % c) pos, ref, alt, nref, nalt, gt, flag, qual = self.io.read_snp(c, callset=callset) mask = mask_decompress(self.io_mask.get_signal(snp_mask_chromosomes[c], None, "mask")) mask_ix = 0 for snp_ix in range(len(pos)): while mask_ix < len(mask) and mask[mask_ix][1] < pos[snp_ix]: mask_ix += 1 if mask_ix < len(mask) and mask[mask_ix][0] < pos[snp_ix] and pos[snp_ix] < ( mask[mask_ix][1] + 1): flag[snp_ix] = flag[snp_ix] | 2 else: flag[snp_ix] = flag[snp_ix] & 1 if len(pos) > 0: self.io.save_snp(c, pos, ref, alt, nref, nalt, gt, flag, qual, update=True, callset=callset) def variant_id(self, vcf_file, chroms, callset=None): vcff = Vcf(vcf_file) chrs = [c for c in vcff.get_chromosomes() if len(chroms) == 0 or c in chroms] def set_id_flag(chr, id_pos, id_ref, id_alt): snp_chr_name = self.io.snp_chromosome_name(chr) if snp_chr_name is not None: pos, ref, alt, nref, nalt, gt, flag, qual = self.io.read_snp(snp_chr_name, callset=callset) id_ix = 0 f0 = 0 f1 = 0 for snp_ix in range(len(pos)): while id_ix < len(id_pos) and id_pos[id_ix] < pos[snp_ix]: id_ix += 1 if id_ix < len(id_pos): if id_pos[id_ix] == pos[snp_ix] and id_ref[id_ix] == ref[snp_ix] and id_alt[id_ix] == alt[ snp_ix]: flag[snp_ix] = flag[snp_ix] | 1 f1 += 1 else: flag[snp_ix] = flag[snp_ix] & 2 f0 += 1 _logger.info("%d of %d variants found in '%s'." % (f1, f0 + f1, vcf_file)) if len(pos) > 0: self.io.save_snp(snp_chr_name, pos, ref, alt, nref, nalt, gt, flag, qual, update=True, callset=callset) return vcff.read_all_snp_positions(set_id_flag) def calculate_baf(self, bin_sizes, chroms=[], use_mask=True, use_id=False, use_phase=False, res=200, reduce_noise=False, blw=0.8, use_hom=False): """ Calculates BAF histograms and store data into cnvpytor file. Parameters ---------- bin_sizes : list of int List of histogram bin sizes chroms : list of str List of chromosomes. Calculates for all available if empty. use_mask : bool Use P-mask filter if True. Default: True. use_id : bool Use id flag filter if True. Default: False. use_phase : bool Use phasing information if True and available. Default: False. res: int Likelihood function resolution. Default: 200. """ snp_flag = (FLAG_USEMASK if use_mask else 0) | (FLAG_USEID if use_id else 0) for c in self.io.snp_chromosomes(): if len(chroms) == 0 or c in chroms: _logger.info("Calculating BAF histograms for chromosome '%s'." % c) pos, ref, alt, nref, nalt, gt, flag, qual = self.io.read_snp(c) max_bin = {} count00 = {} count01 = {} count10 = {} count11 = {} reads00 = {} reads01 = {} reads10 = {} reads11 = {} baf = {} maf = {} likelihood = {} i1 = {} i2 = {} lh_x = np.arange(1.0 / res, 1., 1.0 / res) for bs in bin_sizes: max_bin[bs] = (pos[-1] - 1) // bs + 1 count00[bs] = np.zeros(max_bin[bs]) count01[bs] = np.zeros(max_bin[bs]) count10[bs] = np.zeros(max_bin[bs]) count11[bs] = np.zeros(max_bin[bs]) reads00[bs] = np.zeros(max_bin[bs]) reads01[bs] = np.zeros(max_bin[bs]) reads10[bs] = np.zeros(max_bin[bs]) reads11[bs] = np.zeros(max_bin[bs]) baf[bs] = np.zeros(max_bin[bs]) maf[bs] = np.zeros(max_bin[bs]) likelihood[bs] = np.ones((max_bin[bs], res - 1)).astype("float") / (res - 1) i1[bs] = np.zeros(max_bin[bs]) i2[bs] = np.zeros(max_bin[bs]) for i in range(len(pos)): if (nalt[i] + nref[i]) > 0 and (not use_id or (flag[i] & 1)) and (not use_mask or (flag[i] & 2)): if gt[i] == 1 or gt[i] == 5 or gt[i] == 6: for bs in bin_sizes: b = (pos[i] - 1) // bs if use_phase and (gt[i] == 5): reads01[bs][b] += nref[i] reads10[bs][b] += nalt[i] count10[bs][b] += 1 snp_baf = 1.0 * nalt[i] / (nalt[i] + nref[i]) likelihood[bs][b] *= beta(nalt[i], nref[i], lh_x, phased=True) s = np.sum(likelihood[bs][b]) if s != 0.0: likelihood[bs][b] /= s elif use_phase and (gt[i] == 6): reads01[bs][b] += nalt[i] reads10[bs][b] += nref[i] count01[bs][b] += 1 snp_baf = 1.0 * nref[i] / (nalt[i] + nref[i]) likelihood[bs][b] *= beta(nref[i], nalt[i], lh_x, phased=True) s = np.sum(likelihood[bs][b]) if s != 0.0: likelihood[bs][b] /= s else: snp_baf = 1.0 * nalt[i] / (nalt[i] + nref[i]) reads01[bs][b] += nalt[i] reads10[bs][b] += nref[i] count01[bs][b] += 1 if reduce_noise: likelihood[bs][b] *= beta(nalt[i] + (1 if nalt[i] < nref[i] else 0), nref[i] + (1 if nref[i] < nalt[i] else 0), lh_x) else: likelihood[bs][b] *= beta(nalt[i] * blw, nref[i] * blw, lh_x) s = np.sum(likelihood[bs][b]) if s != 0.0: likelihood[bs][b] /= s baf[bs][b] += snp_baf maf[bs][b] += 1.0 - snp_baf if snp_baf > 0.5 else snp_baf else: for bs in bin_sizes: b = (pos[i] - 1) // bs if use_phase and (gt[i] == 7): count11[bs][b] += 1 reads11[bs][b] += nalt[i] reads00[bs][b] += nref[i] elif use_phase and (gt[i] == 4): count00[bs][b] += 1 else: count11[bs][b] += 1 reads11[bs][b] += nalt[i] reads00[bs][b] += nref[i] for bs in bin_sizes: for i in range(max_bin[bs]): count = count01[bs][i] + count10[bs][i] if count > 0: baf[bs][i] /= count maf[bs][i] /= count max_lh = np.amax(likelihood[bs][i]) ix = np.where(likelihood[bs][i] == max_lh)[0][0] i1[bs][i] = 1.0 * (res // 2 - 1 - ix) / res if ix <= (res // 2 - 1) else 1.0 * ( ix - res // 2 + 1) / res i2[bs][i] = likelihood[bs][i][res // 2 - 1] / max_lh elif use_hom: likelihood[bs][i] = lh_x * 0. + 1 / res likelihood[bs][i][0] = 0.5 * (count11[bs][i] + count00[bs][i]) likelihood[bs][i][-1] = 0.5 * (count11[bs][i] + count00[bs][i]) s = np.sum(likelihood[bs][i]) likelihood[bs][i] /= s max_lh = np.amax(likelihood[bs][i]) ix = np.where(likelihood[bs][i] == max_lh)[0][0] i1[bs][i] = 1.0 * (res // 2 - 1 - ix) / res if ix <= (res // 2 - 1) else 1.0 * ( ix - res // 2 + 1) / res i2[bs][i] = likelihood[bs][i][res // 2 - 1] / max_lh _logger.info("Saving BAF histograms with bin size %d for chromosome '%s'." % (bs, c)) self.io.create_signal(c, bs, "SNP bin count 0|0", count00[bs].astype("uint16"), snp_flag) self.io.create_signal(c, bs, "SNP bin count 0|1", count01[bs].astype("uint16"), snp_flag) self.io.create_signal(c, bs, "SNP bin count 1|0", count10[bs].astype("uint16"), snp_flag) self.io.create_signal(c, bs, "SNP bin count 1|1", count11[bs].astype("uint16"), snp_flag) self.io.create_signal(c, bs, "SNP bin reads 0|0", reads00[bs].astype("uint16"), snp_flag) self.io.create_signal(c, bs, "SNP bin reads 0|1", reads01[bs].astype("uint16"), snp_flag) self.io.create_signal(c, bs, "SNP bin reads 1|0", reads10[bs].astype("uint16"), snp_flag) self.io.create_signal(c, bs, "SNP bin reads 1|1", reads11[bs].astype("uint16"), snp_flag) self.io.create_signal(c, bs, "SNP baf", baf[bs].astype("float32"), snp_flag) self.io.create_signal(c, bs, "SNP maf", maf[bs].astype("float32"), snp_flag) self.io.create_signal(c, bs, "SNP likelihood", likelihood[bs].astype("float32"), snp_flag) self.io.create_signal(c, bs, "SNP i1", i1[bs].astype("float32"), snp_flag) self.io.create_signal(c, bs, "SNP i2", i2[bs].astype("float32"), snp_flag) def call_baf(self, bin_sizes, chroms=[], use_mask=True, use_id=False, odec=0.9, omin=None, mcount=None, max_distance=0.1, anim=""): """ CNV caller based on BAF likelihood mearger Parameters ---------- bin_sizes : list of int List of histogram bin sizes chroms : list of str List of chromosomes. Calculates for all available if empty. use_mask : bool Use P-mask filter if True. Default: False. use_id : bool Use ID filter if True. Default: False. """ for bin_size in bin_sizes: if omin is None: overlap_min = 1e-7 * bin_size else: overlap_min = omin if mcount is None: min_count = bin_size // 10000 else: min_count = mcount snp_flag = (FLAG_USEMASK if use_mask else 0) | (FLAG_USEID if use_id else 0) for c in self.io.snp_chromosomes(): if len(chroms) == 0 or c in chroms and self.io.signal_exists(c, bin_size, "SNP likelihood", snp_flag): # _logger.info( # "Caling CNV-s by merging BAF likelihood with bin size %d for chromosome '%s'." % (bin_size, c)) likelihood = list(self.io.get_signal(c, bin_size, "SNP likelihood", snp_flag).astype("float64")) snp_hets = self.io.get_signal(c, bin_size, "SNP bin count 0|1", snp_flag) snp_hets += self.io.get_signal(c, bin_size, "SNP bin count 1|0", snp_flag) bins = len(likelihood) res = likelihood[0].size segments = [[i] for i in range(bins) if snp_hets[i] >= min_count and np.sum(likelihood[i]) > 0.0] likelihood = [likelihood[i] for i in range(bins) if snp_hets[i] >= min_count and np.sum(likelihood[i]) > 0.0] overlaps = [likelihood_overlap(likelihood[i], likelihood[i + 1]) for i in range(len(segments) - 1)] iter = 0 while len(overlaps) > 0: maxo = max(overlaps) mino = max(maxo * odec, overlap_min) if maxo < overlap_min: break i = 0 while i < len(overlaps): if overlaps[i] > mino: nlh = likelihood[i] * likelihood[i + 1] likelihood[i] = nlh /
np.sum(nlh)
numpy.sum
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(227, 'F d -3 m :2', transformations) space_groups[227] = sg space_groups['F d -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
import torch import cv2 import os import datetime import numpy as np import pandas as pd from tqdm import tqdm from network.utils import bbox_iou from datetime import datetime import multiprocessing from scipy.optimize import linear_sum_assignment class Track: ''' Track is the class of track. it contains all the node and manages the node. it contains the following information: 1) all the nodes 2) track id. it is unique it identify each track 3) track pool id. it is a number to give a new id to a new track 4) age. age indicates how old is the track 5) max_age. indicates the dead age of this track ''' _id_pool = 1 def __init__(self): self.nodes = list() self.frames = {} self.mid_frames = {} self.id = Track._id_pool Track._id_pool += 1 self.color = tuple((np.random.rand(3) * 255).astype(int).tolist()) self.prev_direction = None def update_frames(self, all_tube_frames, tube_boxes, mid_frame, mid_box, score, tube_direction): for frame, frame_box in zip(all_tube_frames, tube_boxes): if frame not in self.frames: self.frames[frame] = [frame_box, 1, score] else: self.frames[frame][0] += frame_box.astype(np.float) self.frames[frame][1] += 1 self.frames[frame][2] += score if mid_frame not in self.mid_frames: self.mid_frames[mid_frame] = [mid_box.astype(np.float), 1, score] else: self.mid_frames[mid_frame][0] += mid_box.astype(np.float) self.mid_frames[mid_frame][1] += 1 self.mid_frames[mid_frame][2] += score def get_center(box): return np.array(((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)) front_frame = np.max(all_tube_frames) back_frame = np.min(all_tube_frames) end_box = self.frames[front_frame][0] / self.frames[front_frame][1] start_box = self.frames[back_frame][0] / self.frames[back_frame][1] self.prev_direction = np.zeros(3) self.prev_direction[:2] = get_center(end_box) - get_center(start_box) self.prev_direction[2] = front_frame - back_frame def track_tube_iou(track_boxes, tube_boxes): track_boxes = np.atleast_3d(track_boxes).astype(np.float) # (n_track, n_tbbox, 4) tube_boxes = np.atleast_2d(tube_boxes).astype(np.float) # (n_tbbox, 4) def track_tube_overlaps(bboxes1, bboxes2): lt = np.maximum(np.minimum(bboxes1[:, :, :2], bboxes1[:, :, 2:]), np.minimum(bboxes2[:, :2], bboxes2[:, 2:])) # [rows, 2] rb = np.minimum(np.maximum(bboxes1[:, :, 2:], bboxes1[:, :, :2]), np.maximum(bboxes2[:, 2:], bboxes2[:, :2])) # [rows, 2] wh = np.clip(rb - lt, 0, None) overlap = wh[:, :, 0] * wh[:, :, 1] return overlap overlap = track_tube_overlaps(track_boxes, tube_boxes) area1 = (track_boxes[:, :, 2] - track_boxes[:, :, 0]) * (track_boxes[:, :, 3] - track_boxes[:, :, 1]) area1 = np.abs(area1) area2 = (tube_boxes[:, 2] - tube_boxes[:, 0]) * (tube_boxes[:, 3] - tube_boxes[:, 1]) area2 = np.abs(area2) ious = overlap / (area1 + area2 - overlap) return ious def get_shape_diff(track_boxes, tube_boxes): track_boxes = np.atleast_3d(track_boxes).astype(np.float) # (n_track, n_tbbox, 4) tube_boxes = np.atleast_2d(tube_boxes).astype(np.float) # (n_tbbox, 4) track_height = track_boxes[:, :, 2] - track_boxes[:, :, 0] track_width = track_boxes[:, :, 3] - track_boxes[:, :, 1] tube_height = tube_boxes[:, 2] - tube_boxes[:, 0] tube_width = tube_boxes[:, 3] - tube_boxes[:, 1] diff = np.abs(track_height - tube_height) / (track_height + tube_height) + \ np.abs(track_width - tube_width) / (track_width + tube_width) return np.exp(1.5 * -diff) def update_tracks_fast(tracks, tube, arg): mid_frame = tube[0].astype(np.int) mid_box = tube[1:5] end_frame = tube[5].astype(np.int) end_box = tube[6:10] start_frame = tube[10].astype(np.int) start_box = tube[11:15] score = tube[15] def get_center(box): return np.array(((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)) back_frames = np.arange(start_frame, mid_frame) front_frames = np.arange(mid_frame + 1, end_frame + 1) all_tube_frames = np.arange(start_frame, end_frame + 1) back_start_coef = (mid_frame - back_frames) / (mid_frame - start_frame) back_mid_coef = (back_frames - start_frame) / (mid_frame - start_frame) front_mid_coef = (end_frame - front_frames) / (end_frame - mid_frame) front_end_coef = (front_frames - mid_frame) / (end_frame - mid_frame) back_frame_boxes = np.outer(back_start_coef, start_box) + np.outer(back_mid_coef, mid_box) front_frame_boxes = np.outer(front_end_coef, end_box) + np.outer(front_mid_coef, mid_box) tube_boxes = np.concatenate((back_frame_boxes, mid_box[None], front_frame_boxes)) tube_frame_num = len(all_tube_frames) depth_divider = 8 tube_direction = np.zeros(3) tube_direction[:2] = get_center(end_box) - get_center(start_box) tube_direction[2] = np.max(all_tube_frames) - np.min(all_tube_frames) tube_direction[2] /= depth_divider if len(tracks) == 0: new_track = Track() new_track.update_frames(all_tube_frames, tube_boxes, mid_frame, mid_box, score, tube_direction) tracks.append(new_track) return all_has_frame = np.zeros((len(tracks), tube_frame_num), dtype=np.bool) all_track_boxes = np.zeros((len(tracks), *tube_boxes.shape)) track_direction = np.zeros((len(tracks), 3)) for track_idx, track in enumerate(tracks): # overlap_area = [1e8, -1] if track.prev_direction is not None: track_direction[track_idx, :] = track.prev_direction for i, frame in enumerate(all_tube_frames): if frame not in track.frames: continue all_has_frame[track_idx, i] = True all_track_boxes[track_idx, i, :] = \ track.frames[frame][0] / track.frames[frame][1] # overlap_area[0] = min(overlap_area[0], frame) # overlap_area[1] = max(overlap_area[1], frame) # if overlap_area[1] < 0: # continue # while overlap_area[0] - 1 in track.frames and overlap_area[1] - overlap_area[0] + 1 < tube_frame_num: # overlap_area[0] -= 1 # while overlap_area[1] + 1 in track.frames and overlap_area[1] - overlap_area[0] + 1 < tube_frame_num: # overlap_area[1] += 1 # track_direction[track_idx, :2] = get_center(track.frames[overlap_area[1]][0] / track.frames[overlap_area[1]][1]) - \ # get_center(track.frames[overlap_area[0]][0] / track.frames[overlap_area[0]][1]) # track_direction[track_idx, 2] = overlap_area[1] - overlap_area[0] track_direction[:, 2] /= depth_divider has_overlap = (np.sum(all_has_frame, axis=1) > 0) all_iou = np.zeros(all_has_frame.shape, dtype=np.float) shape_diff = np.zeros(all_has_frame.shape, dtype=np.float) all_iou[has_overlap] = track_tube_iou(all_track_boxes[has_overlap], tube_boxes) shape_diff[has_overlap] = get_shape_diff(all_track_boxes[has_overlap], tube_boxes) mean_all_iou = np.zeros(has_overlap.shape, dtype=np.float) mean_all_iou[has_overlap] = np.sum(all_iou[has_overlap], axis=1) /
np.sum(all_has_frame[has_overlap], axis=1)
numpy.sum
import glob, time import numpy as np from PIL import Image import os import os.path as osp import cv2 import torch from torchvision import transforms from torchvision.transforms import Normalize import torchvision import itertools import copy import joblib from pymatreader import read_mat from lib.data_utils.img_utils import normalize_2d_kp, transfrom_keypoints, get_single_image_crop from dataset.data_utils import ( xyz2uvd, kp_to_bbox_param, get_dataset_path, crop, transform ) class SPINDataset(): def __init__(self, dataset): self.dataset = dataset self.data = joblib.load("/data/3dpw/3dpw_train_db.pt") def __len__(self): return len(self.data) def __getitem__(self, idx): feature = self.data["features"][idx] joints3d = self.data["joints3D"][idx] joints2d = self.data["joints2D"][idx] shape = self.data["shape"][idx] pose = self.data["pose"][idx] return feature, joints3d, joints2d, shape, pose class TrainDataset(): def __init__(self, train_data, use_seg_gt=False, joints_dataset="3dpw", train_texture_net=False, use_augmentation=False, use_coco_gt=False): self.num_patch = 4 self.divider = 2 self.use_seg_gt = use_seg_gt self.joints_dataset = joints_dataset self.use_augmentation = use_augmentation self.list = list(range(4)) self.permutations = np.array(list(itertools.permutations(self.list, len(self.list)))) self.augment_tile_256_224 = transforms.Compose([ transforms.Resize((256, 256)), transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) self.transform_224 = transforms.Compose([ transforms.Resize((224, 224), Image.BILINEAR), ]) self.transform_224_tensor = transforms.Compose([ transforms.Resize((224, 224), Image.BILINEAR), transforms.ToTensor(), transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) ]) self.angle_list = [0, 90, 180, 270] if train_texture_net: h36m_train_data_path = "/data/human3.6m/h36m_train_db_simple.pt" self.h36m_train_dataset = self.load_dataset(h36m_train_data_path, prop_sample=0.08) # 5013 print("H36M Train dataset: {}".format(format(self.h36m_train_dataset["len_data"], ","))) # three_dp_train_data_path = "/data/3dpw/3dpw_train_db_simple.pt" # self.three_dp_train_dataset = self.load_dataset(three_dp_train_data_path, prop_sample=0.2) # print("3DPW Train dataset: {}".format(format(self.three_dp_train_dataset["len_data"], ","))) mpi_inf_train_data_path = "/data/MPI-INF-3D-HP/mpi-inf-3d-hp_train_db_simple.pt" self.mpi_inf_train_dataset = self.load_dataset(mpi_inf_train_data_path, prop_sample=0.05) # 4835 print("MPI-INF Train dataset: {}".format(format(self.mpi_inf_train_dataset["len_data"], ","))) mpii_train_data_path = "/data/MPII/mpii_train_db_simple.pt" self.mpii_train_dataset = self.load_dataset(mpii_train_data_path, prop_sample=1) # 5445 print("MPII Train dataset: {}".format(format(self.mpii_train_dataset["len_data"], ","))) coco_train_data_path = "/data/coco/coco_train_db_simple.pt" self.coco_train_dataset = self.load_dataset(coco_train_data_path, prop_sample=1) # 4040 print("COCO Train dataset: {}".format(format(self.coco_train_dataset["len_data"], ","))) youtube_train_data_path = "/data/youtube_collection/youtube_collection_train_db_simple.pt" self.youtube_train_dataset = self.load_dataset(youtube_train_data_path, prop_sample=1) # 3045 print("Youtube Train dataset: {}".format(format(self.youtube_train_dataset["len_data"], ","))) key_list = ["p_id_list", "img_path_list", "bbox_list", "joints3D_list", "has_joints3D", "joints2D_list", "has_joints2D", "shape_list", "has_shape", "pose_list", "has_pose", "has_camera"] dataset_dict = {} for key in key_list: dataset_dict[key] = np.concatenate(( self.h36m_train_dataset[key], self.mpi_inf_train_dataset[key], self.mpii_train_dataset[key], self.coco_train_dataset[key], self.youtube_train_dataset[key],)) self.p_id_list = dataset_dict["p_id_list"] self.img_path_list = dataset_dict["img_path_list"] self.bbox_list = dataset_dict["bbox_list"] self.joints3D_list = dataset_dict["joints3D_list"] self.has_joints3D = dataset_dict["has_joints3D"] self.joints2D_list = dataset_dict["joints2D_list"] self.has_joints2D = dataset_dict["has_joints2D"] self.shape_list = dataset_dict["shape_list"] self.has_shape = dataset_dict["has_shape"] self.pose_list = dataset_dict["pose_list"] self.has_pose = dataset_dict["has_pose"] self.has_camera = dataset_dict["has_camera"] del dataset_dict del self.h36m_train_dataset del self.mpi_inf_train_dataset del self.mpii_train_dataset del self.coco_train_dataset del self.youtube_train_dataset else: if train_data == 0: if self.use_seg_gt: train_dataset_path = "/data/human3.6m/h36m_train_db_simple_seg.pt" else: train_dataset_path = "/data/human3.6m/h36m_train_db_simple.pt" self.train_dataset = self.load_dataset(train_dataset_path, use_gt=True) print("{} Train dataset: {}".format(joints_dataset.upper(), format(self.train_dataset["len_data"], ","))) if self.use_seg_gt: test_dataset_path = "/data/human3.6m/h36m_test_db_simple_seg.pt" else: test_dataset_path = "/data/human3.6m/h36m_test_db_simple.pt" self.test_dataset = self.load_dataset(test_dataset_path, use_gt=True) print("{} Train dataset: {}".format(joints_dataset.upper(), format(self.test_dataset["len_data"], ","))) if train_data in [1, 2, 3, 4, 5]: ### 3DPW ### if joints_dataset == "3dpw": dataset_path = "/data/3dpw/3dpw_train_db_simple.pt" elif joints_dataset == "h36m": if self.use_seg_gt: dataset_path = "/data/human3.6m/h36m_train_db_simple_seg.pt" else: dataset_path = "/data/human3.6m/h36m_train_db_simple.pt" self.dataset = self.load_dataset(dataset_path, use_gt=True) print("{} Train dataset: {}".format(joints_dataset.upper(), format(self.dataset["len_data"], ","))) if train_data in [2, 4]: ### Human 3.6M ### if joints_dataset == "3dpw": dataset2_path = "/data/human3.6m/h36m_train_db_simple.pt" self.dataset2 = self.load_dataset(dataset2_path) print("H36M Train dataset: {}".format(format(self.dataset2["len_data"], ","))) elif joints_dataset == "h36m": dataset2_path = "/data/3dpw/3dpw_train_db_simple.pt" self.dataset2 = self.load_dataset(dataset2_path) print("3DPW Train dataset: {}".format(format(self.dataset2["len_data"], ","))) ### MPII ### mpii_dataset_path = "/data/MPI-INF-3D-HP/mpi-inf-3d-hp_train_db_simple.pt" self.mpii_dataset = self.load_dataset(mpii_dataset_path) print("MPII Train dataset: {}".format(format(self.mpii_dataset["len_data"], ","))) ### SYSU ### sysu_dataset_path = "/data/SYSU3DAction/sysu_train_db_simple.pt" self.sysu_dataset = self.load_dataset(sysu_dataset_path) print("SYSU Train dataset: {}".format(format(self.sysu_dataset["len_data"], ","))) ### Nucla ### nucla_dataset_path = "/data/nucla/nucla_train_db_simple.pt" self.nucla_dataset = self.load_dataset(nucla_dataset_path) print("Nucla Train dataset: {}".format(format(self.nucla_dataset["len_data"], ","))) if train_data in [3, 4]: ### ETH ### eth_dataset_path = "/data/ETH_padding/ETH_train_db_simple.pt" self.eth_dataset = self.load_dataset(eth_dataset_path) print("ETH Train dataset: {}".format(format(self.eth_dataset["len_data"], ","))) ### Penn Fudan ### penn_fudan_dataset_path = "/data/Penn-Fudan/Penn-Fudan_train_db_simple.pt" self.penn_fudan_dataset = self.load_dataset(penn_fudan_dataset_path) print("Penn-Fudan Train dataset: {}".format(format(self.penn_fudan_dataset["len_data"], ","))) if train_data == 5: if self.use_seg_gt: coco_dataset_path = "/data/coco/coco_train_db_simple_seg.pt" else: coco_dataset_path = "/data/coco/coco_train_db_simple.pt" if use_coco_gt: self.coco_dataset = self.load_dataset(coco_dataset_path, use_gt=True) else: self.coco_dataset = self.load_dataset(coco_dataset_path) print("COCO Train dataset: {}".format(format(self.coco_dataset["len_data"], ","))) if train_data == 0: key_list = ["p_id_list", "img_path_list", "bbox_list", "joints3D_list", "has_joints3D", "joints2D_list", "has_joints2D", "shape_list", "has_shape", "pose_list", "has_pose", "has_camera"] dataset_dict = {} for key in key_list: dataset_dict[key] = np.concatenate(( self.train_dataset[key], self.test_dataset[key])) self.p_id_list = dataset_dict["p_id_list"] self.img_path_list = dataset_dict["img_path_list"] self.bbox_list = dataset_dict["bbox_list"] self.joints3D_list = dataset_dict["joints3D_list"] self.has_joints3D = dataset_dict["has_joints3D"] self.joints2D_list = dataset_dict["joints2D_list"] self.has_joints2D = dataset_dict["has_joints2D"] self.shape_list = dataset_dict["shape_list"] self.has_shape = dataset_dict["has_shape"] self.pose_list = dataset_dict["pose_list"] self.has_pose = dataset_dict["has_pose"] self.has_camera = dataset_dict["has_camera"] del dataset_dict del self.train_dataset del self.test_dataset if train_data == 1: self.p_id_list = self.dataset["p_id_list"] self.img_path_list = self.dataset["img_path_list"] self.bbox_list = self.dataset["bbox_list"] self.joints3D_list = self.dataset["joints3D_list"] self.has_joints3D = self.dataset["has_joints3D"] self.joints2D_list = self.dataset["joints2D_list"] self.has_joints2D = self.dataset["has_joints2D"] self.shape_list = self.dataset["shape_list"] self.has_shape = self.dataset["has_shape"] self.pose_list = self.dataset["pose_list"] self.has_pose = self.dataset["has_pose"] self.has_camera = self.dataset["has_camera"] del self.dataset if train_data == 2: key_list = ["p_id_list", "img_path_list", "bbox_list", "joints3D_list", "has_joints3D", "joints2D_list", "has_joints2D", "shape_list", "has_shape", "pose_list", "has_pose", "has_camera"] dataset_dict = {} for key in key_list: dataset_dict[key] = np.concatenate(( self.dataset[key], self.dataset2[key], self.mpii_dataset[key], self.sysu_dataset[key], self.nucla_dataset[key])) self.p_id_list = dataset_dict["p_id_list"] self.img_path_list = dataset_dict["img_path_list"] self.bbox_list = dataset_dict["bbox_list"] self.joints3D_list = dataset_dict["joints3D_list"] self.has_joints3D = dataset_dict["has_joints3D"] self.joints2D_list = dataset_dict["joints2D_list"] self.has_joints2D = dataset_dict["has_joints2D"] self.shape_list = dataset_dict["shape_list"] self.has_shape = dataset_dict["has_shape"] self.pose_list = dataset_dict["pose_list"] self.has_pose = dataset_dict["has_pose"] self.has_camera = dataset_dict["has_camera"] del dataset_dict del self.dataset del self.dataset2 del self.mpii_dataset del self.sysu_dataset del self.nucla_dataset if train_data == 3: key_list = ["p_id_list", "img_path_list", "bbox_list", "joints3D_list", "has_joints3D", "joints2D_list", "has_joints2D", "shape_list", "has_shape", "pose_list", "has_pose", "has_camera"] dataset_dict = {} for key in key_list: dataset_dict[key] = np.concatenate(( self.dataset[key], self.eth_dataset[key], self.penn_fudan_dataset[key])) self.p_id_list = dataset_dict["p_id_list"] self.img_path_list = dataset_dict["img_path_list"] self.bbox_list = dataset_dict["bbox_list"] self.joints3D_list = dataset_dict["joints3D_list"] self.has_joints3D = dataset_dict["has_joints3D"] self.joints2D_list = dataset_dict["joints2D_list"] self.has_joints2D = dataset_dict["has_joints2D"] self.shape_list = dataset_dict["shape_list"] self.has_shape = dataset_dict["has_shape"] self.pose_list = dataset_dict["pose_list"] self.has_pose = dataset_dict["has_pose"] self.has_camera = dataset_dict["has_camera"] del dataset_dict del self.dataset del self.eth_dataset del self.penn_fudan_dataset if train_data == 4: key_list = ["p_id_list", "img_path_list", "bbox_list", "joints3D_list", "has_joints3D", "joints2D_list", "has_joints2D", "shape_list", "has_shape", "pose_list", "has_pose", "has_camera"] dataset_dict = {} for key in key_list: dataset_dict[key] = np.concatenate(( self.dataset[key], self.dataset2[key], self.mpii_dataset[key], self.sysu_dataset[key], self.nucla_dataset[key], self.eth_dataset[key], self.penn_fudan_dataset[key])) self.p_id_list = dataset_dict["p_id_list"] self.img_path_list = dataset_dict["img_path_list"] self.bbox_list = dataset_dict["bbox_list"] self.joints3D_list = dataset_dict["joints3D_list"] self.has_joints3D = dataset_dict["has_joints3D"] self.joints2D_list = dataset_dict["joints2D_list"] self.has_joints2D = dataset_dict["has_joints2D"] self.shape_list = dataset_dict["shape_list"] self.has_shape = dataset_dict["has_shape"] self.pose_list = dataset_dict["pose_list"] self.has_pose = dataset_dict["has_pose"] self.has_camera = dataset_dict["has_camera"] del dataset_dict del self.dataset del self.dataset2 del self.mpii_dataset del self.sysu_dataset del self.nucla_dataset del self.eth_dataset del self.penn_fudan_dataset if train_data == 5: key_list = ["p_id_list", "img_path_list", "bbox_list", "joints3D_list", "has_joints3D", "joints2D_list", "has_joints2D", "shape_list", "has_shape", "pose_list", "has_pose", "has_camera"] dataset_dict = {} for key in key_list: dataset_dict[key] = np.concatenate(( self.dataset[key], self.coco_dataset[key])) self.p_id_list = dataset_dict["p_id_list"] self.img_path_list = dataset_dict["img_path_list"] self.bbox_list = dataset_dict["bbox_list"] self.joints3D_list = dataset_dict["joints3D_list"] self.has_joints3D = dataset_dict["has_joints3D"] self.joints2D_list = dataset_dict["joints2D_list"] self.has_joints2D = dataset_dict["has_joints2D"] self.shape_list = dataset_dict["shape_list"] self.has_shape = dataset_dict["has_shape"] self.pose_list = dataset_dict["pose_list"] self.has_pose = dataset_dict["has_pose"] self.has_camera = dataset_dict["has_camera"] del dataset_dict del self.dataset del self.coco_dataset self.scale = 1.2 print("Total Train dataset: {}".format(format(self.__len__(), ","))) def load_dataset(self, dataset_path, use_gt=False, prop_sample=None): dataset_dict = {} data = joblib.load(dataset_path) p_id_list = np.array(data["p_id"]) img_path_list = np.array(data["img_name"]) bbox_list = np.array(data["bbox"]) len_data = len(img_path_list) J24_TO_J17 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 14, 16, 17] J24_TO_J14 = J24_TO_J17[:14] UNIVERSAL_BODIES = [ 16, # R ankle 14, # R knee 12, # R hip 11, # L hip 13, # L knee 15, # L ankle 10, # R Wrist 8, # R Elbow 6, # R shoulder 5, # L shoulder 7, # L Elbow 9, # L Wrist 0, 0, ] if use_gt: try: joints3D_list = data["joints3D"] joints3D_list = np.array(joints3D_list) if self.joints_dataset == "h36m": joints3D_list = joints3D_list[:, :, :-1] has_joints3D = np.ones((len_data, 14, 1)) except KeyError: print("Has No 3D joints") if self.joints_dataset == "h36m": joints3D_list = np.zeros((len_data, 24, 3)) else: joints3D_list = np.zeros((len_data, 49, 3)) has_joints3D = np.zeros((len_data, 14, 1)) try: joints2D_list = data["joints2D"] joints2D_list = np.array(joints2D_list) if self.joints_dataset == "h36m": if joints2D_list.shape[1] == 24: joints2D_list = joints2D_list[:, J24_TO_J14, :] elif joints2D_list.shape[1] == 17: joints2D_list = joints2D_list[:, UNIVERSAL_BODIES, :] joints2D_list[: :13, 2] = 1 joints2D_list[:, 13, 2] = 0 joints2D_list[:, 14, 2] = 0 has_joints2D = np.ones((len_data, 14, 1)) except KeyError: print("Has No 2D joints") joints2D_list = np.zeros((len_data, 14, 3)) has_joints2D = np.zeros((len_data, 14, 1)) try: shape_list = data["shape"] has_shape = np.ones((len_data, 1)) except KeyError: print("Has No Shape") shape_list = np.zeros((len_data, 10)) has_shape = np.zeros((len_data, 1)) try: pose_list = data["pose"] has_pose = np.ones((len_data, 24, 3, 1)) except KeyError: print("Has No Pose") pose_list = np.zeros((len_data, 72)) has_pose = np.zeros((len_data, 24, 3, 1)) has_camera = np.ones((len_data, 1)) else: if self.joints_dataset == "h36m": joints3D_list = np.zeros((len_data, 24, 3)) else: joints3D_list = np.zeros((len_data, 49, 3)) has_joints3D = np.zeros((len_data, 14, 1)) joints2D_list = np.zeros((len_data, 14, 3)) has_joints2D = np.zeros((len_data, 14, 1)) shape_list = np.zeros((len_data, 10)) has_shape = np.zeros((len_data, 1)) pose_list = np.zeros((len_data, 72)) has_pose = np.zeros((len_data, 24, 3, 1)) has_camera = np.zeros((len_data, 1)) if prop_sample: np.random.seed(0) random_idx = np.random.choice(range(len_data), int(len_data*prop_sample)) dataset_dict["p_id_list"] = p_id_list[random_idx] dataset_dict["img_path_list"] = img_path_list[random_idx] print(np.random.choice(dataset_dict["img_path_list"], 10)) dataset_dict["bbox_list"] = bbox_list[random_idx] dataset_dict["len_data"] = int(len_data*prop_sample) dataset_dict["joints3D_list"] = joints3D_list[random_idx] dataset_dict["has_joints3D"] = has_joints3D[random_idx] dataset_dict["joints2D_list"] = joints2D_list[random_idx] dataset_dict["has_joints2D"] = has_joints2D[random_idx] dataset_dict["shape_list"] = shape_list[random_idx] dataset_dict["has_shape"] = has_shape[random_idx] dataset_dict["pose_list"] = pose_list[random_idx] dataset_dict["has_pose"] = has_pose[random_idx] dataset_dict["has_camera"] = has_camera[random_idx] else: dataset_dict["p_id_list"] = p_id_list dataset_dict["img_path_list"] = img_path_list dataset_dict["bbox_list"] = bbox_list dataset_dict["len_data"] = len_data dataset_dict["joints3D_list"] = joints3D_list dataset_dict["has_joints3D"] = has_joints3D dataset_dict["joints2D_list"] = joints2D_list dataset_dict["has_joints2D"] = has_joints2D dataset_dict["shape_list"] = shape_list dataset_dict["has_shape"] = has_shape dataset_dict["pose_list"] = pose_list dataset_dict["has_pose"] = has_pose dataset_dict["has_camera"] = has_camera return dataset_dict def __len__(self): return len(self.img_path_list) def __getitem__(self, idx): p_id = int(self.p_id_list[idx]) img_path = self.img_path_list[idx] bbox = self.bbox_list[idx] if self.use_seg_gt: seg_img_path = img_path.split("/") seg_img_path[3] = "segFiles" seg_img_path[-1] = str(p_id) + "_" + seg_img_path[-1] seg_img_path = "/".join(seg_img_path) _, seg_img = get_single_image_crop(seg_img_path, bbox, self.scale) image, _ = get_single_image_crop(img_path, bbox, self.scale) image = Image.fromarray(image) img = self.transform_224_tensor(image) image_224 = self.transform_224(image) W, H = image_224.size # W, H 224 s = W/self.divider # 112 a = s/2 # 56 tiles_jigsaw = [None] * self.num_patch for n in range(self.num_patch): i = n//self.divider j = n%self.divider c = [a * i * 2 + a, a * j * 2 + a] c = np.array([c[1] - a, c[0] - a, c[1] + a + 1, c[0] + a + 1]).astype(int) tile = image_224.crop(c.tolist()) tile_jigsaw = self.augment_tile_256_224(tile) tiles_jigsaw[n] = tile_jigsaw # Context Encoder context_encoder_input = copy.deepcopy(img) center_crop_img = copy.deepcopy(context_encoder_input[:, 80:144, 80:144]) context_encoder_input[:, 80:144, 80:144] = 0 # Jigsaw Puzzle jigsaw_order = np.random.randint(len(self.permutations)) jigsaw_input = [tiles_jigsaw[self.permutations[jigsaw_order][t]] for t in range(self.num_patch)] jigsaw_input = torch.stack(jigsaw_input, 0) # Rotation rotation_idx = np.random.randint(4) angle = self.angle_list[rotation_idx] rotation_input = self.rotate_img(image, angle) rotation_input = self.transform_224_tensor(rotation_input) joints3d = self.joints3D_list[idx] joints3d = torch.FloatTensor(joints3d) has_joints3d = self.has_joints3D[idx] has_joints3d = torch.FloatTensor(has_joints3d) joints2d = self.joints2D_list[idx] joints2d[:,:2], trans = transfrom_keypoints( kp_2d=joints2d[:,:2], center_x=bbox[0], center_y=bbox[1], width=bbox[2], height=bbox[3], patch_width=224, patch_height=224, do_augment=False, ) joints2d[:,:2] = normalize_2d_kp(joints2d[:,:2], 224) joints2d = torch.FloatTensor(joints2d) has_joints2d = self.has_joints2D[idx] has_joints2d = torch.FloatTensor(has_joints2d) shape = self.shape_list[idx] shape = torch.FloatTensor(shape) has_shape = self.has_shape[idx] has_shape = torch.FloatTensor(has_shape) pose = self.pose_list[idx] pose = torch.FloatTensor(pose) has_pose = self.has_pose[idx] has_pose = torch.FloatTensor(has_pose) has_camera = self.has_camera[idx] has_camera = torch.FloatTensor(has_camera) item = {} item['img_path'] = img_path item['p_id'] = p_id item['img'] = img item['context_encoder_input'] = context_encoder_input item['center_crop_img'] = center_crop_img item['jigsaw_input'] = jigsaw_input item['rotation_input'] = rotation_input item['jigsaw_order'] = jigsaw_order item['rotation_idx'] = rotation_idx item['joints3d'] = joints3d item['has_joints3d'] = has_joints3d item['joints2d'] = joints2d item['has_joints2d'] = has_joints2d item['shape'] = shape item['has_shape'] = has_shape item['pose'] = pose item['has_pose'] = has_pose item['has_camera'] = has_camera if self.use_seg_gt: item['target_seg'] = seg_img[:1, :, :] return item def rotate_img(self, img, rot): img = np.array(img) if rot == 0: # 0 degrees rotation img = img elif rot == 90: # 90 degrees rotation img = np.flipud(np.transpose(img, (1,0,2))) elif rot == 180: # 180 degrees rotation img = np.fliplr(np.flipud(img)) elif rot == 270: # 270 degrees rotation / or -90 img = np.transpose(
np.flipud(img)
numpy.flipud
import pickle import os.path import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches from collections import OrderedDict face_data = OrderedDict() with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), "face_data.pickle"), 'rb') as f: face_data = pickle.load(f) def save() : ''' Saves face_data to a .pickle file ''' with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), "face_data.pickle"), 'wb') as f: pickle.dump(face_data, f, pickle.HIGHEST_PROTOCOL) def add_face(descriptor, name) : ''' Adds descriptor and name to face_data, or averages current descriptor for name Parameters ----------- descriptor: ndarray descriptor for face, returned by face_recognition.detections.face_detection name: str name of person to be stored in database with given descriptor ''' if name not in face_data : face_data[name] = descriptor else: face_data[name] = (face_data[name] + descriptor) / 2 save() def remove_person(name) : ''' Removes name's descriptor and name from database Parameters ----------- name: str name of person to be removed ''' if name not in face_data : return "%s is not in the database" % (name) else : del face_data[name] save() def clear_database(): ''' Clears database of descriptors and names ''' face_data.clear() def list_names() : ''' Lists names of all people in database ''' return list(face_data.keys()) def match_face(descriptor) : ''' Finds the face descriptor from database that best matches descriptor Parameters ----------- descriptor: ndarray descriptor of detected face ''' descriptors = np.vstack(list(face_data.values())) dist = np.sqrt(np.abs(np.sum(descriptors**2, axis=1) + np.sum(descriptor**2) - 2 * np.dot(descriptors, descriptor))) dist_index = np.argmin(dist) print(dist) if dist[dist_index] > .3 : best_match = None best_descriptor = None else : best_match = list(face_data.keys())[dist_index] best_descriptor = face_data[best_match] print(best_match) return best_match, best_descriptor def get_names(face_descriptors) : ''' Returns list of names corresponding to descriptors Parameters ----------- face_descriptors: iterable of ndarrays iterable of face descriptors detected in a photo Returns -------- names: list of str list of names best matching face descriptors ''' names = [] for descriptor in face_descriptors : names.append(match_face(descriptor)[0]) return names def format_names(names, face_descriptors, alexa) : ''' Returns formatted string of user's names Parameters ----------- names: list of str list of names of people in picture face_descriptors: iterable of ndarrays iterable of face descriptors detected in a photo alexa: boolean whether to prompt user to save photo or enter new name ''' print(names) if len(names) == 0 : return "No face is detected", False elif len(names) == 1 : if names[0] is None : if alexa : return "An unknown face is detected", False else : name = input("An unknown face is detected. If you would like to save this image, please enter the person's name. Otherwise, please enter 'None': ") if name.lower() != 'none' : add_face(face_descriptors[0], name) save() return "Picture saved in database for %s" % (name), True else : return "Picture not saved", False else : if alexa : return "%s is detected" % (names[0]), False else : should_save = input("%s is detected. Would you like you save this picture? Please enter 'Yes' or 'No': " % (names[0])) if should_save.lower() == "yes" : add_face(face_descriptors[0], names[0]) return "Picture was saved", False elif should_save.lower() == "no" : return "Picture not saved", False else : raise Exception("Input is not valid") elif len(names) == 2 : nones = names.count(None) to_return = ", ".join(filter(None, names)) if nones > 0 : if nones == 1 : to_return = to_return + " and 1 unknown person are detected" else : split = to_return.rpartition(", ") to_return = split[0] + " and " + split[2] + " are detected" return to_return, False else : nones = names.count(None) to_return = ", ".join(filter(None, names)) if nones > 0 : if nones == 1 : to_return = to_return + ", and 1 unknown person are detected" else : to_return = to_return + ", and %s unknown people are detected" % nones else : split = to_return.rpartition(", ") to_return = split[0] + split[1] + "and " + split[2] + " are detected" return to_return, False def show_image(img_array, face_borders, names) : ''' Shows the image with faces boxed and labeled Parameters ----------- img_array: np.array matrix of the image information face_borders: iterable of ints iterable of box coordinates for all faces recognized names: iterable of strs iterable of all names of faces recognized ''' # Create figure and axes fig, ax = plt.subplots(1) # Display the image ax.imshow(img_array) for i, border in enumerate(face_borders): # Get borders for descriptor l, r, t, b = border # Create a Rectangle patch rect = patches.Rectangle((l, t), r - l, b - t, linewidth=1, edgecolor='y', facecolor='none') if names[i] is not None : ax.annotate(names[i], (r, t), color='w', weight='bold', fontsize=10, ha='right', va='bottom') # Add the patch to the Axes ax.add_patch(rect) plt.show() # work in progress def rgb_to_hsv(rgb_img) : ''' Parameters ----------- rgb_img: numpy array of shape NxMx3 ''' rgb_prime = rgb_img / 255 rgb_max_index = np.argmax(rgb_img, axis=2) Cmax = np.amax(rgb_prime, axis=2) Cmin = np.amin(rgb_prime, axis=2) delta = Cmax - Cmin hue = np.zeros(rgb_img.shape) sat = np.zeros(rgb_img.shape) # gets indices of maximum prime colors r_prime_indices = list(zip(np.where(rgb_max_index == 0 & delta != 0, rgb_prime))) b_prime_indices = list(zip(np.where(rgb_max_index == 1 & delta != 0, rgb_prime))) g_prime_indices = list(zip(
np.where(rgb_max_index == 2 & delta != 0, rgb_prime)
numpy.where
''' TIEGCM Kamodo reader, adapted to new structure for satellite flythrough software Initial version - <NAME> (?) Initial version of model_varnames contributed by <NAME> New code: <NAME> (June 2021 and on) NOTE: The current logic for variables that depend on imlev slices off self._imlev coordinate This only works because there is one variable that depends on imlev: H_imlev The logic on lines 311-313 will have to be reworked a bit if other variables depend on imlev later. Remaining tasks: - check variable dictionary for proper naming, and use of units in Kamodo ''' from numpy import vectorize from datetime import datetime, timezone, timedelta ### Make a dict of the possible variable names in TIEGCM ### the intended format is: "Output VarName":['Latex_Varname', 'Latex_Unit' ] ### The constituent species are output in units of mass mixing ratio (mmr). ### Denoted by \psi_i, mmr is the fractional contribution of ### a species i to the total mass density \rho_{total}, and ### is calculated as \psi_i = \rho_i / \rho_{total}, where ### \rho_i is the mass density of a constituent species. model_varnames={ ### 4D Variables, vertical coordinate on midpoint levels (lev) "ZGMID" : ["H_ilev",'variable description',0,'GDZ','sph',['time','lon','lat','ilev'],"cm"], # geometric height- interpolated to the mid points "TN" : ["T_n",'variable description',1,'GDZ','sph',['time','lon','lat','ilev'],"K"], # neutral temperature "O2" : ["psi_O2",'variable description',2,'GDZ','sph',['time','lon','lat','ilev'],""], # molecular oxygen, mmr "O1" : ["psi_O",'variable description',3,'GDZ','sph',['time','lon','lat','ilev'],""], # atomic oxygen , mmr "N2" : ["psi_N2",'variable description',4,'GDZ','sph',['time','lon','lat','ilev'],""], # molecular nitrogen,mmr "HE" : ["psi_He",'variable description',5,'GDZ','sph',['time','lon','lat','ilev'],""], # helium , mmr "NO" : ["psi_NO",'variable description',6,'GDZ','sph',['time','lon','lat','ilev'],""], # nitric oxide , mmr "N4S" : ["psi_N4S",'variable description',7,'GDZ','sph',['time','lon','lat','ilev'],""], # N4S ?,mmr "N2D" : ["psi_N2D", 'variable description',8,'GDZ','sph',['time','lon','lat','ilev'],""], # N(2D) mmr "TE" : ["T_e",'variable description',9,'GDZ','sph',['time','lon','lat','ilev'],"K"], # ELECTRON TEMPERATURE, "TI" : ["T_i",'variable description',10,'GDZ','sph',['time','lon','lat','ilev'],"K"], # ION TEMPERATURE "O2P" : ["N_O2plus",'variable description',11,'GDZ','sph',['time','lon','lat','ilev'],"1/cm**3"], # O2+ ION "OP" : ["N_Oplus",'variable description',12,'GDZ','sph',['time','lon','lat','ilev'],"1/cm**3"], # O+ ION "N2N" : ["N_N2",'variable description',13,'GDZ','sph',['time','lon','lat','ilev'],"1/cm**3"], # molecular nitrogen (maybe number density),mmr "CO2_COOL" : ["Q_CO2cool",'variable description',14,'GDZ','sph',['time','lon','lat','ilev'],"erg/g/s"], # CO2 cooling rates "NO_COOL" : ["Q_NOcool",'variable description',15,'GDZ','sph',['time','lon','lat','ilev'],"erg/g/s"], # NO cooling rates "UN" : ["u_n",'variable description',16,'GDZ','sph',['time','lon','lat','ilev'],"cm/s"], # neutral ZONAL wind (+EAST) "VN" : ["v_n",'variable description',17,'GDZ','sph',['time','lon','lat','ilev'],"cm/s"], # neutral MERIDIONAL wind (+NORTH) "O2P_ELD" : ['O2P_ELD','variable description',18,'GDZ','sph',['time','lon','lat','ilev'],''], #NO DESCRIPTION GIVEN "N2P_ELD" :['N2P_ELD','variable description',19,'GDZ','sph',['time','lon','lat','ilev'],''], #NO DESCRIPTION GIVEN "NPLUS" :['N_Nplus','variable description',20,'GDZ','sph',['time','lon','lat','ilev'],'1/cm**3'], #GUESS ONLY based on other number densities "NOP_ELD" :['NOP_ELD','variable description',21,'GDZ','sph',['time','lon','lat','ilev'],''], #NO DESCRIPTION GIVEN "SIGMA_PED" :['Sigma_P','variable description',22,'GDZ','sph',['time','lon','lat','ilev'],'S/m'], #Pedersen Conductivity "SIGMA_HAL" :['Sigma_H','variable description',23,'GDZ','sph',['time','lon','lat','ilev'],'S/m'], #Hall Conductivity "QJOULE" :['Q_Joule','variable description',24,'GDZ','sph',['time','lon','lat','ilev'],'erg/g/s'], #Joule Heating "O_N2" :['psi_ON2','variable description',25,'GDZ','sph',['time','lon','lat','ilev'],''], #O/N2 RATIO "N2D_ELD" :['N2D_ELD','variable description',26,'GDZ','sph',['time','lon','lat','ilev'],''], #NO DESCRIPTION GIVEN "O2N" :['r_OtoN','variable description',27,'GDZ','sph',['time','lon','lat','ilev'],'1/cm**3'], #GUESS ONLY # ### 4D Variables, vertical coordinate on interface levels (ilev) "DEN" :["rho",'variable description',28,'GDZ','sph',['time','lon','lat','ilev1'],"g/cm**3"], # total neutral mass density "ZG" :["H_ilev1",'variable description',29,'GDZ','sph',['time','lon','lat','ilev1'],"cm"], # geometric height "Z" :["H_geopot",'variable description',30,'GDZ','sph',['time','lon','lat','ilev1'],"cm"], # geopotential height (cm) "NE" : ["N_e",'variable description',31,'GDZ','sph',['time','lon','lat','ilev1'],"1/cm**3"], # ELECTRON DENSITY "OMEGA" : ["omega",'variable description',32,'GDZ','sph',['time','lon','lat','ilev1'],"1/s"], # VERTICAL MOTION "POTEN" : ["V",'variable description',33,'GDZ','sph',['time','lon','lat','ilev1'],"V"], # ELECTRIC POTENTIAL "UI_ExB" : ["u_iExB",'variable description',34,'GDZ','sph',['time','lon','lat','ilev1'],'cm/s'], #Zonal ExB Velocity "VI_ExB" :["v_iExB",'variable description',35,'GDZ','sph',['time','lon','lat','ilev1'],'cm/s'], #Meridional ExB Velocity "WI_ExB" :["w_iExB", 'variable description',36,'GDZ','sph',['time','lon','lat','ilev1'], 'cm/s'], #Vertical ExB Velocity ### 4D Variables, vertical coordinate on interface mag levels (imlev) "ZMAG" : ["H_mag",'variable description',37,'MAG','sph',['time','mlon','mlat','milev'],"km"], # Geopotential Height on Geomagnetic Grid # ### 3D Variables, (time, lat, lon) "TEC" : ["TEC",'variable description',38,'GDZ','sph',['time','lon','lat'],"1/cm**2"], # Total Electron Content "TLBC" : ["T_nLBC",'variable description',39,'GDZ','sph',['time','lon','lat'],"K"], # Lower boundary condition for TN "ULBC" : ["u_nLBC",'variable description',40,'GDZ','sph',['time','lon','lat'],"cm/s"], # Lower boundary condition for UN "VLBC" : ["v_nLBC",'variable description',41,'GDZ','sph',['time','lon','lat'],"cm/s"], # Lower boundary condition for VN "TLBC_NM" : ["T_nLBCNM",'variable description',42,'GDZ','sph',['time','lon','lat'],"K"], # Lower boundary condition for TN (TIME N-1) "ULBC_NM" : ["u_nLBCNM",'variable description',43,'GDZ','sph',['time','lon','lat'],"cm/s"], # Lower boundary condition for UN (TIME N-1) "VLBC_NM" : ["v_nLBCNM",'variable description',44,'GDZ','sph',['time','lon','lat'],"cm/s"], # Lower boundary condition for VN (TIME N-1) "QJOULE_INTEG":["W_Joule",'variable description',45,'GDZ','sph',['time','lon','lat'],'erg/cm**2/s'], #Height-integrated Joule Heating "EFLUX" :['Eflux_aurora','variable description',46,'GDZ','sph',['time','lon','lat'],'erg/cm**2/s'], #Aurora Energy Flux "HMF2" :['HmF2','variable description',47,'GDZ','sph',['time','lon','lat'],'km'], # Height of the F2 Layer "NMF2" :['NmF2','variable description',48,'GDZ','sph',['time','lon','lat'],'1/cm**3'], #Peak Density of the F2 Layer } #####-------------------------------------------------------------------------------------- ##### Define some helpful functions for dealing with time systems def dts_to_ts(file_dts): '''Get datetime timestamp in UTC from datetime string''' return datetime.timestamp(datetime.strptime(file_dts, '%Y-%m-%d %H:%M:%S' ).replace(tzinfo=timezone.utc)) def year_mtime_todt0(year, mtime): #self.filedate '''Convert year and day to datetime object in UTC at midnight''' day, hour, minute = mtime #unpack mtime values return datetime(int(year),1,1).replace(tzinfo=timezone.utc)+\ timedelta(days=int(day-1)) def year_mtime_todt(year, mtime): '''Convert year and [day,hour,minute] to datetime object in UTC''' day, hour, minute = mtime #unpack mtime values return datetime(int(year),1,1).replace(tzinfo=timezone.utc)+\ timedelta(days=int(day-1),hours=int(hour),minutes=int(minute)) def year_mtime_todts(year, mtime): '''Convert year and mtime to a datetime string''' return datetime.strftime(year_mtime_todt(year, mtime), '%Y-%m-%d %H:%M:%S') def year_mtime_todate(year, mtime): '''Use year and mtime to determine the date in the file. Returns a datetime object.''' date_string = datetime.strftime(year_mtime_todt(year, mtime), '%Y-%m-%d') #'YYYY-MM-DD' return datetime.strptime(date_string, '%Y-%m-%d').replace(tzinfo=timezone.utc) @vectorize def year_mtime_tohrs(year, day, hour, minute, filedate): '''Convert year and mtime to hours since midnight using predetermined datetime object.''' mtime = [day, hour, minute] return (year_mtime_todt(year, mtime)-filedate).total_seconds()/3600. def ts_to_hrs(time_val, filedate): '''Convert utc timestamp to hours since midnight on filedate.''' return (datetime.utcfromtimestamp(time_val).replace(tzinfo=timezone.utc)-filedate).total_seconds()/3600. def MODEL(): from time import perf_counter from os.path import basename from numpy import zeros, transpose, array, append, insert, where, unique from numpy import NaN, diff, abs, mean, broadcast_to, cos, sin, repeat, sqrt, sum from numpy import pi as nppi from netCDF4 import Dataset from kamodo import Kamodo #print('KAMODO IMPORTED!') from kamodo.readers.reader_utilities import regdef_3D_interpolators, regdef_4D_interpolators class MODEL(Kamodo): '''TIEGCM model data reader.''' def __init__(self, full_filename, variables_requested=[], runname="noname", filetime=False, verbose=False, gridded_int=True, printfiles=False, fulltime=True, **kwargs): #filename should include the full path #### Use a super init so that your class inherits any methods from Kamodo super(MODEL, self).__init__() #store time information for satellite flythrough layer to choose the right file t0 = perf_counter() filename = basename(full_filename) file_dir = full_filename.split(filename)[0] cdf_data = Dataset(full_filename, 'r') #calculate time information year = array(cdf_data.variables['year']) mtime = array(cdf_data.variables['mtime']) day, hour, minute = mtime.T #only matters for the vectorized function self.filedate = year_mtime_todt0(year[0], mtime[0]) #datetime object for file date at midnight UTC self.datetimes = [year_mtime_todts(y, m) for y, m \ in zip([year[0], year[-1]],[mtime[0],mtime[-1]])] #strings in format = YYYY-MM-DD HH:MM:SS self.filetimes=[dts_to_ts(file_dts) for file_dts in self.datetimes] #timestamps in UTC time = year_mtime_tohrs(year, day, hour, minute, self.filedate) #time = array([year_mtime_tohrs(y, m, self.filedate) for y, m in \ # zip(year, mtime)]) #hours since midnight of self.filedate self.dt = diff(time).max()*3600. #time is in hours if filetime and not fulltime: #(used when searching for neighboring files below) return #return times as is to prevent recursion #if variables are given as integers, convert to standard names if len(variables_requested)>0: if isinstance(variables_requested[0], int): tmp_var = [value[0] for key, value in model_varnames.items()\ if value[2] in variables_requested] variables_requested = tmp_var if fulltime: #add boundary time (default value) #find other files with same pattern from glob import glob file_pattern = file_dir+'s*.nc' #returns a string for tiegcm files = sorted(glob(file_pattern)) filenames = unique([basename(f) for f in files]) #find closest file by utc timestamp #tiegcm has an open time at the beginning, so need an end time from the previous file #files are automatically sorted by YYMMDD, so previous file is previous in the list current_idx = where(filenames==filename)[0] if current_idx==0: print('No earlier file available.') filecheck = False if filetime: return else: min_filename = file_dir+filenames[current_idx-1][0] #-1 for adding a beginning time kamodo_test = MODEL(min_filename, filetime=True, fulltime=False) time_test = abs(kamodo_test.filetimes[1]-self.filetimes[0]) if time_test<=self.dt: #if nearest file time at least within one timestep (hrs) filecheck = True #time only version if returning time for searching if filetime: kamodo_neighbor = MODEL(min_filename, fulltime=False, filetime=True) self.datetimes[0] = kamodo_neighbor.datetimes[1] self.filetimes[0] = kamodo_neighbor.filetimes[1] return #return object with additional time (for SF code) #get kamodo object with same requested variables to add to each array below if verbose: print(f'Took {perf_counter()-t0:.3f}s to find closest file.') kamodo_neighbor = MODEL(min_filename, variables_requested=variables_requested, fulltime=False) self.datetimes[0] = kamodo_neighbor.datetimes[1] self.filetimes[0] = kamodo_neighbor.filetimes[1] short_data = kamodo_neighbor.short_data if verbose: print(f'Took {perf_counter()-t0:.3f}s to get data from previous file.') else: print(f'No earlier file found within {self.dt:.1f}s') filecheck = False if filetime: return #These lists need to be the standardized variable name to match that above, #not the names from the data file. self.ilev1_list = [value[0] for key, value in model_varnames.items() if value[5][-1]=='ilev1'] self.ilev_list = [value[0] for key, value in model_varnames.items() if value[5][-1]=='ilev'] self.milev_list = [value[0] for key, value in model_varnames.items() if value[5][-1]=='milev'] #don't need an internal coord dict because there is only one lat/lon (other than magnetic) #perform initial check on variables_requested list if len(variables_requested)>0 and fulltime: test_list = [value[0] for key, value in model_varnames.items()] err_list = [item for item in variables_requested if item not in test_list] if len(err_list)>0: print('Variable name(s) not recognized:', err_list) #translate from standardized variables to names in file #remove variables requested that are not in the file if len(variables_requested)>0: gvar_list = [key for key, value in model_varnames.items() \ if value[0] in variables_requested and \ key in cdf_data.variables.keys()] # file variable names #check for variables requested but not available if len(gvar_list)!=len(variables_requested): err_list = [value[0] for key, value in model_varnames.items() \ if value[0] in variables_requested and \ key not in cdf_data.variables.keys()] if len(err_list)>0: print('Some requested variables are not available:', err_list) #check that the appropriate height variable is added for the variables requested check_list = [key for key, value in model_varnames.items()\ if value[0] in self.ilev1_list and key in gvar_list] if 'ZG' not in gvar_list and len(check_list)>0: gvar_list.append('ZG') #force addition of H for conversion of ilev to H and back check_list = [key for key, value in model_varnames.items()\ if value[0] in self.ilev_list and key in gvar_list] if 'ZGMID' not in gvar_list and len(check_list)>0: gvar_list.append('ZGMID') check_list = [key for key, value in model_varnames.items()\ if value[0] in self.milev_list and key in gvar_list] if 'ZMAG' not in gvar_list and len(check_list)>0: gvar_list.append('ZMAG') else: #only input variables on the avoid_list if specifically requested avoid_list = ['TLBC','ULBC','VLBC','TLBC_NM','ULBC_NM','VLBC_NM', 'NOP_ELD','O2P_ELD','N2P_ELD','N2D_ELD'] gvar_list = [key for key in cdf_data.variables.keys() \ if key in model_varnames.keys() and \ key not in avoid_list] # Store the requested variables into a dictionary variables = {model_varnames[key][0]:{'units':model_varnames[key][-1], 'data':array(cdf_data.variables[key])}\ for key in gvar_list} #store with key = standardized name #prepare and return data only for last timestamp if not fulltime: cdf_data.close() variables['time'] = self.filetimes[1] #utc timestamp self.short_data = variables return #### Store our inputs as class attributes to the class self.filename = full_filename self.runname = runname self.missing_value = NaN self._registered = 0 self.variables = dict() self.modelname = 'TIEGCM' if printfiles: print('Files:', self.filename) #### Store coordinate data as class attributes if filecheck: #new_time iis a utc timestamp new_time = ts_to_hrs(short_data['time'], self.filedate) #new time in hours since midnight self._time = insert(time, 0, new_time) #insert new value else: self._time = time #store coordinates lat = array(cdf_data.variables['lat']) #NOT FULL RANGE IN LATITIUDE!!! lat = insert(lat, 0, -90) #insert a grid point at beginning (before -87.5) self._lat = append(lat, 90.) #and at the end (after 87.5) lon = array(cdf_data.variables['lon']) #NOT WRAPPED IN LONGITUDE!!!!! self._lon = append(lon, 180.) #add 180. to end of array self._ilev = array(cdf_data.variables['lev']) self._ilev1 = array(cdf_data.variables['ilev']) self._milev =
array(cdf_data.variables['imlev'])
numpy.array
import os import matplotlib.pyplot as plt import numpy as np import torch from nuscenes.nuscenes import NuScenes from custom_lidar_api import CustomLidarApi from custom_map_api_expansion import CustomNuScenesMap plt.style.use('seaborn-bright') class NusceneDataHelper(): def __init__(self, version, dataroot='./data/sets/nuscenes', locations=['singapore-onenorth', 'singapore-hollandvillage', 'singapore-queenstown', 'boston-seaport'], target_layer_names=['road_block', 'walkway', 'road_divider', 'traffic_light'], max_objs=64, max_points=30, max_point_cloud=1200, patch_size=[-1, -1]): self.class_names = ["None"] + target_layer_names self.dataroot = dataroot self.locations = locations self.target_layer_names = target_layer_names self.max_objs = max_objs self.max_points = max_points self.max_point_clouds = max_point_cloud self.patch_size = patch_size self.class_dict = dict() for i, name in enumerate(self.target_layer_names): self.class_dict[name] = i + 1 self.class_array = np.eye(len(self.class_names)) self.nusc = NuScenes(version=version, dataroot=dataroot, verbose=False) self.ldr_api = CustomLidarApi(self.nusc) self.map_api = dict() for loc in locations: self.map_api[loc] = CustomNuScenesMap(dataroot=dataroot, map_name=loc, target_layer_names=target_layer_names, max_objs=max_objs, max_points=max_points) def get_frame_from_token(self, token): sample = self.nusc.get('sample', token) scene = self.nusc.get('scene', sample['scene_token']) log_meta = self.nusc.get('log', scene['log_token']) location = log_meta['location'] sample_data = self.nusc.get('sample_data', sample['data']['LIDAR_TOP']) pc = self.ldr_api.get_lidar_from_keyframe(token, max_points=self.max_point_clouds, car_coord=True) ego = self.ldr_api.get_egopose_from_keyframe(token) structures = self.map_api[log_meta['location']].get_closest_structures(ego, patch=self.patch_size, global_coord=False, mode='intersect' ) return pc, structures, ego def get_all_sample_tokens(self): sample_tokens = [] for scene in self.nusc.scene: token = scene['first_sample_token'] while token != scene['last_sample_token']: sample_tokens.append(token) sample = self.nusc.get('sample', token) token = sample['next'] return sample_tokens def get_label(self, structures): classes = list(map(lambda x: np.array(self.class_array[self.class_dict[x["layer"]], :]).reshape(len(self.class_names),1),structures)) classes = np.concatenate(classes, axis=1) objects = list(map(lambda x: np.array(x['nodes'].reshape(1, self.max_points, 2)), structures)) objects = np.concatenate(objects, axis=0) if len(structures) < self.max_objs: diff = self.max_objs - len(structures) classes = np.concatenate([classes, np.zeros((5, diff))], axis = 1) objects = np.concatenate([objects, np.zeros((diff, 30, 2))], axis = 0) return classes, objects def draw_data(self, token, ax=None, model=None, view_2d=True, save_name=""): pc, structures, ego = self.get_frame_from_token(token) pc_array = pc.points if model is None: pred_class = np.array([]) pred_pose = np.array([]) else: X = torch.Tensor(
np.expand_dims(pc_array, axis=0)
numpy.expand_dims
# -*- coding: utf-8 -*- """ .. invisible: _ _ _____ _ _____ _____ | | | | ___| | | ___/ ___| | | | | |__ | | | |__ \ `--. | | | | __|| | | __| `--. \ \ \_/ / |___| |___| |___/\__/ / \___/\____/\_____|____/\____/ Created on May 19, 2014 Unit test for convolutional layer forward propagation, compared to CAFFE data. ███████████████████████████████████████████████████████████████████████████████ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ███████████████████████████████████████████████████████████████████████████████ """ import numpy import os from scipy.signal import correlate2d, convolve2d # pylint: disable=E0611 from veles.dummy import DummyUnit from veles.memory import Array import veles.znicz.all2all as all2all import veles.znicz.conv as conv import veles.znicz.evaluator as evaluator import veles.znicz.gd_conv as gd_conv import veles.znicz.gd as gd import veles.znicz.gd_pooling as gd_pooling import veles.znicz.normalization as normalization import veles.znicz.pooling as pooling from veles.znicz.tests.functional import StandardTest class CaffeTestBase(StandardTest): def _read_array(self, array_name, lines, shape=None): """ Reads a pic array from from export file, splitted to lines. NB: last line should be empty Arguments: array_name(str): name of array to read lines(array): lines of file to read from shape(tuple): shape=(n_pics, height, width, n_chans), must be given if not set in file. Returns: :class:`numpy.ndarray` """ cur_line = None for i, line in enumerate(lines): line = line.replace("\n", "") nibbles = line.split("\t") if nibbles[0] == array_name: if len(nibbles) >= 5: # shape is set in file dimensions = {} for nibble in nibbles[1:]: [nibble_name, nibble_val] = nibble.split(":") dimensions[nibble_name] = int(nibble_val) n_pics = dimensions["num"] height = dimensions["height"] width = dimensions["width"] n_chans = dimensions["channels"] if shape is not None: assert shape == (n_pics, height, width, n_chans) else: # shape is set externally assert len(shape) == 4 n_pics, height, width, n_chans = shape out_array = numpy.zeros((n_pics, height, width, n_chans), numpy.float64) cur_line = i + 1 break assert cur_line is not None assert cur_line < len(lines) for cur_pic in range(n_pics): nibbles = lines[cur_line].split(":") assert nibbles[0] == "num" assert int(nibbles[1]) == cur_pic cur_line += 1 for cur_chan in range(n_chans): nibbles = lines[cur_line].split(":") assert nibbles[0] == "channels" assert int(nibbles[1]) == cur_chan cur_line += 1 for i in range(height): data = [float(x) for x in lines[cur_line].split("\t")] cur_line += 1 for j in range(width): out_array[cur_pic, i, j, cur_chan] = data[j] return out_array def _read_lines(self, data_filename): """ Returns all lines from a file maned `data_filename`. File is searched in ``self.data_dir_path``. Arguments: data_filename(str): name to file with pooling data, exported from CAFFE (searched in ``self.data_dir_path``) Returns: list: list of all lines read """ full_path = os.path.join(self.data_dir_path, data_filename) return self._read_lines_by_abspath(full_path) def _read_lines_by_abspath(self, full_path): with open(full_path, 'r') as in_file: return in_file.readlines() class TestConvCaffe(CaffeTestBase): def test_caffe_conv(self, data_filename="conv.txt"): """ Compare CAFFE conv layer fwd prop with Veles conv layer. Args: data_filename(str): name of file with pooling data (relative from data dir) """ lines = self._read_lines(data_filename) kernel_size = 5 padding_size = 2 bottom = self._read_array("bottom", lines=lines, shape=(2, 32, 32, 3)) weights = self._read_array("weights", lines=lines, shape=(2, 5, 5, 3)) top = self._read_array("top", lines=lines, shape=(2, 32, 32, 2)) fwd_conv = conv.Conv(self.parent, kx=kernel_size, ky=kernel_size, padding=(padding_size, padding_size, padding_size, padding_size), sliding=(1, 1), n_kernels=2) fwd_conv.input = Array() fwd_conv.input.mem = bottom fwd_conv.initialize(self.device) fwd_conv.weights.map_invalidate() fwd_conv.weights.mem[:] = weights.reshape(2, 75)[:] fwd_conv.bias.map_invalidate() fwd_conv.bias.mem[:] = 0 fwd_conv.run() self.info("Veles vs CAFFE data:") fwd_conv.output.map_read() self.info("Veles top shape:" + str(fwd_conv.output.mem.shape)) delta_with_veles = fwd_conv.output.mem - top self.info("CONV: diff with Veles: %.2f%%" % ( 100. * numpy.sum(numpy.abs(delta_with_veles)) / numpy.sum(numpy.abs(fwd_conv.output.mem)),)) self.info("COMPARED TO HANDMADE CORRELATION:") scipy_conv_out = numpy.zeros(shape=(2, 32, 32, 2), dtype=numpy.float64) for pic in range(2): for color_chan in range(3): for weight_id in range(2): correlation = correlate2d( bottom[pic, :, :, color_chan], weights[weight_id, :, :, color_chan], mode="same") scipy_conv_out[pic, :, :, weight_id] += correlation delta_with_scipy = fwd_conv.output.mem - scipy_conv_out self.info("CONV: diff with SciPy: %.2f%%" % ( 100. * numpy.sum(numpy.abs(delta_with_scipy)) / numpy.sum(numpy.abs(fwd_conv.output.mem)),)) def test_caffe_grad_conv(self, data_filename="conv_grad.txt"): """ Compare CAFFE conv layer with Veles conv layer (FwdProp and BackProp). Args: data_filename(str): name of file with pooling data (relative from data dir) """ lines = self._read_lines(data_filename) # stride = 1 bot_size = 32 top_size = 32 kernel_size = 5 padding_size = 2 n_kernels = 2 batch_size = 2 bottom = self._read_array("bottom", lines=lines, shape=(batch_size, bot_size, bot_size, 3)) weights = self._read_array("weights", lines=lines, shape=(n_kernels, kernel_size, kernel_size, 3)) top = self._read_array("top", lines=lines, shape=(batch_size, top_size, top_size, 2)) top_err = self._read_array("top_diff", lines=lines, shape=(batch_size, top_size, top_size, 2)) bot_err = self._read_array("bottom_diff", lines=lines, shape=(batch_size, bot_size, bot_size, 3)) fwd_conv = conv.Conv(self.parent, kx=kernel_size, ky=kernel_size, padding=(padding_size, padding_size, padding_size, padding_size), sliding=(1, 1), n_kernels=n_kernels) fwd_conv.input = Array(bottom) fwd_conv.initialize(self.device) fwd_conv.weights.map_invalidate() fwd_conv.weights.mem[:] = weights.reshape(2, 75)[:] fwd_conv.bias.map_invalidate() fwd_conv.bias.mem[:] = 0 fwd_conv.run() self.info("Veles vs CAFFE data:") fwd_conv.output.map_read() self.info("Veles top shape:" + str(fwd_conv.output.mem.shape)) delta_with_veles = fwd_conv.output.mem - top self.info("CONV: diff with CAFFE: %.2f%%" % ( 100. * numpy.sum(numpy.abs(delta_with_veles)) / numpy.sum(numpy.abs(fwd_conv.output.mem)),)) back_conv = gd_conv.GradientDescentConv(self.parent) back_conv.input = Array(bottom) back_conv.output = Array(top) back_conv.err_output = Array(top_err) back_conv.weights = Array() back_conv.weights.mem = fwd_conv.weights.mem back_conv.bias = Array(fwd_conv.bias.mem) back_conv.batch_size = 2 back_conv.link_conv_attrs(fwd_conv) back_conv.initialize(self.device) back_conv.run() back_conv.err_input.map_read() # BACKPROP: difference with CAFFE export back_delta = back_conv.err_input.mem - bot_err self.info("GDCONV: diff with CAFFE: %.3f%%" % (100. * numpy.sum(numpy.fabs(back_delta)) / numpy.sum(numpy.fabs(back_conv.err_input.mem)),)) # perform manual GD CONV manual_bot_err = numpy.zeros(shape=(2, bot_size, bot_size, 3), dtype=numpy.float64) for pic in range(batch_size): for color_chan in range(3): for weight_id in range(n_kernels): conv_result = convolve2d( top_err[pic, :, :, weight_id], weights[weight_id, :, :, color_chan], mode="same") manual_bot_err[pic, :, :, color_chan] += conv_result self.info("Manual GDCONV: diff with CAFFE: %.3f%%" % ( 100. * numpy.sum(numpy.fabs(manual_bot_err - bot_err)) / numpy.sum(numpy.fabs(bot_err)))) def test_caffe_pooling(self, data_filename="pool.txt"): """ Compare CAFFE pooling unit fwd_prop with Veles one Args: data_filename(str): name to file with pooling data, exported from CAFFE (searched in ``self.data_dir_path``) """ # load pooling data from CAFFE dumps in_file = open(os.path.join(self.data_dir_path, data_filename), 'r') lines = in_file.readlines() in_file.close() # max pooling: 3x3 kernel, 2x2 stride kernel_size = 3 stride = 2 in_height, in_width = 32, 32 out_height, out_width = 16, 16 bottom = self._read_array("bottom", lines=lines, shape=(2, in_height, in_width, 2)) # do pooling with VELES fwd_pool = pooling.MaxPooling(self.parent, kx=kernel_size, ky=kernel_size, sliding=(stride, stride), device=self.device) fwd_pool.input = Array(bottom) fwd_pool.input.map_write() fwd_pool.initialize(device=self.device) fwd_pool.numpy_run() fwd_pool.output.map_read() # do MANUAL pooling manual_pooling_out = numpy.zeros(shape=(2, out_height, out_width, 2), dtype=numpy.float64) for pic in range(2): for chan in range(2): for i_out in range(out_height): for j_out in range(out_width): min_i = i_out * 2 max_i = i_out * 2 + kernel_size - 1 min_j = j_out * 2 max_j = j_out * 2 + kernel_size - 1 zone = bottom[pic, min_i: max_i + 1, min_j: max_j + 1, chan] manual_pooling_out[pic, i_out, j_out, chan] = numpy.max((zone)) def test_caffe_grad_pooling(self, data_filename="pool_grad.txt"): """ Compare CAFFE pooling unit with Veles ones (fwd and back propagations) Args: data_filename(str): name of file with pooling data (relative from data dir) """ bot_size = 32 top_size = 16 kernel_size = 3 stride = 2 n_chans = 2 n_pics = 2 lines = self._read_lines(data_filename) lines = [line.replace("\t\n", "").replace("\n", "") for line in lines] bottom = self._read_array("bottom", lines, shape=(n_pics, bot_size, bot_size, n_chans)) top = self._read_array("top", lines, shape=(n_pics, top_size, top_size, n_chans)) bot_err = self._read_array("bottom_diff", lines, shape=(n_pics, bot_size, bot_size, n_chans)) top_err = self._read_array("top_diff", lines, shape=(n_pics, top_size, top_size, n_chans)) # FORWARD PROP fwd_pool = pooling.MaxPooling(self.parent, kx=kernel_size, ky=kernel_size, sliding=(stride, stride)) fwd_pool.input = Array(bottom) fwd_pool.input.map_write() fwd_pool.initialize(device=self.device) fwd_pool.numpy_run() fwd_pool.output.map_read() self.info("FWD POOL: Veles vs CAFFE: %.3f%%" % (100. * (numpy.sum(numpy.abs(fwd_pool.output.mem - top)) / numpy.sum(numpy.abs(top))))) # Do MANUAL pooling out_height, out_width = top_size, top_size manual_pooling_out = numpy.zeros(shape=(2, out_height, out_width, 2), dtype=numpy.float64) for pic in range(2): for chan in range(2): for i_out in range(out_height): for j_out in range(out_width): min_i = i_out * stride max_i = i_out * stride + kernel_size - 1 min_j = j_out * stride max_j = j_out * stride + kernel_size - 1 zone = bottom[pic, min_i: max_i + 1, min_j: max_j + 1, chan] manual_pooling_out[pic, i_out, j_out, chan] = numpy.max((zone)) # BACK PROP grad_pool = gd_pooling.GDMaxPooling(self.parent, kx=kernel_size, ky=kernel_size, sliding=(stride, stride), device=self.device) grad_pool.input = Array(bottom) grad_pool.input.map_write() grad_pool.err_output = Array(top_err) grad_pool.err_output.map_write() grad_pool.input_offset = fwd_pool.input_offset grad_pool.link_pool_attrs(fwd_pool) grad_pool.initialize(device=self.device) grad_pool.numpy_run() grad_pool.err_input.map_read() self.info("BACK POOL: Veles vs CAFFE, %.3f%%" % (100 * numpy.sum( numpy.abs(grad_pool.err_input.mem - bot_err)) / numpy.sum(numpy.abs(bot_err)))) def test_caffe_grad_normalization(self, data_filename="norm_gd.txt"): """ Tests LRU normalization unit: compares it with CAFFE one. Fwd and back props made. Args: data_filename(str): name of file with pooling data (relative from data dir) """ lines = self._read_lines(data_filename) size = 16 n_chans = 2 n_pics = 2 max_percent_delta = 2. # max difference with CAFFE (percents) bottom = self._read_array("bottom", lines, shape=(n_pics, size, size, n_chans)) top = self._read_array("top", lines, shape=(n_pics, size, size, n_chans)) bot_err = self._read_array("bottom_diff", lines, shape=(n_pics, size, size, n_chans)) top_err = self._read_array("top_diff", lines, shape=(n_pics, size, size, n_chans)) fwd_norm = normalization.LRNormalizerForward(self.parent, k=1, device=self.device) # FWD PROP fwd_norm.input = Array(bottom) fwd_norm.initialize(self.device) fwd_norm.run() fwd_norm.output.map_read() fwd_percent_delta = 100. * ( numpy.sum(numpy.abs(fwd_norm.output.mem - top)) / numpy.sum(numpy.abs(top))) self.info("FWD NORM DELTA: %.2f%%" % fwd_percent_delta) self.assertLess(fwd_percent_delta, max_percent_delta, "Fwd norm differs by %.2f%%" % fwd_percent_delta) # BACK PROP back_norm = normalization.LRNormalizerBackward(self.parent, k=1, device=self.device) back_norm.output = Array(top) back_norm.input = Array(bottom) back_norm.err_output = Array(top_err) back_norm.initialize(self.device) back_norm.run() back_norm.err_input.map_read() back_percent_delta = 100. * numpy.sum( numpy.abs(back_norm.err_output.mem - bot_err)) / \ numpy.sum(numpy.abs(bot_err)) self.info("BACK NORM DELTA: %.2f%%" % back_percent_delta) self.assertLess(back_percent_delta, max_percent_delta, "Fwd norm differs by %.2f%%" % (back_percent_delta)) def test_caffe_relu(self, data_filename="conv_relu.txt"): """ Tests CONV+RELU unit: compares it with CAFFE one. Fwd prop only. Args: data_filename(str): name of file with pooling data (relative from data dir) """ lines = self._read_lines(data_filename) in_size = 32 out_size = 32 n_chans = 3 n_kernels = 2 n_pics = 2 kernel_size = 5 padding_size = 2 max_percent_delta = 2.0 conv_bottom = self._read_array( "conv_bottom", lines, shape=(n_pics, in_size, in_size, n_chans)) conv_top = self._read_array( "conv_top", lines, shape=(n_pics, out_size, out_size, n_kernels)) relu_top_flat = self._read_array( "relu_top_flat", lines, shape=(1, 1, conv_top.size, 1)).ravel() relu_top = numpy.ndarray( shape=(n_pics, out_size, out_size, n_kernels), dtype=numpy.float64) cur_pos = 0 for pic in range(n_pics): for kernel in range(n_kernels): for i in range(out_size): for j in range(out_size): relu_top[pic, i, j, kernel] = relu_top_flat[cur_pos] cur_pos += 1 conv_weights = self._read_array("conv_weights", lines, shape=( n_kernels, kernel_size, kernel_size, n_chans)) fwd_conv_relu = conv.ConvStrictRELU( self.parent, kx=kernel_size, ky=kernel_size, padding=(padding_size, padding_size, padding_size, padding_size), sliding=(1, 1), n_kernels=n_kernels, device=self.device) fwd_conv_relu.input = Array(conv_bottom) fwd_conv_relu.initialize(self.device) fwd_conv_relu.weights.map_invalidate() fwd_conv_relu.weights.mem[:] = conv_weights.reshape(2, 75)[:] fwd_conv_relu.bias.map_invalidate() fwd_conv_relu.bias.mem[:] = 0 fwd_conv_relu.run() fwd_conv_relu.output.map_read() percent_delta = 100. * (numpy.sum(numpy.abs( fwd_conv_relu.output.mem - relu_top)) / numpy.sum(numpy.abs(relu_top))) self.info("CONV_RELU: diff with CAFFE %.3f%%" % percent_delta) self.assertLess(percent_delta, max_percent_delta, "Fwd ConvRELU differs by %.2f%%" % percent_delta) relu_top_manual = numpy.where(numpy.greater(conv_top, 0), conv_top, 0) manual_delta = 100. * numpy.sum( numpy.abs(relu_top_manual - relu_top)) /\ (numpy.sum(numpy.abs(relu_top))) self.info("SciPy CONV_RELU: diff with CAFFE %.3f%%" % manual_delta) def test_caffe_grad_relu(self, data_filename="conv_relu.txt"): """ Tests CONV+RELU unit: compares it with CAFFE one. Fwd prop only. Args: data_filename(str): name of file with pooling data (relative from data dir) """ lines = self._read_lines(data_filename) in_size = 32 out_size = 32 n_chans = 3 n_kernels = 2 n_pics = 2 kernel_size = 5 padding_size = 2 max_percent_delta = 2.0 conv_bottom = self._read_array( "conv_bottom", lines, shape=(n_pics, in_size, in_size, n_chans)) conv_top = self._read_array( "conv_top", lines, shape=(n_pics, out_size, out_size, n_kernels)) relu_top_flat = self._read_array( "relu_top_flat", lines, shape=(1, 1, conv_top.size, 1)).ravel() relu_top = numpy.ndarray(shape=(n_pics, out_size, out_size, n_kernels), dtype=numpy.float64) cur_pos = 0 for pic in range(n_pics): for kernel in range(n_kernels): for i in range(out_size): for j in range(out_size): relu_top[pic, i, j, kernel] = relu_top_flat[cur_pos] cur_pos += 1 conv_weights = self._read_array("conv_weights", lines, shape=( n_kernels, kernel_size, kernel_size, n_chans)) fwd_conv_relu = conv.ConvStrictRELU( self.parent, kx=kernel_size, ky=kernel_size, padding=(padding_size, padding_size, padding_size, padding_size), sliding=(1, 1), n_kernels=n_kernels, device=self.device) fwd_conv_relu.input = Array(conv_bottom) fwd_conv_relu.initialize(self.device) fwd_conv_relu.weights.map_invalidate() fwd_conv_relu.weights.mem[:] = conv_weights.reshape(2, 75)[:] fwd_conv_relu.bias.map_invalidate() fwd_conv_relu.bias.mem[:] = 0 fwd_conv_relu.run() fwd_conv_relu.output.map_read() percent_delta = 100. * (numpy.sum(numpy.abs( fwd_conv_relu.output.mem - relu_top)) / numpy.sum(numpy.abs(relu_top))) self.info("CONV_RELU: diff with CAFFE %.3f%%" % percent_delta) self.assertLess(percent_delta, max_percent_delta, "Fwd ConvRELU differs by %.2f%%" % percent_delta) relu_top_manual = numpy.where(numpy.greater(conv_top, 0), conv_top, 0) manual_delta = 100. * numpy.sum(numpy.abs(relu_top_manual - relu_top))\ / numpy.sum(numpy.abs(relu_top)) self.info("SciPy CONV_RELU: diff with CAFFE %.3f%%" % manual_delta) def test_grad_conv_relu(self, data_filename="conv_relu_grad.txt"): """ Tests GDDRELU_CONV unit: compares it with CAFFE one. Backward prop only Args: data_filename(str): name of file with pooling data (relative from data dir) """ lines = self._read_lines(data_filename) in_size = 32 out_size = 32 n_chans = 3 n_kernels = 2 n_pics = 2 kernel_size = 5 padding = 2 max_percent_delta = 2.0 conv_bot_err = self._read_array("conv_bottom_diff", lines, shape=(n_pics, in_size, in_size, n_chans)) conv_bottom = self._read_array( "conv_bottom", lines, shape=(n_pics, in_size, in_size, n_chans)) conv_weights = self._read_array("conv_weights", lines, shape=( n_kernels, kernel_size, kernel_size, n_chans)) conv_weight_delta = self._read_array( "conv_weight_delta", lines, shape=(n_kernels, kernel_size, kernel_size, n_chans)) relu_top_err = self._read_array("relu_top_diff", lines, shape=(n_pics, in_size, in_size, n_kernels)) relu_top_flat = self._read_array("relu_top_flat", lines, shape=( 1, 1, relu_top_err.size, 1)).ravel() relu_top = numpy.ndarray(shape=(n_pics, out_size, out_size, n_kernels), dtype=numpy.float64) cur_pos = 0 for pic in range(n_pics): for kernel in range(n_kernels): for i in range(out_size): for j in range(out_size): relu_top[pic, i, j, kernel] = relu_top_flat[cur_pos] cur_pos += 1 # Testing back prop back_conv_relu = gd_conv.GDStrictRELUConv(self.parent, device=self.device, learning_rate=1, weights_decay=0, batch_size=n_pics) back_conv_relu.err_output = Array(relu_top_err) back_conv_relu.input = Array(conv_bottom) back_conv_relu.weights = Array(conv_weights.reshape(2, 75)) back_conv_relu.bias = Array(
numpy.zeros(shape=n_kernels)
numpy.zeros
# Copyright (C) 2011 <NAME> # All rights reserved. # # This file is part of phonopy. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import numpy as np import phonopy.structure.spglib as spg from phonopy.structure.atoms import PhonopyAtoms as Atoms def get_supercell(unitcell, supercell_matrix, symprec=1e-5): return Supercell(unitcell, supercell_matrix, symprec=symprec) def get_primitive(supercell, primitive_frame, symprec=1e-5): return Primitive(supercell, primitive_frame, symprec=symprec) def trim_cell(relative_axes, cell, symprec): """ relative_axes: relative axes to supercell axes Trim positions outside relative axes """ positions = cell.get_scaled_positions() numbers = cell.get_atomic_numbers() masses = cell.get_masses() magmoms = cell.get_magnetic_moments() lattice = cell.get_cell() trimed_lattice = np.dot(relative_axes.T, lattice) trimed_positions = [] trimed_numbers = [] if masses is None: trimed_masses = None else: trimed_masses = [] if magmoms is None: trimed_magmoms = None else: trimed_magmoms = [] extracted_atoms = [] positions_in_new_lattice = np.dot(positions, np.linalg.inv(relative_axes).T) positions_in_new_lattice -= np.floor(positions_in_new_lattice) trimed_positions = np.zeros_like(positions_in_new_lattice) num_atom = 0 mapping_table = np.arange(len(positions), dtype='intc') for i, pos in enumerate(positions_in_new_lattice): is_overlap = False if num_atom > 0: diff = trimed_positions[:num_atom] - pos diff -= np.rint(diff) # Older numpy doesn't support axis argument. # distances = np.linalg.norm(np.dot(diff, trimed_lattice), axis=1) # overlap_indices = np.where(distances < symprec)[0] distances = np.sqrt( np.sum(np.dot(diff, trimed_lattice) ** 2, axis=1)) overlap_indices = np.where(distances < symprec)[0] if len(overlap_indices) > 0: assert len(overlap_indices) == 1 is_overlap = True mapping_table[i] = extracted_atoms[overlap_indices[0]] if not is_overlap: trimed_positions[num_atom] = pos num_atom += 1 trimed_numbers.append(numbers[i]) if masses is not None: trimed_masses.append(masses[i]) if magmoms is not None: trimed_magmoms.append(magmoms[i]) extracted_atoms.append(i) trimed_cell = Atoms(numbers=trimed_numbers, masses=trimed_masses, magmoms=trimed_magmoms, scaled_positions=trimed_positions[:num_atom], cell=trimed_lattice, pbc=True) return trimed_cell, extracted_atoms, mapping_table def print_cell(cell, mapping=None, stars=None): symbols = cell.get_chemical_symbols() masses = cell.get_masses() magmoms = cell.get_magnetic_moments() lattice = cell.get_cell() print("Lattice vectors:") print(" a %20.15f %20.15f %20.15f" % tuple(lattice[0])) print(" b %20.15f %20.15f %20.15f" % tuple(lattice[1])) print(" c %20.15f %20.15f %20.15f" % tuple(lattice[2])) print("Atomic positions (fractional):") for i, v in enumerate(cell.get_scaled_positions()): num = " " if stars is not None: if i in stars: num = "*" num += "%d" % (i + 1) line = ("%5s %-2s%18.14f%18.14f%18.14f" % (num, symbols[i], v[0], v[1], v[2])) if masses is not None: line += " %7.3f" % masses[i] if magmoms is not None: line += " %5.3f" % magmoms[i] if mapping is None: print(line) else: print(line + " > %d" % (mapping[i] + 1)) class Supercell(Atoms): """Build supercell from supercell matrix In this function, unit cell is considered [1,0,0] [0,1,0] [0,0,1]. Supercell matrix is given by relative ratio, e.g, [-1, 1, 1] [ 1,-1, 1] is for FCC from simple cubic. [ 1, 1,-1] In this case multiplicities of surrounding simple lattice are [2,2,2]. First, create supercell with surrounding simple lattice. Second, trim the surrounding supercell with the target lattice. """ def __init__(self, unitcell, supercell_matrix, symprec=1e-5): self._s2u_map = None self._u2s_map = None self._u2u_map = None self._supercell_matrix = np.array(supercell_matrix, dtype='intc') self._create_supercell(unitcell, symprec) def get_supercell_matrix(self): return self._supercell_matrix def get_supercell_to_unitcell_map(self): return self._s2u_map def get_unitcell_to_supercell_map(self): return self._u2s_map def get_unitcell_to_unitcell_map(self): return self._u2u_map def _create_supercell(self, unitcell, symprec): mat = self._supercell_matrix frame = self._get_surrounding_frame(mat) sur_cell, u2sur_map = self._get_simple_supercell(frame, unitcell) # Trim the simple supercell by the supercell matrix trim_frame = np.array([mat[0] / float(frame[0]), mat[1] / float(frame[1]), mat[2] / float(frame[2])]) supercell, sur2s_map, mapping_table = trim_cell(trim_frame, sur_cell, symprec) num_satom = supercell.get_number_of_atoms() num_uatom = unitcell.get_number_of_atoms() multi = num_satom // num_uatom if multi != determinant(self._supercell_matrix): print("Supercell creation failed.") print("Probably some atoms are overwrapped. " "The mapping table is give below.") print(mapping_table) Atoms.__init__(self) else: Atoms.__init__(self, numbers=supercell.get_atomic_numbers(), masses=supercell.get_masses(), magmoms=supercell.get_magnetic_moments(), scaled_positions=supercell.get_scaled_positions(), cell=supercell.get_cell(), pbc=True) self._u2s_map = np.arange(num_uatom) * multi self._u2u_map = dict([(j, i) for i, j in enumerate(self._u2s_map)]) self._s2u_map = np.array(u2sur_map)[sur2s_map] * multi def _get_surrounding_frame(self, supercell_matrix): # Build a frame surrounding supercell lattice # For example, # [2,0,0] # [0,2,0] is the frame for FCC from simple cubic. # [0,0,2] m = np.array(supercell_matrix) axes = np.array([[0, 0, 0], m[:,0], m[:,1], m[:,2], m[:,1] + m[:,2], m[:,2] + m[:,0], m[:,0] + m[:,1], m[:,0] + m[:,1] + m[:,2]]) frame = [max(axes[:,i]) - min(axes[:,i]) for i in (0,1,2)] return frame def _get_simple_supercell(self, multi, unitcell): # Scaled positions within the frame, i.e., create a supercell that # is made simply to multiply the input cell. positions = unitcell.get_scaled_positions() numbers = unitcell.get_atomic_numbers() masses = unitcell.get_masses() magmoms = unitcell.get_magnetic_moments() lattice = unitcell.get_cell() atom_map = [] positions_multi = [] numbers_multi = [] if masses is None: masses_multi = None else: masses_multi = [] if magmoms is None: magmoms_multi = None else: magmoms_multi = [] for l, pos in enumerate(positions): for i in range(multi[2]): for j in range(multi[1]): for k in range(multi[0]): positions_multi.append([(pos[0] + k) / multi[0], (pos[1] + j) / multi[1], (pos[2] + i) / multi[2]]) numbers_multi.append(numbers[l]) if masses is not None: masses_multi.append(masses[l]) atom_map.append(l) if magmoms is not None: magmoms_multi.append(magmoms[l]) simple_supercell = Atoms(numbers=numbers_multi, masses=masses_multi, magmoms=magmoms_multi, scaled_positions=positions_multi, cell=np.dot(
np.diag(multi)
numpy.diag
# Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) import math import numpy as np from scipy import linalg from scipy.fftpack import fft, ifft import six def _framing(a, L): shape = a.shape[:-1] + (a.shape[-1] - L + 1, L) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)[::L // 2].T.copy() def mdct_waveform(scale, freq_bin): L = float(scale) K = L / 2.0 fact = math.sqrt(2.0 / K) const_fact = (np.pi / K) * (float(freq_bin) + 0.5) const_offset = (L + 1.0) / 2.0 f = np.pi / L i = np.arange(scale, dtype=np.float) wf = (fact * np.sin(f * (i + 0.5)) * np.cos(const_fact * ((i - K / 2.0) + const_offset))) return wf / linalg.norm(wf) def mdct(x, L): """Modified Discrete Cosine Transform (MDCT) Returns the Modified Discrete Cosine Transform with fixed window size L of the signal x. The window is based on a sine window. Parameters ---------- x : ndarray, shape (N,) The signal L : int The window length Returns ------- y : ndarray, shape (L/2, 2 * N / L) The MDCT coefficients See also -------- imdct """ x = np.asarray(x, dtype=np.float) N = x.size # Number of frequency channels K = L // 2 # Test length if N % K != 0: raise RuntimeError('Input length must be a multiple of the half of ' 'the window size') # Pad edges with zeros xx = np.zeros(L // 4 + N + L // 4) xx[L // 4:-L // 4] = x x = xx del xx # Number of frames P = N // K if P < 2: raise ValueError('Signal too short') # Framing x = _framing(x, L) # Windowing aL = np.arange(L, dtype=np.float) w_long = np.sin((np.pi / L) * (aL + 0.5)) w_edge_L = w_long.copy() w_edge_L[:L // 4] = 0. w_edge_L[L // 4:L // 2] = 1. w_edge_R = w_long.copy() w_edge_R[L // 2:L // 2 + L // 4] = 1. w_edge_R[L // 2 + L // 4:] = 0. x[:, 0] *= w_edge_L x[:, 1:-1] *= w_long[:, None] x[:, -1] *= w_edge_R # Pre-twiddle x = x.astype(np.complex) x *= np.exp((-1j * np.pi / L) * aL)[:, None] # FFT y = fft(x, axis=0) # Post-twiddle y = y[:L // 2, :] y *= np.exp((-1j * np.pi * (L // 2 + 1.) / L) * (0.5 + aL[:L // 2]))[:, None] # Real part and scaling y = math.sqrt(2. / K) * np.real(y) return y def imdct(y, L): """Inverse Modified Discrete Cosine Transform (MDCT) Returns the Inverse Modified Discrete Cosine Transform with fixed window size L of the vector of coefficients y. The window is based on a sine window. Parameters ---------- y : ndarray, shape (L/2, 2 * N / L) The MDCT coefficients L : int The window length Returns ------- x : ndarray, shape (N,) The reconstructed signal See also -------- mdct """ # Signal length N = y.size # Number of frequency channels K = L // 2 # Test length if N % K != 0: raise ValueError('Input length must be a multiple of the half of ' 'the window size') # Number of frames P = N // K if P < 2: raise ValueError('Signal too short') # Reshape temp = y y = np.zeros((L, P), dtype=np.float) y[:K, :] = temp del temp # Pre-twiddle aL = np.arange(L, dtype=np.float) y = y * np.exp((1j * np.pi * (L / 2. + 1.) / L) * aL)[:, None] # IFFT x = ifft(y, axis=0) # Post-twiddle x *= np.exp((1j * np.pi / L) * (aL + (L / 2. + 1.) / 2.))[:, None] # Windowing w_long = np.sin((np.pi / L) * (aL + 0.5)) w_edge_L = w_long.copy() w_edge_L[:L // 4] = 0. w_edge_L[L // 4:L // 2] = 1. w_edge_R = w_long.copy() w_edge_R[L // 2:L // 2 + L // 4] = 1. w_edge_R[L // 2 + L // 4:L] = 0. x[:, 0] *= w_edge_L x[:, 1:-1] *= w_long[:, None] x[:, -1] *= w_edge_R # Real part and scaling x = math.sqrt(2. / K) * L * np.real(x) # Overlap and add def overlap_add(y, x): z = np.concatenate((y,
np.zeros((K,))
numpy.zeros
import logging import os import numpy as np import matplotlib.pyplot as plt import matplotlib import scipy from scipy import stats import datetime import networkx as nx import matplotlib as mpl import sys import tqdm from matplotlib import animation, rc from matplotlib.ticker import MaxNLocator from IPython.display import clear_output, HTML, Image from neurolib.utils import atlases import neurolib.utils.paths as paths import neurolib.utils.functions as func class Brainplot: def __init__(self, Cmat, data, nframes=None, dt=0.1, fps=25, labels=False, darkmode=True): self.sc = Cmat self.n = self.sc.shape[0] self.data = data self.darkmode = darkmode self.G = nx.Graph() self.G.add_nodes_from(range(self.n)) coords = {} atlas = atlases.AutomatedAnatomicalParcellation2() for i, c in enumerate(atlas.coords()): coords[i] = [c[0], c[1]] self.position = coords self.edge_threshold = 0.01 self.fps = fps self.dt = dt nframes = nframes or int((data.shape[1] * self.dt / 1000) * self.fps) # 20 fps default logging.info(f"Defaulting to {nframes} frames at {self.fps} fp/s") self.nframes = nframes self.frame_interval = self.data.shape[1] // self.nframes self.interval = int(self.frame_interval * self.dt) self.draw_labels = labels for t in range(self.n): # print t for s in range(t): # print( n, t, s) if self.sc[t, s] > self.edge_threshold: # print( 'edge', t, s, self.sc[t,s]) self.G.add_edge(t, s) # node color map self.cmap = plt.get_cmap("plasma") # mpl.cm.cool # default style self.imagealpha = 0.5 self.edgecolor = "k" self.edgealpha = 0.8 self.edgeweight = 1.0 self.nodesize = 50 self.nodealpha = 0.8 self.vmin = 0 self.vmax = 50 self.lw = 0.5 if self.darkmode: plt.style.use("dark") # let's choose a cyberpunk style for the dark theme self.edgecolor = "#37f522" self.edgeweight = 0.5 self.edgealpha = 0.6 self.nodesize = 40 self.nodealpha = 0.8 self.vmin = 0 self.vmax = 30 self.cmap = plt.get_cmap("cool") # mpl.cm.cool self.imagealpha = 0.5 self.lw = 1 fname = os.path.join("neurolib", "data", "resources", "clean_brain_white.png") else: # plt.style.use("light") fname = os.path.join("neurolib", "data", "resources", "clean_brain.png") self.imgTopView = mpl.image.imread(fname) self.pbar = tqdm.tqdm(total=self.nframes) def update(self, i, ax, ax_rates=None, node_color=None, node_size=None, node_alpha=None, clear=True): frame = int(i * self.frame_interval) node_color = node_color or self.data[:, frame] node_size = node_size or self.nodesize node_alpha = node_alpha or self.nodealpha if clear: ax.cla() im = ax.imshow(self.imgTopView, alpha=self.imagealpha, origin="upper", extent=[40, 202, 28, 240]) ns = nx.draw_networkx_nodes( self.G, pos=self.position, node_color=node_color, cmap=self.cmap, vmin=self.vmin, vmax=self.vmax, node_size=node_size, alpha=node_alpha, ax=ax, edgecolors="k", ) es = nx.draw_networkx_edges( self.G, pos=self.position, alpha=self.edgealpha, edge_color=self.edgecolor, ax=ax, width=self.edgeweight ) labels = {} for ni in range(self.n): labels[ni] = str(ni) if self.draw_labels: nx.draw_networkx_labels(self.G, self.position, labels, font_size=8) ax.set_axis_off() ax.set_xlim(20, 222) ax.set_ylim(25, 245) # timeseries if ax_rates: ax_rates.cla() ax_rates.set_xticks([]) ax_rates.set_yticks([]) ax_rates.set_ylabel("Brain activity", fontsize=8) t = np.linspace(0, frame * self.dt, frame) ax_rates.plot(t, np.mean(self.data[:, :frame], axis=0).T, lw=self.lw) t_total = self.data.shape[1] * self.dt ax_rates.set_xlim(0, t_total) self.pbar.update(1) plt.tight_layout() if clear: clear_output(wait=True) def plot_rates(model): plt.figure(figsize=(4, 1)) plt_until = 10 * 1000 plt.plot(model.t[model.t < plt_until], model.output[:, model.t < plt_until].T, lw=0.5) def plot_brain( model, ds, color=None, size=None, title=None, cbar=True, cmap="RdBu", clim=None, cbarticks=None, cbarticklabels=None ): """Dump and easy wrapper around the brain plotting function. :param color: colors of nodes, defaults to None :type color: numpy.ndarray, optional :param size: size of the nodes, defaults to None :type size: numpy.ndarray, optional :raises ValueError: Raises error if node size is too big. """ s = Brainplot(ds.Cmat, model.output, fps=10, darkmode=False) s.cmap = plt.get_cmap(cmap) dpi = 300 fig = plt.figure(dpi=dpi) ax = plt.gca() if title: ax.set_title(title, fontsize=26) if clim is None: s.vmin, s.vmax = np.min(color), np.max(color) else: s.vmin, s.vmax = clim[0], clim[1] if size is not None: node_size = size else: # some weird scaling of the color to a size def norm(what): what = what.copy() what -= np.min(what) what /= np.max(what) return what node_size = list(np.exp((norm(color) + 2) * 2)) if isinstance(color, np.ndarray): color = list(color) if isinstance(node_size, np.ndarray): node_size = list(node_size) if np.max(node_size) > 2000: raise ValueError(f"node_size too big: {np.max(node_size)}") s.update(0, ax, node_color=color, node_size=node_size, clear=False) if cbar: cbaxes = fig.add_axes([0.68, 0.1, 0.015, 0.7]) sm = plt.cm.ScalarMappable(cmap=s.cmap, norm=plt.Normalize(vmin=s.vmin, vmax=s.vmax)) cbar = plt.colorbar(sm, cbaxes, ticks=cbarticks) cbar.ax.tick_params(labelsize=16) if cbarticklabels: cbar.ax.set_yticklabels(cbarticklabels) # other plotting def plot_average_timeseries(model, xticks=False, kwargs={}, xlim=None, figsize=(8, 1)): # print("{} Peaks found ({} p/s)".format(len(peaks), len(peaks)/(model.params['duration']/1000))) plt.figure(figsize=figsize, dpi=300) # cut rates if xlim is given if xlim: rates = model.output[:, (model.t / 1000 > xlim[0]) & (model.t / 1000 < xlim[1])] t = model.t[(model.t / 1000 > xlim[0]) & (model.t / 1000 < xlim[1])] print(rates.shape) else: rates = model.output t = model.t plt.plot(t / 1000, np.mean(rates, axis=0), **kwargs) # plt.plot(model.t/1000, signal, lw=2, label = 'smoothed') plt.autoscale(enable=True, axis="x", tight=True) # for p in peaks: # plt.vlines(p*params['dt']*10, 0, 0.008, color='b', lw=2, alpha=0.6) # plt.xlim(0, 10000) # plt.plot(model.t/1000, states*10, lw=2, c='C1', alpha=0.4, label='detected state') # plt.xlabel("Time [s]") if not xticks: plt.xticks([]) if xlim: plt.xlim(*xlim) plt.ylabel("Rate [Hz]") # plt.legend(loc=1, fontsize=8) # import matplotlib as mpl # mpl.rcParams['axes.spines.left'] = False # mpl.rcParams['axes.spines.right'] = False # mpl.rcParams['axes.spines.top'] = False # mpl.rcParams['axes.spines.bottom'] = False plt.gca().spines["right"].set_visible(False) plt.gca().spines["top"].set_visible(False) plt.gca().spines["left"].set_visible(False) plt.gca().spines["bottom"].set_visible(False) plt.tight_layout() set_axis_size(*figsize) def detectSWStates(output, threshold=1): states = np.zeros(output.shape) # super_threshold_indices = rates > threshold # works with 1D thresholds, per node super_threshold_indices = np.greater(output.T, threshold).T states[super_threshold_indices] = 1 return states def filter_long_states(model, states): states = states.copy() LENGTH_THRESHOLD = int(50 / model.params["dt"]) # ms for s in states: lengths = get_state_lengths(s) current_idx = 0 last_long_state = lengths[0][0] # first state for state, length in lengths: if length >= LENGTH_THRESHOLD: last_long_state = state else: s[current_idx : current_idx + length] = last_long_state current_idx += length return states def detectSWs(model, up_thresh=0.01, detectSWStates_kw=None, filter_long=True): threshold_per_node = up_thresh * np.max(model.output, axis=1) # as per Nghiem et al., 2020, Renart et al., 2010 states = np.zeros(model.output.shape) if detectSWStates_kw: logging.warning(f"Warning: detectSWStates_kw is not implemented anymore, using up_thresh = {up_thresh}") states = detectSWStates(model.output, threshold=threshold_per_node) # for i, o in enumerate(model.output): # smoothed = o # scipy.ndimage.gaussian_filter(o, sigma=500) # s = detectSWStates(model.t, smoothed, **detectSWStates_kw) # states[i, :] = s if filter_long: states = filter_long_states(model, states) return states def get_involvement(states, down=True): """Returns involvement in up- and down-states. :param states: state array (NxT) :type states: np.ndarray :return: Involvement time series (1xT) :rtype: np.ndarray """ up_involvement = np.sum(states, axis=0) / states.shape[0] if down: return 1 - up_involvement else: return up_involvement def plot_states_timeseries(model, states, title=None, labels=True, cmap="plasma"): figsize = (8, 2) plt.figure(figsize=figsize) plt.imshow( states, extent=[0, states.shape[1] * model.params.dt / 1000, 0, states.shape[0]], aspect="auto", cmap=plt.cm.get_cmap(cmap, 2), ) if labels: plt.xlabel("Time [s]") plt.ylabel("Node") else: plt.xticks([]) plt.yticks([]) if title: plt.title(title) plt.autoscale(enable=True, axis="x", tight=True) if labels: cbar = plt.colorbar(pad=0.02) cbar.set_ticks([0.25, 0.75]) cbar.ax.set_yticklabels(["Down", "Up"], rotation=90, va="center") cbar.ax.tick_params(width=0, labelsize=14) plt.tight_layout() set_axis_size(*figsize) def plot_involvement_timeseries(model, involvement): fig, axs = plt.subplots(1, 2, figsize=(10, 4), gridspec_kw={"width_ratios": [4, 1]}) axs[0].set_title("Involvement of brain areas in SO events") axs[0].plot(model.t / 1000, involvement * 100, c="C0") axs[0].set_ylabel("Involvement [%]") axs[0].set_xlabel("Time [s]") axs[0].set_ylim([0, 100]) axs[0].set_aspect("auto") axs[1].hist(involvement * 100, bins=10, orientation="horizontal", density=True, rwidth=0.8, edgecolor="k") axs[1].set_yticks([]) axs[1].set_xlabel("KDE") axs[1].set_ylim([0, 100]) plt.tight_layout() def plot_degree_duration_scatterplot(model, states, ds, lingres=False, color_down="C0", color_up="C1"): figsize = (2, 2) plt.figure(figsize=figsize) area_downtimes = np.sum(states == 0, axis=1) / model.output.shape[1] * 100 area_uptimes = np.sum(states == 1, axis=1) / model.output.shape[1] * 100 fig, ax = plt.subplots(1, 1, figsize=(3, 3)) degrees = [(np.sum(ds.Cmat, axis=1))[i] / np.max(np.sum(ds.Cmat, axis=1)) for i in range(ds.Cmat.shape[0])] ax.scatter( degrees, area_uptimes, s=14, c=color_up, edgecolor="black", linewidth=0.5, label="up-state", ) ax.scatter( degrees, area_downtimes, s=14, c=color_down, edgecolor="black", linewidth=0.5, label="down-state", ) if lingres: plot_linregress(degrees, area_downtimes, kwargs={"c": color_down, "zorder": -2}) if lingres: plot_linregress(degrees, area_uptimes, kwargs={"c": color_up, "zorder": -2}) for i in range(ds.Cmat.shape[0]): degree = (np.sum(ds.Cmat, axis=1))[i] / np.max(np.sum(ds.Cmat, axis=1)) plt.legend(fontsize=12, frameon=False, markerscale=1.8, handletextpad=-0.5) ax.set_xlabel("Node degree") ax.set_ylabel("Time spent [%]") plt.tight_layout() set_axis_size(*figsize) def plot_transition_phases(node_mean_phases_down, node_mean_phases_up, atlas): def hide_axis(ax): ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) names = [] phases_down = [] phases_up = [] ipsilateral_mean_down_phase = [ (i + k) / 2 for i, k in zip(node_mean_phases_down[0::2], node_mean_phases_down[1::2]) ] ipsilateral_mean_up_phase = [(i + k) / 2 for i, k in zip(node_mean_phases_up[0::2], node_mean_phases_up[1::2])] # ipsilateral_names = [i[:-2] for i, k in zip(atlas.names()[0::2], atlas.names()[1::2])] ipsilateral_names = [ f"{i[:-2]} ({nr*2}, {nr*2+1})" for nr, (i, k) in enumerate(zip(atlas.names()[0::2], atlas.names()[1::2])) ] # clean up names for i in range(len(ipsilateral_names)): ipsilateral_names[i] = ipsilateral_names[i].replace("_", " ") for i, ipsi_region in enumerate(np.argsort(ipsilateral_mean_down_phase)): # print(i, region, node_mean_phases_down[region], atlas.names()[region], atlas.coords()[region][2]) # y_coord = (i%80)/30 names.append(ipsilateral_names[ipsi_region]) phases_down.append(ipsilateral_mean_down_phase[ipsi_region]) phases_up.append(ipsilateral_mean_up_phase[ipsi_region]) names = [n.replace("_", " ") for n in names] fig, ax = plt.subplots(1, 1, figsize=(6, 3)) # left=-np.asarray(phases[::-1]), ax.bar(names, phases_up, lw=1, ls="--", color="C0", label="up-transition") ax.bar(names, phases_down, lw=1, ls="--", color="C1", label="down-transition") # ax.tick_params(axis="both", which="major", labelsize=8) # ax.yaxis.set_tick_params(width=1) ax.autoscale(enable=True, axis="x", tight=True) ax.legend(fontsize=8, loc=1, bbox_to_anchor=(0.98, 1.0)) ax.set_ylabel("Phase of transition", fontsize=12) # ax.text(0.2, 80, "Up-state", fontsize=10) # ax.text(-0.2, 80, "Down-state", fontsize=10, ha="right") # ax.set_title("Mean transition phase") hide_axis(ax) plt.grid(alpha=0.5, lw=0.5) ax.tick_params(axis="y", labelsize=10) ax.tick_params(axis="x", which="major", labelsize=7, rotation=90) plt.tight_layout(pad=0) def plot_transition_phases_against_eachother(node_mean_phases_down, node_mean_phases_up): figsize = (2, 2) figsize = np.multiply(figsize, 0.75) plt.figure(figsize=figsize) plt.scatter( node_mean_phases_down, node_mean_phases_up, s=8, edgecolor="black", linewidth=0.5, c="lightgray", ) plot_linregress(node_mean_phases_down, node_mean_phases_up, kwargs={"c": "k", "alpha": 0.5, "zorder": -2}) plt.xlabel("Mean down-phase") plt.ylabel("Up-phase") plt.tight_layout(pad=0) set_axis_size(*figsize) def plot_state_brain_areas(model, states, atlas, ds, color_down="C0", color_up="C1"): fig, axs = plt.subplots(1, 1, figsize=(6, 3)) # axs.set_title("Time spent in up- and down-state per brain area", fontsize=12) area_downtimes = np.sum(states == 0, axis=1) / model.output.shape[1] * 100 area_uptimes = np.sum(states == 1, axis=1) / model.output.shape[1] * 100 ipsilateral_downtimes = [(i + k) / 2 for i, k in zip(area_downtimes[0::2], area_downtimes[1::2])] ipsilateral_uptimes = [(i + k) / 2 for i, k in zip(area_uptimes[0::2], area_uptimes[1::2])] ipsilateral_uptimes_diff = [(i - k) for i, k in zip(area_uptimes[0::2], area_uptimes[1::2])] ipsilateral_names = [ f"{i[:-2]} ({nr*2}, {nr*2+1})" for nr, (i, k) in enumerate(zip(atlas.names()[0::2], atlas.names()[1::2])) ] # clean up names for i in range(len(ipsilateral_names)): ipsilateral_names[i] = ipsilateral_names[i].replace("_", " ") axs.bar( ipsilateral_names, ipsilateral_uptimes, bottom=ipsilateral_downtimes, edgecolor="k", color="C0", linewidth="0.2", zorder=-10, label="up-state", ) axs.bar(ipsilateral_names, ipsilateral_downtimes, edgecolor="k", color="C1", linewidth="0.2", label="down-state") axs.legend(fontsize=8, loc=1, bbox_to_anchor=(0.98, 0.9)) axs.autoscale(enable=True, axis="x", tight=True) axs.spines["right"].set_visible(False) axs.spines["top"].set_visible(False) axs.spines["left"].set_visible(False) axs.spines["bottom"].set_visible(False) axs.tick_params(axis="x", which="major", labelsize=7, rotation=90) # axs[0].set_xlabel("Brain area") axs.set_ylabel("Time spent [%]", fontsize=12) axs.set_yticks([0, 25, 50, 75, 100]) axs.tick_params(axis="y", labelsize=10) # for i in range(ds.Cmat.shape[0]): # degree = (np.sum(ds.Cmat, axis=1))[i] / np.max(np.sum(ds.Cmat, axis=1)) # axs[1].scatter(degree, area_downtimes[i], s=5, c="C1", edgecolor="black", linewidth="0.2") # axs[1].scatter(degree, area_uptimes[i], s=5, c="C0", edgecolor="black", linewidth="0.2") # axs[1].set_xlabel("Node degree") # axs[1].set_xticks([0, 1, 2, 3]) # axs[1].set_yticklabels([]) plt.tight_layout(pad=0) return area_downtimes, area_uptimes def plot_involvement_durations(model, states, involvement, nbins=6, legend=False): invs = {0: [], 1: []} lens = {0: [], 1: []} for s in states[:]: lengths = get_state_lengths(s) current_idx = 0 for state, length in lengths: state = int(state) # compuite average involvement during this state mean_involvement = np.mean(involvement[current_idx : current_idx + length]) lens[state].append(length * model.params.dt) # convert to seconds invs[state].append(mean_involvement) current_idx += length from scipy.stats import binned_statistic figsize = (3, 2) figsize = np.multiply(figsize, 0.75) plt.figure(figsize=figsize) up_bin_means, bin_edges, _ = binned_statistic(invs[1], lens[1], bins=nbins, range=(0, 1)) plt.bar(bin_edges[:-1], up_bin_means[::-1], width=0.04, edgecolor="k", color="C0", label="up-state") down_bin_means, bin_edges, _ = binned_statistic(invs[0], lens[0], bins=nbins, range=(0, 1)) plt.bar(bin_edges[:-1] + 0.05, down_bin_means, width=0.04, edgecolor="k", color="C1", label="down-state") if legend: plt.legend(fontsize=8) plt.xticks([0, 0.5, 1], [0, 50, 100]) axs = plt.gca() axs.spines["right"].set_visible(False) axs.spines["top"].set_visible(False) axs.spines["left"].set_visible(False) plt.gca().tick_params(axis="both", direction="out", which="major", bottom=True, left=True) plt.xlabel("Involvement [%]") plt.ylabel("Duration [ms]") plt.tight_layout() set_axis_size(*figsize) def get_state_durations_flat(model, states): durations = get_state_lengths(states) ups, downs = get_updown_lengths(durations) dt_to_s = model.params.dt / 1000 # return seconds flat_ups = [u * dt_to_s for up in ups for u in up] flat_downs = [d * dt_to_s for down in downs for d in down] return flat_ups, flat_downs def plot_state_durations(model, states, legend=True, alpha=1.0): durations = get_state_lengths(states) ups, downs = get_updown_lengths(durations) dt_to_s = model.params.dt / 1000 flat_ups = [u * dt_to_s for up in ups for u in up] flat_downs = [d * dt_to_s for down in downs for d in down] # figsize = (3, 2.0) figsize = (2, 1.7) # figsize = np.multiply(figsize, 0.75) plt.figure(figsize=figsize) plt.hist(flat_ups, color="C0", label="up", edgecolor="k", linewidth=0.75) plt.hist(flat_downs, color="C1", label="down", edgecolor="k", linewidth=0.75, alpha=alpha) if legend: plt.legend(fontsize=12, frameon=False) plt.gca().set_yscale("log") plt.gca().xaxis.set_major_locator(plt.MaxNLocator(4)) plt.ylabel("Log-probability") plt.yticks([]) plt.xlabel("Duration [s]") plt.gca().tick_params(axis="x", direction="out", which="major", bottom=True, left=True) ax = plt.gca() ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) # ax.spines["bottom"].set_visible(False) plt.tight_layout() set_axis_size(*figsize) def plot_involvement_distribution(model, involvement, remove_xticks=True, color_localglobal=False): # figsize = (3, 2) figsize = (2, 1.7) # figsize = np.multiply(figsize, 0.75) plt.figure(figsize=figsize) N, bins, patches = plt.hist(involvement * 100, bins=12, density=True, rwidth=0.8, edgecolor="k", color="C1") if color_localglobal: for i in range(0, len(patches) // 2): patches[i].set_facecolor("C0") for i in range(len(patches) // 2, len(patches)): patches[i].set_facecolor("C1") plt.xticks([0, 50, 100]) if remove_xticks: plt.yticks([]) else: y_vals = plt.gca().get_yticks() plt.gca().set_yticklabels(["{:3.0f}".format(x * 100) for x in y_vals]) plt.ylabel("Probability") plt.xlabel("Involvement [%]") plt.gca().tick_params(axis="x", direction="out", which="major", bottom=True, left=True) plt.xlim([0, 100]) ax = plt.gca() ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) # ax.spines["bottom"].set_visible(False) max_y = plt.gca().get_ylim()[1] * 1.1 plt.ylim(0, max_y * 1.1) # plt.vlines([50], 0, max_y, linestyles="--", colors="#363638", alpha=0.9) plt.text(25, max_y * 0.95, "local", fontsize=14, color="C0", ha="center") plt.text(75, max_y * 0.95, "global", fontsize=14, color="C1", ha="center") plt.tight_layout() set_axis_size(*figsize) def plot_involvement_mean_amplitude(model, involvement, skip=300, lingress=True): figsize = (3, 2) figsize = np.multiply(figsize, 0.75) plt.figure(figsize=figsize) rates = np.mean(model.output, axis=0)[::skip] plt.scatter( involvement[::skip] * 100, rates, # scipy.stats.zscore(np.mean(model.output, axis=0)[::skip]), s=10, edgecolor="w", linewidth=0.2, c="C1", alpha=0.7, ) # plt.gca().axhline(0, linestyle="--", lw=1, color="#ABB2BF", zorder=-1) plt.xlim(0, 100) plt.xticks([0, 50, 100]) plt.xlabel("Involvement [%]") plt.ylabel("Rate [Hz]") if lingress: slope, intercept, r_value, p_value, std_err = plot_linregress( involvement[::skip] * 100, rates, kwargs={"c": "k", "alpha": 0.75} ) plt.text(50, np.max(rates) * 0.75, f"$R^2={r_value**2:0.2f}$") axs = plt.gca() axs.spines["right"].set_visible(False) axs.spines["top"].set_visible(False) axs.spines["left"].set_visible(False) axs.spines["bottom"].set_visible(False) plt.gca().tick_params(axis="both", direction="out", which="major", bottom=True, left=True) plt.tight_layout() set_axis_size(*figsize) def get_state_lengths(xs): """ Get's the length of successive elements in a list. Useful for computing inter-spike-intervals (ISI) or the length of states. Example: get_state_lengths([0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0]) Returns: [(0, 4), (1, 4), (0, 2), (1, 1), (0, 1)] :param xs: Input list with successive states :type xs: list :return: List of (state, length) tuples :rtype: list """ import itertools if np.array(xs).ndim == 1: durations = [(x, len(list(y))) for x, y in itertools.groupby(xs)] elif np.array(xs).ndim > 1: durations = [get_state_lengths(xss) for xss in xs] return durations def get_updown_lengths(durations): """Returns the length of all up- and down-states for each node""" ups = [] downs = [] for i, l in enumerate(durations): ups.append([u[1] for u in l if u[0] == 1.0]) downs.append([u[1] for u in l if u[0] == 0.0]) return ups, downs def plot_linregress(x, y, plot=True, kwargs={}): slope, intercept, r_value, p_value, std_err = stats.linregress(x, y) print(f"slope = {slope}, intercept = {intercept}, r_value = {r_value}, p_value = {p_value}, std_err = {std_err}") if plot: plt.plot(x, intercept + x * slope, **kwargs) return slope, intercept, r_value, p_value, std_err def plot_down_up_durations(model, durations, ds, plot_regression=False): import matplotlib.cm as cm all_ups = [] all_downs = [] all_colors = [] for n, dur in enumerate(durations): # make sure to start with a down-state skip = 0 if dur[0][0] == 0.0 else 1 down_durations = [d[1] * model.params.dt / 1000 for d in dur[skip::2]] up_durations = [d[1] * model.params.dt / 1000 for d in dur[skip + 1 :: 2]] # normalized degree [0, 1] degree = (np.sum(ds.Cmat, axis=1))[n] / np.max(np.sum(ds.Cmat, axis=1)) for d, u in zip(down_durations, up_durations): all_ups.append(u) all_downs.append(d) all_colors.append(degree) fig_scale = 1.2 plt.figure(figsize=(3 * fig_scale, 2.5 * fig_scale)) plt.scatter(all_downs, all_ups, s=2, c=all_colors, cmap="plasma", alpha=0.8) plt.ylabel("Next up-state duration [s]") plt.xlabel("Down-state duration [s]") plot_linregress(all_downs, all_ups, plot=plot_regression) cbar = plt.colorbar() cbar.set_label(label="Node degree", size=10) cbar.ax.tick_params(labelsize=10) plt.show() def get_transition_phases(states, phase): transitions = np.diff(states) node_mean_phases_down = [] node_mean_phases_up = [] for ni, trs in enumerate(transitions): down_phases = [] up_phases = [] for i, t in enumerate(trs): if t == -1: down_phases.append(float(phase[i])) if t == 1: up_phases.append(float(phase[i])) mean_down_phase = scipy.stats.circmean(down_phases, high=np.pi, low=-np.pi, nan_policy="raise") mean_up_phase = scipy.stats.circmean(up_phases, high=np.pi, low=-np.pi, nan_policy="raise") print(f"Node {ni}: mean_down_phase = {mean_down_phase}, mean_up_phase = {mean_up_phase}") node_mean_phases_down.append(mean_down_phase) node_mean_phases_up.append(mean_up_phase) return node_mean_phases_down, node_mean_phases_up def phase_transition_coordinate(node_mean_phases_down, node_mean_phases_up, atlas): coords = atlas.coords() minmax_coords = [int(np.min([c[1] for c in coords])), int(np.max([c[1] for c in coords]))] figsize = (2, 2) plt.figure(figsize=figsize) # ATTENTION!!!! MULTIPLYING COORDINATES WITH -1 SO THE PLOT GOES ANTERIOR TO POSTERIOR y_coords = np.array([c[1] for c in coords]) * -1 plt.scatter(y_coords, node_mean_phases_down, c="C1", s=14, edgecolor="k", linewidth=0.5, label="down") plt.scatter(y_coords, node_mean_phases_up, c="C0", s=14, edgecolor="k", linewidth=0.5, label="up") # plt.legend(fontsize=8) down_slope, down_intercept, down_r_value, down_p_value, down_std_err = stats.linregress( y_coords, node_mean_phases_down ) print(f"Down transitions: slope: {down_slope} r: {down_r_value}, p: {down_p_value}") plt.plot(y_coords, (lambda c: down_intercept + down_slope * c)(y_coords), c="C1", label="x", zorder=-5) up_slope, up_intercept, up_r_value, up_p_value, up_std_err = stats.linregress(y_coords, node_mean_phases_up) print(f"Up transitions: slope: {up_slope} r: {up_r_value}, p: {up_p_value}") plt.plot(y_coords, (lambda c: up_intercept + up_slope * c)(y_coords), c="C0", label="x", zorder=-5) plt.xlabel("Coordinate") plt.xticks([np.min(y_coords) + 30, np.max(y_coords) - 30], [f"Anterior", f"Posterior"]) plt.ylabel("Transition phase $\phi$") plt.tight_layout() set_axis_size(*figsize) return ( down_slope, down_intercept, down_r_value, down_p_value, down_std_err, up_slope, up_intercept, up_r_value, up_p_value, up_std_err, ) def kuramoto(events): import tqdm # fill in event at the end of the timeseries events[:, -1] = True phases = [] logging.info("Determining phases ...") for n, ev in tqdm.tqdm(enumerate(events), total=len(events)): maximalist = np.where(ev)[0] phases.append([]) last_event = 0 for m in maximalist: for t in range(last_event, m): phi = 2 * np.pi * float(t - last_event) / float(m - last_event) phases[n].append(phi) last_event = m phases[n].append(2 * np.pi) logging.info("Computing Kuramoto order parameter ...") # determine kuramoto order paramter kuramoto = [] nTraces = events.shape[0] for t in tqdm.tqdm(range(events.shape[1]), total=events.shape[1]): R = 1j * 0 for n in range(nTraces): R += np.exp(1j * phases[n][t]) R /= nTraces kuramoto.append(np.absolute(R)) return kuramoto def plot_phases_and_involvement(model, involvement, phases, states): fig, axs = plt.subplots(2, 1, figsize=(4, 2), sharex=True) up_transitions = np.diff(states) > 0 down_transitions = np.diff(states) < 0 for i, ups in enumerate(up_transitions): axs[0].vlines(np.where(ups)[0] * model.params.dt / 1000, 0, 3, lw=0.2, alpha=1, color="C0") for i, downs in enumerate(down_transitions): axs[0].vlines(np.where(downs)[0] * model.params.dt / 1000, -3, 0, lw=0.2, alpha=1, color="C1") # annotate vlines axs[0].text(7.7, 7.0, "up-transitions", fontsize=8) axs[0].vlines(7.6, 6.8, 9.0, lw=1, color="C0") axs[0].text(7.7, 4.4, "down-transitions", fontsize=8) axs[0].vlines(7.6, 4.0, 6.2, lw=1, color="C1") # axs[0].fill_between(model.t/1000, phases, 0, where=phases<0, zorder=-2, color='C0', alpha=0.8, label='$\phi < 0$') # axs[0].fill_between(model.t/1000, phases, 0, where=phases>0, zorder=-2, color='C1', alpha=0.8, label='$\phi > 0$') axs[0].plot(model.t / 1000, phases, zorder=2, lw=1, label="Global phase $\phi$", c="fuchsia") axs[0].set_yticks([]) axs[0].legend(fontsize=8, frameon=False, loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=1) axs[1].plot(model.t / 1000, np.mean(model.output, axis=0), c="k", alpha=1, lw=1, label="Mean rate") axs[1].plot(model.t / 1000, involvement * 30, lw=1, c="C3", label="Involvement") axs[1].set_xlim(0, 10) axs[1].set_yticks([]) axs[1].set_xticks([0, 5, 10]) axs[1].tick_params(labelsize=8) axs[1].set_xlabel("Time [s]", fontsize=8) axs[1].legend(fontsize=8, frameon=False, loc="upper center", bbox_to_anchor=(0.5, 1.25), ncol=2) for ax in axs: ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["bottom"].set_visible(False) plt.tight_layout() plt.subplots_adjust(wspace=0, hspace=0.2) # used for RESULT-dynamical-regimes-EXP-5.ipynb def plot_ts( model, plot_nodes=[0], plot_alpha=1, plot_mean_background=False, mean_alpha=0.3, shift_mean=False, adaptation=False, stimulus=False, stimulus_scale=1.0, log_power=False, log_freq=False, norm_power=True, title_add="", lw=1, figsize=(4, 1.5), labels=False, crop_zero=None, xlim=None, savename=None, fontsize=None, n_ticks=2, tick_width=1, tick_length=3, legend=False, yticks=None, ): _, axs = plt.subplots(1, 1, dpi=600, figsize=figsize) title = " ".join([f"{p} = {model.params[p]}" for p in ["mue_ext_mean", "mui_ext_mean", "b", "sigma_ou"]]) title += " " + title_add plot_col = "k" if str(plot_nodes) == "all": plot_output = model.output plot_adaptation = model.outputs.IA plot_col = None elif str(plot_nodes) == "mean": plot_output = np.mean(model.output, axis=0) plot_adaptation = np.mean(model.outputs.IA, axis=0) else: plot_output = model.output[plot_nodes] plot_adaptation = model.outputs.IA[plot_nodes] plot_col = None if len(plot_nodes) > 1 else "k" if plot_mean_background: mean_signal = np.mean(model.output, axis=0) # plot_adaptation = model.outputs.IA if str(plot_nodes) == "all" else model.outputs.IA[plot_nodes] plot_t = model.t / 1000 plot_stimulus = model.params["ext_exc_current"] * stimulus_scale if xlim: plot_t = plot_t[xlim[0] : xlim[1]] if plot_output.ndim == 2: plot_output = plot_output[:, xlim[0] : xlim[1]] if adaptation: plot_adaptation = plot_adaptation[:, xlim[0] : xlim[1]] else: plot_output = plot_output[xlim[0] : xlim[1]] if adaptation: plot_adaptation = plot_adaptation[xlim[0] : xlim[1]] if stimulus and model.params["ext_exc_current"].ndim > 0: plot_stimulus = plot_stimulus[xlim[0] : xlim[1]] if plot_mean_background: mean_signal = mean_signal[xlim[0] : xlim[1]] axs.plot( plot_t, plot_output.T, alpha=plot_alpha, lw=lw, c=plot_col, # label="Firing rate" if len(plot_nodes) == 1 else None, ) # plot the mean signal in the background? if plot_mean_background: if shift_mean: mean_signal /= np.max(mean_signal) mean_signal *= np.abs(np.max(plot_output) - np.min(plot_output)) / 4 mean_signal = mean_signal + np.max(plot_output) * 1.1 axs.plot(plot_t, mean_signal, alpha=mean_alpha, lw=lw, c="k", zorder=10, label="Mean brain") # if a stimulus was present if legend and stimulus and model.params["ext_exc_current"].ndim > 0: axs.plot(plot_t, plot_stimulus, lw=lw, c="C1", label="Stimulus", alpha=0.8) # add a line for adaptation current in legend if adaptation: axs.plot([0], [0], lw=lw, c="C0", label="Adaptation") leg = axs.legend(frameon=True, fontsize=14, framealpha=0.9) # Get the bounding box of the original legend bb = leg.get_bbox_to_anchor().inverse_transformed(axs.transAxes) # Change to location of the legend. yOffset = +0.0 bb.y0 += yOffset bb.y1 += yOffset leg.set_bbox_to_anchor(bb, transform=axs.transAxes) if adaptation and not stimulus: color = "C0" ax_adapt = axs.twinx() # ax_adapt.set_ylabel("$I_A$ [pA]", color=color) ax_adapt.tick_params( axis="y", color=color, labelcolor=color, direction="out", length=tick_length, width=tick_width, labelsize=fontsize, right=False, ) # plot_adaptation = model.outputs.IA if str(plot_nodes) == "all" else model.outputs.IA[plot_nodes] ax_adapt.plot(plot_t, plot_adaptation.T, lw=lw, label="Adaptation", color=color) # ax_adapt.legend(loc=4) if legend and adaptation: ax_adapt.legend(loc="lower right", frameon=True, fontsize=14, framealpha=0.9) ax_adapt.spines["right"].set_visible(False) ax_adapt.spines["top"].set_visible(False) ax_adapt.spines["left"].set_visible(False) ax_adapt.spines["bottom"].set_visible(False) ax_adapt.yaxis.set_major_locator(plt.MaxNLocator(n_ticks)) if labels: axs.set_xlabel("Time [s]") axs.set_ylabel("Rate $r_E$ [Hz]") if adaptation: ax_adapt.set_ylabel("Adaptation $I_A$ [pA]", color=color) axs.spines["right"].set_visible(False) axs.spines["top"].set_visible(False) axs.spines["left"].set_visible(False) axs.spines["bottom"].set_visible(False) # reduce number of ticks axs.yaxis.set_major_locator(plt.MaxNLocator(n_ticks)) axs.xaxis.set_major_locator(MaxNLocator(integer=True)) if yticks is not None: axs.set_yticks(yticks) axs.tick_params( axis="both", direction="out", length=tick_length, width=tick_width, colors="k", labelsize=fontsize, bottom=False, left=False, ) if crop_zero: axs.set_xlim(crop_zero, model.t[-1] / 1000) plt.tight_layout() # set the axis size precisely set_axis_size(figsize[0], figsize[1]) if savename: save_fname = os.path.join(paths.FIGURES_DIR, f"{savename}") plt.savefig(save_fname) # helper function def set_axis_size(w, h, ax=None): """ w, h: width, height in inches """ if not ax: ax = plt.gca() l = ax.figure.subplotpars.left r = ax.figure.subplotpars.right t = ax.figure.subplotpars.top b = ax.figure.subplotpars.bottom figw = float(w) / (r - l) figh = float(h) / (t - b) ax.figure.set_size_inches(figw, figh) def plot_matrix(mat, cbarlabel, cbar=True, ylabels=True, plotlog=False): figsize = (2, 2) fig = plt.figure(figsize=figsize) # fc_fit = du.model_fit(model, ds, bold_transient=bold_transient, fc=True)["mean_fc_score"] # plt.title(f"FC (corr: {fc_fit:0.2f})", fontsize=12) if plotlog: from matplotlib.colors import LogNorm im = plt.imshow(mat, norm=LogNorm(vmin=10e-5, vmax=np.max(mat)), origin="upper") else: im = plt.imshow(mat, origin="upper") plt.ylabel("Node") plt.xlabel("Node") plt.xticks([0, 20, 40, 60]) plt.yticks([0, 20, 40, 60]) if ylabels == False: plt.ylabel("") plt.yticks([]) if cbar: # cbaxes = fig.add_axes([0.95, 0.36, 0.02, 0.52]) cbar = plt.colorbar(im, ax=plt.gca(), fraction=0.046, pad=0.04) # cbar = plt.colorbar(im, cbaxes) # cbar.set_ticks([0, 1]) # cbar.ax.tick_params(width=0, labelsize=10) cbar.set_label(label=cbarlabel, size=10, labelpad=-1) plt.tight_layout() set_axis_size(*figsize) ################### plot fits def plot_fc(bold, model=None, bold_transient=0, cbar=False, ylabels=True): if bold_transient and model: t_bold = model.outputs.BOLD.t_BOLD[model.outputs.BOLD.t_BOLD > bold_transient] / 1000 bold = model.outputs.BOLD.BOLD[:, model.outputs.BOLD.t_BOLD > bold_transient] figsize = (2, 2) fig = plt.figure(figsize=figsize) # fc_fit = du.model_fit(model, ds, bold_transient=bold_transient, fc=True)["mean_fc_score"] # plt.title(f"FC (corr: {fc_fit:0.2f})", fontsize=12) im = plt.imshow(func.fc(bold), origin="upper", clim=(0, 1)) plt.ylabel("Node") plt.xlabel("Node") plt.xticks([0, 20, 40, 60]) plt.yticks([0, 20, 40, 60]) if ylabels == False: plt.ylabel("") plt.yticks([]) if cbar: cbaxes = fig.add_axes([0.95, 0.36, 0.02, 0.52]) cbar = plt.colorbar(im, cbaxes) cbar.set_ticks([0, 1]) cbar.ax.tick_params(width=0, labelsize=10) cbar.set_label(label="Correlation", size=10, labelpad=-1) plt.tight_layout() set_axis_size(*figsize) def plot_fcd(bold, model=None, bold_transient=0, cbar=False, ylabels=True): if bold_transient and model: t_bold = model.outputs.BOLD.t_BOLD[model.outputs.BOLD.t_BOLD > bold_transient] / 1000 bold = model.outputs.BOLD.BOLD[:, model.outputs.BOLD.t_BOLD > bold_transient] figsize = (2, 2) fig = plt.figure(figsize=figsize) fcd_matrix = func.fcd(bold) print(fcd_matrix.shape) im = plt.imshow(fcd_matrix, origin="upper") plt.xlabel("Time [min]") plt.ylabel("Time [min]") # nticks = 3 # plt.xticks(np.linspace(0, fcd_matrix.shape[0] - 1, nticks), np.linspace(0, bold.shape[1] * 2.0, nticks, dtype=int)) # plt.yticks(np.linspace(0, fcd_matrix.shape[0] - 1, nticks), np.linspace(0, bold.shape[1] * 2.0, nticks, dtype=int)) plt.xticks([0, 32, 64], [0, 6, 12]) plt.yticks([0, 32, 64], [0, 6, 12]) if ylabels == False: plt.ylabel("") plt.yticks([]) if cbar: cbaxes = fig.add_axes([0.9, 0.36, 0.02, 0.52]) cbar = plt.colorbar(im, cbaxes) # cbar.set_ticks([0.4, 1]) cbar.ax.locator_params(nbins=5) cbar.ax.tick_params(width=0, labelsize=10) cbar.set_label(label="Correlation", size=10) plt.tight_layout(w_pad=4.5) set_axis_size(*figsize) def plot_fcd_distribution(model, ds, bold_transient=0): if bold_transient and model: t_bold = model.outputs.BOLD.t_BOLD[model.outputs.BOLD.t_BOLD > bold_transient] / 1000 bold = model.outputs.BOLD.BOLD[:, model.outputs.BOLD.t_BOLD > bold_transient] figsize = (4, 3) fig = plt.figure(figsize=figsize) # plot distribution in fcd # axs[2, 1].set_title(f"FCD distance {fcd_fit:0.2f}", fontsize=12) plt.ylabel("Density") plt.yticks([]) plt.xticks([0, 0.5, 1]) plt.xlabel("FCD$_{ij}$") m1 = func.fcd(bold) triu_m1_vals = m1[
np.triu_indices(m1.shape[0], k=1)
numpy.triu_indices
from __future__ import absolute_import from __future__ import print_function from keras import backend as K import os import argparse import warnings import numpy as np import tensorflow as tf import keras.backend as K import keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization K.set_image_data_format('channels_first') from keras.models import load_model import tensorflow.contrib.layers as layers import dill as pickle from third_party.lid_adversarial_subspace_detection.util import (get_data, get_model, cross_entropy) # , get_noisy_samples) from third_party.lid_adversarial_subspace_detection.attacks \ import (fast_gradient_sign_method, basic_iterative_method, saliency_map_method) from third_party.lid_adversarial_subspace_detection.adaptive_attacks \ import adaptive_fast_gradient_sign_method from third_party.lid_adversarial_subspace_detection.adaptive_attacks \ import adaptive_basic_iterative_method from third_party.lid_adversarial_subspace_detection.cw_attacks import CarliniL2, CarliniFP, CarliniFP_2vars from cleverhans.attacks import SPSA from cleverhans.attacks import MadryEtAl keras.layers.core.K.set_learning_phase(0) # FGSM & BIM attack parameters that were chosen ATTACK_PARAMS = { 'mnist': {'eps': 0.40, 'eps_iter': 0.010, 'image_size': 28, 'num_channels': 1, 'num_labels': 10}, 'cifar': {'eps': 0.050, 'eps_iter': 0.005, 'image_size': 32, 'num_channels': 3, 'num_labels': 10}, 'svhn': {'eps': 0.130, 'eps_iter': 0.010, 'image_size': 32, 'num_channels': 3, 'num_labels': 10} } # CLIP_MIN = 0.0 # CLIP_MAX = 1.0 # PATH_DATA = "../data/" from cleverhans.model import Model, CallableModelWrapper CLIP_MIN = -0.5 CLIP_MAX = 0.5 PATH_DATA = "./adv_examples/" def craft_one_type(sess, model, X, Y, dataset, attack, batch_size, log_path=None, fp_path = None, model_logits = None): """ TODO :param sess: :param model: :param X: :param Y: :param dataset: :param attack: :param batch_size: :return: """ print("entered") if not log_path is None: PATH_DATA = log_path if attack == 'fgsm': # FGSM attack print('Crafting fgsm adversarial samples...') X_adv = fast_gradient_sign_method( sess, model, X, Y, eps=ATTACK_PARAMS[dataset]['eps'], clip_min=CLIP_MIN, clip_max=CLIP_MAX, batch_size=batch_size ) elif attack == 'adapt-fgsm': # Adaptive FGSM attack print('Crafting fgsm adversarial samples...') X_adv = adaptive_fast_gradient_sign_method( sess, model, X, Y, eps=ATTACK_PARAMS[dataset]['eps'], clip_min=CLIP_MIN, clip_max=CLIP_MAX, batch_size=batch_size, log_dir = fp_path, model_logits = model_logits, dataset = dataset ) elif attack == 'adapt-bim-b': # BIM attack print('Crafting %s adversarial samples...' % attack) X_adv = adaptive_basic_iterative_method( sess, model, X, Y, eps=ATTACK_PARAMS[dataset]['eps'], eps_iter=ATTACK_PARAMS[dataset]['eps_iter'], clip_min=CLIP_MIN, clip_max=CLIP_MAX, batch_size=batch_size, log_dir = fp_path, model_logits = model_logits, dataset = dataset) elif attack in ['bim-a', 'bim-b']: # BIM attack print('Crafting %s adversarial samples...' % attack) its, results = basic_iterative_method( sess, model, X, Y, eps=ATTACK_PARAMS[dataset]['eps'], eps_iter=ATTACK_PARAMS[dataset]['eps_iter'], clip_min=CLIP_MIN, clip_max=CLIP_MAX, batch_size=batch_size ) if attack == 'bim-a': # BIM-A # For each sample, select the time step where that sample first # became misclassified X_adv = np.asarray([results[its[i], i] for i in range(len(Y))]) else: # BIM-B # For each sample, select the very last time step X_adv = results[-1] elif attack == 'jsma': # JSMA attack print('Crafting jsma adversarial samples. This may take > 5 hours') X_adv = saliency_map_method( sess, model, X, Y, theta=1, gamma=0.1, clip_min=CLIP_MIN, clip_max=CLIP_MAX ) elif attack == 'cw-l2': # C&W attack print('Crafting %s examples. This takes > 5 hours due to internal grid search' % attack) image_size = ATTACK_PARAMS[dataset]['image_size'] num_channels = ATTACK_PARAMS[dataset]['num_channels'] num_labels = ATTACK_PARAMS[dataset]['num_labels'] cw_attack = CarliniL2(sess, model, image_size, num_channels, num_labels, batch_size=batch_size) X_adv = cw_attack.attack(X, Y) elif attack == 'cw-fp': # C&W attack to break LID detector print('Crafting %s examples. This takes > 5 hours due to internal grid search' % attack) image_size = ATTACK_PARAMS[dataset]['image_size'] num_channels = ATTACK_PARAMS[dataset]['num_channels'] num_labels = ATTACK_PARAMS[dataset]['num_labels'] cw_attack = CarliniFP_2vars(sess, model, image_size, num_channels, num_labels, batch_size=batch_size, fp_dir=fp_path) X_adv = cw_attack.attack(X, Y) elif attack == 'spsa': binary_steps = 1 batch_shape = X.shape X_input = tf.placeholder(tf.float32, shape=(1,) + batch_shape[1:]) Y_label = tf.placeholder(tf.int32, shape=(1,)) alpha = tf.placeholder(tf.float32, shape= (1,)) num_samples = np.shape(X)[0] # X = (X - np.argmin(X))/(np.argmax(X)-np.argmin(X)) _min = np.min(X) _max = np.max(X) print(_max, _min) print(tf.trainable_variables()) filters = sess.run('conv1/kernel:0') biases = 0.0*sess.run('conv1/bias:0') shift_model = Sequential() if(dataset == 'mnist'): shift_model.add(Conv2D(32, kernel_size=(3, 3), activation=None, input_shape=(1, 28, 28))) else: shift_model.add(Conv2D(32, kernel_size=(3, 3), activation=None, input_shape=(3, 32, 32))) X_input_2 = tf.placeholder(tf.float32, shape=(None,) + batch_shape[1:]) correction_term = shift_model(X_input_2) if(dataset == 'mnist'): X_correction = -0.5*np.ones((1,1,28,28)) # We will shift the image up by 0.5, so this is the correction else: X_correction = -0.5*np.ones((1,3,32,32)) # We will shift the image up by 0.5, so this is the correction # for PGD shift_model.layers[0].set_weights([filters,biases]) bias_correction_terms =(sess.run(correction_term, feed_dict={X_input_2:X_correction})) for i in range(32): biases[i] = bias_correction_terms[0,i,0,0] _, acc = model.evaluate(X, Y, batch_size=batch_size, verbose=0) print("Model accuracy on the test set: %0.2f%%" % (100.0 * acc)) original_biases = model.layers[0].get_weights()[1] original_weights = model.layers[0].get_weights()[0] model.layers[0].set_weights([original_weights,original_biases+biases]) #Correct model for input shift X = X + 0.5 #shift input to make it >=0 _, acc = model.evaluate(X, Y, batch_size=batch_size, verbose=0) print("Model accuracy on the test set: %0.2f%%" % (100.0 * acc)) # check accuracy post correction of input and model print('Crafting %s examples. Using Cleverhans' % attack) image_size = ATTACK_PARAMS[dataset]['image_size'] num_channels = ATTACK_PARAMS[dataset]['num_channels'] num_labels = ATTACK_PARAMS[dataset]['num_labels'] from cleverhans.utils_keras import KerasModelWrapper wrapped_model = KerasModelWrapper(model) if dataset == "mnist": wrapped_model.nb_classes = 10 elif dataset == "cifar": wrapped_model.nb_classes = 10 else: wrapped_model.nb_classes = 10 real_batch_size = X.shape[0] X_adv = None spsa = SPSA(wrapped_model, back='tf', sess=sess) spsa_params = { "epsilon": ATTACK_PARAMS[dataset]['eps'], 'num_steps': 100, 'spsa_iters': 1, 'early_stop_loss_threshold': None, 'is_targeted': False, 'is_debug': False } X_adv_spsa = spsa.generate(X_input, alpha=alpha, y=Y_label, fp_path=fp_path, **spsa_params) for i in range(num_samples): # rescale to format TF wants #X_i_norm = (X[i] - _min)/(_max-_min) X_i_norm = X[i] # Run attack best_res = None ALPHA = np.ones(1)*0.1 lb = 1.0e-2 ub = 1.0e2 for j in range(binary_steps): res = sess.run(X_adv_spsa, feed_dict={X_input: np.expand_dims(X_i_norm, axis=0), Y_label: np.array([np.argmax(Y[i])]), alpha: ALPHA}) if(dataset == 'mnist'): X_place = tf.placeholder(tf.float32, shape=[1, 1, 28, 28]) else: X_place = tf.placeholder(tf.float32, shape=[1, 3, 32, 32]) pred = model(X_place) model_op = sess.run(pred,feed_dict={X_place:res }) if(not np.argmax(model_op) == np.argmax(Y[i,:])): lb = ALPHA[0] else: ub = ALPHA[0] ALPHA[0] = 0.5*(lb+ub) print(ALPHA) if(best_res is None): best_res = res else: if(not np.argmax(model_op) == np.argmax(Y[i,:])): best_res = res pass # Rescale result back to our scale if(i==0): X_adv = best_res else: X_adv = np.concatenate((X_adv,best_res), axis=0) _, acc = model.evaluate(X_adv, Y, batch_size=batch_size, verbose=0) print("Model accuracy on the adversarial test set: %0.2f%%" % (100.0 * acc)) _, acc = model.evaluate(X, Y, batch_size=batch_size, verbose=0) print("Model accuracy on the test set: %0.2f%%" % (100.0 * acc)) #Revert model to original model.layers[0].set_weights([original_weights,original_biases]) #Revert adv shift X_adv = X_adv - 0.5 X = X - 0.5 #Not used but just for logging purposes elif attack=='adapt-pgd': binary_steps = 1 rand_starts = 2 batch_shape = X.shape X_input = tf.placeholder(tf.float32, shape=(1,) + batch_shape[1:]) Y_label = tf.placeholder(tf.int32, shape=(1,)) alpha = tf.placeholder(tf.float32, shape= (1,)) num_samples = np.shape(X)[0] # X = (X - np.argmin(X))/(np.argmax(X)-np.argmin(X)) _min = np.min(X) _max = np.max(X) print(_max, _min) print(tf.trainable_variables()) filters = sess.run('conv1/kernel:0') biases = 0.0*sess.run('conv1/bias:0') shift_model = Sequential() if(dataset == 'mnist'): shift_model.add(Conv2D(32, kernel_size=(3, 3), activation=None, input_shape=(1, 28, 28))) else: shift_model.add(Conv2D(32, kernel_size=(3, 3), activation=None, input_shape=(3, 32, 32))) X_input_2 = tf.placeholder(tf.float32, shape=(None,) + batch_shape[1:]) correction_term = shift_model(X_input_2) if(dataset == 'mnist'): X_correction = -0.5*
np.ones((1,1,28,28))
numpy.ones
""" This file warp around the nuscenes dataset => We only focus on what we want """ from __future__ import print_function from __future__ import division from __future__ import absolute_import # insert system path for fast debugging import sys sys.path.insert(0, "../") from nuscenes.nuscenes import NuScenes from nuscenes.nuscenes import NuScenesExplorer from nuscenes.utils.data_classes import LidarPointCloud, RadarPointCloud, PointCloud from nuscenes.utils.geometry_utils import view_points, transform_matrix from config.config_nuscenes import config_nuscenes as cfg from nuscenes.utils.geometry_utils import view_points, box_in_image, BoxVisibility from pyquaternion import Quaternion from PIL import Image from functools import reduce import math import os import pickle import numpy as np from config.config_nuscenes import config_nuscenes as cfg from misc.devkit.python.read_depth import depth_read # Define the kitti dataset abstraction object class Nuscenes_dataset(object): # Initialize the dataset def __init__(self, mode="mini") -> None: # Check mode if not mode in ["mini", "full"]: raise ValueError("[Error] Unknow nuscene dataset mode. Consider using 'mini' or 'full'") self.mode = mode # Initialize nuscenes dataset API print("[Info] Initializing Nuscenes official database...") if self.mode == "mini": dataroot = os.path.join(cfg.DATASET_ROOT, "v1.0-mini") self.dataset = NuScenes(version="v1.0-mini", dataroot=dataroot) elif self.mode == "full": # dataroot = os.path.join(cfg.DATASET_ROOT, "v1.0-trainval") dataroot = cfg.DATASET_ROOT self.dataset = NuScenes(version="v1.0-trainval", dataroot=dataroot) self.explorer = NuScenesExplorer(self.dataset) print("[Info] Finished initializing Nuscenes official database!") # ipdb.set_trace() # Initialize some tables self.samples = self.dataset.sample self.scenes = self.dataset.scene self.num_scenes = len(self.scenes) self.num_samples = len(self.scenes) self.train_val_table = self.get_train_val_table() # Train related attributes self.train_samples = self.train_val_table["train_samples"] self.train_sample_tokens = self.train_val_table["train_sample_tokens"] # Val related attributes self.val_samples = self.train_val_table["val_samples"] self.val_sample_tokens = self.train_val_table["val_sample_tokens"] # Define camera keywords self.camera_orientations = ["front", "front_right", "front_left", "back_right", "back_left", "back"] self.orientation_to_camera = { "front": "CAM_FRONT", "front_right": "CAM_FRONT_RIGHT", "front_left": "CAM_FRONT_LEFT", "back_right": "CAM_BACK_RIGHT", "back_left": "CAM_BACK_LEFT", "back": "CAM_BACK" } # Define radar keywords self.radar_orientations = ['front', 'front_right', 'front_left', 'back_right', 'back_left'] self.radar_keywords = ['RADAR_FRONT', 'RADAR_FRONT_RIGHT', 'RADAR_FRONT_LEFT', 'RADAR_BACK_RIGHT', 'RADAR_BACK_LEFT'] self.orientation_to_radar = { "front": 'RADAR_FRONT', "front_right": 'RADAR_FRONT_RIGHT', "front_left": 'RADAR_FRONT_LEFT', "back_right": 'RADAR_BACK_RIGHT', "back_left": 'RADAR_BACK_LEFT' } # Now based on dataset version, we include different orientations # print(cfg.version) assert cfg.version in ["ver1", "ver2", "ver3"] self.version = cfg.version print("===============================") print("[Info] Use dataset %s" % (self.version)) self.train_datapoints = self.get_datapoints("train") self.val_datapoints = self.get_datapoints("val") print("\t train datapoints: %d" % (len(self.train_datapoints))) print("\t val datapoints: %d" % (len(self.val_datapoints))) print("===============================") # Initialize how many sweeps to use self.lidar_sweeps = cfg.lidar_sweeps self.radar_sweeps = cfg.radar_sweeps #################################### ## Some dataset manipulation APIs ## #################################### # Easier call for get def get(self, table_name, token): return self.dataset.get(table_name, token) # Easier call for get_sample_data def get_sample_data(self, sample_data_token): return self.dataset.get_sample_data(sample_data_token) # Generate the train / val table based on the random seed def get_train_val_table(self): seed = cfg.TRAIN_VAL_SEED val_num = int(cfg.VAL_RATIO * self.num_scenes) # Get train / val scenes all = set(list(range(self.num_scenes))) np.random.seed(seed) val = set(np.random.choice(
np.arange(0, self.num_scenes, 1)
numpy.arange
from DartDeepRNN.rnn.RNNController import RNNController from DartDeepRNN.util.Pose2d import Pose2d from DartDeepRNN.util.Util import * from OpenGL.GL import * from OpenGL.GLU import * from fltk import * from PyCommon.modules.GUI.hpSimpleViewer import hpSimpleViewer as SimpleViewer from PyCommon.modules.Renderer import ysRenderer as yr from PyCommon.modules.Math import mmMath as mm from PyCommon.modules.Motion import ysMotion as ym from PyCommon.modules.Resource import ysMotionLoader as yf from PyCommon.modules.dart.dart_ik import DartIk import pydart2 as pydart import numpy as np MOTION_SCALE = .01 joint_point_list = [None, "Head_End", "LeftHand", "LeftFoot", "LeftToeBase", "RightHand", "RightFoot", "RightToeBase", "LeftArm", "RightArm", "LeftForeArm", "LeftLeg", "RightForeArm", "RightLeg", "Spine", "LeftHandIndex1", "RightHandIndex1", "Neck1", "LeftUpLeg", "RightUpLeg"] joint_list = ["Head", "Hips", "LHipJoint", "LeftArm", "LeftFoot", "LeftForeArm", "LeftHand", "LeftLeg", "LeftShoulder", "LeftToeBase", "LeftUpLeg", "LowerBack", "Neck", "Neck1", "RHipJoint", "RightArm", "RightFoot","RightForeArm","RightHand", "RightLeg","RightShoulder","RightToeBase","RightUpLeg", "Spine","Spine1"] class ModelViewer(object): def __init__(self, folder): pydart.init() self.world = pydart.World(1./1200., "../data/cmu_with_ground.xml") self.model = self.world.skeletons[1] self.ik = DartIk(self.model) self.controller = RNNController(folder) self.all_angles = [[] for i in range(93)] viewer = SimpleViewer(rect=[0, 0, 1280+300, 720+1+55], viewForceWnd=False) self.viewer = viewer # viewer.record(True) viewer.record(False) viewer.setMaxFrame(10000) self.isFirst = True self.lines = None viewer.motionViewWnd.glWindow.set_mouse_pick(True) def callback_btn(ptr): self.controller.reset() viewer.objectInfoWnd.addBtn('reset', callback_btn) self.rc = yr.RenderContext() self.rd_target_position = [None] self.rd_frames = [None] viewer.doc.addRenderer('contact', yr.PointsRenderer(self.rd_target_position, (0, 255, 0), save_state=False)) viewer.doc.addRenderer('MotionModel', yr.DartRenderer(self.world, (150,150,255), yr.POLYGON_FILL, save_state=False)) viewer.doc.addRenderer('rd_frames', yr.FramesRenderer(self.rd_frames)) def extraDrawCallback(): self.rd_target_position[0] = self.viewer.motionViewWnd.glWindow.pickPoint self.step_model() del self.rd_frames[:] self.rd_frames.append(self.model.body(0).world_transform()) # for i in range(3): # print(self.model.body(0).world_transform()[:3, i]) viewer.setExtraDrawCallback(extraDrawCallback) viewer.startTimer(1. / 30.) viewer.show() # viewer.play() Fl.run() def get_target(self): p = self.viewer.motionViewWnd.glWindow.pickPoint target = Pose2d([p[0]/MOTION_SCALE, -p[2]/MOTION_SCALE]) target = self.controller.pose.relativePose(target) target = target.p t_len = v_len(target) if t_len > 80: ratio = 80/t_len target[0] *= ratio target[1] *= ratio return target def step_model(self): contacts, points, angles, orientations, root_orientation = self.controller.step(self.get_target()) # pairs = [[0,11,3,4], # [0,8,10,2], # [0,13,6,7], # [0,9,12,5], # [0,1]] pairs = [[0,18,11,3,4], [0,14,8,10,2], [0,19,13,6,7], [0,14,9,12,5], [0,14,17,1]] self.lines = [] for pair in pairs: for i in range(len(pair)-1): self.lines.append([points[pair[i]], points[pair[i+1]]]) # print(len(orientations)) for i in range(len(angles)): self.all_angles[i].append(angles[i]) for j in range(len(self.model.joints)): if j == 0: joint = self.model.joints[j] # type: pydart.FreeJoint joint_idx = joint_list.index(joint.name) hip_angles = mm.logSO3(np.dot(root_orientation, orientations[joint_idx])) # hip_angles = mm.logSO3(root_orientation) joint.set_position(np.array([hip_angles[0], hip_angles[1], hip_angles[2], points[0][0], points[0][1], points[0][2]])) continue joint = self.model.joints[j] # type: pydart.BallJoint joint_idx = joint_list.index(joint.name) joint.set_position(angles[joint_idx*3:joint_idx*3+3]) self.ik.clean_constraints() self.ik.add_joint_pos_const('LeftForeArm', np.asarray(points[10])) self.ik.add_joint_pos_const('LeftHand',
np.asarray(points[2])
numpy.asarray
# stdlib from typing import Tuple, Union # third party import numpy as np from sklearn.base import TransformerMixin # Necessary packages import torch from torch import nn EPS = 1e-8 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") def sample_Z(m: int, n: int) -> np.ndarray: """Random sample generator for Z. Args: m: number of rows n: number of columns Returns: np.ndarray: generated random values """ res = np.random.uniform(0.0, 0.01, size=[m, n]) return torch.from_numpy(res).to(DEVICE) def sample_M(m: int, n: int, p: float) -> np.ndarray: """Hint Vector Generation Args: m: number of rows n: number of columns p: hint rate Returns: np.ndarray: generated random values """ unif_prob =
np.random.uniform(0.0, 1.0, size=[m, n])
numpy.random.uniform
from functools import partial import numpy as np import pandas as pd from sklearn.base import clone from sklearn.model_selection import cross_val_score from sklearn.metrics import make_scorer, mean_absolute_error, log_loss, accuracy_score from dask import compute, delayed
np.random.seed(42)
numpy.random.seed
################################################################################### ## Main sampler ## Must provide data input 'data_input.pkl' to initiate the sampler. ## In 'data_input.pkl', one must include ## Y ........................................... censored observations on GEV scale ## cen ........................................................... indicator matrix ## initial.values ........ a dictionary: phi, tau_sqd, prob_below, prob_above, Dist, ## theta_c, X, X_s, R, Design_mat, beta_loc0, ## beta_loc1, Time, beta_scale, beta_shape ## n_updates .................................................... number of updates ## thinning ......................................... number of runs in each update ## experiment_name ## echo_interval ......................... echo process every echo_interval updates ## sigma_m ## prop_Sigma ## true_params ....................... a dictionary: phi, rho, tau_sqd, theta_gpd, ## prob_below, X_s, R ## if __name__ == "__main__": import os from pickle import load from pickle import dump import nonstat_model_noXs.model_sim as utils import nonstat_model_noXs.generic_samplers as sampler import nonstat_model_noXs.priors as priors import numpy as np from scipy.spatial import distance from scipy.stats import norm import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from scipy.linalg import lapack # Check whether the 'mpi4py' is installed test_mpi = os.system("python -c 'from mpi4py import *' &> /dev/null") if test_mpi != 0: import sys sys.exit("mpi4py import is failing, aborting...") # get rank and size from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() ## --------------------------------------------------------------------------- ## Automatically make a directory for the new simulation ## --------------------------------------------------------------------------- run = 1 save_directory = "Simulation_"+str(run) if rank==0: dirs = os.listdir() while save_directory in dirs: run+=1 save_directory = "Simulation_"+str(run) os.mkdir(save_directory) run = comm.bcast(run,root=0) save_directory = "Simulation_"+str(run) ## ------------------------------------------------------- ## General setup ## ------------------------------------------------------- # size=64;rank=0 thinning = 10; echo_interval = 20; n_updates = 50001 # Generate multiple independent random streams random_generator = np.random.RandomState() # Constants to control adaptation of the Metropolis sampler c_0 = 10 c_1 = 0.8 offset = 3 # the iteration offset r_opt_1d = .41 r_opt_2d = .35 eps = 1e-6 # a small number # Hyper parameters for the prior of the mixing distribution parameters and hyper_params_phi = np.array([0.1,0.7]) hyper_params_tau_sqd = np.array([0.1,0.1]) hyper_params_theta_c = np.array([0, 20]) hyper_params_theta_gev = 25 # hyper_params_range = np.array([0.5,1.5]) # in case where roughness is not updated # Load simulated data data_filename = 'data_sim'+str(run)+'.pkl' with open(data_filename, 'rb') as f: Y_all = load(f) cen_all = load(f) cen_above_all = load(f) data_all = load(f) sigma_m = load(f) prop_sigma = load(f) f.close() ## ------------------------------------------------------- ## Get the data for the local fit ## ------------------------------------------------------- local_fit_no = 0 radius = data_all['radius'] # Filename for storing the intermediate results filename = './'+save_directory + '/local_' + str(local_fit_no) + '_progress_' + str(rank) + '.pkl' # Subset the stations within radius of the knot_of_interest knot_of_interest = data_all['Knots'][local_fit_no,:] Dist_from_knot = distance.cdist(knot_of_interest.reshape((-1,2)),data_all['Stations']) subset_indices = (Dist_from_knot[0,:] <= radius) Stations_local = data_all['Stations'][subset_indices,:] # import matplotlib.pyplot as plt # circle = plt.Circle((knot_of_interest[0],knot_of_interest[1]), radius, color='r', fill=False) # ax = plt.gca() # ax.cla() # clear things for fresh plot # ax.set_xlim((0, 10)) # ax.set_ylim((0, 10)) # ax.scatter(data_all['Stations'][:,0], data_all['Stations'][:,1], c='gray') # ax.scatter(Stations_local[:,0], Stations_local[:,1], c='r') # ax.add_patch(circle) # Subset the observations Y = Y_all[subset_indices,:] # cen = cen_all[subset_indices,:] # cen_above = cen_above_all[subset_indices,:] # Bookkeeping n_s = Y.shape[0] n_t = Y.shape[1] if n_t != size: import sys sys.exit("Make sure the number of cpus (N) = number of time replicates (n_t), i.e.\n srun -N python nonstat_sampler.py") n_updates_thinned = np.int(np.ceil(n_updates/thinning)) wh_to_plot_Xs = n_s*np.array([0.25,0.5,0.75]) wh_to_plot_Xs = wh_to_plot_Xs.astype(int) sigma_m['Z_onetime'] = sigma_m['Z_onetime'][:n_s] # plt.scatter(data_all['Stations'][:,0], data_all['Stations'][:,1],c=data_all['phi_vec'], marker='o', alpha=0.5, cmap='jet') # plt.colorbar() # plt.scatter(data_all['Stations'][:,0], data_all['Stations'][:,1],c=data_all['range_vec'], marker='o', alpha=0.5, cmap='jet') # plt.colorbar() ## ------------------------------------------------------- ## Set initial values ## ------------------------------------------------------- phi = data_all['phi_at_knots'][local_fit_no] gamma = data_all['gamma'] tau_sqd = data_all['tau_sqd'] prob_below = data_all['prob_below'] prob_above = data_all['prob_above'] range = data_all['range_at_knots'][local_fit_no] nu = data_all['nu'] # 1. For current values of phi and gamma, obtain grids of survival probs and densities grid = utils.density_interp_grid(phi, gamma, grid_size=800) xp = grid[0]; den_p = grid[1]; surv_p = grid[2] thresh_X = utils.qRW_me_interp(prob_below, xp, surv_p, tau_sqd, phi, gamma) thresh_X_above = utils.qRW_me_interp(prob_above, xp, surv_p, tau_sqd, phi, gamma) # 2. Marginal GEV parameters: per location x time Design_mat = data_all['Design_mat'][subset_indices,:] beta_loc0 = data_all['beta_loc0'] beta_loc1 = data_all['beta_loc1'] Time = data_all['Time'] beta_scale = data_all['beta_scale'] beta_shape = data_all['beta_shape'] loc0 = Design_mat @beta_loc0 loc1 = Design_mat @beta_loc1 Loc = np.tile(loc0, n_t) + np.tile(loc1, n_t)*np.repeat(Time,n_s) Loc = Loc.reshape((n_s,n_t),order='F') scale = Design_mat @beta_scale Scale = np.tile(scale, n_t) Scale = Scale.reshape((n_s,n_t),order='F') # Design_mat1 = np.c_[np.repeat(1,n_s), np.log(Design_mat[:,1])] shape = Design_mat @beta_shape Shape = np.tile(shape, n_t) Shape = Shape.reshape((n_s,n_t),order='F') unifs = utils.pgev(Y, Loc, Scale, Shape) cen = unifs < prob_below cen_above = unifs > prob_above # 3. Eigendecomposition of the correlation matrix n_covariates = len(beta_loc0) theta_c = np.array([range,nu]) Dist = distance.squareform(distance.pdist(Stations_local)) tmp_vec = np.ones(n_s) Cor = utils.corr_fn(Dist, theta_c) # eig_Cor = np.linalg.eigh(Cor) #For symmetric matrices # V = eig_Cor[1] # d = eig_Cor[0] cholesky_inv = lapack.dposv(Cor,tmp_vec) # 4. Process data given initial values # X = data_all['X'][subset_indices,:] # X_s = data_all['X_s'][subset_indices,:] # Z = data_all['Z'][subset_indices,:] X = utils.gev_2_RW_me(Y, xp, surv_p, tau_sqd, phi, gamma, Loc, Scale, Shape) R = data_all['R_at_knots'][local_fit_no,:] Z = np.empty((n_s,n_t)) Z[:] = np.nan for idx in np.arange(n_t): X_s_tmp = X[:,idx]-np.sqrt(tau_sqd)*norm.rvs(size=n_s) lower_limit = R[idx]**phi X_s_tmp[X_s_tmp<lower_limit] = lower_limit + 0.01 Z[:,idx] = norm.ppf(1-1/(X_s_tmp/(R[idx]**phi))) # import matplotlib.pyplot as plt # plt.scatter(Stations_local[:,0], Stations_local[:,1],c=Z[:,rank], marker='o', alpha=0.5, cmap='jet') # plt.colorbar() # plt.title("Z onetime"); v_q=np.repeat(2.4**2,n_s) for idx in np.arange(n_t): tmp = utils.Z_update_onetime(Y[:,idx], X[:,idx], R[idx], Z[:,idx], cen[:,idx], cen_above[:,idx], prob_below, prob_above, tau_sqd, phi, gamma, Loc[:,idx], Scale[:,idx], Shape[:,idx], xp, surv_p, den_p, thresh_X, thresh_X_above, Cor, cholesky_inv, v_q, random_generator) Y_onetime = Y[:,rank] X_onetime = X[:,rank] R_onetime = R[rank] X_s_onetime = (R_onetime**phi)*utils.norm_to_Pareto(Z[:,rank]) Z_onetime = Z[:,rank] # Initial trace objects Z_1t_accept = np.zeros(n_s) R_accept = 0 Z_1t_trace = np.empty((n_s,n_updates_thinned)); Z_1t_trace[:] = np.nan Z_1t_trace[:,0] = Z_onetime R_1t_trace = np.empty(n_updates_thinned); R_1t_trace[:] = np.nan R_1t_trace[0] = R_onetime if rank == 0: print("Number of time replicates = %d"%size) X_s = np.empty((n_s,n_t)) phi_trace = np.empty(n_updates_thinned); phi_trace[:] = np.nan phi_trace[0] = phi tau_sqd_trace = np.empty(n_updates_thinned); tau_sqd_trace[:] = np.nan tau_sqd_trace[0] = tau_sqd theta_c_trace_within_thinning = np.empty((2,thinning)); theta_c_trace_within_thinning[:] = np.nan theta_c_trace = np.empty((2,n_updates_thinned)); theta_c_trace[:] = np.nan theta_c_trace[:,0] = theta_c beta_loc0_trace_within_thinning = np.empty((n_covariates,thinning)); beta_loc0_trace_within_thinning[:] = np.nan beta_loc0_trace = np.empty((n_covariates,n_updates_thinned)); beta_loc0_trace[:] = np.nan beta_loc0_trace[:,0] = beta_loc0 beta_loc1_trace_within_thinning = np.empty((n_covariates,thinning)); beta_loc1_trace_within_thinning[:] = np.nan beta_loc1_trace = np.empty((n_covariates,n_updates_thinned)); beta_loc1_trace[:] = np.nan beta_loc1_trace[:,0] = beta_loc1 beta_scale_trace_within_thinning = np.empty((n_covariates,thinning)); beta_scale_trace_within_thinning[:] = np.nan beta_scale_trace = np.empty((n_covariates,n_updates_thinned)); beta_scale_trace[:] = np.nan beta_scale_trace[:,0] = beta_scale beta_shape_trace_within_thinning = np.empty((n_covariates,thinning)); beta_shape_trace_within_thinning[:] = np.nan beta_shape_trace = np.empty((n_covariates,n_updates_thinned)); beta_shape_trace[:] = np.nan beta_shape_trace[:,0] = beta_shape phi_accept = 0 tau_sqd_accept = 0 theta_c_accept = 0 beta_loc0_accept = 0 beta_loc1_accept = 0 beta_scale_accept = 0 beta_shape_accept = 0 # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # --------------------------- Start Metropolis Updates ------------------------------ # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- for iter in np.arange(1,n_updates): # Update X # print(str(rank)+" "+str(iter)+" Gathered? "+str(np.where(~cen))) X_onetime = utils.X_update(Y_onetime, cen[:,rank], cen_above[:,rank], xp, surv_p, tau_sqd, phi, gamma, Loc[:,rank], Scale[:,rank], Shape[:,rank]) # Update Z tmp = utils.Z_update_onetime(Y_onetime, X_onetime, R_onetime, Z_onetime, cen[:,rank], cen_above[:,rank], prob_below, prob_above, tau_sqd, phi, gamma, Loc[:,rank], Scale[:,rank], Shape[:,rank], xp, surv_p, den_p, thresh_X, thresh_X_above, Cor, cholesky_inv, sigma_m['Z_onetime'], random_generator) Z_1t_accept = Z_1t_accept + tmp # Update R Metr_R = sampler.static_metr(Y_onetime, R_onetime, utils.Rt_update_mixture_me_likelihood, priors.R_prior, gamma, 2, random_generator, np.nan, sigma_m['R_1t'], False, X_onetime, Z_onetime, cen[:,rank], cen_above[:,rank], prob_below, prob_above, Loc[:,rank], Scale[:,rank], Shape[:,rank], tau_sqd, phi, gamma, xp, surv_p, den_p, thresh_X, thresh_X_above) R_accept = R_accept + Metr_R['acc_prob'] R_onetime = Metr_R['trace'][0,1] X_s_onetime = (R_onetime**phi)*utils.norm_to_Pareto(Z_onetime) # *** Gather items *** X_s_recv = comm.gather(X_s_onetime,root=0) X_recv = comm.gather(X_onetime, root=0) Z_recv = comm.gather(Z_onetime, root=0) R_recv = comm.gather(R_onetime, root=0) if rank==0: X_s[:] = np.vstack(X_s_recv).T X[:] = np.vstack(X_recv).T # Check whether X is negative if np.any(X[~cen & ~cen_above]<0): sys.exit("X value abnormalty "+str(phi)+" "+str(tau_sqd)) Z[:] = np.vstack(Z_recv).T R[:] = R_recv index_within = (iter-1)%thinning # print('beta_shape_accept=',beta_shape_accept, ', iter=', iter) # Update phi Metr_phi = sampler.static_metr(Y, phi, utils.phi_update_mixture_me_likelihood, priors.interval_unif, hyper_params_phi, 2, random_generator, np.nan, sigma_m['phi'], False, R, Z, cen, cen_above, prob_below, prob_above, Loc, Scale, Shape, tau_sqd, gamma) phi_accept = phi_accept + Metr_phi['acc_prob'] phi = Metr_phi['trace'][0,1] # Update gamma (TBD) # grid = utils.density_interp_grid(phi, gamma, grid_size=800) xp = grid[0]; den_p = grid[1]; surv_p = grid[2] X_s = (R**phi)*utils.norm_to_Pareto(Z) # Update tau_sqd Metr_tau_sqd = sampler.static_metr(Y, tau_sqd, utils.tau_update_mixture_me_likelihood, priors.invGamma_prior, hyper_params_tau_sqd, 2, random_generator, np.nan, sigma_m['tau_sqd'], False, X_s, cen, cen_above, prob_below, prob_above, Loc, Scale, Shape, phi, gamma, xp, surv_p, den_p) tau_sqd_accept = tau_sqd_accept + Metr_tau_sqd['acc_prob'] tau_sqd = Metr_tau_sqd['trace'][0,1] thresh_X = utils.qRW_me_interp(prob_below, xp, surv_p, tau_sqd, phi, gamma) thresh_X_above = utils.qRW_me_interp(prob_above, xp, surv_p, tau_sqd, phi, gamma) # Update theta_c # Metr_theta_c = sampler.static_metr(Z, theta_c, utils.theta_c_update_mixture_me_likelihood, # priors.interval_unif_multi, hyper_params_theta_c, 2, # random_generator, # prop_sigma['theta_c'], sigma_m['theta_c'], False, # Dist) # theta_c_accept = theta_c_accept + Metr_theta_c['acc_prob'] # theta_c = Metr_theta_c['trace'][:,1] # theta_c_trace_within_thinning[:,index_within] = theta_c Metr_theta_c = sampler.static_metr(Z, theta_c[0], utils.range_update_mixture_me_likelihood, priors.interval_unif, hyper_params_theta_c, 2, random_generator, np.nan, sigma_m['range'], False, theta_c[1],Dist) theta_c_accept = theta_c_accept + Metr_theta_c['acc_prob'] theta_c = np.array([Metr_theta_c['trace'][0,1],theta_c[1]]) theta_c_trace_within_thinning[:,index_within] = theta_c if Metr_theta_c['acc_prob']>0: Cor = utils.corr_fn(Dist, theta_c) # eig_Cor = np.linalg.eigh(Cor) #For symmetric matrices # V = eig_Cor[1] # d = eig_Cor[0] cholesky_inv = lapack.dposv(Cor,tmp_vec) # Update beta_loc0 # Metr_beta_loc0 = sampler.static_metr(Design_mat, beta_loc0, utils.loc0_gev_update_mixture_me_likelihood, # priors.unif_prior, hyper_params_theta_gev, 2, # random_generator, # prop_sigma['beta_loc0'], sigma_m['beta_loc0'], False, # Y, X_s, cen, cen_above, prob_below, prob_above, # tau_sqd, phi, gamma, loc1, Scale, Shape, Time, xp, surv_p, den_p, # thresh_X, thresh_X_above) # beta_loc0_accept = beta_loc0_accept + Metr_beta_loc0['acc_prob'] # beta_loc0 = Metr_beta_loc0['trace'][:,1] # beta_loc0_trace_within_thinning[:,index_within] = beta_loc0 # loc0 = Design_mat @beta_loc0 Metr_beta_loc0 = sampler.static_metr(Design_mat, beta_loc0[0], utils.loc0_interc_gev_update_mixture_me_likelihood, priors.unif_prior_1dim, hyper_params_theta_gev, 2, random_generator, np.nan, sigma_m['beta_loc0'], False, beta_loc0[1], Y, X_s, cen, cen_above, prob_below, prob_above, tau_sqd, phi, gamma, loc1, Scale, Shape, Time, xp, surv_p, den_p, thresh_X, thresh_X_above) beta_loc0_accept = beta_loc0_accept + Metr_beta_loc0['acc_prob'] beta_loc0 = np.array([Metr_beta_loc0['trace'][0,1],beta_loc0[1]]) beta_loc0_trace_within_thinning[:,index_within] = beta_loc0 loc0 = Design_mat @beta_loc0 # Update beta_loc1 # Metr_beta_loc1 = sampler.static_metr(Design_mat, beta_loc1, utils.loc1_gev_update_mixture_me_likelihood, # priors.unif_prior, hyper_params_theta_gev, 2, # random_generator, # prop_sigma['beta_loc1'], sigma_m['beta_loc1'], False, # Y, X_s, cen, cen_above, prob_below, prob_above, # tau_sqd, phi, gamma, loc0, Scale, Shape, Time, xp, surv_p, den_p, # thresh_X, thresh_X_above) # beta_loc1_accept = beta_loc1_accept + Metr_beta_loc1['acc_prob'] # beta_loc1 = Metr_beta_loc1['trace'][:,1] # beta_loc1_trace_within_thinning[:,index_within] = beta_loc1 # loc1 = Design_mat @beta_loc1 Loc =
np.tile(loc0, n_t)
numpy.tile
"""Unit tests for utils functions.""" import numpy as np from tsepy.utils import brainsync, find_central_scan, rotate_data def test_brainsync(): """Tests whether the outputs of tsepy.utils.brainsync have te correct shape and whether the within-matrix correlations of the input and output matrix remain identical.""" x1 = np.random.rand(10, 5, 3) y1, rotations = brainsync(x1) y2, _ = brainsync(x1[:, :, 1:], x1[:, :, 0]) for i in range(x1.shape[2]): assert np.allclose(np.corrcoef(x1[:, :, i]), np.corrcoef(y1[:, :, i])) if i != 0: assert np.allclose(np.corrcoef(x1[:, :, i]), np.corrcoef(y2[:, :, i - 1])) assert rotations.shape == (x1.shape[1], x1.shape[1], x1.shape[2]) def test_find_central_scan(): """Tests whether the output of tsepy.utils.find_central_scan is less than its length.""" x = np.random.rand(10, 10, 3) idx = find_central_scan(x) assert idx < x.shape[2] def test_rotate_data(): """Tests whether the within-matrix correlation before and after rotation with tsepy.utils.rotate_data remain identical""" data = np.random.rand(10, 5) reference =
np.random.rand(10, 5)
numpy.random.rand
import os import librosa import numpy as np from logging import log, info, debug, basicConfig, DEBUG, INFO, error from google.cloud import storage from google.api_core.exceptions import NotFound import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt def plot_spectrum(gen_spectrum, image_name): plt.figure(figsize=(5, 5)) # we then use the 2nd column. plt.subplot(1, 1, 1) plt.title("CNN Voice Transfer Result") plt.imsave(image_name, gen_spectrum[:400, :]) def wav2spect(filename, N_FFT): x, sr = librosa.load(filename) S = librosa.stft(x, N_FFT) p = np.angle(S) S = np.log1p(
np.abs(S)
numpy.abs
# Written by <NAME> # # Based on: # -------------------------------------------------------- # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## # # Based on: # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from collections import defaultdict import cv2 import numpy as np import pycocotools.mask as mask_util from torch.autograd import Variable import torch import ipdb import math from core.config import cfg from utils.timer import Timer import utils.boxes as box_utils import utils.blob as blob_utils import utils.fpn as fpn_utils import utils.image as image_utils import utils.keypoints as keypoint_utils from roi_data.hoi_data import get_hoi_blob_names from roi_data.hoi_data_union import get_hoi_union_blob_names, generate_union_mask, generate_joints_heatmap from roi_data.hoi_data_union import generate_pose_configmap, generate_part_box_from_kp, generate_part_box_from_kp17 from datasets import json_dataset import torch.nn.functional as F import time def im_detect_all(model, im, box_proposals=None, timers=None, entry=None): """Process the outputs of model for testing Args: model: the network module im_data: Pytorch variable. Input batch to the model. im_info: Pytorch variable. Input batch to the model. gt_boxes: Pytorch variable. Input batch to the model. num_boxes: Pytorch variable. Input batch to the model. args: arguments from command line. timer: record the cost of time for different steps The rest of inputs are of type pytorch Variables and either input to or output from the model. """ if timers is None: timers = defaultdict(Timer) timers['im_detect_bbox'].tic() if cfg.TEST.BBOX_AUG.ENABLED: # boxes is in origin img size scores, boxes, im_scale, blob_conv = im_detect_bbox_aug( model, im, box_proposals) else: scores, boxes, im_scale, blob_conv = im_detect_bbox( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals) timers['im_detect_bbox'].toc() im_info = np.array([im.shape[:2]+(im_scale[0],)]) # score and boxes are from the whole image after score thresholding and nms # (they are not separated by class) (numpy.ndarray) # cls_boxes boxes and scores are separated by class and in the format used # for evaluating results timers['misc_bbox'].tic() scores, boxes, cls_boxes = box_results_with_nms_and_limit(scores, boxes) timers['misc_bbox'].toc() if cfg.MODEL.MASK_ON and boxes.shape[0] > 0: timers['im_detect_mask'].tic() if cfg.TEST.MASK_AUG.ENABLED: masks = im_detect_mask_aug(model, im, boxes, im_scale, blob_conv) else: masks = im_detect_mask(model, im_scale, boxes, blob_conv) timers['im_detect_mask'].toc() timers['misc_mask'].tic() cls_segms = segm_results(cls_boxes, masks, boxes, im.shape[0], im.shape[1]) timers['misc_mask'].toc() else: cls_segms = None if cfg.MODEL.KEYPOINTS_ON and boxes.shape[0] > 0: timers['im_detect_keypoints'].tic() if cfg.TEST.KPS_AUG.ENABLED: heatmaps = im_detect_keypoints_aug(model, im, boxes, im_scale, blob_conv) else: heatmaps = im_detect_keypoints(model, im_scale, boxes, blob_conv) timers['im_detect_keypoints'].toc() timers['misc_keypoints'].tic() cls_keyps = keypoint_results(cls_boxes, heatmaps, boxes) timers['misc_keypoints'].toc() else: cls_keyps = None vcoco_heatmaps = None if cfg.MODEL.VCOCO_ON: if cfg.VCOCO.KEYPOINTS_ON: # ipdb.set_trace() vcoco_heatmaps, vcoco_heatmaps_np = im_detect_keypoints_vcoco(model, im_scale[0], cls_boxes[1][:, :4], blob_conv) vcoco_cls_keyps = keypoint_results_vcoco(cls_boxes, vcoco_heatmaps_np) else: vcoco_cls_keyps = None hoi_res = im_detect_hoi_union(model, boxes, scores, cls_boxes[1].shape[0], im_info, blob_conv, entry, vcoco_heatmaps) else: hoi_res = None vcoco_cls_keyps = None return cls_boxes, cls_segms, cls_keyps, hoi_res, vcoco_cls_keyps def im_detect_all_precomp_box(model, im, timers=None, entry=None, mode='val', category_id_to_contiguous_id=None): """Process the outputs of model for testing Args: model: the network module im_data: Pytorch variable. Input batch to the model. im_info: Pytorch variable. Input batch to the model. gt_boxes: Pytorch variable. Input batch to the model. num_boxes: Pytorch variable. Input batch to the model. args: arguments from command line. timer: record the cost of time for different steps The rest of inputs are of type pytorch Variables and either input to or output from the model. """ if timers is None: timers = defaultdict(Timer) blob_conv, im_scale = im_conv_body_only(model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE) im_info = np.array([im.shape[:2] + (im_scale[0],)]) scores, boxes, cates, cls_boxes = im_detect_bbox_precomp_box(entry, category_id_to_contiguous_id) if cfg.MODEL.MASK_ON and boxes.shape[0] > 0: timers['im_detect_mask'].tic() if cfg.TEST.MASK_AUG.ENABLED: masks = im_detect_mask_aug(model, im, boxes, im_scale, blob_conv) else: masks = im_detect_mask(model, im_scale, boxes, blob_conv) timers['im_detect_mask'].toc() timers['misc_mask'].tic() cls_segms = segm_results(cls_boxes, masks, boxes, im.shape[0], im.shape[1]) timers['misc_mask'].toc() else: cls_segms = None if cfg.MODEL.KEYPOINTS_ON and boxes.shape[0] > 0: timers['im_detect_keypoints'].tic() if cfg.TEST.KPS_AUG.ENABLED: heatmaps = im_detect_keypoints_aug(model, im, boxes, im_scale, blob_conv) else: heatmaps = im_detect_keypoints(model, im_scale, boxes, blob_conv) timers['im_detect_keypoints'].toc() timers['misc_keypoints'].tic() cls_keyps = keypoint_results(cls_boxes, heatmaps, boxes) timers['misc_keypoints'].toc() else: cls_keyps = None vcoco_heatmaps = None vcoco_cls_keyps = None loss = None if cfg.MODEL.VCOCO_ON: hoi_res, loss = im_detect_hoi_union(model, boxes, scores, cates, cls_boxes[1].shape[0], im_info, blob_conv, entry, mode, vcoco_heatmaps) else: hoi_res = None vcoco_cls_keyps = None return cls_boxes, cls_segms, cls_keyps, hoi_res, vcoco_cls_keyps, loss def im_conv_body_only(model, im, target_scale, target_max_size): inputs, im_scale = _get_blobs(im, None, target_scale, target_max_size) if cfg.PYTORCH_VERSION_LESS_THAN_040: inputs['data'] = Variable(torch.from_numpy(inputs['data']), volatile=True).cuda() else: inputs['data'] = torch.from_numpy(inputs['data']).cuda() inputs.pop('im_info') blob_conv = model.module.convbody_net(**inputs) return blob_conv, im_scale def im_detect_bbox(model, im, target_scale, target_max_size, boxes=None): """Prepare the bbox for testing""" inputs, im_scale = _get_blobs(im, boxes, target_scale, target_max_size) if cfg.DEDUP_BOXES > 0 and not cfg.MODEL.FASTER_RCNN: v = np.array([1, 1e3, 1e6, 1e9, 1e12]) hashes = np.round(inputs['rois'] * cfg.DEDUP_BOXES).dot(v) _, index, inv_index = np.unique( hashes, return_index=True, return_inverse=True ) inputs['rois'] = inputs['rois'][index, :] boxes = boxes[index, :] # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS and not cfg.MODEL.FASTER_RCNN: _add_multilevel_rois_for_test(inputs, 'rois') if cfg.PYTORCH_VERSION_LESS_THAN_040: inputs['data'] = [Variable(torch.from_numpy(inputs['data']), volatile=True)] inputs['im_info'] = [Variable(torch.from_numpy(inputs['im_info']), volatile=True)] else: inputs['data'] = [torch.from_numpy(inputs['data'])] inputs['im_info'] = [torch.from_numpy(inputs['im_info'])] time1 = time.time() return_dict = model(**inputs) time2 = time.time() print('model_time:', time2-time1) if cfg.MODEL.FASTER_RCNN: rois = return_dict['rois'].data.cpu().numpy() # unscale back to raw image space boxes = rois[:, 1:5] / im_scale # cls prob (activations after softmax) scores = return_dict['cls_score'].data.cpu().numpy().squeeze() # In case there is 1 proposal scores = scores.reshape([-1, scores.shape[-1]]) if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = return_dict['bbox_pred'].data.cpu().numpy().squeeze() # In case there is 1 proposal box_deltas = box_deltas.reshape([-1, box_deltas.shape[-1]]) if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: # Remove predictions for bg class (compat with MSRA code) box_deltas = box_deltas[:, -4:] if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # (legacy) Optionally normalize targets by a precomputed mean and stdev box_deltas = box_deltas.view(-1, 4) * cfg.TRAIN.BBOX_NORMALIZE_STDS \ + cfg.TRAIN.BBOX_NORMALIZE_MEANS pred_boxes = box_utils.bbox_transform(boxes, box_deltas, cfg.MODEL.BBOX_REG_WEIGHTS) pred_boxes = box_utils.clip_tiled_boxes(pred_boxes, im.shape) if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: pred_boxes = np.tile(pred_boxes, (1, scores.shape[1])) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) if cfg.DEDUP_BOXES > 0 and not cfg.MODEL.FASTER_RCNN: # Map scores and predictions back to the original set of boxes scores = scores[inv_index, :] pred_boxes = pred_boxes[inv_index, :] return scores, pred_boxes, im_scale, return_dict['blob_conv'] def im_detect_bbox_precomp_box(entry, category_id_to_contiguous_id): """Prepare the bbox for testing""" # box in origin image pred_boxes = entry['precomp_boxes'] scores = entry['precomp_score'] cates = entry['precomp_cate'].astype(np.int32) contiguous_cate = list() for cls in cates: # ipdb.set_trace() if category_id_to_contiguous_id.get(cls) is None: contiguous_cate.append(80) else: contiguous_cate.append(category_id_to_contiguous_id[cls]) cates = np.array(contiguous_cate, dtype=cates.dtype) num_classes = cfg.MODEL.NUM_CLASSES cls_boxes = [[] for _ in range(num_classes)] box_sc = np.concatenate([pred_boxes, scores[:, None]], 1) unique_cates = np.unique(cates) for c in unique_cates: if category_id_to_contiguous_id.get(c) is not None: inds = np.where(cates == c) cls_boxes[category_id_to_contiguous_id[c]] = box_sc[inds] if len(cls_boxes[1]) == 0: cls_boxes[1] = np.empty((0,5), dtype=np.float32) return scores, pred_boxes, cates, cls_boxes def im_detect_bbox_aug(model, im, box_proposals=None): """Performs bbox detection with test-time augmentations. Function signature is the same as for im_detect_bbox. """ assert not cfg.TEST.BBOX_AUG.SCALE_SIZE_DEP, \ 'Size dependent scaling not implemented' assert not cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION' or \ cfg.TEST.BBOX_AUG.COORD_HEUR == 'UNION', \ 'Coord heuristic must be union whenever score heuristic is union' assert not cfg.TEST.BBOX_AUG.COORD_HEUR == 'UNION' or \ cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION', \ 'Score heuristic must be union whenever coord heuristic is union' assert not cfg.MODEL.FASTER_RCNN or \ cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION', \ 'Union heuristic must be used to combine Faster RCNN predictions' # Collect detections computed under different transformations scores_ts = [] boxes_ts = [] def add_preds_t(scores_t, boxes_t): scores_ts.append(scores_t) boxes_ts.append(boxes_t) # Perform detection on the horizontally flipped image if cfg.TEST.BBOX_AUG.H_FLIP: scores_hf, boxes_hf, _ = im_detect_bbox_hflip( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals=box_proposals ) add_preds_t(scores_hf, boxes_hf) # Compute detections at different scales for scale in cfg.TEST.BBOX_AUG.SCALES: max_size = cfg.TEST.BBOX_AUG.MAX_SIZE scores_scl, boxes_scl = im_detect_bbox_scale( model, im, scale, max_size, box_proposals ) add_preds_t(scores_scl, boxes_scl) if cfg.TEST.BBOX_AUG.SCALE_H_FLIP: scores_scl_hf, boxes_scl_hf = im_detect_bbox_scale( model, im, scale, max_size, box_proposals, hflip=True ) add_preds_t(scores_scl_hf, boxes_scl_hf) # Perform detection at different aspect ratios for aspect_ratio in cfg.TEST.BBOX_AUG.ASPECT_RATIOS: scores_ar, boxes_ar = im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals ) add_preds_t(scores_ar, boxes_ar) if cfg.TEST.BBOX_AUG.ASPECT_RATIO_H_FLIP: scores_ar_hf, boxes_ar_hf = im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals, hflip=True ) add_preds_t(scores_ar_hf, boxes_ar_hf) # Compute detections for the original image (identity transform) last to # ensure that the Caffe2 workspace is populated with blobs corresponding # to the original image on return (postcondition of im_detect_bbox) scores_i, boxes_i, im_scale_i, blob_conv_i = im_detect_bbox( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals ) add_preds_t(scores_i, boxes_i) # Combine the predicted scores if cfg.TEST.BBOX_AUG.SCORE_HEUR == 'ID': scores_c = scores_i elif cfg.TEST.BBOX_AUG.SCORE_HEUR == 'AVG': scores_c = np.mean(scores_ts, axis=0) elif cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION': scores_c = np.vstack(scores_ts) else: raise NotImplementedError( 'Score heur {} not supported'.format(cfg.TEST.BBOX_AUG.SCORE_HEUR) ) # Combine the predicted boxes if cfg.TEST.BBOX_AUG.COORD_HEUR == 'ID': boxes_c = boxes_i elif cfg.TEST.BBOX_AUG.COORD_HEUR == 'AVG': boxes_c = np.mean(boxes_ts, axis=0) elif cfg.TEST.BBOX_AUG.COORD_HEUR == 'UNION': boxes_c = np.vstack(boxes_ts) else: raise NotImplementedError( 'Coord heur {} not supported'.format(cfg.TEST.BBOX_AUG.COORD_HEUR) ) return scores_c, boxes_c, im_scale_i, blob_conv_i def im_detect_bbox_hflip( model, im, target_scale, target_max_size, box_proposals=None): """Performs bbox detection on the horizontally flipped image. Function signature is the same as for im_detect_bbox. """ # Compute predictions on the flipped image im_hf = im[:, ::-1, :] im_width = im.shape[1] if not cfg.MODEL.FASTER_RCNN: box_proposals_hf = box_utils.flip_boxes(box_proposals, im_width) else: box_proposals_hf = None scores_hf, boxes_hf, im_scale, _ = im_detect_bbox( model, im_hf, target_scale, target_max_size, boxes=box_proposals_hf ) # Invert the detections computed on the flipped image boxes_inv = box_utils.flip_boxes(boxes_hf, im_width) return scores_hf, boxes_inv, im_scale def im_detect_bbox_scale( model, im, target_scale, target_max_size, box_proposals=None, hflip=False): """Computes bbox detections at the given scale. Returns predictions in the original image space. """ if hflip: scores_scl, boxes_scl, _ = im_detect_bbox_hflip( model, im, target_scale, target_max_size, box_proposals=box_proposals ) else: scores_scl, boxes_scl, _, _ = im_detect_bbox( model, im, target_scale, target_max_size, boxes=box_proposals ) return scores_scl, boxes_scl def im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals=None, hflip=False): """Computes bbox detections at the given width-relative aspect ratio. Returns predictions in the original image space. """ # Compute predictions on the transformed image im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) if not cfg.MODEL.FASTER_RCNN: box_proposals_ar = box_utils.aspect_ratio(box_proposals, aspect_ratio) else: box_proposals_ar = None if hflip: scores_ar, boxes_ar, _ = im_detect_bbox_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals=box_proposals_ar ) else: scores_ar, boxes_ar, _, _ = im_detect_bbox( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals_ar ) # Invert the detected boxes boxes_inv = box_utils.aspect_ratio(boxes_ar, 1.0 / aspect_ratio) return scores_ar, boxes_inv def im_detect_mask(model, im_scale, boxes, blob_conv): """Infer instance segmentation masks. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scale (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) blob_conv (Variable): base features from the backbone network. Returns: pred_masks (ndarray): R x K x M x M array of class specific soft masks output by the network (must be processed by segm_results to convert into hard masks in the original image coordinate space) """ M = cfg.MRCNN.RESOLUTION if boxes.shape[0] == 0: pred_masks = np.zeros((0, M, M), np.float32) return pred_masks inputs = {'mask_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'mask_rois') pred_masks = model.module.mask_net(blob_conv, inputs) pred_masks = pred_masks.data.cpu().numpy().squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_masks = pred_masks.reshape([-1, 1, M, M]) return pred_masks def im_detect_mask_aug(model, im, boxes, im_scale, blob_conv): """Performs mask detection with test-time augmentations. Arguments: model (DetectionModelHelper): the detection model to use im (ndarray): BGR image to test boxes (ndarray): R x 4 array of bounding boxes im_scale (list): image blob scales as returned by im_detect_bbox blob_conv (Tensor): base features from the backbone network. Returns: masks (ndarray): R x K x M x M array of class specific soft masks """ assert not cfg.TEST.MASK_AUG.SCALE_SIZE_DEP, \ 'Size dependent scaling not implemented' # Collect masks computed under different transformations masks_ts = [] # Compute masks for the original image (identity transform) masks_i = im_detect_mask(model, im_scale, boxes, blob_conv) masks_ts.append(masks_i) # Perform mask detection on the horizontally flipped image if cfg.TEST.MASK_AUG.H_FLIP: masks_hf = im_detect_mask_hflip( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes ) masks_ts.append(masks_hf) # Compute detections at different scales for scale in cfg.TEST.MASK_AUG.SCALES: max_size = cfg.TEST.MASK_AUG.MAX_SIZE masks_scl = im_detect_mask_scale(model, im, scale, max_size, boxes) masks_ts.append(masks_scl) if cfg.TEST.MASK_AUG.SCALE_H_FLIP: masks_scl_hf = im_detect_mask_scale( model, im, scale, max_size, boxes, hflip=True ) masks_ts.append(masks_scl_hf) # Compute masks at different aspect ratios for aspect_ratio in cfg.TEST.MASK_AUG.ASPECT_RATIOS: masks_ar = im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes) masks_ts.append(masks_ar) if cfg.TEST.MASK_AUG.ASPECT_RATIO_H_FLIP: masks_ar_hf = im_detect_mask_aspect_ratio( model, im, aspect_ratio, boxes, hflip=True ) masks_ts.append(masks_ar_hf) # Combine the predicted soft masks if cfg.TEST.MASK_AUG.HEUR == 'SOFT_AVG': masks_c = np.mean(masks_ts, axis=0) elif cfg.TEST.MASK_AUG.HEUR == 'SOFT_MAX': masks_c = np.amax(masks_ts, axis=0) elif cfg.TEST.MASK_AUG.HEUR == 'LOGIT_AVG': def logit(y): return -1.0 * np.log((1.0 - y) / np.maximum(y, 1e-20)) logit_masks = [logit(y) for y in masks_ts] logit_masks = np.mean(logit_masks, axis=0) masks_c = 1.0 / (1.0 + np.exp(-logit_masks)) else: raise NotImplementedError( 'Heuristic {} not supported'.format(cfg.TEST.MASK_AUG.HEUR) ) return masks_c def im_detect_mask_hflip(model, im, target_scale, target_max_size, boxes): """Performs mask detection on the horizontally flipped image. Function signature is the same as for im_detect_mask_aug. """ # Compute the masks for the flipped image im_hf = im[:, ::-1, :] boxes_hf = box_utils.flip_boxes(boxes, im.shape[1]) blob_conv, im_scale = im_conv_body_only(model, im_hf, target_scale, target_max_size) masks_hf = im_detect_mask(model, im_scale, boxes_hf, blob_conv) # Invert the predicted soft masks masks_inv = masks_hf[:, :, :, ::-1] return masks_inv def im_detect_mask_scale( model, im, target_scale, target_max_size, boxes, hflip=False): """Computes masks at the given scale.""" if hflip: masks_scl = im_detect_mask_hflip( model, im, target_scale, target_max_size, boxes ) else: blob_conv, im_scale = im_conv_body_only(model, im, target_scale, target_max_size) masks_scl = im_detect_mask(model, im_scale, boxes, blob_conv) return masks_scl def im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes, hflip=False): """Computes mask detections at the given width-relative aspect ratio.""" # Perform mask detection on the transformed image im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils.aspect_ratio(boxes, aspect_ratio) if hflip: masks_ar = im_detect_mask_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes_ar ) else: blob_conv, im_scale = im_conv_body_only( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE ) masks_ar = im_detect_mask(model, im_scale, boxes_ar, blob_conv) return masks_ar def im_detect_keypoints_vcoco(model, im_scale, human_boxes, blob_conv): """Infer instance keypoint poses. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scale (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_heatmaps (ndarray): R x J x M x M array of keypoint location logits (softmax inputs) for each of the J keypoint types output by the network (must be processed by keypoint_results to convert into point predictions in the original image coordinate space) """ M = cfg.KRCNN.HEATMAP_SIZE if human_boxes.shape[0] == 0: pred_heatmaps = np.zeros((0, cfg.KRCNN.NUM_KEYPOINTS, M, M), np.float32) return None, pred_heatmaps # project boxes to re-sized image size human_boxes = np.hstack((np.zeros((human_boxes.shape[0], 1), dtype=human_boxes.dtype), human_boxes * im_scale)) inputs = {'human_boxes': human_boxes} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'human_boxes') pred_heatmaps = model.module.vcoco_keypoint_net(blob_conv, inputs) np_pred_heatmaps = pred_heatmaps.data.cpu().numpy().squeeze() # In case of 1 if np_pred_heatmaps.ndim == 3: np_pred_heatmaps = np.expand_dims(np_pred_heatmaps, axis=0) return pred_heatmaps, np_pred_heatmaps def keypoint_results_vcoco(cls_boxes, pred_heatmaps): num_classes = cfg.MODEL.NUM_CLASSES cls_keyps = [[] for _ in range(num_classes)] person_idx = keypoint_utils.get_person_class_index() xy_preds = keypoint_utils.heatmaps_to_keypoints(pred_heatmaps, cls_boxes[person_idx]) # NMS OKS if cfg.KRCNN.NMS_OKS: keep = keypoint_utils.nms_oks(xy_preds, cls_boxes[person_idx], 0.3) xy_preds = xy_preds[keep, :, :] # ref_boxes = ref_boxes[keep, :] # pred_heatmaps = pred_heatmaps[keep, :, :, :] cls_boxes[person_idx] = cls_boxes[person_idx][keep, :] kps = [xy_preds[i] for i in range(xy_preds.shape[0])] cls_keyps[person_idx] = kps return cls_keyps def im_detect_keypoints(model, im_scale, boxes, blob_conv): """Infer instance keypoint poses. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scale (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_heatmaps (ndarray): R x J x M x M array of keypoint location logits (softmax inputs) for each of the J keypoint types output by the network (must be processed by keypoint_results to convert into point predictions in the original image coordinate space) """ M = cfg.KRCNN.HEATMAP_SIZE if boxes.shape[0] == 0: pred_heatmaps = np.zeros((0, cfg.KRCNN.NUM_KEYPOINTS, M, M), np.float32) return pred_heatmaps inputs = {'keypoint_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'keypoint_rois') pred_heatmaps = model.module.keypoint_net(blob_conv, inputs) pred_heatmaps = pred_heatmaps.data.cpu().numpy().squeeze() # In case of 1 if pred_heatmaps.ndim == 3: pred_heatmaps = np.expand_dims(pred_heatmaps, axis=0) return pred_heatmaps def im_detect_keypoints_aug(model, im, boxes, im_scale, blob_conv): """Computes keypoint predictions with test-time augmentations. Arguments: model (DetectionModelHelper): the detection model to use im (ndarray): BGR image to test boxes (ndarray): R x 4 array of bounding boxes im_scale (list): image blob scales as returned by im_detect_bbox blob_conv (Tensor): base features from the backbone network. Returns: heatmaps (ndarray): R x J x M x M array of keypoint location logits """ # Collect heatmaps predicted under different transformations heatmaps_ts = [] # Tag predictions computed under downscaling and upscaling transformations ds_ts = [] us_ts = [] def add_heatmaps_t(heatmaps_t, ds_t=False, us_t=False): heatmaps_ts.append(heatmaps_t) ds_ts.append(ds_t) us_ts.append(us_t) # Compute the heatmaps for the original image (identity transform) heatmaps_i = im_detect_keypoints(model, im_scale, boxes, blob_conv) add_heatmaps_t(heatmaps_i) # Perform keypoints detection on the horizontally flipped image if cfg.TEST.KPS_AUG.H_FLIP: heatmaps_hf = im_detect_keypoints_hflip( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes ) add_heatmaps_t(heatmaps_hf) # Compute detections at different scales for scale in cfg.TEST.KPS_AUG.SCALES: ds_scl = scale < cfg.TEST.SCALE us_scl = scale > cfg.TEST.SCALE heatmaps_scl = im_detect_keypoints_scale( model, im, scale, cfg.TEST.KPS_AUG.MAX_SIZE, boxes ) add_heatmaps_t(heatmaps_scl, ds_scl, us_scl) if cfg.TEST.KPS_AUG.SCALE_H_FLIP: heatmaps_scl_hf = im_detect_keypoints_scale( model, im, scale, cfg.TEST.KPS_AUG.MAX_SIZE, boxes, hflip=True ) add_heatmaps_t(heatmaps_scl_hf, ds_scl, us_scl) # Compute keypoints at different aspect ratios for aspect_ratio in cfg.TEST.KPS_AUG.ASPECT_RATIOS: heatmaps_ar = im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes ) add_heatmaps_t(heatmaps_ar) if cfg.TEST.KPS_AUG.ASPECT_RATIO_H_FLIP: heatmaps_ar_hf = im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes, hflip=True ) add_heatmaps_t(heatmaps_ar_hf) # Select the heuristic function for combining the heatmaps if cfg.TEST.KPS_AUG.HEUR == 'HM_AVG': np_f = np.mean elif cfg.TEST.KPS_AUG.HEUR == 'HM_MAX': np_f = np.amax else: raise NotImplementedError( 'Heuristic {} not supported'.format(cfg.TEST.KPS_AUG.HEUR) ) def heur_f(hms_ts): return np_f(hms_ts, axis=0) # Combine the heatmaps if cfg.TEST.KPS_AUG.SCALE_SIZE_DEP: heatmaps_c = combine_heatmaps_size_dep( heatmaps_ts, ds_ts, us_ts, boxes, heur_f ) else: heatmaps_c = heur_f(heatmaps_ts) return heatmaps_c def im_detect_keypoints_hflip(model, im, target_scale, target_max_size, boxes): """Computes keypoint predictions on the horizontally flipped image. Function signature is the same as for im_detect_keypoints_aug. """ # Compute keypoints for the flipped image im_hf = im[:, ::-1, :] boxes_hf = box_utils.flip_boxes(boxes, im.shape[1]) blob_conv, im_scale = im_conv_body_only(model, im_hf, target_scale, target_max_size) heatmaps_hf = im_detect_keypoints(model, im_scale, boxes_hf, blob_conv) # Invert the predicted keypoints heatmaps_inv = keypoint_utils.flip_heatmaps(heatmaps_hf) return heatmaps_inv def im_detect_keypoints_scale( model, im, target_scale, target_max_size, boxes, hflip=False): """Computes keypoint predictions at the given scale.""" if hflip: heatmaps_scl = im_detect_keypoints_hflip( model, im, target_scale, target_max_size, boxes ) else: blob_conv, im_scale = im_conv_body_only(model, im, target_scale, target_max_size) heatmaps_scl = im_detect_keypoints(model, im_scale, boxes, blob_conv) return heatmaps_scl def im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes, hflip=False): """Detects keypoints at the given width-relative aspect ratio.""" # Perform keypoint detectionon the transformed image im_ar = image_utils.aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils.aspect_ratio(boxes, aspect_ratio) if hflip: heatmaps_ar = im_detect_keypoints_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes_ar ) else: blob_conv, im_scale = im_conv_body_only( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE ) heatmaps_ar = im_detect_keypoints(model, im_scale, boxes_ar, blob_conv) return heatmaps_ar def combine_heatmaps_size_dep(hms_ts, ds_ts, us_ts, boxes, heur_f): """Combines heatmaps while taking object sizes into account.""" assert len(hms_ts) == len(ds_ts) and len(ds_ts) == len(us_ts), \ 'All sets of hms must be tagged with downscaling and upscaling flags' # Classify objects into small+medium and large based on their box areas areas = box_utils.boxes_area(boxes) sm_objs = areas < cfg.TEST.KPS_AUG.AREA_TH l_objs = areas >= cfg.TEST.KPS_AUG.AREA_TH # Combine heatmaps computed under different transformations for each object hms_c = np.zeros_like(hms_ts[0]) for i in range(hms_c.shape[0]): hms_to_combine = [] for hms_t, ds_t, us_t in zip(hms_ts, ds_ts, us_ts): # Discard downscaling predictions for small and medium objects if sm_objs[i] and ds_t: continue # Discard upscaling predictions for large objects if l_objs[i] and us_t: continue hms_to_combine.append(hms_t[i]) hms_c[i] = heur_f(hms_to_combine) return hms_c def box_results_with_nms_and_limit(scores, boxes): # NOTE: support single-batch """Returns bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). `boxes` has shape (#detections, 4 * #classes), where each row represents a list of predicted bounding boxes for each of the object classes in the dataset (including the background class). The detections in each row originate from the same object proposal. `scores` has shape (#detection, #classes), where each row represents a list of object detection confidence scores for each of the object classes in the dataset (including the background class). `scores[i, j]`` corresponds to the box at `boxes[i, j * 4:(j + 1) * 4]`. """ num_classes = cfg.MODEL.NUM_CLASSES cls_boxes = [[] for _ in range(num_classes)] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class for j in range(1, num_classes): inds = np.where(scores[:, j] > cfg.TEST.SCORE_THRESH)[0] scores_j = scores[inds, j] boxes_j = boxes[inds, j * 4:(j + 1) * 4] dets_j = np.hstack((boxes_j, scores_j[:, np.newaxis])).astype(np.float32, copy=False) if cfg.TEST.SOFT_NMS.ENABLED: nms_dets, _ = box_utils.soft_nms( dets_j, sigma=cfg.TEST.SOFT_NMS.SIGMA, overlap_thresh=cfg.TEST.NMS, score_thresh=0.05, # score_thresh=0.0001, method=cfg.TEST.SOFT_NMS.METHOD ) else: keep = box_utils.nms(dets_j, cfg.TEST.NMS) nms_dets = dets_j[keep, :] # Refine the post-NMS boxes using bounding-box voting if cfg.TEST.BBOX_VOTE.ENABLED: nms_dets = box_utils.box_voting( nms_dets, dets_j, cfg.TEST.BBOX_VOTE.VOTE_TH, scoring_method=cfg.TEST.BBOX_VOTE.SCORING_METHOD ) cls_boxes[j] = nms_dets # Limit to max_per_image detections **over all classes** if cfg.TEST.DETECTIONS_PER_IM > 0: image_scores = np.hstack( [cls_boxes[j][:, -1] for j in range(1, num_classes)] ) if len(image_scores) > cfg.TEST.DETECTIONS_PER_IM: image_thresh = np.sort(image_scores)[-cfg.TEST.DETECTIONS_PER_IM] for j in range(1, num_classes): keep = np.where(cls_boxes[j][:, -1] >= image_thresh)[0] cls_boxes[j] = cls_boxes[j][keep, :] im_results = np.vstack([cls_boxes[j] for j in range(1, num_classes)]) boxes = im_results[:, :-1] scores = im_results[:, -1] return scores, boxes, cls_boxes def segm_results(cls_boxes, masks, ref_boxes, im_h, im_w): num_classes = cfg.MODEL.NUM_CLASSES cls_segms = [[] for _ in range(num_classes)] mask_ind = 0 # To work around an issue with cv2.resize (it seems to automatically pad # with repeated border values), we manually zero-pad the masks by 1 pixel # prior to resizing back to the original image resolution. This prevents # "top hat" artifacts. We therefore need to expand the reference boxes by an # appropriate factor. M = cfg.MRCNN.RESOLUTION scale = (M + 2.0) / M ref_boxes = box_utils.expand_boxes(ref_boxes, scale) ref_boxes = ref_boxes.astype(np.int32) padded_mask = np.zeros((M + 2, M + 2), dtype=np.float32) # skip j = 0, because it's the background class for j in range(1, num_classes): segms = [] for _ in range(cls_boxes[j].shape[0]): if cfg.MRCNN.CLS_SPECIFIC_MASK: padded_mask[1:-1, 1:-1] = masks[mask_ind, j, :, :] else: padded_mask[1:-1, 1:-1] = masks[mask_ind, 0, :, :] ref_box = ref_boxes[mask_ind, :] w = (ref_box[2] - ref_box[0] + 1) h = (ref_box[3] - ref_box[1] + 1) w = np.maximum(w, 1) h = np.maximum(h, 1) mask = cv2.resize(padded_mask, (w, h)) mask = np.array(mask > cfg.MRCNN.THRESH_BINARIZE, dtype=np.uint8) im_mask = np.zeros((im_h, im_w), dtype=np.uint8) x_0 = max(ref_box[0], 0) x_1 = min(ref_box[2] + 1, im_w) y_0 = max(ref_box[1], 0) y_1 = min(ref_box[3] + 1, im_h) im_mask[y_0:y_1, x_0:x_1] = mask[ (y_0 - ref_box[1]):(y_1 - ref_box[1]), (x_0 - ref_box[0]):(x_1 - ref_box[0])] # Get RLE encoding used by the COCO evaluation API rle = mask_util.encode(np.array(im_mask[:, :, np.newaxis], order='F'))[0] # For dumping to json, need to decode the byte string. # https://github.com/cocodataset/cocoapi/issues/70 rle['counts'] = rle['counts'].decode('ascii') segms.append(rle) mask_ind += 1 cls_segms[j] = segms assert mask_ind == masks.shape[0] return cls_segms def keypoint_results(cls_boxes, pred_heatmaps, ref_boxes): num_classes = cfg.MODEL.NUM_CLASSES cls_keyps = [[] for _ in range(num_classes)] person_idx = keypoint_utils.get_person_class_index() xy_preds = keypoint_utils.heatmaps_to_keypoints(pred_heatmaps, ref_boxes) # NMS OKS if cfg.KRCNN.NMS_OKS: keep = keypoint_utils.nms_oks(xy_preds, ref_boxes, 0.3) xy_preds = xy_preds[keep, :, :] ref_boxes = ref_boxes[keep, :] pred_heatmaps = pred_heatmaps[keep, :, :, :] cls_boxes[person_idx] = cls_boxes[person_idx][keep, :] kps = [xy_preds[i] for i in range(xy_preds.shape[0])] cls_keyps[person_idx] = kps return cls_keyps def _get_rois_blob(im_rois, im_scale): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid with columns [level, x1, y1, x2, y2] """ rois, levels = _project_im_rois(im_rois, im_scale) rois_blob = np.hstack((levels, rois)) return rois_blob.astype(np.float32, copy=False) def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (ndarray): image pyramid levels used by each projected RoI """ rois = im_rois.astype(np.float, copy=False) * scales levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) return rois, levels def _add_multilevel_rois_for_test(blobs, name): """Distributes a set of RoIs across FPN pyramid levels by creating new level specific RoI blobs. Arguments: blobs (dict): dictionary of blobs name (str): a key in 'blobs' identifying the source RoI blob Returns: [by ref] blobs (dict): new keys named by `name + 'fpn' + level` are added to dict each with a value that's an R_level x 5 ndarray of RoIs (see _get_rois_blob for format) """ lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL lvls = fpn_utils.map_rois_to_fpn_levels(blobs[name][:, 1:5], lvl_min, lvl_max) fpn_utils.add_multilevel_roi_blobs( blobs, name, blobs[name], lvls, lvl_min, lvl_max ) def _get_blobs(im, rois, target_scale, target_max_size): """Convert an image and RoIs within that image into network inputs.""" blobs = {} blobs['data'], im_scale, blobs['im_info'] = \ blob_utils.get_image_blob(im, target_scale, target_max_size) if rois is not None: blobs['rois'] = _get_rois_blob(rois, im_scale) return blobs, im_scale # -------------------------- HOI ---------------------------- def im_detect_hoi(model, boxes, scores, human_count, im_info, blob_conv, entry=None, vcoco_heatmaps=None): hoi_blob_in = get_hoi_blob_names(is_training=False) # im_info.shape = (1, 3) h, w, scale im_scale = im_info[0, 2] # project boxes to re-sized image size hoi_blob_in['boxes'] = np.hstack((np.zeros((boxes.shape[0], 1), dtype=boxes.dtype), boxes * im_scale)) hoi_blob_in['scores'] = scores human_index = np.arange(boxes.shape[0])[:human_count] object_index = np.arange(boxes.shape[0])[human_count:] interaction_human_inds, interaction_target_object_inds \ = np.repeat(human_index, object_index.size), np.tile(object_index - human_count, human_index.size) hoi_blob_in['human_index'] = human_index hoi_blob_in['target_object_index'] = object_index hoi_blob_in['interaction_human_inds'] = interaction_human_inds hoi_blob_in['interaction_target_object_inds'] = interaction_target_object_inds # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(hoi_blob_in, 'boxes') # if no human box is detected, not use hoi_head, just return nan if human_index.size > 0: hoi_blob_out = model.module.hoi_net(blob_conv, hoi_blob_in, im_info, vcoco_heatmaps) # ipdb.set_trace() # if entry: # test_hoi_fill_hoi_blob_from_gt(hoi_blob_out, entry, im_scale) hoi_res = hoi_res_gather(hoi_blob_out, im_scale, entry) else: # ToDo: any problem here? hoi_res = dict( agents=np.full((1, 4 + cfg.VCOCO.NUM_ACTION_CLASSES), np.nan), roles=np.full((1, 5 * cfg.VCOCO.NUM_ACTION_CLASSES, cfg.VCOCO.NUM_TARGET_OBJECT_TYPES), np.nan), ) return hoi_res def hoi_res_gather(hoi_blob, im_scale, entry=None): ''' Convert predicted score and location to triplets :param hoi_blob: :param im_scale: :param entry: :return: ''' # ToDo: modify comments num_action_classes = cfg.VCOCO.NUM_ACTION_CLASSES num_target_object_types = cfg.VCOCO.NUM_TARGET_OBJECT_TYPES human_action_score = F.sigmoid(hoi_blob['human_action_score']).cpu().numpy() human_action_bbox_pred = hoi_blob['human_action_bbox_pred'].cpu().numpy() interaction_action_score = F.sigmoid(hoi_blob['interaction_action_score']).cpu().numpy() human_score = hoi_blob['scores'][hoi_blob['human_index']] object_score = hoi_blob['scores'][hoi_blob['target_object_index']] # scale to original image size when testing boxes = hoi_blob['boxes'][:, 1:] / im_scale # For actions don't interact with object, action_score is s_h * s^a_h # For triplets(interact with objects), action_score is s_h * s_o * s^a_h * g^a_h,o # we use mask to choose appropriate score action_mask = np.array(cfg.VCOCO.ACTION_MASK) triplet_action_mask = np.tile(action_mask.transpose((1, 0)), (human_action_score.shape[0], 1, 1)) # For actions that that do not interact with any object (e.g., smile, run), # we rely on s^a_h and the interaction output s^a_h_o is not used, human_action_pair_score = human_score[:, np.newaxis] * human_action_score # in case there is no role-objects if hoi_blob['target_object_index'].size > 0: # transform from (human num, object num, action_num) to # (human_num*action_num*num_target_object_types, object_num) interaction_action_score = \ interaction_action_score.reshape(human_score.size, object_score.size, -1).transpose(0, 2, 1) interaction_action_score = np.repeat(interaction_action_score, num_target_object_types, axis=1 ).reshape(-1, object_score.size) # get target localization term g^a_h,o target_localization_term = target_localization(boxes, hoi_blob['human_index'], hoi_blob['target_object_index'], human_action_bbox_pred) # find the object box that maximizes S^a_h,o # `for each human / action pair we find the object box that maximizes S_h_o^a` object_action_score = object_score * interaction_action_score * target_localization_term choosed_object_inds = np.argmax(object_action_score, axis=-1) # choose corresponding target_localization_term target_localization_term = target_localization_term[np.arange(choosed_object_inds.size), choosed_object_inds] # ToDo: choose top-50 # triplet score S^a_h,o triplet_action_score = \ np.repeat(human_score, num_action_classes * num_target_object_types) * \ object_score[choosed_object_inds] * \ np.repeat(human_action_score, num_target_object_types, axis=1).ravel() * \ target_localization_term # transform to (human_num, action_num, num_target_object_types) triplet_action_score = triplet_action_score.reshape(human_action_score.shape[0], num_action_classes, num_target_object_types) # ToDo: thresh # triplet_action_score[triplet_action_mask <= cfg.TEST.SCORE_THRESH] = np.nan if entry: # assert triplet_action_score.shape == entry['gt_role_id'][hoi_blob['human_index']].shape for i in range(len(triplet_action_score.shape)): pass # assert np.all(np.where(triplet_action_score > 0.9)[i] == # np.where(entry['gt_role_id'][hoi_blob['human_index']] > -1)[i]) # choose appropriate score # ToDo: any problem here? # As not every action that defined interacts with objects will have # corresponding objects in one image, and triplet_action_score always # have a object box, should I set a thresh or some method to choose # score between human_action_pair_score and triplet score??? # OR wrong result will be excluded when calculate AP?? # action_score = np.zeros(human_action_score.shape) # action_score[human_action_mask == 0] = human_action_pair_score[human_action_mask == 0] # action_score[human_action_mask == 1] = np.amax(triplet_action_score, axis=-1)[human_action_mask == 1] # set triplet action score don't interact with object to zero # triplet_action_score[triplet_action_mask == 0] = np.nan triplet_action_score[triplet_action_mask == 0] = -1 top_k_value = triplet_action_score.flatten()[ np.argpartition(triplet_action_score, -cfg.VCOCO.KEEP_TOP_NUM, axis=None)[-cfg.VCOCO.KEEP_TOP_NUM]] triplet_action_score[triplet_action_score <= top_k_value] = np.nan # get corresponding box of role-objects choosed_object_inds = choosed_object_inds.reshape(human_action_score.shape[0], num_action_classes, num_target_object_types) choosed_objects = boxes[hoi_blob['target_object_index']][choosed_object_inds] else: # if there is no object predicted, triplet action score won't used triplet_action_score = np.full((1, num_action_classes, num_target_object_types), np.nan) choosed_objects =
np.zeros((1, num_action_classes, num_target_object_types, 4))
numpy.zeros
""" @Project : MachineLearningNoteBooks @Module : ml_model.py @Author : HjwGivenLyy [<EMAIL>] @Created : 1/17/19 1:43 PM @Desc : LSTM algorithm """ import time import typing from math import sqrt import matplotlib.pyplot as plt import numpy as np import pandas as pd from keras.layers import Dense, LSTM from keras.models import Sequential from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler from base import FILE_PATH from base import evaluation_criteria_model, split_train_test_data DATA_PATH = FILE_PATH + "data.csv" np.random.seed(5) def load_data(): """get date from file library""" data = pd.read_csv(DATA_PATH) rtn = data.values.astype('float32') return rtn def get_key_lst_by_value(aim_value, data_dct: dict) -> list: """根据字典value值获取key值""" key_lst = [] for key, value in data_dct.items(): if value == aim_value: key_lst.append(key) return key_lst def load_data_feature_lstm(): """get date from file library""" data = pd.read_csv(FILE_PATH) data.set_index(["year_month"], inplace=True) data.index.name = 'year_month' rtn = data.values.astype('float32') return rtn def deal_data(data: np.array, look_back: int = 1) -> typing.Tuple[np.array, np.array]: """convert an array of values into a data set matrix""" data_x, data_y = [], [] for i in range(len(data) - look_back): data_x.append(data[i:(i + look_back), 0]) data_y.append(data[i + look_back, 0]) return np.array(data_x),
np.array(data_y)
numpy.array
import numpy as np import utils.gen_cutouts as gc from sklearn import metrics import pandas as pd import ipdb import matplotlib from matplotlib import pyplot as plt matplotlib.rcParams['mathtext.fontset'] = 'stixsans' matplotlib.rcParams['font.family'] = 'STIXGeneral' MEAN_TEMP = 2.726 * (10**6) DEFAULT_FONT = 24 import os from global_settings import DATA_PATH, FULL_DATA_PATH, FULL_DATA_LABEL_PATH, CNN_MODEL_OUTPUT_DIR, CACHE_FULLDF, CACHE_MAPPED_HALOS, CACHE_FULLDF_DIST2EDGE_CAL import os def prepare_data_class(dir_test, num_frequency=3, get_all_components=False, label_fname="1025_hashalo_freq%03i.npy" % 148, balanced=False, suffix=""): """ read data from dir_test, and prepare data with different noise level (components) """ freqs=[90,148,219] def _load_help(name_format): paths = [os.path.join(dir_test, name_format%freq) for freq in freqs] ret = [np.load(p) for p in paths] #print(paths) return ret # set file names for data #y_data = np.load(dir_test + "1025_hashalo_freq%03i.npy"%148) # y data (labels) y_data = np.load(os.path.join(dir_test, label_fname)) y_data[y_data > 1] = 1 y_data = y_data.astype(float) nsamples = len(y_data) #load data into dictionary x_data_all = {} # load data k2uk = 1.0e6 Tcmb = 2.726 #load noise (for SPT-3G 1500 sq deg patch, it's [2.8,2.6,6.6]uK-arcmin) noises = [np.load(os.path.join(dir_test, "noise_1uK-arcmin{}{}.npy".format(s, suffix))) for s in ["_90","_150", "_220"]] noises = [noises[0]*2.8, noises[1]*2.6, noises[2]*6.6] #samples has CMB+TSZ try: com = ['samples','ksz','ir_pts','rad_pts','dust'] x_data_all['base'] = _load_help("1025_samples_freq%03i{}.npy".format(suffix)) ksz_comp = _load_help("1025_ksz_freq%03i{}.npy".format(suffix)) x_data_all['ksz'] = [x_data_all['base'][i] + ksz_comp[i] for i in range(3)] ir_comp = _load_help("1025_ir_pts_freq%03i{}.npy".format(suffix)) x_data_all['ir'] = [x_data_all['ksz'][i] + ir_comp[i] for i in range(3)] rad_comp = _load_help("1025_rad_pts_freq%03i{}.npy".format(suffix)) x_data_all['rad'] = [x_data_all['ir'][i] + rad_comp[i] for i in range(3)] dust_comp = _load_help("1025_dust_freq%03i{}.npy".format(suffix)) x_data_all['dust'] = [x_data_all['rad'][i] + dust_comp[i] for i in range(3)] except Exception as err: print("error: ", err) print("reading only the composite") x_data_all['dust'] = _load_help("1025_skymap_freq%03i{}.npy".format(suffix)) #return x_data_all['dust'], y_data x_data = {} for com1 in x_data_all.keys(): # add noise x_data[com1] = np.empty((nsamples,num_frequency,10,10),dtype=np.float64) if num_frequency == 3: for i in range(3): x_data[com1][:,i,:,:] = np.squeeze(x_data_all[com1][i]*k2uk*Tcmb) + noises[i] else: x_data[com1][:,0,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,0,:,:] += np.squeeze(x_data_all[com1][1]*k2uk*Tcmb) + noises[1] if num_frequency > 1: x_data[com1][:,1,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,1,:,:] += np.squeeze(x_data_all[com1][0]*k2uk*Tcmb) + noises[0] if balanced: n_pos = int(y_data.sum()) idx = np.arange(nsamples) idx = np.concatenate([idx[y_data==0.0][:n_pos], idx[y_data==1.0]]) x_data = {k: x_data[k][idx] for k in x_data.keys()} return x_data if get_all_components else x_data['dust'], y_data[idx], idx return x_data if get_all_components else x_data['dust'], y_data def prepare_data_class2(dir_test, num_frequency=3, component="skymap", label_fname="1025_hashalo_freq%03i.npy" % 148, balanced=False, use_noise=True, get_test_idx=False, suffix=""): """ read data from dir_test, and prepare data with different noise level (components) """ freqs=[90,148,219] def _load_help(name_format): paths = [os.path.join(dir_test, name_format%freq) for freq in freqs] ret = [np.load(p) for p in paths] #print(paths) return ret # set file names for data y_data = np.load(os.path.join(dir_test, label_fname)) y_data[y_data > 1] = 1 y_data = y_data.astype(float) nsamples = len(y_data) #load data into dictionary x_data_all = {} # load data k2uk = 1.0e6 Tcmb = 2.726 #load noise (for SPT-3G 1500 sq deg patch, it's [2.8,2.6,6.6]uK-arcmin) if use_noise: noises = [np.load(os.path.join(dir_test, "noise_1uK-arcmin{}{}.npy".format(s, suffix))) for s in ["_90","_150", "_220"]] noises = [noises[0]*2.8, noises[1]*2.6, noises[2]*6.6] else: noises = [0., 0., 0.] #samples has CMB+TSZ x_data_all[component] = _load_help("1025_{}_freq%03i{}.npy".format(component, suffix)) x_data = {} for com1 in x_data_all.keys(): # add noise x_data[com1] = np.empty((nsamples,num_frequency,10,10),dtype=np.float64) if num_frequency == 3: for i in range(3): x_data[com1][:,i,:,:] = np.squeeze(x_data_all[com1][i]*k2uk*Tcmb) + noises[i] else: x_data[com1][:,0,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,0,:,:] += np.squeeze(x_data_all[com1][1]*k2uk*Tcmb) + noises[1] if num_frequency > 1: x_data[com1][:,1,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,1,:,:] += np.squeeze(x_data_all[com1][0]*k2uk*Tcmb) + noises[0] splits = np.asarray([0.8, 0.2]) splits = np.round(splits / splits.sum() * nsamples).astype(int).cumsum() split_idx = np.split(np.arange(nsamples),splits[:-1]) x_data, x_test = {k: x_data[k][split_idx[0]] for k in x_data.keys()}, {k: x_data[k][split_idx[-1]] for k in x_data.keys()} y_data, y_test = y_data[split_idx[0]], y_data[split_idx[-1]] nsamples = len(y_data) if balanced: n_pos = int(y_data.sum()) idx = np.arange(nsamples) idx = np.concatenate([idx[y_data==0.0][:n_pos], idx[y_data==1.0]]) x_data = {k: x_data[k][idx] for k in x_data.keys()} if get_test_idx: return x_data[component], y_data[idx], x_test[component], y_test, idx, split_idx[-1] return x_data[component], y_data[idx], x_test[component], y_test, idx if get_test_idx: return x_data[component], y_data, x_test[component], y_test, split_idx[-1] return x_data[component], y_data, x_test[component], y_test class DataHolder: def __init__(self, data, label, idx): self.data = data self.label = label self.idx = idx def get(self, which, ratio=None, incl_idx=False): curr_idx = self.idx[which] y_data = self.label[curr_idx] if ratio is not None: n_pos = int(y_data.sum()) idx = np.arange(len(y_data)) idx = np.concatenate([idx[y_data == 0.0][:int(ratio * n_pos)], idx[y_data == 1.0]]) curr_idx = curr_idx[idx] if incl_idx: return self.data[curr_idx], self.label[curr_idx], curr_idx return self.data[curr_idx], self.label[curr_idx] class DataGetter: WO_DUST_MAPPING = ("dust", ['samples', 'ksz', 'ir_pts', 'rad_pts']) def __init__(self, dir_test, overlap=False): self.dir_test = dir_test self.overlap = overlap self.halocounter = gc.HalosCounter(overlap=overlap) df = self.halocounter.get_complete_df() if overlap: df = df.reset_index().rename(columns={"index": "cutout_id"}) test_idx = df[(df['cutout_ra'] >= 0.5 * 90) & (df['cutout_dec'] > 0.5 * 90)].index train_idx = df[~df.index.isin(test_idx)].index n_samples = len(train_idx) splits = np.asarray([0.65, 0.1]) splits = np.round(splits / splits.sum() * n_samples).astype(int).cumsum() #print(splits) #print(train_idx, len(train_idx)) split_idx = np.split(train_idx, splits[:-1]) split_idx = [split_idx[0], split_idx[1], test_idx] #print(len(split_idx[0]), len(split_idx[1]), len(split_idx[2])) #print(split_idx[0], split_idx[1], split_idx[2]) else: n_samples = df.shape[0] splits = np.asarray([0.7, 0.1, 0.2]) # (train ratio, valid ratio, test ratio) splits = np.round(splits / splits.sum() * n_samples).astype(int).cumsum() split_idx = np.split(np.arange(n_samples), splits[:-1]) #print(list(map(len, split_idx)), df.shape) self.split_idx = {"train":split_idx[0], 'valid':split_idx[1], 'test':split_idx[2]} pass def get_labels(self, thres=5e13, which='full'): if isinstance(thres, float) or isinstance(thres, int): thres = ("%0.0e"%(thres)).replace("+", "") label_fname = {"5e13": "m5e13_z0.25_y.npy", "2e14":"m2e14_z0.5_y.npy"}[thres] y_data = np.load(os.path.join(self.dir_test, label_fname)) y_data[y_data > 1] = 1 y_data = y_data.astype(float) if which == 'full': return y_data return y_data[self.split_idx[which]] def get_data(self, component, thres=5e13, use_noise=False, num_frequency=3): suffix = "_overlap" if self.overlap else "" freqs = [90, 148, 219] def _load_help(name_format): paths = [os.path.join(self.dir_test, name_format % freq) for freq in freqs] return [np.load(p) for p in paths] y_data = self.get_labels(thres, which='full') nsamples = len(y_data) x_data_all = {} # load data k2uk = 1.0e6 Tcmb = 2.726 # load noise (for SPT-3G 1500 sq deg patch, it's [2.8,2.6,6.6]uK-arcmin) if use_noise: noises = [np.load(os.path.join(self.dir_test, "noise_1uK-arcmin{}{}.npy".format(s, suffix))) for s in ["_90", "_150", "_220"]] noises = [noises[0] * 2.8, noises[1] * 2.6, noises[2] * 6.6] else: noises = [0., 0., 0.] # samples has CMB+TSZ if isinstance(component, str): x_data_all[component] = _load_help("1025_{}_freq%03i{}.npy".format(component, suffix)) elif isinstance(component,tuple): component, lc = component x_data_all[component] = _load_help("1025_{}_freq%03i{}.npy".format(lc[0], suffix)) for cc in lc[1:]: tx = _load_help("1025_{}_freq%03i{}.npy".format(cc, suffix)) assert len(tx) == len(x_data_all[component]) x_data_all[component] = [x_data_all[component][i] + tx[i] for i in range(len(tx))] x_data = {} for com1 in x_data_all.keys(): # add noise x_data[com1] = np.empty((nsamples, num_frequency, 10, 10), dtype=np.float64) if num_frequency == 3: for i in range(3): x_data[com1][:, i, :, :] = np.squeeze(x_data_all[com1][i] * k2uk * Tcmb) + noises[i] else: x_data[com1][:, 0, :, :] = -np.squeeze(x_data_all[com1][2] * k2uk * Tcmb) - noises[2] x_data[com1][:, 0, :, :] += np.squeeze(x_data_all[com1][1] * k2uk * Tcmb) + noises[1] if num_frequency > 1: x_data[com1][:, 1, :, :] = -np.squeeze(x_data_all[com1][2] * k2uk * Tcmb) - noises[2] x_data[com1][:, 1, :, :] += np.squeeze(x_data_all[com1][0] * k2uk * Tcmb) + noises[0] return DataHolder(x_data[component], y_data, self.split_idx) def get_full_df(self): df = self.halocounter.get_complete_df().reset_index().rename(columns={"index":"cutout_id"}) for k, idx in self.split_idx.items(): df.loc[idx, "which_set"] = k return df class IndexMapper: #map cutout_id to the index location def __init__(self, overlap=False): self.overlap = overlap o = DataGetter(overlap) self.split_idx = o.split_idx self.full_idx = gc.HalosCounter(overlap=overlap).get_complete_df().index self.split_idx = {"train":self.full_idx[self.split_idx['train']], "valid":self.full_idx[self.split_idx['valid']], "test":self.full_idx[self.split_idx['test']], "full":self.full_idx} self.reverse_idx = {'train':{}, 'valid':{}, 'test':{}, 'full':{}} for k in self.split_idx.keys(): idx = self.split_idx[k] for i, d in enumerate(idx): self.reverse_idx[k][d] = i def get(self, i, which='test'): return self.reverse_idx[which][i] def eval(models, get_test_func, model_weight_paths=None, pred_only=False): y_prob_avg = None y_probs = [] x_test, y_test = get_test_func() num_nets = len(models) for i in range(num_nets): model = models[i] if model_weight_paths is not None: model.load_weights(model_weight_paths[i]) y_prob = model.predict(x_test) y_probs.append(y_prob.squeeze()) y_prob_avg = y_prob if y_prob_avg is None else y_prob + y_prob_avg y_probs = np.stack(y_probs, 0) y_prob_avg /= float(num_nets) y_pred = (y_prob_avg > 0.5).astype('int32').squeeze() # binary classification if pred_only: return y_prob_avg return summary_results_class(y_probs, y_test), y_pred, y_prob_avg, y_test, x_test, models def summary_results_class(y_probs, y_test, threshold=0.5, log_roc=False, show_f1=True): """ y_probs: a list of independent predictions y_test: true label threshold: predict the image to be positive when the prediction > threshold """ # measure confusion matrix if show_f1: threshold, maxf1 = get_F1(y_probs.mean(0),y_test) threshold = threshold - 1e-7 cm = pd.DataFrame(0, index=['pred0','pred1'], columns=['actual0','actual1']) cm_std = pd.DataFrame(0, index=['pred0', 'pred1'], columns=['actual0', 'actual1']) #memorizing the number of samples in each case (true positive, false positive, etc.) tp_rate, tn_rate = np.zeros(len(y_probs)), np.zeros(len(y_probs)) for actual_label in range(2): for pred_label in range(2): cnt = np.zeros(len(y_probs)) for i in range(len(y_probs)): cnt[i] = np.sum(np.logical_and(y_test == actual_label, (y_probs[i] > threshold) == pred_label)) cm.loc["pred%d"%pred_label,"actual%d"%actual_label] = cnt.mean() cm_std.loc["pred%d" % pred_label, "actual%d" % actual_label] = cnt.std() print("Confusion matrix (cnts)",cm) print("Confusion matrix (stdev of cnts)", cm_std) #Measuring the true positive and negative rates, #since the false positive/negative rates are always 1 minus these, #they are not printed and have the same standard deviation for i in range(len(y_probs)): pred_i = y_probs[i] > threshold tp_rate[i] = np.sum(np.logical_and(y_test==1, pred_i==1)) / np.sum(pred_i==1) tn_rate[i] = np.sum(np.logical_and(y_test==0, pred_i==0)) / np.sum(pred_i == 0) print("True Positive (rate): {0:0.4f} ({1:0.4f})".format(tp_rate.mean(), tp_rate.std())) print("True Negative (rate): {0:0.4f} ({1:0.4f})".format(tn_rate.mean(), tn_rate.std())) def vertical_averaging_help(xs, ys, xlen=101): """ Interpolate the ROC curves to the same grid on x-axis """ numnets = len(xs) xvals = np.linspace(0,1,xlen) yinterp = np.zeros((len(ys),len(xvals))) for i in range(numnets): yinterp[i,:] = np.interp(xvals, xs[i], ys[i]) return xvals, yinterp fprs, tprs = [], [] for i in range(len(y_probs)): fpr, tpr, _ = metrics.roc_curve(y_test, y_probs[i], pos_label=1) fprs.append(fpr) tprs.append(tpr) new_fprs, new_tprs = vertical_averaging_help(fprs, tprs) # measure Area Under Curve (AUC) y_prob_mean = y_probs.mean(0) auc = metrics.roc_auc_score(y_test, y_prob_mean) try: auc = metrics.roc_auc_score(y_test, y_prob_mean) print() print("AUC:", auc) except Exception as err: print(err) auc = np.nan #Take the percentiles for of the ROC curves at each point new_tpr_mean, new_tpr_5, new_tpr_95 = new_tprs.mean(0), np.percentile(new_tprs, 95, 0), np.percentile(new_tprs, 5, 0) # plot ROC curve plt.figure(figsize=[12,8]) lw = 2 plt.plot(new_fprs, new_tpr_mean, color='darkorange', lw=lw, label='ROC curve (area = %0.4f)' % metrics.auc(new_fprs, new_tpr_mean)) if len(y_probs) > 1: plt.plot(new_fprs, new_tpr_95, color='yellow', lw=lw, label='ROC curve 5%s (area = %0.4f)' % ("%", metrics.auc(new_fprs, new_tpr_95))) plt.plot(new_fprs, new_tpr_5, color='yellow', lw=lw, label='ROC curve 95%s (area = %0.4f)' % ("%", metrics.auc(new_fprs, new_tpr_5))) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate', fontsize=16) plt.ylabel('True Positive Rate', fontsize=16) plt.title('Receiver operating characteristic') plt.legend(loc="lower right", fontsize=16) plt.grid() plt.show() #If log flag is set, plot also the log of the ROC curves within some reasonable range if log_roc: # plot ROC curve plt.figure(figsize=[12,8]) lw = 2 plt.plot(np.log(new_fprs), np.log(new_tpr_mean), color='darkorange', lw=lw, label='ROC curve (area = %0.4f)' % metrics.auc(new_fprs, new_tpr_mean)) if len(y_probs) > 1: plt.plot(np.log(new_fprs), np.log(new_tpr_95), color='yellow', lw=lw, label='ROC curve 5%s (area = %0.4f)' % ("%", metrics.auc(new_fprs, new_tpr_95))) plt.plot(np.log(new_fprs), np.log(new_tpr_5), color='yellow', lw=lw, label='ROC curve 95%s (area = %0.4f)' % ("%", metrics.auc(new_fprs, new_tpr_5))) #plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([-5, -3]) plt.ylim([-1, 0.2]) plt.xlabel('Log False Positive Rate', fontsize=16) plt.ylabel('Log True Positive Rate', fontsize=16) plt.title('Receiver operating characteristic') plt.legend(loc="lower right", fontsize=16) plt.grid() plt.show() return (auc,maxf1) if show_f1 else auc, (tp_rate.mean(),tn_rate.mean()), new_fprs, new_tprs #=======================================================Prediction criteria here import numpy as np import pickle import pandas as pd from scipy.optimize import minimize def _get_Fbeta(y, yhat, beta=1., debug=False, get_raw=False): TP = ((y == 1) & (yhat == 1)).sum() FP = ((y == 0) & (yhat == 1)).sum() TN = ((y == 0) & (yhat == 0)).sum() FN = ((y == 1) & (yhat == 0)).sum() if debug: print("TP: {}, FP:{}, TN:{}, FN:{}".format(TP, FP, TN, FN)) if FP+TP == 0 or TP + FN==0 or TP == 0: return -1. precision = (TP) / (FP + TP).astype(float) recall = (TP) / (TP + FN).astype(float) if debug: print("TP={}; FP={}; TN={}; FN={}; precision={};recall={}".format(((y == 1) & (yhat == 1)).sum(), ((y == 0) & (yhat == 1)).sum(), ((y == 0) & (yhat == 0)).sum(), ((y == 1) & (yhat == 0)).sum(), precision, recall)) if get_raw: return precision, recall, (1 + beta ** 2) * (precision * recall) / (beta * precision + recall) return (1 + beta ** 2) * (precision * recall) / (beta * precision + recall) def get_F1(y_pred, y, xlim=None, method='cnn', mass_thresh='5e13', plot=True, save_path=None, xlabel=None, get_raw=False, font=DEFAULT_FONT): plt.rcParams.update({'font.size': font}) if xlim is None: xlim = (0, 0.997) x = np.linspace(xlim[0], xlim[1]) elif isinstance(xlim, tuple): x = np.linspace(xlim[0], xlim[1]) else: x = xlim Fscore = lambda x: _get_Fbeta(y, (y_pred > x).astype(int)) y = np.asarray([Fscore(xx) for xx in x]).clip(0.) if plot: f = plt.figure(figsize=(8, 5)) plt.plot(x, y) plt.xlim(x[0], x[-1]) if xlabel: plt.xlabel(xlabel) else: plt.xlabel('%s Threshold' % ("CNN Prob" if method == 'cnn' else "MF S/N")) plt.ylabel('F1 Score', fontsize=font) if save_path is not None: plt.savefig(save_path, dpi=500, bbox_inches='tight') plt.show(block=True) if get_raw: return x, y return x[np.argmax(y)], np.max(y) def stack_F1(xmf, ymf, xcnn, ycnn, save_path=None, font=DEFAULT_FONT, title="", hist={}, nxbins=20): lns = [] fig = plt.figure(figsize=(8,5)) ax1 = fig.add_subplot(111) ax2 = ax1.twiny() plt.rcParams.update({'font.size': font}) lns.extend(ax1.plot(xmf, ymf, label='MF', color='purple')) ax1.set_xlabel("MF S/N Ratio") ax1.set_ylabel("F1 Score") lns.extend(ax2.plot(xcnn, ycnn, label='CNN', color='black')) ax2.set_xlabel("CNN Prob") import matplotlib.patches as mpatches if 'MF' in hist: assert 'CNN' in hist ax12 = ax1.twinx() bins = np.linspace(*ax1.get_xlim(), num=nxbins) #ax12.set_ylim(0, 100000) ax12.hist(hist['MF'][~pd.isnull(hist['MF'])], alpha=0.3, bins=bins, color='purple', #weights=np.ones(len(hist['MF']))/len(hist['MF']) ) lns.append(mpatches.Patch(color='purple', label='MF Score Dist.', alpha=0.3)) ax12.set_yscale('log') ax22 = ax2.twinx() bins = np.linspace(*ax2.get_xlim(), num=nxbins) #ax22.set_ylim(0, 100000) ax22.hist(hist['CNN'], alpha=0.3, bins=bins, color='black', #weights=np.ones(len(hist['CNN']))/len(hist['CNN']) ) lns.append(mpatches.Patch(color='black', label='CNN Score Dist.', alpha=0.3)) ax22.set_yscale('log') if ax12.get_ylim()[1] > ax22.get_ylim()[1]: ax22.set_ylim(ax12.get_ylim()) else: ax12.set_ylim(ax22.get_ylim()) #ylim1 = ax12.get_ylim() #ylim2 = ax22.get_ylim() #ylim = (min(ylim1[0], ylim2[0]), max(ylim1[1], ylim2[1])) #print(ylim) #for _temp in [ax12, ax22]: #_temp.set_ylim(ylim) #_temp.set_yscale('log') ax12.set_ylabel("Counts", fontsize=font) #ax12.set_yscale('log') labs = [l.get_label() for l in lns] plt.title(title) plt.legend(lns, labs, loc='lower center', prop={"size":font-8}) if save_path is not None: plt.savefig(save_path, dpi=500, bbox_inches="tight") return def get_F1_CNN_and_MF(vdf, col_cnn='score_wdust (trained>%s)', col_mf ='mf_peaksig', col_label='Truth(>%s)', mass_thresh='5e13', method='and', save_path=None, font=DEFAULT_FONT): plt.rcParams.update({'font.size': font}) import itertools if mass_thresh == '5e13': cnn_range = (0, 0.997) mf_range = (3, 15) else: #cnn_range = (0.4, 0.8) #mf_range = (3, 15) cnn_range = (0.2, 0.9) mf_range = (3, 25) cnn_range = np.linspace(cnn_range[0], cnn_range[1]) mf_range = np.linspace(mf_range[0], mf_range[1]) #criteria = itertools.product(cnn_range, mf_range) criteria = [(c,m) for c in cnn_range for m in mf_range] if method == 'or': Fscore = lambda cc, mc: _get_Fbeta(vdf[col_label], ((vdf[col_cnn] > cc) | (vdf[col_mf] > mc)).astype(int)) elif method == 'and': Fscore = lambda cc, mc: _get_Fbeta(vdf[col_label], ((vdf[col_cnn] > cc) & (vdf[col_mf] > mc)).astype(int)) elif method == 'rankproduct': rnk_cnn = vdf[col_cnn].rank() / len(vdf) rnk_mf = vdf[col_mf].rank() / float(vdf[col_mf].count()) return get_F1(rnk_cnn * rnk_mf, vdf[col_label], xlim=(0.7, .985), xlabel='rank product', save_path=save_path, font=font) cnn_x = np.asarray([c[0] for c in criteria]) mf_y = np.asarray([c[1] for c in criteria]) vals = np.asarray([Fscore(cc,mc) for cc,mc in criteria]) cm = plt.cm.get_cmap('YlGn') sc = plt.scatter(cnn_x, mf_y, c=vals, cmap=cm) plt.scatter(*criteria[np.argmax(vals)], s=100, c='black', marker='x', linewidth=3) cbar = plt.colorbar(sc) cbar.set_label("F1 Score", rotation=270, labelpad=20) plt.xlabel("CNN Threshold") plt.ylabel("MF Threshold") if save_path is not None: plt.savefig(save_path, dpi=500, bbox_inches="tight") return criteria[np.argmax(vals)],
np.max(vals)
numpy.max
import cv2 import os from facenet_pytorch import InceptionResnetV1, fixed_image_standardization import torch from PIL import Image from torchvision import transforms,get_image_backend import numpy as np import math size_m = 30 size_n = 30 os.environ["CUDA_VISIBLE_DEVICES"] = '1' workers = 0 if os.name == 'nt' else 8 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('Running on device: {}'.format(device)) resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device) trans = transforms.Compose([ transforms.Resize((160,160)), np.float32, transforms.ToTensor(), fixed_image_standardization ]) def detect(img, cascade): rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE) if len(rects) == 0: return [] rects[:, 2:] += rects[:, :2] return rects def pil_loader(path): with open(path, 'rb') as f: with Image.open(f) as img: return img.convert('RGB') def distance(embeddings1, embeddings2, distance_metric=1): if distance_metric==0: # Euclidian distance diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff),1) elif distance_metric==1: # Distance based on cosine similarity dot = np.sum(np.multiply(embeddings1, embeddings2), axis=1) norm =
np.linalg.norm(embeddings1, axis=1)
numpy.linalg.norm
"""Model wrapper class for performing GradCam visualization with a ShowAndTellModel.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from im2txt import show_and_tell_model from im2txt.inference_utils import inference_wrapper_base import numpy as np import matplotlib # Fix to run remotely (with no display) # matplotlib.use('agg') import tensorflow as tf import PIL.Image from matplotlib import pylab as P import pickle import matplotlib.pyplot as plt plt.switch_backend('agg') import matplotlib.colors as mcolors import os import os.path as osp slim=tf.contrib.slim import scipy import sys sys.path.append('gradcam') def transparent_cmap(cmap, N=255): "Copy colormap and set alpha values" mycmap = cmap mycmap._init() mycmap._lut[:,-1] = np.linspace(0, 0.8, N+4) return mycmap class GradCamWrapper(inference_wrapper_base.InferenceWrapperBase): """Model wrapper class for performing inference with a ShowAndTellModel.""" def __init__(self): super(GradCamWrapper, self).__init__() def build_model(self, model_config): model = show_and_tell_model.ShowAndTellModel(model_config, mode="gradcam") model.build() return model def process_image(self, sess, encoded_image, input_feed, filename, vocab, word_index=1, word_id=None, save_path=None): graph = tf.get_default_graph() softmax = sess.run(fetches=["softmax:0"], feed_dict={"image_feed:0": encoded_image, "input_feed:0": input_feed}) logits = graph.get_tensor_by_name('softmax:0') neuron_selector = tf.placeholder(tf.int32) neuron_pred = logits[0,word_index][neuron_selector] pred_max = np.argmax(softmax[0][0][word_index]) if word_id != None: print('%s\tpredicted: %s with prob %f , given: %s with prob %.10f' % (filename, vocab.id_to_word(pred_max), np.max(softmax[0][0][word_index]), vocab.id_to_word(word_id), softmax[0][0][word_index][word_id])) pred_max = word_id from grad_cam import GradCam grad_cam = GradCam(graph, sess, neuron_pred, graph.get_tensor_by_name('concat:0'), conv_layer = graph.get_tensor_by_name('InceptionV3/InceptionV3/Mixed_7c/concat:0')) input_image = PIL.Image.open(filename) input_image = input_image.convert('RGB') im =
np.asarray(input_image)
numpy.asarray
# Copyright 2019 The TensorNetwork Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import torch from tensornetwork.backends.pytorch import decompositions def test_expected_shapes(): val = torch.zeros((2, 3, 4, 5)) u, s, vh, _ = decompositions.svd(torch, val, 2) assert u.shape == (2, 3, 6) assert s.shape == (6,) np.testing.assert_allclose(s, np.zeros(6)) assert vh.shape == (6, 4, 5) def test_expected_shapes_qr(): val = torch.zeros((2, 3, 4, 5)) for non_negative_diagonal in [True, False]: q, r = decompositions.qr(torch, val, 2, non_negative_diagonal) assert q.shape == (2, 3, 6) assert r.shape == (6, 4, 5) def test_expected_shapes_rq(): val = torch.zeros((2, 3, 4, 5)) for non_negative_diagonal in [True, False]: r, q = decompositions.rq(torch, val, 2, non_negative_diagonal) assert r.shape == (2, 3, 6) assert q.shape == (6, 4, 5) def test_rq(): random_matrix = torch.rand([10, 10], dtype=torch.float64) for non_negative_diagonal in [True, False]: r, q = decompositions.rq(torch, random_matrix, 1, non_negative_diagonal) np.testing.assert_allclose(r.mm(q), random_matrix) def test_qr(): random_matrix = torch.rand([10, 10], dtype=torch.float64) for non_negative_diagonal in [True, False]: q, r = decompositions.rq(torch, random_matrix, 1, non_negative_diagonal) np.testing.assert_allclose(q.mm(r), random_matrix) def test_max_singular_values(): np.random.seed(2018) random_matrix = np.random.rand(10, 10) unitary1, _, unitary2 = np.linalg.svd(random_matrix) singular_values = np.array(range(10)) val = unitary1.dot(np.diag(singular_values).dot(unitary2.T)) u, s, vh, trun = decompositions.svd( torch, torch.tensor(val), 1, max_singular_values=7) assert u.shape == (10, 7) assert s.shape == (7,) np.testing.assert_array_almost_equal(s, np.arange(9, 2, -1)) assert vh.shape == (7, 10) np.testing.assert_array_almost_equal(trun, np.arange(2, -1, -1)) def test_max_truncation_error(): np.random.seed(2019) random_matrix = np.random.rand(10, 10) unitary1, _, unitary2 =
np.linalg.svd(random_matrix)
numpy.linalg.svd
import numpy as np import pandas as pd import xarray as xr import Grid from timeit import default_timer as timer err = 1e-5 limit = 1e5 alpha = 0.005 # ---- BASIC FUNCTIONS ---- def ur(mI, mB): return (mB * mI) / (mB + mI) def nu(gBB): return np.sqrt(gBB) def epsilon(kx, ky, kz, mB): return (kx**2 + ky**2 + kz**2) / (2 * mB) def omegak(kx, ky, kz, mB, n0, gBB): ep = epsilon(kx, ky, kz, mB) return np.sqrt(ep * (ep + 2 * gBB * n0)) def Omega(kx, ky, kz, DP, mI, mB, n0, gBB): return omegak(kx, ky, kz, mB, n0, gBB) + (kx**2 + ky**2 + kz**2) / (2 * mI) - kz * DP / mI def Wk(kx, ky, kz, mB, n0, gBB): # old_settings = np.seterr(); np.seterr(all='ignore') output = np.sqrt(epsilon(kx, ky, kz, mB) / omegak(kx, ky, kz, mB, n0, gBB)) # np.seterr(**old_settings) return output def g(kxg, kyg, kzg, dVk, aIBi, mI, mB, n0, gBB): # gives bare interaction strength constant old_settings = np.seterr(); np.seterr(all='ignore') mR = ur(mI, mB) integrand = 2 * mR / (kxg**2 + kyg**2 + kzg**2) mask = np.isinf(integrand); integrand[mask] = 0 np.seterr(**old_settings) return 1 / ((mR / (2 * np.pi)) * aIBi - np.sum(integrand) * dVk) # ---- CALCULATION HELPER FUNCTIONS ---- def ImpMomGrid_from_PhononMomGrid(kgrid, P): kx = kgrid.getArray('kx'); ky = kgrid.getArray('ky'); kz = kgrid.getArray('kz') PI_x = -1 * kx; PI_y = -1 * ky; PI_z = P - kz PI_x_ord = np.flip(PI_x, 0); PI_y_ord = np.flip(PI_y, 0); PI_z_ord = np.flip(PI_z, 0) PIgrid = Grid.Grid('CARTESIAN_3D') PIgrid.initArray_premade('kx', PI_x_ord); PIgrid.initArray_premade('ky', PI_y_ord); PIgrid.initArray_premade('kz', PI_z_ord) return PIgrid def FWHM(x, f): # f is function of x -> f(x) if np.abs(np.max(f) - np.min(f)) < 1e-2: return 0 else: D = f - np.max(f) / 2 indices = np.where(D > 0)[0] return x[indices[-1]] - x[indices[0]] def xyzDist_ProjSlices(phonon_pos_dist, phonon_mom_dist, grid_size_args, grid_diff_args): nxyz = phonon_pos_dist nPB = phonon_mom_dist Nx, Ny, Nz = grid_size_args dx, dy, dz, dkx, dky, dkz = grid_diff_args # slice directions nPB_x_slice = nPB[:, Ny // 2, Nz // 2] nPB_y_slice = nPB[Nx // 2, :, Nz // 2] nPB_z_slice = nPB[Nx // 2, Ny // 2, :] nPB_xz_slice = nPB[:, Ny // 2, :] nPB_xy_slice = nPB[:, :, Nz // 2] nxyz_x_slice = nxyz[:, Ny // 2, Nz // 2] nxyz_y_slice = nxyz[Nx // 2, :, Nz // 2] nxyz_z_slice = nxyz[Nx // 2, Ny // 2, :] nxyz_xz_slice = nxyz[:, Ny // 2, :] nxyz_xy_slice = nxyz[:, :, Nz // 2] nPI_x_slice = np.flip(nPB_x_slice, 0) nPI_y_slice = np.flip(nPB_y_slice, 0) nPI_z_slice = np.flip(nPB_z_slice, 0) nPI_xz_slice = np.flip(np.flip(nPB_xz_slice, 0), 1) nPI_xy_slice = np.flip(np.flip(nPB_xy_slice, 0), 1) pos_slices = nxyz_x_slice, nxyz_y_slice, nxyz_z_slice mom_slices = nPB_x_slice, nPB_y_slice, nPB_z_slice, nPI_x_slice, nPI_y_slice, nPI_z_slice cont_slices = nxyz_xz_slice, nxyz_xy_slice, nPB_xz_slice, nPB_xy_slice, nPI_xz_slice, nPI_xy_slice # integrate directions nPB_x = np.sum(nPB, axis=(1, 2)) * dky * dkz nPB_y = np.sum(nPB, axis=(0, 2)) * dkx * dkz nPB_z = np.sum(nPB, axis=(0, 1)) * dkx * dky nxyz_x = np.sum(nxyz, axis=(1, 2)) * dy * dz nxyz_y = np.sum(nxyz, axis=(0, 2)) * dx * dz nxyz_z = np.sum(nxyz, axis=(0, 1)) * dx * dy nPI_x = np.flip(nPB_x, 0) nPI_y = np.flip(nPB_y, 0) nPI_z = np.flip(nPB_z, 0) pos_integration = nxyz_x, nxyz_y, nxyz_z mom_integration = nPB_x, nPB_y, nPB_z, nPI_x, nPI_y, nPI_z return pos_slices, mom_slices, cont_slices, pos_integration, mom_integration # @profile def xyzDist_To_magDist(kgrid, phonon_mom_dist, P): nPB = phonon_mom_dist # kgrid is the Cartesian grid upon which the 3D matrix nPB is defined -> nPB is the phonon momentum distribution in kx,ky,kz kxg, kyg, kzg = np.meshgrid(kgrid.getArray('kx'), kgrid.getArray('ky'), kgrid.getArray('kz'), indexing='ij', sparse=True) # can optimize speed by taking this from the coherent_state precalculation dVk_const = kgrid.dV()[0] * (2 * np.pi)**(3) PB = np.sqrt(kxg**2 + kyg**2 + kzg**2) PI = np.sqrt((-kxg)**2 + (-kyg)**2 + (P - kzg)**2) PB_flat = PB.reshape(PB.size) PI_flat = PI.reshape(PI.size) nPB_flat = nPB.reshape(nPB.size) PB_series = pd.Series(nPB_flat, index=PB_flat) PI_series = pd.Series(nPB_flat, index=PI_flat) nPBm_unique = PB_series.groupby(PB_series.index).sum() * dVk_const nPIm_unique = PI_series.groupby(PI_series.index).sum() * dVk_const PB_unique = nPBm_unique.keys().values PI_unique = nPIm_unique.keys().values nPBm_cum = nPBm_unique.cumsum() nPIm_cum = nPIm_unique.cumsum() # CDF and PDF pre-processing PBm_Vec, dPBm = np.linspace(0, np.max(PB_unique), 200, retstep=True) PIm_Vec, dPIm = np.linspace(0, np.max(PI_unique), 200, retstep=True) nPBm_cum_smooth = nPBm_cum.groupby(pd.cut(x=nPBm_cum.index, bins=PBm_Vec, right=True, include_lowest=True)).mean() nPIm_cum_smooth = nPIm_cum.groupby(pd.cut(x=nPIm_cum.index, bins=PIm_Vec, right=True, include_lowest=True)).mean() # one less bin than bin edge so consider each bin average to correspond to left bin edge and throw out last (rightmost) edge PBm_Vec = PBm_Vec[0:-1] PIm_Vec = PIm_Vec[0:-1] # smooth data has NaNs in it from bins that don't contain any points - forward fill these holes PBmapping = dict(zip(nPBm_cum_smooth.keys(), PBm_Vec)) PImapping = dict(zip(nPIm_cum_smooth.keys(), PIm_Vec)) # PBmapping = pd.Series(PBm_Vec, index=nPBm_cum_smooth.keys()) # PImapping = pd.Series(PIm_Vec, index=nPIm_cum_smooth.keys()) nPBm_cum_smooth = nPBm_cum_smooth.rename(PBmapping).fillna(method='ffill') nPIm_cum_smooth = nPIm_cum_smooth.rename(PImapping).fillna(method='ffill') nPBm_Vec = np.gradient(nPBm_cum_smooth, dPBm) nPIm_Vec = np.gradient(nPIm_cum_smooth, dPIm) mag_dist_List = [PBm_Vec, nPBm_Vec, PIm_Vec, nPIm_Vec] return mag_dist_List # ---- DATA GENERATION ---- # @profile def quenchDynamics_DataGeneration(cParams, gParams, sParams, toggleDict): # # do not run this inside CoherentState or PolaronHamiltonian import CoherentState import PolaronHamiltonian # takes parameters, performs dynamics, and outputs desired observables [P, aIBi] = cParams [xgrid, kgrid, tgrid] = gParams [mI, mB, n0, gBB] = sParams # grid unpacking x = xgrid.getArray('x'); y = xgrid.getArray('y'); z = xgrid.getArray('z') dx = xgrid.arrays_diff['x']; dy = xgrid.arrays_diff['y']; dz = xgrid.arrays_diff['z'] Nx, Ny, Nz = len(xgrid.getArray('x')), len(xgrid.getArray('y')), len(xgrid.getArray('z')) kx = kgrid.getArray('kx'); ky = kgrid.getArray('ky'); kz = kgrid.getArray('kz') dkx = kgrid.arrays_diff['kx']; dky = kgrid.arrays_diff['ky']; dkz = kgrid.arrays_diff['kz'] grid_size_args = Nx, Ny, Nz grid_diff_args = dx, dy, dz, dkx, dky, dkz NGridPoints = xgrid.size() k_max = np.sqrt(np.max(kx)**2 + np.max(ky)**2 + np.max(kz)**2) # Initialization CoherentState cs = CoherentState.CoherentState(kgrid, xgrid) # Initialization PolaronHamiltonian Params = [P, aIBi, mI, mB, n0, gBB] ham = PolaronHamiltonian.PolaronHamiltonian(cs, Params, toggleDict) # calculate some parameters nu_const = nu(gBB) gIB = g(cs.kxg, cs.kyg, cs.kzg, cs.dVk[0], aIBi, mI, mB, n0, gBB) # Other book-keeping PIgrid = ImpMomGrid_from_PhononMomGrid(kgrid, P) PB_x = kx; PB_y = ky; PB_z = kz PI_x = PIgrid.getArray('kx'); PI_y = PIgrid.getArray('ky'); PI_z = PIgrid.getArray('kz') # Time evolution # Choose coarsegrain step size maxfac = 1 largest_coarsegrain = 1 for f in range(1, largest_coarsegrain + 1, 1): if tgrid.size % f == 0: maxfac = f tgrid_coarse = np.zeros(int(tgrid.size / maxfac), dtype=float) cind = 0 print('Time grid size: {0}, Coarse grain step: {1}'.format(tgrid.size, maxfac)) # Initialize observable Data Arrays PB_da = xr.DataArray(np.full(tgrid.size, np.nan, dtype=float), coords=[tgrid], dims=['t']) NB_da = xr.DataArray(np.full(tgrid.size, np.nan, dtype=float), coords=[tgrid], dims=['t']) ReDynOv_da = xr.DataArray(np.full(tgrid.size, np.nan, dtype=float), coords=[tgrid], dims=['t']) ImDynOv_da = xr.DataArray(np.full(tgrid.size, np.nan, dtype=float), coords=[tgrid], dims=['t']) Phase_da = xr.DataArray(np.full(tgrid.size, np.nan, dtype=float), coords=[tgrid], dims=['t']) phonon_mom_k0deltapeak_da = xr.DataArray(np.full(tgrid.size, np.nan, dtype=float), coords=[tgrid], dims=['t']) # Initialize distribution Data Arrays nxyz_x_slice_da = xr.DataArray(np.full((tgrid.size, x.size), np.nan, dtype=float), coords=[tgrid, x], dims=['t', 'x']); nxyz_y_slice_da = xr.DataArray(np.full((tgrid.size, y.size), np.nan, dtype=float), coords=[tgrid, y], dims=['t', 'y']); nxyz_z_slice_da = xr.DataArray(np.full((tgrid.size, z.size), np.nan, dtype=float), coords=[tgrid, z], dims=['t', 'z']) nxyz_xz_slice_da = xr.DataArray(np.full((tgrid.size, x.size, z.size), np.nan, dtype=float), coords=[tgrid, x, z], dims=['t', 'x', 'z']); nxyz_xy_slice_da = xr.DataArray(np.full((tgrid.size, x.size, y.size), np.nan, dtype=float), coords=[tgrid, x, y], dims=['t', 'x', 'y']) nxyz_x_da = xr.DataArray(np.full((tgrid.size, x.size), np.nan, dtype=float), coords=[tgrid, x], dims=['t', 'x']); nxyz_y_da = xr.DataArray(np.full((tgrid.size, y.size), np.nan, dtype=float), coords=[tgrid, y], dims=['t', 'y']); nxyz_z_da = xr.DataArray(np.full((tgrid.size, z.size), np.nan, dtype=float), coords=[tgrid, z], dims=['t', 'z']) nPB_x_slice_da = xr.DataArray(np.full((tgrid.size, PB_x.size), np.nan, dtype=float), coords=[tgrid, PB_x], dims=['t', 'PB_x']); nPB_y_slice_da = xr.DataArray(np.full((tgrid.size, PB_y.size), np.nan, dtype=float), coords=[tgrid, PB_y], dims=['t', 'PB_y']); nPB_z_slice_da = xr.DataArray(np.full((tgrid.size, PB_z.size), np.nan, dtype=float), coords=[tgrid, PB_z], dims=['t', 'PB_z']) nPB_xz_slice_da = xr.DataArray(np.full((tgrid.size, PB_x.size, PB_z.size), np.nan, dtype=float), coords=[tgrid, PB_x, PB_z], dims=['t', 'PB_x', 'PB_z']); nPB_xy_slice_da = xr.DataArray(np.full((tgrid.size, PB_x.size, PB_y.size), np.nan, dtype=float), coords=[tgrid, PB_x, PB_y], dims=['t', 'PB_x', 'PB_y']) nPB_x_da = xr.DataArray(np.full((tgrid.size, PB_x.size), np.nan, dtype=float), coords=[tgrid, PB_x], dims=['t', 'PB_x']); nPB_y_da = xr.DataArray(np.full((tgrid.size, PB_y.size), np.nan, dtype=float), coords=[tgrid, PB_y], dims=['t', 'PB_y']); nPB_z_da = xr.DataArray(np.full((tgrid.size, PB_z.size), np.nan, dtype=float), coords=[tgrid, PB_z], dims=['t', 'PB_z']) nPI_x_slice_da = xr.DataArray(np.full((tgrid.size, PI_x.size), np.nan, dtype=float), coords=[tgrid, PI_x], dims=['t', 'PI_x']); nPI_y_slice_da = xr.DataArray(
np.full((tgrid.size, PI_y.size), np.nan, dtype=float)
numpy.full
# -*- coding: utf-8 -*- """ Created on Tue Nov 17 19:37:53 2020 @author: <NAME> """ import numpy as np from stereo_calibration import StereoCalibration chess_size = (8,6) square_size = 2.5 # cm camera_model = StereoCalibration(chess_size, square_size) Camera_L_Matrix = np.array(camera_model['M_L']) Camera_R_Matrix = np.array(camera_model['M_R']) distorsionL = np.array(camera_model['distL']) distorsionR = np.array(camera_model['distR']) R = np.array(camera_model['R']) T = np.array(camera_model['T']) Proj_L = np.array(camera_model['Proj_L']) Proj_R = np.array(camera_model['Proj_R']) Rotation_L = np.array(camera_model['rotation_vec_L']) Rotation_R = np.array(camera_model['rotation_vec_R']) np.save("SmartCar/Calibration/matrices/Camera_L_Matrix.npy", Camera_L_Matrix) np.save("SmartCar/Calibration/matrices/Camera_R_Matrix.npy", Camera_R_Matrix) np.save("SmartCar/Calibration/matrices/distorsionL.npy", distorsionL) np.save("SmartCar/Calibration/matrices/distorsionR.npy", distorsionR) np.save("SmartCar/Calibration/matrices/R.npy", R) np.save("SmartCar/Calibration/matrices/T.npy", T) np.save("SmartCar/Calibration/matrices/Proj_L.npy", Proj_L)
np.save("SmartCar/Calibration/matrices/Proj_R.npy", Proj_R)
numpy.save
# coding: utf-8 # In[1]: #get_ipython().magic(u'matplotlib inline') # In[2]: import os import numpy as np np.set_printoptions(precision=3, linewidth=250) import scipy as sp from scipy import signal, io import pandas as pd import statsmodels.formula.api as smf import matplotlib.pyplot as plt import matplotlib.cm as cm from sklearn.manifold import MDS from sklearn import svm, cross_validation, metrics from sklearn import discriminant_analysis import sys sys.path.append('/mnt/Other/DEAP/tmp/') from dyconnmap.fc import PLI, PAC from dyconnmap import bands from dyconnmap import tvfcg_cfc from dyconnmap import analytic_signal # ### Process subject # In[3]: subject_id = 1 basedir = "/mnt/Other/DEAP/data/data_preprocessed_python/" data = np.load(basedir + "/s01.dat") eeg = data['data'] n_trials, n_channels, n_samples = eeg.shape # In[4]: fname = ("/mnt/Other/DEAP/data/data_preprocessed_python/s%02d.dat" % (subject_id)) data = np.load(fname) eeg = data['data'][:, 0:32, :] # In[5]: n_trials, n_channels, n_samples = np.shape(eeg) print(n_trials, n_channels, n_samples) # In[7]: trial1 = eeg[0, :] # In[91]: p_range = (1, 20) a_range = (1, 60) dp = 0.5 da = 0.5 f_phases = np.arange(p_range[0], p_range[1], dp) f_amps = np.arange(a_range[0], a_range[1], da) P = len(f_phases) A = len(f_amps) # In[92]: print(f_phases) print(f_amps) # In[ ]: comodu = np.zeros((P, A)) estimator = PLI(0, 0) for p in range(P): f_lo = (f_phases[p], f_phases[p] + dp) _, hilberted_lo, _ = analytic_signal(trial1, f_lo) phase = np.angle(hilberted_lo) for a in range(A): f_hi = (f_amps[a], f_amps[a] + da) _, hilberted_hi, _ = analytic_signal(trial1, f_hi) amp = np.abs(hilberted_hi) _, hilberted_lohi, _ = analytic_signal(amp, f_lo) phase_lohi = np.angle(hilberted_lohi) ts, avg = estimator.estimate_pair(phase, phase_lohi) comodu[p, a] = avg # In[ ]: np.shape(comodu) # In[ ]: np.shape(f_phases) # In[ ]:
np.shape(f_amps)
numpy.shape
# -*- coding: utf-8 -*- __author__ = '<NAME>' import os, itertools,copy import numpy as np from scipy import sparse from scipy.spatial.distance import cdist from ase.neighborlist import NeighborList,natural_cutoffs from ase.data import atomic_masses_iupac2016,atomic_numbers from pymatgen.symmetry.analyzer import PointGroupAnalyzer as pga from pymove import Structure from pymove.io import read,write,output_geo """ It will be better overall to break these complex operations into classes which will be easier to use and have a more intuitive API. """ def get_molecules(struct, mult=1.05): """ Arguments --------- mult: float Multiplicative factor to use for natural_cutoffs Returns ------- List of Structure objects for each molecule identified using the smallest molecule representation. """ molecule_list = find_molecules(struct, mult=mult) molecule_struct_list = extract_molecules(struct, molecule_list, mult=mult) if len(molecule_struct_list) == 0: raise Exception("No molecules found for structure {}." .format(struct.struct_id)) return molecule_struct_list def find_molecules(struct, mult=1.05): """ Identify molecular fragments in struct Returns ------- List of lists for atom index of each molecule """ atoms = struct.get_ase_atoms() cutOff = natural_cutoffs(atoms, mult=mult) ## Skin=0.3 is not a great parameter, but it seems to work pretty well ## for mulicule identification. In addition, it's not the same affect as ## change the mult value because it's a constant addition to all ## covalent bonds. neighborList = NeighborList(cutOff, skin=0.0) neighborList.update(atoms) matrix = neighborList.get_connectivity_matrix() n_components, component_list = sparse.csgraph.connected_components(matrix) molecule_list = [np.where(component_list == x)[0] for x in range(n_components)] return molecule_list def extract_molecules(struct, molecule_list, whole_molecules=True, mult=1.05): """ Converts list of list of coordinates to Structures """ # Information from original structure geo = struct.get_geo_array() elements = struct.geometry['element'] # Extract molecule geometries from original molecule_geo_list = [geo[x,:] for x in molecule_list] molecule_ele_list = [elements[x] for x in molecule_list] # Convert geometry to Structure molecule_struct_list = [Structure() for x in range(len(molecule_list))] [x.from_geo_array(molecule_geo_list[i],molecule_ele_list[i]) for i,x in enumerate(molecule_struct_list)] # Construct whole molecule representations if whole_molecules: molecule_struct_list = [construct_smallest_molecule(struct,x,mult=mult) for x in molecule_struct_list] return molecule_struct_list def construct_smallest_molecule(struct,molecule_struct,mult=1.05): """ Make molecule smallest possible w.r.t. structure pbc Purpose ------- Sometimes structures are given where molecules are not fully connected because all atomic coordinates have been brought into the cell. This function minimizes the distance between coordinates in the molecule w.r.t. the pbc of the input structure such that the molecule's final geometric coordinates are fully connected. """ # Check if molecule is fully connected mol_index_list = find_molecules(molecule_struct,mult=mult) if len(mol_index_list) == 1: return molecule_struct # New method: construct supercell and pick molecule fragment with the same # length as the input. Doesn't matter which one is chosen because they are # all images of the same molecule. The final positions will be augmented # to have COM inside the cell. temp = copy.deepcopy(molecule_struct) temp.set_lattice_vectors(struct.get_lattice_vectors()) # Loop through creating supercells of increasing size to find smallest # molecule representation efficiently. success = False for i in range(2,9): # Construct ixixi supercell about the origin supercell = construct_supercell_by_molecule(temp, supercell=i, include_negative=False) # Get atom index for molecules from supercell result = find_molecules(supercell, mult=mult) # Get molecule structure molecule_list = extract_molecules(supercell, result, mult=mult, whole_molecules=False) # Identify whole molecule in non-periodic cell frag_list = [len(find_molecules(x, mult=mult)) for x in molecule_list] try: whole_molecule_idx = frag_list.index(1) success = True break except: pass if success == False: raise Exception('No whole represenation was found for the molecule '+ 'without periodic boundary conditions. Please check the ' + 'structure for any irregularities. If none are found, then '+ 'improvements probably need to be made to the source code to '+ 'work for this structure.') whole_molecule = molecule_list[whole_molecule_idx] geo = whole_molecule.get_geo_array() # Ensure COM of final molecule is inside cell and smallest possibe # w.r.t. lattice sites. COM = com(whole_molecule) # Lattice vector array as columns lattice_vectors = np.array(struct.get_lattice_vectors()).T lattice_vectors_i = np.linalg.inv(lattice_vectors) relative_COM = np.dot(lattice_vectors_i, COM) # First make COM all positive w.r.t. lattice vectors trans_idx = relative_COM < -0.0001 trans_vector = np.dot(lattice_vectors, trans_idx[:,None]) geo = geo + trans_vector.T # Recompute COM then move inside of cell temp_molecule = Structure() temp_molecule.from_geo_array(geo, whole_molecule.geometry['element']) COM = com(temp_molecule) relative_COM = np.dot(lattice_vectors_i, COM) trans_idx = relative_COM > 0.99 trans_vector = np.dot(lattice_vectors, trans_idx[:,None]) geo = geo - trans_vector.T # Set final molecule final_molecule = Structure() final_molecule.from_geo_array(geo, whole_molecule.geometry['element']) final_molecule.struct_id = molecule_struct.struct_id return final_molecule def reconstruct_with_whole_molecules(struct): """ Build smallest molecule representation of struct. """ rstruct = Structure() rstruct.set_lattice_vectors(struct.get_lattice_vectors()) molecule_struct_list = get_molecules(struct) for molecule_struct in molecule_struct_list: geo_array = molecule_struct.get_geo_array() ele = molecule_struct.geometry['element'] for i,coord in enumerate(geo_array): rstruct.append(coord[0],coord[1],coord[2],ele[i]) return rstruct def com(struct): """ Calculates center of mass of the system. """ geo_array = struct.get_geo_array() element_list = struct.geometry['element'] mass = np.array([atomic_masses_iupac2016[atomic_numbers[x]] for x in element_list]).reshape(-1) total = np.sum(mass) com = np.sum(geo_array*mass[:,None], axis=0) com = com / total return com def find_translation_vector(f1, f2, lattice_vectors): """ From a set of a lattice vectors, find the lattice vector that minimizes the distance between fragment 1, f1, and fragment 2, f2. """ base_atom = len(f1) full_geo = np.concatenate([f1, f2], axis=0) x_dist = np.min(calc_euclidean_dist_vectorized(full_geo[:,0][:,None] )[0:base_atom,base_atom:]) y_dist = np.min(calc_euclidean_dist_vectorized(full_geo[:,1][:,None] )[0:base_atom,base_atom:]) z_dist = np.min(calc_euclidean_dist_vectorized(full_geo[:,2][:,None] )[0:base_atom,base_atom:]) min_dist = np.array([[x_dist,y_dist,z_dist]]) closest_vector = np.argmin(cdist(min_dist, lattice_vectors)) # Decide to add or subtract lattice vector sign = 1 f1_mean = np.mean(f1,axis=0) f2_mean = np.mean(f2,axis=0) mean_dist = f2_mean - f1_mean plus = mean_dist + lattice_vectors[closest_vector,:] minus = mean_dist - lattice_vectors[closest_vector,:] if np.sum(np.abs(plus)) > np.sum(np.abs(minus)): sign = -1 return closest_vector,sign def get_molecule_orientation(molecule_struct): """ Not quite sure what this function needs to do yet, but the indexing for pymatgen principal axes is shown correctly Arguments --------- Pymatgen molecule object """ molp = molecule_struct.get_pymatgen_structure() PGA = pga(molp) pa = PGA.principal_axes # axes = np.zeros(3,3) # for i,row in enumerate(pa): # axes[i,:] = row return pa def get_orr_tensor(struct): """ Gets orientation of all molecules in the struct """ molecule_list = get_molecules(struct) orr_tensor = np.zeros((len(molecule_list),3,3)) for i,molecule_struct in enumerate(molecule_list): orr_tensor[i,:,:] = get_molecule_orientation(molecule_struct) return orr_tensor def get_COM(struct): """ Gets COM positions for all molecules in the structure Returns ------- List of all COM positions in the structure """ molecule_list = get_molecules(struct) COM_array = np.zeros((len(molecule_list),3)) for i,molecule_struct in enumerate(molecule_list): COM_array[i,:] = calc_COM(molecule_struct) return COM_array def calc_COM(molecule_struct): """ COM calculation for Molecule Structure """ geometry = molecule_struct.get_geo_array() elements = molecule_struct.geometry['element'] element_numbers = [atomic_numbers[x] for x in elements] element_masses = np.array([atomic_masses_iupac2016[x] for x in element_numbers])[:,None] weighted_geometry = geometry*element_masses return np.sum(weighted_geometry,axis=0) / np.sum(element_masses) def construct_supercell_by_molecule(struct,supercell=3,include_negative=False): """ Construct supercell w.r.t. the molecules in the current structure Arguments --------- struct: Structure Structure object that was used to construct the molecules argument, Must have lattice parameters. supercell: int Dimension of supercell (int x int x int) """ if supercell <= 0: raise Exception('Input to construct_supercell must be larger than 0') lattice_vectors = struct.get_lattice_vectors() if lattice_vectors == False: raise Exception('Input Structure object to function '+ 'construct_supercell must have lattice parameters.') lattice_vectors = np.array(lattice_vectors) # Array for translations to construct supercell translation_vectors = get_translation_vectors(supercell, lattice_vectors, include_negative=include_negative) # Initialize supercell supercell_struct = Structure() supercell_struct.set_lattice_vectors(lattice_vectors*supercell) geo_array = struct.get_geo_array() # Broadcast geometry with translation vectors supercell_geo = geo_array[:,None,:] + translation_vectors num_atoms,num_tr,dim = supercell_geo.shape # Getting correct indexing for supercell tensor # Indexing scheme for molecules in first unit cell depth_index = num_tr*dim*np.arange(num_atoms) # Broadcast across three dimensions column_values = np.arange(3) unit_cell_index = depth_index[:,None] + column_values # Index scheme for the next unit cells in supercell molecule_index = np.arange(num_tr)*3 # Broadcast initial molecule across next moleculess supercell_index = molecule_index[:,None,None] + unit_cell_index supercell_index = supercell_index.reshape(num_tr*num_atoms, 3) supercell_geo = np.take(supercell_geo, supercell_index) ########################################################################### # For example, this gets the original geometry # ########################################################################### # depth_index = num_tr*dim*np.arange(num_atoms) # column_values = np.arange(3) # broadcasted_index = depth_index[:,None] + column_values ########################################################################### num_ele = translation_vectors.shape[0] supercell_elements = np.tile(struct.geometry['element'],num_ele) supercell_struct.from_geo_array(supercell_geo, supercell_elements) return supercell_struct def construct_molecular_index_for_supercell(num_atoms, num_tr, combine_mol=True): ''' Arguments --------- num_atoms: int Number of atoms in the original structure num_tr: int Number of translation vectors applied to construct supercell combine_mol: bool True: molecules should be combined, such is the case when the desired output is a single supercell strcutre False: molecules should not be combined, such is the case when trying to identify the smallest representation of the molecule w/o pbc ''' # Cartesian space dim = 3 # Getting correct indexing for supercell tensor # Indexing scheme for molecules in first unit cell depth_index = num_tr*dim*np.arange(num_atoms) # Broadcast across three dimensions column_values = np.arange(3) unit_cell_index = depth_index[:,None] + column_values # Index scheme for the next unit cells in supercell molecule_index = np.arange(num_tr)*3 # Broadcast initial molecule across next moleculess supercell_index = molecule_index[:,None,None] + unit_cell_index if combine_mol == True: return supercell_index.reshape(num_tr*num_atoms, 3) return supercell_index def construct_orientation_supercell(struct,supercell,include_negative=False, molecule_list=[]): """ Construct supercell of only molecular orientations Arguments --------- struct: Structure Structure object that was used to construct the molecules argument, Must have lattice parameters. supercell: int Dimension of supercell (int x int x int) molecule_lsit: list of Structures Can pass in argument if molecule_list was pre-computed """ if supercell <= 0: raise Exception('Input to construct_supercell must be larger than 0') lattice_vectors = struct.get_lattice_vectors() if lattice_vectors == False: raise Exception('Input Structure object to function '+ 'construct_supercell must have lattice parameters.') lattice_vectors = np.array(lattice_vectors) translation_vectors = get_translation_vectors(supercell, lattice_vectors, include_negative) if len(molecule_list) == 0: molecule_list = get_molecules(struct) num_atoms = struct.get_geo_array().shape[0] num_molecules = len(molecule_list) num_tr = len(translation_vectors) COM_array = np.array([calc_COM(molecule_struct) for molecule_struct in molecule_list]) orientation_tensor = np.array([get_molecule_orientation(mol) for mol in molecule_list]) orientation_tensor = orientation_tensor + COM_array[:,None,:] orientation_tensor = orientation_tensor[:,None,:] + \ translation_vectors[:,None,:] orientation_tensor = orientation_tensor.reshape(num_molecules*num_tr,3,3) COM_tensor = COM_array[:,None,:] + translation_vectors COM_tensor = COM_tensor.reshape(num_molecules*num_tr,3) return orientation_tensor,COM_tensor def get_translation_vectors(supercell, lattice_vectors, include_negative=False): ''' Returns all translation vectors for a given supercell size Arguments --------- supercell: int Value of the supercell dimension. Example 3x3x3 lattice_vectors: Numpy array Lattice vectors in row format where each lattice vector is one row. include_negative: bool False: Only supercells in the positive direction will be constructed True: Supercells in the positive and negative direction will be constructed. If true, constructs the supercell about the origin of the original Returns: Numpy array of all translation vectors in row format. ''' if include_negative: list_range = [x for x in range(-supercell+1,supercell,1)] else: list_range = [x for x in range(supercell)] tr = list(itertools.product(list_range,list_range,list_range)) translation_vectors = np.dot(tr,lattice_vectors) return translation_vectors def compute_motif(struct, supercell=3, include_negative=True, num_mol=12): """ Computes deg_array which is translated into specific packing motifs Arguments --------- supercell: int Value of the supercell dimension. Example 3x3x3 include_negative: bool False: Only supercells in the positive direction will be constructed True: Supercells in the positive and negative direction will be constructed. This will double the number constructed. num_mol: int >= 4 Number of nearest neighbor molecules to be used for motif identification. Should be at least four. """ deg_array,plane_deg_min = compute_deg_array(struct, supercell, include_negative, num_mol=num_mol) return motif_definitions(deg_array,plane_deg_min) def compute_deg_array(struct, supercell=3, include_negative=True, num_mol=12): molecule_list = get_molecules(struct) orientation_tensor,COM_array = construct_orientation_supercell(struct, supercell,include_negative, molecule_list) deg_array,plane_deg_min = compute_orientation_difference(orientation_tensor,COM_array, molecule_list,num_mol=num_mol) return deg_array,plane_deg_min def motif_definitions(deg_array,plane_deg_min): """ Defines how motifs are identified from the deg_array Arguments --------- deg_array: np.array (n,) Vector of orientation differences found plane_deg_min: np.array Vector of orientation differences found for molecules that were co-planar to the reference molecule """ num_mol = 4 if len(deg_array) < num_mol: raise Exception("For proper motif identification, the input array "+ "must have a length of at least 6. "+ "Input was {}.".format(deg_array)) # Only use first for neighbors def_deg = deg_array[0:num_mol] sheet_like = def_deg < 9 # Be more stringent for sheet classification if np.sum(deg_array < 9) == len(deg_array): return 'Sheet' else: if sheet_like[0] == True: if sheet_like[1] != True: if np.sum(plane_deg_min < 9) == len(plane_deg_min): return 'Sheet' return 'Sandwich' else: # if np.sum(plane_deg_min < 9) == len(plane_deg_min): # return 'Gamma' return 'Gamma' else: # Have at least 1 co-planar in first 4 neighbors if np.sum(sheet_like) == 1: if np.sum(plane_deg_min < 9) == len(plane_deg_min): return 'Sheet' return 'Herringbone' def compute_orientation_difference(orientation_tensor,COM_array,molecule_list, num_mol=12): """ Computes difference between molecular orientation bewteen the molecular plane and the principal axes of num_mol from the supercell closest to the molecule in molecule_list closest to the origin. Arguments --------- num_mol: int Should be approximately equal to the number of molecules per unit cell multiplied by supercell """ centerd_orientation_tensor = orientation_tensor - COM_array[:,None] index_min,index_dist_min = find_nearest_COM(COM_array, reference=molecule_list, num_mol=num_mol) molecule_struct_min = molecule_list[index_min] origin_orientation = centerd_orientation_tensor[index_dist_min] # Compute norm to molecular plane of original molecule plane_norm = get_molecule_orientation(molecule_struct_min)[0,:] original_COM_array = np.array([calc_COM(x) for x in molecule_list]) COM_test = original_COM_array[index_min,:] origin_COM = COM_array[index_dist_min] dist_vector = COM_test - origin_COM dist_vector = dist_vector / np.linalg.norm(dist_vector,axis=1)[:,None] COM_test = COM_test/np.linalg.norm(COM_test) COM_angles =
np.dot(dist_vector, COM_test)
numpy.dot
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import numpy as np from tensorflow.python.ipu.config import IPUConfig from tensorflow.compiler.plugin.poplar.tests import test_utils as tu from tensorflow.compiler.plugin.poplar.ops import gen_popops_ops from tensorflow.compiler.plugin.poplar.ops import gen_poputil_ops from tensorflow.python import ipu from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables class TestAllGather(test_util.TensorFlowTestCase): @tu.test_uses_ipus(num_ipus=8) @test_util.deprecated_graph_mode_only def testAllGather(self): with ops.device('cpu'): x = array_ops.placeholder(np.float32, shape=[8]) outfeed_queue = ipu.ipu_outfeed_queue.IPUOutfeedQueue() def my_graph(x): with ops.device("/device:IPU:0"): rep_id = ipu.replication_ops.replication_index() x = x + math_ops.cast(rep_id, dtype=np.float32) y = gen_popops_ops.ipu_all_gather(x, replication_factor=8) outfeed = outfeed_queue.enqueue(y) return y, outfeed out = ipu.ipu_compiler.compile(my_graph, [x]) config = IPUConfig() config.auto_select_ipus = [8] tu.add_hw_ci_connection_options(config) config.configure_ipu_system() outfeed = outfeed_queue.dequeue() with tu.ipu_session() as sess: sess.run(variables.global_variables_initializer()) sess.run(out, {x: np.zeros([8])}) result = sess.run(outfeed)[0] for replica in range(0, 8): self.assertAllEqual(result[replica][0], [0] * 8) self.assertAllEqual(result[replica][1], [1] * 8) self.assertAllEqual(result[replica][2], [2] * 8) self.assertAllEqual(result[replica][3], [3] * 8) self.assertAllEqual(result[replica][4], [4] * 8) self.assertAllEqual(result[replica][5], [5] * 8) self.assertAllEqual(result[replica][6], [6] * 8) self.assertAllEqual(result[replica][7], [7] * 8) @test_util.deprecated_graph_mode_only def testAllGatherShapeInference(self): x = array_ops.placeholder(np.float32, shape=(2, 4)) y = gen_popops_ops.ipu_all_gather(x, replication_factor=8) self.assertAllEqual((8, 2, 4), y.shape) @tu.test_uses_ipus(num_ipus=8) @test_util.deprecated_graph_mode_only def testSerializedMultiUpdateAdd(self): with ops.device('cpu'): idx = array_ops.placeholder(np.int32, shape=[16, 1]) updates = array_ops.placeholder(np.float32, shape=[16, 128]) scale = array_ops.placeholder(np.float32, shape=[]) outfeed_queue = ipu.ipu_outfeed_queue.IPUOutfeedQueue() def my_graph(idx, updates, scale): zero = 0.0 zeros = array_ops.broadcast_to(zero, shape=[1000, 128]) out = gen_popops_ops.ipu_multi_update_add(zeros, updates=updates, indices=idx, scale=scale) out = gen_popops_ops.ipu_cross_replica_sum(out) out = gen_poputil_ops.ipu_replication_normalise(out) outfeed = outfeed_queue.enqueue(out) return out, outfeed with ops.device("/device:IPU:0"): out = ipu.ipu_compiler.compile(my_graph, [idx, updates, scale]) config = IPUConfig() config.auto_select_ipus = [8] tu.add_hw_ci_connection_options(config) config.configure_ipu_system() outfeed = outfeed_queue.dequeue() with tu.ipu_session() as sess: sess.run(variables.global_variables_initializer()) sess.run( out, { idx: [[1], [2], [3], [4], [1], [2], [3], [4], [10], [20], [30], [40], [100], [200], [300], [400]], updates: np.ones(updates.shape), scale: 2, }) result = sess.run(outfeed) for replica in range(0, 8): t = result[0][replica] self.assertAllEqual(t[1], np.full([128], 4.0)) self.assertAllEqual(t[2], np.full([128], 4.0)) self.assertAllEqual(t[3], np.full([128], 4.0)) self.assertAllEqual(t[4], np.full([128], 4.0)) self.assertAllEqual(t[10], np.full([128], 2.0)) self.assertAllEqual(t[20], np.full([128], 2.0)) self.assertAllEqual(t[30], np.full([128], 2.0)) self.assertAllEqual(t[40], np.full([128], 2.0)) self.assertAllEqual(t[100], np.full([128], 2.0)) self.assertAllEqual(t[200],
np.full([128], 2.0)
numpy.full
# -*- coding: utf-8 -*- """F Created on Wed Feb 26 10:24:21 2020 @author: <NAME> """ import sys import math import random import numpy as np import pandas as pd from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import seaborn as sns from matplotlib import cbook from matplotlib import cm from matplotlib.colors import LightSource from matplotlib.colors import Normalize from scipy import signal from scipy import stats from sklearn.cross_decomposition import PLSRegression #from pls import PLSRegression #own SIMPLS based alternative to sklearn from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold from sklearn.model_selection import LeaveOneGroupOut from sklearn.model_selection import GridSearchCV from sklearn import metrics from sklearn.svm import SVR from sklearn.pipeline import Pipeline import warnings from fssreg import FSSRegression from ipls import IntervalPLSRegression from class_mcw_pls import mcw_pls_sklearn from osc import OSC warnings.filterwarnings('ignore') class InputError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class NIRData: def __init__(self, df, y_name="value",date_name="refdate", cval="MD",cval_param=None): # The class takes input dataframe in the following format: # -it needs to be a pandas dataframe # -it can only have the following columns: spectra variables, # measurement date, single dependent variable # -the measurement date and dpeendent variable column's name needs to be specified # -the CV method needs to be defined, it supports MD and kfold, for kfold # the number of folds needs to be defined with cval_param self.df0=df.copy() self.df=df.copy() #Column with dependent variable self.y_name=y_name #Date column self.date_name=date_name #Columns with predictors self.freqs = [col for col in df.columns if col not in [date_name, y_name]] #If frequency columns are not all numeric, convert them if len([x for x in self.freqs if isinstance(x, float)])<len(self.freqs): self.freqs=[float(freq) for freq in self.freqs] self.df0.columns=[float(col) if col not in [date_name, y_name] else col for col in df.columns] self.df.columns=[float(col) if col not in [date_name, y_name] else col for col in df.columns] self.cval=cval if cval!="MD": if cval_param==None: raise InputError("Missing cross validation parameter!") self.cval_param=cval_param #Changing the cross validation method without reinstantiating the class def set_cval(self,cval_new): self.cval=cval_new ################# Preprocessing techniques # Resetting the pre-processing to the raw spectra def reset(self): self.df=self.df0.copy() # Preprocessing methods (detrending, SG filter, SNV, MSC) def to_percent(self): f = lambda x: x/100 a=np.vectorize(f)(self.df[self.freqs].to_numpy()) self.df.loc[:, self.freqs]=a # Convert transmittance/reflectance to absorbance def to_absorb(self,mode="R",percent=False): # If source is transmittance, use mode="T", if reflectance mode="R" # Functions only valid if data is between 0-1 (percent=True) # otherwise convert the T/R values to percent if not percent: self.to_percent() if mode=="T": f = lambda x: math.log10(1/x) elif mode=="R": f = lambda x: ((1-x)**2)/x else: raise Exception("Invalid mode, has to be either T or R") a=np.vectorize(f)(self.df[self.freqs].to_numpy()) self.df.loc[:, self.freqs]=a # Detrending def detrend(self, degree=1): # Calculates a linear trend or a constant (the mean) for every # spectral line and subtracts it # Result is slightly different from manually implementing it!!! x=np.array([self.freqs]).reshape(-1,) Y=self.df[self.freqs].to_numpy() for i in range(Y.shape[0]): y=Y[i,:] fit = np.polyfit(x, y, degree) trend=np.polyval(fit, x) y=y-trend Y[i,:]=y self.df.loc[:, self.freqs]=Y # Savitzky-Golay filter def sgfilter(self,window_length=13,polyorder=2,deriv=1): a=signal.savgol_filter(self.df[self.freqs] ,window_length, polyorder, deriv, delta=1.0,axis=-1, mode='interp', cval=0.0) self.df[self.freqs]=a # SNV def snv(self): scaler = StandardScaler(with_mean=True, with_std=True) scaler.fit(self.df[self.freqs].T) self.df.loc[:, self.freqs]=scaler.transform( self.df[self.freqs].T).T # MSC def msc(self): ref=np.mean(self.df[self.freqs],axis=0) X=np.matrix(self.df[self.freqs],dtype='float') for i in range(self.df.shape[0]): A=np.vstack([np.matrix(ref,dtype='float'), np.ones(X.shape[1])]).T coef, resids, rank, s = np.linalg.lstsq( A,X[i,:].T) X[i,:]=(X[i,:]-coef[1])/coef[0] self.df[self.freqs]=X # OSC is supervised preprocessing, so it needs CV, for which a joint modeling step is needed # this method only crossvalidates using PLS, for other models use the built in osc_params def osc_cv(self,nicomp_range=range(10,130,10),ncomp_range=range(1,5),epsilon = 10e-6, max_iters = 20,model="pls",model_parameter_range=range(1,11)): # Separating X from Y for PLS # Needs to be converted to numpy array from pandas df X=self.df[self.freqs].to_numpy() # Y need to be converted to numpy array from pandas series and reshaped to (N,1) from (N,) Y=self.df[self.y_name].to_numpy().reshape(-1, 1) # CV based on measurement day if self.cval=="MD": cv = LeaveOneGroupOut() folds=list(cv.split(X=X,y=Y,groups=self.df[self.date_name])) # kfold CV elif self.cval=="kfold": cv = KFold(n_splits=self.cval_param) folds=list(cv.split(X)) else: raise InputError("Invalid CV type!") #Matrix for cv values for all the possible parameter combinations cv_RMSE_all=np.zeros([len(folds),len(model_parameter_range),len(nicomp_range),len(ncomp_range)]) i=0 #possible internal component values for osc for nicomp in nicomp_range: j=0 #possible removed component values for osc for ncomp in ncomp_range: k=0 for train, val in folds: # train osc osc_obj=OSC("SWosc",nicomp,ncomp,epsilon, max_iters) X_osc_train, W,P,mu_x=osc_obj.fit(X[train],Y[train]) # apply osc on validation set # mean center data, alternatively the training set's mean can be used # if you think it is a better estimate by mean="training" X_osc_val=osc_obj.transform(X[val],mean="estimate") l=0 #possible model patrameter values for pls for param in model_parameter_range: #setup pls model pls = PLSRegression(param,scale=False) #train pls pls.fit(X_osc_train, Y[train]) #predict with pls and calculate error cv_RMSE_all[k,l,i,j]=metrics.mean_squared_error( Y[val], pls.predict(X_osc_val))**0.5 l=l+1 k=k+1 j=j+1 i=i+1 # Calculate mean performance across the folds cv_RMSE_mean=np.mean(cv_RMSE_all,axis=0) # Find maximum for every osc paremeter combination cv_RMSE=np.amax(cv_RMSE_mean, axis=0) cv_RPD=np.std(self.df[self.y_name])/cv_RMSE fig = plt.figure(figsize=(10,5)) ax = plt.axes(projection="3d") # Cartesian indexing (x,y) transposes matrix indexing (i,j) x, y = np.meshgrid(list(ncomp_range),list(nicomp_range)) z=cv_RPD ls = LightSource(200, 45) rgb = ls.shade(z, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft') surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, facecolors=rgb, linewidth=0, antialiased=False, shade=False) plt.show() # Best model print("Best RMSE: ",np.amin(cv_RMSE)) print("Best RPD: ",np.std(self.df[self.y_name])/np.amin(cv_RMSE)) print("Number of internal components: ",nicomp_range[np.where( cv_RMSE==np.amin(cv_RMSE))[0][0]]) print("Number of removed components: ",ncomp_range[np.where( cv_RMSE==np.amin(cv_RMSE))[1][0]]) return cv_RMSE ############### Plotting methods # Plotting the current processed version of the spectra def plot_spectra(self, processed=True, savefig=False, *args): fig,ax = plt.subplots(figsize=(12, 8)) if processed: # Plotting unprocessed spectra ax.plot(self.df[self.freqs].T) else: # Plotting processed spectra ax.plot(self.df0[self.freqs].T) for arg in args: ax.axvline(x=arg) if savefig: plt.savefig('plot_spectra.pdf') # Plotting the fitted PLS model's regression weights on the spectra def plot_pls(self): #r=self.pls_obj.x_rotations_ r=self.pls_obj.coef_ fig, ax = plt.subplots(figsize=(12, 8)) ax.plot(self.df[self.freqs].T,c="grey",alpha=1) ax.pcolorfast((np.min(self.freqs),np.max(self.freqs)), ax.get_ylim(), r.T,cmap='seismic',vmin=-1,vmax=1, alpha=1) norm = Normalize(vmin=-1, vmax=1) scalarmappaple = cm.ScalarMappable(norm=norm,cmap='seismic') scalarmappaple.set_array(r.T) fig.colorbar(scalarmappaple) # Plotting the fitted MCW-PLS model's sample weights for the individual spectra def plot_mcw_pls(self): a=np.diagonal(self.mcw_pls_obj.sample_weights) cmap = plt.cm.get_cmap('seismic') fig, ax = plt.subplots(figsize=(6, 4)) for i in range(self.df[self.freqs].shape[0]): row=self.df[self.freqs].iloc[i] ax.plot(row,c=cmap(a[i]),alpha=1) scalarmappaple = cm.ScalarMappable(cmap=cmap) scalarmappaple.set_array(a) plt.colorbar(scalarmappaple) r=self.mcw_pls_obj.BPLS fig, ax = plt.subplots(figsize=(6, 4)) ax.plot(self.df[self.freqs].T,c="grey",alpha=1) ax.pcolorfast((np.min(self.freqs),np.max(self.freqs)), ax.get_ylim(), r.T,cmap='seismic',vmin=-1,vmax=1, alpha=1) norm = Normalize(vmin=-1, vmax=1) scalarmappaple = cm.ScalarMappable(norm=norm,cmap='seismic') scalarmappaple.set_array(r.T) fig.colorbar(scalarmappaple) ######################### Modeling methods # Support vector regression # For fitting a model with given parameters def svr_pipe(self,gam,c,eps): X=self.df[self.freqs].to_numpy() Y=self.df[self.y_name].to_numpy().reshape(-1, 1) self.svr_pipe_obj = Pipeline([('scaler', StandardScaler()), ('support vector regression', SVR(kernel="rbf",gamma=gam,C=c,epsilon=eps))]) self.svr_pipe_obj.fit(X, Y) # For evaluating a model with given parameters def svr_eval(self, gam,c,eps): X=self.df[self.freqs].to_numpy() Y=self.df[self.y_name].to_numpy().reshape(-1, 1) pipe = Pipeline([('scaler', StandardScaler()), ('support vector regression', SVR(kernel="rbf",gamma=gam,C=c,epsilon=eps))]) self.eval_df=pd.DataFrame(columns = ["estimated","true"]) if self.cval=="MD": cv = LeaveOneGroupOut() folds=list(cv.split(X=X,y=Y,groups=self.df[self.date_name])) cv_RMSE=np.zeros(len(folds)) i=0 for train, val in folds: pipe.fit(X[train], Y[train]) cv_RMSE[i]=metrics.mean_squared_error( Y[val], pipe.predict(X[val]))**0.5 eval_new=pd.DataFrame({'estimated': pipe.predict(X[val]).reshape((-1,)), 'true': Y[val].reshape((-1,))}) self.eval_df=self.eval_df.append(eval_new, ignore_index = True) i=i+1 y_true=self.eval_df["true"] y_est=self.eval_df["estimated"] print(np.std(y_true)/metrics.mean_squared_error(y_true,y_est)**0.5) print(np.std(y_true)/np.mean(cv_RMSE)) residuals=y_true-y_est linreg = stats.linregress(y_true, y_est) blue='#1f77b4' # Observed vs predicted fig,ax = plt.subplots(figsize=(5, 5)) ax.scatter(x=y_true,y=y_est) # Perfect prediction ax.plot([np.min(Y), np.max(Y)], [np.min(Y), np.max(Y)], 'k--', color = 'r',label='Perfect fit') # Model fit ax.plot(y_true, linreg.intercept + linreg.slope*y_true, blue,label='Predicted fit') # Text location needs to be picked manually #ax.text(48, 56, 'R$^2$ = %0.002f' % linreg.rvalue,color=blue) ax.text(93, 95, 'R$^2$ = %0.002f' % linreg.rvalue,color=blue) ax.set(xlabel="Observed (%)",ylabel="Predicted (%)") ax.legend() # Predicted vs residuals fig,ax = plt.subplots(figsize=(5, 5)) ax.scatter(x=y_est,y=residuals) ax.axhline(y=np.mean(residuals), color='r', linestyle='--',label='Mean = %0.6f' % np.mean(residuals)) ax.set(xlabel="Predicted (%)",ylabel="Residuals (%)") ax.legend() # QQ plot fig,ax = plt.subplots(figsize=(5, 5)) stats.probplot(residuals,plot=ax) ax.get_lines()[0].set_markerfacecolor(blue) ax.get_lines()[0].set_markeredgecolor(blue) ax.get_figure().gca().set_title("") ax.get_figure().gca().set_ylabel("Residuals (%)") # Residual density plot with normal density normx = np.linspace(-8,8,1000) normy = stats.norm.pdf(normx, loc=np.mean(residuals), scale=np.std(residuals)) fig,ax = plt.subplots(figsize=(5, 5)) sns.distplot(residuals,norm_hist=True,ax=ax,color=blue) ax.plot(normx,normy,color='r') sns.set_style("white") # Sorted alphas plot # Get alphas alphas=self.svr_pipe_obj['support vector regression'].dual_coef_ # Take abs value and sort alphas=abs(alphas) alphas=np.sort(alphas) # Add zero alphas alphas=np.vstack((np.zeros((X.shape[0]-len(alphas.T),1)),alphas.T)) fig,ax = plt.subplots(figsize=(5, 5)) ax.plot(alphas) ax.set(xlabel="Sample ranking",ylabel="SV absolute α value") # Method for tuning an SVM regression's free parameters based on CV # OSC built in option, as this preprocessing is supervised so needs to be validated at the same time def svr_cv(self,gam_start=0.001, c_start=100, eps_start=0.1, optimization="grid",gridscale=5,non_improve_lim=10,verbose=False, osc_params=None): # Separating X from Y for PLS X=self.df[self.freqs].to_numpy() Y=self.df[self.y_name].to_numpy().reshape(-1, 1) sample_std=np.std(self.df[self.y_name]) # CV based on measurement day if self.cval=="MD": cv = LeaveOneGroupOut() folds=list(cv.split(X=X,y=Y,groups=self.df[self.date_name])) # kfold CV elif self.cval=="kfold": cv = KFold(n_splits=self.cval_param) folds=list(cv.split(X)) else: raise InputError("Invalid CV type!") if optimization=="none": cv_RMSE=np.zeros(len(folds)) # Only use RBF kernels, also standardize data pipe = Pipeline([('scaler', StandardScaler()), ('support vector regression', SVR(kernel="rbf",gamma=gam_start,C=c_start,epsilon=eps_start))]) l=0 for train, val in folds: pipe.fit(X[train], Y[train]) cv_RMSE[l]=metrics.mean_squared_error( Y[val], pipe.predict(X[val]))**0.5 l=l+1 gam_best=gam_start c_best=c_start eps_best=eps_start rpd_best=sample_std/
np.mean(cv_RMSE)
numpy.mean
# coding=utf-8 # @Time : 2020/12/29 17:35 # @Auto : zzf-jeff from torchocr.datasets.pipelines.compose import PIPELINES from torchvision import transforms import cv2 import os import numpy as np @PIPELINES.register_module() class KeepKeys(object): def __init__(self, keep_keys, **kwargs): self.keep_keys = keep_keys def __call__(self, data): if len(self.keep_keys): data_dict = {} for k, v in data.items(): if k in self.keep_keys: data_dict[k] = v return data_dict else: return data @PIPELINES.register_module() class Normalize(): def __init__(self, mean, std, to_rgb=False): self.mean = mean self.std = std def __call__(self, data): transform = transforms.Normalize(mean=self.mean, std=self.std) data['image'] = transform(data['image']) return data @PIPELINES.register_module() class ToTensor(object): """Image ToTensor -->numpy2Tensor Args: image :原始图片 Returns: result : Over ToTensor """ def __call__(self, data): transform = transforms.ToTensor() data['img'] = transform(data['img']) return data @PIPELINES.register_module() class DecodeImage(object): def __init__(self, img_mode='RGB', channel_first=False, **kwargs): """Decode image,read img :param img_mode: GRAY or RGB :param channel_first: hwc-->chw :param kwargs: """ self.img_mode = img_mode self.channel_first = channel_first def __call__(self, data): try: if data is None: return None img_path = data['img_path'] img = cv2.imread(img_path) if self.img_mode == 'GRAY': img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) elif self.img_mode == 'RGB': assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape) img = img[:, :, ::-1] # BGR-->RGB if self.channel_first: img = img.transpose((2, 0, 1)) data['image'] = img return data except Exception as e: file_name = os.path.basename(__file__).split(".")[0] print('{} --> '.format(file_name), e) return None @PIPELINES.register_module() class NormalizeImage(object): """ normalize image such as substract mean, divide std """ def __init__(self, scale=None, mean=None, std=None, order='hwc', **kwargs): if isinstance(scale, str): scale = eval(scale) self.scale = np.float32(scale if scale is not None else 1.0 / 255.0) shape = (3, 1, 1) if order == 'chw' else (1, 1, 3) self.mean = np.array(mean).reshape(shape).astype('float32') self.std =
np.array(std)
numpy.array
# Licensed under a 3-clause BSD style license - see LICENSE.rst import os import random import numpy as np import pytest from astropy.wcs import WCS from astropy.io.fits import Header from numpy.testing import assert_allclose from ... import reproject_exact, reproject_interp from ..coadd import reproject_and_coadd from ...tests.helpers import array_footprint_to_hdulist ATOL = 1.e-9 DATA = os.path.join(os.path.dirname(__file__), '..', '..', 'tests', 'data') @pytest.fixture(params=[reproject_interp, reproject_exact], ids=["interp", "exact"]) def reproject_function(request): return request.param class TestReprojectAndCoAdd(): def setup_method(self, method): self.wcs = WCS(naxis=2) self.wcs.wcs.ctype = 'RA---TAN', 'DEC--TAN' self.wcs.wcs.crpix = 322, 151 self.wcs.wcs.crval = 43, 23 self.wcs.wcs.cdelt = -0.1, 0.1 self.wcs.wcs.equinox = 2000. self.array = np.random.random((399, 334)) def _get_tiles(self, views): # Given a list of views as (imin, imax, jmin, jmax), construct # tiles that can be passed into the co-adding code input_data = [] for (jmin, jmax, imin, imax) in views: array = self.array[jmin:jmax, imin:imax].copy() wcs = self.wcs.deepcopy() wcs.wcs.crpix[0] -= imin wcs.wcs.crpix[1] -= jmin input_data.append((array, wcs)) return input_data @property def _nonoverlapping_views(self): ie = (0, 122, 233, 245, 334) je = (0, 44, 45, 333, 335, 399) views = [] for i in range(4): for j in range(5): views.append((je[j], je[j+1], ie[i], ie[i+1])) return views @property def _overlapping_views(self): ie = (0, 122, 233, 245, 334) je = (0, 44, 45, 333, 335, 399) views = [] for i in range(4): for j in range(5): views.append((je[j], je[j+1] + 10, ie[i], ie[i+1] + 10)) return views @pytest.mark.parametrize('combine_function', ['mean', 'sum']) def test_coadd_no_overlap(self, combine_function, reproject_function): # Make sure that if all tiles are exactly non-overlapping, and # we use 'sum' or 'mean', we get the exact input array back. input_data = self._get_tiles(self._nonoverlapping_views) input_data = [(self.array, self.wcs)] array, footprint = reproject_and_coadd(input_data, self.wcs, shape_out=self.array.shape, combine_function=combine_function, reproject_function=reproject_function) assert_allclose(array, self.array, atol=ATOL) assert_allclose(footprint, 1, atol=ATOL) def test_coadd_with_overlap(self, reproject_function): # Here we make the input tiles overlapping. We can only check the # mean, not the sum. input_data = self._get_tiles(self._overlapping_views) array, footprint = reproject_and_coadd(input_data, self.wcs, shape_out=self.array.shape, combine_function='mean', reproject_function=reproject_function) assert_allclose(array, self.array, atol=ATOL) def test_coadd_background_matching(self, reproject_function): # Test out the background matching input_data = self._get_tiles(self._overlapping_views) for array, wcs in input_data: array += random.uniform(-3, 3) # First check that without background matching the arrays don't match array, footprint = reproject_and_coadd(input_data, self.wcs, shape_out=self.array.shape, combine_function='mean', reproject_function=reproject_function) assert not np.allclose(array, self.array, atol=ATOL) # Now check that once the backgrounds are matched the values agree array, footprint = reproject_and_coadd(input_data, self.wcs, shape_out=self.array.shape, combine_function='mean', reproject_function=reproject_function, match_background=True) # The absolute values of the two arrays will be offset since any # solution that reproduces the offsets between images is valid assert_allclose(array - np.mean(array), self.array - np.mean(self.array), atol=ATOL) def test_coadd_background_matching_with_nan(self, reproject_function): # Test out the background matching when NaN values are present. We do # this by using three arrays with the same footprint but with different # parts masked. array1 = self.array.copy() + random.uniform(-3, 3) array2 = self.array.copy() + random.uniform(-3, 3) array3 = self.array.copy() + random.uniform(-3, 3) array1[:, 122:] = np.nan array2[:, :50] = np.nan array2[:, 266:] = np.nan array3[:, :199] = np.nan input_data = [(array1, self.wcs), (array2, self.wcs), (array3, self.wcs)] array, footprint = reproject_and_coadd(input_data, self.wcs, shape_out=self.array.shape, combine_function='mean', reproject_function=reproject_function, match_background=True) # The absolute values of the two arrays will be offset since any # solution that reproduces the offsets between images is valid assert_allclose(array - np.mean(array), self.array - np.mean(self.array), atol=ATOL) def test_coadd_with_weights(self, reproject_function): # Make sure that things work properly when specifying weights array1 = self.array + 1 array2 = self.array - 1 weight1 = np.cumsum(np.ones_like(self.array), axis=1) - 1 weight2 = weight1[:, ::-1] input_data = [(array1, self.wcs), (array2, self.wcs)] input_weights = [weight1, weight2] array, footprint = reproject_and_coadd(input_data, self.wcs, shape_out=self.array.shape, combine_function='mean', input_weights=input_weights, reproject_function=reproject_function, match_background=False) expected = self.array + (2 * (weight1 / weight1.max()) - 1)
assert_allclose(array, expected, atol=ATOL)
numpy.testing.assert_allclose
# _*_ coding: utf-8 _*_ """ Manipulating functions for grid. References: * https://bitbucket.org/tmiyachi/pymet """ import numpy as np from numba import jit from scipy import interpolate, ndimage from pyproj import Geod from dk_met_base import constants, arr NA = np.newaxis a0 = constants.Re g = constants.g0 PI = constants.pi d2r = PI/180. def calc_dx_dy(lon, lat, shape='WGS84', radius=6370997.): """ This definition calculates the distance between grid points that are in a latitude/longitude format. Using pyproj GEOD; different Earth Shapes https://jswhit.github.io/pyproj/pyproj.Geod-class.html Common shapes: 'sphere', 'WGS84', 'GRS80' :param lon: 1D or 2D longitude array. :param lat: 1D or 2D latitude array. :param shape: earth shape. :param radius: earth radius. :return: dx, dy; 2D arrays of distances between grid points in the x and y direction in meters :Example: >>> lat = np.arange(90,-0.1,-0.5) >>> lon = np.arange(0,360.1,0.5) >>> dx, dy = calc_dx_dy(lon, lat) """ # check longitude and latitude if lon.ndim == 1: longitude, latitude = np.meshgrid(lon, lat) else: longitude = lon latitude = lat if radius != 6370997.: gg = Geod(a=radius, b=radius) else: gg = Geod(ellps=shape) dx = np.empty(latitude.shape) dy = np.zeros(longitude.shape) for i in range(latitude.shape[1]): for j in range(latitude.shape[0] - 1): _, _, dx[j, i] = gg.inv( longitude[j, i], latitude[j, i], longitude[j + 1, i], latitude[j + 1, i]) dx[j + 1, :] = dx[j, :] for i in range(latitude.shape[1] - 1): for j in range(latitude.shape[0]): _, _, dy[j, i] = gg.inv( longitude[j, i], latitude[j, i], longitude[j, i + 1], latitude[j, i + 1]) dy[:, i + 1] = dy[:, i] return dx, dy def dvardx(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ calculate center finite difference along x or longitude. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray :Examples: >>> var.shape (24, 73, 72) >>> lon = np.arange(0, 180, 2.5) >>> lat = np.arange(-90, 90.1, 2.5) >>> result = dvardx(var, lon, lat, 2, 1, cyclic=False) >>> result.shape (24, 73, 72) """ var = np.array(var) ndim = var.ndim var = np.rollaxis(var, xdim, ndim) if cyclic and sphere: dvar = np.concatenate(((var[..., 1] - var[..., -1])[..., NA], (var[..., 2:] - var[..., :-2]), (var[..., 0] - var[..., -2])[..., NA]), axis=-1) dx = np.r_[(lon[1] + 360 - lon[-1]), (lon[2:] - lon[:-2]), (lon[0] + 360 - lon[-2])] else: dvar = np.concatenate(((var[..., 1] - var[..., 0])[..., NA], (var[..., 2:] - var[..., :-2]), (var[..., -1] - var[..., -2])[..., NA]), axis=-1) dx = np.r_[(lon[1] - lon[0]), (lon[2:] - lon[:-2]), (lon[-1] - lon[-2])] dvar = np.rollaxis(dvar, ndim - 1, xdim) if sphere: dx = a0 * PI / 180. * arr.expand(dx, ndim, xdim) * \ arr.expand(np.cos(lat * d2r), ndim, ydim) else: dx = arr.expand(dx, ndim, xdim) out = dvar / dx return out def dvardy(var, lat, ydim, sphere=True): """ calculate center finite difference along y or latitude. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lat: array_like, latitude :param ydim: the latitude dimension index :param sphere: sphere coordinate :return: ndarray :Examples: >>> var.shape (24, 73, 144) >>> lat = np.arange(-90, 90.1, 2.5) >>> result = dvardy(var, lat, 1) >>> result.shape (24, 73, 144) """ var = np.array(var) ndim = var.ndim var = np.rollaxis(var, ydim, ndim) dvar = np.concatenate([(var[..., 1] - var[..., 0])[..., NA], (var[..., 2:]-var[..., :-2]), (var[..., -1] - var[..., -2])[..., NA]], axis=-1) dy = np.r_[(lat[1]-lat[0]), (lat[2:]-lat[:-2]), (lat[-1]-lat[-2])] if sphere: dy = a0*PI/180.*dy out = dvar/dy out = np.rollaxis(out, ndim-1, ydim) return out def dvardp(var, lev, zdim, punit=100.): """ calculate center finite difference along vertical coordinate. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lev: 1d-array, isobaric levels. :param zdim: the vertical dimension index. :param punit: pressure level units. :return: ndarray. """ var = np.array(var) ndim = var.ndim lev = lev * punit # roll lat dim axis to last var = np.rollaxis(var, zdim, ndim) dvar = np.concatenate([(var[..., 1] - var[..., 0])[..., NA], (var[..., 2:] - var[..., :-2]), (var[..., -1] - var[..., -2])[..., NA]], axis=-1) dp = np.r_[np.log(lev[1] / lev[0]) * lev[0], np.log(lev[2:] / lev[:-2]) * lev[1:-1], np.log(lev[-1] / lev[-2]) * lev[-1]] out = dvar / dp # reroll lat dim axis to original dim out = np.rollaxis(out, ndim - 1, zdim) return out def d2vardx2(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ calculate second center finite difference along x or longitude. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ var = np.array(var) ndim = var.ndim # roll lon dim axis to last var = np.rollaxis(var, xdim, ndim) if cyclic and sphere: dvar = np.concatenate(((var[..., 1]-2*var[..., 0] + var[..., -1])[..., NA], (var[..., 2:]-2*var[..., 1:-1] + var[..., :-2]), (var[..., 0]-2*var[..., -1] + var[..., -2])[..., NA]), axis=-1) dx = np.r_[(lon[1]+360-lon[-1]), (lon[2:]-lon[:-2]), (lon[0]+360-lon[-2])] else: # edge is zero dvar = np.concatenate(((var[..., 0]-var[..., 0])[..., NA], (var[..., 2:]-2*var[..., 1:-1]+var[..., :-2]), (var[..., 0]-var[..., 0])[..., NA]), axis=-1) dx = np.r_[(lon[1]-lon[0]), (lon[2:]-lon[:-2]), (lon[-1]-lon[-2])] dvar = np.rollaxis(dvar, ndim-1, xdim) if sphere: dx2 = a0 ** 2 * (PI/180.) ** 2 * arr.expand(dx ** 2, ndim, xdim) * \ arr.expand(np.cos(lat * d2r) ** 2, ndim, ydim) else: dx2 = arr.expand(dx ** 2, ndim, xdim) out = 4.*dvar/dx2 # reroll lon dim axis to original dim out = np.rollaxis(out, ndim-1, xdim) return out def d2vardy2(var, lat, ydim, sphere=True): """ calculate second center finite difference along y or latitude. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var: ndarray, grid values. :param lat: array_like, latitude :param ydim: the latitude dimension index :param sphere: sphere coordinate :return: ndarray """ var = np.array(var) ndim = var.ndim # roll lat dim axis to last var = np.rollaxis(var, ydim, ndim) # edge is zero dvar = np.concatenate([(var[..., 0] - var[..., 0])[..., NA], (var[..., 2:] - 2*var[..., 1:-1] + var[..., :-2]), (var[..., 0] - var[..., 0])[..., NA]], axis=-1) dy = np.r_[(lat[1]-lat[0]), (lat[2:]-lat[:-2]), (lat[-1]-lat[-2])] if sphere: dy2 = a0**2 * dy**2 else: dy2 = dy**2 out = 4.*dvar/dy2 # reroll lat dim axis to original dim out = np.rollaxis(out, ndim-1, ydim) return out def dvardvar(var1, var2, dim): """ Calculate d(var1)/d(var2) along axis=dim. https://bitbucket.org/tmiyachi/pymet/src/8df8e3ff2f899d625939448d7e96755dfa535357/pymet/grid.py :param var1: numpy nd array, denominator of derivative :param var2: numpy nd array, numerator of derivative :param dim: along dimension. :return: """ var1, var2 = np.array(var1), np.array(var2) ndim = var1.ndim # roll dim axis to last var1 = np.rollaxis(var1, dim, ndim) var2 = np.rollaxis(var2, dim, ndim) dvar1 = np.concatenate([(var1[..., 1] - var1[..., 0])[..., NA], (var1[..., 2:] - var1[..., :-2]), (var1[..., -1] - var1[..., -2])[..., NA]], axis=-1) dvar2 = np.concatenate([(var2[..., 1] - var2[..., 0])[..., NA], (var2[..., 2:] - var2[..., :-2]), (var2[..., -1] - var2[..., -2])[..., NA]], axis=-1) out = dvar1 / dvar2 # reroll lat dim axis to original dim out = np.rollaxis(out, ndim - 1, dim) return out def div(u, v, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate horizontal divergence. :param u: ndarray, u-component wind. :param v: ndarray, v-component wind. :param lon: array_like, longitude. :param lat: array_like, latitude. :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ u, v = np.array(u), np.array(v) ndim = u.ndim out = dvardx(u, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) + dvardy(v, lat, ydim, sphere=sphere) if sphere: out = out - v * arr.expand(np.tan(lat * d2r), ndim, ydim) / a0 out = np.rollaxis(out, ydim, 0) out[0, ...] = 0. out[-1, ...] = 0. out = np.rollaxis(out, 0, ydim + 1) return out def rot(u, v, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate vertical vorticity. :param u: ndarray, u-component wind. :param v: ndarray, v-component wind. :param lon: array_like, longitude. :param lat: array_like, latitude. :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ u, v = np.array(u), np.array(v) ndim = u.ndim out = dvardx(v, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) - dvardy(u, lat, ydim, sphere=sphere) if sphere: out = out + u * arr.expand(np.tan(lat * d2r), ndim, ydim) / a0 out = np.rollaxis(out, ydim, 0) out[0, ...] = 0. out[-1, ...] = 0. out = np.rollaxis(out, 0, ydim + 1) return out def laplacian(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate laplacian operation on sphere. :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ var = np.asarray(var) ndim = var.ndim if sphere: out = d2vardx2(var, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) + \ d2vardy2(var, lat, ydim, sphere=sphere) - \ arr.expand(np.tan(lat * d2r), ndim, ydim) * \ dvardy(var, lat, ydim)/a0 else: out = d2vardx2(var, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) + \ d2vardy2(var, lat, ydim, sphere=sphere) return out def grad(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate gradient operator. :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ var = np.asarray(var) outu = dvardx(var, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) outv = dvardy(var, lat, ydim, sphere=sphere) return outu, outv def skgrad(var, lon, lat, xdim, ydim, cyclic=True, sphere=True): """ Calculate skew gradient. :param var: ndarray, grid values. :param lon: array_like, longitude :param lat: array_like, latitude :param xdim: the longitude dimension index :param ydim: the latitude dimension index :param cyclic: east-west boundary is cyclic :param sphere: sphere coordinate :return: ndarray """ var = np.asarray(var) outu = -dvardy(var, lat, ydim, sphere=sphere) outv = dvardx(var, lon, lat, xdim, ydim, cyclic=cyclic, sphere=sphere) return outu, outv def gradient_sphere(f, *varargs): """ Return the gradient of a 2-dimensional array on a sphere given a latitude and longitude vector. The gradient is computed using central differences in the interior and first differences at the boundaries. The returned gradient hence has the same shape as the input array. https://github.com/scavallo/python_scripts/blob/master/utils/weather_modules.py :param f: A 2-dimensional array containing samples of a scalar function. :param varargs: latitude, longitude and so on. :return: dfdx and dfdy arrays of the same shape as `f` giving the derivative of `f` with respect to each dimension. :Example: temperature = temperature(pressure,latitude,longitude) levs = pressure vector lats = latitude vector lons = longitude vector >>> tempin = temperature[5,:,:] >>> dfdlat, dfdlon = gradient_sphere(tempin, lats, lons) >>> dfdp, dfdlat, dfdlon = gradient_sphere(temperature, levs, lats, lons) """ r_earth = 6371200. N = f.ndim # number of dimensions n = len(varargs) # number of arguments argsin = list(varargs) if N != n: raise SyntaxError( "dimensions of input must match the remaining arguments") df = np.gradient(f) if n == 2: lats = argsin[0] lons = argsin[1] dfdy = df[0] dfdx = df[1] elif n == 3: levs = argsin[0] lats = argsin[1] lons = argsin[2] dfdz = df[0] dfdy = df[1] dfdx = df[2] else: raise SyntaxError("invalid number of arguments") otype = f.dtype.char if otype not in ['f', 'd', 'F', 'D']: otype = 'd' latarr = np.zeros_like(f).astype(otype) lonarr = np.zeros_like(f).astype(otype) if N == 2: nlat, nlon = np.shape(f) for jj in range(0, nlat): latarr[jj, :] = lats[jj] for ii in range(0, nlon): lonarr[:, ii] = lons[ii] else: nz, nlat, nlon = np.shape(f) for jj in range(0, nlat): latarr[:, jj, :] = lats[jj] for ii in range(0, nlon): lonarr[:, :, ii] = lons[ii] # use central differences on interior and first differences on endpoints dlats = np.zeros_like(lats).astype(otype) dlats[1:-1] = (lats[2:] - lats[:-2]) dlats[0] = (lats[1] - lats[0]) dlats[-1] = (dlats[-2] - dlats[-1]) dlons = np.zeros_like(lons).astype(otype) dlons[1:-1] = (lons[2:] - lons[:-2]) dlons[0] = (lons[1] - lons[0]) dlons[-1] = (dlons[-2] - dlons[-1]) dlatarr = np.zeros_like(f).astype(otype) dlonarr = np.zeros_like(f).astype(otype) if N == 2: for jj in range(0, nlat): dlatarr[jj, :] = dlats[jj] for ii in range(0, nlon): dlonarr[:, ii] = dlons[ii] elif N == 3: for jj in range(0, nlat): dlatarr[:, jj, :] = dlats[jj] for ii in range(0, nlon): dlonarr[:, :, ii] = dlons[ii] dlatsrad = dlatarr * (PI / 180.) dlonsrad = dlonarr * (PI / 180.) latrad = latarr * (PI / 180.) if n == 2: dx1 = r_earth * dlatsrad dx2 = r_earth * np.cos(latrad) * dlonsrad dfdy = dfdy / dx1 dfdx = dfdx / dx2 return dfdy, dfdx elif n == 3: dx1 = r_earth * dlatsrad dx2 = r_earth * np.cos(latrad) * dlonsrad dfdy = dfdy / dx1 dfdx = dfdx / dx2 zin = levs dz = np.zeros_like(zin).astype(otype) dz[1:-1] = (zin[2:] - zin[:-2]) / 2.0 dz[0] = (zin[1] - zin[0]) dz[-1] = (zin[-1] - zin[-2]) dx3 = np.ones_like(f).astype(otype) for kk in range(0, nz): dx3[kk, :, :] = dz[kk] dfdz = dfdz / dx3 return dfdz, dfdy, dfdx def vint(var, bottom, top, lev, zdim, punit=100.): """ Calculate vertical integration. :param var: array_like. :param bottom: bottom boundary of integration. :param top: top boundary of integration. :param lev: isobaric levels. :param zdim: vertical dimension. :param punit: levels units. :return: array_like. """ var = np.ma.asarray(var) lev = np.asarray(lev) ndim = var.ndim lev = lev[(lev <= bottom) & (lev >= top)] lev_m = np.r_[bottom, (lev[1:] + lev[:-1])/2., top] dp = lev_m[:-1] - lev_m[1:] # roll lat dim axis to last var = arr.mrollaxis(var, zdim, ndim) out = var[..., (lev <= bottom) & (lev >= top)] * dp / g * punit if bottom > top: out = out.sum(axis=-1) else: out = -out.sum(axis=-1) return out def total_col(infld, pres, temp, hght): """ Compute column integrated value of infld. https://github.com/scavallo/classcode/blob/master/utils/weather_modules.py :param infld: Input 3D field to column integrate :param pres: Input 3D air pressure (Pa) :param temp: Input 3D temperature field (K) :param hght: Input 3D geopotential height field (m :return: Output total column integrated value """ [iz, iy, ix] = np.shape(infld) density = pres / (287 * temp) tmp = pres[0, :, :].squeeze() coltot = np.zeros_like(tmp).astype('f') for jj in range(0, iy): for ii in range(0, ix): colnow = infld[:, jj, ii] * density[:, jj, ii] hghtnow = hght[:, jj, ii].squeeze() coltot[jj, ii] = np.trapz(colnow[::-1], hghtnow[::-1]) return coltot def vmean(var, bottom, top, lev, zdim): """ Calculate vertical mean. :param var: array_like. :param bottom: bottom boundary of integration. :param top: top boundary of integration. :param lev: isobaric levels. :param zdim: vertical dimension. :return: array_like. """ var = np.ma.asarray(var) lev = np.asarray(lev) ndim = var.ndim lev = lev[(lev <= bottom) & (lev >= top)] lev_m = np.r_[bottom, (lev[1:] + lev[:-1])/2., top] dp = lev_m[:-1] - lev_m[1:] # roll lat dim axis to last var = arr.mrollaxis(var, zdim, ndim) out = var[..., (lev <= bottom) & (lev >= top)] * dp out = out.sum(axis=-1)/(dp.sum()) return out def vinterp(var, oldz, newz, zdim, logintrp=True, bounds_error=True): """ perform vertical linear interpolation. :param var: array_like variable. :param oldz: original vertical level. :param newz: new vertical level. :param zdim: the dimension of vertical. :param logintrp: log linear interpolation. :param bounds_error: options for scipy.interpolate.interp1d. :return: """ var = np.array(var) ndim = var.ndim new_z = np.array(newz) old_z = np.array(oldz) if logintrp: old_z = np.log(old_z) new_z = np.log(new_z) old_zn = var.shape[zdim] new_zn = len(new_z) # roll z dim axis to last var = np.rollaxis(var, zdim, ndim) old_shape = var.shape new_shape = list(old_shape) new_shape[-1] = new_zn var = var.reshape(-1, old_zn) if old_z.ndim == ndim: old_z = np.rollaxis(old_z, zdim, ndim).reshape(-1, old_zn) f = interpolate.interp1d(old_z, var, axis=-1, kind='linear', bounds_error=bounds_error) out = f(new_z) elif old_z.ndim == 1: f = interpolate.interp1d(old_z, var, kind='linear', bounds_error=bounds_error) out = f(new_z) # reroll lon dim axis to original dim out = out.reshape(new_shape) out = np.rollaxis(out, ndim - 1, zdim) return out def _grid_smooth_bes(x): """ Bessel function. (copied from RIP) :param x: float number :return: bessel function value. """ rint = 0.0 for i in range(1000): u = i * 0.001 - 0.0005 rint = rint + np.sqrt(1 - u*u) * np.cos(x*u)*0.001 return 2.0 * x * rint / (4.0 *
np.arctan(1.0)
numpy.arctan
import numpy as np import pandas as pd import pytest from numpy.testing import assert_almost_equal from numpy.testing import assert_array_almost_equal from ruspy.config import TEST_RESOURCES_DIR from ruspy.estimation.estimation import estimate TEST_FOLDER = TEST_RESOURCES_DIR + "replication_test/" @pytest.fixture(scope="module") def inputs(): out = {} disc_fac = 0.9999 num_states = 90 scale = 1e-5 num_params = 3 lb = np.concatenate((np.full(num_states, -np.inf), np.full(num_params, 0.0))) ub = np.concatenate((
np.full(num_states, 50.0)
numpy.full
import numpy as np from cvxopt import matrix from cvxopt import solvers import numpy as np import gym from gym import spaces import matplotlib.pyplot as plt # local modules from cbf.utilities import cbf_microgrid_v0, cbf_microgrid_v1, cbf_microgrid_dist_v0, plot_signals from models.buck_microgrid import Buck_microgrid_v0, Buck_microgrid_v1 with_L = False inc_mat = np.array([[-1, 0, 0, -1],[1, -1, 0, 0],[0, 1, -1, 0],[0, 0, 1, 1 ]]) lap_mat =
np.matmul(inc_mat, inc_mat.T)
numpy.matmul
import numpy as np from scipy import signal def met_preproc(s, fs, met_try='diff', o=None): if o is None: o = (2 * fs) + 1 if met_try == 'diff': s = np.diff(np.concatenate((np.array([s[0]]), s))) elif met_try == 'hpnc': # note that this is acausal! (on purpose, to answer reviewer) o = int(2 * (5 * fs) + 1) hp_filter = {'a': 1, 'b': signal.firwin(o, [1/(fs/2)], pass_zero=False)} #X s = signal.lfilter(hp_filter['b'], hp_filter['a'], s) s = signal.filtfilt(hp_filter['b'], hp_filter['a'], s) elif met_try == 'subsmooth': s = s - signal.lfilter(np.ones(o)/o, 1, s) else: raise Exception("met_try in sig_preproc mispecified") s = s/np.std(s) return s def slice_signal(event_ix, sig, time, ix_back=0, ix_forward=0): ix_cut_before_event = ix_back ix_cut_after_previous_event = ix_forward # try to include first event ix_start = event_ix[0] - np.round(np.mean(np.diff(event_ix))) if ix_start < 0: ix_start = 0 ev_cut = np.zeros((len(event_ix), 2)) ev_cut[0][0] = ix_start ev_cut[0][1] = event_ix[0] for ix_a in range(1, len(event_ix)): # 1 indexing is on purpose. ix_from = event_ix[ix_a - 1] + ix_cut_after_previous_event ix_to = event_ix[ix_a] - ix_cut_before_event assert ix_from < ix_to, 'ix_back or ix_forward is too big. ix_from: {}, ix_to: {}'.format(ix_from, ix_to) ev_cut[ix_a][0] = np.round(ix_from) ev_cut[ix_a][1] = np.round(ix_to) sig_ev = list() time_ev = list() for ix_ev_cut in range(0, len(ev_cut)): ix_s = int(ev_cut[ix_ev_cut][0]) ix_e = int(ev_cut[ix_ev_cut][1]) sig_ev.append(sig[ix_s:ix_e]) time_ev.append(time[ix_s:ix_e]) return sig_ev, time_ev def slice_signal_matrix(event_ix, sig, time, fs, t_from=0, t_to=0, remove_baseline=False, ix_back=0, t_baseline=0): """ t_from should be negative if you want to go before event""" ix_from = np.round(t_from*fs).astype(int) ix_to =
np.round(t_to*fs)
numpy.round
""" Test the reinforcement learning algorithm. """ import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import keras import audiosegment import enum import logging import numpy as np import os import random import sys import unittest path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..") sys.path.insert(0, path) import internals.rl.agent as agent # pylint: disable=locally-disabled, import-error import internals.rl.environment as environment # pylint: disable=locally-disabled, import-error # Configure the logger logging.basicConfig(filename="TestLog.log", filemode='w', level=logging.DEBUG) class XORSingleStepTestRig: """ XOR environment where each step is terminal and randomly drawn from the four possible inputs. """ def __init__(self): pass @staticmethod def observation_space(): dtype = np.float32 high = np.array([1, 1], dtype=np.float32) low = np.array([0, 0], dtype=np.float32) shape = (2,) return environment.ObservationSpace(dtype, high, low, shape) @staticmethod def action_shape(): return (1,) @staticmethod def sample(): """ Return one of the four possible observations with uniform random chance. """ choices = [ np.array([1, 1], dtype=np.float32), np.array([1, 0], dtype=np.float32), np.array([0, 1], dtype=np.float32), np.array([0, 0], dtype=np.float32) ] return random.choice(choices) @staticmethod def behavior(obs, action, lastobs): """ Create an environment of the form: { Step.state of [1, 1]: Step.state of [0, 0]: Step.action == 0 => Reward = +1, end Step.action otherwise => Reward = -1, end Step.state of [1, 0]: Step.state of [0, 1]: Step.action == 1 => Reward = +1, end Step.action otherwise => Reward = -1, end } Every step is terminal, regardless of action chosen. Each observation is randomly drawn from the four possibilities at reset. """ if not hasattr(action, 'shape'): action = np.array([action], dtype=np.float32) assert action.shape == (1,) obslist = [int(round(i)) for i in obs.tolist()] if obslist == [1, 1] or obslist == [0, 0]: if int(round(action[0])) == 0: o = lastobs r = 1 d = True else: o = lastobs r = -1 d = True else: if int(round(action[0])) == 1: o = lastobs r = 1 d = True else: o = lastobs r = -1 d = True logging.debug("Observation: {} -> Action: {} -> Reward: {}".format(o, int(round(action[0])), r)) return o, r, d class XORTestRig: """ XOR environment that goes through all four possible XOR inputs in order. """ def __init__(self): pass @staticmethod def observation_space(): dtype = np.float32 high = np.array([1, 1], dtype=np.float32) low = np.array([0, 0], dtype=np.float32) shape = (2,) return environment.ObservationSpace(dtype, high, low, shape) @staticmethod def action_shape(): return (1,) @staticmethod def behavior(obs, action, lastobs): """ Create an environment of the form: { Step.state of [1, 1]: Step.state of [0, 0]: Step.action == 0 => Reward = +1 Step.action otherwise => Reward = -1, end Step.state of [1, 0]: Step.state of [0, 1]: Step.action == 1 => Reward = +1 Step.action otherwise => Reward = -1, end } Environment proceeds through the list: [0, 0] [0, 1] [1, 0] [1, 1] and ends after the last item or as soon as the agent makes an incorrect response. """ if not hasattr(action, 'shape'): action = np.array([action], dtype=np.float32) assert action.shape == (1,) obslist = [int(round(i)) for i in obs.tolist()] if obslist == [1, 1] or obslist == [0, 0]: if int(round(action[0])) == 0: nextobs = lastobs if obslist == [1, 1] else np.array([0, 1], dtype=np.float32) done = obslist == [1, 1] o = nextobs r = 1 d = done else: o = lastobs r = -1 d = True else: if int(round(action[0])) == 1: nextobs = np.array([1, 0], dtype=np.float32) if obslist == [0, 1] else np.array([1, 1], dtype=np.float32) o = nextobs r = 1 d = False else: o = lastobs r = -1 d = True logging.debug("Observation: {} -> Action: {} -> Reward: {}".format(o, int(round(action[0])), r)) return o, r, d class TestRL(unittest.TestCase): __skip_the_long_ones = False class FirstObs(enum.Enum): XOR =
np.array([0, 0], dtype=np.float32)
numpy.array
"""Solution for up-and-in option with antithetic Monte-Carlo""" import numpy as np ################################################################################ # Simulation parameters M = 10000 r = 0.02 sg = 0.3 dt = 1 / 252 T = 1 n = int(T / dt) S0 = 1 H = 1.1 K = 0.9 ################################################################################ if __name__ == '__main__': # Generate random numbers from a normal distribution for the MC simulation eps = np.random.normal(size=(n, M)) # Initialize empty vectors V = np.zeros((M)) V_ = np.zeros((M)) W = np.zeros((M)) # Iterate through M iterations for i in range(M): S1 = np.zeros((n)) S2 = np.zeros((n)) S1[0] = S0 S2[0] = S0 # Iterate through n - 1 time steps (first time step is known) for j in range(n - 1): # normal pricing is stored in S1 S1[j + 1] = S1[j] * np.exp((r - 0.5 * sg ** 2) * dt \ + sg * eps[j, i] * np.sqrt(dt)) # antitetic variate pricing is stored in S2 S2[j + 1] = S2[j] * np.exp((r - 0.5 * sg ** 2) * dt \ - sg * eps[j, i] * np.sqrt(dt)) # Find the maximum value of the realized stock price path S_tmax = np.max(S1) S_amax = np.max(S2) # Test if the price path exceeded the barrier H # if so, the option is exercisable # then the pay off is max(S(T) - K, 0) if S_tmax > H: # normal pricing V[i] = np.exp(-r * T) * np.max(S1[-1] - K, 0) if S_amax > H: # for use in antithetic pricing V_[i] = np.exp(-r * T) * np.max(S2[-1] - K, 0) # antithetic pricing W[i] = 0.5 * (V[i] + V_[i]) # Print the results print('Price (mean), normal pricing:', np.mean(V)) print('Price (mean), antithetic pricing:',
np.mean(W)
numpy.mean
""" Author: michealowen Last edited: 2019.12.5,Thursday 种群模块,固定拓扑结构 """ #encoding=UTF-8 import numpy as np import genome import numba from mnist import MNIST from activation import sigmoid,new_sigmoid from normalization import Normalize #两种变异类型,权值变异和偏置变异 MUTATE_TYPE = ['WEIGHT_MUTATE','BIAS_MUTATE'] class Population: """ 种群类,完成个体间的选择,交叉,变异 """ def __init__(self,pop_size,generation_size,layers,test_data,mutate_range=2): ''' 初始化种群 Params: pop_size:种群大小 generation_size:遗传代数 layers:网络的拓扑结构 例如[784,30,10] test_data:测试数据 mute_range:基因变异的幅度,(~5~5) ''' self.pop_size = pop_size self.generation_size = generation_size self.layers = layers self.test_data = test_data #self.select_range = select_range #self.crossover_rate = crossover_rate #self.mutate_rate = 0 self.mutate_range = mutate_range #初始化种群 self.__get_population() self.evolution() pass def __get_population(self): ''' 初始化种群,种群大小为pop_size ''' self.pop = [] for i in range(self.pop_size): self.pop.append(genome.Genome(self.layers)) pass def mutate(self): ''' mutate_rate = e^(fitness/10)-1 ''' for p in self.pop: #p.gene_string = np.array([s*(np.random.random()*2*self.mutate_range-self.mutate_range) if np.random.random() <= self.mutate_rate #else s for s in p.gene_string ]) p.weights_string = np.array([s*(np.random.random()*2*self.mutate_range-self.mutate_range) if np.random.random() <= self.mutate_rate else s for s in p.weights_string ]) p.bias_string = np.array([s*(np.random.random()*2*self.mutate_range-self.mutate_range) if
np.random.random()
numpy.random.random
# -*- coding: utf-8 -*- """ Created on Sun Jan 21 15:39:49 2018 @author: ZMJ """ import numpy as np import time from scipy.ndimage import gaussian_filter from skimage.morphology import reconstruction ##ROF去噪 def denoise_rof(im, U_init, tolerance=0.1, tau=0.125, tv_weight=100): """ An implementation of the Rudin-Osher-Fatemi (ROF) denoising model using the numerical procedure presented in Eq. (11) of A. Chambolle (2005). Implemented using periodic boundary conditions (essentially turning the rectangular image domain into a torus!). Input: im - noisy input image (grayscale) U_init - initial guess for U tv_weight - weight of the TV-regularizing term tau - steplength in the Chambolle algorithm tolerance - tolerance for determining the stop criterion Output: U - denoised and detextured image (also the primal variable) T - texture residual""" #---Initialization m,n = im.shape #size of noisy image U = U_init Px = im #x-component to the dual field Py = im #y-component of the dual field error = 1 iteration = 0 #---Main iteration while (error > tolerance): Uold = U #Gradient of primal variable LyU = np.vstack((U[1:,:],U[0,:])) #Left translation w.r.t. the y-direction LxU = np.hstack((U[:,1:],U.take([0],axis=1))) #Left translation w.r.t. the x-direction GradUx = LxU-U #x-component of U's gradient GradUy = LyU-U #y-component of U's gradient #First we update the dual varible PxNew = Px + (tau/tv_weight)*GradUx #Non-normalized update of x-component (dual) PyNew = Py + (tau/tv_weight)*GradUy #Non-normalized update of y-component (dual) NormNew = np.maximum(1,np.sqrt(PxNew**2+PyNew**2)) Px = PxNew/NormNew #Update of x-component (dual) Py = PyNew/NormNew #Update of y-component (dual) #Then we update the primal variable RxPx =np.hstack((Px.take([-1],axis=1),Px[:,0:-1])) #Right x-translation of x-component RyPy = np.vstack((Py[-1,:],Py[0:-1,:])) #Right y-translation of y-component DivP = (Px-RxPx)+(Py-RyPy) #Divergence of the dual field. U = im + tv_weight*DivP #Update of the primal variable #Update of error-measure error = np.linalg.norm(U-Uold)/np.sqrt(n*m); iteration += 1; #The texture residual # T = im - U return U ##形态学 def transform(img): img=gaussian_filter(img,2.5) seed=np.copy(img) seed[1:-1,1:-1]=img.min() mask=img ##morphology processing pro_img=reconstruction(seed,mask,method="dilation") return img-pro_img def switchPreProcessing(band1,band2,mode="01"): start=time.time() if mode=="01": X_band_3=np.array([(band-np.min(band))/(np.max(band)-np.min(band)) for band in band1]) X_band_4=np.array([(band-np.min(band))/(np.max(band)-np.min(band)) for band in band2]) X_band_5=np.fabs(np.subtract(X_band_3,X_band_4)) elif mode=="02": X_band_3=np.fabs(np.subtract(band1,band2)) X_band_4=np.maximum(band1,band2) X_band_5=np.minimum(band1,band2) elif mode=="03": x_band_temp=band1+band2 X_band_3=np.array([(band-np.mean(band)/(np.max(band)-np.min(band))) for band in band1]) X_band_4=np.array([(band-np.mean(band)/(np.max(band)-np.min(band))) for band in band2]) X_band_5=np.array([(band-np.mean(band)/(np.max(band)-np.min(band))) for band in x_band_temp]) elif mode=="04": x_band_temp=band1+band2 X_band_3=np.array([(band-np.min(band)/(np.max(band)-np.min(band))) for band in band1]) X_band_4=np.array([(band-np.min(band)/(np.max(band)-
np.min(band)
numpy.min
import numpy as np import pytest from ..utils import ArrayDeque, ExperienceCache, softmax from ..errors import ArrayDequeOverflowError def test_softmax(): rnd = np.random.RandomState(7) w = rnd.randn(3, 5) x = softmax(w, axis=1) y = softmax(w + 100., axis=1) z = softmax(w * 100., axis=1) # check shape assert x.shape == w.shape # check normalization np.testing.assert_almost_equal(x.sum(axis=1), np.ones(3)) # check translation invariance np.testing.assert_almost_equal(y.sum(axis=1), np.ones(3)) np.testing.assert_almost_equal(x, y) # check robustness by clipping assert not np.any(np.isnan(z)) np.testing.assert_almost_equal(z.sum(axis=1), np.ones(3)) class TestArrayDeque: def test_cycle(self): d = ArrayDeque(shape=[], maxlen=3, overflow='cycle') d.append(1) d.append(2) d.append(3) np.testing.assert_array_equal(d.array, [1, 2, 3]) d.append(4) np.testing.assert_array_equal(d.array, [2, 3, 4]) assert d.pop() == 4 np.testing.assert_array_equal(d.array, [2, 3]) d.append(5) np.testing.assert_array_equal(d.array, [2, 3, 5]) d.append(6) np.testing.assert_array_equal(d.array, [3, 5, 6]) assert d.popleft() == 3 np.testing.assert_array_equal(d.array, [5, 6]) assert d.pop() == 6 assert len(d) == 1 assert d assert d.pop() == 5 assert len(d) == 0 assert not d with pytest.raises(IndexError, match="pop from an empty deque"): d.pop() with pytest.raises(IndexError, match="pop from an empty deque"): d.popleft() def test_error(self): d = ArrayDeque(shape=[], maxlen=3, overflow='error') d.append(1), d.append(2), d.append(3) np.testing.assert_array_equal(d.array, [1, 2, 3]) with pytest.raises(ArrayDequeOverflowError): d.append(4) def test_grow(self): d = ArrayDeque(shape=[], maxlen=3, overflow='grow') d.append(1), d.append(2), d.append(3) np.testing.assert_array_equal(d.array, [1, 2, 3]) d.append(4) np.testing.assert_array_equal(d.array, [1, 2, 3, 4]) assert d.pop() == 4 np.testing.assert_array_equal(d.array, [1, 2, 3]) assert d.popleft() == 1 assert d.pop() == 3 assert d.popleft() == 2 assert not d with pytest.raises(IndexError, match="pop from an empty deque"): d.pop() with pytest.raises(IndexError, match="pop from an empty deque"): d.popleft() class TestExperienceCache: @staticmethod def create_obj(seed, length): rnd = np.random.RandomState(seed) ec = ExperienceCache() for i in range(length): X = rnd.randn(1, 5) X[0, 0] = i A = rnd.randint(4, size=1) R = rnd.randn(1) X_next = rnd.randn(1, 5) ec.append(X, A, R, X_next) return ec def test_pop(self): ec = self.create_obj(seed=13, length=7) assert len(ec) == 7 X, A, R, X_next = ec.pop() assert len(ec) == 6 np.testing.assert_array_almost_equal( X, [[6.0, -0.072247, 0.122339, -0.126747, -0.735211]]) np.testing.assert_array_almost_equal(R, [0.318789]) np.testing.assert_array_almost_equal(A, [0]) np.testing.assert_array_almost_equal( X_next, [[-1.38233, 1.486765, 1.580075, 1.75342, 0.529771]]) def test_popleft(self): ec = self.create_obj(seed=13, length=7) assert len(ec) == 7 X, A, R, X_next = ec.popleft() assert len(ec) == 6 np.testing.assert_array_almost_equal( X, [[0., 0.753766, -0.044503, 0.451812, 1.345102]]) np.testing.assert_array_almost_equal(R, [0.532338]) np.testing.assert_array_almost_equal(A, [2]) np.testing.assert_array_almost_equal( X_next, [[-1.58899, -1.114284, 0.683527, 0.272894, -0.230848]]) def test_popleft_nstep(self): n = 4 ec = self.create_obj(seed=13, length=7) assert len(ec) == 7 X, A, R, X_next = ec.popleft_nstep(n) assert R.shape == (4,) assert len(ec) == 6 np.testing.assert_array_almost_equal( X, [[0., 0.753766, -0.044503, 0.451812, 1.345102]]) np.testing.assert_array_almost_equal( R, [0.532338, 0.466986, 1.476737, 0.490872]) np.testing.assert_array_almost_equal(A, [2]) np.testing.assert_array_almost_equal( X_next, [[-1.38233, 1.486765, 1.580075, 1.75342, 0.529771]]) X, A, R, X_next = ec.popleft_nstep(n) assert R.shape == (4,) assert len(ec) == 5 assert X[0, 0] == 1 X, A, R, X_next = ec.popleft_nstep(n) assert R.shape == (4,) assert len(ec) == 4 assert X[0, 0] == 2 assert X_next is not None X, A, R, X_next = ec.popleft_nstep(n) assert R.shape == (4,) assert len(ec) == 3 assert X[0, 0] == 3 assert X_next is not None X, A, R, X_next = ec.popleft_nstep(n) assert R.shape == (3,) assert len(ec) == 2 assert X_next is None np.testing.assert_array_almost_equal( X, [[4., -1.512845, -0.764034, 0.10127, -0.317266]]) np.testing.assert_array_almost_equal( R, [1.138333, -1.069344, 0.318789])
np.testing.assert_array_almost_equal(A, [3])
numpy.testing.assert_array_almost_equal
#!/usr/bin/env python # coding: utf-8 import os import numpy as np import random import math import pydicom import pandas as pd import shutil import tensorflow as tf import xml.etree.ElementTree as ET from functools import partial, update_wrapper os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1' # Retrieving blocks of a numpy array from skimage.util import view_as_blocks # Retrieving blocks of a numpy array with given stride sizes from skimage.util.shape import view_as_windows from random import randint from tqdm import tqdm from random import randint import matplotlib.pyplot as plt from keras.models import Model, load_model from keras.layers import Input, Flatten, Dense, concatenate, Conv2D, Conv3D, MaxPooling2D, MaxPooling3D, \ Conv2DTranspose, Conv3DTranspose from keras.layers import Activation, add, multiply, Lambda from keras.layers import AveragePooling2D, AveragePooling3D, average, UpSampling2D, UpSampling3D, Dropout from keras.optimizers import Adam, SGD, RMSprop from keras.initializers import glorot_normal, random_normal, random_uniform from keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping from tensorflow.keras.callbacks import * from keras import backend as K from keras.layers.normalization import BatchNormalization from keras.losses import binary_crossentropy import numpy as np from hyperopt import fmin, hp, tpe, Trials, space_eval from hyperopt.pyll import scope as ho_scope from hyperopt.pyll.stochastic import sample as ho_sample class plaquetypes: limits = pd.DataFrame( [['DenseCalcium', 351, 10000], ['Fibrous', 131, 350], ['FibrousFatty', 76, 130], ['NecroticCore', -30, 75], ['NonCalcified', -1000, 350]], columns=['type', 'lower', 'upper']) # ,['MedisDenseCalcium',351,10000],['MedisFibrous',151,350],['MedisFibrousFatty',31,150],['MedisNecroticCore',-100,30] def wrapped_partial(func, *args, **kwargs): partial_func = partial(func, *args, **kwargs) update_wrapper(partial_func, func) return partial_func def get_pairs(vesel_list): return_list = [] for ID in vesel_list: if ID.endswith('NoContour.dcm'): return_list.append([ID, ID[:-13] + "Contour1.dcm", ID[:-13] + "Contour2.dcm", ID[:8]]) return return_list def find_included_segment(xml_file): try: doc = ET.parse(xml_file) root = doc.getroot() info = 0 included = False while not (included): info += 1 if (root[2][info][25].attrib['value'] == 'SEGMENT_TYPE_NORMAL'): breakpoints = [root[2][info][24].attrib['value'], root[2][info][1].attrib['value']] included = True except: doc = ET.parse(xml_file) root = doc.getroot() info = 0 included = False while not (included): info += 1 if (root[3][info][25].attrib['value'] == 'SEGMENT_TYPE_NORMAL'): breakpoints = [root[3][info][24].attrib['value'], root[3][info][1].attrib['value']] included = True return breakpoints def get_xml(basic_path2, dicom): dicom = dicom.replace('_', '/') dicom = dicom[:-13] + 'data_model.xml' xml_file = os.path.join(basic_path2, dicom) return xml_file def get_image_mask_for_ID_tuple(ID_tuple, basic_path, basic_path2, dir_to_save, plaques_only): image_path = os.path.join(basic_path, ID_tuple[0]) mask_1_path = os.path.join(basic_path, ID_tuple[1]) mask_2_path = os.path.join(basic_path, ID_tuple[2]) image = pydicom.dcmread(image_path) mask_1 = pydicom.dcmread(mask_1_path) mask_2 = pydicom.dcmread(mask_2_path) if plaques_only==True: xml_file = get_xml(basic_path2, ID_tuple[0]) breakpoints = np.array(find_included_segment(xml_file)) breakpoints = breakpoints.astype(float) breakpoints = breakpoints / image.SpacingBetweenSlices if 'Plakk' in dir_to_save: image_array = (image.pixel_array)[int(breakpoints[0]):int(breakpoints[1]), :, :] mask_1_array = (mask_1.pixel_array)[int(breakpoints[0]):int(breakpoints[1]), :, :] mask_2_array = (mask_2.pixel_array)[int(breakpoints[0]):int(breakpoints[1]), :, :] else: image_array = (image.pixel_array)[int(breakpoints[0]):, :, :] mask_1_array = (mask_1.pixel_array)[int(breakpoints[0]):, :, :] mask_2_array = (mask_2.pixel_array)[int(breakpoints[0]):, :, :] else: image_array = (image.pixel_array) mask_1_array = (mask_1.pixel_array) mask_2_array = (mask_2.pixel_array) return [image_array, mask_1_array, mask_2_array] def apply_breakpoints(image_array, breakpoints, dir_to_save): if 'Plakk' in dir_to_save: image_array = (image_array)[int(breakpoints[0]):int(breakpoints[1]), :, :] else: image_array = (image_array)[int(breakpoints[0]):, :, :] return image_array def osszefuz(x): x.append(x[0][:7]) x.append(x[0][16:18]) return x def save_all_patch_for_image_mask_pair(ID_tuple, dir_to_save, patch_shape, stride_size, train_val_test, basic_path, basic_path2, truncate=True, plaques_only=False ): """Saves all 3 dimensional patches Arguments ----------- ID_tuple dir_to_save : string Folder to save the patches. train_val_test : string possible values: 'train', 'val', or 'test'. Subfolders for dataset split. Outputs ----------- None """ image_array, mask_1, mask_2 = get_image_mask_for_ID_tuple(ID_tuple, basic_path, basic_path2, dir_to_save,plaques_only) mask_1 = np.where(mask_1 > 0, 1, 0) mask_2 = np.where(mask_2 > 0, 1, 0) dif_array = np.where(mask_2 - mask_1 == 1, 1, 0) # dif_array = get_all_plaques(dif_array) # Count saved patches total_patches_for_ID = 0 image_to_pad = image_array nodule_to_pad = mask_1 lung_to_pad = mask_2 dif_to_pad = dif_array # Order of the saved patch, appended to filename patch_count = 0 # Shape of original images size_X = image_to_pad.shape[2] size_Y = image_to_pad.shape[1] size_Z = image_to_pad.shape[0] image_to_block = np.zeros((size_Z + patch_shape[2], size_Y, size_X)) image_to_block[:size_Z, :size_Y, :size_X] = image_to_pad nodule_to_block = np.zeros((size_Z + patch_shape[2], size_Y, size_X)) nodule_to_block[:size_Z, :size_Y, :size_X] = nodule_to_pad lung_to_block = np.zeros((size_Z + patch_shape[2], size_Y, size_X)) lung_to_block[:size_Z, :size_Y, :size_X] = lung_to_pad dif_to_block = np.zeros((size_Z + patch_shape[2], size_Y, size_X)) dif_to_block[:size_Z, :size_Y, :size_X] = dif_to_pad # patch_shape is originally in order XYZ, however for view as window we need it in ZYX patch_shape_ZYX = [patch_shape[2], patch_shape[1], patch_shape[0]] # Same as patch_shape stride_size_ZYX = [stride_size[2], stride_size[1], stride_size[0]] # Create blocks of the numpy arrays using view_as_blocks from skimage.util image_patches = view_as_windows(image_to_block, window_shape=patch_shape_ZYX, step=stride_size_ZYX) nodule_patches = view_as_windows(nodule_to_block, window_shape=patch_shape_ZYX, step=stride_size_ZYX) lung_patches = view_as_windows(lung_to_block, window_shape=patch_shape_ZYX, step=stride_size_ZYX) dif_patches = view_as_windows(dif_to_block, window_shape=patch_shape_ZYX, step=stride_size_ZYX) # view_as_windows creates 6 dimensional numpy arrays: # first 3 dimensions encode the position of the patch, last 3 dimensions encode patch shape. # We will iterate through the number of patches number_of_patches = image_patches.shape[0] * image_patches.shape[1] * image_patches.shape[2] for counter in range(number_of_patches): patch_coor_1 = int(counter // (image_patches.shape[1] * image_patches.shape[2])) patch_coor_2 = int(((counter - patch_coor_1 * image_patches.shape[1] * image_patches.shape[2]) // image_patches.shape[2])) patch_coor_3 = int(counter - patch_coor_1 * image_patches.shape[1] * image_patches.shape[2] - patch_coor_2 * image_patches.shape[2]) image_patch = image_patches[patch_coor_1][patch_coor_2][patch_coor_3] nodule_patch = nodule_patches[patch_coor_1][patch_coor_2][patch_coor_3] lung_patch = lung_patches[patch_coor_1][patch_coor_2][patch_coor_3] dif_patch = dif_patches[patch_coor_1][patch_coor_2][patch_coor_3] if truncate == True: # vedd ki a 16:48 image_patch = image_patch[:, 16:48, 16:48] nodule_patch = nodule_patch[:, 16:48, 16:48] lung_patch = lung_patch[:, 16:48, 16:48] dif_patch = dif_patch[:, 16:48, 16:48] if plaques_only and np.count_nonzero(dif_patch) > 0: image_patch_file = os.path.join(dir_to_save, train_val_test, "images", ID_tuple[0][:-13] + str(patch_count) + '.npy') np.save(image_patch_file, image_patch.astype(np.float32)) nodule_patch_file = os.path.join(dir_to_save, train_val_test, "masks_1", ID_tuple[0][:-13] + str(patch_count) + '.npy') np.save(nodule_patch_file, nodule_patch.astype(np.uint8)) lung_patch_file = os.path.join(dir_to_save, train_val_test, "masks_2", ID_tuple[0][:-13] + str(patch_count) + '.npy') np.save(lung_patch_file, lung_patch.astype(np.uint8)) plaque_patch_file = os.path.join(dir_to_save, train_val_test, "plaques", ID_tuple[0][:-13] + str(patch_count) + '.npy') np.save(plaque_patch_file, dif_patch.astype(np.uint8)) patch_count += 1 total_patches_for_ID += 1 if plaques_only == False: image_patch_file = os.path.join(dir_to_save, train_val_test, "images", ID_tuple[0][:-13] + str(patch_count) + '.npy') np.save(image_patch_file, image_patch.astype(np.float32)) nodule_patch_file = os.path.join(dir_to_save, train_val_test, "masks_1", ID_tuple[0][:-13] + str(patch_count) + '.npy') np.save(nodule_patch_file, nodule_patch.astype(np.uint8)) lung_patch_file = os.path.join(dir_to_save, train_val_test, "masks_2", ID_tuple[0][:-13] + str(patch_count) + '.npy') np.save(lung_patch_file, lung_patch.astype(np.uint8)) plaque_patch_file = os.path.join(dir_to_save, train_val_test, "plaques", ID_tuple[0][:-13] + str(patch_count) + '.npy') np.save(plaque_patch_file, dif_patch.astype(np.uint8)) patch_count += 1 total_patches_for_ID += 1 def save_all_patch(ID_tuple_list, dir_to_save, patch_shape, stride_size, basic_path, basic_path2, truncate=True, train_val_test_split=[0.8, 0.2, 0.0], plaques_only=True, val_patients=None, test_patients=None): # First delete the directory, where we would like to save the patches to avoid naming collisions if os.path.exists(dir_to_save): shutil.rmtree(dir_to_save) # Create parent directory os.mkdir(dir_to_save) os.mkdir(os.path.join(dir_to_save, "file_logs")) # Then create folders train, test, val containing images and masks folders. train_dir, test_dir, val_dir = [os.path.join(dir_to_save, "train"), os.path.join(dir_to_save, "test"), os.path.join(dir_to_save, "val")] # Create train_dir os.mkdir(train_dir) os.mkdir(os.path.join(train_dir, "images")) os.mkdir(os.path.join(train_dir, "plaques")) os.mkdir(os.path.join(train_dir, "masks_1")) os.mkdir(os.path.join(train_dir, "masks_2")) # Create test_dir os.mkdir(test_dir) os.mkdir(os.path.join(test_dir, "images")) os.mkdir(os.path.join(test_dir, "plaques")) os.mkdir(os.path.join(test_dir, "masks_1")) os.mkdir(os.path.join(test_dir, "masks_2")) # Create val_dir os.mkdir(val_dir) os.mkdir(os.path.join(val_dir, "images")) os.mkdir(os.path.join(val_dir, "plaques")) os.mkdir(os.path.join(val_dir, "masks_1")) os.mkdir(os.path.join(val_dir, "masks_2")) total_number_of_IDs = len(ID_tuple_list) # Create thresholds for train-val-test split number_of_IDs_train = int(train_val_test_split[0] * total_number_of_IDs) number_of_IDs_val = int(train_val_test_split[1] * total_number_of_IDs) number_of_IDs_test = int(train_val_test_split[2] * total_number_of_IDs) patients = [] for counter, ID_tuple in tqdm(enumerate(ID_tuple_list)): patients.append(ID_tuple[3]) patients = np.unique(patients) random.seed(42) if test_patients==None: test_patients = random.sample(set(patients).difference(set(val_patients)), int(len(patients) * train_val_test_split[2])) if val_patients==None: val_patients = random.sample(set(patients), int(len(patients) * train_val_test_split[1])) # Save images to the corresponding subfolders using the functions above. for counter, ID_tuple in tqdm(enumerate(ID_tuple_list)): if ID_tuple[3].rstrip('_') in val_patients: train_val_test = "val" elif ID_tuple[3].rstrip('_') in test_patients: train_val_test = "test" else: train_val_test = "train" save_all_patch_for_image_mask_pair(ID_tuple, patch_shape=patch_shape, stride_size=stride_size, truncate=truncate, dir_to_save=dir_to_save, train_val_test=train_val_test, basic_path=basic_path, basic_path2=basic_path2, plaques_only=plaques_only) return val_patients epsilon = 1e-5 smooth = 1 def dsc(y_true, y_pred, args): smooth = args.smooth y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) score = (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) return score def dice_loss(y_true, y_pred, args): loss = 1 - dsc(y_true, y_pred, args) return loss def tp(y_true, y_pred, args): smooth = args.smooth y_pred_pos = K.round(K.clip(y_pred, 0, 1)) y_pos = K.round(K.clip(y_true, 0, 1)) tp = (K.sum(y_pos * y_pred_pos) + smooth) / (K.sum(y_pos) + smooth) return tp def tn(y_true, y_pred, args): smooth = args.smooth y_pred_pos = K.round(K.clip(y_pred, 0, 1)) y_pred_neg = 1 - y_pred_pos y_pos = K.round(K.clip(y_true, 0, 1)) y_neg = 1 - y_pos tn = (K.sum(y_neg * y_pred_neg) + smooth) / (K.sum(y_neg) + smooth) return tn def fp(y_true, y_pred, args): smooth = args.smooth y_pred_pos = K.round(K.clip(y_pred, 0, 1)) y_pred_neg = 1 - y_pred_pos y_pos = K.round(K.clip(y_true, 0, 1)) y_neg = 1 - y_pos fp = (K.sum(y_neg * y_pred_pos) + smooth) / (K.sum(y_pred) + smooth) return fp def fn(y_true, y_pred, args): smooth = args.smooth y_pred_pos = K.round(K.clip(y_pred, 0, 1)) y_pred_neg = 1 - y_pred_pos y_pos = K.round(K.clip(y_true, 0, 1)) y_neg = 1 - y_pos fn = (K.sum(y_pos * y_pred_neg) + smooth) / (K.sum(y_pred_neg) + smooth) return fn def tversky(y_true, y_pred, args): smooth = args.smooth y_true_pos = K.flatten(y_true) y_pred_pos = K.flatten(y_pred) true_pos = K.sum(y_true_pos * y_pred_pos) false_neg = K.sum(y_true_pos * (1 - y_pred_pos)) false_pos = K.sum((1 - y_true_pos) * y_pred_pos) alpha = args.alpha return (true_pos + smooth) / (true_pos + alpha * false_neg + (1 - alpha) * false_pos + smooth) def tversky_loss(y_true, y_pred, args): return 1 - tversky(y_true, y_pred, args) def focal_tversky(y_true, y_pred, args): gamma = args.gamma = 0.75 pt_1 = tversky(y_true, y_pred, args) return K.pow((1 - pt_1), gamma) def multiloss(y_true, y_pred, args): if args.loss_type == 1: return focal_tversky(y_true, y_pred, args) else: return dice_loss(y_true, y_pred, args) # Visaulization functions def gray_to_colored(im): colored = np.repeat(np.expand_dims(im, axis=-1), 3, axis=-1).astype(float) colored = 1 * (colored - np.amin(colored)) / (np.amax(colored) - np.amin(colored)) return colored def superimpose_mask(image_array, mask_array, opacity=0.8): superimposed = gray_to_colored(image_array) reds = np.zeros(mask_array.shape + (3,)).astype(np.bool) reds[:, :, 0] = mask_array == 1 superimposed[reds] = opacity * 1 + (1 - opacity) * superimposed[reds] return superimposed def visualize_slice_mask_pair(image_array, mask_1_array, mask_2_array, plaque_array, opacity=0.8, name=""): ax, plots = plt.subplots(2, 4, figsize=(25, 10)) ax.suptitle(name) plots[0, 0].axis('off') plots[0, 0].imshow(mask_2_array - mask_1_array, cmap=plt.cm.bone) plots[0, 1].axis('off') plots[0, 1].imshow(mask_1_array, cmap=plt.cm.bone) plots[0, 2].axis('off') plots[0, 2].imshow(mask_2_array, cmap=plt.cm.bone) plots[0, 3].axis('off') plots[0, 3].imshow(plaque_array, cmap=plt.cm.bone) plots[1, 0].axis('off') plots[1, 0].imshow(superimpose_mask(image_array, mask_2_array - mask_1_array, opacity=opacity)) plots[1, 1].axis('off') plots[1, 1].imshow(superimpose_mask(image_array, mask_1_array, opacity=opacity)) plots[1, 2].axis('off') plots[1, 2].imshow(superimpose_mask(image_array, mask_2_array, opacity=opacity)) plots[1, 3].axis('off') plots[1, 3].imshow(superimpose_mask(image_array, plaque_array, opacity=opacity)) plt.show() def expand_as_3d(tensor, rep, name): my_repeat = Lambda(lambda x, repnum: K.repeat_elements(x, repnum, axis=4), arguments={'repnum': rep}, name='psi_up' + name)(tensor) return my_repeat def AttnGatingBlock3D(x, g, inter_shape, name): ''' Analogous implementation of the 3D attention gate used in the Attention U-Net 3D. ''' shape_x = K.int_shape(x) # 32 shape_g = K.int_shape(g) # 16 theta_x = Conv3D(inter_shape, (2, 2, 2), strides=(2, 2, 2), padding='same', name='xl' + name)(x) # 16 shape_theta_x = K.int_shape(theta_x) phi_g = Conv3D(inter_shape, (1, 1, 1), padding='same')(g) upsample_g = Conv3DTranspose(inter_shape, (3, 3, 3), strides=( shape_theta_x[1] // shape_g[1], shape_theta_x[2] // shape_g[2], shape_theta_x[3] // shape_g[3]), padding='same', name='g_up' + name)(phi_g) # 16 concat_xg = add([upsample_g, theta_x]) act_xg = Activation('relu')(concat_xg) psi = Conv3D(1, (1, 1, 1), padding='same', name='psi' + name)(act_xg) sigmoid_xg = Activation('sigmoid')(psi) shape_sigmoid = K.int_shape(sigmoid_xg) upsample_psi = UpSampling3D( size=(shape_x[1] // shape_sigmoid[1], shape_x[2] // shape_sigmoid[2], shape_x[3] // shape_sigmoid[3]))( sigmoid_xg) # 32 upsample_psi = expand_as_3d(upsample_psi, shape_x[4], name) y = multiply([upsample_psi, x], name='q_attn' + name) result = Conv3D(shape_x[4], (1, 1, 1), padding='same', name='q_attn_conv' + name)(y) result_bn = BatchNormalization(name='q_attn_bn' + name)(result) return result_bn def UnetConv3D(input, outdim, is_batchnorm, name): ''' Analogous implementation of the pair of convolutional layers used by the U-Net 3D. ''' x = Conv3D(outdim, (3, 3, 3), strides=(1, 1, 1), kernel_initializer="glorot_normal", padding="same", name=name + '_1')(input) if is_batchnorm: x = BatchNormalization(name=name + '_1_bn')(x) x = Activation('relu', name=name + '_1_act')(x) x = Conv3D(outdim, (3, 3, 3), strides=(1, 1, 1), kernel_initializer="glorot_normal", padding="same", name=name + '_2')(x) if is_batchnorm: x = BatchNormalization(name=name + '_2_bn')(x) x = Activation('relu', name=name + '_2_act')(x) return x def UnetGatingSignal3D(input, is_batchnorm, name): ''' Implementation of the gating signal appearing in the upsampling branch of the Attention U-Net 3D: simply a 1x1 convolution followed by batch normalization and ReLU. ''' shape = K.int_shape(input) x = Conv3D(shape[4] * 1, (1, 1, 1), strides=(1, 1, 1), padding="same", kernel_initializer="glorot_normal", name=name + '_conv')(input) if is_batchnorm: x = BatchNormalization(name=name + '_bn')(x) x = Activation('relu', name=name + '_act')(x) return x def tiny_attn_unet3D(opt, input_size, args): ''' Analogue of the above defined attn_unet3D with less layers, resulting in a smaller U shape. ''' inputs = Input(shape=input_size) conv1 = UnetConv3D(inputs, 8*args.kernel_power, is_batchnorm=True, name='conv1') pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1) pool1 = Dropout(args.dropout)(pool1) conv2 = UnetConv3D(pool1, 8*args.kernel_power, is_batchnorm=True, name='conv2') pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2) pool2 = Dropout(args.dropout)(pool2) center = UnetConv3D(pool2, 16*args.kernel_power, is_batchnorm=True, name='center') g3 = UnetGatingSignal3D(center, is_batchnorm=True, name='g3') attn3 = AttnGatingBlock3D(conv2, g3, 8*args.kernel_power, '_3') up3 = concatenate([Conv3DTranspose(8*args.kernel_power, (3, 3, 3), strides=(2, 2, 2), padding='same', activation='relu', kernel_initializer="glorot_normal")(center), attn3], name='up3') up4 = concatenate([Conv3DTranspose(8*args.kernel_power, (3, 3, 3), strides=(2, 2, 2), padding='same', activation='relu', kernel_initializer="glorot_normal")(up3), conv1], name='up4') mask_1 = Conv3D(1, (1, 1, 1), activation='sigmoid', name='mask_1')(up4) mask_2 = Conv3D(1, (1, 1, 1), activation='sigmoid', name='mask_2')(up4) dif = Conv3D(1, (1, 1, 1), activation='sigmoid', name='dif')(up4) model = Model(inputs=[inputs], outputs=[mask_1, mask_2, dif]) model.compile(optimizer=opt, loss=[wrapped_partial(dice_loss, args=args), wrapped_partial(dice_loss, args=args), wrapped_partial(multiloss, args=args)], loss_weights=[0.1, 0.1, 0.8], metrics=[[wrapped_partial(dsc, args=args)], [wrapped_partial(dsc, args=args)], [wrapped_partial(dsc, args=args), wrapped_partial(tp, args=args), wrapped_partial(tn, args=args)]]) return model def full_ct_model_evaluation(image, model, z_stride, which_prediction): # Shape of original images size_X = image.shape[2] size_Y = image.shape[1] size_Z = image.shape[0] image_paded = np.zeros((size_Z + 24, size_Y, size_X)) image_paded[:size_Z, :size_Y, :size_X] = image / 512 prediction_array = np.zeros((size_Z + 24, size_Y, size_X)) coverage_array = np.zeros((size_Z + 24, size_Y, size_X)) # Containers for batch predictions patch_boundaries_list = [] counter = 0 # Stride along Z axis: for z_start in range(0, prediction_array.shape[2], z_stride): z_end = z_start + 24 if (np.count_nonzero(image[z_start:z_end, :, :]) > 1): patch_boundaries_list.append([z_start, z_end]) for patch_index in range(0, len(patch_boundaries_list)): # patch_boundaries in current batch temporal_boundaries = patch_boundaries_list[patch_index] temp_patches = [] # Extracting patches for prediction current_patch = image_paded[temporal_boundaries[0]:temporal_boundaries[1], 16:48, 16:48] current_patch = np.expand_dims(current_patch, axis=0) # Updating prediction_array and coverage_array predicted_patch = model.predict(np.expand_dims(current_patch, axis=-1)) # 0 belső maszk 1 külső maszk 2 differencia prediction = predicted_patch[which_prediction] prediction = np.reshape(prediction, [24, 32, 32]) prediction_array[temporal_boundaries[0]:temporal_boundaries[1], 16:48, 16:48] += prediction # print(prediction_array[32, 32, 32]) coverage_array[temporal_boundaries[0]:temporal_boundaries[1], :, :] += 1 coverage_array = np.maximum(coverage_array, np.ones(coverage_array.shape)) # Taking the average prediction value for the pixels prediction_array =
np.divide(prediction_array, coverage_array)
numpy.divide
#!/usr/bin/env python from __future__ import print_function import gc import matplotlib matplotlib.use('PDF') from matplotlib.cbook import report_memory import numpy as np from pylab import figure, show, close # take a memory snapshot on indStart and compare it with indEnd rand = np.random.rand indStart, indEnd = 200, 401 for i in range(indEnd): fig = figure(1) fig.clf() t1 = np.arange(0.0, 2.0, 0.01) y1 =
np.sin(2 * np.pi * t1)
numpy.sin
from stable_baselines3.common.env_util import make_atari_env from stable_baselines3.common.vec_env import VecFrameStack from stable_baselines3 import PPO from easy_logx.easy_logx import EasyLog import os import time import gym from typing import Any, List, Tuple from easy_logx.easy_logx import EasyLog import pybullet as p import pybullet_data import gym from gym import spaces from gym.utils import seeding import numpy as np from math import sqrt import random import time import math import cv2 import torch import os from stable_baselines3.common.vec_env import VecVideoRecorder from stable_baselines3.common.vec_env.vec_monitor import VecMonitor import matplotlib.pyplot as plt from stable_baselines3.common import results_plotter from stable_baselines3.common.monitor import Monitor from stable_baselines3.common.callbacks import BaseCallback from stable_baselines3.common.results_plotter import load_results, ts2xy, plot_results import pathlib import torch as th import torch.nn as nn from typing import Tuple, Any, Dict, List, Type, Optional, Union, Callable from stable_baselines3.common.torch_layers import BaseFeaturesExtractor from stable_baselines3.common.policies import ActorCriticPolicy import imageio from kuka_visual_reach import KukaVisualReachEnv from stable_baselines3.common.env_util import make_vec_env from stable_baselines3.common.vec_env import DummyVecEnv,SubprocVecEnv,VecEnv import logging logger = EasyLog(log_level=logging.INFO) logger.add_filehandler() # change log class CustomCNN(BaseFeaturesExtractor): """ :param observation_space: (gym.Space) :param features_dim: (int) Number of features extracted. This corresponds to the number of unit for the last layer. """ def __init__(self, observation_space: gym.spaces.Box, features_dim: int = 256): super(CustomCNN, self).__init__(observation_space, features_dim) # We assume CxHxW images (channels first) # Re-ordering will be done by pre-preprocessing or wrapper n_input_channels = observation_space.shape[0] self.cnn = nn.Sequential( nn.Conv2d(n_input_channels, 32, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 32, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 32, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 32, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Flatten(), ) # Compute shape by doing one forward pass with th.no_grad(): n_flatten = self.cnn( th.as_tensor(observation_space.sample()[None]).float() ).shape[1] self.linear = nn.Sequential(nn.Linear(n_flatten, features_dim), nn.ReLU()) def forward(self, observations: th.Tensor) -> th.Tensor: return self.linear(self.cnn(observations)) class SaveOnBestTrainingRewardCallback(BaseCallback): """ Callback for saving a model (the check is done every ``check_freq`` steps) based on the training reward (in practice, we recommend using ``EvalCallback``). :param check_freq: (int) :param log_dir: (str) Path to the folder where the model will be saved. It must contains the file created by the ``Monitor`` wrapper. :param verbose: (int) """ def __init__(self, check_freq: int, log_dir: str, verbose=1): super(SaveOnBestTrainingRewardCallback, self).__init__(verbose) self.check_freq = check_freq self.log_dir = log_dir self.save_path = os.path.join(log_dir, 'best_model') self.best_mean_reward = -np.inf def _init_callback(self) -> None: # Create folder if needed if self.save_path is not None: os.makedirs(self.save_path, exist_ok=True) def _on_step(self) -> bool: if self.n_calls % self.check_freq == 0: # Retrieve training reward x, y = ts2xy(load_results(self.log_dir), 'timesteps') if len(x) > 0: # Mean training reward over the last 100 episodes mean_reward =
np.mean(y[-100:])
numpy.mean
# -*- coding: utf-8 -*- # Copyright © 2018 PyHelp Project Contributors # https://github.com/jnsebgosselin/pyhelp # # This file is part of PyHelp. # Licensed under the terms of the GNU General Public License. # ---- Standard Library Imports import os import os.path as osp # ---- Third Party imports import numpy as np import geopandas as gpd import netCDF4 import pandas as pd # ---- Local Libraries Imports from pyhelp.preprocessing import write_d10d11_allcells, format_d10d11_inputs from pyhelp.processing import run_help_allcells from pyhelp.utils import savedata_to_hdf5 from pyhelp.weather_reader import ( save_precip_to_HELP, save_airtemp_to_HELP, save_solrad_to_HELP, read_cweeds_file, join_daily_cweeds_wy2_and_wy3) FNAME_CONN_TABLES = 'connect_table.npy' class HELPManager(object): def __init__(self, workdir, year_range, path_togrid=None): super(HELPManager, self).__init__() self.year_range = year_range self.set_workdir(workdir) self._setup_connect_tables() if path_togrid is not None: self.load_grid(path_togrid) else: self.grid = None @property def cellnames(self): if self.grid is not None: return self.grid['cid'].tolist() else: return [] @property def inputdir(self): """ Return the path to the folder where the HELP input files are going to be saved in the working directory. This folder is created in case it doesn't already exist in the file system. """ inputdir = osp.join(self.workdir, 'help_input_files') if not osp.exists(inputdir): os.makedirs(inputdir) return inputdir @property def workdir(self): """Return the path to the current working directory.""" return os.getcwd() def set_workdir(self, dirname): """Set the working directory of the manager.""" if not osp.exists(dirname): os.makedirs(dirname) os.chdir(dirname) # ---- Connect tables @property def path_connect_tables(self): return osp.join(self.inputdir, FNAME_CONN_TABLES) def _setup_connect_tables(self): """Setup the connect tables dictionary.""" if osp.exists(self.path_connect_tables): self.connect_tables =
np.load(self.path_connect_tables)
numpy.load
from flask import Flask,render_template,request import re import jieba from sklearn.decomposition import PCA from typing import List from sklearn.metrics.pairwise import cosine_similarity from operator import itemgetter from gensim import models import numpy as np import pandas as pd app = Flask(__name__) # 结巴分词 def cut(string): return list(jieba.cut(string)) # 拆分成列表 def sentenceslist(article): setences = re.sub('([。!?\?])([^”’])', r"\1 \2", article) # 单字符断句符 setences = re.sub('(\.{6})([^”’])', r"\1 \2", setences) # 英文省略号 setences = re.sub('(\…{2})([^”’])', r"\1 \2", setences) # 中文省略号 setences = re.sub('([。!?\?][”’])([^,。!?\?])', r'\1 \2', setences) sentences_list = setences.split(' ') sentence_list_list = [] for sentence in sentences_list: sentence = cut(sentence) sentence_list_list.append(sentence) return sentences_list,sentence_list_list # PCA与句子向量 def sentence_to_vec(setencelist, a = 0.0001): model = models.Word2Vec.load("./model/wiki_corpus.model") sentence_set = [] j = 0 for sentence in setencelist: vs = np.zeros((250,)) # add all word2vec values into one vector for the sentence sentence_length = len(sentence) for word in sentence: if word in model: w_v = model[word] p_w = model.wv.vocab[word].count a_value = a / (a + p_w/459358208) # smooth inverse frequency, SIF vs = np.add(vs, np.multiply(a_value, w_v)) else: continue vs = np.divide(vs, sentence_length) sentence_set.append(vs) # add to our existing re-calculated set of sentences # print(vs) # calculate PCA of this sentence set # sentence_set = np.mat # rix(sentence_set).astype(np.float) pca = PCA() pca.fit(np.array(sentence_set)) u = pca.components_[0] # the PCA vector u = np.multiply(u, np.transpose(u)) # u x uT # pad the vector? (occurs if we have less sentences than embeddings_size) if len(u) < 250: for i in range(250 - len(u)): u = np.append(u, 0) # add needed extension for multiplication below # resulting sentence vectors, vs = vs -u x uT x vs sentence_vecs = [] all_vs = np.zeros((250,)) for vs in sentence_set: sub =
np.multiply(u,vs)
numpy.multiply
import argparse import os import numpy as np from tqdm import tqdm from glob import glob from PIL import Image import tensorflow as tf import medmnist from medmnist import INFO, Evaluator from medmnist.info import DEFAULT_ROOT def main(data_flag, input_root, output_root, model_dir, run): if not os.path.isdir(output_root): os.makedirs(output_root) _ = getattr(medmnist, INFO[data_flag]['python_class'])( split="train", root=input_root, download=True) dataroot = os.path.join(input_root, '%s.npz' % (data_flag)) npz_file = np.load(dataroot) train_img = npz_file['train_images'] train_label = npz_file['train_labels'] val_img = npz_file['val_images'] val_label = npz_file['val_labels'] test_img = npz_file['test_images'] test_label = npz_file['test_labels'] label_dict_path = glob(os.path.join(model_dir, '*.txt'))[0] model_path = glob(os.path.join(model_dir, '*.tflite'))[0] idx = [] labels = INFO[data_flag]['label'] task = INFO[data_flag]['task'] with open(label_dict_path) as f: line = f.readline() while line: idx.append(line[:-1].lower()) line = f.readline() index = [] for key in labels: index.append(idx.index(labels[key].lower())) test(data_flag, train_img, index, model_path, 'train', output_root, run) test(data_flag, val_img, index, model_path, 'val', output_root, run) test(data_flag, test_img, index, model_path, 'test', output_root, run) def load_tflite(ckpt_path): tflite_model = tf.lite.Interpreter(model_path=ckpt_path) tflite_model.allocate_tensors() input_details = tflite_model.get_input_details() output_details = tflite_model.get_output_details() return tflite_model, input_details, output_details def test_single_img(img, tflite_model, input_details, output_details): img = Image.fromarray(np.uint8(img)).resize((224, 224)).convert('RGB') img = np.expand_dims(
np.array(img)
numpy.array
import numpy as np import pysc2 from pysc2.agents import base_agent from pysc2.env import sc2_env from pysc2.lib import actions, features, units from pysc2 import maps, lib from s2clientprotocol import sc2api_pb2 as sc_pb from sc2env.pysc2_util import register_map from sc2env.utility import getOneHotState import os SCREEN_SIZE = 40 #MAP_NAME = 'FourTowersWithFriendlyUnits' #MAP_NAME = 'FourTowersWithFriendlyUnitsFixedEnemies' MAP_NAME = 'FourTowersWithFriendlyUnitsFixedEnemiesFixedPosition' class FourTowerSequentialFriendlyUnits(): def __init__(self, reward_types, map_name = None): if map_name is None: map_name = MAP_NAME maps_dir = os.path.join(os.path.dirname(__file__), '..', 'maps') print(maps_dir) register_map(maps_dir, map_name) self.sc2_env = sc2_env.SC2Env( map_name = map_name, players = [sc2_env.Agent(sc2_env.Race.protoss)], agent_interface_format = features.AgentInterfaceFormat( feature_dimensions = features.Dimensions(screen = SCREEN_SIZE, minimap = 30), action_space = actions.ActionSpace.FEATURES, camera_width_world_units = 28 ), step_mul = 16, game_steps_per_episode = 0, score_index = 0, visualize = True,) # lib.renderer_human.zoom(1.5) self.current_obs = None self.actions_taken = 0 self.decomposed_rewards_all = [] self.decomposed_rewards = [] self.decomposed_rewards_mark = 0 self.signal_of_finished = 1 self.end_state = None self.reward_types = reward_types self.decomposed_reward_dict = {} for rt in reward_types: self.decomposed_reward_dict[rt] = 0 self.input_screen_features = { "PLAYER_RELATIVE":[1, 3, 4], "UNIT_TYPE": [48, 105, 73, 83, 52, 109, 51, 107], 'HIT_POINT': 0, 'HIT_POINT_RATIO': 0 } ''' self.decomposed_reward_dict = { 'damageToEnemyMarine' : 0, 'damageByEnemyMarine' : 0, 'damageToEnemyZergling' : 0, 'damageByEnemyZergling' : 0, 'damageToEnemyMarauder' : 0, 'damageByEnemyMarauder' : 0, 'damageToEnemyHydralisk' : 0, 'damageByEnemyHydralisk' : 0, 'damageToEnemyThor' : 0, 'damageByEnemyThor' : 0, 'damageToEnemyUltralisk' : 0, 'damageByEnemyUltralisk' : 0, 'damageToFriendZealot' : 0 } ''' def action_space(): return Discrete(2) def observation_space(): return (84, 84, 1) def print_current_alerts(self): return self.current_obs[3] def reset(self): # Move the camera in any direction # This runs the ResetEpisode trigger built into the map self.decomposed_rewards_all = [] self.decomposed_rewards = [] self.decomposed_rewards_mark = 0 action = actions.FUNCTIONS.move_camera([0, 0]) self.last_timestep = self.sc2_env.step([action])[0] observation = self.unpack_timestep(self.last_timestep) self.current_obs = observation self.actions_taken = 0 np.set_printoptions(threshold=np.nan,linewidth=np.nan) # print(observation) state = observation[3]['feature_screen'] player_relative = np.array(state[5]) player_relative[np.array(state[6]) == 73] = 3 player_relative[np.array(state[12]) == 1] = 3 state[5] = player_relative.tolist() # print(type(state)) state = getOneHotState(state, self.input_screen_features) state = np.reshape(state, (1, -1)) self.end_state = None data = self.sc2_env._controllers[0]._client.send(observation = sc_pb.RequestObservation()) self.sc2_env._controllers[0]._client.send(action = sc_pb.RequestAction()) data = data.observation.raw_data.units rewards, sof = self.getRewards(data) self.signal_of_finished = sof for key in self.decomposed_reward_dict: self.decomposed_reward_dict[key] = 0 return state """ def getOneHotState(self, state): #extend player id PLAYER_ID = [1, 3, 16] tstate = self.int_map_to_onehot(np.array(state[4]),PLAYER_ID) #extend unit type UNIT_TYPE = [48, 105, 73, 83, 52, 109, 51, 107] tstate = np.append(tstate, self.int_map_to_onehot(np.array(state[6]),UNIT_TYPE), axis=0) #append unit hit point tstate = np.append(tstate, self.normalizeExceptZeros(state[8], (0, 500)), axis=0) #append unit hit point ratio SCALE = 255 hit_point_ratio = state[9] / SCALE hit_point_ratio = np.reshape(hit_point_ratio, (1, SCREEN_SIZE, SCREEN_SIZE)) tstate = np.append(tstate, hit_point_ratio, axis=0) ''' #extend unit density MAX_UNIT_DENSITY = 4 unit_density = np.clip(state[14] / MAX_UNIT_DENSITY, 0, 1) unit_density = np.reshape(unit_density, (1, SCREEN_SIZE, SCREEN_SIZE)) tstate = np.append(tstate, unit_density, axis=0) ''' # print(tstate) # print(tstate.shape) return tstate def normalizeExceptZeros(self, state, certainRange = None): state = np.array(state) if certainRange is None: # state[state == 0] = state.min(state[np.nonzero(state)]) nstate = (state - state.min()) / (state.max() - state.min()) else: nstate = (state - certainRange[0]) / (certainRange[1] - certainRange[0]) nstate = np.reshape(nstate, (1, SCREEN_SIZE, SCREEN_SIZE)) return nstate """ def getRewards(self, data): rewards = [] l = len(self.reward_types) for x in data: if x.shield == 199: sof = x.health elif x.shield > 100: rt = self.reward_types[int(x.shield - 101)] #print(x.shield) if 'damageToEnemy' in rt: self.decomposed_reward_dict[rt] = x.health - 1 else: self.decomposed_reward_dict[rt] = (x.health - 1) * -1 return rewards, sof def noop(self): return actions.FUNCTIONS.no_op() def step(self, action): done = False dead = False ### ACTION TAKING ### # print(action) if self.actions_taken == 0 and self.check_action(self.current_obs, 12): if action == 0: action = actions.FUNCTIONS.Attack_screen("now", [0,0]) elif action == 1: action = actions.FUNCTIONS.Attack_screen("now", [39,0]) elif action == 2: action = actions.FUNCTIONS.Attack_screen("now", [0,39]) elif action == 3: action = actions.FUNCTIONS.Attack_screen("now", [39,39]) elif action == 4: action = actions.FUNCTIONS.no_op() else: print("Invalid action: check final layer of network") action = actions.FUNCTIONS.no_op() else: action = actions.FUNCTIONS.no_op() # print(self.actions_taken == 0, self.check_action(self.current_obs, 12)) # print(action) #################### ### STATE PREPARATION ### self.last_timestep = self.sc2_env.step([action])[0] observation = self.unpack_timestep(self.last_timestep) self.current_obs = observation ######################### ### REWARD PREPARATION AND TERMINATION ### data = self.sc2_env._controllers[0]._client.send(observation=sc_pb.RequestObservation()) data = data.observation.raw_data.units rewards, sof = self.getRewards(data) state = observation[3]['feature_screen'] player_relative = np.array(state[5]) player_relative[np.array(state[6]) == 73] = 3 player_relative[np.array(state[12]) == 1] = 3 state[5] = player_relative.tolist() state = getOneHotState(state, self.input_screen_features) state = np.reshape(state, (1, -1)) #print(state.shape) self.decomposed_rewards_all.append([]) la = len(self.decomposed_rewards_all) for key in self.decomposed_reward_dict: self.decomposed_rewards_all[la - 1].append(self.decomposed_reward_dict[key]) # print(self.signal_of_finished,sof) if self.signal_of_finished != sof: done = True if sof == 1: dead = True else: dead = False self.decomposed_rewards.append([]) for i in range(len(self.reward_types)): l = len(self.decomposed_rewards) la = len(self.decomposed_rewards_all) if not dead: self.decomposed_rewards[l - 1].append( self.decomposed_rewards_all[la - 1][i] - self.decomposed_rewards_all[self.decomposed_rewards_mark][i] ) else: self.decomposed_rewards[l - 1].append( self.decomposed_rewards_all[la - 2][i] - self.decomposed_rewards_all[self.decomposed_rewards_mark][i] ) self.decomposed_rewards_mark = la - 1 self.signal_of_finished = sof ''' if len(state) < 41: current_len_state = len(state) for x in range(current_len_state, 41): state.append(0.0) # print(done,dead) ''' if dead: state = observation[3]['feature_screen'] player_relative = np.array(state[5]) player_relative[np.array(state[6]) == 73] = 3 player_relative[
np.array(state[12])
numpy.array
''' Author: <NAME> Email: <EMAIL> Date created: 2020/1/8 Python Version: 3.6 ''' import sys import os import numpy as np import tensorflow as tf from tensorflow.keras.callbacks import EarlyStopping, TensorBoard, ReduceLROnPlateau from tensorflow.keras.initializers import he_normal from tensorflow.keras.layers import Dense, Input from tensorflow.keras.models import Model as keras_Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.metrics import FalseNegatives, FalsePositives, TruePositives, TrueNegatives, Recall import datetime sys.path.append('.') from src.models.metrics import f1 from src.models.losses import FocalLoss class Model(object): def __init__(self, seq_length, embedding_dim, learning_rate=0.001, batch_size=32, patience=15, log_dir=None): self.seq_length = seq_length self.embedding_dim = embedding_dim self.learning_rate = learning_rate self.batch_size = batch_size self.patience = patience self.log_dir = log_dir print(self.patience, self.learning_rate) def build_model(self): with tf.name_scope('Model'): self.model = self.build() self.model.compile(optimizer=Adam(lr=self.learning_rate), loss=FocalLoss(alpha=.25, gamma=2), metrics=['accuracy', f1, TrueNegatives(), FalseNegatives(), TruePositives(), FalsePositives()]) print(self.model.summary()) def build(self): reg = None # model structure input1 = Input(shape=(self.seq_length, self.embedding_dim)) first_dense = self.shared_module(input1) output = Dense(1, activation='sigmoid', activity_regularizer=reg, kernel_initializer=he_normal(seed=1))(first_dense) model = keras_Model(inputs=input1, outputs=output) return model def load(self, fname): self.model.load_weights(fname) def fit(self, x_train, x_valid, y_train, y_valid): def arr_concate(train_arr, valid_arr): return np.concatenate([train_arr, valid_arr], axis=0) # concatenate the trian and valid inputs if isinstance(x_train, tuple): x_train_valid = [arr_concate(x_train[0], x_valid[0]), arr_concate(x_train[1], x_valid[1])] else: x_train_valid = arr_concate(x_train, x_valid) y_train_valid = arr_concate(y_train, y_valid) # patient early stopping es = EarlyStopping(monitor='val_loss', mode='min', verbose=0, patience=self.patience) logdir = os.path.join(self.log_dir, datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tb = TensorBoard(log_dir=logdir) # save initial weights tmp_model_path = os.path.join('models/interim', str(os.getpid()) + 'model.h5') self.model.save_weights(tmp_model_path) # calculate the weights (_, data_count) =
np.unique(y_train_valid, return_counts=True)
numpy.unique
from collections import OrderedDict import numpy as np import matplotlib as mpl mpl.rcParams['hatch.linewidth']=2.0 import matplotlib.pyplot as plt fs=25 plt.rc('xtick',labelsize=int(fs*.8)) plt.rc('ytick',labelsize=int(fs*.8)) import ROOT as rt from ROOT import TH1F,TColor import os # FIXME SetYTitle class BinaryClassifierResponse(object): def __init__(self, name, title, directory, pt): f=np.load("jj25{}.npz".format(pt)) self.bdt=f["bdtset"] #cmult,nmult,ptd,axis1,axis2, #cmult,nmult,ptd,axis1,axis2, #dr,pt/pt,mult/mult self.eve=f["eveset"] self.pairlist=f["pairlist"] self._name = name self._title = title self._path = os.path.join(directory, name + ".{ext}") def append(self, pt,var): res=30 maxv=self.bdt[:,var].max() if(maxv<self.bdt[:,var].max()): maxv=self.bdt[:,var].max() print(pt) if(pt==100):maxpt=175 if(pt==200):maxpt=357 if(pt==500):maxpt=874 if(pt==1000):maxpt=1750 if(pt==100): ptmin=0.815*pt ptmax=1.159*pt if(pt==200): ptmin=0.819*pt ptmax=1.123*pt if(pt==500): ptmin=0.821*pt ptmax=1.093*pt if(pt==1000): ptmin=0.8235*pt ptmax=1.076*pt if(var=="eta"): #q1hist=rt.TH1F("q1hist","pp#rightarrowqq", res, -1,1) #q2hist=rt.TH1F("q2hist","Z+jet", res, -1,1) #g1hist=rt.TH1F("g1hist","dijet", res, -1,1) #g2hist=rt.TH1F("g2hist","Z+jet", res, -1,1) q1hist=rt.TH1F("q1hist","pp#rightarrowqq", res, -2.4,2.4) q2hist=rt.TH1F("q2hist","Z+jet", res, -2.4,2.4) g1hist=rt.TH1F("g1hist","dijet", res, -2.4,2.4) g2hist=rt.TH1F("g2hist","Z+jet", res, -2.4,2.4) elif(var=="pt"): q1hist=rt.TH1F("q1hist","dijet", res, 0, maxpt) q2hist=rt.TH1F("q2hist","Z+jet", res, 0, maxpt) g1hist=rt.TH1F("g1hist","dijet", res, 0, maxpt) g2hist=rt.TH1F("g2hist","Z+jet", res, 0, maxpt) else: maxv=int(0.8*maxv) vb=int(maxv) #if(pt==500 or pt==1000):vb=int(vb/2) #vb=res print("max",maxv) q1hist=rt.TH1F("q1hist","dijet", vb,0, maxv) q2hist=rt.TH1F("q2hist","Z+jet", vb,0, maxv) g1hist=rt.TH1F("g1hist","dijet", vb,0, maxv) g2hist=rt.TH1F("g2hist","Z+jet", vb,0, maxv) res=int(vb) for k in range(len(self.bdt)): pair=np.argmax(self.eve[k]) pair=self.pairlist[np.argmax(self.eve[k])] """if(pair==0): q1hist.Fill(self.bdt[k][var]) if(pair==1): q2hist.Fill(self.bdt[k][var]) if(pair==2): g1hist.Fill(self.bdt[k][var]) if(pair==3): g2hist.Fill(self.bdt[k][var])""" if(pair[0]=="q"): q1hist.Fill(self.bdt[k][0]) if(pair[1]=="q"): q2hist.Fill(self.bdt[k][5]) if(pair[0]=="g"): g1hist.Fill(self.bdt[k][0]) if(pair[1]=="g"): g2hist.Fill(self.bdt[k][5]) q1hist.Scale(1.0 / q1hist.Integral()) #q2hist.Scale(1.0 / q2hist.Integral()) g1hist.Scale(1.0 / g1hist.Integral()) #g2hist.Scale(1.0 / g2hist.Integral()) q1hist.Draw("hist") q1=[] q2=[] g1=[] g2=[] for i in range(res): q1.append(q1hist.GetBinContent(i+1)) q2.append(q2hist.GetBinContent(i+1)) g1.append(g1hist.GetBinContent(i+1)) g2.append(g2hist.GetBinContent(i+1)) print(g2hist.GetEntries()) fs=25 plt.figure(figsize=(12,8)) plt.title("jet $p_T$ range {}~{} GeV".format(pt,int(pt*1.1)),fontdict={"weight":"bold","size":fs*1.}) plt.ylabel("Fraction of Events",fontsize=fs*1.3) if(var=='eta'): xax=np.append(np.arange(-2.4,2.4,((-q1hist.GetBinLowEdge(0)+q1hist.GetBinLowEdge(res))/res))[:res],2.4) plt.xlabel("jet $\eta$",fontsize=fs*1.3) plt.fill_between(xax,np.append(q1,0),alpha=0.6,linewidth=2,facecolor='azure',edgecolor='C0',label=r"pp$\rightarrow$qq",step='post') plt.plot(xax,np.append(q1,0),color='C0',alpha=0.5,drawstyle='steps-post',linewidth=2) plt.plot(xax,
np.append(q2,0)
numpy.append
import numpy as np from classification.classifier import Classifier class NaiveBayes(Classifier): def __init__(self, name='Naive Bayes'): super().__init__(1,1,name,_type=3) self.name = name def _predict(self, x): if len(self._labels) == 0: print("It is necessary to train the classifier before using it to make predictions") return # it might look complex but it's just prior + posterior probabilities for each label probs = np.array([np.log(self.P_C[i])+np.sum(np.log(self.gaussian(x,i))) for i in range(self.M)]) return self._labels[np.argmax(probs)] def fit(self, X, Y, *args, **kwargs): if not isinstance(Y, np.ndarray): Y = np.array(Y) self._labels = np.unique(Y) self.N = X.shape[1] self.M = len(self._labels) self.mean = np.zeros(X.shape) self.var = np.zeros(X.shape) self.P_C = np.array([len(np.where(Y==i)[0])/float(len(Y)) for i in self._labels]) # for each class for idx, cl in enumerate(self._labels): indexes = np.where(Y==cl)[0] self.mean[idx,: ] = np.mean(X[indexes], axis=0) self.var[idx,:] = np.var(X[indexes], axis=0) def gaussian(self, x, idx): return
np.exp(-((x-self.mean[idx])**2/(2*self.var[idx])))
numpy.exp
import sys sys.path.append('..') import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.optimize import projgrad from scipy.stats.mstats import gmean import matplotlib colors = matplotlib.rcParams['axes.prop_cycle'].by_key()['color'] black = matplotlib.rcParams['axes.labelcolor'] tcellcolor = '#0E1E97' tcellcoloralt = '#0e7b97' import plotting from lib import * from optparse import OptionParser parser = OptionParser() parser.add_option("-t", "--talk", action="store_true", dest="talk", default=False, help="optimize figure for talks") (options, args) = parser.parse_args() talk = options.talk if talk: plt.style.use('../talk.mplstyle') else: plt.style.use('../paper.mplstyle') def fcompfull_dC(x, t, alpha, K, dC, delta=0.0): "dC: function called as dC(C, t) giving rhs for dC/dt" T, C = x B = 0.5*(T+C+K - ((T+C+K)**2 - 4*T*C)**.5) return [alpha*B-delta*T, dC(C, t)] def make_dnu(x, xt, factor): x /=
np.sum(x)
numpy.sum
# NiftyRec - Ray-tracing tools # <NAME> # Center for Medical Image Computing (CMIC), University College Lonson (UCL) # 2009-2012, London # Aalto University, School of Science # Summer 2013, Helsinki # Martinos Center for Biomedical Imaging, Harvard University/MGH # Jan. 2014, Boston from .SimpleWrap import localpath, filepath, call_c_function, find_c_library, NOT_FOUND, FOUND, FOUND_NOT_LOADABLE, \ load_c_library import numpy as np import os,platform __all__ = ['has_NiftyPy', 'test_library_niftyrec_c','gpu_set','gpu_reset','gpu_list', 'gpu_exists', 'PET_project','PET_backproject','PET_project_compressed', 'PET_backproject_compressed', 'PET_compress_projection','PET_uncompress_projection', 'PET_initialize_compression_structure', 'PET_compress_projection_array','PET_get_subset_sparsity', 'PET_get_subset_projection_array', 'SPECT_project_parallelholes','SPECT_backproject_parallelholes', 'CT_project_conebeam','CT_backproject_conebeam', 'CT_project_parallelbeam','CT_backproject_parallelbeam', 'ET_spherical_phantom','ET_cylindrical_phantom', 'ET_spheres_ring_phantom', 'TR_grid_from_box_and_affine','TR_resample_grid','TR_resample_box', 'TR_gradient_grid','TR_gradient_box', 'TR_transform_grid', 'INTERPOLATION_LINEAR','INTERPOLATION_POINT'] library_name = "_et_array_interface" niftyrec_lib_paths = [localpath(),filepath(__file__),'./', '/usr/local/niftyrec/lib/', 'C:/Program Files/NiftyRec/lib/'] INTERPOLATION_LINEAR = 0 INTERPOLATION_POINT = 1 ####################################### Error handling: ######################################## class ErrorInCFunction(Exception): def __init__(self, msg, status, function_name): self.msg = str(msg) self.status = status self.function_name = function_name if self.status == status_io_error(): self.status_msg = "IO Error" elif self.status == status_initialisation_error(): self.status_msg = "Error with the initialisation of the C library" elif self.status == status_parameter_error(): self.status_msg = "One or more of the specified parameters are not right" elif self.status == status_unhandled_error(): self.status_msg = "Unhandled error, likely a bug. " else: self.status_msg = "Unspecified Error" def __str__(self): return "'%s' returned by the C Function '%s' (error code %d). %s" % ( self.status_msg, self.function_name, self.status, self.msg) class ErrorGPU(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return "%s" % str(self.msg) def status_success(): """Returns the value returned by the function calls to the library in case of success. """ r = call_c_function(niftyrec_c.status_success, [{'name': 'return_value', 'type': 'uint', 'value': None}]) return r.return_value def status_io_error(): """Returns the integer value returned by the function calls to the library in case of IO error. """ r = call_c_function(niftyrec_c.status_io_error, [{'name':'return_value','type':'uint','value':None}]) return r.return_value def status_initialisation_error(): """Returns the value returned by the function calls to the library in case of initialisation error. """ r = call_c_function(niftyrec_c.status_initialisation_error, [{'name':'return_value','type':'uint','value':None}]) return r.return_value def status_parameter_error(): """Returns the value returned by the function calls to the library in case of parameter error. """ r = call_c_function(niftyrec_c.status_parameter_error, [{'name':'return_value','type':'uint','value':None}]) return r.return_value def status_unhandled_error(): """Returns the value returned by the function calls to the library in case of unhandled error. """ r = call_c_function(niftyrec_c.status_unhandled_error, [{'name':'return_value','type':'uint','value':None}]) return r.return_value class LibraryNotFound(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return "Library cannot be found: %s" % str(self.msg) ####################################### Load library: ######################################## def test_library_niftyrec_c(): """Test whether the C library niftyrec_c responds. """ number = 101 # just a number descriptor = [{'name':'input','type':'int','value':number}, {'name':'output','type':'int','value':None},] r = call_c_function(niftyrec_c.echo,descriptor) return r.output == number # search for the library in the list of locations 'niftyrec_lib_paths' # and in the locations in the environment variables "LD_LIBRARY_PATH", "DYLD_LIBRARY_PATH" and "PATH" if platform.system() == 'Linux': sep = ":" elif platform.system() == 'Darwin': sep = ":" elif platform.system() == 'Windows': sep = ";" try: if os.environ.has_key('LD_LIBRARY_PATH'): niftyrec_lib_paths = niftyrec_lib_paths + os.environ[ 'LD_LIBRARY_PATH'].split(sep) except: if 'LD_LIBRARY_PATH' in os.environ: niftyrec_lib_paths = niftyrec_lib_paths + os.environ[ 'LD_LIBRARY_PATH'].split(sep) try: if os.environ.has_key('DYLD_LIBRARY_PATH'): niftyrec_lib_paths = niftyrec_lib_paths + os.environ[ 'DYLD_LIBRARY_PATH'].split(sep) except: if 'DYLD_LIBRARY_PATH' in os.environ: niftyrec_lib_paths = niftyrec_lib_paths + os.environ[ 'DYLD_LIBRARY_PATH'].split(sep) try: if os.environ.has_key('PATH'): niftyrec_lib_paths = niftyrec_lib_paths + os.environ['PATH'].split(sep) except: if 'PATH' in os.environ: niftyrec_lib_paths = niftyrec_lib_paths + os.environ['PATH'].split(sep) (found,fullpath,path) = find_c_library(library_name,niftyrec_lib_paths) if found == NOT_FOUND: has_NiftyPy = False print( "The library %s cannot be FOUND, please make sure that the path to the NiftyRec libraries has been exported. " % fullpath) print( "1) Before launching Python, type the following in the terminal (the same terminal): ") path = "'path to the niftyrec libraries'" if platform.system() == 'Linux': print("export LD_LIBRARY_PATH=%s" % path) elif platform.system() == 'Darwin': print("export DYLD_LIBRARY_PATH=%s" % path) elif platform.system() == 'Windows': print( "Add %s to the system PATH using Control Panel -> Advanced Settings -> System -> .." % path) raise LibraryNotFound("NiftyRec" + " (" + str(library_name) + ") ") elif found == FOUND_NOT_LOADABLE: has_NiftyPy = False print( "The library %s cannot be LOADED, please make sure that the path to the NiftyRec libraries has been exported. " % fullpath) print( "1) Before launching Python, type the following in the terminal (the same terminal): ") if platform.system() == 'Linux': print("export LD_LIBRARY_PATH=%s" % path) elif platform.system() == 'Darwin': print("export DYLD_LIBRARY_PATH=%s" % path) elif platform.system() == 'Windows': print( "Add %s to the system PATH using Control Panel -> Advanced Settings -> System -> .." % path) raise LibraryNotFound("NiftyRec" + " (" + str(library_name) + ") ") else: has_NiftyPy = True niftyrec_c = load_c_library(fullpath) #################################### Create interface to the C functions: #################################### def gpu_list(): """List GPUs and get information. """ MAX_GPUs = 1000 INFO_SIZE = 5 descriptor = [ {'name':'N','type':'array','value':None,'dtype':np.int32,'size':(1,)}, { 'name':'info','type':'array','value':None,'dtype':np.int32, 'size':(MAX_GPUs,INFO_SIZE) },] r = call_c_function(niftyrec_c.et_array_list_gpus,descriptor) if not r.status == status_success(): raise ErrorInCFunction("The execution of 'gpu_list' was unsuccessful.", r.status, 'niftyrec_c.et_array_list_gpus') N = r.dictionary['N'][0] info = r.dictionary['info'] gpus = [] for i in range(N): gpus.append({ 'id':info[i,0],'gflops':info[i,1], 'multiprocessors':info[i,2],'clock':info[i,3], 'globalmemory':info[i,4] }) return gpus def gpu_exists(gpu_id): for gpu in gpu_list(): if gpu['id'] == gpu_id: return True return False def gpu_set(gpu_id = 0): """Set GPU (when multiple GPUs are installed in the system). """ if not gpu_exists(gpu_id): gpus = gpu_list() raise ErrorGPU( "The execution of 'gpu_set' was unsuccessful - the requested GPU ID does not exist. The following GPUs have been found: %s" % str( gpus)) descriptor = [{'name':'id','type':'int','value':gpu_id},] r = call_c_function(niftyrec_c.et_array_set_gpu_pointer,descriptor) # print "STATUS:",r.status if not r.status == status_success(): raise ErrorInCFunction("The execution of 'gpu_set' was unsuccessful.", r.status,'niftyrec_c.et_array_set_gpu') def gpu_reset(): """Reset the currently selected GPU. """ r = call_c_function(niftyrec_c.et_array_reset_gpu,[]) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'gpu_reset' was unsuccessful.",r.status, 'niftyrec_c.et_array_reset_gpu') # print "STATUS:",r.status def PET_project(activity, attenuation, binning, use_gpu=0): # FIXME: in this and all other functions, replace 'binning' object with (only the required) raw variables """PET projection """ descriptor = [{'name': 'activity', 'type': 'array', 'value': activity}, {'name': 'activity_size_x', 'type': 'int', 'value': activity.shape[0]}, {'name': 'activity_size_y', 'type': 'int', 'value': activity.shape[1]}, {'name': 'activity_size_z', 'type': 'int', 'value': activity.shape[2]}, {'name': 'attenuation', 'type': 'array', 'value': attenuation}, {'name': 'attenuation_size_x', 'type': 'int', 'value': attenuation.shape[0]}, {'name': 'attenuation_size_y', 'type': 'int', 'value': attenuation.shape[1]}, {'name': 'attenuation_size_z', 'type': 'int', 'value': attenuation.shape[2]}, {'name': 'use_gpu', 'type': 'int', 'value': use_gpu}, ] r = call_c_function(niftyrec_c.PET_project, descriptor) if not r.status == status_success(): raise ErrorInCFunction("The execution of 'PET_project' was unsuccessful.", r.status, 'niftyrec_c.PET_project') return r.dictionary['projection'] def PET_backproject(projection_data, attenuation, binning, use_gpu=0): """PET back-projection """ descriptor = [] r = call_c_function(niftyrec_c.PET_backproject, descriptor) if not r.status == status_success(): raise ErrorInCFunction("The execution of 'PET_backproject' was unsuccessful.", r.status, 'niftyrec_c.PET_backproject') return r.dictionary def PET_project_compressed(activity,attenuation,offsets,locations,active, N_axial,N_azimuthal,angles,N_u,N_v,size_u,size_v, activity_size_x,activity_size_y,activity_size_z, attenuation_size_x,attenuation_size_y,attenuation_size_z, T_activity_x,T_activity_y,T_activity_z, R_activity_x,R_activity_y,R_activity_z, T_attenuation_x,T_attenuation_y,T_attenuation_z, R_attenuation_x,R_attenuation_y,R_attenuation_z, use_gpu,N_samples,sample_step,background,background_attenuation, truncate_negative_values,direction,block_size): """PET projection; output projection data is compressed. """ N_locations = locations.shape[1] # accept attenuation=None: if attenuation is None: attenuation = np.zeros((0,0,0)) descriptor = [{'name': 'projection', 'type': 'array', 'value': None, 'dtype': np.float32, 'size': (N_locations)}, {'name': 'activity', 'type': 'array', 'value': activity}, {'name': 'N_activity_x', 'type': 'uint', 'value': activity.shape[0]}, {'name': 'N_activity_y', 'type': 'uint', 'value': activity.shape[1]}, {'name': 'N_activity_z', 'type': 'uint', 'value': activity.shape[2]}, {'name': 'activity_size_x', 'type': 'float', 'value': activity_size_x}, {'name': 'activity_size_y', 'type': 'float', 'value': activity_size_y}, {'name': 'activity_size_z', 'type': 'float', 'value': activity_size_z}, {'name': 'T_activity_x', 'type': 'float', 'value': T_activity_x}, {'name': 'T_activity_y', 'type': 'float', 'value': T_activity_y}, {'name': 'T_activity_z', 'type': 'float', 'value': T_activity_z}, {'name': 'R_activity_x', 'type': 'float', 'value': R_activity_x}, {'name': 'R_activity_y', 'type': 'float', 'value': R_activity_y}, {'name': 'R_activity_z', 'type': 'float', 'value': R_activity_z}, {'name': 'attenuation', 'type': 'array', 'value': attenuation}, {'name': 'N_attenuation_x', 'type': 'uint', 'value': attenuation.shape[0]}, {'name': 'N_attenuation_y', 'type': 'uint', 'value': attenuation.shape[1]}, {'name': 'N_attenuation_z', 'type': 'uint', 'value': attenuation.shape[2]}, {'name': 'attenuation_size_x', 'type': 'float', 'value': attenuation_size_x}, {'name': 'attenuation_size_y', 'type': 'float', 'value': attenuation_size_y}, {'name': 'attenuation_size_z', 'type': 'float', 'value': attenuation_size_z}, {'name': 'T_attenuation_x', 'type': 'float', 'value': T_attenuation_x}, {'name': 'T_attenuation_y', 'type': 'float', 'value': T_attenuation_y}, {'name': 'T_attenuation_z', 'type': 'float', 'value': T_attenuation_z}, {'name': 'R_attenuation_x', 'type': 'float', 'value': R_attenuation_x}, {'name': 'R_attenuation_y', 'type': 'float', 'value': R_attenuation_y}, {'name': 'R_attenuation_z', 'type': 'float', 'value': R_attenuation_z}, {'name': 'N_axial', 'type': 'uint', 'value': N_axial}, {'name': 'N_azimuthal', 'type': 'uint', 'value': N_azimuthal}, {'name': 'angles', 'type': 'array', 'value': angles}, {'name': 'N_u', 'type': 'uint', 'value': N_u}, {'name': 'N_v', 'type': 'uint', 'value': N_v}, {'name': 'size_u', 'type': 'float', 'value': size_u}, {'name': 'size_v', 'type': 'float', 'value': size_v}, {'name': 'N_locations', 'type': 'uint', 'value': N_locations}, {'name': 'offsets', 'type': 'array', 'value': offsets}, {'name': 'locations', 'type': 'array', 'value': locations}, {'name': 'active', 'type': 'array', 'value': active}, {'name': 'N_samples', 'type': 'uint', 'value': N_samples}, {'name': 'sample_step', 'type': 'float', 'value': sample_step}, {'name': 'background', 'type': 'float', 'value': background}, {'name': 'background_attenuation', 'type': 'float', 'value': background_attenuation}, {'name': 'truncate_negative_values', 'type': 'uint', 'value': truncate_negative_values}, {'name': 'use_gpu', 'type': 'uint', 'value': use_gpu}, {'name': 'direction', 'type': 'uint', 'value': direction}, {'name': 'block_size', 'type': 'uint', 'value': block_size}, {'name': 'time_profiling', 'type': 'array', 'value': None, 'dtype': np.float32, 'size': (7)}, ] r = call_c_function(niftyrec_c.PET_project_compressed,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_project_compressed' was unsuccessful.", r.status, 'niftyrec_c.PET_project_compressed') # print r.dictionary['time_profiling'] T = r.dictionary['time_profiling'] / 1000.0 # [usec to ms] timing_dict = { "T0_transfer_to_gpu":T[0],"T1_alloc":T[1],"T2_rotate":T[2], "T3_resample":T[3],"T4_integral":T[4],"T5_transfer_to_host":T[5], "T6_free":T[6], } return r.dictionary["projection"],timing_dict def PET_project_compressed_test(activity,attenuation,N_axial,N_azimuthal, offsets,locations,active): N_locations = locations.shape[1] # accept attenuation=None: if attenuation is None: attenuation = np.zeros((0,0,0)) descriptor = [{ 'name':'projection','type':'array','value':None, 'dtype':np.float32,'size':(N_locations), }, {'name':'activity','type':'array','value':activity}, { 'name':'N_activity_x','type':'uint', 'value':activity.shape[0] }, { 'name':'N_activity_y','type':'uint', 'value':activity.shape[1] }, { 'name':'N_activity_z','type':'uint', 'value':activity.shape[2] }, {'name':'attenuation','type':'array','value':attenuation}, { 'name':'N_attenuation_x','type':'uint', 'value':attenuation.shape[0] }, { 'name':'N_attenuation_y','type':'uint', 'value':attenuation.shape[1] }, { 'name':'N_attenuation_z','type':'uint', 'value':attenuation.shape[2] }, {'name':'N_axial','type':'uint','value':N_axial}, {'name':'N_azimuthal','type':'uint','value':N_azimuthal}, {'name':'N_locations','type':'uint','value':N_locations}, {'name':'offsets','type':'array','value':offsets}, {'name':'locations','type':'array','value':locations}, {'name':'active','type':'array','value':active},] r = call_c_function(niftyrec_c.PET_project_compressed_test,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_project_compressed_test' was unsuccessful.", r.status, 'niftyrec_c.PET_project_compressed_test') return r.dictionary["projection"] def PET_backproject_compressed(projection_data,attenuation,offsets,locations, active, N_axial,N_azimuthal,angles,N_u,N_v,size_u, size_v, N_activity_x,N_activity_y,N_activity_z, activity_size_x,activity_size_y,activity_size_z, attenuation_size_x,attenuation_size_y, attenuation_size_z, T_activity_x,T_activity_y,T_activity_z, R_activity_x,R_activity_y,R_activity_z, T_attenuation_x,T_attenuation_y,T_attenuation_z, R_attenuation_x,R_attenuation_y, R_attenuation_z, use_gpu,N_samples,sample_step,background, background_attenuation,direction, block_size): """PET back-projection; input projection data is compressed. """ N_locations = locations.shape[1] # accept attenuation=None: if attenuation is None: attenuation = np.zeros((0,0,0)) descriptor = [{'name': 'back_projection', 'type': 'array', 'value': None, 'dtype': np.float32, 'size': (N_activity_x, N_activity_y, N_activity_z), 'order': "F"}, {'name': 'N_activity_x', 'type': 'uint', 'value': N_activity_x}, {'name': 'N_activity_y', 'type': 'uint', 'value': N_activity_y}, {'name': 'N_activity_z', 'type': 'uint', 'value': N_activity_z}, {'name': 'activity_size_x', 'type': 'float', 'value': activity_size_x}, {'name': 'activity_size_y', 'type': 'float', 'value': activity_size_y}, {'name': 'activity_size_z', 'type': 'float', 'value': activity_size_z}, {'name': 'T_activity_x', 'type': 'float', 'value': T_activity_x}, {'name': 'T_activity_y', 'type': 'float', 'value': T_activity_y}, {'name': 'T_activity_z', 'type': 'float', 'value': T_activity_z}, {'name': 'R_activity_x', 'type': 'float', 'value': R_activity_x}, {'name': 'R_activity_y', 'type': 'float', 'value': R_activity_y}, {'name': 'R_activity_z', 'type': 'float', 'value': R_activity_z}, {'name': 'attenuation', 'type': 'array', 'value': attenuation}, {'name': 'N_attenuation_x', 'type': 'uint', 'value': attenuation.shape[0]}, {'name': 'N_attenuation_y', 'type': 'uint', 'value': attenuation.shape[1]}, {'name': 'N_attenuation_z', 'type': 'uint', 'value': attenuation.shape[2]}, {'name': 'attenuation_size_x', 'type': 'float', 'value': attenuation_size_x}, {'name': 'attenuation_size_y', 'type': 'float', 'value': attenuation_size_y}, {'name': 'attenuation_size_z', 'type': 'float', 'value': attenuation_size_z}, {'name': 'T_attenuation_x', 'type': 'float', 'value': T_attenuation_x}, {'name': 'T_attenuation_y', 'type': 'float', 'value': T_attenuation_y}, {'name': 'T_attenuation_z', 'type': 'float', 'value': T_attenuation_z}, {'name': 'R_attenuation_x', 'type': 'float', 'value': R_attenuation_x}, {'name': 'R_attenuation_y', 'type': 'float', 'value': R_attenuation_y}, {'name': 'R_attenuation_z', 'type': 'float', 'value': R_attenuation_z}, {'name': 'N_axial', 'type': 'uint', 'value': N_axial}, {'name': 'N_azimuthal', 'type': 'uint', 'value': N_azimuthal}, {'name': 'angles', 'type': 'array', 'value': angles}, {'name': 'N_u', 'type': 'uint', 'value': N_u}, {'name': 'N_v', 'type': 'uint', 'value': N_v}, {'name': 'size_u', 'type': 'float', 'value': size_u}, {'name': 'size_v', 'type': 'float', 'value': size_v}, {'name': 'N_locations', 'type': 'uint', 'value': N_locations}, {'name': 'offsets', 'type': 'array', 'value': offsets}, {'name': 'locations', 'type': 'array', 'value': locations}, {'name': 'active', 'type': 'array', 'value': active}, {'name': 'projection_data', 'type': 'array', 'value': projection_data}, {'name': 'use_gpu', 'type': 'uint', 'value': use_gpu}, {'name': 'N_samples', 'type': 'uint', 'value': N_samples}, {'name': 'sample_step', 'type': 'float', 'value': sample_step}, {'name': 'background_activity', 'type': 'float', 'value': background}, {'name': 'background_attenuation', 'type': 'float', 'value': background_attenuation}, {'name': 'direction', 'type': 'uint', 'value': direction}, {'name': 'block_size', 'type': 'uint', 'value': block_size}, {'name': 'time_profiling', 'type': 'array', 'value': None, 'dtype': np.float32, 'size': (10)}, ] r = call_c_function(niftyrec_c.PET_backproject_compressed,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_backproject_compressed' was unsuccessful.", r.status, 'niftyrec_c.PET_backproject_compressed') T = r.dictionary['time_profiling'] / 1000.0 # [usec to ms] timing_dict = { "T0_transfer_to_gpu":T[0],"T1_alloc":T[1],"T2_rotate":T[2], "T3_resample":T[3],"T4_integral":T[4],"T5_transfer_to_host":T[5], "T6_free":T[6], "T7_accumulate":T[7],"T8_clear_memory":T[8],"T9_copy_texture":T[9] } return r.dictionary["back_projection"],timing_dict def PET_initialize_compression_structure(N_axial,N_azimuthal,N_u,N_v): """Obtain 'offsets' and 'locations' arrays for fully sampled PET compressed projection data. """ descriptor = [{'name':'N_axial','type':'uint','value':N_axial}, {'name':'N_azimuthal','type':'uint','value':N_azimuthal}, {'name':'N_u','type':'uint','value':N_u}, {'name':'N_v','type':'uint','value':N_v}, { 'name':'offsets','type':'array','value':None, 'dtype':np.int32,'size':(N_azimuthal,N_axial), 'order':'F' }, { 'name':'locations','type':'array','value':None, 'dtype':np.uint16, 'size':(3,N_u * N_v * N_axial * N_azimuthal),'order':'F' }, ] r = call_c_function(niftyrec_c.PET_initialize_compression_structure, descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_initialize_compression_structure' was unsuccessful.", r.status, 'niftyrec_c.PET_initialize_compression_structure') return [r.dictionary['offsets'],r.dictionary['locations']] def PET_compress_projection(offsets,data,locations,N_u,N_v): """Find the zero entries in fully sampled PET projection data and compress it.""" N_locations = locations.shape[1] N_axial = offsets.shape[1] N_azimuthal = offsets.shape[0] descriptor = [{'name':'N_locations','type':'uint','value':N_locations}, {'name':'N_axial','type':'uint','value':N_axial}, {'name':'N_azimuthal','type':'uint','value':N_azimuthal}, {'name':'N_u','type':'uint','value':N_u}, {'name':'N_v','type':'uint','value':N_v}, {'name':'offsets','type':'array','value':offsets}, {'name':'data','type':'array','value':data}, {'name':'locations','type':'array','value':locations}, { 'name':'projection','type':'array','value':None, 'dtype':np.float32,'size':(N_locations,), 'order':'F' }, ] r = call_c_function(niftyrec_c.PET_compress_projection,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_compress_projection' was unsuccessful.", r.status, 'niftyrec_c.PET_compress_projection') return r.dictionary['projection'] def PET_uncompress_projection(offsets,data,locations,N_u,N_v): """Uncompress compressed PET projection data. """ N_locations = locations.shape[1] N_axial = offsets.shape[1] N_azimuthal = offsets.shape[0] descriptor = [{'name':'N_locations','type':'uint','value':N_locations}, {'name':'N_axial','type':'uint','value':N_axial}, {'name':'N_azimuthal','type':'uint','value':N_azimuthal}, {'name':'N_u','type':'uint','value':N_u}, {'name':'N_v','type':'uint','value':N_v}, {'name':'offsets','type':'array','value':offsets}, {'name':'data','type':'array','value':data}, {'name':'locations','type':'array','value':locations}, { 'name':'projection','type':'array','value':None, 'dtype':np.float32, 'size':(N_v * N_u * N_azimuthal * N_axial,),'order':'F' }, ] r = call_c_function(niftyrec_c.PET_uncompress_projection,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_uncompress_projection' was unsuccessful.", r.status, 'niftyrec_c.PET_uncompress_projection') return r.dictionary['projection'] def PET_compress_projection_array(data,N_ax,N_az,N_u,N_v,threshold = 1e-15): """Compress 4D projection array. Returns compressed data structure: offsets, locations, compressed data array. """ active = data > threshold N_active = active.sum() data_size = (N_active,) offsets_size = (N_az,N_ax) locations_size = (3,N_active) descriptor = [{'name':'N_axial','type':'uint','value':N_ax}, {'name':'N_azimuthal','type':'uint','value':N_az}, {'name':'N_u','type':'uint','value':N_u}, {'name':'N_v','type':'uint','value':N_v}, {'name':'threshold','type':'float','value':threshold}, {'name':'N_active','type':'uint','value':N_active}, {'name':'active','type':'array','value':active}, {'name':'data','type':'array','value':data}, { 'name':'offsets','type':'array','value':None, 'dtype':np.int32,'size':offsets_size, 'order':'F' }, { 'name':'locations','type':'array','value':None, 'dtype':np.uint16,'size':locations_size, 'order':'F' }, { 'name':'compressed','type':'array','value':None, 'dtype':np.float32,'size':data_size, 'order':'F' }, ] r = call_c_function(niftyrec_c.PET_compress_projection_array,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_compress_projection_array' was unsuccessful.", r.status, 'niftyrec_c.PET_compress_projection_array') return r.dictionary['compressed'],r.dictionary['offsets'],r.dictionary[ 'locations'] def PET_get_subset_sparsity(offsets,locations,subsets_matrix,N_u,N_v, N_locations,N_locations_sub): """Extracts a subset from sparsity structure. The function takes offsets and locations and a subset matrix as input and returns offsets and locations for the specified subset. """ N_subsets = subsets_matrix.sum() N_ax = subsets_matrix.shape[1] N_az = subsets_matrix.shape[0] offsets_size = (1,N_subsets) locations_size = (3,N_locations_sub) descriptor = [{'name':'N_axial','type':'uint','value':N_ax}, {'name':'N_azimuthal','type':'uint','value':N_az}, {'name':'N_u','type':'uint','value':N_u}, {'name':'N_v','type':'uint','value':N_v}, {'name':'N_locations','type':'uint','value':N_locations}, {'name':'offsets','type':'array','value':offsets}, {'name':'locations','type':'array','value':locations}, { 'name':'subsets_matrix','type':'array', 'value':subsets_matrix }, { 'name':'offsets_sub','type':'array','value':None, 'dtype':np.int32,'size':offsets_size, 'order':'F' }, { 'name':'locations_sub','type':'array','value':None, 'dtype':np.uint16,'size':locations_size, 'order':'F' }, ] r = call_c_function(niftyrec_c.PET_get_subset_sparsity,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_get_subset_sparsity' was unsuccessful.", r.status, 'niftyrec_c.PET_get_subset_sparsity') return r.dictionary['offsets_sub'],r.dictionary['locations_sub'] def PET_get_subset_projection_array(data,subsets_matrix,offsets,locations,N_u, N_v,N_locations,N_locations_sub): """Extracts a subset from a compressed projection data array. """ N_subsets = subsets_matrix.sum() N_ax = subsets_matrix.shape[1] N_az = subsets_matrix.shape[0] offsets_size = (1,N_subsets) locations_size = (3,N_locations_sub) data_size = (N_locations_sub,) descriptor = [{'name':'N_axial','type':'uint','value':N_ax}, {'name':'N_azimuthal','type':'uint','value':N_az}, {'name':'N_u','type':'uint','value':N_u}, {'name':'N_v','type':'uint','value':N_v}, {'name':'N_locations','type':'uint','value':N_locations}, {'name':'data','type':'array','value':data}, {'name':'offsets','type':'array','value':offsets}, {'name':'locations','type':'array','value':locations}, { 'name':'offsets_sub','type':'array','value':None, 'dtype':np.int32,'size':offsets_size, 'order':'F' }, { 'name':'locations_sub','type':'array','value':None, 'dtype':np.uint16,'size':locations_size, 'order':'F' }, { 'name':'subsets_matrix','type':'array', 'value':subsets_matrix }, { 'name':'data_sub','type':'array','value':None, 'dtype':np.float32,'size':data_size, 'order':'F' }, ] r = call_c_function(niftyrec_c.PET_get_subset_projection_array,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_get_subset_projection_array' was unsuccessful.", r.status, 'niftyrec_c.PET_get_subset_projection_array') return r.dictionary['data_sub'],r.dictionary['offsets_sub'],r.dictionary[ 'locations_sub'] def ET_spherical_phantom(shape, size, center, radius, inner_value, outer_value): """Create a spherical phantom. """ descriptor = [ { 'name':'image','type':'array','value':None,'dtype':np.float32, 'size':(shape[0], shape[1], shape[2]), 'order':"F" }, {'name':'Nx','type':'uint','value':shape[0]}, {'name':'Ny','type':'uint','value':shape[1]}, {'name':'Nz','type':'uint','value':shape[2]}, {'name':'sizex','type':'float','value':size[0]}, {'name':'sizey','type':'float','value':size[1]}, {'name':'sizez','type':'float','value':size[2]}, {'name':'centerx','type':'float','value':center[0]}, {'name':'centery','type':'float','value':center[1]}, {'name':'centerz','type':'float','value':center[2]}, {'name':'radius','type':'float','value':radius}, {'name':'inner_value','type':'float','value':inner_value}, {'name':'outer_value','type':'float','value':outer_value},] r = call_c_function(niftyrec_c.ET_spherical_phantom,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'ET_spherical_phantom' was unsuccessful.", r.status, 'niftyrec_c.ET_spherical_phantom') return r.dictionary['image'] def ET_cylindrical_phantom(shape, size, center, radius, length, axis, inner_value, outer_value): """Create a cylindrical phantom. """ descriptor = [ { 'name':'image','type':'array','value':None,'dtype':np.float32, 'size':(shape[0], shape[1], shape[2]), 'order':"F" }, {'name':'Nx','type':'uint','value':shape[0]}, {'name':'Ny','type':'uint','value':shape[1]}, {'name':'Nz','type':'uint','value':shape[2]}, {'name':'sizex','type':'float','value':size[0]}, {'name':'sizey','type':'float','value':size[1]}, {'name':'sizez','type':'float','value':size[2]}, {'name':'centerx','type':'float','value':center[0]}, {'name':'centery','type':'float','value':center[1]}, {'name':'centerz','type':'float','value':center[2]}, {'name':'radius','type':'float','value':radius}, {'name':'length','type':'float','value':length}, {'name':'axis','type':'uint','value':axis}, {'name':'inner_value','type':'float','value':inner_value}, {'name':'outer_value','type':'float','value':outer_value},] r = call_c_function(niftyrec_c.ET_cylindrical_phantom,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'ET_cylindrical_phantom' was unsuccessful.", r.status, 'niftyrec_c.ET_cylindrical_phantom') return r.dictionary['image'] def ET_spheres_ring_phantom(shape, size, center, ring_radius, min_sphere_radius, max_sphere_radius, N_spheres = 6, inner_value = 1.0, outer_value = 0.0, taper = 0, axis = 0): """Create a phantom with a ring of spheres of variable radius. """ descriptor = [ { 'name':'image','type':'array','value':None,'dtype':np.float32, 'size':(shape[0], shape[1], shape[2]), 'order':"F" }, {'name':'Nx','type':'uint','value':shape[0]}, {'name':'Ny','type':'uint','value':shape[1]}, {'name':'Nz','type':'uint','value':shape[2]}, {'name':'sizex','type':'float','value':size[0]}, {'name':'sizey','type':'float','value':size[1]}, {'name':'sizez','type':'float','value':size[2]}, {'name':'centerx','type':'float','value':center[0]}, {'name':'centery','type':'float','value':center[1]}, {'name':'centerz','type':'float','value':center[2]}, {'name':'ring_radius','type':'float','value':ring_radius}, {'name':'min_sphere_radius','type':'float','value':min_sphere_radius}, {'name':'max_sphere_radius','type':'float','value':max_sphere_radius}, {'name':'N_spheres','type':'uint','value':N_spheres}, {'name':'inner_value','type':'float','value':inner_value}, {'name':'outer_value','type':'float','value':outer_value}, {'name':'taper','type':'float','value':taper}, {'name':'ring_axis','type':'uint','value':axis},] r = call_c_function(niftyrec_c.ET_spheres_ring_phantom,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'ET_spheres_ring_phantom' was unsuccessful.", r.status, 'niftyrec_c.ET_spheres_ring_phantom') return r.dictionary['image'] def ET_cylinders_ring_phantom(shape, size, center, ring_radius, length, min_cylinder_radius, max_cylinder_radius, N_cylinders = 6, inner_value = 1.0, outer_value = 0.0, taper = 0, axis = 0): """Create a phantom with a ring of spheres of variable radius. """ descriptor = [ { 'name':'image','type':'array','value':None,'dtype':np.float32, 'size':(shape[0], shape[1], shape[2]), 'order':"F" }, {'name':'Nx','type':'uint','value':shape[0]}, {'name':'Ny','type':'uint','value':shape[1]}, {'name':'Nz','type':'uint','value':shape[2]}, {'name':'sizex','type':'float','value':size[0]}, {'name':'sizey','type':'float','value':size[1]}, {'name':'sizez','type':'float','value':size[2]}, {'name':'centerx','type':'float','value':center[0]}, {'name':'centery','type':'float','value':center[1]}, {'name':'centerz','type':'float','value':center[2]}, {'name':'ring_radius','type':'float','value':ring_radius}, {'name':'length','type':'float','value':length}, {'name':'min_cylinder_radius','type':'float','value':min_cylinder_radius}, {'name':'max_cylinder_radius','type':'float','value':max_cylinder_radius}, {'name':'N_cylinders','type':'uint','value':N_cylinders}, {'name':'inner_value','type':'float','value':inner_value}, {'name':'outer_value','type':'float','value':outer_value}, {'name':'taper','type':'float','value':taper}, {'name':'ring_axis','type':'uint','value':axis},] r = call_c_function(niftyrec_c.ET_cylinders_ring_phantom,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'ET_cylinders_ring_phantom' was unsuccessful.", r.status, 'niftyrec_c.ET_cylinders_ring_phantom') return r.dictionary['image'] def SPECT_project_parallelholes(activity,cameras,attenuation = None,psf = None, background = 0.0, background_attenuation = 0.0,use_gpu = 1, truncate_negative_values = 0): """SPECT projection; parallel-holes geometry. """ # accept attenuation=None and psf=None: if attenuation is None: attenuation = np.zeros((0,0,0)) if psf is None: psf = np.zeros((0,0,0)) N_projections = cameras.shape[0] descriptor = [{'name':'activity','type':'array','value':activity}, { 'name':'activity_size','type':'array', 'value':np.int32(activity.shape) }, { 'name':'projection','type':'array','value':None, 'dtype':np.float32, 'size':( activity.shape[0],activity.shape[1],N_projections), 'order':"F" }, { 'name':'projection_size','type':'array', 'value':np.int32([N_projections,activity.shape[0], activity.shape[1]]) }, { 'name':'cameras','type':'array','value':cameras, 'order':"F" }, { 'name':'cameras_size','type':'array', 'value':np.int32(cameras.shape) }, {'name':'psf','type':'array','value':psf,'order':"F"}, { 'name':'psf_size','type':'array', 'value':np.int32(psf.shape) }, {'name':'attenuation','type':'array','value':attenuation}, { 'name':'attenuation_size','type':'array', 'value':np.int32(attenuation.shape) }, {'name':'background','type':'float','value':background}, { 'name':'background_attenuation','type':'float', 'value':background_attenuation }, {'name':'use_gpu','type':'int','value':use_gpu}, { 'name':'truncate_negative_values','type':'int', 'value':truncate_negative_values },] r = call_c_function(niftyrec_c.SPECT_project_parallelholes,descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'SPECT_project_parallelholes' was unsuccessful.", r.status, 'niftyrec_c.SPECT_project_parallelholes') return r.dictionary['projection'] def SPECT_backproject_parallelholes(projection,cameras,attenuation = None, psf = None,background = 0.0, background_attenuation = 0.0,use_gpu = 1, truncate_negative_values = 0): """SPECT backprojection; parallel-holes geometry. """ # accept attenuation=None and psf=None: if attenuation is None: attenuation = np.zeros((0,0,0)) if psf is None: psf = np.zeros((0,0,0)) N_projections = cameras.shape[0] descriptor = [{'name':'projection','type':'array','value':projection}, { 'name':'projection_size','type':'array', 'value':np.int32(projection.shape) }, { 'name':'backprojection','type':'array','value':None, 'dtype':np.float32, 'size':(projection.shape[0],projection.shape[1], projection.shape[0]),'order':"F" }, { 'name':'backprojection_size','type':'array', 'value':np.int32( [projection.shape[0],projection.shape[1], projection.shape[0]]) }, { 'name':'cameras','type':'array','value':cameras, 'order':"F" }, { 'name':'cameras_size','type':'array', 'value':np.int32(cameras.shape) }, {'name':'psf','type':'array','value':psf,'order':"F"}, { 'name':'psf_size','type':'array', 'value':np.int32(psf.shape) }, {'name':'attenuation','type':'array','value':attenuation}, { 'name':'attenuation_size','type':'array', 'value':
np.int32(attenuation.shape)
numpy.int32
# Copyright 2020, The TensorFlow Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for tensorflow_privacy.privacy.membership_inference_attack.seq2seq_mia.""" from absl.testing import absltest import numpy as np from tensorflow_privacy.privacy.membership_inference_attack.data_structures import AttackType from tensorflow_privacy.privacy.membership_inference_attack.data_structures import PrivacyReportMetadata from tensorflow_privacy.privacy.membership_inference_attack.seq2seq_mia import create_seq2seq_attacker_data from tensorflow_privacy.privacy.membership_inference_attack.seq2seq_mia import run_seq2seq_attack from tensorflow_privacy.privacy.membership_inference_attack.seq2seq_mia import Seq2SeqAttackInputData class Seq2SeqAttackInputDataTest(absltest.TestCase): def test_validator(self): valid_logits_train = iter([np.array([]), np.array([])]) valid_logits_test = iter([np.array([]), np.array([])]) valid_labels_train = iter([np.array([]), np.array([])]) valid_labels_test = iter([np.array([]), np.array([])]) invalid_logits_train = [] invalid_logits_test = [] invalid_labels_train = [] invalid_labels_test = [] self.assertRaises( ValueError, Seq2SeqAttackInputData(logits_train=valid_logits_train).validate) self.assertRaises( ValueError, Seq2SeqAttackInputData(labels_train=valid_labels_train).validate) self.assertRaises( ValueError, Seq2SeqAttackInputData(logits_test=valid_logits_test).validate) self.assertRaises( ValueError, Seq2SeqAttackInputData(labels_test=valid_labels_test).validate) self.assertRaises(ValueError, Seq2SeqAttackInputData(vocab_size=0).validate) self.assertRaises(ValueError, Seq2SeqAttackInputData(train_size=0).validate) self.assertRaises(ValueError, Seq2SeqAttackInputData(test_size=0).validate) self.assertRaises(ValueError, Seq2SeqAttackInputData().validate) # Tests that both logits and labels must be set. self.assertRaises( ValueError, Seq2SeqAttackInputData( logits_train=valid_logits_train, logits_test=valid_logits_test, vocab_size=0, train_size=0, test_size=0).validate) self.assertRaises( ValueError, Seq2SeqAttackInputData( labels_train=valid_labels_train, labels_test=valid_labels_test, vocab_size=0, train_size=0, test_size=0).validate) # Tests that vocab, train, test sizes must all be set. self.assertRaises( ValueError, Seq2SeqAttackInputData( logits_train=valid_logits_train, logits_test=valid_logits_test, labels_train=valid_labels_train, labels_test=valid_labels_test).validate) self.assertRaises( ValueError, Seq2SeqAttackInputData( logits_train=invalid_logits_train, logits_test=invalid_logits_test, labels_train=invalid_labels_train, labels_test=invalid_labels_test, vocab_size=0, train_size=0, test_size=0).validate) class Seq2SeqTrainedAttackerTest(absltest.TestCase): def test_create_seq2seq_attacker_data_logits_and_labels(self): attack_input = Seq2SeqAttackInputData( logits_train=iter([ np.array([ np.array([[0.1, 0.1, 0.8], [0.7, 0.3, 0]], dtype=np.float32), np.array([[0.4, 0.5, 0.1]], dtype=np.float32) ], dtype=object), np.array( [np.array([[0.25, 0.6, 0.15], [1, 0, 0]], dtype=np.float32)], dtype=object), np.array([ np.array([[0.9, 0, 0.1], [0.25, 0.5, 0.25]], dtype=np.float32), np.array([[0, 1, 0], [0.2, 0.1, 0.7]], dtype=np.float32) ], dtype=object) ]), logits_test=iter([ np.array([ np.array([[0.25, 0.4, 0.35], [0.2, 0.4, 0.4]], dtype=np.float32) ], dtype=object), np.array([ np.array([[0.3, 0.3, 0.4], [0.4, 0.4, 0.2]], dtype=np.float32),
np.array([[0.3, 0.35, 0.35]], dtype=np.float32)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2016-2018 <NAME>, SMBYC # Email: xcorredorl at ideam.gov.co # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # import dask.array as da import numpy as np from stack_composed.image import Image def statistic(stat, images, band, num_process, chunksize): # create a empty initial wrapper raster for managed dask parallel # in chunks and storage result wrapper_array = da.empty(Image.wrapper_shape, chunks=chunksize) chunksize = wrapper_array.chunks[0][0] # call built in numpy statistical functions, with a specified axis. if # axis=2 means it will Compute along the 'depth' axis, per pixel. # with the return being n by m, the shape of each band. # # Compute the median if stat == 'median': def stat_func(stack_chunk, metadata): return np.nanmedian(stack_chunk, axis=2) # Compute the arithmetic mean if stat == 'mean': def stat_func(stack_chunk, metadata): return np.nanmean(stack_chunk, axis=2) # Compute the geometric mean if stat == 'gmean': def stat_func(stack_chunk, metadata): product = np.nanprod(stack_chunk, axis=2) count = np.count_nonzero(np.nan_to_num(stack_chunk), axis=2) gmean = np.array([p ** (1.0 / c) for p, c in zip(product, count)]) gmean[gmean == 1] = np.nan return gmean # Compute the maximum value if stat == 'max': def stat_func(stack_chunk, metadata): return np.nanmax(stack_chunk, axis=2) # Compute the minimum value if stat == 'min': def stat_func(stack_chunk, metadata): return np.nanmin(stack_chunk, axis=2) # Compute the standard deviation if stat == 'std': def stat_func(stack_chunk, metadata): return np.nanstd(stack_chunk, axis=2) # Compute the valid pixels # this count the valid data (no nans) across the z-axis if stat == 'valid_pixels': def stat_func(stack_chunk, metadata): return stack_chunk.shape[2] - np.isnan(stack_chunk).sum(axis=2) # Compute the percentile NN if stat.startswith('percentile_'): p = int(stat.split('_')[1]) def stat_func(stack_chunk, metadata): return np.nanpercentile(stack_chunk, p, axis=2) # Compute the last valid pixel if stat == 'last_pixel': def last_pixel(pixel_time_series, index_sort): if np.isnan(pixel_time_series).all(): return np.nan for index in index_sort: if not np.isnan(pixel_time_series[index]): return pixel_time_series[index] def stat_func(stack_chunk, metadata): index_sort = np.argsort(metadata['date'])[::-1] # from the most recent to the oldest return np.apply_along_axis(last_pixel, 2, stack_chunk, index_sort) # Compute the julian day of the last valid pixel if stat == 'jday_last_pixel': def jday_last_pixel(pixel_time_series, index_sort, jdays): if np.isnan(pixel_time_series).all(): return 0 # better np.nan but there is bug with multiprocessing with return nan value here for index in index_sort: if not np.isnan(pixel_time_series[index]): return jdays[index] def stat_func(stack_chunk, metadata): index_sort = np.argsort(metadata['date'])[::-1] # from the most recent to the oldest return np.apply_along_axis(jday_last_pixel, 2, stack_chunk, index_sort, metadata['jday']) # Compute the julian day of the median value if stat == 'jday_median': def jday_median(pixel_time_series, index_sort, jdays): if np.isnan(pixel_time_series).all(): return 0 # better np.nan but there is bug with multiprocessing with return nan value here jdays = [jdays[index] for index in index_sort if not np.isnan(pixel_time_series[index])] return np.ceil(np.median(jdays)) def stat_func(stack_chunk, metadata): index_sort = np.argsort(metadata['date']) # from the oldest to most recent return np.apply_along_axis(jday_median, 2, stack_chunk, index_sort, metadata['jday']) # Compute the trimmed median with lower limit and upper limit if stat.startswith('trim_mean_'): # TODO: check this stats when the time series have few data lower = int(stat.split('_')[2]) upper = int(stat.split('_')[3]) def trim_mean(pixel_time_series): if np.isnan(pixel_time_series).all(): return 0 # better np.nan but there is bug with multiprocessing with return nan value here pts = pixel_time_series[~np.isnan(pixel_time_series)] if len(pts) <= 2: return np.percentile(pts, (lower+upper)/2) return np.mean(pts[(pts >= np.percentile(pts, lower)) & (pts <= np.percentile(pts, upper))]) def stat_func(stack_chunk, metadata): return np.apply_along_axis(trim_mean, 2, stack_chunk) # Compute the linear trend using least-squares method if stat == 'linear_trend': def linear_trend(pixel_time_series, index_sort, date_list): if np.isnan(pixel_time_series).all() or len(pixel_time_series[~np.isnan(pixel_time_series)]) == 1: return np.nan # Unix timestamp in days x = [int(int(date_list[index].strftime("%s")) / 86400) for index in index_sort] x = [i-x[0] for i in x] # diff from minimum pts = np.array([pixel_time_series[index] for index in index_sort]) y = np.ma.array(pts, mask=np.isnan(pts)) ssxm, ssxym, ssyxm, ssym = np.ma.cov(x, y, bias=1).flat slope = ssxym / ssxm return slope*1000000 def stat_func(stack_chunk, metadata): index_sort =
np.argsort(metadata['date'])
numpy.argsort
"""Test functions. This module implements several known mathematical functions, that can be used to test RBFOpt. Licensed under Revised BSD license, see LICENSE. (C) Copyright Singapore University of Technology and Design 2014. (C) Copyright International Business Machines Corporation 2017. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import sys import math import numpy as np from rbfopt.rbfopt_black_box import RbfoptBlackBox class branin: """ Branin function of the Dixon-Szego test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = ((x[1] - (5.1/(4*math.pi*math.pi))*x[0]*x[0] + 5/math.pi*x[0] - 6)**2 + 10*(1-1/(8*math.pi)) * math.cos(x[0]) +10) return(value) dimension = 2 var_lower = np.array([-5, 0]) var_upper = np.array([10, 15]) optimum_point = np.array([9.42477796, 2.47499998]) additional_optima = np.array([ [-3.14159265, 12.27500000], [3.14159265, 2.27500000] ]) optimum_value = 0.397887357729739 var_type = np.array(['R'] * 2) # -- end class class hartman3: """ Hartman3 function of the Dixon-Szego test set. """ @classmethod def evaluate(cls, x): assert(len(x)==3) value = -math.fsum([ cls.c[i] * np.exp(-math.fsum([cls.a[j][i]* (x[j] - cls.p[j][i])**2 for j in range(3)])) for i in range(4) ]) return(value) a = [ [3.0, 0.1, 3.0, 0.1], [10.0, 10.0, 10.0, 10.0], [30.0, 35.0, 30.0, 35.0] ] p = [ [0.36890, 0.46990, 0.10910, 0.03815], [0.11700, 0.43870, 0.87320, 0.57430], [0.26730, 0.74700, 0.55470, 0.88280] ] c = [1.0, 1.2, 3.0, 3.2] dimension = 3 var_lower = np.array([0, 0, 0]) var_upper = np.array([1, 1, 1]) optimum_point = np.array([0.1, 0.55592003, 0.85218259]) optimum_value = -3.8626347486217725 var_type = np.array(['R'] * 3) # -- end class class hartman6: """ Hartman6 function of the Dixon-Szego test set. """ @classmethod def evaluate(cls, x): assert(len(x)==6) value = -math.fsum([ cls.c[i] * np.exp(-math.fsum([cls.a[j][i]* (x[j] - cls.p[j][i])**2 for j in range(6)])) for i in range(4) ]) return(value) a = [ [10.00, 0.05, 3.00, 17.00], [3.00, 10.00, 3.50, 8.00], [17.00, 17.00, 1.70, 0.05], [3.50, 0.10, 10.00, 10.00], [1.70, 8.00, 17.00, 0.10], [8.00, 14.00, 8.00, 14.00] ] p = [ [0.1312, 0.2329, 0.2348, 0.4047], [0.1696, 0.4135, 0.1451, 0.8828], [0.5569, 0.8307, 0.3522, 0.8732], [0.0124, 0.3736, 0.2883, 0.5743], [0.8283, 0.1004, 0.3047, 0.1091], [0.5886, 0.9991, 0.6650, 0.0381] ] c = [1.0, 1.2, 3.0, 3.2] dimension = 6 var_lower = np.array([0, 0, 0, 0, 0, 0]) var_upper = np.array([1, 1, 1, 1, 1, 1]) optimum_point = np.array([0.20168952, 0.15001069, 0.47687398, 0.27533243, 0.31165162, 0.65730054]) optimum_value = -3.32236801141551 var_type = np.array(['R'] * 6) # -- end class class camel: """ Six-hump Camel function of the Dixon-Szego test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = ((4 - 2.1*x[0]**2 + x[0]**4/3)*x[0]**2 + x[0]*x[1] + (-4 + 4*x[1]**2)*x[1]**2) return(value) dimension = 2 var_lower = np.array([-3, -2]) var_upper = np.array([3, 2]) optimum_point = np.array([0.08984201, -0.7126]) optimum_value = -1.0316284535 var_type = np.array(['R'] * 2) # -- end class class goldsteinprice: """ Goldstein & Price function of the Dixon-Szego test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value= ((1 + (x[0] + x[1] + 1)**2 * (19 - 14*x[0] + 3*x[0]**2 - 14*x[1] + 6*x[0]*x[1] + 3*x[1]**2)) * (30 + (2*x[0] - 3*x[1])**2 * (18 - 32*x[0] + 12*x[0]**2 + 48*x[1] - 36*x[0]*x[1] + 27*x[1]**2))) return(value) dimension = 2 var_lower = np.array([-2, -2]) var_upper = np.array([2, 2]) optimum_point = np.array([0.0, -1.0]) optimum_value = 3 var_type = np.array(['R'] * 2) # -- end class class shekel5: """ Shekel5 function of the Dixon-Szego test set. """ @classmethod def evaluate(cls, x): assert(len(x)==4) value = -math.fsum([ 1.0 / (math.fsum([math.fsum([ (x[i] - cls.a[i][j])**2 for i in range(4) ]), cls.c[j]])) for j in range(5) ]) return(value) a = [ [4.0, 1.0, 8.0, 6.0, 3.0], [4.0, 1.0, 8.0, 6.0, 7.0], [4.0, 1.0, 8.0, 6.0, 3.0], [4.0, 1.0, 8.0, 6.0, 7.0] ] c = [0.1, 0.2, 0.2, 0.4, 0.4] dimension = 4 var_lower = np.array([0, 0, 0, 0]) var_upper = np.array([10, 10, 10, 10]) optimum_point = np.array([4, 4, 4, 4]) optimum_value = -10.1531958509790 var_type = np.array(['R'] * 4) # -- end class class shekel7: """ Shekel7 function of the Dixon-Szego test set. """ @classmethod def evaluate(cls, x): assert(len(x)==4) value = -math.fsum([ 1.0 / (math.fsum([math.fsum([ (x[i] - cls.a[i][j])**2 for i in range(4) ]), cls.c[j]])) for j in range(7) ]) return(value) a = [ [4.0, 1.0, 8.0, 6.0, 3.0, 2.0, 5.0], [4.0, 1.0, 8.0, 6.0, 7.0, 9.0, 5.0], [4.0, 1.0, 8.0, 6.0, 3.0, 2.0, 3.0], [4.0, 1.0, 8.0, 6.0, 7.0, 9.0, 3.0] ] c = [0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3] dimension = 4 var_lower = np.array([0, 0, 0, 0]) var_upper = np.array([10, 10, 10, 10]) optimum_point = np.array([4, 4, 4, 4]) optimum_value = -10.4028188369303 var_type = np.array(['R'] * 4) # -- end class class shekel10: """ Shekel10 function of the Dixon-Szego test set. """ @classmethod def evaluate(cls, x): assert(len(x)==4) value = -math.fsum([ 1.0 / (math.fsum([math.fsum([ (x[i] - cls.a[i][j])**2 for i in range(4) ]), cls.c[j]])) for j in range(10) ]) return(value) a = [ [4.0, 1.0, 8.0, 6.0, 3.0, 2.0, 5.0, 8.0, 6.0, 7.0], [4.0, 1.0, 8.0, 6.0, 7.0, 9.0, 5.0, 1.0, 2.0, 3.6], [4.0, 1.0, 8.0, 6.0, 3.0, 2.0, 3.0, 8.0, 6.0, 7.0], [4.0, 1.0, 8.0, 6.0, 7.0, 9.0, 3.0, 1.0, 2.0, 3.6] ] c = [0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3, 0.7, 0.5, 0.5] dimension = 4 var_lower = np.array([0, 0, 0, 0]) var_upper = np.array([10, 10, 10, 10]) optimum_point = np.array([4, 4, 4, 4]) optimum_value = -10.53628372621960 var_type = np.array(['R'] * 4) # -- end class class ex4_1_1: """ ex4_1_1 function of the GlobalLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==1) value = (x[0]**6 - (52.0/25.0)*x[0]**5 + (39.0/80.0)*x[0]**4 + (71.0/10.0)*x[0]**3 - (79.0/20.0)*x[0]**2 - x[0] + 1.0/10.0) return(value) dimension = 1 var_lower = np.array([-2]) var_upper = np.array([11]) optimum_point = np.array([-1.19131]) optimum_value = -7.487312360731 var_type = np.array(['R']) # -- end class class ex4_1_2: """ ex4_1_2 function of the GlobalLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==1) a = [-500, 2.5, 1.666666666, 1.25, 1.0, 0.8333333, 0.714285714, 0.625, 0.555555555, 1.0, -43.6363636, 0.41666666, 0.384615384, 0.357142857, 0.3333333, 0.3125, 0.294117647, 0.277777777, 0.263157894, 0.25, 0.238095238, 0.227272727, 0.217391304, 0.208333333, 0.2, 0.192307692, 0.185185185, 0.178571428, 0.344827586, 0.6666666, -15.48387097, 0.15625, 0.1515151, 0.14705882, 0.14285712, 0.138888888, 0.135135135, 0.131578947, 0.128205128, 0.125, 0.121951219, 0.119047619, 0.116279069, 0.113636363, 0.1111111, 0.108695652, 0.106382978, 0.208333333, 0.408163265, 0.8] value = math.fsum([a[i]*x[0]**(i+1) for i in range(50)]) return(value) dimension = 1 var_lower = np.array([1]) var_upper = np.array([2]) optimum_point = np.array([1.09106]) optimum_value = -663.4993631230575 var_type = np.array(['R'] * 1) # -- end class class ex8_1_1: """ ex8_1_1 function of the GlobalLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = np.cos(x[0])*np.sin(x[1]) - x[0]/(x[1]**2+1) return(value) dimension = 2 var_lower = np.array([-1, -1]) var_upper = np.array([2, 1]) optimum_point = np.array([2.0, 0.105783]) optimum_value = -2.0218067833 var_type = np.array(['R'] * 2) # -- end class class ex8_1_4: """ ex8_1_4 function of the GlobalLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = 12*x[0]**2-6.3*x[0]**4+x[0]**6-6*x[0]*x[1]+6*x[1]**2 return(value) dimension = 2 var_lower = np.array([-2, -5]) var_upper = np.array([4, 2]) optimum_point = np.array([0.0, 0.0]) optimum_value = 0.0 var_type = np.array(['R'] * 2) # -- end class class least: """ least function of the GlobalLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==3) value = ((127 + (-x[1]*np.exp(-5*x[2])) - x[0])**2 + (151 + (-x[1]*np.exp(-3*x[2])) - x[0])**2 + (379 + (-x[1]*np.exp(-x[2])) - x[0])**2 + (421 + (-x[1]*np.exp(5*x[2])) - x[0])**2 + (460 + (-x[1]*np.exp(3*x[2])) - x[0])**2 + (426 + (-x[1]*np.exp(x[2])) - x[0])**2) return(value) dimension = 3 var_lower = np.array([0, -200, -5]) var_upper = np.array([600, 200, 5] ) optimum_point = np.array([516.651174172, -149.351893696, -0.206642767973]) optimum_value = 14085.139848928 var_type = np.array(['R'] * 3) # -- end class class rbrock: """ rbrock function of the GlobalLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = (100*(x[1] - x[0]**2)**2 + (1 - x[0])**2) return(value) dimension = 2 var_lower = np.array([-10, -10]) var_upper = np.array([5, 10]) optimum_point = np.array([1.0, 1.0]) optimum_value = 0.0 var_type = np.array(['R'] * 2) # -- end class class perm_6: """ perm function of dimension 6 from <NAME>. http://www.mat.univie.ac.at/~neum/glopt/my_problems.html We use parameters (6, 60) here. """ @classmethod def evaluate(cls, x): assert(len(x)==6) beta = 60 value = math.fsum([ (math.fsum([((i + 1)**k + beta) * ((x[i]/(i+1))**k - 1) for i in range(6)]))**2 for k in range(6) ]) + 1000 return(value) dimension = 6 var_lower = np.array([-6 for i in range(6)]) var_upper = np.array([6 for i in range(6)]) optimum_point = np.array([(i+1) for i in range(6)]) optimum_value = 1000.0 var_type = np.array(['R'] * 6) # -- end class class perm0_8: """ perm0 function of dimension 8 from <NAME>. http://www.mat.univie.ac.at/~neum/glopt/my_problems.html We use parameters (8, 100) here. """ @classmethod def evaluate(cls, x): assert(len(x)==8) beta = 100 value = math.fsum([ (math.fsum([(i + 1 + beta) * (x[i]**k - (1/(i+1))**k) for i in range(8)]))**2 for k in range(8) ]) + 1000 return(value) dimension = 8 var_lower = np.array([-1 for i in range(8)]) var_upper = np.array([1 for i in range(8)]) optimum_point = np.array([1.0/(i+1) for i in range(8)]) optimum_value = 1000.0 var_type = np.array(['R'] * 8) # -- end class class schoen_6_1: """ schoen function of dimension 6 with 50 stationary points. """ @classmethod def evaluate(cls, x): assert(len(x)==6) numerator = 0.0 denominator = 0.0 dist = np.sum((x - cls.z)**2, axis=1) for i in range(50): prod = 1.0 for j in range(50): if (i != j): prod *= dist[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.298854, 0.181010, 0.984817, 0.125272, 0.548396, 0.894658], [0.800371, 0.817380, 0.398577, 0.652349, 0.250843, 0.130235], [0.268631, 0.929778, 0.640422, 0.462004, 0.492930, 0.434955], [0.257863, 0.729198, 0.210810, 0.364378, 0.228216, 0.947432], [0.767627, 0.592150, 0.103788, 0.696895, 0.472449, 0.244504], [0.369630, 0.110889, 0.072344, 0.515753, 0.068087, 0.103057], [0.425457, 0.807081, 0.491209, 0.449497, 0.065690, 0.592775], [0.544229, 0.619841, 0.704609, 0.573098, 0.044844, 0.305800], [0.164031, 0.722884, 0.670496, 0.517915, 0.176386, 0.921565], [0.153788, 0.703577, 0.899129, 0.406134, 0.941356, 0.538215], [0.984781, 0.510479, 0.573361, 0.884599, 0.399472, 0.712935], [0.488416, 0.403997, 0.888823, 0.048434, 0.265197, 0.478025], [0.047985, 0.280071, 0.709960, 0.278919, 0.035737, 0.037699], [0.656172, 0.498412, 0.458622, 0.982970, 0.041234, 0.921127], [0.590802, 0.359690, 0.396516, 0.338153, 0.320793, 0.847369], [0.649160, 0.846974, 0.451818, 0.064864, 0.818545, 0.955844], [0.583716, 0.669610, 0.463098, 0.492710, 0.989690, 0.002397], [0.097300, 0.112389, 0.128759, 0.182995, 0.262808, 0.701887], [0.487363, 0.892520, 0.269056, 0.116046, 0.905416, 0.808013], [0.908316, 0.023997, 0.670399, 0.985859, 0.178548, 0.450410], [0.230409, 0.381732, 0.613667, 0.697260, 0.016950, 0.736507], [0.132544, 0.526349, 0.650042, 0.084086, 0.979257, 0.771499], [0.872978, 0.008826, 0.587481, 0.624637, 0.623175, 0.939539], [0.447828, 0.836386, 0.223285, 0.422756, 0.344488, 0.555953], [0.546839, 0.153934, 0.953017, 0.640891, 0.666774, 0.647583], [0.762237, 0.608920, 0.401447, 0.056202, 0.203535, 0.890609], [0.655150, 0.444544, 0.495582, 0.247926, 0.155128, 0.188004], [0.481813, 0.387178, 0.597276, 0.634671, 0.285404, 0.714793], [0.976385, 0.018854, 0.262585, 0.640434, 0.086314, 0.669879], [0.120164, 0.882300, 0.057626, 0.695111, 0.735135, 0.004711], [0.414644, 0.715618, 0.642033, 0.770645, 0.407019, 0.502945], [0.257475, 0.620029, 0.840603, 0.638546, 0.636521, 0.883558], [0.788980, 0.374926, 0.448016, 0.081941, 0.225763, 0.944905], [0.661591, 0.178832, 0.790349, 0.141653, 0.424235, 0.571960], [0.546361, 0.624907, 0.190470, 0.412713, 0.124748, 0.662788], [0.226384, 0.065829, 0.960836, 0.767766, 0.089695, 0.441792], [0.303675, 0.370047, 0.973692, 0.830432, 0.424719, 0.173571], [0.548375, 0.823234, 0.334253, 0.078398, 0.097269, 0.195120], [0.646225, 0.100478, 0.723833, 0.891035, 0.386094, 0.360272], [0.362757, 0.114700, 0.731020, 0.783785, 0.250399, 0.244399], [0.904335, 0.869074, 0.479004, 0.525872, 0.359411, 0.338333], [0.563175, 0.245903, 0.694417, 0.833524, 0.205055, 0.132535], [0.401356, 0.920963, 0.401902, 0.120625, 0.765834, 0.381552], [0.769562, 0.279591, 0.567598, 0.017192, 0.697366, 0.813451], [0.738572, 0.984740, 0.007616, 0.005382, 0.592976, 0.771773], [0.683721, 0.824097, 0.731623, 0.936945, 0.182420, 0.393537], [0.375859, 0.541929, 0.974640, 0.377459, 0.754060, 0.019335], [0.410275, 0.619158, 0.148428, 0.419225, 0.637412, 0.204038], [0.552701, 0.472723, 0.491747, 0.017922, 0.198525, 0.074668], [0.749510, 0.158720, 0.395476, 0.528285, 0.143614, 0.961610]]) f = np.array( [-1000, -1000, -1000, 672.2, 861.4, 520.9, 121.0, 11.5, 48.2, 702.4, 536.2, 457.7, 801.3, 787.7, 768.6, 292.4, 960.0, 573.1, 303.7, 283.3, 474.1, 216.9, 462.2, 853.6, 677.1, 464.6, 830.6, 831.8, 109.6, 967.6, 122.9, 896.2, 490.2, 710.4, 81.1, 802.9, 999.8, 945.5, 672.3, 712.9, 235.8, 266.5, 772.4, 326.6, 585.5, 16.9, 135.9, 224.2, 382.1, 614.6]) dimension = 6 var_lower = np.array([0 for i in range(6)]) var_upper = np.array([1 for i in range(6)]) optimum_point = np.array([0.298854, 0.181010, 0.984817, 0.125272, 0.548396, 0.894658]) optimum_value = -1000 var_type = np.array(['R'] * 6) # -- end class class schoen_6_2: """ schoen function of dimension 6 with 50 stationary points. """ @classmethod def evaluate(cls, x): assert(len(x)==6) numerator = 0.0 denominator = 0.0 dist = np.sum((x - cls.z)**2, axis=1) for i in range(50): prod = 1.0 for j in range(50): if (i != j): prod *= dist[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.669711, 0.815540, 0.646120, 0.377447, 0.111538, 0.040529], [0.000632, 0.706804, 0.857031, 0.473778, 0.993569, 0.616184], [0.625617, 0.880221, 0.534547, 0.760235, 0.276998, 0.735438], [0.774577, 0.922914, 0.947791, 0.315328, 0.414841, 0.785803], [0.079768, 0.131498, 0.225123, 0.464621, 0.638041, 0.992795], [0.471038, 0.244503, 0.565776, 0.898397, 0.604639, 0.306230], [0.642233, 0.482219, 0.034943, 0.934805, 0.972714, 0.153664], [0.550151, 0.310507, 0.042126, 0.230722, 0.444375, 0.117355], [0.789984, 0.488482, 0.065237, 0.842940, 0.793454, 0.799489], [0.850183, 0.754551, 0.516033, 0.166362, 0.201966, 0.044234], [0.000601, 0.896758, 0.304433, 0.149125, 0.178398, 0.871836], [0.056787, 0.932745, 0.218009, 0.778061, 0.131847, 0.356237], [0.210266, 0.221479, 0.014831, 0.200901, 0.656693, 0.891819], [0.528515, 0.178025, 0.188138, 0.411485, 0.217833, 0.907579], [0.195801, 0.663099, 0.477312, 0.395250, 0.655791, 0.820570], [0.933208, 0.789323, 0.350520, 0.855434, 0.491082, 0.874993], [0.251047, 0.543513, 0.529644, 0.218495, 0.351637, 0.608904], [0.963286, 0.793004, 0.650148, 0.881362, 0.904832, 0.005397], [0.431744, 0.438965, 0.044544, 0.834968, 0.330614, 0.451282], [0.234845, 0.328576, 0.388284, 0.339183, 0.206086, 0.600034], [0.512783, 0.961787, 0.959109, 0.632098, 0.910614, 0.912025], [0.454168, 0.743189, 0.834284, 0.955817, 0.072172, 0.523068], [0.696968, 0.720236, 0.341060, 0.054580, 0.045599, 0.549192], [0.272955, 0.318845, 0.700767, 0.426325, 0.895755, 0.843128], [0.992189, 0.332899, 0.272784, 0.019284, 0.073711, 0.434800], [0.154276, 0.639611, 0.924641, 0.587242, 0.358453, 0.548022], [0.021506, 0.450392, 0.515150, 0.032232, 0.650223, 0.849384], [0.316499, 0.513234, 0.958219, 0.843587, 0.125408, 0.836643], [0.538587, 0.261750, 0.732136, 0.030271, 0.893345, 0.270532], [0.987469, 0.708780, 0.446487, 0.968784, 0.734448, 0.788229], [0.353358, 0.135036, 0.249018, 0.565029, 0.740519, 0.250807], [0.810372, 0.656510, 0.472093, 0.225741, 0.420513, 0.202519], [0.848128, 0.551586, 0.513140, 0.956164, 0.483389, 0.404478], [0.292239, 0.297077, 0.934202, 0.468329, 0.872274, 0.992632], [0.828869, 0.534749, 0.716451, 0.405855, 0.164485, 0.531068], [0.130616, 0.757677, 0.284500, 0.438300, 0.957643, 0.725899], [0.503542, 0.640368, 0.381914, 0.847206, 0.134660, 0.762294], [0.653851, 0.646544, 0.436036, 0.944225, 0.310369, 0.392362], [0.539397, 0.027168, 0.697972, 0.209293, 0.992890, 0.008113], [0.902045, 0.171034, 0.194924, 0.620057, 0.002203, 0.557433], [0.802612, 0.085835, 0.380626, 0.492568, 0.238166, 0.961837], [0.466993, 0.647847, 0.113397, 0.015357, 0.928904, 0.166425], [0.892021, 0.869756, 0.681364, 0.129555, 0.394682, 0.745036], [0.060675, 0.869904, 0.757236, 0.220765, 0.615988, 0.754288], [0.031815, 0.340961, 0.455958, 0.529616, 0.840036, 0.365200], [0.834595, 0.603639, 0.745330, 0.085080, 0.184636, 0.238718], [0.575681, 0.250761, 0.874497, 0.870401, 0.854591, 0.968971], [0.359629, 0.724830, 0.455053, 0.120311, 0.258563, 0.932004], [0.209891, 0.990298, 0.767661, 0.284193, 0.375076, 0.154363], [0.410402, 0.437385, 0.639614, 0.946647, 0.579466, 0.524775]]) f = np.array( [-1000, -1000, -1000, 109.6, 132.4, 558.2, 158.0, 6.2, 205.4, 593.9, 2.4, 399.8, 395.9, 212.6, 976.1, 104.4, 552.1, 436.3, 837.1, 283.7, 779.7, 392.1, 85.8, 885.1, 401.5, 367.5, 694.4, 691.6, 933.1, 590.7, 246.2, 370.0, 54.3, 719.4, 95.2, 276.0, 829.1, 613.6, 242.8, 424.6, 320.6, 666.1, 479.2, 420.0, 956.6, 241.0, 21.1, 169.8, 178.1, 394.4]) dimension = 6 var_lower = np.array([0 for i in range(6)]) var_upper = np.array([1 for i in range(6)]) optimum_point = np.array([0.669711, 0.815540, 0.646120, 0.377447, 0.111538, 0.040529]) optimum_value = -1000 var_type = np.array(['R'] * 6) # -- end class class schoen_10_1: """ schoen function of dimension 10 with 50 stationary points. """ @classmethod def evaluate(cls, x): assert(len(x)==10) numerator = 0.0 denominator = 0.0 dist = np.sum((x - cls.z)**2, axis=1) for i in range(50): prod = 1.0 for j in range(50): if (i != j): prod *= dist[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.914871, 0.765230, 0.139426, 0.617466, 0.823635, 0.794003, 0.801171, 0.568811, 0.279434, 0.540422], [0.976983, 0.593277, 0.701115, 0.585262, 0.669106, 0.272906, 0.177127, 0.143389, 0.561181, 0.018744], [0.385208, 0.984106, 0.390066, 0.905970, 0.169600, 0.191291, 0.564157, 0.689910, 0.857031, 0.715390], [0.975998, 0.536904, 0.819333, 0.801793, 0.564454, 0.336124, 0.654190, 0.044197, 0.717416, 0.465807], [0.750519, 0.415284, 0.258927, 0.736115, 0.597744, 0.763716, 0.747691, 0.969633, 0.188117, 0.964954], [0.412888, 0.671756, 0.380214, 0.558595, 0.768370, 0.998320, 0.212183, 0.606757, 0.531315, 0.303569], [0.196682, 0.139879, 0.108608, 0.736975, 0.755971, 0.021390, 0.852398, 0.188596, 0.920133, 0.045012], [0.956270, 0.729258, 0.397664, 0.013146, 0.519861, 0.300011, 0.008396, 0.820346, 0.176841, 0.402298], [0.126432, 0.872346, 0.923581, 0.297492, 0.992744, 0.486525, 0.915493, 0.589980, 0.498242, 0.989945], [0.697409, 0.026641, 0.875467, 0.503039, 0.563285, 0.096769, 0.933643, 0.884419, 0.585825, 0.395465], [0.494783, 0.824300, 0.153326, 0.202651, 0.579815, 0.416954, 0.707624, 0.497959, 0.568876, 0.812841], [0.126963, 0.757337, 0.648583, 0.787445, 0.822586, 0.401155, 0.301350, 0.562707, 0.744074, 0.088372], [0.293611, 0.835864, 0.925111, 0.760322, 0.729456, 0.096840, 0.651466, 0.975836, 0.691353, 0.038384], [0.999250, 0.916829, 0.205699, 0.027241, 0.156956, 0.206598, 0.175242, 0.811219, 0.660192, 0.119865], [0.387978, 0.665180, 0.774376, 0.135223, 0.766238, 0.380668, 0.058279, 0.727506, 0.991527, 0.345759], [0.299341, 0.066231, 0.680305, 0.392230, 0.319985, 0.698292, 0.100236, 0.394973, 0.096232, 0.362943], [0.281548, 0.860858, 0.647870, 0.981650, 0.110777, 0.836484, 0.697387, 0.659942, 0.694425, 0.434991], [0.606706, 0.052287, 0.858208, 0.738885, 0.158495, 0.002367, 0.933796, 0.112986, 0.647308, 0.421573], [0.776505, 0.101364, 0.610406, 0.275033, 0.548409, 0.998967, 0.536743, 0.943903, 0.960993, 0.251672], [0.371347, 0.491122, 0.772374, 0.860206, 0.752131, 0.338591, 0.826739, 0.312111, 0.768881, 0.862719], [0.866886, 0.358220, 0.131205, 0.276334, 0.334111, 0.429525, 0.752197, 0.167524, 0.437764, 0.162916], [0.584246, 0.511215, 0.659647, 0.349220, 0.954428, 0.477982, 0.386041, 0.813944, 0.753530, 0.983276], [0.697327, 0.499835, 0.530487, 0.599958, 0.497257, 0.998852, 0.106262, 0.186978, 0.887481, 0.749174], [0.041611, 0.278918, 0.999095, 0.825221, 0.218320, 0.383711, 0.077041, 0.642061, 0.668906, 0.758298], [0.072437, 0.592862, 0.040655, 0.446330, 0.651659, 0.055738, 0.631924, 0.890039, 0.192989, 0.741054], [0.533886, 0.135079, 0.787647, 0.593408, 0.749228, 0.749045, 0.190386, 0.755508, 0.465321, 0.465156], [0.748843, 0.696419, 0.882124, 0.843895, 0.858057, 0.220107, 0.350310, 0.102947, 0.453576, 0.875940], [0.560231, 0.580247, 0.381834, 0.807535, 0.184636, 0.615702, 0.628408, 0.081783, 0.793384, 0.233639], [0.384827, 0.589138, 0.630013, 0.634506, 0.630712, 0.521293, 0.494486, 0.681700, 0.288512, 0.319808], [0.721978, 0.452289, 0.426726, 0.323106, 0.781584, 0.999325, 0.043670, 0.884560, 0.520936, 0.430684], [0.810388, 0.624041, 0.811624, 0.105973, 0.199807, 0.440644, 0.864152, 0.282280, 0.397116, 0.499932], [0.973889, 0.677797, 0.080137, 0.549098, 0.625445, 0.577342, 0.538642, 0.388039, 0.552273, 0.793807], [0.365176, 0.228017, 0.623500, 0.084450, 0.177343, 0.910108, 0.632719, 0.521458, 0.894843, 0.707893], [0.502069, 0.622312, 0.958019, 0.744999, 0.515695, 0.407885, 0.590739, 0.736542, 0.297555, 0.237955], [0.313835, 0.090014, 0.336274, 0.433171, 0.330864, 0.105751, 0.160367, 0.651934, 0.207260, 0.293577], [0.886072, 0.592935, 0.498116, 0.321835, 0.011216, 0.543911, 0.506579, 0.216779, 0.406812, 0.261349], [0.789947, 0.881332, 0.696597, 0.742955, 0.252224, 0.718157, 0.188217, 0.371208, 0.178640, 0.347720], [0.482759, 0.663618, 0.622706, 0.036170, 0.278854, 0.088147, 0.482808, 0.134824, 0.028828, 0.944537], [0.184705, 0.662346, 0.917194, 0.186490, 0.918392, 0.955111, 0.636015, 0.447595, 0.813716, 0.372839], [0.231741, 0.637199, 0.745257, 0.201568, 0.697485, 0.897022, 0.239791, 0.495219, 0.153831, 0.387172], [0.198061, 0.194102, 0.550259, 0.751804, 0.503973, 0.034252, 0.788267, 0.731760, 0.118338, 0.057247], [0.068470, 0.545180, 0.668845, 0.714932, 0.688014, 0.203845, 0.146138, 0.109039, 0.470214, 0.441797], [0.085180, 0.142394, 0.938665, 0.071422, 0.946796, 0.697832, 0.472400, 0.161384, 0.325715, 0.122550], [0.637672, 0.986961, 0.969438, 0.989508, 0.381318, 0.800871, 0.012035, 0.326007, 0.459124, 0.645374], [0.147210, 0.954608, 0.361146, 0.094699, 0.092327, 0.301664, 0.478447, 0.008274, 0.680576, 0.004184], [0.768792, 0.812618, 0.915766, 0.029070, 0.506944, 0.457816, 0.839167, 0.024706, 0.990756, 0.088779], [0.872678, 0.601536, 0.948347, 0.621023, 0.415621, 0.289340, 0.291338, 0.190461, 0.664007, 0.583513], [0.641216, 0.700152, 0.080576, 0.355500, 0.294700, 0.338614, 0.563964, 0.528079, 0.759223, 0.508432], [0.738489, 0.077376, 0.429485, 0.300586, 0.576927, 0.185931, 0.231659, 0.954833, 0.614178, 0.092903], [0.729321, 0.318607, 0.768657, 0.899419, 0.749499, 0.623403, 0.671793, 0.052835, 0.973726, 0.168336]]) f = np.array( [-1000, -1000, -1000, 799.1, 396.8, 370.3, 400.2, 239.7, 678.8, 868.9, 564.4, 681.6, 153.0, 760.7, 562.9, 434.9, 579.2, 260.6, 88.5, 601.3, 754.8, 894.8, 672.8, 633.7, 921.8, 43.2, 286.2, 945.5, 716.0, 72.7, 631.2, 640.3, 425.1, 825.8, 555.8, 136.9, 805.7, 786.5, 400.0, 856.4, 548.0, 510.8, 52.3, 111.6, 686.6, 888.2, 315.4, 333.9, 61.5, 755.2]) dimension = 10 var_lower = np.array([0 for i in range(10)]) var_upper = np.array([1 for i in range(10)]) optimum_point = np.array([0.914871, 0.765230, 0.139426, 0.617466, 0.823635, 0.794003, 0.801171, 0.568811, 0.279434, 0.540422]) optimum_value = -1000 var_type = np.array(['R'] * 10) # -- end class class schoen_10_2: """ schoen function of dimension 10 with 50 stationary points. """ @classmethod def evaluate(cls, x): assert(len(x)==10) numerator = 0.0 denominator = 0.0 dist = np.sum((x - cls.z)**2, axis=1) for i in range(50): prod = 1.0 for j in range(50): if (i != j): prod *= dist[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.131461, 0.965235, 0.046134, 0.983011, 0.719813, 0.827542, 0.662422, 0.570546, 0.578707, 0.013264], [0.068454, 0.682785, 0.582736, 0.434517, 0.310613, 0.869876, 0.993949, 0.629156, 0.590599, 0.356378], [0.632837, 0.961665, 0.015079, 0.378878, 0.805608, 0.685239, 0.528658, 0.752934, 0.717790, 0.374865], [0.286191, 0.912944, 0.400358, 0.902532, 0.324887, 0.850063, 0.483503, 0.764147, 0.147726, 0.159851], [0.303483, 0.754790, 0.090527, 0.653764, 0.164323, 0.402931, 0.593477, 0.448444, 0.711483, 0.113869], [0.057398, 0.302029, 0.596351, 0.565466, 0.694204, 0.974864, 0.323989, 0.298493, 0.859391, 0.238714], [0.139267, 0.214902, 0.608462, 0.297987, 0.499810, 0.578553, 0.548077, 0.208442, 0.046162, 0.246848], [0.680420, 0.783181, 0.828103, 0.475810, 0.680401, 0.188455, 0.015200, 0.650103, 0.762389, 0.063985], [0.409243, 0.600740, 0.302354, 0.588411, 0.436291, 0.294790, 0.701477, 0.994162, 0.433749, 0.535320], [0.077949, 0.530126, 0.869737, 0.387811, 0.705317, 0.632911, 0.442087, 0.082918, 0.441383, 0.591975], [0.622628, 0.054964, 0.020475, 0.145616, 0.163873, 0.321546, 0.282867, 0.743494, 0.750568, 0.732386], [0.538574, 0.066932, 0.225204, 0.290045, 0.613242, 0.529365, 0.384018, 0.946557, 0.974384, 0.425297], [0.108817, 0.850094, 0.886417, 0.161581, 0.082973, 0.506354, 0.589650, 0.638991, 0.045151, 0.688464], [0.917742, 0.365119, 0.484176, 0.173231, 0.210253, 0.303688, 0.992141, 0.023109, 0.977178, 0.535146], [0.183469, 0.198085, 0.511596, 0.275610, 0.753700, 0.437328, 0.986237, 0.028654, 0.767921, 0.997910], [0.484908, 0.759122, 0.577318, 0.359934, 0.935730, 0.617833, 0.770173, 0.311175, 0.004831, 0.157457], [0.634077, 0.236972, 0.016427, 0.261753, 0.349712, 0.245870, 0.412238, 0.523557, 0.985327, 0.094060], [0.477875, 0.803438, 0.496728, 0.848920, 0.497386, 0.938203, 0.279797, 0.287076, 0.395184, 0.980546], [0.450215, 0.193712, 0.975838, 0.103925, 0.077410, 0.709573, 0.253072, 0.311723, 0.885664, 0.204528], [0.557312, 0.815198, 0.097914, 0.539142, 0.826048, 0.130070, 0.049858, 0.223634, 0.076387, 0.831224], [0.927559, 0.324916, 0.563393, 0.209281, 0.344394, 0.953384, 0.298679, 0.890637, 0.966615, 0.380006], [0.026403, 0.997573, 0.479163, 0.379686, 0.687928, 0.832002, 0.214326, 0.348248, 0.073151, 0.062646], [0.726869, 0.911171, 0.961920, 0.874884, 0.216867, 0.076966, 0.776240, 0.495777, 0.963492, 0.425246], [0.357483, 0.486330, 0.759177, 0.748362, 0.889904, 0.350438, 0.232983, 0.823613, 0.792656, 0.441264], [0.875826, 0.359459, 0.214808, 0.425850, 0.493328, 0.456048, 0.523145, 0.504154, 0.090128, 0.472437], [0.813400, 0.808407, 0.427211, 0.902524, 0.210376, 0.490662, 0.915939, 0.169439, 0.078865, 0.485371], [0.877334, 0.982207, 0.679085, 0.486335, 0.940715, 0.585964, 0.289279, 0.694886, 0.172625, 0.201457], [0.141599, 0.476124, 0.762246, 0.067045, 0.411332, 0.813196, 0.134138, 0.302390, 0.856145, 0.349243], [0.346912, 0.082142, 0.787442, 0.857465, 0.371129, 0.448550, 0.967943, 0.775340, 0.943681, 0.656127], [0.619267, 0.547196, 0.470422, 0.141566, 0.584198, 0.952226, 0.196462, 0.629549, 0.685469, 0.824365], [0.014209, 0.789812, 0.836373, 0.186139, 0.493840, 0.710697, 0.910033, 0.368287, 0.865953, 0.140892], [0.482763, 0.072574, 0.026730, 0.143687, 0.739505, 0.419649, 0.013683, 0.662644, 0.785254, 0.234561], [0.821421, 0.844100, 0.153937, 0.671762, 0.290469, 0.631347, 0.591435, 0.498966, 0.043395, 0.176771], [0.404994, 0.496656, 0.951774, 0.497357, 0.715401, 0.023378, 0.493045, 0.342766, 0.117055, 0.698590], [0.985857, 0.831692, 0.423498, 0.215757, 0.341260, 0.790760, 0.941186, 0.716883, 0.062641, 0.582012], [0.676905, 0.280897, 0.800638, 0.898913, 0.735995, 0.592412, 0.433021, 0.432772, 0.874477, 0.112375], [0.377382, 0.118941, 0.529204, 0.419434, 0.673891, 0.074904, 0.129868, 0.819585, 0.220536, 0.353223], [0.233415, 0.136703, 0.487256, 0.777498, 0.901915, 0.612402, 0.778635, 0.436718, 0.484520, 0.641969], [0.273297, 0.670196, 0.344525, 0.669751, 0.180230, 0.530085, 0.393284, 0.326043, 0.260840, 0.364690], [0.931213, 0.676123, 0.912481, 0.898258, 0.001887, 0.408306, 0.917215, 0.496959, 0.287951, 0.562511], [0.047196, 0.780338, 0.895994, 0.088169, 0.552425, 0.130790, 0.308504, 0.232476, 0.187952, 0.105936], [0.343517, 0.356222, 0.416018, 0.450278, 0.487765, 0.040510, 0.592363, 0.771635, 0.577849, 0.315843], [0.527759, 0.529503, 0.210423, 0.756794, 0.892670, 0.339374, 0.445837, 0.363265, 0.432114, 0.942045], [0.560107, 0.110906, 0.115725, 0.761393, 0.969105, 0.921166, 0.455014, 0.593512, 0.111887, 0.217300], [0.463382, 0.635591, 0.329484, 0.573602, 0.492558, 0.474174, 0.371906, 0.850465, 0.467637, 0.261373], [0.033051, 0.422543, 0.294155, 0.699026, 0.846231, 0.047967, 0.686826, 0.480273, 0.463181, 0.345601], [0.285473, 0.723925, 0.202386, 0.671909, 0.685277, 0.993969, 0.415329, 0.155218, 0.233826, 0.088752], [0.029705, 0.651519, 0.813239, 0.677718, 0.961189, 0.285385, 0.824635, 0.837670, 0.524970, 0.815489], [0.519627, 0.508274, 0.141067, 0.156163, 0.274566, 0.536322, 0.834749, 0.852042, 0.656166, 0.964211], [0.119675, 0.971352, 0.052983, 0.178217, 0.408438, 0.215091, 0.102098, 0.256312, 0.051758, 0.906712]]) f = np.array( [-1000, -1000, -1000, 90.4, 830.9, 52.7, 375.2, 289.7, 244.1, 470.2, 111.7, 968.9, 903.4, 918.5, 820.3, 441.2, 687.5, 836.9, 11.0, 454.5, 929.3, 952.6, 937.2, 870.5, 211.7, 378.4, 320.3, 729.6, 420.8, 213.8, 717.7, 285.4, 522.8, 748.3, 371.0, 501.2, 568.6, 111.9, 645.2, 486.2, 157.0, 968.5, 137.6, 127.2, 943.4, 437.2, 199.7, 415.4, 966.0, 362.3]) dimension = 10 var_lower = np.array([0 for i in range(10)]) var_upper = np.array([1 for i in range(10)]) optimum_point = np.array([0.131461, 0.965235, 0.046134, 0.983011, 0.719813, 0.827542, 0.662422, 0.570546, 0.578707, 0.013264]) optimum_value = -1000 var_type = np.array(['R'] * 10) # -- end class class schaeffer_f7_12_1: """ Schaeffer F7 function. """ @classmethod def evaluate(cls, x): assert(len(x)==12) value = 0 normalizer = 1.0/float(len(x)-1) for i in range(len(x)-1): si = 2**i*np.sqrt((x[i]-cls.optimum_point[i])**2 + (x[i+1]-cls.optimum_point[i+1])**2) value += (normalizer * np.sqrt(si) * (np.sin(50*si**0.20) + 1))**2 return value - 10 dimension = 12 var_lower = np.array([-50 for i in range(12)]) var_upper = np.array([50 for i in range(12)]) optimum_point = np.array([-34.32567, -34.98896, 07.69262, 30.3388, -48.24371, 23.18355, 24.93374, 32.07436, 46.86153, 04.64872, 25.64591, -16.69128]) optimum_value = -10 var_type = np.array(['R'] * 12) # -- end class class schaeffer_f7_12_2: """ Schaeffer F7 function. """ @classmethod def evaluate(cls, x): assert(len(x)==12) value = 0 normalizer = 1.0/float(len(x)-1) for i in range(len(x)-1): si = 3**i*np.sqrt((x[i]-cls.optimum_point[i])**2 + (x[i+1]-cls.optimum_point[i+1])**2) value += (normalizer * np.sqrt(si) * (np.sin(50*si**0.20) + 1))**2 return value + 10 dimension = 12 var_lower = np.array([-50 for i in range(12)]) var_upper = np.array([50 for i in range(12)]) optimum_point = np.array([-08.214, 30.69133, 48.26095, -04.94219, 15.15357, 00.4841, -13.54025, -40.78766, -16.02916, 16.42138, 39.30248, -49.56986]) optimum_value = 10 var_type = np.array(['R'] * 12) # -- end class # After this point, all functions are MINLP class gear: """ gear function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==4) value = ((0.14427932477276 - x[0]*x[1]/(x[2]*x[3]))**2) return(value) dimension = 4 var_lower = np.array([12, 12, 12, 12]) var_upper = np.array([60, 60, 60, 60]) optimum_point = np.array([12.0, 23.0, 58.0, 33.0]) optimum_value = 0.0 var_type = np.array(['I'] * 4) # -- end class class gear4: """ gear4 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==5) value = -1000000*x[0]*x[1]/(x[2]*x[3]) + 2*x[4] + 144279.32477276 # There is a constraint: # -1000000*x[0]*x[1]/(x[2]*x[3]) + x[4] + 144279.32477276 >= 0 penalty = 10*max(0,-(-1000000*x[0]*x[1]/(x[2]*x[3]) + x[4] + 144279.32477276)) return(value + penalty) dimension = 5 var_lower = np.array([12, 12, 12, 12, 0]) var_upper = np.array([60, 60, 60, 60, 100]) optimum_point = np.array([19.0, 16.0, 43.0, 49.0, 1.64342847396619]) optimum_value = 1.6434284739 var_type = np.array(['I'] * 4 + ['R']) # -- end class class nvs02: """ nvs02 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==5) value = (0.0001*(5.3578547*np.sqrt(x[2]) + 0.8356891*x[0]*x[4] + 37.293239*x[0]) + 5.9207859) # There are three constraints: # 0 <= (0.0056858*x[1]*x[4] + 0.0006262*x[0]*x[3] - # 0.0022053*x[2]*x[4] + 85.334407) <= 92 # 90 <= (0.0071317*x[1]*x[4] + 0.0029955*x[0]*x[1] + # 0.0021813*math.sqrt(x[2]) + 80.51249) <= 110 # 20 <= (0.0047026*x[2]*x[4] + 0.0012547*x[0]*x[2] + # 0.0019085*x[2]*x[3] + 9.300961) <= 25 penalty = 0.0 penalty += 10*max(0, -(0.0056858*x[1]*x[4] + 0.0006262*x[0]*x[3] - 0.0022053*x[2]*x[4] + 85.334407)) penalty += 10*max(0, (0.0056858*x[1]*x[4] + 0.0006262*x[0]*x[3] - 0.0022053*x[2]*x[4] + 85.334407) - 92) penalty += 10*max(0, -(0.0071317*x[1]*x[4] + 0.0029955*x[0]*x[1] + 0.0021813*np.sqrt(x[2]) + 80.51249) + 90) penalty += 10*max(0, (0.0071317*x[1]*x[4] + 0.0029955*x[0]*x[1] + 0.0021813*np.sqrt(x[2]) + 80.51249) - 110) penalty += 10*max(0, -(0.0047026*x[2]*x[4] + 0.0012547*x[0]*x[2] + 0.0019085*x[2]*x[3] + 9.300961) + 20) penalty += 10*max(0, (0.0047026*x[2]*x[4] + 0.0012547*x[0]*x[2] + 0.0019085*x[2]*x[3] + 9.300961) - 25) return(value + penalty) dimension = 5 var_lower = np.array([0, 0, 0, 0, 0]) var_upper = np.array([200, 200, 200, 200, 200]) optimum_point = np.array([0.0, 9.0, 9.0, 200.0, 197.0]) optimum_value = 5.9223932564100004 var_type = np.array(['I'] * 5) # -- end class class nvs03: """ nvs03 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = (-8 + x[0])**2 + (-2 + x[1])**2 # There are two constraints: # -0.1*x[0]**2 + x[1] >= 0 # -0.333333333333333*x[0] - x[1] + 4.5 >= 0.0 penalty = 0.0 penalty += 100*max(0, -(-0.1*x[0]**2 + x[1])) penalty += 100*max(0, -(-0.333333333333333*x[0] - x[1] + 4.5)) return(value + penalty) dimension = 2 var_lower = np.array([0, 0]) var_upper = np.array([200, 200]) optimum_point = np.array([4.0, 2.0]) optimum_value = 16.0 var_type = np.array(['I'] * 2) # -- end class class nvs04: """ nvs04 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = 100*(0.5 + x[1] - (0.6 + x[0])**2)**2 + (0.4 - x[0])**2 return(value) dimension = 2 var_lower = np.array([0, 0]) var_upper = np.array([200, 200]) optimum_point = np.array([1.0, 2.0]) optimum_value = 0.72 var_type = np.array(['I'] * 2) # -- end class class nvs06: """ nvs06 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = (0.1*((x[0])**2 + (1 + (x[1])**2)/(x[0])**2 + (100 + ((x[0])**2)*(x[1])**2)/(x[0]*x[1])**4) + 1.2) return(value) dimension = 2 var_lower = np.array([1, 1]) var_upper = np.array([200, 200]) optimum_point = np.array([2.0, 2.0]) optimum_value = 1.7703125 var_type = np.array(['I'] * 2) # -- end class class nvs07: """ nvs07 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==3) value = 2*x[1]**2 + x[0] + 5*x[2] # There are two constraints: # x[2]**2 * x[1] + 5*x[2] + 3*x[0] - 10 >= 0 # x[0] - x[2] - 2.66 >= 0 penalty = 0.0 penalty += 10*max(0, -(x[2]**2 * x[1] + 5*x[2] + 3*x[0] - 10)) penalty += 10*max(0, -(x[0] - x[2] - 2.66)) return(value + penalty) dimension = 3 var_lower = np.array([0, 0, 0]) var_upper = np.array([200, 200, 200]) optimum_point = np.array([4.0, 0.0, 0.0]) optimum_value = 4.0 var_type = np.array(['I'] * 3) # -- end class class nvs09: """ nvs09 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==10) value = ((np.log(x[0] - 2))**2 + (np.log(10 - x[0]))**2 + (np.log(x[1] - 2))**2 + (np.log(10 - x[1]))**2 + (np.log(x[2] - 2))**2 + (np.log(10 - x[2]))**2 + (np.log(x[3] - 2))**2 + (np.log(10 - x[3]))**2 + (np.log(x[4] - 2))**2 + (np.log(10 - x[4]))**2 + (np.log(x[5] - 2))**2 + (np.log(10 - x[5]))**2 + (np.log(x[6] - 2))**2 + (np.log(10 - x[6]))**2 + (np.log(x[7] - 2))**2 + (np.log(10 - x[7]))**2 + (np.log(x[8] - 2))**2 + (np.log(10 - x[8]))**2 + (np.log(x[9] - 2))**2 + (np.log(10 - x[9]))**2 - (x[0]*x[1]*x[2]*x[3]*x[4]*x[5]*x[6]*x[7]*x[8]*x[9])**0.2) return(value) dimension = 10 var_lower = np.array([3 for i in range(10)]) var_upper = np.array([9 for i in range(10)]) optimum_point = np.array([9, 9, 9, 9, 9, 9, 9, 9, 9, 9]) optimum_value = -43.134336918035 var_type = np.array(['I'] * 10) # -- end class class nvs14: """ nvs14 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==5) value = (5.3578547*x[2]**2 + 0.8356891*x[0]*x[4] + 37.293239*x[0] - 40792.141) # There are three constraints: # 0 <= (0.0056858*x[1]*x[4] + 0.0006262*x[0]*x[3] - # 0.0022053*x[2]*x[4] + 85.334407) <= 92 # 90 <= (0.0071317*x[1]*x[4] + 0.0029955*x[0]*x[1] + # 0.0021813*x[2]**2 + 80.51249) <= 110 # 20 <= (0.0047026*x[2]*x[4] + 0.0012547*x[0]*x[2] + # 0.0019085*x[2]*x[3] + 9.300961) <= 25 penalty = 0.0 penalty += 1000*max(0, -(0.0056858*x[1]*x[4] + 0.0006262*x[0]*x[3] - 0.0022053*x[2]*x[4] + 85.334407)) penalty += 1000*max(0, (0.0056858*x[1]*x[4] + 0.0006262*x[0]*x[3] - 0.0022053*x[2]*x[4] + 85.334407) - 92) penalty += 1000*max(0, -(0.0071317*x[1]*x[4] + 0.0029955*x[0]*x[1] + 0.0021813*x[2]**2 + 80.51249) + 90) penalty += 1000*max(0, (0.0071317*x[1]*x[4] + 0.0029955*x[0]*x[1] + 0.0021813*x[2]**2 + 80.51249) - 110) penalty += 1000*max(0, -(0.0047026*x[2]*x[4] + 0.0012547*x[0]*x[2] + 0.0019085*x[2]*x[3] + 9.300961) + 20) penalty += 1000*max(0, (0.0047026*x[2]*x[4] + 0.0012547*x[0]*x[2] + 0.0019085*x[2]*x[3] + 9.300961) - 25) return(value + penalty) dimension = 5 var_lower = np.array([0, 0, 0, 0, 0]) var_upper = np.array([200, 200, 200, 200, 200]) optimum_point = np.array([0.0, 7.0, 9.0, 175.0, 200.0]) optimum_value = -40358.1547693 var_type = np.array(['I'] * 5) # -- end class class nvs15: """ nvs15 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==3) value = (2*x[0]**2 - 8*x[0] + 2*x[1]**2 - 6*x[1] + x[2]**2 - 4*x[2] + 2*x[0]*x[1] + 2*x[0]*x[2] + 9) # There is one constraint: # - x[0] - x[1] - 2*x[2] + 3 >= 0 penalty = 0.0 penalty += 10*max(0, -(-x[0] - x[1] - 2*x[2] + 3)) return(value + penalty) dimension = 3 var_lower = np.array([0, 0, 0]) var_upper = np.array([200, 200, 200]) optimum_point = np.array([2.0, 0.0, 0.0]) optimum_value = 1.0 var_type = np.array(['I'] * 3) # -- end class class nvs16: """ nvs16 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = ((1.5 - x[0]*(1 - x[1]))**2 + (2.25 - x[0]*(1 - x[1]**2))**2 + (2.625 - x[0]*(1 - x[1]**3))**2) return(value) dimension = 2 var_lower = np.array([0, 0]) var_upper = np.array([200, 200]) optimum_point = np.array([2.0, 0.0]) optimum_value = 0.703125 var_type = np.array(['I'] * 2) # -- end class class prob03: """ prob03 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = 3*x[0] + 2*x[1] # There is one constraint: # x[0]*x[1] - 3.5 >= 0 penalty = 10*max(0, -(x[0]*x[1] - 3.5)) return(value + penalty) dimension = 2 var_lower = np.array([1, 1]) var_upper = np.array([5, 5]) optimum_point = np.array([2.0, 2.0]) optimum_value = 10.0 var_type = np.array(['I'] * 2) # -- end class class sporttournament06: """ sporttournament06 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==15) value = (2*x[0]*x[2] - 2*x[0] + 2*x[2] + 2*x[0]*x[6] - 2*x[6] + 2*x[1]*x[4] - 2*x[1] - 2*x[4] + 2*x[1]*x[9] - 4*x[9] - 2*x[2]*x[3] + 2*x[3] - 2*x[2]*x[11] - 2*x[2]*x[13] - 2*x[3]*x[4] + 2*x[3]*x[8] - 2*x[8] - 2*x[3]*x[14] + 2*x[4]*x[5] - 2*x[5] + 2*x[4]*x[7] - 2*x[7] + 2*x[5]*x[8] - 2*x[6]*x[7] + 2*x[6]* x[11] + 2*x[6]*x[12] + 2*x[7]*x[9] + 2*x[7]*x[14] + 2*x[8]*x[10] - 2*x[10] - 2*x[8]*x[11] + 2*x[9]* x[10] + 2*x[9]*x[11] - 2*x[12]*x[14] + 2*x[13]*x[14]) return(value) dimension = 15 var_lower = np.array([0] * 15) var_upper = np.array([1] * 15) optimum_point = np.array([0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0]) optimum_value = -12.0 var_type = np.array(['I'] * 15) # -- end class class st_miqp1: """ st_miqp1 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==5) value = (50*x[0]*x[0] + 42*x[0] + 50*x[1]*x[1] + 44*x[1] + 50*x[2]*x[2] + 45*x[2] + 50*x[3]*x[3] + 47*x[3] + 50*x[4]*x[4] + 47.5*x[4]) # There is one constraint: # 20*x[0] + 12*x[1] + 11*x[2] + 7*x[3] + 4*x[4] - 40 >= 0 penalty = 100*max(0, -(20*x[0] + 12*x[1] + 11*x[2] + 7*x[3] + 4*x[4] - 40)) return(value + penalty) dimension = 5 var_lower = np.array([0, 0, 0, 0, 0]) var_upper = np.array([1, 1, 1, 1, 1]) optimum_point = np.array([1.0, 1.0, 1.0, 0.0, 0.0]) optimum_value = 281.0 var_type = np.array(['I'] * 5) # -- end class class st_miqp3: """ st_miqp3 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==2) value = (6*x[0]*x[0] - 3*x[1]) # There is one constraint: # 4*x[0] - x[1] >= 0 penalty = 10*max(0, -(4*x[0] - x[1])) return(value + penalty) dimension = 2 var_lower = np.array([0, 0]) var_upper = np.array([3, 50]) optimum_point = np.array([1.0, 4.0]) optimum_value = -6.0 var_type = np.array(['I'] * 2) # -- end class class st_test1: """ st_test1 function of the MINLPLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==5) value = (50*x[0]*x[0] + 42*x[0] + 50*x[1]*x[1] - 44*x[1] + 50*x[3]*x[3] - 47*x[3] + 50*x[4]*x[4] - 47.5*x[4] + 45*x[2]) # There is one constraint: # -20*x[0] - 12*x[1] - 11*x[2] - 7*x[3] - 4*x[4] + 40 >= 0 penalty = 10*max(0, -(-20*x[0] - 12*x[1] - 11*x[2] - 7*x[3] - 4*x[4] + 40)) return(value + penalty) dimension = 5 var_lower = np.array([0, 0, 0, 0, 0]) var_upper = np.array([1, 1, 1, 1, 1]) optimum_point = np.array([0.0, 0.0, 0.0, 0.0, 0.0]) optimum_value = 0.0 var_type = np.array(['I'] * 5) # -- end class class schoen_6_1_int: """ schoen function of dimension 6 with 50 stationary points. Mixed integer version. """ @classmethod def evaluate(cls, x): assert(len(x)==6) numerator = 0.0 denominator = 0.0 dist = np.sum((x/10 - cls.z)**2, axis=1) for i in range(50): prod = 1.0 for j in range(50): if (i != j): prod *= dist[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.298854, 0.181010, 0.984817, 0.125272, 0.548396, 0.894658], [0.800371, 0.817380, 0.398577, 0.652349, 0.250843, 0.130235], [0.268631, 0.929778, 0.640422, 0.462004, 0.492930, 0.434955], [0.257863, 0.729198, 0.210810, 0.364378, 0.228216, 0.947432], [0.767627, 0.592150, 0.103788, 0.696895, 0.472449, 0.244504], [0.369630, 0.110889, 0.072344, 0.515753, 0.068087, 0.103057], [0.425457, 0.807081, 0.491209, 0.449497, 0.065690, 0.592775], [0.544229, 0.619841, 0.704609, 0.573098, 0.044844, 0.305800], [0.164031, 0.722884, 0.670496, 0.517915, 0.176386, 0.921565], [0.153788, 0.703577, 0.899129, 0.406134, 0.941356, 0.538215], [0.984781, 0.510479, 0.573361, 0.884599, 0.399472, 0.712935], [0.488416, 0.403997, 0.888823, 0.048434, 0.265197, 0.478025], [0.047985, 0.280071, 0.709960, 0.278919, 0.035737, 0.037699], [0.656172, 0.498412, 0.458622, 0.982970, 0.041234, 0.921127], [0.590802, 0.359690, 0.396516, 0.338153, 0.320793, 0.847369], [0.649160, 0.846974, 0.451818, 0.064864, 0.818545, 0.955844], [0.583716, 0.669610, 0.463098, 0.492710, 0.989690, 0.002397], [0.097300, 0.112389, 0.128759, 0.182995, 0.262808, 0.701887], [0.487363, 0.892520, 0.269056, 0.116046, 0.905416, 0.808013], [0.908316, 0.023997, 0.670399, 0.985859, 0.178548, 0.450410], [0.230409, 0.381732, 0.613667, 0.697260, 0.016950, 0.736507], [0.132544, 0.526349, 0.650042, 0.084086, 0.979257, 0.771499], [0.872978, 0.008826, 0.587481, 0.624637, 0.623175, 0.939539], [0.447828, 0.836386, 0.223285, 0.422756, 0.344488, 0.555953], [0.546839, 0.153934, 0.953017, 0.640891, 0.666774, 0.647583], [0.762237, 0.608920, 0.401447, 0.056202, 0.203535, 0.890609], [0.655150, 0.444544, 0.495582, 0.247926, 0.155128, 0.188004], [0.481813, 0.387178, 0.597276, 0.634671, 0.285404, 0.714793], [0.976385, 0.018854, 0.262585, 0.640434, 0.086314, 0.669879], [0.120164, 0.882300, 0.057626, 0.695111, 0.735135, 0.004711], [0.414644, 0.715618, 0.642033, 0.770645, 0.407019, 0.502945], [0.257475, 0.620029, 0.840603, 0.638546, 0.636521, 0.883558], [0.788980, 0.374926, 0.448016, 0.081941, 0.225763, 0.944905], [0.661591, 0.178832, 0.790349, 0.141653, 0.424235, 0.571960], [0.546361, 0.624907, 0.190470, 0.412713, 0.124748, 0.662788], [0.226384, 0.065829, 0.960836, 0.767766, 0.089695, 0.441792], [0.303675, 0.370047, 0.973692, 0.830432, 0.424719, 0.173571], [0.548375, 0.823234, 0.334253, 0.078398, 0.097269, 0.195120], [0.646225, 0.100478, 0.723833, 0.891035, 0.386094, 0.360272], [0.362757, 0.114700, 0.731020, 0.783785, 0.250399, 0.244399], [0.904335, 0.869074, 0.479004, 0.525872, 0.359411, 0.338333], [0.563175, 0.245903, 0.694417, 0.833524, 0.205055, 0.132535], [0.401356, 0.920963, 0.401902, 0.120625, 0.765834, 0.381552], [0.769562, 0.279591, 0.567598, 0.017192, 0.697366, 0.813451], [0.738572, 0.984740, 0.007616, 0.005382, 0.592976, 0.771773], [0.683721, 0.824097, 0.731623, 0.936945, 0.182420, 0.393537], [0.375859, 0.541929, 0.974640, 0.377459, 0.754060, 0.019335], [0.4, 0.6, 0.1, 0.4, 0.637412, 0.204038], [0.5, 0.4, 0.4, 0.0, 0.198525, 0.074668], [0.7, 0.1, 0.3, 0.5, 0.143614, 0.961610]]) f = np.array( [672.2, 861.4, 520.9, 121.0, 11.5, 48.2, 702.4, 536.2, 457.7, 801.3, 787.7, 768.6, 292.4, 960.0, 573.1, 303.7, 283.3, 474.1, 216.9, 462.2, 853.6, 677.1, 464.6, 830.6, 831.8, 109.6, 967.6, 122.9, 896.2, 490.2, 710.4, 81.1, 802.9, 999.8, 945.5, 672.3, 712.9, 235.8, 266.5, 772.4, 326.6, 585.5, 16.9, 135.9, 224.2, 382.1, 614.6, -1000, -1000, -1000]) dimension = 6 var_lower = np.array([0 for i in range(6)]) var_upper = np.array([10 for i in range(6)]) optimum_point = np.array([04., 06., 01., 04., 06.37412, 02.04038]) optimum_value = -1000 var_type = np.array(['I'] * 4 + ['R'] * 2) # -- end class class schoen_6_2_int: """ schoen function of dimension 6 with 50 stationary points. Mixed integer version. """ @classmethod def evaluate(cls, x): assert(len(x)==6) numerator = 0.0 denominator = 0.0 dist = np.sum((x/10 - cls.z)**2, axis=1) for i in range(50): prod = 1.0 for j in range(50): if (i != j): prod *= dist[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.669711, 0.815540, 0.646120, 0.377447, 0.111538, 0.040529], [0.000632, 0.706804, 0.857031, 0.473778, 0.993569, 0.616184], [0.625617, 0.880221, 0.534547, 0.760235, 0.276998, 0.735438], [0.774577, 0.922914, 0.947791, 0.315328, 0.414841, 0.785803], [0.079768, 0.131498, 0.225123, 0.464621, 0.638041, 0.992795], [0.471038, 0.244503, 0.565776, 0.898397, 0.604639, 0.306230], [0.642233, 0.482219, 0.034943, 0.934805, 0.972714, 0.153664], [0.550151, 0.310507, 0.042126, 0.230722, 0.444375, 0.117355], [0.789984, 0.488482, 0.065237, 0.842940, 0.793454, 0.799489], [0.850183, 0.754551, 0.516033, 0.166362, 0.201966, 0.044234], [0.000601, 0.896758, 0.304433, 0.149125, 0.178398, 0.871836], [0.056787, 0.932745, 0.218009, 0.778061, 0.131847, 0.356237], [0.210266, 0.221479, 0.014831, 0.200901, 0.656693, 0.891819], [0.528515, 0.178025, 0.188138, 0.411485, 0.217833, 0.907579], [0.195801, 0.663099, 0.477312, 0.395250, 0.655791, 0.820570], [0.933208, 0.789323, 0.350520, 0.855434, 0.491082, 0.874993], [0.251047, 0.543513, 0.529644, 0.218495, 0.351637, 0.608904], [0.963286, 0.793004, 0.650148, 0.881362, 0.904832, 0.005397], [0.431744, 0.438965, 0.044544, 0.834968, 0.330614, 0.451282], [0.234845, 0.328576, 0.388284, 0.339183, 0.206086, 0.600034], [0.512783, 0.961787, 0.959109, 0.632098, 0.910614, 0.912025], [0.454168, 0.743189, 0.834284, 0.955817, 0.072172, 0.523068], [0.696968, 0.720236, 0.341060, 0.054580, 0.045599, 0.549192], [0.272955, 0.318845, 0.700767, 0.426325, 0.895755, 0.843128], [0.992189, 0.332899, 0.272784, 0.019284, 0.073711, 0.434800], [0.154276, 0.639611, 0.924641, 0.587242, 0.358453, 0.548022], [0.021506, 0.450392, 0.515150, 0.032232, 0.650223, 0.849384], [0.316499, 0.513234, 0.958219, 0.843587, 0.125408, 0.836643], [0.538587, 0.261750, 0.732136, 0.030271, 0.893345, 0.270532], [0.987469, 0.708780, 0.446487, 0.968784, 0.734448, 0.788229], [0.353358, 0.135036, 0.249018, 0.565029, 0.740519, 0.250807], [0.810372, 0.656510, 0.472093, 0.225741, 0.420513, 0.202519], [0.848128, 0.551586, 0.513140, 0.956164, 0.483389, 0.404478], [0.292239, 0.297077, 0.934202, 0.468329, 0.872274, 0.992632], [0.828869, 0.534749, 0.716451, 0.405855, 0.164485, 0.531068], [0.130616, 0.757677, 0.284500, 0.438300, 0.957643, 0.725899], [0.503542, 0.640368, 0.381914, 0.847206, 0.134660, 0.762294], [0.653851, 0.646544, 0.436036, 0.944225, 0.310369, 0.392362], [0.539397, 0.027168, 0.697972, 0.209293, 0.992890, 0.008113], [0.902045, 0.171034, 0.194924, 0.620057, 0.002203, 0.557433], [0.802612, 0.085835, 0.380626, 0.492568, 0.238166, 0.961837], [0.466993, 0.647847, 0.113397, 0.015357, 0.928904, 0.166425], [0.892021, 0.869756, 0.681364, 0.129555, 0.394682, 0.745036], [0.060675, 0.869904, 0.757236, 0.220765, 0.615988, 0.754288], [0.031815, 0.340961, 0.455958, 0.529616, 0.840036, 0.365200], [0.834595, 0.603639, 0.745330, 0.085080, 0.184636, 0.238718], [0.575681, 0.250761, 0.874497, 0.870401, 0.854591, 0.968971], [0.3, 0.7, 0.4, 0.1, 0.258563, 0.932004], [0.2, 0.9, 0.7, 0.2, 0.375076, 0.154363], [0.4, 0.4, 0.6, 0.9, 0.579466, 0.524775]]) f = np.array( [109.6, 132.4, 558.2, 158.0, 6.2, 205.4, 593.9, 2.4, 399.8, 395.9, 212.6, 976.1, 104.4, 552.1, 436.3, 837.1, 283.7, 779.7, 392.1, 85.8, 885.1, 401.5, 367.5, 694.4, 691.6, 933.1, 590.7, 246.2, 370.0, 54.3, 719.4, 95.2, 276.0, 829.1, 613.6, 242.8, 424.6, 320.6, 666.1, 479.2, 420.0, 956.6, 241.0, 21.1, 169.8, 178.1, 394.4, -1000, -1000, -1000]) dimension = 6 var_lower = np.array([0 for i in range(6)]) var_upper = np.array([10 for i in range(6)]) optimum_point = np.array([03., 07., 04., 01., 02.58563, 09.32004]) optimum_value = -1000 var_type = np.array(['I'] * 4 + ['R'] * 2) # -- end class class schoen_10_1_int: """ schoen function of dimension 10 with 50 stationary points. Mixed integer version. """ @classmethod def evaluate(cls, x): assert(len(x)==10) numerator = 0.0 denominator = 0.0 dist = np.sum((x/10 - cls.z)**2, axis=1) for i in range(50): prod = 1.0 for j in range(50): if (i != j): prod *= dist[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.914871, 0.765230, 0.139426, 0.617466, 0.823635, 0.794003, 0.801171, 0.568811, 0.279434, 0.540422], [0.976983, 0.593277, 0.701115, 0.585262, 0.669106, 0.272906, 0.177127, 0.143389, 0.561181, 0.018744], [0.385208, 0.984106, 0.390066, 0.905970, 0.169600, 0.191291, 0.564157, 0.689910, 0.857031, 0.715390], [0.975998, 0.536904, 0.819333, 0.801793, 0.564454, 0.336124, 0.654190, 0.044197, 0.717416, 0.465807], [0.750519, 0.415284, 0.258927, 0.736115, 0.597744, 0.763716, 0.747691, 0.969633, 0.188117, 0.964954], [0.412888, 0.671756, 0.380214, 0.558595, 0.768370, 0.998320, 0.212183, 0.606757, 0.531315, 0.303569], [0.196682, 0.139879, 0.108608, 0.736975, 0.755971, 0.021390, 0.852398, 0.188596, 0.920133, 0.045012], [0.956270, 0.729258, 0.397664, 0.013146, 0.519861, 0.300011, 0.008396, 0.820346, 0.176841, 0.402298], [0.126432, 0.872346, 0.923581, 0.297492, 0.992744, 0.486525, 0.915493, 0.589980, 0.498242, 0.989945], [0.697409, 0.026641, 0.875467, 0.503039, 0.563285, 0.096769, 0.933643, 0.884419, 0.585825, 0.395465], [0.494783, 0.824300, 0.153326, 0.202651, 0.579815, 0.416954, 0.707624, 0.497959, 0.568876, 0.812841], [0.126963, 0.757337, 0.648583, 0.787445, 0.822586, 0.401155, 0.301350, 0.562707, 0.744074, 0.088372], [0.293611, 0.835864, 0.925111, 0.760322, 0.729456, 0.096840, 0.651466, 0.975836, 0.691353, 0.038384], [0.999250, 0.916829, 0.205699, 0.027241, 0.156956, 0.206598, 0.175242, 0.811219, 0.660192, 0.119865], [0.387978, 0.665180, 0.774376, 0.135223, 0.766238, 0.380668, 0.058279, 0.727506, 0.991527, 0.345759], [0.299341, 0.066231, 0.680305, 0.392230, 0.319985, 0.698292, 0.100236, 0.394973, 0.096232, 0.362943], [0.281548, 0.860858, 0.647870, 0.981650, 0.110777, 0.836484, 0.697387, 0.659942, 0.694425, 0.434991], [0.606706, 0.052287, 0.858208, 0.738885, 0.158495, 0.002367, 0.933796, 0.112986, 0.647308, 0.421573], [0.776505, 0.101364, 0.610406, 0.275033, 0.548409, 0.998967, 0.536743, 0.943903, 0.960993, 0.251672], [0.371347, 0.491122, 0.772374, 0.860206, 0.752131, 0.338591, 0.826739, 0.312111, 0.768881, 0.862719], [0.866886, 0.358220, 0.131205, 0.276334, 0.334111, 0.429525, 0.752197, 0.167524, 0.437764, 0.162916], [0.584246, 0.511215, 0.659647, 0.349220, 0.954428, 0.477982, 0.386041, 0.813944, 0.753530, 0.983276], [0.697327, 0.499835, 0.530487, 0.599958, 0.497257, 0.998852, 0.106262, 0.186978, 0.887481, 0.749174], [0.041611, 0.278918, 0.999095, 0.825221, 0.218320, 0.383711, 0.077041, 0.642061, 0.668906, 0.758298], [0.072437, 0.592862, 0.040655, 0.446330, 0.651659, 0.055738, 0.631924, 0.890039, 0.192989, 0.741054], [0.533886, 0.135079, 0.787647, 0.593408, 0.749228, 0.749045, 0.190386, 0.755508, 0.465321, 0.465156], [0.748843, 0.696419, 0.882124, 0.843895, 0.858057, 0.220107, 0.350310, 0.102947, 0.453576, 0.875940], [0.560231, 0.580247, 0.381834, 0.807535, 0.184636, 0.615702, 0.628408, 0.081783, 0.793384, 0.233639], [0.384827, 0.589138, 0.630013, 0.634506, 0.630712, 0.521293, 0.494486, 0.681700, 0.288512, 0.319808], [0.721978, 0.452289, 0.426726, 0.323106, 0.781584, 0.999325, 0.043670, 0.884560, 0.520936, 0.430684], [0.810388, 0.624041, 0.811624, 0.105973, 0.199807, 0.440644, 0.864152, 0.282280, 0.397116, 0.499932], [0.973889, 0.677797, 0.080137, 0.549098, 0.625445, 0.577342, 0.538642, 0.388039, 0.552273, 0.793807], [0.365176, 0.228017, 0.623500, 0.084450, 0.177343, 0.910108, 0.632719, 0.521458, 0.894843, 0.707893], [0.502069, 0.622312, 0.958019, 0.744999, 0.515695, 0.407885, 0.590739, 0.736542, 0.297555, 0.237955], [0.313835, 0.090014, 0.336274, 0.433171, 0.330864, 0.105751, 0.160367, 0.651934, 0.207260, 0.293577], [0.886072, 0.592935, 0.498116, 0.321835, 0.011216, 0.543911, 0.506579, 0.216779, 0.406812, 0.261349], [0.789947, 0.881332, 0.696597, 0.742955, 0.252224, 0.718157, 0.188217, 0.371208, 0.178640, 0.347720], [0.482759, 0.663618, 0.622706, 0.036170, 0.278854, 0.088147, 0.482808, 0.134824, 0.028828, 0.944537], [0.184705, 0.662346, 0.917194, 0.186490, 0.918392, 0.955111, 0.636015, 0.447595, 0.813716, 0.372839], [0.231741, 0.637199, 0.745257, 0.201568, 0.697485, 0.897022, 0.239791, 0.495219, 0.153831, 0.387172], [0.198061, 0.194102, 0.550259, 0.751804, 0.503973, 0.034252, 0.788267, 0.731760, 0.118338, 0.057247], [0.068470, 0.545180, 0.668845, 0.714932, 0.688014, 0.203845, 0.146138, 0.109039, 0.470214, 0.441797], [0.085180, 0.142394, 0.938665, 0.071422, 0.946796, 0.697832, 0.472400, 0.161384, 0.325715, 0.122550], [0.637672, 0.986961, 0.969438, 0.989508, 0.381318, 0.800871, 0.012035, 0.326007, 0.459124, 0.645374], [0.147210, 0.954608, 0.361146, 0.094699, 0.092327, 0.301664, 0.478447, 0.008274, 0.680576, 0.004184], [0.768792, 0.812618, 0.915766, 0.029070, 0.506944, 0.457816, 0.839167, 0.024706, 0.990756, 0.088779], [0.872678, 0.601536, 0.948347, 0.621023, 0.415621, 0.289340, 0.291338, 0.190461, 0.664007, 0.583513], [0.6, 0.7, 0.0, 0.355500, 0.294700, 0.3, 0.5, 0.5, 0.759223, 0.508432], [0.7, 0.0, 0.4, 0.300586, 0.576927, 0.1, 0.2, 0.9, 0.614178, 0.092903], [0.7, 0.3, 0.7, 0.899419, 0.749499, 0.6, 0.6, 0.0, 0.973726, 0.168336]]) f = np.array( [799.1, 396.8, 370.3, 400.2, 239.7, 678.8, 868.9, 564.4, 681.6, 153.0, 760.7, 562.9, 434.9, 579.2, 260.6, 88.5, 601.3, 754.8, 894.8, 672.8, 633.7, 921.8, 43.2, 286.2, 945.5, 716.0, 72.7, 631.2, 640.3, 425.1, 825.8, 555.8, 136.9, 805.7, 786.5, 400.0, 856.4, 548.0, 510.8, 52.3, 111.6, 686.6, 888.2, 315.4, 333.9, 61.5, 755.2, -1000, -1000, -1000]) dimension = 10 var_lower = np.array([0 for i in range(10)]) var_upper = np.array([10 for i in range(10)]) optimum_point = np.array([06., 07., 00., 03.55500, 02.94700, 03., 05., 05., 07.59223, 05.08432]) optimum_value = -1000 var_type = np.array(['I'] * 3 + ['R'] * 2 + ['I'] * 3 + ['R'] * 2) # -- end class class schoen_10_2_int: """ schoen function of dimension 10 with 50 stationary points. Mixed integer version. """ @classmethod def evaluate(cls, x): assert(len(x)==10) numerator = 0.0 denominator = 0.0 dist = np.sum((x/10 - cls.z)**2, axis=1) for i in range(50): prod = 1.0 for j in range(50): if (i != j): prod *= dist[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.131461, 0.965235, 0.046134, 0.983011, 0.719813, 0.827542, 0.662422, 0.570546, 0.578707, 0.013264], [0.068454, 0.682785, 0.582736, 0.434517, 0.310613, 0.869876, 0.993949, 0.629156, 0.590599, 0.356378], [0.632837, 0.961665, 0.015079, 0.378878, 0.805608, 0.685239, 0.528658, 0.752934, 0.717790, 0.374865], [0.286191, 0.912944, 0.400358, 0.902532, 0.324887, 0.850063, 0.483503, 0.764147, 0.147726, 0.159851], [0.303483, 0.754790, 0.090527, 0.653764, 0.164323, 0.402931, 0.593477, 0.448444, 0.711483, 0.113869], [0.057398, 0.302029, 0.596351, 0.565466, 0.694204, 0.974864, 0.323989, 0.298493, 0.859391, 0.238714], [0.139267, 0.214902, 0.608462, 0.297987, 0.499810, 0.578553, 0.548077, 0.208442, 0.046162, 0.246848], [0.680420, 0.783181, 0.828103, 0.475810, 0.680401, 0.188455, 0.015200, 0.650103, 0.762389, 0.063985], [0.409243, 0.600740, 0.302354, 0.588411, 0.436291, 0.294790, 0.701477, 0.994162, 0.433749, 0.535320], [0.077949, 0.530126, 0.869737, 0.387811, 0.705317, 0.632911, 0.442087, 0.082918, 0.441383, 0.591975], [0.622628, 0.054964, 0.020475, 0.145616, 0.163873, 0.321546, 0.282867, 0.743494, 0.750568, 0.732386], [0.538574, 0.066932, 0.225204, 0.290045, 0.613242, 0.529365, 0.384018, 0.946557, 0.974384, 0.425297], [0.108817, 0.850094, 0.886417, 0.161581, 0.082973, 0.506354, 0.589650, 0.638991, 0.045151, 0.688464], [0.917742, 0.365119, 0.484176, 0.173231, 0.210253, 0.303688, 0.992141, 0.023109, 0.977178, 0.535146], [0.183469, 0.198085, 0.511596, 0.275610, 0.753700, 0.437328, 0.986237, 0.028654, 0.767921, 0.997910], [0.484908, 0.759122, 0.577318, 0.359934, 0.935730, 0.617833, 0.770173, 0.311175, 0.004831, 0.157457], [0.634077, 0.236972, 0.016427, 0.261753, 0.349712, 0.245870, 0.412238, 0.523557, 0.985327, 0.094060], [0.477875, 0.803438, 0.496728, 0.848920, 0.497386, 0.938203, 0.279797, 0.287076, 0.395184, 0.980546], [0.450215, 0.193712, 0.975838, 0.103925, 0.077410, 0.709573, 0.253072, 0.311723, 0.885664, 0.204528], [0.557312, 0.815198, 0.097914, 0.539142, 0.826048, 0.130070, 0.049858, 0.223634, 0.076387, 0.831224], [0.927559, 0.324916, 0.563393, 0.209281, 0.344394, 0.953384, 0.298679, 0.890637, 0.966615, 0.380006], [0.026403, 0.997573, 0.479163, 0.379686, 0.687928, 0.832002, 0.214326, 0.348248, 0.073151, 0.062646], [0.726869, 0.911171, 0.961920, 0.874884, 0.216867, 0.076966, 0.776240, 0.495777, 0.963492, 0.425246], [0.357483, 0.486330, 0.759177, 0.748362, 0.889904, 0.350438, 0.232983, 0.823613, 0.792656, 0.441264], [0.875826, 0.359459, 0.214808, 0.425850, 0.493328, 0.456048, 0.523145, 0.504154, 0.090128, 0.472437], [0.813400, 0.808407, 0.427211, 0.902524, 0.210376, 0.490662, 0.915939, 0.169439, 0.078865, 0.485371], [0.877334, 0.982207, 0.679085, 0.486335, 0.940715, 0.585964, 0.289279, 0.694886, 0.172625, 0.201457], [0.141599, 0.476124, 0.762246, 0.067045, 0.411332, 0.813196, 0.134138, 0.302390, 0.856145, 0.349243], [0.346912, 0.082142, 0.787442, 0.857465, 0.371129, 0.448550, 0.967943, 0.775340, 0.943681, 0.656127], [0.619267, 0.547196, 0.470422, 0.141566, 0.584198, 0.952226, 0.196462, 0.629549, 0.685469, 0.824365], [0.014209, 0.789812, 0.836373, 0.186139, 0.493840, 0.710697, 0.910033, 0.368287, 0.865953, 0.140892], [0.482763, 0.072574, 0.026730, 0.143687, 0.739505, 0.419649, 0.013683, 0.662644, 0.785254, 0.234561], [0.821421, 0.844100, 0.153937, 0.671762, 0.290469, 0.631347, 0.591435, 0.498966, 0.043395, 0.176771], [0.404994, 0.496656, 0.951774, 0.497357, 0.715401, 0.023378, 0.493045, 0.342766, 0.117055, 0.698590], [0.985857, 0.831692, 0.423498, 0.215757, 0.341260, 0.790760, 0.941186, 0.716883, 0.062641, 0.582012], [0.676905, 0.280897, 0.800638, 0.898913, 0.735995, 0.592412, 0.433021, 0.432772, 0.874477, 0.112375], [0.377382, 0.118941, 0.529204, 0.419434, 0.673891, 0.074904, 0.129868, 0.819585, 0.220536, 0.353223], [0.233415, 0.136703, 0.487256, 0.777498, 0.901915, 0.612402, 0.778635, 0.436718, 0.484520, 0.641969], [0.273297, 0.670196, 0.344525, 0.669751, 0.180230, 0.530085, 0.393284, 0.326043, 0.260840, 0.364690], [0.931213, 0.676123, 0.912481, 0.898258, 0.001887, 0.408306, 0.917215, 0.496959, 0.287951, 0.562511], [0.047196, 0.780338, 0.895994, 0.088169, 0.552425, 0.130790, 0.308504, 0.232476, 0.187952, 0.105936], [0.343517, 0.356222, 0.416018, 0.450278, 0.487765, 0.040510, 0.592363, 0.771635, 0.577849, 0.315843], [0.527759, 0.529503, 0.210423, 0.756794, 0.892670, 0.339374, 0.445837, 0.363265, 0.432114, 0.942045], [0.560107, 0.110906, 0.115725, 0.761393, 0.969105, 0.921166, 0.455014, 0.593512, 0.111887, 0.217300], [0.463382, 0.635591, 0.329484, 0.573602, 0.492558, 0.474174, 0.371906, 0.850465, 0.467637, 0.261373], [0.033051, 0.422543, 0.294155, 0.699026, 0.846231, 0.047967, 0.686826, 0.480273, 0.463181, 0.345601], [0.285473, 0.723925, 0.202386, 0.671909, 0.685277, 0.993969, 0.415329, 0.155218, 0.233826, 0.088752], [0.0, 0.6, 0.8, 0.677718, 0.961189, 0.2, 0.8, 0.8, 0.524970, 0.815489], [0.5, 0.5, 0.1, 0.156163, 0.274566, 0.5, 0.8, 0.8, 0.656166, 0.964211], [0.1, 0.9, 0.0, 0.178217, 0.408438, 0.2, 0.1, 0.2, 0.051758, 0.906712]]) f = np.array( [90.4, 830.9, 52.7, 375.2, 289.7, 244.1, 470.2, 111.7, 968.9, 903.4, 918.5, 820.3, 441.2, 687.5, 836.9, 11.0, 454.5, 929.3, 952.6, 937.2, 870.5, 211.7, 378.4, 320.3, 729.6, 420.8, 213.8, 717.7, 285.4, 522.8, 748.3, 371.0, 501.2, 568.6, 111.9, 645.2, 486.2, 157.0, 968.5, 137.6, 127.2, 943.4, 437.2, 199.7, 415.4, 966.0, 362.3, -1000, -1000, -1000]) dimension = 10 var_lower = np.array([0 for i in range(10)]) var_upper = np.array([10 for i in range(10)]) optimum_point = np.array([00., 06., 08., 06.77718, 09.61189, 02., 08., 08., 05.24970, 08.15489]) optimum_value = -1000 var_type = np.array(['I'] * 3 + ['R'] * 2 + ['I'] * 3 + ['R'] * 2) # -- end class class branin_cat: """ Branin function of the Dixon-Szego test set, with categorical vars. """ @classmethod def evaluate(cls, x): assert(len(x)==3) if (x[2] == 0): fun = lambda x : np.cos(x) elif (x[2] == 1): fun = lambda x : np.sin(x) elif (x[2] == 2): fun = lambda x : (np.cos(x + np.pi/4))**2 elif (x[2] == 3): fun = lambda x : (np.sin(x + np.pi/4))**2 value = ((x[1] - (5.1/(4*np.pi*np.pi))*x[0]*x[0] + 5/np.pi*x[0] - 6)**2 + 10*(1-1/(8*np.pi)) * fun(x[0]) +10) return(value) dimension = 3 var_lower = np.array([-5, 0, 0]) var_upper = np.array([10, 15, 3]) optimum_point = np.array([9.42477796, 2.47499998, 0]) additional_optima = np.array([ [-3.14159265, 12.27500000, 0], [3.14159265, 2.27500000, 0] ]) optimum_value = 0.397887357729739 var_type = np.array(['R', 'R', 'C']) # -- end class class hartman3_cat: """ Hartman3 function of the Dixon-Szego test set, with categorical vars. """ @classmethod def evaluate(cls, x): assert(len(x)==4) value = -math.fsum([cls.c[int(x[3]), i] * np.exp(-math.fsum([cls.a[j][i]* (x[j] - cls.p[j][i])**2 for j in range(3)])) for i in range(4) ]) return(value) a = np.array([ [3.0, 0.1, 3.0, 0.1], [10.0, 10.0, 10.0, 10.0], [30.0, 35.0, 30.0, 35.0] ]) p = np.array([ [0.36890, 0.46990, 0.10910, 0.03815], [0.11700, 0.43870, 0.87320, 0.57430], [0.26730, 0.74700, 0.55470, 0.88280] ]) c = np.array([[3.2, 2.5, 0.2, 0.7], [1.0, 1.2, 3.0, 3.2], [2.2, 1.2, 3.1, 1.7], [0.1, 2.1, 0.3, 3.7], [1.8, 0.4, 3.1, 2.4]]) dimension = 4 var_lower = np.array([0, 0, 0, 0]) var_upper = np.array([1, 1, 1, 4]) optimum_point = np.array([0.155995, 0.536521, 0.843994, 3]) optimum_value = -4.822787424687719 var_type = np.array(['R', 'R', 'R', 'C']) # -- end class class hartman6_cat: """ Hartman6 function of the Dixon-Szego test set, with categorical vars. """ @classmethod def evaluate(cls, x): assert(len(x)==7) value = -math.fsum([cls.c[int(x[0]), i] * np.exp(-math.fsum([cls.a[j][i]* (x[j+1] - cls.p[j][i])**2 for j in range(6)])) for i in range(4) ]) return(value) a = np.array([ [10.00, 0.05, 3.00, 17.00], [3.00, 10.00, 3.50, 8.00], [17.00, 17.00, 1.70, 0.05], [3.50, 0.10, 10.00, 10.00], [1.70, 8.00, 17.00, 0.10], [8.00, 14.00, 8.00, 14.00] ]) p = np.array([ [0.1312, 0.2329, 0.2348, 0.4047], [0.1696, 0.4135, 0.1451, 0.8828], [0.5569, 0.8307, 0.3522, 0.8732], [0.0124, 0.3736, 0.2883, 0.5743], [0.8283, 0.1004, 0.3047, 0.1091], [0.5886, 0.9991, 0.6650, 0.0381] ]) c = np.array([[1.0, 1.2, 3.0, 3.2], [3.2, 2.5, 0.2, 0.7], [2.2, 1.2, 3.1, 1.7], [0.1, 2.1, 0.3, 3.7], [1.8, 0.4, 3.1, 2.4]]) dimension = 7 var_lower = np.array([0, 0, 0, 0, 0, 0, 0]) var_upper = np.array([4, 1, 1, 1, 1, 1, 1]) optimum_point = np.array([2, 0.177401, 0.153512, 0.516698, 0.256499, 0.323092, 0.646352]) optimum_value = -3.96231691936822 var_type = np.array(['C'] + ['R'] * 6) # -- end class class ex8_1_1_cat: """ ex8_1_1 function of the GlobalLib test set. """ @classmethod def evaluate(cls, x): assert(len(x)==4) if (x[2] == 0): fun1 = lambda x : np.sin(x) elif (x[2] == 1): fun1 = lambda x : np.cos(x) elif (x[2] == 2): fun1 = lambda x : (np.cos(x + np.pi/4))**2 elif (x[2] == 3): fun1 = lambda x : (np.sin(x + np.pi/4))**2 if (x[3] == 0): fun2 = lambda x : (np.sin(x + np.pi/4))**2 elif (x[3] == 1): fun2 = lambda x : np.sin(x) elif (x[3] == 2): fun2 = lambda x : (np.cos(x + np.pi/4))**2 elif (x[3] == 3): fun2 = lambda x : np.cos(x) value = fun1(x[0])*fun2(x[1]) - x[0]/(x[1]**2+1) return(value) dimension = 4 var_lower = np.array([-1, -1, 0, 0]) var_upper = np.array([2, 1, 3, 3]) optimum_point = np.array([2.0, -0.00030, 1, 3]) optimum_value = -2.4161466378205514 var_type = np.array(['R'] * 2 + ['C', 'C']) # -- end class class schoen_10_1_cat: """ schoen function of dimension 10 with categorical variables. """ @classmethod def evaluate(cls, x): assert(len(x)==12) numerator = 0.0 denominator = 0.0 # Categorical variable determining function for the first 25 # points. We want these functions to be nonnegative on # distances. if (x[0] == 0): fun1 = lambda x : x**2 elif (x[0] == 1): fun1 = lambda x : np.abs(x + 50) elif (x[0] == 2): fun1 = lambda x : np.log(x + 10) elif (x[0] == 3): fun1 = lambda x : (np.sin(x))**2 if (x[1] == 0): fun2 = lambda x : np.log(x + 10) elif (x[1] == 1): fun2 = lambda x : np.abs(x + 50) elif (x[1] == 2): fun2 = lambda x : x**2 elif (x[1] == 3): fun2 = lambda x : (np.sin(x))**2 dist1 = np.sum(fun1(x[2:] - cls.z), axis=1) dist2 = np.sum(fun2(x[2:] - cls.z), axis=1) for i in range(25): prod = 1.0 for j in range(50): if (i != j): prod *= dist1[j] numerator += cls.f[i]*prod denominator += prod for i in range(25, 50): prod = 1.0 for j in range(50): if (i != j): prod *= dist2[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.914871, 0.765230, 0.139426, 0.617466, 0.823635, 0.794003, 0.801171, 0.568811, 0.279434, 0.540422], [0.976983, 0.593277, 0.701115, 0.585262, 0.669106, 0.272906, 0.177127, 0.143389, 0.561181, 0.018744], [0.385208, 0.984106, 0.390066, 0.905970, 0.169600, 0.191291, 0.564157, 0.689910, 0.857031, 0.715390], [0.975998, 0.536904, 0.819333, 0.801793, 0.564454, 0.336124, 0.654190, 0.044197, 0.717416, 0.465807], [0.750519, 0.415284, 0.258927, 0.736115, 0.597744, 0.763716, 0.747691, 0.969633, 0.188117, 0.964954], [0.412888, 0.671756, 0.380214, 0.558595, 0.768370, 0.998320, 0.212183, 0.606757, 0.531315, 0.303569], [0.196682, 0.139879, 0.108608, 0.736975, 0.755971, 0.021390, 0.852398, 0.188596, 0.920133, 0.045012], [0.956270, 0.729258, 0.397664, 0.013146, 0.519861, 0.300011, 0.008396, 0.820346, 0.176841, 0.402298], [0.126432, 0.872346, 0.923581, 0.297492, 0.992744, 0.486525, 0.915493, 0.589980, 0.498242, 0.989945], [0.697409, 0.026641, 0.875467, 0.503039, 0.563285, 0.096769, 0.933643, 0.884419, 0.585825, 0.395465], [0.494783, 0.824300, 0.153326, 0.202651, 0.579815, 0.416954, 0.707624, 0.497959, 0.568876, 0.812841], [0.126963, 0.757337, 0.648583, 0.787445, 0.822586, 0.401155, 0.301350, 0.562707, 0.744074, 0.088372], [0.293611, 0.835864, 0.925111, 0.760322, 0.729456, 0.096840, 0.651466, 0.975836, 0.691353, 0.038384], [0.999250, 0.916829, 0.205699, 0.027241, 0.156956, 0.206598, 0.175242, 0.811219, 0.660192, 0.119865], [0.387978, 0.665180, 0.774376, 0.135223, 0.766238, 0.380668, 0.058279, 0.727506, 0.991527, 0.345759], [0.299341, 0.066231, 0.680305, 0.392230, 0.319985, 0.698292, 0.100236, 0.394973, 0.096232, 0.362943], [0.281548, 0.860858, 0.647870, 0.981650, 0.110777, 0.836484, 0.697387, 0.659942, 0.694425, 0.434991], [0.606706, 0.052287, 0.858208, 0.738885, 0.158495, 0.002367, 0.933796, 0.112986, 0.647308, 0.421573], [0.776505, 0.101364, 0.610406, 0.275033, 0.548409, 0.998967, 0.536743, 0.943903, 0.960993, 0.251672], [0.371347, 0.491122, 0.772374, 0.860206, 0.752131, 0.338591, 0.826739, 0.312111, 0.768881, 0.862719], [0.866886, 0.358220, 0.131205, 0.276334, 0.334111, 0.429525, 0.752197, 0.167524, 0.437764, 0.162916], [0.584246, 0.511215, 0.659647, 0.349220, 0.954428, 0.477982, 0.386041, 0.813944, 0.753530, 0.983276], [0.697327, 0.499835, 0.530487, 0.599958, 0.497257, 0.998852, 0.106262, 0.186978, 0.887481, 0.749174], [0.041611, 0.278918, 0.999095, 0.825221, 0.218320, 0.383711, 0.077041, 0.642061, 0.668906, 0.758298], [0.072437, 0.592862, 0.040655, 0.446330, 0.651659, 0.055738, 0.631924, 0.890039, 0.192989, 0.741054], [0.533886, 0.135079, 0.787647, 0.593408, 0.749228, 0.749045, 0.190386, 0.755508, 0.465321, 0.465156], [0.748843, 0.696419, 0.882124, 0.843895, 0.858057, 0.220107, 0.350310, 0.102947, 0.453576, 0.875940], [0.560231, 0.580247, 0.381834, 0.807535, 0.184636, 0.615702, 0.628408, 0.081783, 0.793384, 0.233639], [0.384827, 0.589138, 0.630013, 0.634506, 0.630712, 0.521293, 0.494486, 0.681700, 0.288512, 0.319808], [0.721978, 0.452289, 0.426726, 0.323106, 0.781584, 0.999325, 0.043670, 0.884560, 0.520936, 0.430684], [0.810388, 0.624041, 0.811624, 0.105973, 0.199807, 0.440644, 0.864152, 0.282280, 0.397116, 0.499932], [0.973889, 0.677797, 0.080137, 0.549098, 0.625445, 0.577342, 0.538642, 0.388039, 0.552273, 0.793807], [0.365176, 0.228017, 0.623500, 0.084450, 0.177343, 0.910108, 0.632719, 0.521458, 0.894843, 0.707893], [0.502069, 0.622312, 0.958019, 0.744999, 0.515695, 0.407885, 0.590739, 0.736542, 0.297555, 0.237955], [0.313835, 0.090014, 0.336274, 0.433171, 0.330864, 0.105751, 0.160367, 0.651934, 0.207260, 0.293577], [0.886072, 0.592935, 0.498116, 0.321835, 0.011216, 0.543911, 0.506579, 0.216779, 0.406812, 0.261349], [0.789947, 0.881332, 0.696597, 0.742955, 0.252224, 0.718157, 0.188217, 0.371208, 0.178640, 0.347720], [0.482759, 0.663618, 0.622706, 0.036170, 0.278854, 0.088147, 0.482808, 0.134824, 0.028828, 0.944537], [0.184705, 0.662346, 0.917194, 0.186490, 0.918392, 0.955111, 0.636015, 0.447595, 0.813716, 0.372839], [0.231741, 0.637199, 0.745257, 0.201568, 0.697485, 0.897022, 0.239791, 0.495219, 0.153831, 0.387172], [0.198061, 0.194102, 0.550259, 0.751804, 0.503973, 0.034252, 0.788267, 0.731760, 0.118338, 0.057247], [0.068470, 0.545180, 0.668845, 0.714932, 0.688014, 0.203845, 0.146138, 0.109039, 0.470214, 0.441797], [0.085180, 0.142394, 0.938665, 0.071422, 0.946796, 0.697832, 0.472400, 0.161384, 0.325715, 0.122550], [0.637672, 0.986961, 0.969438, 0.989508, 0.381318, 0.800871, 0.012035, 0.326007, 0.459124, 0.645374], [0.147210, 0.954608, 0.361146, 0.094699, 0.092327, 0.301664, 0.478447, 0.008274, 0.680576, 0.004184], [0.768792, 0.812618, 0.915766, 0.029070, 0.506944, 0.457816, 0.839167, 0.024706, 0.990756, 0.088779], [0.872678, 0.601536, 0.948347, 0.621023, 0.415621, 0.289340, 0.291338, 0.190461, 0.664007, 0.583513], [0.641216, 0.700152, 0.080576, 0.355500, 0.294700, 0.338614, 0.563964, 0.528079, 0.759223, 0.508432], [0.738489, 0.077376, 0.429485, 0.300586, 0.576927, 0.185931, 0.231659, 0.954833, 0.614178, 0.092903], [0.729321, 0.318607, 0.768657, 0.899419, 0.749499, 0.623403, 0.671793, 0.052835, 0.973726, 0.168336]]) f = np.array( [-1000, -1000, -1000, 799.1, 396.8, 370.3, 400.2, 239.7, 678.8, 868.9, 564.4, 681.6, 153.0, 760.7, 562.9, 434.9, 579.2, 260.6, 88.5, 601.3, 754.8, 894.8, 672.8, 633.7, 921.8, 43.2, 286.2, 945.5, 716.0, 72.7, 631.2, 640.3, 425.1, 825.8, 555.8, 136.9, 805.7, 786.5, 400.0, 856.4, 548.0, 510.8, 52.3, 111.6, 686.6, 888.2, 315.4, 333.9, 61.5, 755.2]) dimension = 12 var_lower = np.array([0, 0] + [0 for i in range(10)]) var_upper = np.array([3, 3] + [1 for i in range(10)]) optimum_point = np.array([0, 2, 0.914871, 0.765230, 0.139426, 0.617466, 0.823635, 0.794003, 0.801171, 0.568811, 0.279434, 0.540422]) optimum_value = -1000 var_type = np.array(['C', 'C'] + ['R'] * 10) # -- end class class schoen_10_2_cat: """ schoen function of dimension 10 with categorical variables. """ @classmethod def evaluate(cls, x): assert(len(x)==12) numerator = 0.0 denominator = 0.0 # Categorical variable determining function for the first 25 # points. We want these functions to be nonnegative on # distances. if (x[0] == 0): fun1 = lambda x : x**2 elif (x[0] == 1): fun1 = lambda x : np.abs(x + 50) elif (x[0] == 2): fun1 = lambda x : np.log(x + 10) elif (x[0] == 3): fun1 = lambda x : (np.sin(x))**2 if (x[1] == 0): fun2 = lambda x : np.log(x + 10) elif (x[1] == 1): fun2 = lambda x : np.abs(x + 50) elif (x[1] == 2): fun2 = lambda x : x**2 elif (x[1] == 3): fun2 = lambda x : (np.sin(x))**2 dist1 = np.sum(fun1(x[2:] - cls.z), axis=1) dist2 = np.sum(fun2(x[2:] - cls.z), axis=1) for i in range(25): prod = 1.0 for j in range(50): if (i != j): prod *= dist1[j] numerator += cls.f[i]*prod denominator += prod for i in range(25, 50): prod = 1.0 for j in range(50): if (i != j): prod *= dist2[j] numerator += cls.f[i]*prod denominator += prod value = numerator/denominator return(value) z = np.array( [[0.131461, 0.965235, 0.046134, 0.983011, 0.719813, 0.827542, 0.662422, 0.570546, 0.578707, 0.013264], [0.068454, 0.682785, 0.582736, 0.434517, 0.310613, 0.869876, 0.993949, 0.629156, 0.590599, 0.356378], [0.632837, 0.961665, 0.015079, 0.378878, 0.805608, 0.685239, 0.528658, 0.752934, 0.717790, 0.374865], [0.286191, 0.912944, 0.400358, 0.902532, 0.324887, 0.850063, 0.483503, 0.764147, 0.147726, 0.159851], [0.303483, 0.754790, 0.090527, 0.653764, 0.164323, 0.402931, 0.593477, 0.448444, 0.711483, 0.113869], [0.057398, 0.302029, 0.596351, 0.565466, 0.694204, 0.974864, 0.323989, 0.298493, 0.859391, 0.238714], [0.139267, 0.214902, 0.608462, 0.297987, 0.499810, 0.578553, 0.548077, 0.208442, 0.046162, 0.246848], [0.680420, 0.783181, 0.828103, 0.475810, 0.680401, 0.188455, 0.015200, 0.650103, 0.762389, 0.063985], [0.409243, 0.600740, 0.302354, 0.588411, 0.436291, 0.294790, 0.701477, 0.994162, 0.433749, 0.535320], [0.077949, 0.530126, 0.869737, 0.387811, 0.705317, 0.632911, 0.442087, 0.082918, 0.441383, 0.591975], [0.622628, 0.054964, 0.020475, 0.145616, 0.163873, 0.321546, 0.282867, 0.743494, 0.750568, 0.732386], [0.538574, 0.066932, 0.225204, 0.290045, 0.613242, 0.529365, 0.384018, 0.946557, 0.974384, 0.425297], [0.108817, 0.850094, 0.886417, 0.161581, 0.082973, 0.506354, 0.589650, 0.638991, 0.045151, 0.688464], [0.917742, 0.365119, 0.484176, 0.173231, 0.210253, 0.303688, 0.992141, 0.023109, 0.977178, 0.535146], [0.183469, 0.198085, 0.511596, 0.275610, 0.753700, 0.437328, 0.986237, 0.028654, 0.767921, 0.997910], [0.484908, 0.759122, 0.577318, 0.359934, 0.935730, 0.617833, 0.770173, 0.311175, 0.004831, 0.157457], [0.634077, 0.236972, 0.016427, 0.261753, 0.349712, 0.245870, 0.412238, 0.523557, 0.985327, 0.094060], [0.477875, 0.803438, 0.496728, 0.848920, 0.497386, 0.938203, 0.279797, 0.287076, 0.395184, 0.980546], [0.450215, 0.193712, 0.975838, 0.103925, 0.077410, 0.709573, 0.253072, 0.311723, 0.885664, 0.204528], [0.557312, 0.815198, 0.097914, 0.539142, 0.826048, 0.130070, 0.049858, 0.223634, 0.076387, 0.831224], [0.927559, 0.324916, 0.563393, 0.209281, 0.344394, 0.953384, 0.298679, 0.890637, 0.966615, 0.380006], [0.026403, 0.997573, 0.479163, 0.379686, 0.687928, 0.832002, 0.214326, 0.348248, 0.073151, 0.062646], [0.726869, 0.911171, 0.961920, 0.874884, 0.216867, 0.076966, 0.776240, 0.495777, 0.963492, 0.425246], [0.357483, 0.486330, 0.759177, 0.748362, 0.889904, 0.350438, 0.232983, 0.823613, 0.792656, 0.441264], [0.875826, 0.359459, 0.214808, 0.425850, 0.493328, 0.456048, 0.523145, 0.504154, 0.090128, 0.472437], [0.813400, 0.808407, 0.427211, 0.902524, 0.210376, 0.490662, 0.915939, 0.169439, 0.078865, 0.485371], [0.877334, 0.982207, 0.679085, 0.486335, 0.940715, 0.585964, 0.289279, 0.694886, 0.172625, 0.201457], [0.141599, 0.476124, 0.762246, 0.067045, 0.411332, 0.813196, 0.134138, 0.302390, 0.856145, 0.349243], [0.346912, 0.082142, 0.787442, 0.857465, 0.371129, 0.448550, 0.967943, 0.775340, 0.943681, 0.656127], [0.619267, 0.547196, 0.470422, 0.141566, 0.584198, 0.952226, 0.196462, 0.629549, 0.685469, 0.824365], [0.014209, 0.789812, 0.836373, 0.186139, 0.493840, 0.710697, 0.910033, 0.368287, 0.865953, 0.140892], [0.482763, 0.072574, 0.026730, 0.143687, 0.739505, 0.419649, 0.013683, 0.662644, 0.785254, 0.234561], [0.821421, 0.844100, 0.153937, 0.671762, 0.290469, 0.631347, 0.591435, 0.498966, 0.043395, 0.176771], [0.404994, 0.496656, 0.951774, 0.497357, 0.715401, 0.023378, 0.493045, 0.342766, 0.117055, 0.698590], [0.985857, 0.831692, 0.423498, 0.215757, 0.341260, 0.790760, 0.941186, 0.716883, 0.062641, 0.582012], [0.676905, 0.280897, 0.800638, 0.898913, 0.735995, 0.592412, 0.433021, 0.432772, 0.874477, 0.112375], [0.377382, 0.118941, 0.529204, 0.419434, 0.673891, 0.074904, 0.129868, 0.819585, 0.220536, 0.353223], [0.233415, 0.136703, 0.487256, 0.777498, 0.901915, 0.612402, 0.778635, 0.436718, 0.484520, 0.641969], [0.273297, 0.670196, 0.344525, 0.669751, 0.180230, 0.530085, 0.393284, 0.326043, 0.260840, 0.364690], [0.931213, 0.676123, 0.912481, 0.898258, 0.001887, 0.408306, 0.917215, 0.496959, 0.287951, 0.562511], [0.047196, 0.780338, 0.895994, 0.088169, 0.552425, 0.130790, 0.308504, 0.232476, 0.187952, 0.105936], [0.343517, 0.356222, 0.416018, 0.450278, 0.487765, 0.040510, 0.592363, 0.771635, 0.577849, 0.315843], [0.527759, 0.529503, 0.210423, 0.756794, 0.892670, 0.339374, 0.445837, 0.363265, 0.432114, 0.942045], [0.560107, 0.110906, 0.115725, 0.761393, 0.969105, 0.921166, 0.455014, 0.593512, 0.111887, 0.217300], [0.463382, 0.635591, 0.329484, 0.573602, 0.492558, 0.474174, 0.371906, 0.850465, 0.467637, 0.261373], [0.033051, 0.422543, 0.294155, 0.699026, 0.846231, 0.047967, 0.686826, 0.480273, 0.463181, 0.345601], [0.285473, 0.723925, 0.202386, 0.671909, 0.685277, 0.993969, 0.415329, 0.155218, 0.233826, 0.088752], [0.029705, 0.651519, 0.813239, 0.677718, 0.961189, 0.285385, 0.824635, 0.837670, 0.524970, 0.815489], [0.519627, 0.508274, 0.141067, 0.156163, 0.274566, 0.536322, 0.834749, 0.852042, 0.656166, 0.964211], [0.119675, 0.971352, 0.052983, 0.178217, 0.408438, 0.215091, 0.102098, 0.256312, 0.051758, 0.906712]]) f = np.array( [-1000, -1000, -1000, 90.4, 830.9, 52.7, 375.2, 289.7, 244.1, 470.2, 111.7, 968.9, 903.4, 918.5, 820.3, 441.2, 687.5, 836.9, 11.0, 454.5, 929.3, 952.6, 937.2, 870.5, 211.7, 378.4, 320.3, 729.6, 420.8, 213.8, 717.7, 285.4, 522.8, 748.3, 371.0, 501.2, 568.6, 111.9, 645.2, 486.2, 157.0, 968.5, 137.6, 127.2, 943.4, 437.2, 199.7, 415.4, 966.0, 362.3]) dimension = 12 var_lower = np.array([0, 0] + [0 for i in range(10)]) var_upper = np.array([3, 3] + [1 for i in range(10)]) optimum_point = np.array([0, 2, 0.131461, 0.965235, 0.046134, 0.983011, 0.719813, 0.827542, 0.662422, 0.570546, 0.578707, 0.013264]) optimum_value = -1000 var_type = np.array(['C', 'C'] + ['R'] * 10) # -- end class class gear4_cat: """ gear4 function of the MINLPLib test set, with categorical variables """ @classmethod def evaluate(cls, x): assert(len(x)==6) if (x[5] == 0): fun = lambda x, y : np.sqrt(x + y) elif (x[5] == 1): fun = lambda x, y : x/y elif (x[5] == 2): fun = lambda x, y : np.log(x * y * 2) elif (x[5] == 3): fun = lambda x, y : x/(y + 10) elif (x[5] == 4): fun = lambda x, y : np.max(x, y) value = -1000000*x[0]*x[1]/(x[2]*x[3]) + 2*x[4] + 144279.32477276 # There is a constraint: # -1000000*x[0]*x[1]/(x[2]*x[3]) + x[4] + 144279.32477276 >= 0 penalty = 10*max(0,-(-1000000*x[0]*x[1]/(x[2]*x[3]) + x[4] + 144279.32477276)) return(value + penalty) dimension = 6 var_lower = np.array([12, 12, 12, 12, 0, 0]) var_upper =
np.array([60, 60, 60, 60, 100, 4])
numpy.array
# 1. Only add your code inside the function (including newly improted packages). # You can design a new function and call the new function in the given functions. # 2. For bonus: Give your own picturs. If you have N pictures, name your pictures such as ["t3_1.png", "t3_2.png", ..., "t3_N.png"], and put them inside the folder "images". # 3. Not following the project guidelines will result in a 10% reduction in grades import json import cv2 import numpy as np import matplotlib.pyplot as plt # Use the keypoints to stitch the images def get_stitched_image(img1, img2, M): # Get width and height of input images w1, h1 = img1.shape[:2] w2, h2 = img2.shape[:2] # Get the canvas dimensions img1_dims =
np.float32([[0, 0], [0, w1], [h1, w1], [h1, 0]])
numpy.float32
"""Classes and methods used across the project""" import json import numpy as np import matplotlib.pyplot as plt import sys import os import time import fma_utils """Generic Utils""" class ProgressBar: """Terminal progress bar Arguments: total: Relative size corresponding to completed task status: In progress status message bar_len: Actual size of progress bar when full max_len: Anything beyond this is truncated update_freq: Write to terminal st this rate (increase to save time on i/o) """ def __init__(self, total, status='', **kwargs): self.total = total self.status = status self.params = { 'max_len': 150, 'bar_len': 60, 'update_freq': 2 } self.params.update(kwargs) self.update_time = None self.completed = False def update(self, count): """Updates the progress bar with a new progress value""" curr_time = time.time() if self.update_time is not None and self.update_time + self.params['update_freq'] > curr_time: return self.update_time = curr_time filled_len = self.params['bar_len'] if self.total == 0 else \ int(round(self.params['bar_len'] * count / float(self.total))) percents = 100.0 if self.total == 0 else round(100.0 * count / float(self.total), 1) clear = ' ' * self.params['max_len'] # Blank line is used to clear previous content on the terminal bar = '=' * filled_len + '-' * (self.params['bar_len'] - filled_len) output = ('[%s] %s%s ...%s' % (bar, percents, '%', self.status)) if len(output) > self.params['max_len']: output = output[:self.params['max_len']] sys.stdout.write('%s\r' % clear) sys.stdout.write(output) sys.stdout.write('\n' if self.completed else '\r') sys.stdout.flush() def complete(self, status=''): """Fills the progress bar to completion and updates the status message""" self.completed = True self.status = status self.update_time = None self.update(self.total) def cached(key_fn=lambda *a, **k: str(a + tuple(k.values()))): """Decorator for caching method outputs by key""" def args_wrap(fn): cache = {} def fn_wrap(*args, **kwargs): key = None if key_fn is None else key_fn(*args, **kwargs) if key not in cache: cache[key] = fn(*args, **kwargs) return cache[key] return fn_wrap return args_wrap def plot_learning_curve(data_a, data_b, title='Learning Curve', x_label='Epoch', y_label='Loss', legend_a='Train', legend_b='CV', block=False, close=False): """Plots learning curve for a training process in a non-blocking way Arguments: data_a: Numpy Array or list values to plot (typically training set errors) data_b: Optional Numpy Array or list values to plot (typically cv set errors) block: Set True to block code execution while the plot is displayed close: Set True to close an existing plot before plotting. Can be useful for showing plots successively """ if close: plt.close() data_a = np.array(data_a).reshape(-1) plt.plot(
np.arange(1, data_a.size + 1)
numpy.arange
from __future__ import absolute_import import hnswlib import numpy as np from ann_benchmarks.algorithms.base import BaseANN class HnswLib(BaseANN): def __init__(self, efConstruction: int, M: int, metric: str): self.efConstruction = efConstruction self.M = M self.metric = {'angular': 'cosine', 'euclidean': 'l2'}[metric] self.name = f"hnswlib(e={self.efConstruction},m={self.M})" def __str__(self): return f"{self.name}[ef={self.ef}]" def done(self): del self.p def fit(self, X): self.p = hnswlib.Index(space=self.metric, dim=len(X[0])) self.p.init_index(max_elements=len(X), ef_construction=self.efConstruction, M=self.M) data_labels = np.arange(len(X)) self.p.set_num_threads(1) self.p.add_items(
np.asarray(X)
numpy.asarray
#! /usr/bin python #------------------------------------------------------------------------------ # PROGRAM: plot_ncc_stripes_rebinning.py #------------------------------------------------------------------------------ # Version 0.3 # 26 September, 2021 # <NAME> # https://patternizer.github.io # patternizer AT gmail DOT com # michael DOT a DOT taylor AT uea DOT ac DOT uk #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # IMPORT PYTHON LIBRARIES #------------------------------------------------------------------------------ # Dataframe libraries: import numpy as np import pandas as pd import xarray as xr # Datetime libraries: from datetime import datetime import nc_time_axis import cftime from cftime import num2date, DatetimeNoLeap # Plotting libraries: import matplotlib #matplotlib.use('agg') import matplotlib.pyplot as plt; plt.close('all') import matplotlib.colors as mcolors from matplotlib import cm from matplotlib.cm import ScalarMappable from matplotlib import rcParams from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() # Statistics libraries: from scipy import stats # Silence library version notifications import warnings warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=RuntimeWarning) warnings.filterwarnings("ignore", message="numpy.dtype size changed") warnings.filterwarnings("ignore", message="numpy.ufunc size changed") #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # SETTINGS: #------------------------------------------------------------------------------ fontsize = 10 nsmooth = 10 cbar_max = 12.0 cbar_max_norwich_era = 12.0 barwidthfraction = 1.0 t_start = -2580000 t_end = 2200 use_timemask = False use_logarithm = False use_log10_scale = False use_overlay_annotations = False use_hires_norwich = False use_dark_theme = True use_smoothing = False use_overlay_axis = False use_norwich_era_colormap = True use_overlay_timeseries = True use_overlay_baseline = False use_overlay_colorbar = True plot_forecast_variability = False plot_color_mapping = False plot_climate_timeseries = False plot_climate_bars = True plot_climate_stripes = True #projectionstr = 'RCP3pd' #projectionstr = 'RCP45' #projectionstr = 'RCP6' #projectionstr = 'RCP85' #projectionstr = 'SSP119' #projectionstr = 'SSP126' #projectionstr = 'SSP245' projectionstr = 'SSP370' #projectionstr = 'SSP585' #baselinestr = 'baseline_1851_1900' baselinestr = 'baseline_1961_1990' #baselinestr = 'baseline_1971_2000' pathstr = 'DATA/' pages2kstr = 'PAGES2k.txt' hadcrut5str = 'HadCRUT5.csv' fairstr = 'fair' + '_' + projectionstr.lower() + '.csv' lovarstr = 'variability_realisation0.txt' # via Tim hivarstr = 'variability_realisation1.txt' # via Tim paleostr = 'paleo_data_compilation.xls' pages2k_file = pathstr + pages2kstr hadcrut5_file = pathstr + hadcrut5str fair_file = pathstr + fairstr lo_var_file = pathstr + lovarstr hi_var_file = pathstr + hivarstr paleo_file = pathstr + paleostr ipcc_rgb_txtfile = np.loadtxt("DATA/temp_div.txt") # IPCC AR6 temp div colormap file cmap = mcolors.LinearSegmentedColormap.from_list('colormap', ipcc_rgb_txtfile) # ipcc_colormap #cmap = plt.cm.get_cmap('RdBu_r') #cmap = plt.cm.get_cmap('bwr') #------------------------------------------------------------------------------ # DARK THEME #------------------------------------------------------------------------------ if use_dark_theme == True: matplotlib.rcParams['text.usetex'] = False # rcParams['font.family'] = ['DejaVu Sans'] # rcParams['font.sans-serif'] = ['Avant Garde'] rcParams['font.family'] = 'sans-serif' rcParams['font.sans-serif'] = ['Avant Garde', 'Lucida Grande', 'Verdana', 'DejaVu Sans' ] plt.rc('text',color='white') plt.rc('lines',color='white') plt.rc('patch',edgecolor='white') plt.rc('grid',color='lightgray') plt.rc('xtick',color='white') plt.rc('ytick',color='white') plt.rc('axes',labelcolor='white') plt.rc('axes',facecolor='black') plt.rc('axes',edgecolor='lightgray') plt.rc('figure',facecolor='black') plt.rc('figure',edgecolor='black') plt.rc('savefig',edgecolor='black') plt.rc('savefig',facecolor='black') else: matplotlib.rcParams['text.usetex'] = False # rcParams['font.family'] = ['DejaVu Sans'] # rcParams['font.sans-serif'] = ['Avant Garde'] rcParams['font.family'] = 'sans-serif' rcParams['font.sans-serif'] = ['Avant Garde', 'Lucida Grande', 'Verdana', 'DejaVu Sans' ] plt.rc('text',color='black') plt.rc('lines',color='black') plt.rc('patch',edgecolor='black') plt.rc('grid',color='lightgray') plt.rc('xtick',color='black') plt.rc('ytick',color='black') plt.rc('axes',labelcolor='black') plt.rc('axes',facecolor='white') plt.rc('axes',edgecolor='black') plt.rc('figure',facecolor='white') plt.rc('figure',edgecolor='white') plt.rc('savefig',edgecolor='white') plt.rc('savefig',facecolor='white') # Calculate current time now = datetime.now() currentdy = str(now.day).zfill(2) currentmn = str(now.month).zfill(2) currentyr = str(now.year) titletime = str(currentdy) + '/' + currentmn + '/' + currentyr #------------------------------------------------------------------------------ # LOAD: PAGES2k (via Ed Hawkins with thanks) --> df_pages2k # NB: convert time to year.decimal #------------------------------------------------------------------------------ # FORMAT: # Year CE | raw instrumental target data | reconstruction ensemble 50th | 2.5th | 97.5th percentiles | # 31-year butterworth filtered instrumental target data | 31-year butterworth filtered reconstruction 50th | # 2.5th | 97.5th percentiles nheader = 5 f = open(pages2k_file) lines = f.readlines() years = [] # [0001,2000] obs = [] for i in range(nheader,len(lines)): words = lines[i].split() year = words[0].zfill(4) val = (len(words)-1)*[None] for j in range(len(val)): try: val[j] = float(words[j+1]) except: pass years.append(year) obs.append(val) f.close() obs = np.array(obs) t_pages2k = xr.cftime_range(start=years[0], periods=len(years), freq='A', calendar='gregorian')[0:1849] ts_pages2k_instr = pd.to_numeric(obs[:,1][0:1849], errors='coerce') ts_pages2k_recon = pd.to_numeric(obs[:,5][0:1849], errors='coerce') ts_pages2k = np.append(ts_pages2k_recon[0:-36],ts_pages2k_instr[-36:],axis=None) df_pages2k = pd.DataFrame() df_pages2k['t_pages2k'] = t_pages2k.year.astype(float) df_pages2k['ts_pages2k'] = ts_pages2k #------------------------------------------------------------------------------ # LOAD: HadCRUT5 (via <NAME> and UKMO with thanks) --> df_hadcrut5 # NB: convert time to year.decimal #------------------------------------------------------------------------------ hadcrut5 = pd.read_csv(hadcrut5_file) t_hadcrut5_monthly = xr.cftime_range(start='1850', periods=len(hadcrut5), freq='MS', calendar='noleap') ts_hadcrut5_monthly = hadcrut5['Anomaly (deg C)'].values df_hadcrut5 = pd.DataFrame() df_hadcrut5['t_hadcrut5'] = t_hadcrut5_monthly.year.astype(float) + t_hadcrut5_monthly.month.astype(float)/12.0 df_hadcrut5['ts_hadcrut5'] = ts_hadcrut5_monthly years = np.unique(t_hadcrut5_monthly.year) yearly = [] SD = [] for yyyy in years: year_data = df_hadcrut5[np.floor(df_hadcrut5['t_hadcrut5']).astype('int') == yyyy]['ts_hadcrut5'] yearly_mean = np.nanmean(year_data) yearly_SD = np.nanstd(year_data) yearly.append(yearly_mean) SD.append(yearly_SD) df_hadcrut5_yearly = pd.DataFrame() df_hadcrut5_yearly['t_hadcrut5'] = years.astype('float') df_hadcrut5_yearly['ts_hadcrut5'] = yearly df_hadcrut5_yearly['ts_hadcrut5_SD'] = SD df_hadcrut5_yearly = df_hadcrut5_yearly[df_hadcrut5_yearly.t_hadcrut5 <= 2020] #------------------------------------------------------------------------------ # LOAD: FaIR v1.6.3 projections (constrained by HadCRUT5-analysis) --> df_fair # NB: convert time to year.decimal #------------------------------------------------------------------------------ fair = pd.read_csv(fair_file) df_fair = pd.DataFrame() df_fair['t_fair'] = fair.Year.values.astype('float') #------------------------------------------------------------------------------ # LOAD: internal variability for FaIR v1.6.4 projections calculated by Tim from the instrumental record. #------------------------------------------------------------------------------ nheader = 0 f_lo = open(lo_var_file) f_hi = open(hi_var_file) lines_lo = f_lo.readlines() lines_hi = f_hi.readlines() years = [] obs_lo = [] obs_hi = [] #for i in range(nheader,len(lineslo)): for i in range(nheader,180): words_lo = lines_lo[i].split() words_hi = lines_hi[i].split() year = int(words_lo[0].zfill(4)) + 671 # 1350 --> 2021 offset val_lo = (len(words_lo)-1)*[None] val_hi = (len(words_hi)-1)*[None] for j in range(len(val_lo)): try: val_lo[j] = float(words_lo[j+1]) val_hi[j] = float(words_hi[j+1]) except: pass years.append(year) obs_lo.append(val_lo) obs_hi.append(val_hi) f_lo.close() f_hi.close() obs_lo = np.array(obs_lo).ravel() obs_hi = np.array(obs_hi).ravel() df_variability = pd.DataFrame({'lo_var':obs_lo, 'hi_var':obs_hi}, index=years) if (projectionstr == 'SSP119') | (projectionstr == 'SSP126') | (projectionstr == 'SSP245') | (projectionstr == 'RCP3pd') | (projectionstr == 'RCP45'): df_fair['ts_fair'] = fair.Global.values + df_variability.lo_var.values elif (projectionstr == 'SSP370') | (projectionstr == 'SSP585') | (projectionstr == 'RCP6') | (projectionstr == 'RCP85'): df_fair['ts_fair'] = fair.Global.values + df_variability.hi_var.values #------------------------------------------------------------------------------ # LOAD: geological anomalies: 65.5229 Myr ( before 2015 ) # NB: paleo_file is from the "data_compilation" sheet in All_palaeotemps.xlsx # made available at: hhttp://gergs.net/?attachment_id=4310 #------------------------------------------------------------------------------ xl = pd.ExcelFile(paleo_file) df_xl = xl.parse('Sheet1',header=2) # FORMAT: # Royer et al (2004) Friedrich et al (2012) & Hansen et al (2013) Zachos et al (2008) & Hansen et al (2013) Lisiecki and Raymo (2005) & Hansen et al (2013) EPICA <NAME>, Antarctica (x 0.5) NGRIP, Greenland & Johnsen et al (1989) (x 0.5) Marcott et al (2013) Berkeley Earth land-ocean IPCC AR5 RCP8.5 # Age My Royer / Veizer (x 2.0) Royer / Veizer - CO₂ from proxies (x 2.0) Low High Axis [] Age My Age ky before 2015 δ18O Tdo Ts T anomaly Age My Age ky before 2015 δ18O Tdo Ts T anomaly Age My Age ky before 2015 δ18O Tdo Ts T anomaly Age ky before 2015 T T global Age ky before 2015 δ18O Ts T anomaly T global Age ky before 2015 T 1σ Decade Age ky before 2015 T average Year Age ky before 2015 T t_epica = df_xl.iloc[:,28] * -1.0e3 + 2015.0 ts_epica = df_xl.iloc[:,30] t_lisiecki = df_xl.iloc[:,22] * -1.0e3 + 2015.0 ts_lisiecki = df_xl.iloc[:,26] t_zachos = df_xl.iloc[:,15] * -1.0e3 + 2015.0 ts_zachos = df_xl.iloc[:,19] # CONCATENATE: epochs and store in dataframe t_paleo = np.array( list(t_epica) + list(t_lisiecki) + list(t_zachos) ).ravel().astype(int) ts_paleo = np.array( list(ts_epica) + list(ts_lisiecki) + list(ts_zachos) ).ravel() df_paleo = pd.DataFrame() df_paleo['t_paleo'] = t_paleo df_paleo['ts_paleo'] = ts_paleo # TRIM: to +1 CE df_paleo = df_paleo[ df_paleo.t_paleo < 1 ].dropna() #------------------------------------------------------------------------------ # COMPUTE: baseline yearly means from HadCRUT5 ( monthly ) #------------------------------------------------------------------------------ mu_1851_1900 = np.nanmean( df_hadcrut5[(df_hadcrut5['t_hadcrut5']>=1851) & (df_hadcrut5['t_hadcrut5']<=1900)]['ts_hadcrut5'] ) # -0.507873106 mu_1961_1990 = np.nanmean( df_hadcrut5[(df_hadcrut5['t_hadcrut5']>=1961) & (df_hadcrut5['t_hadcrut5']<=1990)]['ts_hadcrut5'] ) # 0.005547222 mu_1971_2000 = np.nanmean( df_hadcrut5[(df_hadcrut5['t_hadcrut5']>=1971) & (df_hadcrut5['t_hadcrut5']<=2000)]['ts_hadcrut5'] ) # 0.176816667 if baselinestr == 'baseline_1851_1900': mu = mu_1851_1900 baseline_start = 1851 baseline_end = 1900 elif baselinestr == 'baseline_1961_1990': mu = mu_1961_1990 baseline_start = 1961 baseline_end = 1990 else: mu = mu_1971_2000 baseline_start = 1971 baseline_end = 2000 baseline_midpoint = baseline_start+int(np.floor(baseline_end-baseline_start)/2) cbarstr = r'Anomaly, $^{\circ}$C ( from ' + str(baseline_start) + '-' + str(baseline_end) +' )' #------------------------------------------------------------------------------ # ALIGN: FaIR projections relative to chosen baseline # NB: FaIR projections are calculated relative to 1880-2015 emission trends and so we # need to subtract off the difference between the selected baseline and the 1851-1900 baseline #------------------------------------------------------------------------------ df_fair = df_fair - ( mu - mu_1851_1900 ) #------------------------------------------------------------------------------ # MERGE: dataframes # NB: PALEO + PAGES2k + HadCRUT5 + FaIR #------------------------------------------------------------------------------ t = (np.floor(df_paleo.t_paleo).append(
np.floor(df_pages2k.t_pages2k)
numpy.floor
from tieler.tile_cpp import fill_mesh from tieler.periodicity import compute_vertex_periodicity from dolfin import Mesh, info, Timer, CompiledSubDomain from collections import namedtuple from copy import deepcopy import numpy as np try: from itertools import izip except ImportError: izip = zip # MAIN IDEA: # We have x, cells, ... representing a single cell. To get the tile # repeated ntimes I don't simply stack next to each other. # Consider 1+1+1+1+1+1+1+1 has 7 additions. But (4+4) where 4 = 2+2 where # 2 = 1+1 is three! So providided that `+` scales reasonably with input # size this is more efficient. Here + is really unary. For input other # than power of 2 it is necessary to extend it to binary, e.g. 5 = (2+2)+1 def powers2(num): '''List (descending) of powers of two in the number''' powers = [int(power) for power, value in enumerate(reversed(format(num, 'b'))) if value != '0'] info('Number of binary + %d' % (len(powers) - 1)) info('Largest tile does %d unary +' % (max(powers) - 1)) return powers[::-1] # Basic data structure representing tile consists of coordinates and # cells as indices in to the coord array. master/slave vertices define a # map for gluing tiles in certain direction. The periodic maps for the # remaining dirs are in vertex_mappings. Marked entities (encode by their # vertex numbering) are in data Tile = namedtuple('Tile', ('coords', 'cells', 'master_vertices', 'slave_vertices', 'mappings', 'data')) def make_tile(x, cells, master_vertices, slave_vertices, vertex_mappings, data): '''Freeze the tile from input data.''' # As the data further evolves I need to make copy return Tile(deepcopy(x), deepcopy(cells), np.copy(master_vertices), np.copy(slave_vertices), [vm.copy() for vm in vertex_mappings], data.copy()) def merge(x, x_cells, shift, master_vertices, slave_vertices, y=None, y_cells=None): ''' The + operation for tiles (x, x_cells) [(y, y_cells)]. Tiles are glued by shifting y by shift. Return x, cells for the resulting merged mesh and a map from tile y local vertex numbering to the global numbering of the mesh ''' if y is None and y_cells is None: y, y_cells = x, x_cells n = len(y) # To make the tile piece we add all but the master vertices (as these # are already (slaves) in x-tile new_vertices = set(range(n)) new_vertices.difference_update(master_vertices) new_vertices = np.fromiter(new_vertices, dtype=int) assert np.all(np.diff(new_vertices) > 0) # Offset the free translate = np.empty(n, dtype=int) translate[new_vertices] = len(x) + np.arange(len(new_vertices)) # Those at master positions take slave values translate[master_vertices] = slave_vertices # Verices of the glued tiles x = np.vstack([x, y[new_vertices] + shift]) # Cells of the glued tiles new_cells = np.empty_like(y_cells) new_cells.ravel()[:] = translate[y_cells.flat] x_cells = np.vstack([x_cells, new_cells]) return x, x_cells, translate def TileMesh(tile, shape, mesh_data={}, TOL=1E-9): ''' [tile tile; tile tile; tile tile; tile tile] The shape is an ntuple describing the number of pieces put next to each other in the i-th axis. mesh_data : (tdim, tag) -> [entities] is the way to encode mesh data of the tile. ''' # Sanity for glueing gdim = tile.geometry().dim() assert len(shape) <= gdim, (shape, gdim) # While evolve is general mesh writing is limited to simplices only (FIXME) # so we bail out early assert str(tile.ufl_cell()) in ('interval', 'triangle', 'tetrahedron') t = Timer('evolve') # Do nothing if all(v == 1 for v in shape): return tile, mesh_data # We want to evolve cells, vertices of the mesh using geometry information # and periodicity info x = tile.coordinates() min_x = np.min(x, axis=0) max_x = np.max(x, axis=0) shifts = max_x - min_x shifts_x = [] # Geometry vertex_mappings = [] # Periodicity # Compute geometrical shift for EVERY direction: for axis in range(len(shape)): shift = shifts[axis] # Vector to shift cell vertices shift_x = np.zeros(gdim); shift_x[axis] = shift shifts_x.append(shift_x) # Compute periodicity in the vertices to_master = lambda x, shift=shift_x: x - shift # Mapping facets master = CompiledSubDomain('near(x[i], A, tol)', i=axis, A=min_x[axis], tol=TOL) slave = CompiledSubDomain('near(x[i], A, tol)', i=axis, A=max_x[axis], tol=TOL) error, vertex_mapping = compute_vertex_periodicity(tile, master, slave, to_master) # Fail when exended direction is no periodic assert error < 10*TOL, error vertex_mappings.append(vertex_mapping) # The final piece of information is cells cells = np.empty((tile.num_cells(), tile.ufl_cell().num_vertices()), dtype='uintp') cells.ravel()[:] = tile.cells().flat # Evolve the mesh by tiling along the last direction in shape while shape: x, cells, vertex_mappings, shape = \ evolve(x, cells, vertex_mappings, shape, shifts_x, mesh_data=mesh_data) info('\tEvolve took %g s ' % t.stop()) # We evolve data but the mesh function is made out of it outside mesh = make_mesh(x, cells, tdim=tile.topology().dim(), gdim=gdim) return mesh, mesh_data def evolve(x, cells, vertex_mappings, shape, shifts_x, mesh_data={}): '''Evolve tile [and its data]along the last axis''' axis, gdim = len(shape) - 1, x.shape[1] assert gdim > axis >= 0 # Do nothing for 1 if shape[axis] == 1: vertex_mappings.pop() # No longer needed shifts_x.pop() # Do not touch x and cells return x, cells, vertex_mappings, shape[:-1] # Glue how many times refine = shape[axis] # Get the sizes of tiles (the real sizes are powers of two of these) # The idea is to do unary + on each base tile and power. Then binary # + on the resulting tile tile_sizes = powers2(refine) # Iff refine was a power of two then there is no need to merge as # at the end of tile evolution is the final mesh data. Otherwise # we develop the tiles in their LOCAL numbering => they each start # from their copy vertex_mapping, shift_x = vertex_mappings.pop(), shifts_x.pop() master_vertices = list(vertex_mapping.values()) slave_vertices = list(vertex_mapping.keys()) tiles = [] # Are we even or odd (to keep the initial tile) if 0 in tile_sizes: tiles = [make_tile(x, cells, master_vertices, slave_vertices, vertex_mappings, mesh_data)] # Done with this size tile_sizes.pop() # We need to evolve tiles of sizes which are power of 2. The idea # is to get them while evolving to the largest one size = 1 max_size = max(tile_sizes) target_size = tile_sizes.pop() # The body of the loop corresponds to unary + while size <= max_size: x, cells, translate = merge(x, cells, shift_x, master_vertices, slave_vertices) # For the directions that do not evolve we add the new periodic pairs for vm in vertex_mappings: keys, values = np.array(list(vm.items())).T vm.update(dict(izip(translate[keys], translate[values]))) # Update the periodicty mapping - slaves are new slave_vertices = translate[slave_vertices] # Add the entities defined in terms of the vertices if mesh_data: mesh_data = evolve_data(mesh_data, translate) # We might be at a needed size if size == target_size: tiles.append(make_tile( x, cells, master_vertices, slave_vertices, vertex_mappings, mesh_data)) if tile_sizes: target_size = tile_sizes.pop() # Iterate size += 1 # Remember powers of 2 (like divide) shift_x *= 2 # so we double assert not tile_sizes # Now that the tiles are prepare we want to glue them tile0 = tiles.pop() # No glueing of one tile if not tiles: return tile0.coords, tile0.cells, tile0.mappings, shape[:-1] # Otherwise extend data of the largest tile x, cells, vertex_mappings = tile0.coords, tile0.cells, tile0.mappings slave_vertices = tile0.slave_vertices # Now the binary + dx = shift_x / 2**max_size # Recover length of the base tile shift_x = 0 shifts = (2**p for p in powers2(refine)) while tiles: next_tile = tiles.pop() # Shift for next tile to be added to x shift_x = shift_x + dx*next(shifts) x, cells, translate = merge(x, cells, shift_x, next_tile.master_vertices, slave_vertices, next_tile.coords, next_tile.cells) # Updata periodicity mappings of next tile using new global map for vm, next_vm in zip(vertex_mappings, next_tile.mappings): keys, values = np.array(list(next_vm.items())).T vm.update(dict(izip(translate[keys], translate[values]))) # Data evolve if mesh_data: mesh_data = evolve_data(mesh_data, translate, next_tile.data) # New global slabes slave_vertices = translate[next_tile.slave_vertices] return x, cells, vertex_mappings, shape[:-1] def evolve_data(data, mapping, other=None): ''' Add data of new tile. A new tile is this one or other. Mapping has local to global from new tile to the summed tile. ''' if other is None: other = data for key in data.keys(): old = data[key] new = np.empty_like(other[key]) new.ravel()[:] = mapping[other[key].flat] data[key] =
np.vstack([old, new])
numpy.vstack
from typing import Sequence, Union import numpy as np import scipy.stats from .registry import registry from sklearn.preprocessing import normalize @registry.register_metric('mse') def mean_squared_error(target: Sequence[float], prediction: Sequence[float]) -> float: target_array = np.asarray(target) prediction_array = np.asarray(prediction) return np.mean(np.square(target_array - prediction_array)) @registry.register_metric('mae') def mean_absolute_error(target: Sequence[float], prediction: Sequence[float]) -> float: target_array = np.asarray(target) prediction_array = np.asarray(prediction) return np.mean(np.abs(target_array - prediction_array)) @registry.register_metric('spearmanr') def spearmanr(target: Sequence[float], prediction: Sequence[float]) -> float: target_array = np.asarray(target) prediction_array =
np.asarray(prediction)
numpy.asarray
""" Defines functions used to construct basis vectors, convert between coordinate systems, build meshes, etc. """ import miepy import numpy as np def sph_to_cart(r, theta, phi, origin=None): """convert spherical coordinates (r, theta, phi) centered at origin to cartesian coordinates (x, y, z)""" if origin is None: origin = np.zeros(3, dtype=float) x = origin[0] + r*np.sin(theta)*np.cos(phi) y = origin[1] + r*np.sin(theta)*np.sin(phi) z = origin[2] + r*np.cos(theta) return x,y,z def cart_to_sph(x, y, z, origin=None): """convert cartesian coordinates (x, y, z) to spherical coordinates (r, theta, phi) centered at origin""" if origin is None: origin = np.zeros(3, dtype=float) x0,y0,z0 = origin r = ((x - x0)**2 + (y - y0)**2 + (z - z0)**2)**0.5 theta = np.arccos((z - z0)/r) phi = np.arctan2(y - y0, x - x0) return r, theta, phi def cyl_to_cart(r, phi, z, origin=None): """convert cylindrical coordinates (r, phi, z) centered at origin to cartesian coordinates (x, y, z)""" if origin is None: origin = np.zeros(3, dtype=float) x = origin[0] + r*np.cos(phi) y = origin[1] + r*np.sin(phi) return x, y, z + origin[2] def cart_to_cyl(x, y, z, origin=None): """convert cartesian coordinates (x, y, z) to cylindrical coordinates (r, phi, z) centered at origin""" if origin is None: origin = np.zeros(3, dtype=float) x0,y0,z0 = origin r = ((x - x0)**2 + (y - y0)**2)**0.5 phi = np.arctan2(y - y0, x - x0) return r, phi, z - z0 #TODO: if theta is scalar, or phi is scalar... same with other functions here #TODO: implement origin def sph_basis_vectors(theta, phi, origin=None): """obtain the spherical basis vectors (r_hat, theta_hat, phi_hat) for given theta, phi""" if origin is None: origin = np.zeros(3, dtype=float) r_hat = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)]) theta_hat = np.array([np.cos(theta)*np.cos(phi), np.cos(theta)*np.sin(phi), -1*np.sin(theta)]) phi_hat = np.array([-1*np.sin(phi), np.cos(phi), np.zeros_like(phi)]) return r_hat, theta_hat, phi_hat #TODO: implement origin def vec_cart_to_sph(F, theta, phi, origin=None): """convert a vector field F from cartesian to spherical coordinates Arguments: F[3,...] vector field values theta theta coordinates phi phi coordinates """ if origin is None: origin = np.zeros(3, dtype=float) Fsph = np.zeros_like(F) r_hat, theta_hat, phi_hat = sph_basis_vectors(theta, phi) Fsph[0] = np.sum(F*r_hat, axis=0) Fsph[1] = np.sum(F*theta_hat, axis=0) Fsph[2] = np.sum(F*phi_hat, axis=0) return Fsph #TODO: implement origin def vec_sph_to_cart(F, theta, phi, origin=None): """convert a vector field F from spherical to cartesian coordinates Arguments: F[3,...] vector field values theta theta coordinates phi phi coordinates """ if origin is None: origin = np.zeros(3, dtype=float) Fcart = np.zeros_like(F) r_hat, theta_hat, phi_hat = sph_basis_vectors(theta, phi) for i in range(3): Fcart[i] = F[0]*r_hat[i] + F[1]*theta_hat[i] + F[2]*phi_hat[i] return Fcart def sphere_mesh(sampling): """ Obtain a THETA,PHI mesh for discretizing the surface of the sphere, consistent with the format required by the project and decompose functions Returns (THETA,PHI) meshgrids Arguments: sampling number of points to sample between 0 and pi """ phi = np.linspace(0, 2*np.pi, 2*sampling) tau = np.linspace(-1, 1, sampling) theta = np.arccos(tau) THETA,PHI =
np.meshgrid(theta, phi, indexing='ij')
numpy.meshgrid
from typing import Tuple, Dict, Any, Union, Callable import numpy as np import scipy.ndimage as ndi from common.exceptionmanager import catch_error_exception from common.functionutil import ImagesUtil from preprocessing.imagegenerator import ImageGenerator _epsilon = 1e-6 class TransformRigidImages(ImageGenerator): def __init__(self, size_image: Union[Tuple[int, int, int], Tuple[int, int]], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, is_inverse_transform: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: super(TransformRigidImages, self).__init__(size_image, num_images=1) if is_normalize_data: if type_normalize_data == 'featurewise': self._featurewise_center = True self._featurewise_std_normalization = True self._samplewise_center = False self._samplewise_std_normalization = False else: # type_normalize_data == 'samplewise' self._featurewise_center = False self._featurewise_std_normalization = False self._samplewise_center = True self._samplewise_std_normalization = True else: self._featurewise_center = False self._featurewise_std_normalization = False self._samplewise_center = False self._samplewise_std_normalization = False self._is_zca_whitening = is_zca_whitening self._zca_epsilon = 1e-6 self._rescale_factor = rescale_factor self._preprocessing_function = preprocessing_function self._mean = None self._std = None self._principal_components = None self._is_inverse_transform = is_inverse_transform self._initialize_gendata() def update_image_data(self, in_shape_image: Tuple[int, ...]) -> None: # self._num_images = in_shape_image[0] pass def _initialize_gendata(self) -> None: self._transform_matrix = None self._transform_params = None self._count_trans_in_images = 0 def _update_gendata(self, **kwargs) -> None: seed = kwargs['seed'] (self._transform_matrix, self._transform_params) = self._calc_gendata_random_transform(seed) self._count_trans_in_images = 0 def _get_image(self, in_image: np.ndarray) -> np.ndarray: is_type_input_image = (self._count_trans_in_images == 0) self._count_trans_in_images += 1 return self._get_transformed_image(in_image, is_type_input_image=is_type_input_image) def _get_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: if ImagesUtil.is_without_channels(self._size_image, in_image.shape): in_image = np.expand_dims(in_image, axis=-1) is_reshape_input_image = True else: is_reshape_input_image = False in_image = self._calc_transformed_image(in_image, is_type_input_image=is_type_input_image) if is_type_input_image: in_image = self._standardize(in_image) if is_reshape_input_image: in_image = np.squeeze(in_image, axis=-1) return in_image def _get_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: if ImagesUtil.is_without_channels(self._size_image, in_image.shape): in_image = np.expand_dims(in_image, axis=-1) is_reshape_input_image = True else: is_reshape_input_image = False if is_type_input_image: in_image = self._standardize_inverse(in_image) in_image = self._calc_inverse_transformed_image(in_image, is_type_input_image=is_type_input_image) if is_reshape_input_image: in_image = np.squeeze(in_image, axis=-1) return in_image def _calc_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: raise NotImplementedError def _calc_inverse_transformed_image(self, in_array: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: raise NotImplementedError def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: raise NotImplementedError def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: raise NotImplementedError def _standardize(self, in_image: np.ndarray) -> np.ndarray: if self._preprocessing_function: in_image = self._preprocessing_function(in_image) if self._rescale_factor: in_image *= self._rescale_factor if self._samplewise_center: in_image -= np.mean(in_image, keepdims=True) if self._samplewise_std_normalization: in_image /= (np.std(in_image, keepdims=True) + _epsilon) template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \ 'training data. Fit it first by calling \'fit(numpy_data)\'.' if self._featurewise_center: if self._mean is not None: in_image -= self._mean else: message = template_message_error % ('featurewise_center') catch_error_exception(message) if self._featurewise_std_normalization: if self._std is not None: in_image /= (self._std + _epsilon) else: message = template_message_error % ('featurewise_std_normalization') catch_error_exception(template_message_error % (message)) if self._is_zca_whitening: if self._principal_components is not None: flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:]))) whitex = np.dot(flatx, self._principal_components) in_image = np.reshape(whitex, in_image.shape) else: message = template_message_error % ('zca_whitening') catch_error_exception(message) return in_image def _standardize_inverse(self, in_image: np.ndarray) -> np.ndarray: template_message_error = 'This ImageDataGenerator specifies \'%s\', but it hasn\'t been fit on any ' \ 'training data. Fit it first by calling \'fit(numpy_data)\'.' if self._is_zca_whitening: if self._principal_components is not None: flatx = np.reshape(in_image, (-1, np.prod(in_image.shape[-3:]))) inverse_principal_componens = np.divide(1.0, self._principal_components) whitex = np.dot(flatx, inverse_principal_componens) in_image = np.reshape(whitex, in_image.shape) else: message = template_message_error % ('zca_whitening') catch_error_exception(message) if self._featurewise_std_normalization: if self._std is not None: in_image *= self._std else: message = template_message_error % ('featurewise_std_normalization') catch_error_exception(message) if self._featurewise_center: if self._mean is not None: in_image += self._mean else: message = template_message_error % ('featurewise_center') catch_error_exception(message) if self._samplewise_std_normalization: in_image *= np.std(in_image, keepdims=True) if self._samplewise_center: in_image += np.mean(in_image, keepdims=True) if self._rescale_factor: in_image /= self._rescale_factor if self._preprocessing_function: catch_error_exception('Not implemented inverse preprocessing function') return in_image @staticmethod def _flip_axis(in_image: np.ndarray, axis: int) -> np.ndarray: in_image = np.asarray(in_image).swapaxes(axis, 0) in_image = in_image[::-1, ...] in_image = in_image.swapaxes(0, axis) return in_image @staticmethod def _apply_channel_shift(in_image: np.ndarray, intensity: int, channel_axis: int = 0) -> np.ndarray: in_image = np.rollaxis(in_image, channel_axis, 0) min_x, max_x = np.min(in_image), np.max(in_image) channel_images = [np.clip(x_channel + intensity, min_x, max_x) for x_channel in in_image] in_image = np.stack(channel_images, axis=0) in_image = np.rollaxis(in_image, 0, channel_axis + 1) return in_image def _apply_brightness_shift(self, in_image: np.ndarray, brightness: int) -> np.ndarray: catch_error_exception('Not implemented brightness shifting option...') # in_image = array_to_img(in_image) # in_image = imgenhancer_Brightness = ImageEnhance.Brightness(in_image) # in_image = imgenhancer_Brightness.enhance(brightness) # in_image = img_to_array(in_image) def get_text_description(self) -> str: raise NotImplementedError class TransformRigidImages2D(TransformRigidImages): _img_row_axis = 0 _img_col_axis = 1 _img_channel_axis = 2 def __init__(self, size_image: Tuple[int, int], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, rotation_range: float = 0.0, width_shift_range: float = 0.0, height_shift_range: float = 0.0, brightness_range: Tuple[float, float] = None, shear_range: float = 0.0, zoom_range: Union[float, Tuple[float, float]] = 0.0, channel_shift_range: float = 0.0, fill_mode: str = 'nearest', cval: float = 0.0, horizontal_flip: bool = False, vertical_flip: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: self._rotation_range = rotation_range self._width_shift_range = width_shift_range self._height_shift_range = height_shift_range self._brightness_range = brightness_range self._shear_range = shear_range self._channel_shift_range = channel_shift_range self._fill_mode = fill_mode self._cval = cval self._horizontal_flip = horizontal_flip self._vertical_flip = vertical_flip if np.isscalar(zoom_range): self._zoom_range = (1 - zoom_range, 1 + zoom_range) elif len(zoom_range) == 2: self._zoom_range = (zoom_range[0], zoom_range[1]) else: message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range)) catch_error_exception(message) if self._brightness_range is not None: if len(self._brightness_range) != 2: message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range)) catch_error_exception(message) super(TransformRigidImages2D, self).__init__(size_image, is_normalize_data=is_normalize_data, type_normalize_data=type_normalize_data, is_zca_whitening=is_zca_whitening, rescale_factor=rescale_factor, preprocessing_function=preprocessing_function) def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: rigid transformations # 2nd: channel shift intensity / flipping if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) return in_image def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: channel shift intensity / flipping # 2nd: rigid transformations if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) return in_image def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_range: theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range)) else: theta = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if np.max(self._height_shift_range) < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if np.max(self._width_shift_range) < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._shear_range: shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range)) else: shear = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis] transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w) # **************************************************** return (transform_matrix, transform_parameters) def _calc_gendata_inverse_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of inverse homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_range: theta = np.deg2rad(np.random.uniform(-self._rotation_range, self._rotation_range)) else: theta = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if self._height_shift_range < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if self._width_shift_range < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._shear_range: shear = np.deg2rad(np.random.uniform(-self._shear_range, self._shear_range)) else: shear = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 2) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if theta != 0: rotation_matrix = np.array([[np.cos(theta), np.sin(theta), 0], [-np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) transform_matrix = rotation_matrix if tx != 0 or ty != 0: shift_matrix = np.array([[1, 0, -tx], [0, 1, -ty], [0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear != 0: shear_matrix = np.array([[1, np.tan(shear), 0], [0, 1.0 / np.cos(shear), 0], [0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if zx != 1 or zy != 1: zoom_matrix = np.array([[1.0 / zx, 0, 0], [0, 1.0 / zy, 0], [0, 0, 1]]) transform_matrix = zoom_matrix if transform_matrix is None else np.dot(transform_matrix, zoom_matrix) if transform_matrix is not None: h, w = self._size_image[self._img_row_axis], self._size_image[self._img_col_axis] transform_matrix = self._transform_matrix_offset_center(transform_matrix, h, w) # **************************************************** return (transform_matrix, transform_parameters) @staticmethod def _transform_matrix_offset_center(matrix: np.ndarray, x: int, y: int) -> np.ndarray: o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix @staticmethod def _apply_transform(in_image: np.ndarray, transform_matrix: np.ndarray, channel_axis: int = 0, fill_mode: str = 'nearest', cval: float = 0.0) -> np.ndarray: in_image = np.rollaxis(in_image, channel_axis, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=1, mode=fill_mode, cval=cval) for x_channel in in_image] in_image = np.stack(channel_images, axis=0) in_image = np.rollaxis(in_image, 0, channel_axis + 1) return in_image def get_text_description(self) -> str: message = 'Rigid 2D transformations of images, with parameters...\n' message += 'rotation (plane_XY) range: \'%s\'...\n' % (self._rotation_range) message += 'shift (width, height) range: \'(%s, %s)\'...\n' \ % (self._width_shift_range, self._height_shift_range) message += 'flip (horizontal, vertical): \'(%s, %s)\'...\n' \ % (self._horizontal_flip, self._vertical_flip) message += 'zoom (min, max) range: \'(%s, %s)\'...\n' % (self._zoom_range[0], self._zoom_range[1]) message += 'shear (plane_XY) range: \'%s\'...\n' % (self._shear_range) message += 'fill mode, when applied transformation: \'%s\'...\n' % (self._fill_mode) return message class TransformRigidImages3D(TransformRigidImages): _img_dep_axis = 0 _img_row_axis = 1 _img_col_axis = 2 _img_channel_axis = 3 def __init__(self, size_image: Tuple[int, int, int], is_normalize_data: bool = False, type_normalize_data: str = 'samplewise', is_zca_whitening: bool = False, rotation_xy_range: float = 0.0, rotation_xz_range: float = 0.0, rotation_yz_range: float = 0.0, width_shift_range: float = 0.0, height_shift_range: float = 0.0, depth_shift_range: float = 0.0, brightness_range: Tuple[float, float] = None, shear_xy_range: float = 0.0, shear_xz_range: float = 0.0, shear_yz_range: float = 0.0, zoom_range: Union[float, Tuple[float, float]] = 0.0, channel_shift_range: float = 0.0, fill_mode: str = 'nearest', cval: float = 0.0, horizontal_flip: bool = False, vertical_flip: bool = False, axialdir_flip: bool = False, rescale_factor: float = None, preprocessing_function: Callable[[np.ndarray], np.ndarray] = None ) -> None: self._rotation_xy_range = rotation_xy_range self._rotation_xz_range = rotation_xz_range self._rotation_yz_range = rotation_yz_range self._width_shift_range = width_shift_range self._height_shift_range = height_shift_range self._depth_shift_range = depth_shift_range self._brightness_range = brightness_range self._shear_xy_range = shear_xy_range self._shear_xz_range = shear_xz_range self._shear_yz_range = shear_yz_range self._channel_shift_range = channel_shift_range self._fill_mode = fill_mode self._cval = cval self._horizontal_flip = horizontal_flip self._vertical_flip = vertical_flip self._axialdir_flip = axialdir_flip if np.isscalar(zoom_range): self._zoom_range = (1 - zoom_range, 1 + zoom_range) elif len(zoom_range) == 2: self._zoom_range = (zoom_range[0], zoom_range[1]) else: message = '\'zoom_range\' should be a float or a tuple of two floats. Received %s' % (str(zoom_range)) catch_error_exception(message) if self._brightness_range is not None: if len(self._brightness_range) != 2: message = '\'brightness_range\' should be a tuple of two floats. Received %s' % (str(brightness_range)) catch_error_exception(message) super(TransformRigidImages3D, self).__init__(size_image, is_normalize_data=is_normalize_data, type_normalize_data=type_normalize_data, is_zca_whitening=is_zca_whitening, rescale_factor=rescale_factor, preprocessing_function=preprocessing_function) def _calc_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: rigid transformations # 2nd: channel shift intensity / flipping if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_axialdir', False): in_image = self._flip_axis(in_image, axis=self._img_dep_axis) if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) return in_image def _calc_inverse_transformed_image(self, in_image: np.ndarray, is_type_input_image: bool = False) -> np.ndarray: # Apply: 1st: channel shift intensity / flipping # 2nd: rigid transformations if is_type_input_image and (self._transform_params.get('brightness') is not None): in_image = self._apply_brightness_shift(in_image, self._transform_params['brightness']) if self._transform_params.get('flip_axialdir', False): in_image = self._flip_axis(in_image, axis=self._img_dep_axis) if self._transform_params.get('flip_vertical', False): in_image = self._flip_axis(in_image, axis=self._img_row_axis) if self._transform_params.get('flip_horizontal', False): in_image = self._flip_axis(in_image, axis=self._img_col_axis) if is_type_input_image and (self._transform_params.get('channel_shift_intensity') is not None): in_image = self._apply_channel_shift(in_image, self._transform_params['channel_shift_intensity'], channel_axis=self._img_channel_axis) if self._transform_matrix is not None: in_image = self._apply_transform(in_image, self._transform_matrix, channel_axis=self._img_channel_axis, fill_mode=self._fill_mode, cval=self._cval) return in_image def _calc_gendata_random_transform(self, seed: int = None) -> Tuple[np.ndarray, Dict[str, Any]]: # compute composition of homographies if seed is not None: np.random.seed(seed) # **************************************************** if self._rotation_xy_range: angle_xy = np.deg2rad(np.random.uniform(-self._rotation_xy_range, self._rotation_xy_range)) else: angle_xy = 0 if self._rotation_xz_range: angle_xz = np.deg2rad(np.random.uniform(-self._rotation_xz_range, self._rotation_xz_range)) else: angle_xz = 0 if self._rotation_yz_range: angle_yz = np.deg2rad(np.random.uniform(-self._rotation_yz_range, self._rotation_yz_range)) else: angle_yz = 0 if self._height_shift_range: tx = np.random.uniform(-self._height_shift_range, self._height_shift_range) if self._height_shift_range < 1: tx *= self._size_image[self._img_row_axis] else: tx = 0 if self._width_shift_range: ty = np.random.uniform(-self._width_shift_range, self._width_shift_range) if self._width_shift_range < 1: ty *= self._size_image[self._img_col_axis] else: ty = 0 if self._depth_shift_range: tz = np.random.uniform(-self._depth_shift_range, self._depth_shift_range) if self._depth_shift_range < 1: tz *= self._size_image[self._img_dep_axis] else: tz = 0 if self._shear_xy_range: shear_xy = np.deg2rad(np.random.uniform(-self._shear_xy_range, self._shear_xy_range)) else: shear_xy = 0 if self._shear_xz_range: shear_xz = np.deg2rad(np.random.uniform(-self._shear_xz_range, self._shear_xz_range)) else: shear_xz = 0 if self._shear_yz_range: shear_yz = np.deg2rad(np.random.uniform(-self._shear_yz_range, self._shear_yz_range)) else: shear_yz = 0 if self._zoom_range[0] == 1 and self._zoom_range[1] == 1: (zx, zy, zz) = (1, 1, 1) else: (zx, zy, zz) = np.random.uniform(self._zoom_range[0], self._zoom_range[1], 3) flip_horizontal = (np.random.random() < 0.5) * self._horizontal_flip flip_vertical = (np.random.random() < 0.5) * self._vertical_flip flip_axialdir = (np.random.random() < 0.5) * self._axialdir_flip channel_shift_intensity = None if self._channel_shift_range != 0: channel_shift_intensity = np.random.uniform(-self._channel_shift_range, self._channel_shift_range) brightness = None if self._brightness_range is not None: brightness = np.random.uniform(self._brightness_range[0], self._brightness_range[1]) transform_parameters = {'flip_horizontal': flip_horizontal, 'flip_vertical': flip_vertical, 'flip_axialdir': flip_axialdir, 'channel_shift_intensity': channel_shift_intensity, 'brightness': brightness} # **************************************************** # **************************************************** transform_matrix = None if angle_xy != 0: rotation_matrix = np.array([[1, 0, 0, 0], [0, np.cos(angle_xy), -np.sin(angle_xy), 0], [0, np.sin(angle_xy), np.cos(angle_xy), 0], [0, 0, 0, 1]]) transform_matrix = rotation_matrix if angle_xz != 0: rotation_matrix = np.array([[np.cos(angle_xz), np.sin(angle_xz), 0, 0], [-np.sin(angle_xz), np.cos(angle_xz), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) transform_matrix = \ rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix) if angle_yz != 0: rotation_matrix = np.array([[np.cos(angle_yz), 0, np.sin(angle_yz), 0], [0, 1, 0, 0], [-np.sin(angle_yz), 0, np.cos(angle_yz), 0], [0, 0, 0, 1]]) transform_matrix = \ rotation_matrix if transform_matrix is None else np.dot(transform_matrix, rotation_matrix) if tx != 0 or ty != 0 or tz != 0: shift_matrix = np.array([[1, 0, 0, tz], [0, 1, 0, tx], [0, 0, 1, ty], [0, 0, 0, 1]]) transform_matrix = shift_matrix if transform_matrix is None else np.dot(transform_matrix, shift_matrix) if shear_xy != 0: shear_matrix = np.array([[1, 0, 0, 0], [0, 1, -np.sin(shear_xy), 0], [0, 0, np.cos(shear_xy), 0], [0, 0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else np.dot(transform_matrix, shear_matrix) if shear_xz != 0: shear_matrix = np.array([[np.cos(shear_xz), 0, 0, 0], [-np.sin(shear_xz), 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) transform_matrix = shear_matrix if transform_matrix is None else
np.dot(transform_matrix, shear_matrix)
numpy.dot
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # S_rSquareData [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=S_rSquareData&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=eb-ex-unv-rsquare). # ## Prepare the environment # + import os import os.path as path import sys sys.path.append(path.abspath('../../functions-legacy')) from numpy import ones, round, log, sqrt from numpy import sum as npsum import numpy as np np.seterr(divide='ignore') from scipy.io import loadmat import matplotlib.pyplot as plt plt.style.use('seaborn') from CONFIG import GLOBAL_DB, TEMPORARY_DB from MultivRsquare import MultivRsquare # input parameters try: db = loadmat(os.path.join(GLOBAL_DB, 'db_ExSummary'), squeeze_me=True) except FileNotFoundError: db = loadmat(os.path.join(TEMPORARY_DB, 'db_ExSummary'), squeeze_me=True) t_ = db['t_'] epsi = db['epsi'] v = db['v'] j_ = t_ # dimension of data set p = ones((1, j_)) / j_ # uniform Flexible Probabilities x = epsi[0] # model data x_tilde = epsi[1] # fit data # log values y = round(log(v[0, 1:])) # model data y_tilde = round(log(v[1, 1:])) # fit data z = x_tilde # - # ## Compute the residuals u_x = x - x_tilde u_y = y - y_tilde # ## Compute the data mean and variance # + m_x = npsum(p * x) m_y =
npsum(p * y)
numpy.sum
#!/usr/bin/env python from __future__ import absolute_import, print_function import numpy as np import IPython UNCERTAINTIES_AVAIL = True try: import uncertainties except ImportError: UNCERTAINTIES_AVAIL = False __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2014 <NAME>" __credits__ = ["<NAME>"] __license__ = """Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" def TeX(s): return r'$' + s + r'$' def smartFormat(x, sigFigs=7, sciThresh=(7, 6), keepAllSigFigs=False, alignOnDec=False, threeSpacing=True, alwaysShowSign=False, forcedExp=None, demarc=r'$', alignChar=r"&", leftSep=r"{,}", rightSep=r"{\,}", decSep=r".", nanSub=r"--", inftyThresh=np.infty, expLeftFmt=r"{\times 10^{", expRightFmt=r"}}"): if hasattr(x, '__iter__'): is_iterable = True vals = x else: is_iterable = False vals = [x] return_vals = [] for val in vals: effectivelyZero = False if UNCERTAINTIES_AVAIL: if isinstance(val, uncertainties.UFloat): val = val.nominal_value if (np.isinf(val) and not np.isneginf(val)) or val >= inftyThresh: if alignOnDec: return_vals.append(demarc+r"\infty" + demarc + r" " + alignChar) continue else: return_vals.append(demarc+r"\infty"+demarc) continue if np.isneginf(val) or val <= -inftyThresh: if alignOnDec: return_vals.append(demarc+r"-\infty" + demarc + " " + alignChar) continue else: return_vals.append(demarc+r"-\infty"+demarc) continue elif np.isnan(val): if alignOnDec: return_vals.append(nanSub + r" " + alignChar) continue else: return_vals.append(nanSub) continue elif val == 0: effectivelyZero = True if not effectivelyZero: #-- Record sign of number sign = np.sign(val) #-- Create unsigned version of number val_unsigned = sign * val #-- Find exact (decimal) magnitude exact_mag = np.log10(val_unsigned) #-- Find floor of exact magnitude (integral magnitude) floor_mag = float(np.floor(exact_mag)) #-- Where is the most significant digit? mostSigDig = floor_mag #-- Where is the least significant digit? leastSigDig = mostSigDig-sigFigs+1 #print('mostSigDig', mostSigDig) #print('leastSigDig', leastSigDig) #-- Round number to have correct # of sig figs val_u_rnd = np.round(val_unsigned, -int(leastSigDig)) #------------------------------------------------------------ # Repeat process from above to find mag, etc. # #-- Find exact (decimal) magnitude exact_mag = np.log10(val_u_rnd) #-- Find floor of exact magnitude (integral magnitude) floor_mag = float(np.floor(exact_mag)) #-- Where is the most significant digit? mostSigDig = floor_mag #-- Where is the least significant digit? leastSigDig = mostSigDig-sigFigs+1 #------------------------------------------------------------ #-- Mantissa (integral value) val_mantissa =
np.int64(val_u_rnd * 10**(-leastSigDig))
numpy.int64
import numpy as np import argparse from time import time, strftime import pygame import go import playmodel import cProfile parser = argparse.ArgumentParser() parser.add_argument("--epochs", "-e", default=10000, type=int) parser.add_argument("--output-intv", "-o", dest="output_intv", default=1000, type=int) parser.add_argument("--size", "-s", dest="size", default=19, type=int) parser.add_argument("--playouts", "-p", dest="playouts", default=1000, type=int) parser.add_argument("--selfplay", "-S", dest="self_play", action="store_true") parser.add_argument("--use-model", "-m", dest="use_model", type=str, default="", action="store") parser.add_argument("--playas", type=str, dest="playas", default="random", action="store") args = parser.parse_args() # training parameters EPOCHS = args.epochs TRAIN_RECORD_SIZE = 4 LEARN_THRESHOLD = TRAIN_RECORD_SIZE * 5 PRINT_INTV = args.output_intv WHITE = go.WHITE BLACK = go.BLACK BOARD_SIZE = args.size if args.playas == "b": PLAYAS = BLACK elif args.playas == "w": PLAYAS = WHITE else: PLAYAS = np.random.randint(2) BACKGROUND = 'images/ramin.jpg' COLOR = ((0, 0, 0), (255, 255, 255)) GRID_SIZE = 20 DRAW_BOARD_SIZE = (GRID_SIZE * BOARD_SIZE + 20, GRID_SIZE * BOARD_SIZE + 20) print("Board size:", BOARD_SIZE) print("Komi:", KOMI) class Stone(go.Stone): def __init__(self, board, point): """Create, initialize and draw a stone.""" super(Stone, self).__init__(board, point) if board.is_drawn and self.islegal: board.draw_stones() class Board(go.Board): def __init__(self, size, komi, is_drawn=True): """Create, initialize and draw an empty board. """ self.is_drawn = is_drawn super(Board, self).__init__(size, komi) if is_drawn: self.outline = pygame.Rect(GRID_SIZE+5, GRID_SIZE+5, DRAW_BOARD_SIZE[0]-GRID_SIZE*2, DRAW_BOARD_SIZE[1]-GRID_SIZE*2) self.draw_board() def draw_board(self): """Draw the board to the background and blit it to the screen. The board is drawn by first drawing the outline, then the 19x19 grid and finally by adding hoshi to the board. All these operations are done with pygame's draw functions. This method should only be called once, when initializing the board. """ pygame.draw.rect(background, BLACK, self.outline, 3) # Outline is inflated here for future use as a collidebox for the mouse self.outline.inflate_ip(20, 20) for i in range(self.size-1): for j in range(self.size-1): rect = pygame.Rect(5+GRID_SIZE+(GRID_SIZE*i), 5+GRID_SIZE+(GRID_SIZE*j), GRID_SIZE, GRID_SIZE) pygame.draw.rect(background, COLOR[BLACK], rect, 1) if self.size >= 13: for i in range(3): for j in range(3): coords = (5+4*GRID_SIZE+(GRID_SIZE*6*i), 5+4*GRID_SIZE+(GRID_SIZE*6*j)) pygame.draw.circle(background, COLOR[BLACK], coords, 5, 0) screen.blit(background, (0, 0)) pygame.display.update() def draw_stones(self): """ This method is called every time the board is updated by add_stone() and it is succesful """ screen.blit(background, (0, 0)) for g in self.groups: for p in g.stones: coords = (5+GRID_SIZE+p[0]*GRID_SIZE, 5+GRID_SIZE+p[1]*GRID_SIZE) pygame.draw.circle(screen, COLOR[g.color], coords, GRID_SIZE//2, 0) pygame.display.update() def write_game_log(self, logfile): COLOR_CHAR = ("B", "W") logstr = "" for entry in self.log: logstr += COLOR_CHAR[entry[0]] + " " + str(entry[1]) + "\n" logfile.write(logstr) win, score_diff, outstr = self.score(output=True) logfile.write(outstr+"\n") def train(): open("log.txt", "w") record_times = [] b_win_count = 0 for epoch in range(EPOCHS): #temperature = 1.0 steps = 0 pass_count = 0 winner = None reward = 0 # reward is viewed from BLACK while True: temperature = (1 + 1 / BOARD_SIZE) ** -steps # more step, less temperature t = time() prev_grid = board.grid.copy() play_as = board.next x, y = model.decide(board, temperature) if y == BOARD_SIZE: # pass = size_square -> y = pass//BOARD_SIZE = BOARD_SIZE pass_count += 1 board.pass_move() else: added_stone = Stone(board, (x, y)) if added_stone.islegal: pass_count = 0 else: continue record_times.append(time()-t) if pass_count >= 2: winner, score_diff = board.score() reward = playmodel.WIN_REWARD if winner == BLACK else playmodel.LOSE_REWARD # reward is viewd from BLACK board.log_endgame(winner, "by " + str(score_diff)) if winner == BLACK: b_win_count += 1 model.push_step(prev_grid, play_as, board.grid.copy()) if winner is not None: break steps += 1 # end while game #temperature = max(min_temperature, initial_temperature / (1 + temperature_decay * epoch)) model.enqueue_new_record(reward) if epoch > LEARN_THRESHOLD: model.learn(learn_record_size = TRAIN_RECORD_SIZE, verbose=((epoch+1)%PRINT_INTV==0)) if (epoch+1) % PRINT_INTV == 0: model.save(str(BOARD_SIZE)+"_tmp.h5") print("epoch: %d\t B win rate: %.3f"%(epoch, b_win_count/(epoch+1))) board.write_game_log(open("log.txt", "a")) print("decide + update time", np.sum(record_times), np.mean(record_times), np.std(record_times)) board.clear() # end for epochs print(strftime(str(BOARD_SIZE)+"_%Y%m%d%H%M")) model.save(strftime(str(BOARD_SIZE)+"_%Y%m%d%H%M")+".h5") def test(ai_play_as): print("begin test") pass_count = 0 steps = 0 while True: pygame.time.wait(250) if ai_play_as == board.next: x, y = model.decide_monte_carlo(board, arg.playout) if x >= BOARD_SIZE or y >= BOARD_SIZE: print("model passes") pass_count += 1 board.pass_move() else: print("model choose (%d, %d)" % (x, y)) pass_count = 0 added_stone = Stone(board, (x, y)) if not added_stone.islegal: print("model tried illegal move") break steps += 1 else: for event in pygame.event.get(): if event.type == pygame.QUIT: exit() if event.type == pygame.MOUSEBUTTONDOWN: if event.button == 1 and board.outline.collidepoint(event.pos): x = int(round(((event.pos[0]-GRID_SIZE-5) / GRID_SIZE), 0)) y = int(round(((event.pos[1]-GRID_SIZE-5) / GRID_SIZE), 0)) added_stone = Stone(board, (x, y)) pass_count = 0 steps += 1 print("player choose (%d, %d)"%(x, y)) if event.type == pygame.KEYDOWN: if event.key == pygame.K_p: pass_count += 1 break if pass_count >= 2: break print("game over") winner, score_diff, out_str = board.score(output=True) print(out_str) # end while True def self_play(): print("begin self play") pass_count = 0 measure_times = [] game_over = False while not game_over and pass_count < 2: pygame.time.wait(250) for event in pygame.event.get(): if event.type == pygame.QUIT: exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_p: game_over = True continue t = time() # cProfile.run("x, y = model.decide(board, args.playouts)", "mcts_search.profile") x, y = model.decide_monte_carlo(board, args.playouts) print(time()-t) measure_times.append(time()-t) if y == BOARD_SIZE: board.pass_move() play_as = "B" if board.next == WHITE else "W" print(play_as, "pass") pass_count += 1 if pass_count >= 2: break elif y < 0: board.pass_move() play_as = "B" if board.next == WHITE else "W" print(play_as, "resigned") game_over = True else: added_stone = Stone(board, (x, y)) if not added_stone.islegal: print("B" if play_as == "W" else "W", "tried illegal move (%d, %d)"%(x, y)) # game_over = True # break else: pass_count = 0 play_as = "B" if board.next == WHITE else "W" print(play_as, "choose (%d, %d)\t intuition:%.3f"%(x, y)) print("game over") winner, score_diff, out_str = board.score(output=True) print(out_str) print("decision time", np.sum(measure_times), np.mean(measure_times),
np.std(measure_times)
numpy.std
# -*- mode: python; coding: utf-8 -*- # Copyright (C) 1997-2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, <NAME> # Copyright 2003 <NAME> # Copyright 2006, 2009-2011 (inclusive) <NAME> # Copyright 2011-2017 (inclusive) <NAME> # # This software is provided as is without any warranty whatsoever. Permission # to use, copy, modify, and distribute modified or unmodified copies is # granted, provided this copyright and disclaimer are included unchanged. ### lmmin is a Levenberg-Marquardt least-squares minimizer derived ### (circuitously) from the classic MINPACK implementation. Usage information ### is given in the docstring farther below. Various important pieces of ### information that are out of the scope of the docstring follow immediately ### below. # == Provenance == # # This implementation of the Levenberg-Marquardt technique has its origins in # MINPACK-1 (the lmdif and lmdir subroutines), by <NAME>, <NAME>, and # <NAME>, implemented around 1980. # # In 1997-1998, <NAME> ported the FORTRAN code (with permission) to # IDL, resulting in the MPFIT procedure. # # Around 2003, <NAME> ported the mpfit.pro file to Python and the Numeric # module, creating mpfit.py. (It would be helpful to be able to identify the # precise version that was ported, so that bugfixes to mpfit.pro could be # forward-ported. The bug corrected on "21 Nov 2003" in mpfit.pro was # originally present in this version, so the Python port likely happened # before then.) # # Around 2006, mpfit.py was ported to the Numpy module to create nmpfit.py. # Based on STSCI version control logs it appears that this was done by Nadia # Dencheva. # # In 2011-2012, <NAME> began fixing bugs in the port and significantly # reworking the API, creating this file, lmmin.py. Previous authors deserve # all of the credit for anything that works and none of the blame for anything # that doesn't. # # (There exists a C-based Levenberg-Marquardt minimizer named lmmin by Joachim # Wuttke [http://joachimwuttke.de/lmfit/]. This implementation is not directly # related to that one, although lmmin also appears to stem from the original # MINPACK implementation.) # # # == Transposition == # # This version of the MINPACK implementation differs from the others of which # I am aware in that it transposes the matrices used in intermediate # calculations. While in both Fortran and Python, an n-by-m matrix is # visualized as having n rows and m columns, in Fortran the columns are # directly adjacent in memory, and hence the preferred inner axis for # iteration, while in Python the rows are the preferred inner axis. By # transposing the matrices we match the algorithms to the memory layout as # intended in the original Fortran. I have no idea how much of a performance # boost this gives, and of course we're using Python so you're deluding # yourself if you're trying to wring out every cycle, but I suppose it helps, # and it makes some of the code constructs nicer and feels a lot cleaner # conceptually to me. # # The main operation of interest is the Q R factorization, which in the # Fortran version involves matrices A, P, Q and R such that # # A P = Q R or, in Python, # a[:,pmut] == np.dot (q, r) # # where A is an arbitrary m-by-n matrix, P is a permutation matrix, Q is an # orthogonal m-by-m matrix (Q Q^T = Ident), and R is an m-by-n upper # triangular matrix. In the transposed version, # # A P = R Q # # where A is n-by-m and R is n-by-m and lower triangular. We refer to this as # the "transposed Q R factorization." I've tried to update the documentation # to reflect this change, but I can't claim that I completely understand the # mapping of the matrix algebra into code, so there are probably confusing # mistakes in the comments and docstrings. # # # == Web Links == # # MINPACK-1: http://www.netlib.org/minpack/ # # Markwardt's IDL software MPFIT.PRO: http://purl.com/net/mpfit # # Rivers' Python software mpfit.py: http://cars.uchicago.edu/software/python/mpfit.html # # nmpfit.py is part of stsci_python: # http://www.stsci.edu/institute/software_hardware/pyraf/stsci_python # # # == Academic References == # # <NAME>. 1944, "A method for the solution of certain nonlinear # problems in least squares," Quart. Appl. Math., vol. 2, # pp. 164-168. # # <NAME>. 1963, "An algorithm for least squares estimation of # nonlinear parameters," SIAM J. Appl. Math., vol. 11, pp. 431-441. # (DOI: 10.1137/0111030 ) # # For MINPACK-1: # # <NAME>. 1978, "The Levenberg-Marquardt Algorithm: Implementation # and Theory," in Numerical Analysis, vol. 630, ed. <NAME> # (Springer-Verlag: Berlin), p. 105 (DOI: 10.1007/BFb0067700 ) # # <NAME> and Wright, S. 1987, "Optimization Software Guide," SIAM, # Frontiers in Applied Mathematics, no. 14. (ISBN: # 978-0-898713-22-0) # # For Markwardt's IDL software MPFIT.PRO: # # Markwardt, <NAME>. 2008, "Non-Linear Least Squares Fitting in IDL with # MPFIT," in Proc. Astronomical Data Analysis Software and Systems # XVIII, Quebec, Canada, ASP Conference Series, Vol. XXX, eds. # <NAME>, <NAME> & <NAME> (Astronomical Society of the # Pacific: San Francisco), pp. 251-254 (ISBN: 978-1-58381-702-5; # arxiv:0902.2850; bibcode: 2009ASPC..411..251M) """pwkit.lmmin - Pythonic, Numpy-based Levenberg-Marquardt least-squares minimizer Basic usage:: from pwkit.lmmin import Problem, ResidualProblem def yfunc(params, vals): vals[:] = {stuff with params} def jfunc(params, jac): jac[i,j] = {deriv of val[j] w.r.t. params[i]} # i.e. jac[i] = {deriv of val wrt params[i]} p = Problem(npar, nout, yfunc, jfunc=None) solution = p.solve(guess) p2 = Problem() p2.set_npar(npar) # enables configuration of parameter meta-info p2.set_func(nout, yfunc, jfunc) Main Solution properties: prob - The Problem. status - Set of strings; presence of 'ftol', 'gtol', or 'xtol' suggests success. params - Final parameter values. perror - 1σ uncertainties on params. covar - Covariance matrix of parameters. fnorm - Final norm of function output. fvec - Final vector of function outputs. fjac - Final Jacobian matrix of d(fvec)/d(params). Automatic least-squares model-fitting (subtracts "observed" Y values and multiplies by inverse errors): def yrfunc(params, modelyvalues): modelyvalues[:] = {stuff with params} def yjfunc(params, modelyjac): jac[i,j] = {deriv of modelyvalue[j] w.r.t. params[i]} p.set_residual_func(yobs, errinv, yrfunc, jrfunc, reckless=False) p = ResidualProblem(npar, yobs, errinv, yrfunc, jrfunc=None, reckless=False) Parameter meta-information: p.p_value(paramindex, value, fixed=False) p.p_limit(paramindex, lower=-inf, upper=+inf) p.p_step(paramindex, stepsize, maxstep=info, isrel=False) p.p_side(paramindex, sidedness) # one of 'auto', 'pos', 'neg', 'two' p.p_tie(paramindex, tiefunc) # pval = tiefunc(params) solve() status codes: Solution.status is a set of strings. The presence of a string in the set means that the specified condition was active when the iteration terminated. Multiple conditions may contribute to ending the iteration. The algorithm likely did not converge correctly if none of 'ftol', 'xtol', or 'gtol' are in status upon termination. 'ftol' (MINPACK/MPFIT equiv: 1, 3) "Termination occurs when both the actual and predicted relative reductions in the sum of squares are at most FTOL. Therefore, FTOL measures the relative error desired in the sum of squares." 'xtol' (MINPACK/MPFIT equiv: 2, 3) "Termination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution." 'gtol' (MINPACK/MPFIT equiv: 4) "Termination occurs when the cosine of the angle between fvec and any column of the jacobian is at most GTOL in absolute value. Therefore, GTOL measures the orthogonality desired between the function vector and the columns of the jacobian." 'maxiter' (MINPACK/MPFIT equiv: 5) Number of iterations exceeds maxiter. 'feps' (MINPACK/MPFIT equiv: 6) "ftol is too small. no further reduction in the sum of squares is possible." 'xeps' (MINPACK/MPFIT equiv: 7) "xtol is too small. no further improvement in the approximate solution x is possible." 'geps' (MINPACK/MPFIT equiv: 8) "gtol is too small. fvec is orthogonal to the columns of the jacobian to machine precision." (This docstring contains only usage information. For important information regarding provenance, license, and academic references, see comments in the module source code.) """ from __future__ import absolute_import, division, print_function, unicode_literals __all__ = '''enorm_fast enorm_mpfit_careful enorm_minpack Problem Solution ResidualProblem check_derivative'''.split() from six.moves import range import numpy as np # Quickie testing infrastructure _testfuncs = [] def test(f): # a decorator _testfuncs.append(f) return f def _runtests(namefilt=None): for f in _testfuncs: if namefilt is not None and f.__name__ != namefilt: continue n = f.__name__ if n[0] == '_': n = n[1:] print(n, '...') f() from numpy.testing import assert_array_almost_equal as Taaae from numpy.testing import assert_almost_equal as Taae def _timer_helper(n=100): for i in range(n): for f in _testfuncs: f() # Parameter Info attributes that can be specified # # Each parameter can be described by five floats: PI_F_VALUE = 0 # specified initial value PI_F_LLIMIT = 1 # lower bound on param value (can be -inf) PI_F_ULIMIT = 2 # upper bound (can be +inf) PI_F_STEP = 3 # fixed parameter step size to use (abs or rel), 0. for unspecified PI_F_MAXSTEP = 4 # maximum step to take PI_NUM_F = 5 # Four bits of data PI_M_SIDE = 0x3 # sidedness of derivative - two bits PI_M_FIXED = 0x4 # fixed value PI_M_RELSTEP = 0x8 # whether the specified stepsize is relative # And one object PI_O_TIEFUNC = 0 # fixed to be a function of other parameters PI_NUM_O = 1 # Codes for the automatic derivative sidedness DSIDE_AUTO = 0x0 DSIDE_POS = 0x1 DSIDE_NEG = 0x2 DSIDE_TWO = 0x3 _dside_names = { 'auto': DSIDE_AUTO, 'pos': DSIDE_POS, 'neg': DSIDE_NEG, 'two': DSIDE_TWO, } anynotfinite = lambda x: not np.all(np.isfinite(x)) # Euclidean norm-calculating functions. The naive implementation is # fast but can be sensitive to under/overflows. The "mpfit_careful" # version is slower but tries to be more robust. The "minpack" # version, which does indeed emulate the MINPACK implementation, also # tries to be careful. I've used this last implementation a little # bit but haven't compared it to the others thoroughly. enorm_fast = lambda v, finfo: np.sqrt(np.dot(v, v)) def enorm_mpfit_careful(v, finfo): # "This is hopefully a compromise between speed and robustness. # Need to do this because of the possibility of over- or under- # flow." mx = max(abs(v.max()), abs(v.min())) if mx == 0: return v[0] * 0. # preserve type (?) if not np.isfinite(mx): raise ValueError('tried to compute norm of a vector with nonfinite values') if mx > finfo.max / v.size or mx < finfo.tiny * v.size: return mx * np.sqrt(np.dot(v / mx, v / mx)) return np.sqrt(np.dot(v, v)) def enorm_minpack(v, finfo): rdwarf = 3.834e-20 rgiant = 1.304e19 agiant = rgiant / v.size s1 = s2 = s3 = x1max = x3max = 0. for i in range(v.size): xabs = abs(v[i]) if xabs > rdwarf and xabs < agiant: s2 += xabs**2 elif xabs <= rdwarf: if xabs <= x3max: if xabs != 0.: s3 += (xabs / x3max)**2 else: s3 = 1 + s3 * (x3max / xabs)**2 x3max = xabs else: if xabs <= x1max: s1 += (xabs / x1max)**2 else: s1 = 1. + s1 * (x1max / xabs)**2 x1max = xabs if s1 != 0.: return x1max * np.sqrt(s1 + (s2 / x1max) / x1max) if s2 == 0.: return x3max * np.sqrt(s3) if s2 >= x3max: return np.sqrt(s2 * (1 + (x3max / s2) * (x3max * s3))) return np.sqrt(x3max * ((s2 / x3max) + (x3max * s3))) # Q-R factorization. def _qr_factor_packed(a, enorm, finfo): """Compute the packed pivoting Q-R factorization of a matrix. Parameters: a - An n-by-m matrix, m >= n. This will be *overwritten* by this function as described below! enorm - A Euclidian-norm-computing function. finfo - A Numpy finfo object. Returns: pmut - An n-element permutation vector rdiag - An n-element vector of the diagonal of R acnorm - An n-element vector of the norms of the rows of the input matrix 'a'. Computes the transposed Q-R factorization of the matrix 'a', with pivoting, in a packed form, in-place. The packed information can be used to construct matrices Q and R such that A P = R Q or, in Python, np.dot(r, q) = a[pmut] where q is m-by-m and q q^T = ident and r is n-by-m and is lower triangular. The function _qr_factor_full can compute these matrices. The packed form of output is all that is used by the main LM fitting algorithm. "Pivoting" refers to permuting the rows of 'a' to have their norms in nonincreasing order. The return value 'pmut' maps the unpermuted rows of 'a' to permuted rows. That is, the norms of the rows of a[pmut] are in nonincreasing order. The parameter 'a' is overwritten by this function. Its new value should still be interpreted as an n-by-m array. It comes in two parts. Its strict lower triangular part contains the struct lower triangular part of R. (The diagonal of R is returned in 'rdiag' and the strict upper trapezoidal part of R is zero.) The upper trapezoidal part of 'a' contains Q as factorized into a series of Householder transformation vectors. Q can be reconstructed as the matrix product of n Householder matrices, where the i'th Householder matrix is defined by H_i = I - 2 (v^T v) / (v v^T) where 'v' is the pmut[i]'th row of 'a' with its strict lower triangular part set to zero. See _qr_factor_full for more information. 'rdiag' contains the diagonal part of the R matrix, taking into account the permutation of 'a'. The strict lower triangular part of R is stored in 'a' *with permutation*, so that the i'th row of R has rdiag[i] as its diagonal and a[pmut[i],:i] as its upper part. See _qr_factor_full for more information. 'acnorm' contains the norms of the rows of the original input matrix 'a' without permutation. The form of this transformation and the method of pivoting first appeared in Linpack.""" machep = finfo.eps n, m = a.shape if m < n: raise ValueError('"a" must be at least as tall as it is wide') acnorm = np.empty(n, finfo.dtype) for j in range(n): acnorm[j] = enorm(a[j], finfo) rdiag = acnorm.copy() wa = acnorm.copy() pmut = np.arange(n) for i in range(n): # Find the row of a with the i'th largest norm, and note it in # the pivot vector. kmax = rdiag[i:].argmax() + i if kmax != i: temp = pmut[i] pmut[i] = pmut[kmax] pmut[kmax] = temp rdiag[kmax] = rdiag[i] wa[kmax] = wa[i] temp = a[i].copy() a[i] = a[kmax] a[kmax] = temp # Compute the Householder transformation to reduce the i'th # row of A to a multiple of the i'th unit vector. ainorm = enorm(a[i,i:], finfo) if ainorm == 0: rdiag[i] = 0 continue if a[i,i] < 0: # Doing this apparently improves FP precision somehow. ainorm = -ainorm a[i,i:] /= ainorm a[i,i] += 1 # Apply the transformation to the remaining rows and update # the norms. for j in range(i + 1, n): a[j,i:] -= a[i,i:] * np.dot(a[i,i:], a[j,i:]) / a[i,i] if rdiag[j] != 0: rdiag[j] *= np.sqrt(max(1 - (a[j,i] / rdiag[j])**2, 0)) if 0.05 * (rdiag[j] / wa[j])**2 <= machep: # What does this do??? wa[j] = rdiag[j] = enorm(a[j,i+1:], finfo) rdiag[i] = -ainorm return pmut, rdiag, acnorm def _manual_qr_factor_packed(a, dtype=np.float): # This testing function gives sensible defaults to _qr_factor_packed # and makes a copy of its input to make comparisons easier. a = np.array(a, dtype) pmut, rdiag, acnorm = _qr_factor_packed(a, enorm_mpfit_careful, np.finfo(dtype)) return a, pmut, rdiag, acnorm def _qr_factor_full(a, dtype=np.float): """Compute the QR factorization of a matrix, with pivoting. Parameters: a - An n-by-m arraylike, m >= n. dtype - (optional) The data type to use for computations. Default is np.float. Returns: q - An m-by-m orthogonal matrix (q q^T = ident) r - An n-by-m upper triangular matrix pmut - An n-element permutation vector The returned values will satisfy the equation np.dot(r, q) == a[:,pmut] The outputs are computed indirectly via the function _qr_factor_packed. If you need to compute q and r matrices in production code, there are faster ways to do it. This function is for testing _qr_factor_packed. The permutation vector pmut is a vector of the integers 0 through n-1. It sorts the rows of 'a' by their norms, so that the pmut[i]'th row of 'a' has the i'th biggest norm.""" n, m = a.shape # Compute the packed Q and R matrix information. packed, pmut, rdiag, acnorm = \ _manual_qr_factor_packed(a, dtype) # Now we unpack. Start with the R matrix, which is easy: we just # have to piece it together from the strict lower triangle of 'a' # and the diagonal in 'rdiag'. r = np.zeros((n, m)) for i in range(n): r[i,:i] = packed[i,:i] r[i,i] = rdiag[i] # Now the Q matrix. It is the concatenation of n Householder # transformations, each of which is defined by a row in the upper # trapezoidal portion of 'a'. We extract the appropriate vector, # construct the matrix for the Householder transform, and build up # the Q matrix. q = np.eye(m) v = np.empty(m) for i in range(n): v[:] = packed[i] v[:i] = 0 hhm = np.eye(m) - 2 * np.outer(v, v) / np.dot(v, v) q = np.dot(hhm, q) return q, r, pmut @test def _qr_examples(): # This is the sample given in the comments of <NAME>'s # IDL MPFIT implementation. a = np.asarray([[9., 2, 6], [4, 8, 7]]) packed, pmut, rdiag, acnorm = _manual_qr_factor_packed(a) Taaae(packed, [[1.35218036, 0.70436073, 0.61631563], [-8.27623852, 1.96596229, 0.25868293]]) assert pmut[0] == 1 assert pmut[1] == 0 Taaae(rdiag, [-11.35781669, 7.24595584])
Taaae(acnorm, [11.0, 11.35781669])
numpy.testing.assert_array_almost_equal
import numpy as np import pytest import tifffile from lxml import etree # nosec from PartSegImage.image import Image from PartSegImage.image_reader import TiffImageReader from PartSegImage.image_writer import IMAGEJImageWriter, ImageWriter @pytest.fixture(scope="module") def ome_xml(bundle_test_dir): return etree.XMLSchema(file=str(bundle_test_dir / "ome.xsd.xml")) def test_scaling(tmp_path): image = Image(np.zeros((10, 50, 50), dtype=np.uint8), (30, 0.1, 0.1), axes_order="ZYX") ImageWriter.save(image, tmp_path / "image.tif") read_image = TiffImageReader.read_image(tmp_path / "image.tif") assert np.all(np.isclose(image.spacing, read_image.spacing)) def test_save_mask(tmp_path): data = np.zeros((10, 40, 40), dtype=np.uint8) data[1:-1, 1:-1, 1:-1] = 1 data[2:-3, 4:-4, 4:-4] = 2 mask = np.array(data > 0).astype(np.uint8) image = Image(data, (0.4, 0.1, 0.1), mask=mask, axes_order="ZYX") ImageWriter.save_mask(image, tmp_path / "mask.tif") read_mask = TiffImageReader.read_image(tmp_path / "mask.tif") assert np.all(np.isclose(read_mask.spacing, image.spacing)) @pytest.mark.parametrize("z_size", (1, 10)) def test_ome_save(tmp_path, bundle_test_dir, ome_xml, z_size): data =
np.zeros((z_size, 20, 20, 2), dtype=np.uint8)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 4 14:09:33 2018 @author: john """ #all skeleton holders used by dart_env_2bot import numpy as np import nlopt from math import sqrt from gym import error, spaces #from gym.spaces import * from abc import ABC, abstractmethod from collections import defaultdict try: import pydart2 as pydart from pydart2.gui.trackball import Trackball pydart.init() except ImportError as e: raise error.DependencyNotInstalled("{}. (HINT: you need to install pydart2.)".format(e)) #base convenience class holding relevant info and functions for a skeleton class skelHolder(ABC): #env is owning environment #skel is ref to skeleton #widx is index in world skel array #stIdx is starting index in force/torque array for tau calc - past root dofs that get no tau #fTipOffset is distance in body local coords from com of reach body for constraint/grab location def __init__(self, env, skel, widx, stIdx, fTipOffset): print("making skel : {}".format(skel.name)) self.name='' #ref to owning environment self.env = env #ref to skel object self.skel = skel #index in world skeleton array self.worldIdx = widx #start index for action application in tau array -> bypasses #dofs that are root/world related (And do not get tau applied) self.stTauIdx = stIdx #base action scale multiplier self.actionScaleBaseVal = 150.0 #preloaded initial state to return to at reset, otherwise variation of initstate is used self.initQPos = None self.initQVel = None #idxs of dofs corresponding to world location of root - replace with com in observation, since x self.rootLocDofs = np.array([3,4,5]) #number of dofs - get rid of length calc every time needed self.ndofs = self.skel.ndofs #number of actuated dofs : number of dofs - world dofs self.numActDofs = self.ndofs - self.stTauIdx #sqrt of numActuated dofs, for reward scaling self.sqrtNumActDofs = np.sqrt(self.numActDofs) #ground friction from environment self.groundFric = self.env.groundFric #gravity of this world grav = self.env.dart_world.gravity() #print('gravity is : {} '.format(grav)) #precalc mg for force calculations - magnitude of grav * mass self.mg = np.linalg.norm(grav) * self.skel.mass() #to monitor torques seen : minimum and maximum seen torques saved in arrays self.monitorTorques = False #self._reset_monTorques() self.monTrqDict = {} self._resetMinMaxMonitors(self.monTrqDict, self.ndofs) #bound on allowable qDot for training of policy self.qDotBnd = 10 #state flags #use the mean state only if set to false, otherwise randomize initial state self.randomizeInitState = True #use these to show that we are holding preset initial states - only used if randomizeInitState is false self.loadedInitStateSet = False #desired force/torque has been set self.desForceTorqueSet = False #process actions and forward simulate (should match skel.is_mobile) - only use in prestep and poststep functions, if at all self.isFrwrdSim = True #whether to use linear or world jacobian for endeffector self.useLinJacob = False #Monitor generated force at pull point/hand contact self.monitorGenForce = False #display debug information for this skel holder self.debug = True #set baseline desired external forces and force mults self.desExtFrcVal = np.array([0,0,0]) self.desExtFrcVal_mults = np.array([0,0,0]) #using force multiplier instead of force as observation component of force in RL training/policy consumption self.useMultNotForce=False #initial torques - set to 0 self.dbgResetTau() #TODO force and torque dimensions get from env #+/- perturb amount of intial pose and vel for random start state self.poseDel = .005 #hand reaching to other agent - name and ref to body self.reach_hand = '' self.reachBody = None #initial constraint location - pose is built/modified off this for assistant robot, and this is derived from human's eff location self.initEffPosInWorld = None #this is location on reach_hand in local coords of contact with constraint body #i.e., this is constraint location on reach_hand in local coords self.reachBodyOffset = fTipOffset #list of body node names for feet and hand in biped self.feetBodyNames = list() self.handBodyNames = list() # # of sim steps we've run (# of times tau is applied) self.numSimSteps = 0 #timestep - do not include repeated steps #since query sim for character state and sim state is step dependent self.timestep = env.dart_world.dt #tag to follow # of broken simulation steps self.env.numBrokeSims = 0 #whether to check for best state after each reward - this is to keep around the best state from the previous rollout to use as next rollout's mean state self.checkBestState = False#set this true in ana #initialize to bogus vals self.bestState = None #moved from dart_env_2bot - this sets up the action and (initial) observation spaces for the skeleton. # NOTE : the observation space does not initially include any external forces, # and can be modified through external calls to setObsDim directly # this should be called once, only upon initial construction of skel handler def setInitialSkelParams(self, bodyNamesAra): #clips control to be within -1 and 1 #min is idx 0, max is idx 1 self.control_bounds = (np.array([[-1.0]*self.numActDofs,[1.0]*self.numActDofs])) self.action_dim = self.numActDofs self.action_space = spaces.Box(self.control_bounds[0], self.control_bounds[1]) #scaling value of action multiplier (action is from policy and in the range of approx +/- 2) action_scaleBase = np.array([self.actionScaleBaseVal]*self.numActDofs) #individual action scaling for different bot configurations action_scale = self._setupSkelSpecificActionSpace(action_scaleBase) print('action scale : {}'.format(action_scale)) self.action_scale = action_scale #set initial observation dimension - NOTE : this does not include any external forces or observations self.setObsDim(2*self.ndofs) if (len(bodyNamesAra) > 0): self._setFootHandBodyNames(bodyNamesAra[0], bodyNamesAra[1], bodyNamesAra[2], bodyNamesAra[3]) else :#not relevant for KR5 arm robot print("---- No foot/hand/head body names specified, no self.StandCOMHeight derived ----") #called for each skeleton type, to configure multipliers for skeleton-specific action space @abstractmethod def _setupSkelSpecificActionSpace(self, action_scale): pass #called initially before any pose modification is done - pose of skel by here is pose specified in skel/urdf file def _setFootHandBodyNames(self,lf_bdyNames, rf_bdyNames, h_bodyNames, headBodyName): self.feetBodyNames = lf_bdyNames + rf_bdyNames self.leftFootBodyNames = lf_bdyNames[:] self.rightFootBodyNames = rf_bdyNames[:] self.handBodyNames = h_bodyNames[:] self.headBodyName = headBodyName print('skelHolder::setFootHandBodyNames : set values for initial height above avg foot location - ASSUMES CHARACTER IS UPRIGHT IN SKEL FILE. Must be performed before desired pose is set') #specific to instancing class - only RL-involved skel holders should have code in this self.setInitRWDValues() def setSkelMobile(self, val): self.skel.set_mobile(val) #frwrdSim is boolean whether mobile/simulated or not self.isFrwrdSim = val #initialize constraint locations and references to constraint bodies def initConstraintLocs(self, cPosInWorld, cBody): #this is initial end effector position desired in world coordinates, built relative to human pose fingertip self.initEffPosInWorld = np.copy(cPosInWorld) #initializing current location for finite diff velocity calc self.trackBodyCurPos = np.copy(self.initEffPosInWorld)#self.cnstrntBody.com() #body to be constrained to or track self.cnstrntBody = cBody #constraint location in ball local coords - convert to world for target location for inv dyn self.cnstrntOnBallLoc = self.cnstrntBody.to_local(x=self.initEffPosInWorld) #initialize best state reward if (self.checkBestState): self.bestStRwd = -100000000000 self.bestState = self.state_vector() #set initial constraint location in world - called every reset and before addBallConstraint #only called 1 time, when constraints being first built def addBallConstraint(self): # if(setConnect ):#set the constraint to connect these bodies #build constraint constraint = pydart.constraints.BallJointConstraint(self.cnstrntBody, self.reachBody, self.initEffPosInWorld) #add to world constraint.add_to_world(self.env.dart_world) #print('{} is currently constrainted to ball at world location : {} corresponding to local reach body loc : {}'.format(self.skel.name, self.initEffPosInWorld,self.reachBody.to_local( self.initEffPosInWorld))) # else : #treat as tracking body #print('{} not currently holding constraint ball!!!'.format(self.skel.name)) #initializing current location for finite diff velocity calc # pass #return the world position of the constraint on the constraint body def getWorldPosCnstrntOnCBody(self): return self.cnstrntBody.to_world(x=self.cnstrntOnBallLoc) #set the name of the body node reaching to other agent #called by initial init of pose def setReachHand(self, _rchHand): self.reach_hand = _rchHand self.reachBody = self.skel.body(self.reach_hand) #set the desired external force for this skel #(either the force applied to the human, or the force being applied by the robot) #set reciprocal is only used for debugging/displaying efficacy of force generation method for robot def setDesiredExtForce(self, desFrcTrqVal, desExtFrcVal_mults, setReciprocal, obsUseMultNotFrc): self.useMultNotForce = obsUseMultNotFrc #print('{} got force set to {}'.format(self.skel.name, desFrcTrqVal)) #self.lenFrcVec = len(desFrcTrqVal) self.desExtFrcVal = np.copy(desFrcTrqVal) self.desExtFrcVal_mults = np.copy(desExtFrcVal_mults) self.desForceTorqueSet = True #if true then apply reciprocal force to reach body if(setReciprocal): #counteracting force for debugging - remove when connected self.reachBody.set_ext_force(-1 * self.desExtFrcVal, _offset=self.reachBodyOffset) #set observation dimension def setObsDim(self, obsDim): self.obs_dim = obsDim high = np.inf*np.ones(self.obs_dim) low = -high self.observation_space = spaces.Box(low, high) #set what this skeleton's init pose should be #only call this whenever initial base pose _actually chagnes_ (like upon loading) def setStartingPose(self): #initPose is base initial pose that gets varied upon reset if randomized - base pose is treated as constant self.initPose = self._makeInitPoseIndiv() self.setToInitPose() #reset this skeleton to its initial base pose - uses preset self.initPose def setToInitPose(self): #priv method is so that helper bots can IK to appropriate location based on where ANA hand is self._setToInitPose_Priv() self.skel.set_positions(self.initPose) #set skel velocities self.skel.set_velocities(np.zeros(self.skel.dq.shape)) #if monitoring the force/torques at pull application point, reset minmax arrays if(self.monitorGenForce): self.totGenFrc = list() self.minMaxFrcDict = {} self._resetMinMaxMonitors(self.minMaxFrcDict, self.useForce.shape) #self._reset_minMaxGenForceVals() self.postPoseInit() #will reset passed dictionary of min and max values to the given shape of initial sentinel values def _resetMinMaxMonitors(self, minMaxDict, sizeShape): minMaxDict['min'] = np.ones(sizeShape)*1000000000 minMaxDict['max'] = np.ones(sizeShape)*-1000000000 #set initial state externally - call before reset_model is called by training process #Does not override initPose def setNewInitState(self, _qpos, _qvel): #set to false to use specified states self.randomizeInitState = False self.initQPos = np.asarray(_qpos, dtype=np.float64) self.initQVel = np.asarray(_qvel, dtype=np.float64) self.loadedInitStateSet = True #set this skeleton's state def state_vector(self): return np.concatenate([ self.skel.q, self.skel.dq ]) #sets skeleton state to be passed position and velocity def set_state(self, qpos, qvel): assert qpos.shape == (self.ndofs,) and qvel.shape == (self.ndofs,) self.skel.set_positions(qpos) self.skel.set_velocities(qvel) #sets skeleton state to be passed state vector, split in half (for external use) def set_state_vector(self, state): numVals = int(len(state)/2.0) self.set_state(state[0:numVals], state[numVals:]) #called in do_simulate if perturbation is true - adds external force to passed body nodes def add_perturbation(self, nodes, frc): self.skel.bodynodes[nodes].add_ext_force(frc) #build tau from a, using control clamping, for skel, starting at stIdx and action scale for skeleton #a is specified from RL policy, and is clamped to be within control_bounds def setClampedTau(self, a): self.a = np.copy(a) #print('pre clamped cntl : {}'.format(a)) #idx 0 is min, idx 1 is max. clamped_control = np.clip(self.a, self.control_bounds[0],self.control_bounds[1]) #print('clamped cntl : {}'.format(clamped_control)) self.tau = np.zeros(self.ndofs) self.tau[self.stTauIdx:] = clamped_control * self.action_scale #print('tau : {}'.format(self.tau)) return self.tau #send torques to skeleton def applyTau(self): if(self.monitorTorques): self._checkiMinMaxVals(self.tau, self.monTrqDict) #apply torques every step since they are cleared after world steps self.skel.set_forces(self.tau) #record # of tau applications self.numSimSteps += 1 #any private per-step torque application functionality - this is where the external force is applied to human skeleton during RL training to simulate robot assistant self.applyTau_priv() #return limits of Obs values (q, qdot, force) def getObsLimits(self): jtlims = {} jtlims['lowQLims'] =
np.zeros(self.ndofs)
numpy.zeros
import sys, os import numpy as np import gmpy2 as gm from recursions import alpha_array, gamma_array """ This file will implement general helper functions. """ class HiddenPrints: ''' This is a class that can be used to suppress stdout from function calls. Usage: with HiddenPrints(): >>do stuff without printing ''' def __enter__(self): self._original_stdout = sys.stdout sys.stdout = open(os.devnull, 'w') # self._original_sterr = sys.stderr # sys.stderr = open(os.devnull, 'w') def __exit__(self, exc_type, exc_val, exc_tb): sys.stdout.close() # sys.stderr.close() sys.stdout = self._original_stdout # sys.stderr = self._original_sterr def bmatrix(a): """ Converts np.array into a LaTeX bmatrix Args: a: numpy array Returns: LaTeX bmatrix of a as a string """ if len(a.shape) > 2: raise ValueError('bmatrix can at most display two dimensions') lines = str(a).replace('[', '').replace(']', '').splitlines() rv = [r'\begin{bmatrix}'] rv += [' ' + ' & '.join(l.split()) + r'\\' for l in lines] rv += [r'\end{bmatrix}'] for i in rv: print(i) return def address_from_index(level, index): """Computes address vector from the index. Returns the address vector of a point with certain TLR index in a graph of SG at some fixed level. For point F_{w1} F_{w2} ... F_{wm} q_{k} (0<=wi<=2, 0<=k<=2), we can represent it in two ways: 1. Address Vector: [wm, ..., w1, k] (Note that this represents picking transform F_{wm}, ..., F_{w1} in this sequence and then finding vertex q_{k} in the final triangle. This order is weird but will prove to be useful) 2. TLR Index: k = wm * 3^m + ... + w1 * 3 + k + 1 This function provides transform 2 -> 1. Args: level: A nonnegative integer representing the level of SG we're working with. index: A number in the range [1, 3^(level+1)] representing the TLR index of some point in level m. Returns: address: np.array of length (level+1) representing the address of the point specified by index in a particular level of SG. Example: address_from_index(1, 4) = [1, 0] address_from_index(2, 21) = [2, 1, 2] """ # Initialize the vector to store the address v = np.zeros(level+1) # First decide the last term of the vector index = index - 1 v[level] = index % 3 index = int(index / 3) # Perform transformation similar to base 10 -> base 3 for i in range(level): v[level - 1 - i] = index % 3 index = int(index / 3) return v def index_from_address(level, address): """Computes TLR Index from Address vector. Returns the TLR index of a point with certain address vector in a graph of SG at some fixed level. For point F_{w1} F_{w2} ... F_{wm} q_{k} (0<=wi<=2, 0<=k<=2), we can represent it in two ways: 1. Address Vector: [wm, ..., w1, k] (Note that this represents picking transform F_{wm}, ..., F_{w1} in this sequence and then finding vertex q_{l} in the final triangle) 2. TLR Index: k = wm * 3^m + ... + w1 * 3 + k + 1 This function provides transform 1 -> 2. Args: level: A nonnegative integer representing the level of SG we're working with. address: np.array of size (level+1) representing the address vector of a point in some SG graph. Returns: index: A number in the range [1, 3^(level+1)] representing the TLR index of some point in level m. """ # Initialize index with additional 1 added index = 1 # Perform transformation similar to base 3 -> base 10 for i in range(level+1): index += address[i] * (3 ** (level - i)) return int(index) def q_contract(orig_mat, base_point): """Computes the image of points under some contraction. Contracts all points represented in rows of v toward the base_point with a contraction ratio of 1/2. Args: orig_mat: A np.array of size (t, 2) for some integer t, with each row representing the coordinate of a point base_point: A np.array of length 2 representing the coordinates of the point we're contracting toward. Returns: contract_mat: A np.array of size (t, 2) for some integer t, with each row the contracted version of that in orig_mat. """ # Use broadcasting to find the average points contract_mat = 0.5 * orig_mat + 0.5 * base_point return contract_mat def sg_coordinates(level): """Computes the coordinates of points for SG at some level. Given base points q0 = [cos(5*pi/12) sin(5*pi/12)], q1=[0 0], q2=[cos(pi/12) sin(pi/12)], we calculate the coordinates of all points up to some level of the SG graph. Args: level: A nonnegative integer representing the level of SG we're working with. Returns: coord_mat: A matrix with dimension (3^(level+1), 2), with each row representing coordinate of one point in V_m """ # Initialize the boundary points of V_0 q0 = np.array([np.cos(np.pi * 5 / 12), np.sin(np.pi * 5 / 12)]) print(q0) q1 = np.array([0, 0]) print(q1) q2 = np.array([np.cos(np.pi / 12), np.sin(np.pi / 12)]) print(q2) # Stack the first three coordinates into a matrix coord_mat = np.stack((q0, q1, q2)) # Each iteration produces a matrix of coordinates in the next level for _ in range(level): coord_mat = np.vstack((q_contract(coord_mat, q0), q_contract(coord_mat, q1), q_contract(coord_mat, q2))) return coord_mat def alternate_address(level, address): """Computes the alternate address of a point. Args: level: A nonnegative integer representing the level of SG we're working with. address: np.array of size (level+1) representing the address vector of a point in some SG graph. Returns: alt_address: np.array of size (level+1) representing the alternate address of the same point in some SG graph. Example: alternate_address(2, [0, 1, 2]) = [0, 2, 1] (F1F0q2 = F2F0q1) alternate_address(2, [1, 0, 0]) = [0, 1, 1] (F0F1q1 = F1F1q0) """ # Make a copy of the address alt_address = np.copy(address) if (level > 0): # Find the index of the last address entry that is not equal # to the final value last_val = alt_address[level] temp_index = level - 1 while (last_val == address[temp_index] and temp_index > 0): temp_index = temp_index - 1 # If there is such an entry, interchange it with the final value temp = alt_address[temp_index] alt_address[temp_index] = alt_address[level] alt_address[level] = temp return alt_address def alternate_index(level, index): """Compute the alternate TLR index of a point Args: level: A nonnegative integer representing the level of SG we're working with. index: A number in the range [1, 3^(level+1)] representing the TLR index of some point in level m. Returns: alt_index: A number in the range [1, 3^(level+1)] representing the alternate TLR index of the point in level m. Example: alternate_index(1, 2) = 4 alternate_index(1, 3) = 7 """ current_address = address_from_index(level, index) alt_address = alternate_address(level, current_address) alt_index = index_from_address(level, alt_address) return alt_index def get_neighbors(level, address): """Compute the addresses of the 4 neighbors of a point Args: level: A nonnegative integer representing the level of SG we're working with. address: np.array of size (level+1) representing the address vector of a point in some SG graph. Returns: nbhd_mat: np.array of size (4, level+1) representing the address of the 4 neighbors of the point. """ # Find alternate address of the point alt_address = alternate_address(level, address) # ones has all coordinates 1 # di has only the (m+1)-th term 1, others 0 di = np.zeros(level + 1) di[level] = 1 # Initialize space for nbhd matrix nbhd_mat = np.zeros((4, level+1)) # The only update happens on the last term, where q_i is replaced by # q_(i-1) and q_(i+1). Both cases reduce to mod 3 operations. nbhd_mat[0, :] = np.mod(address - di, 3) nbhd_mat[1, :] = np.mod(address + di, 3) nbhd_mat[2, :] = np.mod(alt_address - di, 3) nbhd_mat[3, :] = np.mod(alt_address + di, 3) return nbhd_mat def index_alternate_level(current_level, target_level, address): """Finds the index of a point in another level of SG Args: current_level: A nonnegative integer representing the current level of SG we're working with. target_level: A nonnegative integer representing the target level of SG we're moving our point to. This should be larger than the current level. address: np.array of size (current_level+1) representing the address vector of a point in some SG graph. Returns: target_index: A number in the range [1, 3^(target_level+1)] representing the TLR index of the point in target_level. Example: index_alternate_level(1, 1, [0, 1]) = 2 index_alternate_level(1, 2, [0, 1]) = 5 index_alternate_level(1, 3, [0, 1]) = 14 """ target_address =
np.zeros(target_level+1)
numpy.zeros
import numpy as np import itertools as it import scipy as sp from mallows_model import * def weighted_median(sample, ws): """ Parameters ---------- sample: numpy array RANKINGS ws: float weight of each permutation Returns ------- ranking weigthed median ranking """ return borda(sample * ws[:, None]) def max_dist(n): """ Parameters ---------- n: int length of permutations Returns ------- int Maximum distance between permutations of given n length """ return n * (n - 1) // 2 # Integer division def compose(s, p): """This function composes two given permutations Parameters ---------- s: ndarray The first permutation array p: ndarray The second permutation array Returns ------- ndarray The composition of the permutations """ return np.array(s[p]) def compose_partial(partial, full): """This function composes a partial permutation with an other (full) Parameters ---------- partial: ndarray The partial permutation (should be filled with float) full: The full permutation (should be filled with integers) Returns ------- ndarray The composition of the permutations """ # MANUEL: If full contains np.nan, then it cannot be filled with integers, because np.nan is float. return [partial[i] if not np.isnan(i) else np.nan for i in full] def inverse_partial(sigma): """This function computes the inverse of a given partial permutation Parameters ---------- sigma: ndarray A partial permutation array (filled with float) Returns ------- ndarray The inverse of given partial permutation """ inv = np.full(len(sigma), np.nan) for i,j in enumerate(sigma): if not np.isnan(j): inv[int(j)] = i return inv def inverse(s): """This function computes the inverse of a given permutation Parameters ---------- s: ndarray A permutation array Returns ------- ndarray The inverse of given permutation """ return np.argsort(s) def borda(rankings): """This function computes an average permutation given several permutations Parameters ---------- rankings: ndarray Matrix of several permutations Returns ------- ndarray The 'average' permutation of permutations given """ # MANUEL: Using inverse instead of np.argsort clarifies the intention consensus = inverse( # give the inverse of result --> sigma_0 inverse( # give the indexes to sort the sum vector --> sigma_0^-1 rankings.sum(axis=0) # sum the indexes of all permutations ) ) #borda return consensus def borda_partial(rankings, w, k): """ Parameters ---------- Returns ------- """ a, b = rankings, w a, b = np.nan_to_num(rankings,nan=k), w aux = a * b borda = np.argsort(np.argsort(np.nanmean(aux, axis=0))).astype(float) mask = np.isnan(rankings).all(axis=0) borda[mask]=np.nan return borda def expected_dist_mm(n, theta=None, phi=None): """Compute the expected distance, MM under the Kendall's-tau distance Parameters ---------- n: int Length of the permutation in the considered model theta: float Real dispersion parameter (optionnal if phi is given) phi: float Real dispersion parameter (optionnal if theta is given) Returns ------- float The expected disance under the MMs """ theta, phi = check_theta_phi(theta, phi) # MANUEL: # rnge = np.array(range(1,n+1)) rnge = np.arange(1, n + 1) # exp_j_theta = np.exp(-j * theta) # exp_dist = (n * n.exp(-theta) / (1 - n.exp(-theta))) - np.sum(j * exp_j_theta / (1 - exp_j_theta) expected_dist = n * np.exp(-theta) / (1-np.exp(-theta)) - np.sum(rnge * np.exp(-rnge*theta) / (1 - np.exp(-rnge*theta))) return expected_dist def variance_dist_mm(n, theta=None, phi=None): """ Parameters ---------- Returns ------- """ theta, phi = check_theta_phi(theta, phi) rnge = np.array(range(1,n+1)) variance = (phi*n)/(1-phi)**2 - np.sum((pow(phi,rnge) * rnge**2)/(1-pow(phi,rnge))**2) return variance def expected_v(n, theta=None, phi=None, k=None):#txapu integrar """This function computes the expected decomposition vector Parameters ---------- n: int Length of the permutation in the considered model theta: float Real dispersion parameter (optionnal if phi is given) phi: float Real dispersion parameter (optionnal if theta is given) k: int Index to which the decomposition vector is needed ??? Returns ------- ndarray The expected decomposition vector """ theta, phi = check_theta_phi(theta, phi) if k is None: k = n-1 if type(theta)!=list: theta = np.full(k, theta) rnge = np.array(range(k)) expected_v = np.exp(-theta[rnge]) / (1-
np.exp(-theta[rnge])
numpy.exp
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Magnetic space groups. """ import os import sqlite3 import textwrap from array import array from fractions import Fraction import numpy as np from monty.design_patterns import cached_class from pymatgen.core.operations import MagSymmOp from pymatgen.electronic_structure.core import Magmom from pymatgen.symmetry.groups import SymmetryGroup, in_array_list from pymatgen.symmetry.settings import JonesFaithfulTransformation from pymatgen.util.string import transformation_to_string __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2017, The Materials Project" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Beta" __date__ = "Feb 2017" MAGSYMM_DATA = os.path.join(os.path.dirname(__file__), "symm_data_magnetic.sqlite") @cached_class class MagneticSpaceGroup(SymmetryGroup): """ Representation of a magnetic space group. """ def __init__(self, id, setting_transformation="a,b,c;0,0,0"): """ Initializes a MagneticSpaceGroup from its Belov, Neronova and Smirnova (BNS) number supplied as a list or its label supplied as a string. To create a magnetic structure in pymatgen, the Structure.from_magnetic_spacegroup() method can be used, which relies on this class. The main difference between magnetic space groups and normal crystallographic space groups is the inclusion of a time reversal operator that acts on an atom's magnetic moment. This is indicated by a prime symbol (') next to the respective symmetry operation in its label, e.g. the standard crystallographic space group Pnma has magnetic subgroups Pn'ma, Pnm'a, Pnma', Pn'm'a, Pnm'a', Pn'ma', Pn'm'a'. The magnetic space groups are classified as one of 4 types where G = magnetic space group, and F = parent crystallographic space group: 1. G=F no time reversal, i.e. the same as corresponding crystallographic group 2. G=F+F1', "grey" groups, where avg. magnetic moment is zero, e.g. a paramagnet in zero ext. mag. field 3. G=D+(F-D)1', where D is an equi-translation subgroup of F of index 2, lattice translations do not include time reversal 4. G=D+(F-D)1', where D is an equi-class subgroup of F of index 2 There are two common settings for magnetic space groups, BNS and OG. In case 4, the BNS setting != OG setting, and so a transformation to go between the two settings is required: specifically, the BNS setting is derived from D, and the OG setting is derived from F. This means that the OG setting refers to the unit cell if magnetic order is neglected, and requires multiple unit cells to reproduce the full crystal periodicity when magnetic moments are present. This does not make the OG setting, in general, useful for electronic structure calculations and the BNS setting is preferred. However, this class does contain information on the OG setting and can be initialized from OG labels or numbers if required. Conventions: ITC monoclinic unique axis b, monoclinic cell choice 1, hexagonal axis for trigonal groups, origin choice 2 for groups with more than one origin choice (ISO-MAG). Raw data comes from ISO-MAG, ISOTROPY Software Suite, iso.byu.edu http://stokes.byu.edu/iso/magnetic_data.txt with kind permission from Professor <NAME>, BYU Data originally compiled from: (1) <NAME>, Magnetic Group Tables (International Union of Crystallography, 2013) www.iucr.org/publ/978-0-9553602-2-0. (2) <NAME> and <NAME>, The Mathematical Theory of Symmetry in Solids (Clarendon Press, Oxford, 1972). See http://stokes.byu.edu/iso/magneticspacegroupshelp.php for more information on magnetic symmetry. :param id: BNS number supplied as list of 2 ints or BNS label as str or index as int (1-1651) to iterate over all space groups""" self._data = {} # Datafile is stored as sqlite3 database since (a) it can be easily # queried for various different indexes (BNS/OG number/labels) and (b) # allows binary data to be stored in a compact form similar to that in # the source data file, significantly reducing file size. # Note that a human-readable JSON format was tested first but was 20x # larger and required *much* longer initial loading times. # retrieve raw data db = sqlite3.connect(MAGSYMM_DATA) c = db.cursor() if isinstance(id, str): id = "".join(id.split()) # remove any white space c.execute("SELECT * FROM space_groups WHERE BNS_label=?;", (id,)) elif isinstance(id, list): c.execute("SELECT * FROM space_groups WHERE BNS1=? AND BNS2=?;", (id[0], id[1])) elif isinstance(id, int): # OG3 index is a 'master' index, going from 1 to 1651 c.execute("SELECT * FROM space_groups WHERE OG3=?;", (id,)) raw_data = list(c.fetchone()) # Jones Faithful transformation self.jf = JonesFaithfulTransformation.from_transformation_string("a,b,c;0,0,0") if isinstance(setting_transformation, str): if setting_transformation != "a,b,c;0,0,0": self.jf = JonesFaithfulTransformation.from_transformation_string(setting_transformation) elif isinstance(setting_transformation, JonesFaithfulTransformation): if setting_transformation != self.jf: self.jf = setting_transformation self._data["magtype"] = raw_data[0] # int from 1 to 4 self._data["bns_number"] = [raw_data[1], raw_data[2]] self._data["bns_label"] = raw_data[3] self._data["og_number"] = [raw_data[4], raw_data[5], raw_data[6]] self._data["og_label"] = raw_data[7] # can differ from BNS_label def _get_point_operator(idx): """Retrieve information on point operator (rotation matrix and Seitz label).""" hex = self._data["bns_number"][0] >= 143 and self._data["bns_number"][0] <= 194 c.execute( "SELECT symbol, matrix FROM point_operators WHERE idx=? AND hex=?;", (idx - 1, hex), ) op = c.fetchone() op = { "symbol": op[0], "matrix": np.array(op[1].split(","), dtype="f").reshape(3, 3), } return op def _parse_operators(b): """Parses compact binary representation into list of MagSymmOps.""" if len(b) == 0: # e.g. if magtype != 4, OG setting == BNS setting, and b == [] for OG symmops return None raw_symops = [b[i : i + 6] for i in range(0, len(b), 6)] symops = [] for r in raw_symops: point_operator = _get_point_operator(r[0]) translation_vec = [r[1] / r[4], r[2] / r[4], r[3] / r[4]] time_reversal = r[5] op = MagSymmOp.from_rotation_and_translation_and_time_reversal( rotation_matrix=point_operator["matrix"], translation_vec=translation_vec, time_reversal=time_reversal, ) # store string representation, e.g. (2x|1/2,1/2,1/2)' seitz = "({0}|{1},{2},{3})".format( point_operator["symbol"], Fraction(translation_vec[0]), Fraction(translation_vec[1]), Fraction(translation_vec[2]), ) if time_reversal == -1: seitz += "'" symops.append({"op": op, "str": seitz}) return symops def _parse_wyckoff(b): """Parses compact binary representation into list of Wyckoff sites.""" if len(b) == 0: return None wyckoff_sites = [] def get_label(idx): if idx <= 25: return chr(97 + idx) # returns a-z when idx 0-25 return "alpha" # when a-z labels exhausted, use alpha, only relevant for a few space groups o = 0 # offset n = 1 # nth Wyckoff site num_wyckoff = b[0] while len(wyckoff_sites) < num_wyckoff: m = b[1 + o] # multiplicity label = str(b[2 + o] * m) + get_label(num_wyckoff - n) sites = [] for j in range(m): s = b[3 + o + (j * 22) : 3 + o + (j * 22) + 22] # data corresponding to specific Wyckoff position translation_vec = [s[0] / s[3], s[1] / s[3], s[2] / s[3]] matrix = [ [s[4], s[7], s[10]], [s[5], s[8], s[11]], [s[6], s[9], s[12]], ] matrix_magmom = [ [s[13], s[16], s[19]], [s[14], s[17], s[20]], [s[15], s[18], s[21]], ] # store string representation, e.g. (x,y,z;mx,my,mz) wyckoff_str = "({};{})".format( transformation_to_string(matrix, translation_vec), transformation_to_string(matrix_magmom, c="m"), ) sites.append( { "translation_vec": translation_vec, "matrix": matrix, "matrix_magnetic": matrix_magmom, "str": wyckoff_str, } ) # only keeping string representation of Wyckoff sites for now # could do something else with these in future wyckoff_sites.append({"label": label, "str": " ".join([s["str"] for s in sites])}) n += 1 o += m * 22 + 2 return wyckoff_sites def _parse_lattice(b): """Parses compact binary representation into list of lattice vectors/centerings.""" if len(b) == 0: return None raw_lattice = [b[i : i + 4] for i in range(0, len(b), 4)] lattice = [] for r in raw_lattice: lattice.append( { "vector": [r[0] / r[3], r[1] / r[3], r[2] / r[3]], "str": "({0},{1},{2})+".format( Fraction(r[0] / r[3]).limit_denominator(), Fraction(r[1] / r[3]).limit_denominator(), Fraction(r[2] / r[3]).limit_denominator(), ), } ) return lattice def _parse_transformation(b): """Parses compact binary representation into transformation between OG and BNS settings.""" if len(b) == 0: return None # capital letters used here by convention, # IUCr defines P and p specifically P = [[b[0], b[3], b[6]], [b[1], b[4], b[7]], [b[2], b[5], b[8]]] p = [b[9] / b[12], b[10] / b[12], b[11] / b[12]] P = np.array(P).transpose() P_string = transformation_to_string(P, components=("a", "b", "c")) p_string = "{},{},{}".format( Fraction(p[0]).limit_denominator(), Fraction(p[1]).limit_denominator(), Fraction(p[2]).limit_denominator(), ) return P_string + ";" + p_string for i in range(8, 15): try: raw_data[i] = array("b", raw_data[i]) # construct array from sql binary blobs except Exception: # array() behavior changed, need to explicitly convert buffer to str in earlier Python raw_data[i] = array("b", str(raw_data[i])) self._data["og_bns_transform"] = _parse_transformation(raw_data[8]) self._data["bns_operators"] = _parse_operators(raw_data[9]) self._data["bns_lattice"] = _parse_lattice(raw_data[10]) self._data["bns_wyckoff"] = _parse_wyckoff(raw_data[11]) self._data["og_operators"] = _parse_operators(raw_data[12]) self._data["og_lattice"] = _parse_lattice(raw_data[13]) self._data["og_wyckoff"] = _parse_wyckoff(raw_data[14]) db.close() @classmethod def from_og(cls, id): """ Initialize from Opechowski and Guccione (OG) label or number. :param id: OG number supplied as list of 3 ints or or OG label as str :return: """ db = sqlite3.connect(MAGSYMM_DATA) c = db.cursor() if isinstance(id, str): c.execute("SELECT BNS_label FROM space_groups WHERE OG_label=?", (id,)) elif isinstance(id, list): c.execute( "SELECT BNS_label FROM space_groups WHERE OG1=? and OG2=? and OG3=?", (id[0], id[1], id[2]), ) bns_label = c.fetchone()[0] db.close() return cls(bns_label) def __eq__(self, other): return self._data == other._data @property def crystal_system(self): """ :return: Crystal system, e.g., cubic, hexagonal, etc. """ i = self._data["bns_number"][0] if i <= 2: return "triclinic" if i <= 15: return "monoclinic" if i <= 74: return "orthorhombic" if i <= 142: return "tetragonal" if i <= 167: return "trigonal" if i <= 194: return "hexagonal" return "cubic" @property def sg_symbol(self): """ :return: Space group symbol """ return self._data["bns_label"] @property def symmetry_ops(self): """ Retrieve magnetic symmetry operations of the space group. :return: List of :class:`pymatgen.core.operations.MagSymmOp` """ ops = [op_data["op"] for op_data in self._data["bns_operators"]] # add lattice centerings centered_ops = [] lattice_vectors = [l["vector"] for l in self._data["bns_lattice"]] for vec in lattice_vectors: if not (np.array_equal(vec, [1, 0, 0]) or np.array_equal(vec, [0, 1, 0]) or
np.array_equal(vec, [0, 0, 1])
numpy.array_equal
import tracemalloc import numpy as np import quantities as pq from elephant.spike_train_generation import homogeneous_poisson_process import matplotlib.pyplot as plt from online_statistics import OnlineMeanFiringRate, OnlineInterSpikeInterval, \ OnlinePearsonCorrelationCoefficient def omfr_plot_memory_benchmark_for_instantiation(buffer_sizes, used_memory, std_error_memory): fig, ax1 = plt.subplots(1, 1, figsize=(8, 5)) fig.suptitle(f"Memory Usage for Instancing Online MFR", y=0.93, fontsize=18) # rescale to MB current = np.divide(used_memory[:, 0], 10 ** 6) peak = np.divide(used_memory[:, 1], 10 ** 6) std_error_memory = np.divide(std_error_memory, 10 ** 6) ax1.errorbar(buffer_sizes, current, yerr=std_error_memory[:, 0], ecolor='red', color="blue", marker="o", markerfacecolor="blue", markeredgecolor='black', label="current memory usage after instantiation") ax1.errorbar(buffer_sizes, peak, yerr=std_error_memory[:, 1], ecolor='red', color="orange", marker="o", markerfacecolor="orange", markeredgecolor='black', label="peak memory usage while instantiation") ax1.set_xlabel(f"Buffer Size [s]", fontsize=16) ax1.set_ylabel(f"Memory Usage [MB]", fontsize=16) plt.legend(fontsize=16) plt.savefig(f"plots/omfr_investigate_memory_usage_at_instantiation.pdf") plt.show() def omfr_benchmark_memory_at_instantiation(num_repetitions=100): buffer_sizes = [0.1, 0.25, 0.5, 0.75, 1, 2, 4, 6, 8, 10] # in s memory_for_instantiation = [] for rep in range(num_repetitions): mem_for_inst_within_rep = [] for j, bs in enumerate(buffer_sizes): # measure memory usage for instantiation tracemalloc.start() omfr = OnlineMeanFiringRate(buffer_size=bs) current_i, peak_i = tracemalloc.get_traced_memory() tracemalloc.stop() mem_for_inst_within_rep.append((current_i, peak_i)) memory_for_instantiation.append(mem_for_inst_within_rep) # calculating mean and standard error for memory usage at instantiation mean_memory_for_instantiation = np.mean(memory_for_instantiation, axis=0) std_error_of_memory_for_instantiation = \ np.std(memory_for_instantiation, axis=0) / np.sqrt(num_repetitions) omfr_plot_memory_benchmark_for_instantiation( buffer_sizes=buffer_sizes, used_memory=mean_memory_for_instantiation, std_error_memory=std_error_of_memory_for_instantiation) def trace_memory_usage_during_simulation_of_MFR_ISI_PCC( num_buffers=100, buffer_size=1, firing_rate=50): omfr_memory_usage = [] oisi_memory_usage = [] opcc_memory_usage = [] st_list = [homogeneous_poisson_process( firing_rate*pq.Hz, t_start=buffer_size*i*pq.s, t_stop=(buffer_size*i+buffer_size)*pq.s).magnitude for i in range(num_buffers)] tracemalloc.start() omfr = OnlineMeanFiringRate() oisi = OnlineInterSpikeInterval() opcc = OnlinePearsonCorrelationCoefficient() for i in range(num_buffers): omfr.update_mfr(spike_buffer=st_list[i]) oisi.update_isi(spike_buffer=st_list[i]) opcc.update_pcc(spike_buffer1=st_list[i], spike_buffer2=st_list[i]) snapshot = tracemalloc.take_snapshot() # filter OMFR trace omfr_filter_instantiation = tracemalloc.Filter( inclusive=True, filename_pattern="*/benchmark_memory.py", lineno=_get_line_number(omfr)) omfr_filter_update = tracemalloc.Filter( inclusive=True, filename_pattern="*/benchmark_memory.py", lineno=_get_line_number(omfr)+4) omfr_snapshot_filtered = snapshot.filter_traces( filters=[omfr_filter_instantiation, omfr_filter_update]) omfr_filterd_stats = omfr_snapshot_filtered.statistics("lineno") omfr_memory_usage.append((omfr_filterd_stats[0].size, omfr_filterd_stats[1].size)) # filter OISI trace oisi_filter_instantiation = tracemalloc.Filter( inclusive=True, filename_pattern="*/benchmark_memory.py", lineno=_get_line_number(oisi)) oisi_filter_update = tracemalloc.Filter( inclusive=True, filename_pattern="*/benchmark_memory.py", lineno=_get_line_number(oisi)+4) oisi_snapshot_filtered = snapshot.filter_traces( filters=[oisi_filter_instantiation, oisi_filter_update]) oisi_filterd_stats = oisi_snapshot_filtered.statistics("lineno") oisi_memory_usage.append((oisi_filterd_stats[0].size, oisi_filterd_stats[1].size)) # filter OPCC trace opcc_filter_instantiation = tracemalloc.Filter( inclusive=True, filename_pattern="*/benchmark_memory.py", lineno=_get_line_number(opcc)) opcc_filter_update = tracemalloc.Filter( inclusive=True, filename_pattern="*/benchmark_memory.py", lineno=_get_line_number(opcc)+4) opcc_snapshot_filtered = snapshot.filter_traces( filters=[opcc_filter_instantiation, opcc_filter_update]) opcc_filterd_stats = opcc_snapshot_filtered.statistics("lineno") opcc_memory_usage.append((opcc_filterd_stats[0].size, opcc_filterd_stats[1].size)) tracemalloc.stop() fig, ax1 = plt.subplots(1, 1, figsize=(10, 6)) fig.suptitle(f"Memory Usage of Online MFR, ISI and PCC", y=0.93, fontsize=22) # plot MFR memory usage results ax1.plot(np.arange(0, num_buffers), np.asarray(omfr_memory_usage)[:, 0], color="lightblue", marker="o", markerfacecolor="lightblue", markeredgecolor='black', label="OMFR @ instance") ax1.plot(np.arange(0, num_buffers), np.asarray(omfr_memory_usage)[:, 1], color="blue", marker="o", markerfacecolor="blue", markeredgecolor='black', label="OMFR @ update") # plot ISI memory usage results ax1.plot(np.arange(0, num_buffers), np.asarray(oisi_memory_usage)[:, 0], color="lightcoral", marker="o", markerfacecolor="lightcoral", markeredgecolor='black', label="OISI @ instance") ax1.plot(
np.arange(0, num_buffers)
numpy.arange
import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import AgglomerativeClustering from sklearn.neighbors import kneighbors_graph def add_noise(x, y, amplitude): X = np.concatenate((x, y)) X += amplitude * np.random.randn(2, X.shape[1]) return X.T def get_spiral(t, noise_amplitude=0.5): r = t x = r * np.cos(t) y = r * np.sin(t) return add_noise(x, y, noise_amplitude) def get_rose(t, noise_amplitude=0.02): # Equation for "rose" (or rhodonea curve); if k is odd, then # the curve will have k petals, else it will have 2k petals k = 5 r = np.cos(k*t) + 0.25 x = r * np.cos(t) y = r * np.sin(t) return add_noise(x, y, noise_amplitude) def get_hypotrochoid(t, noise_amplitude=0): a, b, h = 10.0, 2.0, 4.0 x = (a - b) * np.cos(t) + h * np.cos((a - b) / b * t) y = (a - b) * np.sin(t) - h * np.sin((a - b) / b * t) return add_noise(x, y, 0) def perform_clustering(X, connectivity, title, num_clusters=3, linkage='ward'): plt.figure() model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=num_clusters) model.fit(X) # extract labels labels = model.labels_ # specify marker shapes for different clusters markers = '.vx' for i, marker in zip(range(num_clusters), markers): # plot the points belong to the current cluster plt.scatter(X[labels==i, 0], X[labels==i, 1], s=50, marker=marker, color='k', facecolors='none') plt.title(title) if __name__=='__main__': # Generate sample data n_samples = 500 np.random.seed(2) t = 2.5 * np.pi * (1 + 2 *
np.random.rand(1, n_samples)
numpy.random.rand
import numpy as np def clip(val, min, max): if val < min: return min elif val > max: return max else: return val def count_overlaps(segments, seglen): def helper(segments): maxlen= segments[-1][1] zeros = np.zeros(maxlen) for seg in segments: zeros[seg[0]:seg[-1]] += 1 return zeros zeros = helper(segments) speech = len(np.where(zeros==1)[0]) return seglen-speech, speech, len(
np.where(zeros==2)
numpy.where
import gc import lightgbm as lgb import numpy as np import pandas as pd from tqdm import tqdm def get_expectations(P, pNone=None): expectations = [] P = np.sort(P)[::-1] n = np.array(P).shape[0] DP_C = np.zeros((n + 2, n + 1)) if pNone is None: pNone = (1.0 - P).prod() DP_C[0][0] = 1.0 for j in range(1, n): DP_C[0][j] = (1.0 - P[j - 1]) * DP_C[0, j - 1] for i in range(1, n + 1): DP_C[i, i] = DP_C[i - 1, i - 1] * P[i - 1] for j in range(i + 1, n + 1): DP_C[i, j] = P[j - 1] * DP_C[i - 1, j - 1] + (1.0 - P[j - 1]) * DP_C[i, j - 1] DP_S = np.zeros((2 * n + 1,)) DP_SNone =
np.zeros((2 * n + 1,))
numpy.zeros
import numpy as np import scipy.stats import os import logging from astropy.tests.helper import pytest, catch_warnings from astropy.modeling import models from astropy.modeling.fitting import _fitter_to_model_params from stingray import Powerspectrum from stingray.modeling import ParameterEstimation, PSDParEst, \ OptimizationResults, SamplingResults from stingray.modeling import PSDPosterior, set_logprior, PSDLogLikelihood, \ LogLikelihood try: from statsmodels.tools.numdiff import approx_hess comp_hessian = True except ImportError: comp_hessian = False try: import emcee can_sample = True except ImportError: can_sample = False try: import matplotlib.pyplot as plt can_plot = True except ImportError: can_plot = False class LogLikelihoodDummy(LogLikelihood): def __init__(self, x, y, model): LogLikelihood.__init__(self, x, y, model) def evaluate(self, parse, neg=False): return np.nan class OptimizationResultsSubclassDummy(OptimizationResults): def __init__(self, lpost, res, neg, log=None): if log is None: self.log = logging.getLogger('Fitting summary') self.log.setLevel(logging.DEBUG) if not self.log.handlers: ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) self.log.addHandler(ch) self.neg = neg if res is not None: self.result = res.fun self.p_opt = res.x else: self.result = None self.p_opt = None self.model = lpost.model class TestParameterEstimation(object): @classmethod def setup_class(cls):
np.random.seed(100)
numpy.random.seed
from .. import util from ..probabilities import pulsars, mass from ..core.data import Observations, Model import h5py import numpy as np import astropy.units as u import matplotlib.pyplot as plt import matplotlib.colors as mpl_clr import astropy.visualization as astroviz __all__ = ['ModelVisualizer', 'CIModelVisualizer', 'ObservationsVisualizer'] class _ClusterVisualizer: _MARKERS = ('o', '^', 'D', '+', 'x', '*', 's', 'p', 'h', 'v', '1', '2') # Default xaxis limits for all profiles. Set by inits, can be reset by user rlims = None # ----------------------------------------------------------------------- # Artist setups # ----------------------------------------------------------------------- def _setup_artist(self, fig, ax, *, use_name=True): '''setup a plot (figure and ax) with one single ax''' if ax is None: if fig is None: # no figure or ax provided, make one here fig, ax = plt.subplots() else: # Figure provided, no ax provided. Try to grab it from the fig # if that doens't work, create it cur_axes = fig.axes if len(cur_axes) > 1: raise ValueError(f"figure {fig} already has too many axes") elif len(cur_axes) == 1: ax = cur_axes[0] else: ax = fig.add_subplot() else: if fig is None: # ax is provided, but no figure. Grab it's figure from it fig = ax.get_figure() if hasattr(self, 'name') and use_name: fig.suptitle(self.name) return fig, ax def _setup_multi_artist(self, fig, shape, *, allow_blank=True, use_name=True, constrained_layout=True, subfig_kw=None, **sub_kw): '''setup a subplot with multiple axes''' if subfig_kw is None: subfig_kw = {} def create_axes(base, shape): '''create the axes of `shape` on this base (fig)''' # make sure shape is a tuple of atleast 1d, at most 2d if not isinstance(shape, tuple): # TODO doesnt work on an int shape = tuple(shape) if len(shape) == 1: shape = (shape, 1) elif len(shape) > 2: mssg = f"Invalid `shape` for subplots {shape}, must be 2D" raise ValueError(mssg) # split into dict of nrows, ncols shape = dict(zip(("nrows", "ncols"), shape)) # if either of them is also a tuple, means we want columns or rows # of varying sizes, switch to using subfigures # TODO what are the chances stuff like `sharex` works correctly? if isinstance(shape['nrows'], tuple): subfigs = base.subfigures(ncols=shape['ncols'], nrows=1, squeeze=False, **subfig_kw) for ind, sf in enumerate(subfigs.flatten()): try: nr = shape['nrows'][ind] except IndexError: if allow_blank: continue mssg = (f"Number of row entries {shape['nrows']} must " f"match number of columns ({shape['ncols']})") raise ValueError(mssg) sf.subplots(ncols=1, nrows=nr, **sub_kw) elif isinstance(shape['ncols'], tuple): subfigs = base.subfigures(nrows=shape['nrows'], ncols=1, squeeze=False, **subfig_kw) for ind, sf in enumerate(subfigs.flatten()): try: nc = shape['ncols'][ind] except IndexError: if allow_blank: continue mssg = (f"Number of col entries {shape['ncols']} must " f"match number of rows ({shape['nrows']})") raise ValueError(mssg) sf.subplots(nrows=1, ncols=nc, **sub_kw) # otherwise just make a simple subplots and return that else: base.subplots(**shape, **sub_kw) return base, base.axes # ------------------------------------------------------------------ # Create figure, if necessary # ------------------------------------------------------------------ if fig is None: fig = plt.figure(constrained_layout=constrained_layout) # ------------------------------------------------------------------ # If no shape is provided, just return the figure, probably empty # ------------------------------------------------------------------ if shape is None: axarr = [] # ------------------------------------------------------------------ # Otherwise attempt to first grab this figures axes, or create them # ------------------------------------------------------------------ else: # this fig has axes, check that they match shape if axarr := fig.axes: # TODO this won't actually work, cause fig.axes is just a list if axarr.shape != shape: mssg = (f"figure {fig} already contains axes with " f"mismatched shape ({axarr.shape} != {shape})") raise ValueError(mssg) else: fig, axarr = create_axes(fig, shape) # ------------------------------------------------------------------ # If desired, default to titling the figure based on it's "name" # ------------------------------------------------------------------ if hasattr(self, 'name') and use_name: fig.suptitle(self.name) # ------------------------------------------------------------------ # Ensure the axes are always returned in an array # ------------------------------------------------------------------ return fig, np.atleast_1d(axarr) # ----------------------------------------------------------------------- # Unit support # ----------------------------------------------------------------------- def _support_units(method): import functools @functools.wraps(method) def _unit_decorator(self, *args, **kwargs): # convert based on median distance parameter eqvs = util.angular_width(self.d) with astroviz.quantity_support(), u.set_enabled_equivalencies(eqvs): return method(self, *args, **kwargs) return _unit_decorator # ----------------------------------------------------------------------- # Plotting functionality # ----------------------------------------------------------------------- def _get_median(self, percs): '''from an array of data percentiles, return the median array''' return percs[percs.shape[0] // 2] if percs.ndim > 1 else percs def _get_err(self, dataset, key): '''gather the error variables corresponding to `key` from `dataset`''' try: return dataset[f'Δ{key}'] except KeyError: try: return (dataset[f'Δ{key},down'], dataset[f'Δ{key},up']) except KeyError: return None def _plot_model(self, ax, data, intervals=None, *, x_data=None, x_unit='pc', y_unit=None, CI_kwargs=None, **kwargs): CI_kwargs = dict() if CI_kwargs is None else CI_kwargs # ------------------------------------------------------------------ # Evaluate the shape of the data array to determine confidence # intervals, if applicable # ------------------------------------------------------------------ if data is None or data.ndim == 0: return elif data.ndim == 1: data = data.reshape((1, data.size)) if not (data.shape[0] % 2): mssg = 'Invalid `data`, must have odd-numbered zeroth axis shape' raise ValueError(mssg) midpoint = data.shape[0] // 2 if intervals is None: intervals = midpoint elif intervals > midpoint: mssg = f'{intervals}σ is outside stored range of {midpoint}σ' raise ValueError(mssg) # ------------------------------------------------------------------ # Convert any units desired # ------------------------------------------------------------------ x_domain = self.r if x_data is None else x_data if x_unit: x_domain = x_domain.to(x_unit) if y_unit: data = data.to(y_unit) # ------------------------------------------------------------------ # Plot the median (assumed to be the middle axis of the intervals) # ------------------------------------------------------------------ median = data[midpoint] med_plot, = ax.plot(x_domain, median, **kwargs) # ------------------------------------------------------------------ # Plot confidence intervals successively from the midpoint # ------------------------------------------------------------------ output = [med_plot] CI_kwargs.setdefault('color', med_plot.get_color()) alpha = 0.8 / (intervals + 1) for sigma in range(1, intervals + 1): CI = ax.fill_between( x_domain, data[midpoint + sigma], data[midpoint - sigma], alpha=(1 - alpha), **CI_kwargs ) output.append(CI) alpha += alpha return output def _plot_data(self, ax, dataset, y_key, *, x_key='r', x_unit='pc', y_unit=None, err_transform=None, **kwargs): # TODO need to handle colours better defaultcolour = None # ------------------------------------------------------------------ # Get data and relevant errors for plotting # ------------------------------------------------------------------ xdata = dataset[x_key] ydata = dataset[y_key] xerr = self._get_err(dataset, x_key) yerr = self._get_err(dataset, y_key) # ------------------------------------------------------------------ # Convert any units desired # ------------------------------------------------------------------ if x_unit is not None: xdata = xdata.to(x_unit) if y_unit is not None: ydata = ydata.to(y_unit) # ------------------------------------------------------------------ # If given, transform errors based on `err_transform` function # ------------------------------------------------------------------ if err_transform is not None: yerr = err_transform(yerr) # ------------------------------------------------------------------ # Setup default plotting details, style, labels # ------------------------------------------------------------------ kwargs.setdefault('marker', '.') kwargs.setdefault('linestyle', 'None') kwargs.setdefault('color', defaultcolour) # TODO should try to cite, but if that fails just use raw bibcode? label = dataset.cite() if 'm' in dataset.mdata: label += fr' ($m={dataset.mdata["m"]}\ M_\odot$)' # ------------------------------------------------------------------ # Plot # ------------------------------------------------------------------ # TODO not sure if I like the mfc=none style, # mostly due to https://github.com/matplotlib/matplotlib/issues/3400 return ax.errorbar(xdata, ydata, xerr=xerr, yerr=yerr, mfc='none', label=label, **kwargs) def _plot_profile(self, ax, ds_pattern, y_key, model_data, *, residuals=False, err_transform=None, **kwargs): '''figure out what needs to be plotted and call model/data plotters all **kwargs passed to both _plot_model and _plot_data model_data dimensions *must* be (mass bins, intervals, r axis) ''' # TODO we might still want to allow for specific model/data kwargs? ds_pattern = ds_pattern or '' strict = kwargs.pop('strict', False) # Restart marker styles each plotting call markers = iter(self._MARKERS) # TODO need to figure out how we handle passed kwargs better default_clr = kwargs.pop('color', None) # ------------------------------------------------------------------ # Determine the relevant datasets to the given pattern # ------------------------------------------------------------------ datasets = self.obs.filter_datasets(ds_pattern) if strict and ds_pattern and not datasets: mssg = f"Dataset matching '{ds_pattern}' do not exist in {self.obs}" # raise DataError raise KeyError(mssg) # ------------------------------------------------------------------ # Iterate over the datasets, keeping track of all relevant masses # and calling `_plot_data` # ------------------------------------------------------------------ masses = {} for key, dset in datasets.items(): mrk = next(markers) # get mass bin of this dataset, for later model plotting if 'm' in dset.mdata: m = dset.mdata['m'] * u.Msun mass_bin = np.where(self.mj == m)[0][0] else: mass_bin = self.star_bin if mass_bin in masses: clr = masses[mass_bin][0][0].get_color() else: clr = default_clr # plot the data try: line = self._plot_data(ax, dset, y_key, marker=mrk, color=clr, err_transform=err_transform, **kwargs) except KeyError as err: if strict: raise err else: # warnings.warn(err.args[0]) continue masses.setdefault(mass_bin, []) masses[mass_bin].append(line) # ------------------------------------------------------------------ # Based on the masses of data plotted, plot the corresponding axes of # the model data, calling `_plot_model` # ------------------------------------------------------------------ if model_data is not None: # ensure that the data is (mass bin, intervals, r domain) if len(model_data.shape) != 3: raise ValueError("invalid model data shape") # No data plotted, use the star_bin if not masses: if model_data.shape[0] > 1: masses = {self.star_bin: None} else: masses = {0: None} res_ax = None for mbin, errbars in masses.items(): ymodel = model_data[mbin, :, :] # TODO having model/data be same color is kinda hard to read # this is why I added mfc=none, but I dont like that either if errbars is not None: clr = errbars[0][0].get_color() else: clr = default_clr self._plot_model(ax, ymodel, color=clr, **kwargs) if residuals: res_ax = self._add_residuals(ax, ymodel, errbars, res_ax=res_ax, **kwargs) if self.rlims is not None: ax.set_xlim(*self.rlims) # ----------------------------------------------------------------------- # Plot extras # ----------------------------------------------------------------------- def _add_residuals(self, ax, ymodel, errorbars, *, xmodel=None, y_unit=None, res_ax=None, **kwargs): ''' errorbars : a list of outputs from calls to plt.errorbars ''' from mpl_toolkits.axes_grid1 import make_axes_locatable if not errorbars: mssg = "Cannot compute residuals, no observables data provided" raise ValueError(mssg) # ------------------------------------------------------------------ # Get model data and spline # ------------------------------------------------------------------ if xmodel is None: xmodel = self.r if y_unit is not None: ymodel = ymodel.to(y_unit) ymedian = self._get_median(ymodel) yspline = util.QuantitySpline(xmodel, ymedian) # ------------------------------------------------------------------ # Setup axes, adding a new smaller axe for the residual underneath, # if it hasn't already been created (and passed to `res_ax`) # ------------------------------------------------------------------ if res_ax is None: divider = make_axes_locatable(ax) res_ax = divider.append_axes('bottom', size="15%", pad=0, sharex=ax) res_ax.grid() res_ax.set_xscale(ax.get_xscale()) # ------------------------------------------------------------------ # Plot the model line, hopefully centred on zero # ------------------------------------------------------------------ self._plot_model(res_ax, ymodel - ymedian, color='k') # ------------------------------------------------------------------ # Get data from the plotted errorbars # ------------------------------------------------------------------ for errbar in errorbars: # -------------------------------------------------------------- # Get the actual datapoints, and the hopefully correct units # -------------------------------------------------------------- xdata, ydata = errbar[0].get_data() ydata = ydata.to(ymedian.unit) # -------------------------------------------------------------- # Grab relevant formatting (colours and markers) # -------------------------------------------------------------- clr = errbar[0].get_color() mrk = errbar[0].get_marker() # -------------------------------------------------------------- # Parse the errors from the size of the errorbar lines (messy) # -------------------------------------------------------------- xerr = yerr = None if errbar.has_xerr: xerr_lines = errbar[2][0] yerr_lines = errbar[2][1] if errbar.has_yerr else None elif errbar.has_yerr: xerr_lines, yerr_lines = None, errbar[2][0] else: xerr_lines = yerr_lines = None if xerr_lines: xerr = np.array([(np.diff(seg, axis=0) / 2)[..., -1] for seg in xerr_lines.get_segments()]).T[0] xerr <<= xdata.unit if yerr_lines: yerr = np.array([(np.diff(seg, axis=0) / 2)[..., -1] for seg in yerr_lines.get_segments()]).T[0] yerr <<= ydata.unit # -------------------------------------------------------------- # Compute the residuals and plot them # -------------------------------------------------------------- res = yspline(xdata) - ydata res_ax.errorbar(xdata, res, xerr=xerr, yerr=yerr, color=clr, marker=mrk, linestyle='none') return res_ax def _add_hyperparam(self, ax, ymodel, xdata, ydata, yerr): # TODO this is still a complete mess yspline = util.QuantitySpline(self.r, ymodel) if hasattr(ax, 'aeff_text'): aeff_str = ax.aeff_text.get_text() aeff = float(aeff_str[aeff_str.rfind('$') + 1:]) else: # TODO figure out best place to place this at ax.aeff_text = ax.text(0.1, 0.3, '') aeff = 0. aeff += util.hyperparam_effective(ydata, yspline(xdata), yerr) ax.aeff_text.set_text(fr'$\alpha_{{eff}}=${aeff:.4e}') # ----------------------------------------------------------------------- # Observables plotting # ----------------------------------------------------------------------- @_support_units def plot_LOS(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', y_unit='km/s'): fig, ax = self._setup_artist(fig, ax) ax.set_title('Line-of-Sight Velocity Dispersion') ax.set_xscale("log") if show_obs: pattern, var = '*velocity_dispersion*', 'σ' strict = show_obs == 'strict' else: pattern = var = None strict = False self._plot_profile(ax, pattern, var, self.LOS, strict=strict, residuals=residuals, x_unit=x_unit, y_unit=y_unit) ax.legend() return fig @_support_units def plot_pm_tot(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', y_unit='mas/yr'): fig, ax = self._setup_artist(fig, ax) ax.set_title("Total Proper Motion") ax.set_xscale("log") if show_obs: pattern, var = '*proper_motion*', 'PM_tot' strict = show_obs == 'strict' else: pattern = var = None strict = False self._plot_profile(ax, pattern, var, self.pm_tot, strict=strict, residuals=residuals, x_unit=x_unit, y_unit=y_unit) ax.legend() return fig @_support_units def plot_pm_ratio(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc'): fig, ax = self._setup_artist(fig, ax) ax.set_title("Proper Motion Anisotropy") ax.set_xscale("log") if show_obs: pattern, var = '*proper_motion*', 'PM_ratio' strict = show_obs == 'strict' else: pattern = var = None strict = False self._plot_profile(ax, pattern, var, self.pm_ratio, strict=strict, residuals=residuals, x_unit=x_unit) ax.legend() return fig @_support_units def plot_pm_T(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', y_unit='mas/yr'): fig, ax = self._setup_artist(fig, ax) ax.set_title("Tangential Proper Motion") ax.set_xscale("log") if show_obs: pattern, var = '*proper_motion*', 'PM_T' strict = show_obs == 'strict' else: pattern = var = None strict = False # pm_T = self.pm_T.to('mas/yr') self._plot_profile(ax, pattern, var, self.pm_T, strict=strict, residuals=residuals, x_unit=x_unit, y_unit=y_unit) ax.legend() return fig @_support_units def plot_pm_R(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', y_unit='mas/yr'): fig, ax = self._setup_artist(fig, ax) ax.set_title("Radial Proper Motion") ax.set_xscale("log") if show_obs: pattern, var = '*proper_motion*', 'PM_R' strict = show_obs == 'strict' else: pattern = var = None strict = False # pm_R = self.pm_R.to('mas/yr') self._plot_profile(ax, pattern, var, self.pm_R, strict=strict, residuals=residuals, x_unit=x_unit, y_unit=y_unit) ax.legend() return fig @_support_units def plot_number_density(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc'): def quad_nuisance(err): return np.sqrt(err**2 + (self.s2 << err.unit**2)) fig, ax = self._setup_artist(fig, ax) ax.set_title('Number Density') ax.loglog() if show_obs: pattern, var = '*number_density*', 'Σ' strict = show_obs == 'strict' kwargs = {'err_transform': quad_nuisance} else: pattern = var = None strict = False kwargs = {} self._plot_profile(ax, pattern, var, self.numdens, strict=strict, residuals=residuals, x_unit=x_unit, **kwargs) # bit arbitrary, but probably fine for the most part ax.set_ylim(bottom=1e-4) ax.legend() return fig @_support_units def plot_pulsar(self, fig=None, ax=None, show_obs=True): # TODO this is out of date with the new pulsar probability code # TODO I dont even think this is what we should use anymore, but the # new convolved distributions peak fig, ax = self._setup_artist(fig, ax) ax.set_title('Pulsar LOS Acceleration') ax.set_xlabel('R') ax.set_ylabel(r'$a_{los}$') maz = u.Quantity(np.empty(self.model.nstep - 1), '1/s') for i in range(self.model.nstep - 1): a_domain, Paz = pulsars.cluster_component(self.model, self.model.r[i], -1) maz[i] = a_domain[Paz.argmax()] << maz.unit maz = (self.obs['pulsar/P'] * maz).decompose() if show_obs: try: obs_pulsar = self.obs['pulsar'] ax.errorbar(obs_pulsar['r'], self.obs['pulsar/Pdot'], yerr=self.obs['pulsar/ΔPdot'], fmt='k.') except KeyError as err: if show_obs != 'attempt': raise err model_r = self.model.r.to(u.arcmin, util.angular_width(self.model.d)) upper_az, = ax.plot(model_r[:-1], maz) ax.plot(model_r[:-1], -maz, c=upper_az.get_color()) return fig @_support_units def plot_pulsar_spin_dist(self, fig=None, ax=None, pulsar_ind=0, show_obs=True, show_conv=False): import scipy.interpolate as interp fig, ax = self._setup_artist(fig, ax) # pulsars = self.obs['pulsar'] puls_obs = self.obs['pulsar/spin'] id_ = puls_obs['id'][pulsar_ind].value.decode() ax.set_title(f'Pulsar "{id_}" Period Derivative Likelihood') ax.set_ylabel('Probability') ax.set_xlabel(r'$\dot{P}/P$ $\left[s^{-1}\right]$') mass_bin = -1 kde = pulsars.field_Pdot_KDE() Pdot_min, Pdot_max = kde.dataset[1].min(), kde.dataset[1].max() R = puls_obs['r'][pulsar_ind].to(u.pc) P = puls_obs['P'][pulsar_ind].to('s') Pdot_meas = puls_obs['Pdot'][pulsar_ind] ΔPdot_meas = np.abs(puls_obs['ΔPdot'][pulsar_ind]) PdotP_domain, PdotP_c_prob = pulsars.cluster_component(self.model, R, mass_bin) Pdot_domain = (P * PdotP_domain).decompose() # linear to avoid effects around asymptote Pdot_c_spl = interp.UnivariateSpline( Pdot_domain, PdotP_c_prob, k=1, s=0, ext=1 ) err = util.gaussian(x=Pdot_domain, sigma=ΔPdot_meas, mu=0) err_spl = interp.UnivariateSpline(Pdot_domain, err, k=3, s=0, ext=1) lg_P = np.log10(P / P.unit) P_grid, Pdot_int_domain = np.mgrid[lg_P:lg_P:1j, Pdot_min:Pdot_max:200j] P_grid, Pdot_int_domain = P_grid.ravel(), Pdot_int_domain.ravel() Pdot_int_prob = kde(np.vstack([P_grid, Pdot_int_domain])) Pdot_int_spl = interp.UnivariateSpline( Pdot_int_domain, Pdot_int_prob, k=3, s=0, ext=1 ) Pdot_int_prob = util.RV_transform( domain=10**Pdot_int_domain, f_X=Pdot_int_spl, h=np.log10, h_prime=lambda y: (1 / (np.log(10) * y)) ) Pdot_int_spl = interp.UnivariateSpline( 10**Pdot_int_domain, Pdot_int_prob, k=3, s=0, ext=1 ) lin_domain = np.linspace(0., 1e-18, 5_000 // 2) lin_domain = np.concatenate((np.flip(-lin_domain[1:]), lin_domain)) conv1 = np.convolve(err_spl(lin_domain), Pdot_c_spl(lin_domain), 'same') conv2 = np.convolve(conv1, Pdot_int_spl(lin_domain), 'same') # Normalize conv2 /= interp.UnivariateSpline( lin_domain, conv2, k=3, s=0, ext=1 ).integral(-np.inf, np.inf) cluster_μ = self.obs.mdata['μ'] << u.Unit("mas/yr") PdotP_pm = pulsars.shklovskii_component(cluster_μ, self.model.d) cluster_coords = (self.obs.mdata['b'], self.obs.mdata['l']) * u.deg PdotP_gal = pulsars.galactic_component(*cluster_coords, D=self.model.d) x_total = (lin_domain / P) + PdotP_pm + PdotP_gal ax.plot(x_total, conv2) if show_conv: # Will really mess the scaling up, usually ax.plot(x_total, Pdot_c_spl(lin_domain)) ax.plot(x_total, conv1) if show_obs: ax.axvline((Pdot_meas / P).decompose(), c='r', ls=':') prob_dist = interp.interp1d( (lin_domain / P) + PdotP_pm + PdotP_gal, conv2, assume_sorted=True, bounds_error=False, fill_value=0.0 ) print('prob=', prob_dist((Pdot_meas / P).decompose())) return fig @_support_units def plot_pulsar_orbital_dist(self, fig=None, ax=None, pulsar_ind=0, show_obs=True, show_conv=False): import scipy.interpolate as interp fig, ax = self._setup_artist(fig, ax) # pulsars = self.obs['pulsar'] puls_obs = self.obs['pulsar/orbital'] id_ = puls_obs['id'][pulsar_ind].value.decode() ax.set_title(f'Pulsar "{id_}" Period Derivative Likelihood') ax.set_ylabel('Probability') ax.set_xlabel(r'$\dot{P}/P$ $\left[s^{-1}\right]$') mass_bin = -1 R = puls_obs['r'][pulsar_ind].to(u.pc) P = puls_obs['Pb'][pulsar_ind].to('s') Pdot_meas = puls_obs['Pbdot'][pulsar_ind] ΔPdot_meas = np.abs(puls_obs['ΔPbdot'][pulsar_ind]) PdotP_domain, PdotP_c_prob = pulsars.cluster_component(self.model, R, mass_bin) Pdot_domain = (P * PdotP_domain).decompose() Pdot_c_spl = interp.UnivariateSpline( Pdot_domain, PdotP_c_prob, k=1, s=0, ext=1 ) err = util.gaussian(x=Pdot_domain, sigma=ΔPdot_meas, mu=0) err_spl = interp.UnivariateSpline(Pdot_domain, err, k=3, s=0, ext=1) lin_domain = np.linspace(0., 1e-11, 5_000 // 2) lin_domain = np.concatenate((np.flip(-lin_domain[1:]), lin_domain)) conv = np.convolve(err_spl(lin_domain), Pdot_c_spl(lin_domain), 'same') # conv = np.convolve(err, PdotP_c_prob, 'same') # Normalize conv /= interp.UnivariateSpline( lin_domain, conv, k=3, s=0, ext=1 ).integral(-np.inf, np.inf) cluster_μ = self.obs.mdata['μ'] << u.Unit("mas/yr") PdotP_pm = pulsars.shklovskii_component(cluster_μ, self.model.d) cluster_coords = (self.obs.mdata['b'], self.obs.mdata['l']) * u.deg PdotP_gal = pulsars.galactic_component(*cluster_coords, D=self.model.d) x_total = (lin_domain / P) + PdotP_pm + PdotP_gal ax.plot(x_total, conv) if show_conv: # Will really mess the scaling up, usually ax.plot(x_total, PdotP_c_prob) ax.plot(x_total, conv) if show_obs: ax.axvline((Pdot_meas / P).decompose(), c='r', ls=':') prob_dist = interp.interp1d( x_total, conv, assume_sorted=True, bounds_error=False, fill_value=0.0 ) print('prob=', prob_dist((Pdot_meas / P).decompose())) return fig @_support_units def plot_all(self, fig=None, show_obs='attempt'): '''Plots all the primary profiles (numdens, LOS, PM) but *not* the mass function, pulsars, or any secondary profiles (cum-mass, remnants, etc) ''' fig, axes = self._setup_multi_artist(fig, (3, 2)) axes = axes.reshape((3, 2)) fig.suptitle(str(self.obs)) kw = {} self.plot_number_density(fig=fig, ax=axes[0, 0], **kw) self.plot_LOS(fig=fig, ax=axes[1, 0], **kw) self.plot_pm_ratio(fig=fig, ax=axes[2, 0], **kw) self.plot_pm_tot(fig=fig, ax=axes[0, 1], **kw) self.plot_pm_T(fig=fig, ax=axes[1, 1], **kw) self.plot_pm_R(fig=fig, ax=axes[2, 1], **kw) for ax in axes.flatten(): ax.set_xlabel('') return fig # ---------------------------------------------------------------------- # Mass Function Plotting # ---------------------------------------------------------------------- @_support_units def plot_mass_func(self, fig=None, show_obs=True, show_fields=False, *, colours=None, PI_legend=False, logscaled=False, field_kw=None): # ------------------------------------------------------------------ # Setup axes, splitting into two columns if necessary and adding the # extra ax for the field plot if desired # ------------------------------------------------------------------ N_rbins = sum([len(d) for d in self.mass_func.values()]) shape = ((int(np.ceil(N_rbins / 2)), int(np.floor(N_rbins / 2))), 2) # If adding the fields, include an extra column on the left for it if show_fields: shape = ((1, *shape[0]), shape[1] + 1) fig, axes = self._setup_multi_artist(fig, shape, sharex=True) axes = axes.T.flatten() ax_ind = 0 # ------------------------------------------------------------------ # If desired, use the `plot_MF_fields` method to show the fields # ------------------------------------------------------------------ if show_fields: ax = axes[ax_ind] if field_kw is None: field_kw = {} field_kw.setdefault('radii', []) # TODO need to figure out a good size and how to do it, for this ax self.plot_MF_fields(fig, ax, **field_kw) ax_ind += 1 # ------------------------------------------------------------------ # Iterate over each PI, gathering data to plot # ------------------------------------------------------------------ for PI in sorted(self.mass_func, key=lambda k: self.mass_func[k][0]['r1']): bins = self.mass_func[PI] # Get data for this PI mf = self.obs[PI] mbin_mean = (mf['m1'] + mf['m2']) / 2. mbin_width = mf['m2'] - mf['m1'] N = mf['N'] / mbin_width ΔN = mf['ΔN'] / mbin_width # -------------------------------------------------------------- # Iterate over radial bin dicts for this PI # -------------------------------------------------------------- for rind, rbin in enumerate(bins): ax = axes[ax_ind] clr = rbin.get('colour', None) # ---------------------------------------------------------- # Plot observations # ---------------------------------------------------------- if show_obs: r_mask = ((mf['r1'] == rbin['r1']) & (mf['r2'] == rbin['r2'])) N_data = N[r_mask].value err_data = ΔN[r_mask].value err = self.F * err_data pnts = ax.errorbar(mbin_mean[r_mask], N_data, yerr=err, fmt='o', color=clr) clr = pnts[0].get_color() # ---------------------------------------------------------- # Plot model. Doesn't utilize the `_plot_profile` method, as # this is *not* a profile, but does use similar, but simpler, # logic # ---------------------------------------------------------- dNdm = rbin['dNdm'] midpoint = dNdm.shape[0] // 2 m_domain = self.mj[:dNdm.shape[-1]] median = dNdm[midpoint] med_plot, = ax.plot(m_domain, median, '--', c=clr) alpha = 0.8 / (midpoint + 1) for sigma in range(1, midpoint + 1): ax.fill_between( m_domain, dNdm[midpoint + sigma], dNdm[midpoint - sigma], alpha=1 - alpha, color=clr ) alpha += alpha if logscaled: ax.set_xscale('log') ax.set_xlabel(None) # ---------------------------------------------------------- # "Label" each bin with it's radial bounds. # Uses fake text to allow for using loc='best' from `legend`. # Really this should be a part of plt (see matplotlib#17946) # ---------------------------------------------------------- r1 = rbin['r1'].to_value('arcmin') r2 = rbin['r2'].to_value('arcmin') fake = plt.Line2D([], [], label=f"r = {r1:.2f}'-{r2:.2f}'") handles = [fake] leg_kw = {'handlelength': 0, 'handletextpad': 0} # If this is the first bin, also add a PI tag if PI_legend and not rind and not show_fields: pi_fake = plt.Line2D([], [], label=PI) handles.append(pi_fake) leg_kw['labelcolor'] = ['k', clr] ax.legend(handles=handles, **leg_kw) ax_ind += 1 # ------------------------------------------------------------------ # Put labels on subfigs # ------------------------------------------------------------------ for sf in fig.subfigs[show_fields:]: sf.supxlabel(r'Mass [$M_\odot$]') fig.subfigs[show_fields].supylabel('dN/dm') return fig @_support_units def plot_MF_fields(self, fig=None, ax=None, *, radii=("rh",), cmap=None, grid=True): '''plot all mass function fields in this observation ''' import shapely.geometry as geom fig, ax = self._setup_artist(fig, ax) # Centre dot ax.plot(0, 0, 'kx') # ------------------------------------------------------------------ # Iterate over each PI and it's radial bins # ------------------------------------------------------------------ for PI, bins in self.mass_func.items(): for rbin in bins: # ---------------------------------------------------------- # Plot the field using this `Field` slice's own plotting method # ---------------------------------------------------------- clr = rbin.get("colour", None) rbin['field'].plot(ax, fc=clr, alpha=0.7, ec='k', label=PI) # make this label private so it's only added once to legend PI = f'_{PI}' # ------------------------------------------------------------------ # If desired, add a "pseudo" grid in the polar projection, at 2 # arcmin intervals, up to the rt # ------------------------------------------------------------------ # Ensure the gridlines don't affect the axes scaling ax.autoscale(False) if grid: rt = self.rt if hasattr(self, 'rt') else (20 << u.arcmin) ticks = np.arange(2, rt.to_value('arcmin'), 2) # make sure this grid matches normal grids grid_kw = { 'color': plt.rcParams.get('grid.color'), 'linestyle': plt.rcParams.get('grid.linestyle'), 'linewidth': plt.rcParams.get('grid.linewidth'), 'alpha': plt.rcParams.get('grid.alpha'), 'zorder': 0.5 } for gr in ticks: circle = np.array(geom.Point(0, 0).buffer(gr).exterior).T gr_line, = ax.plot(*circle, **grid_kw) ax.annotate(f'{gr:.0f}"', xy=(circle[0].max(), 0), color=grid_kw['color']) # ------------------------------------------------------------------ # Try to plot the various radii quantities from this model, if desired # ------------------------------------------------------------------ # TODO for CI this could be a CI of rh, ra, rt actually (60) for r_type in radii: # This is to explicitly avoid very ugly exceptions from geom if r_type not in {'rh', 'ra', 'rt'}: mssg = f'radii must be one of {{rh, ra, rt}}, not `{r_type}`' raise TypeError(mssg) radius = getattr(self, r_type).to_value('arcmin') circle = np.array(geom.Point(0, 0).buffer(radius).exterior).T ax.plot(*circle, ls='--') ax.text(0, circle[1].max(), r_type) # ------------------------------------------------------------------ # Add plot labels and legends # ------------------------------------------------------------------ ax.set_xlabel('RA [arcmin]') ax.set_ylabel('DEC [arcmin]') # TODO figure out a better way of handling this always using best? (75) ax.legend(loc='upper left' if grid else 'best') return fig # ----------------------------------------------------------------------- # Model plotting # ----------------------------------------------------------------------- @_support_units def plot_density(self, fig=None, ax=None, kind='all', *, x_unit='pc'): if kind == 'all': kind = {'MS', 'tot', 'BH', 'WD', 'NS'} fig, ax = self._setup_artist(fig, ax) # ax.set_title('Surface Mass Density') # Total density if 'tot' in kind: kw = {"label": "Total", "color": "tab:cyan"} self._plot_profile(ax, None, None, self.rho_tot, x_unit=x_unit, **kw) # Total Remnant density if 'rem' in kind: kw = {"label": "Remnants", "color": "tab:purple"} self._plot_profile(ax, None, None, self.rho_rem, x_unit=x_unit, **kw) # Main sequence density if 'MS' in kind: kw = {"label": "Main-sequence stars", "color": "tab:orange"} self._plot_profile(ax, None, None, self.rho_MS, x_unit=x_unit, **kw) if 'WD' in kind: kw = {"label": "White Dwarfs", "color": "tab:green"} self._plot_profile(ax, None, None, self.rho_WD, x_unit=x_unit, **kw) if 'NS' in kind: kw = {"label": "Neutron Stars", "color": "tab:red"} self._plot_profile(ax, None, None, self.rho_NS, x_unit=x_unit, **kw) # Black hole density if 'BH' in kind: kw = {"label": "Black Holes", "color": "tab:gray"} self._plot_profile(ax, None, None, self.rho_BH, x_unit=x_unit, **kw) ax.set_yscale("log") ax.set_xscale("log") ax.set_ylabel(rf'Surface Density $[M_\odot / pc^3]$') # ax.set_xlabel('arcsec') # ax.legend() fig.legend(loc='upper center', ncol=6, bbox_to_anchor=(0.5, 1.), fancybox=True) return fig @_support_units def plot_surface_density(self, fig=None, ax=None, kind='all', *, x_unit='pc'): if kind == 'all': kind = {'MS', 'tot', 'BH', 'WD', 'NS'} fig, ax = self._setup_artist(fig, ax) # ax.set_title('Surface Mass Density') # Total density if 'tot' in kind: kw = {"label": "Total", "color": "tab:cyan"} self._plot_profile(ax, None, None, self.Sigma_tot, x_unit=x_unit, **kw) # Total Remnant density if 'rem' in kind: kw = {"label": "Remnants", "color": "tab:purple"} self._plot_profile(ax, None, None, self.Sigma_rem, x_unit=x_unit, **kw) # Main sequence density if 'MS' in kind: kw = {"label": "Main-sequence stars", "color": "tab:orange"} self._plot_profile(ax, None, None, self.Sigma_MS, x_unit=x_unit, **kw) if 'WD' in kind: kw = {"label": "White Dwarfs", "color": "tab:green"} self._plot_profile(ax, None, None, self.Sigma_WD, x_unit=x_unit, **kw) if 'NS' in kind: kw = {"label": "Neutron Stars", "color": "tab:red"} self._plot_profile(ax, None, None, self.Sigma_NS, x_unit=x_unit, **kw) # Black hole density if 'BH' in kind: kw = {"label": "Black Holes", "color": "tab:gray"} self._plot_profile(ax, None, None, self.Sigma_BH, x_unit=x_unit, **kw) ax.set_yscale("log") ax.set_xscale("log") ax.set_ylabel(rf'Surface Density $[M_\odot / pc^2]$') # ax.set_xlabel('arcsec') # ax.legend() fig.legend(loc='upper center', ncol=6, bbox_to_anchor=(0.5, 1.), fancybox=True) return fig @_support_units def plot_cumulative_mass(self, fig=None, ax=None, kind='all', *, x_unit='pc'): if kind == 'all': kind = {'MS', 'tot', 'BH', 'WD', 'NS'} fig, ax = self._setup_artist(fig, ax) # ax.set_title('Cumulative Mass') # Total density if 'tot' in kind: kw = {"label": "Total", "color": "tab:cyan"} self._plot_profile(ax, None, None, self.cum_M_tot, x_unit=x_unit, **kw) # Main sequence density if 'MS' in kind: kw = {"label": "Main-sequence stars", "color": "tab:orange"} self._plot_profile(ax, None, None, self.cum_M_MS, x_unit=x_unit, **kw) if 'WD' in kind: kw = {"label": "White Dwarfs", "color": "tab:green"} self._plot_profile(ax, None, None, self.cum_M_WD, x_unit=x_unit, **kw) if 'NS' in kind: kw = {"label": "Neutron Stars", "color": "tab:red"} self._plot_profile(ax, None, None, self.cum_M_NS, x_unit=x_unit, **kw) # Black hole density if 'BH' in kind: kw = {"label": "Black Holes", "color": "tab:gray"} self._plot_profile(ax, None, None, self.cum_M_BH, x_unit=x_unit, **kw) ax.set_yscale("log") ax.set_xscale("log") # ax.set_ylabel(rf'$M_{{enc}} ({self.cum_M_tot.unit})$') ax.set_ylabel(rf'$M_{{enc}}$ $[M_\odot]$') # ax.set_xlabel('arcsec') # ax.legend() fig.legend(loc='upper center', ncol=5, bbox_to_anchor=(0.5, 1.), fancybox=True) return fig @_support_units def plot_remnant_fraction(self, fig=None, ax=None, *, x_unit='pc'): '''Fraction of mass in remnants vs MS stars, like in baumgardt''' fig, ax = self._setup_artist(fig, ax) ax.set_title("Remnant Fraction") ax.set_xscale("log") self._plot_profile(ax, None, None, self.frac_M_MS, x_unit=x_unit, label="Main-sequence stars") self._plot_profile(ax, None, None, self.frac_M_rem, x_unit=x_unit, label="Remnants") ax.set_ylabel(r"Mass fraction $M_{MS}/M_{tot}$, $M_{remn.}/M_{tot}$") ax.set_ylim(0.0, 1.0) ax.legend() return fig # -------------------------------------------------------------------------- # Visualizers # -------------------------------------------------------------------------- class ModelVisualizer(_ClusterVisualizer): ''' class for making, showing, saving all the plots related to a single model ''' @classmethod def from_chain(cls, chain, observations, method='median'): ''' create a Visualizer instance based on a chain, y taking the median of the chain parameters ''' reduc_methods = {'median': np.median, 'mean': np.mean} # if 3d (Niters, Nwalkers, Nparams) # if 2d (Nwalkers, Nparams) # if 1d (Nparams) chain = chain.reshape((-1, chain.shape[-1])) theta = reduc_methods[method](chain, axis=0) return cls(Model(theta, observations), observations) @classmethod def from_theta(cls, theta, observations): ''' create a Visualizer instance based on a theta, see `Model` for allowed theta types ''' return cls(Model(theta, observations), observations) def __init__(self, model, observations=None): self.model = model self.obs = observations if observations else model.observations self.rh = model.rh self.ra = model.ra self.rt = model.rt self.F = model.F self.s2 = model.s2 self.d = model.d self.r = model.r self.rlims = (9e-3, self.r.max() + (5 << self.r.unit)) self._2πr = 2 * np.pi * model.r self.star_bin = model.nms - 1 self.mj = model.mj self.LOS = np.sqrt(self.model.v2pj)[:, np.newaxis, :] self.pm_T = np.sqrt(model.v2Tj)[:, np.newaxis, :] self.pm_R = np.sqrt(model.v2Rj)[:, np.newaxis, :] self.pm_tot = np.sqrt(0.5 * (self.pm_T**2 + self.pm_R**2)) self.pm_ratio = self.pm_T / self.pm_R self._init_numdens(model, observations) self._init_massfunc(model, observations) self._init_surfdens(model, observations) self._init_dens(model, observations) self._init_mass_frac(model, observations) self._init_cum_mass(model, observations) # TODO alot of these init functions could be more homogenous @_ClusterVisualizer._support_units def _init_numdens(self, model, observations): # TODO make this more robust and cleaner model_nd = model.Sigmaj / model.mj[:, np.newaxis] nd = np.empty(model_nd.shape)[:, np.newaxis, :] << model_nd.unit # If have nd obs, apply scaling factor K for mbin in range(model_nd.shape[0]): try: obs_nd = observations['number_density'] obs_r = obs_nd['r'].to(model.r.unit) nd_interp = util.QuantitySpline(model.r, model_nd[mbin, :]) K = (np.nansum(obs_nd['Σ'] * nd_interp(obs_r) / obs_nd['Σ']**2) / np.nansum(nd_interp(obs_r)**2 / obs_nd['Σ']**2)) except KeyError: K = 1 nd[mbin, 0, :] = K * model_nd[mbin, :] self.numdens = nd @_ClusterVisualizer._support_units def _init_massfunc(self, model, observations, *, cmap=None): ''' sets self.mass_func as a dict of PI's, where each PI has a list of subdicts. Each subdict represents a single radial slice (within this PI) and contains the radii, the mass func values, and the field slice ''' cmap = cmap or plt.cm.rainbow self.mass_func = {} cen = (observations.mdata['RA'], observations.mdata['DEC']) PI_list = observations.filter_datasets('*mass_function*') densityj = [util.QuantitySpline(model.r, model.Sigmaj[j]) for j in range(model.nms)] for i, (key, mf) in enumerate(PI_list.items()): self.mass_func[key] = [] # TODO same colour for each PI or different for each slice? clr = cmap(i / len(PI_list)) field = mass.Field.from_dataset(mf, cen=cen) rbins = np.unique(np.c_[mf['r1'], mf['r2']], axis=0) rbins.sort(axis=0) for r_in, r_out in rbins: this_slc = {'r1': r_in, 'r2': r_out} field_slice = field.slice_radially(r_in, r_out) this_slc['field'] = field_slice this_slc['colour'] = clr this_slc['dNdm'] = np.empty((1, model.nms)) sample_radii = field_slice.MC_sample(300).to(u.pc) for j in range(model.nms): Nj = field_slice.MC_integrate(densityj[j], sample_radii) widthj = (model.mj[j] * model.mes_widths[j]) this_slc['dNdm'][0, j] = (Nj / widthj).value self.mass_func[key].append(this_slc) @_ClusterVisualizer._support_units def _init_dens(self, model, observations): shp = (np.newaxis, np.newaxis, slice(None)) self.rho_tot = np.sum(model.rhoj, axis=0)[shp] self.rho_MS = np.sum(model.rhoj[model._star_bins], axis=0)[shp] self.rho_rem = np.sum(model.rhoj[model._remnant_bins], axis=0)[shp] self.rho_BH = np.sum(model.BH_rhoj, axis=0)[shp] self.rho_WD = np.sum(model.WD_rhoj, axis=0)[shp] self.rho_NS = np.sum(model.NS_rhoj, axis=0)[shp] @_ClusterVisualizer._support_units def _init_surfdens(self, model, observations): shp = (np.newaxis, np.newaxis, slice(None)) self.Sigma_tot = np.sum(model.Sigmaj, axis=0)[shp] self.Sigma_MS = np.sum(model.Sigmaj[model._star_bins], axis=0)[shp] self.Sigma_rem = np.sum(model.Sigmaj[model._remnant_bins], axis=0)[shp] self.Sigma_BH = np.sum(model.BH_Sigmaj, axis=0)[shp] self.Sigma_WD = np.sum(model.WD_Sigmaj, axis=0)[shp] self.Sigma_NS = np.sum(model.NS_Sigmaj, axis=0)[shp] @_ClusterVisualizer._support_units def _init_mass_frac(self, model, observations): int_MS = util.QuantitySpline(self.r, self._2πr * self.Sigma_MS) int_rem = util.QuantitySpline(self.r, self._2πr * self.Sigma_rem) int_tot = util.QuantitySpline(self.r, self._2πr * self.Sigma_tot) mass_MS = np.empty((1, 1, self.r.size)) mass_rem = np.empty((1, 1, self.r.size)) mass_tot = np.empty((1, 1, self.r.size)) # TODO the rbins at the end always mess up fractional stuff, drop to 0 mass_MS[0, 0, 0] = mass_rem[0, 0, 0] = mass_tot[0, 0, 0] = np.nan for i in range(1, self.r.size - 2): mass_MS[0, 0, i] = int_MS.integral(self.r[i], self.r[i + 1]).value mass_rem[0, 0, i] = int_rem.integral(self.r[i], self.r[i + 1]).value mass_tot[0, 0, i] = int_tot.integral(self.r[i], self.r[i + 1]).value self.frac_M_MS = mass_MS / mass_tot self.frac_M_rem = mass_rem / mass_tot @_ClusterVisualizer._support_units def _init_cum_mass(self, model, observations): int_tot = util.QuantitySpline(self.r, self._2πr * self.Sigma_tot) int_MS = util.QuantitySpline(self.r, self._2πr * self.Sigma_MS) int_BH = util.QuantitySpline(self.r, self._2πr * self.Sigma_BH) int_WD = util.QuantitySpline(self.r, self._2πr * self.Sigma_WD) int_NS = util.QuantitySpline(self.r, self._2πr * self.Sigma_NS) cum_tot = np.empty((1, 1, self.r.size)) << u.Msun cum_MS = np.empty((1, 1, self.r.size)) << u.Msun cum_BH = np.empty((1, 1, self.r.size)) << u.Msun cum_WD = np.empty((1, 1, self.r.size)) << u.Msun cum_NS = np.empty((1, 1, self.r.size)) << u.Msun for i in range(0, self.r.size): cum_tot[0, 0, i] = int_tot.integral(model.r[0], model.r[i]) cum_MS[0, 0, i] = int_MS.integral(model.r[0], model.r[i]) cum_BH[0, 0, i] = int_BH.integral(model.r[0], model.r[i]) cum_WD[0, 0, i] = int_WD.integral(model.r[0], model.r[i]) cum_NS[0, 0, i] = int_NS.integral(model.r[0], model.r[i]) self.cum_M_tot = cum_tot self.cum_M_MS = cum_MS self.cum_M_WD = cum_WD self.cum_M_NS = cum_NS self.cum_M_BH = cum_BH class CIModelVisualizer(_ClusterVisualizer): ''' class for making, showing, saving all the plots related to a bunch of models in the form of confidence intervals ''' @_ClusterVisualizer._support_units def plot_BH_mass(self, fig=None, ax=None, bins='auto', color='b'): fig, ax = self._setup_artist(fig, ax) color = mpl_clr.to_rgb(color) facecolor = color + (0.33, ) ax.hist(self.BH_mass, histtype='stepfilled', bins=bins, ec=color, fc=facecolor, lw=2) return fig @_ClusterVisualizer._support_units def plot_BH_num(self, fig=None, ax=None, bins='auto', color='b'): fig, ax = self._setup_artist(fig, ax) color = mpl_clr.to_rgb(color) facecolor = color + (0.33, ) ax.hist(self.BH_num, histtype='stepfilled', bins=bins, ec=color, fc=facecolor, lw=2) return fig @classmethod def from_chain(cls, chain, observations, N=100, *, verbose=True, pool=None): import functools viz = cls() viz.N = N viz.obs = observations # ------------------------------------------------------------------ # Get info about the chain and set of models # ------------------------------------------------------------------ # Flatten walkers, if not already chain = chain.reshape((-1, chain.shape[-1]))[-N:] median_chain = np.median(chain, axis=0) # TODO get these indices more dynamically viz.F = median_chain[7] viz.s2 = median_chain[6] viz.d = median_chain[12] << u.kpc # Setup the radial domain to interpolate everything onto # We estimate the maximum radius needed will be given by the model with # the largest value of the truncation parameter "g". This should be a # valid enough assumption for our needs. While we have it, we'll also # use this model to grab the other values we need, which shouldn't # change much between models, so using this extreme model is okay. # warning: in very large N samples, this g might be huge, and lead to a # very large rt. I'm not really sure yet how that might affect the CIs # or plots huge_model = Model(chain[np.argmax(chain[:, 4])], viz.obs) viz.rt = huge_model.rt viz.r = np.r_[0, np.geomspace(1e-5, viz.rt.value, num=99)] << u.pc viz.rlims = (9e-3, viz.r.max() + (5 << viz.r.unit)) # Assume that this example model has same nms, mj[:nms] as all models # This approximation isn't exactly correct, but close enough for plots # viz.star_bin = huge_model.nms - 1 viz.star_bin = 0 mj_MS = huge_model.mj[:huge_model.nms] mj_tracer = huge_model.mj[huge_model._tracer_bins] viz.mj = np.r_[mj_MS, mj_tracer] # ------------------------------------------------------------------ # Setup the final full parameters arrays with dims of # [mass bins, intervals (from percentile of models), radial bins] for # all "profile" datasets # ------------------------------------------------------------------ # velocities vel_unit = np.sqrt(huge_model.v2Tj).unit Nm = 1 + len(mj_tracer) vpj = np.empty((Nm, N, viz.r.size)) << vel_unit vTj, vRj, vtotj = vpj.copy(), vpj.copy(), vpj.copy() vaj = np.empty((Nm, N, viz.r.size)) << u.dimensionless_unscaled # mass density rho_unit = huge_model.rhoj.unit rho_tot = np.empty((1, N, viz.r.size)) << rho_unit rho_MS, rho_BH = rho_tot.copy(), rho_tot.copy() rho_WD, rho_NS = rho_tot.copy(), rho_tot.copy() # surface density Sigma_unit = huge_model.Sigmaj.unit Sigma_tot = np.empty((1, N, viz.r.size)) << Sigma_unit Sigma_MS, Sigma_BH = Sigma_tot.copy(), Sigma_tot.copy() Sigma_WD, Sigma_NS = Sigma_tot.copy(), Sigma_tot.copy() # Cumulative mass mass_unit = huge_model.M.unit cum_M_tot = np.empty((1, N, viz.r.size)) << mass_unit cum_M_MS, cum_M_BH = cum_M_tot.copy(), cum_M_tot.copy() cum_M_WD, cum_M_NS = cum_M_tot.copy(), cum_M_tot.copy() # Mass Fraction frac_M_MS = np.empty((1, N, viz.r.size)) << u.dimensionless_unscaled frac_M_rem = frac_M_MS.copy() # number density numdens = np.empty((1, N, viz.r.size)) << u.arcmin**-2 # mass function massfunc = viz._prep_massfunc(viz.obs) # massfunc = np.empty((N, N_rbins, huge_model.nms)) for rbins in massfunc.values(): for rslice in rbins: rslice['dNdm'] = np.empty((N, huge_model.nms)) # BH mass BH_mass = np.empty(N) << u.Msun BH_num = np.empty(N) << u.dimensionless_unscaled # ------------------------------------------------------------------ # Setup iteration and pooling # ------------------------------------------------------------------ # TODO currently does nothing # if verbose: # import tqdm # chain_loader = tqdm.tqdm(chain) # else: # chain_loader = chain # TODO assuming that chain always converges, might err if not the case get_model = functools.partial(Model, observations=viz.obs) try: _map = map if pool is None else pool.imap_unordered except AttributeError: mssg = ("Invalid pool, currently only support pools with an " "`imap_unordered` method") raise ValueError(mssg) # ------------------------------------------------------------------ # iterate over all models in the sample and compute/store their # relevant parameters # ------------------------------------------------------------------ for model_ind, model in enumerate(_map(get_model, chain)): equivs = util.angular_width(model.d) # Velocities # convoluted way of going from a slice to a list of indices tracers = list(range(len(model.mj))[model._tracer_bins]) for i, mass_bin in enumerate([model.nms - 1] + tracers): slc = (i, model_ind, slice(None)) vTj[slc], vRj[slc], vtotj[slc], \ vaj[slc], vpj[slc] = viz._init_velocities(model, mass_bin) slc = (0, model_ind, slice(None)) # Mass Densities rho_MS[slc], rho_tot[slc], rho_BH[slc], \ rho_WD[slc], rho_NS[slc] = viz._init_dens(model) # Surface Densities Sigma_MS[slc], Sigma_tot[slc], Sigma_BH[slc], \ Sigma_WD[slc], Sigma_NS[slc] = viz._init_surfdens(model) # Cumulative Mass distribution cum_M_MS[slc], cum_M_tot[slc], cum_M_BH[slc], \ cum_M_WD[slc], cum_M_NS[slc] = viz._init_cum_mass(model) # Number Densities numdens[slc] = viz._init_numdens(model, equivs=equivs) # Mass Functions for rbins in massfunc.values(): for rslice in rbins: mf = rslice['dNdm'] mf[model_ind, ...] = viz._init_dNdm(model, rslice, equivs) # Mass Fractions frac_M_MS[slc], frac_M_rem[slc] = viz._init_mass_frac(model) # Black holes BH_mass[model_ind] =
np.sum(model.BH_Mj)
numpy.sum
# pylint: disable=protected-access """ Test the wrappers for the C API. """ import os from contextlib import contextmanager import numpy as np import numpy.testing as npt import pandas as pd import pytest import xarray as xr from packaging.version import Version from pygmt import Figure, clib from pygmt.clib.conversion import dataarray_to_matrix from pygmt.clib.session import FAMILIES, VIAS from pygmt.exceptions import ( GMTCLibError, GMTCLibNoSessionError, GMTInvalidInput, GMTVersionError, ) from pygmt.helpers import GMTTempFile TEST_DATA_DIR = os.path.join(os.path.dirname(__file__), "data") with clib.Session() as _lib: gmt_version = Version(_lib.info["version"]) @contextmanager def mock(session, func, returns=None, mock_func=None): """ Mock a GMT C API function to make it always return a given value. Used to test that exceptions are raised when API functions fail by producing a NULL pointer as output or non-zero status codes. Needed because it's not easy to get some API functions to fail without inducing a Segmentation Fault (which is a good thing because libgmt usually only fails with errors). """ if mock_func is None: def mock_api_function(*args): # pylint: disable=unused-argument """ A mock GMT API function that always returns a given value. """ return returns mock_func = mock_api_function get_libgmt_func = session.get_libgmt_func def mock_get_libgmt_func(name, argtypes=None, restype=None): """ Return our mock function. """ if name == func: return mock_func return get_libgmt_func(name, argtypes, restype) setattr(session, "get_libgmt_func", mock_get_libgmt_func) yield setattr(session, "get_libgmt_func", get_libgmt_func) def test_getitem(): """ Test that I can get correct constants from the C lib. """ ses = clib.Session() assert ses["GMT_SESSION_EXTERNAL"] != -99999 assert ses["GMT_MODULE_CMD"] != -99999 assert ses["GMT_PAD_DEFAULT"] != -99999 assert ses["GMT_DOUBLE"] != -99999 with pytest.raises(GMTCLibError): ses["A_WHOLE_LOT_OF_JUNK"] # pylint: disable=pointless-statement def test_create_destroy_session(): """ Test that create and destroy session are called without errors. """ # Create two session and make sure they are not pointing to the same memory session1 = clib.Session() session1.create(name="test_session1") assert session1.session_pointer is not None session2 = clib.Session() session2.create(name="test_session2") assert session2.session_pointer is not None assert session2.session_pointer != session1.session_pointer session1.destroy() session2.destroy() # Create and destroy a session twice ses = clib.Session() for __ in range(2): with pytest.raises(GMTCLibNoSessionError): ses.session_pointer # pylint: disable=pointless-statement ses.create("session1") assert ses.session_pointer is not None ses.destroy() with pytest.raises(GMTCLibNoSessionError): ses.session_pointer # pylint: disable=pointless-statement def test_create_session_fails(): """ Check that an exception is raised when failing to create a session. """ ses = clib.Session() with mock(ses, "GMT_Create_Session", returns=None): with pytest.raises(GMTCLibError): ses.create("test-session-name") # Should fail if trying to create a session before destroying the old one. ses.create("test1") with pytest.raises(GMTCLibError): ses.create("test2") def test_destroy_session_fails(): """ Fail to destroy session when given bad input. """ ses = clib.Session() with pytest.raises(GMTCLibNoSessionError): ses.destroy() ses.create("test-session") with mock(ses, "GMT_Destroy_Session", returns=1): with pytest.raises(GMTCLibError): ses.destroy() ses.destroy() def test_call_module(): """ Run a command to see if call_module works. """ data_fname = os.path.join(TEST_DATA_DIR, "points.txt") out_fname = "test_call_module.txt" with clib.Session() as lib: with GMTTempFile() as out_fname: lib.call_module("info", "{} -C ->{}".format(data_fname, out_fname.name)) assert os.path.exists(out_fname.name) output = out_fname.read().strip() assert output == "11.5309 61.7074 -2.9289 7.8648 0.1412 0.9338" def test_call_module_invalid_arguments(): """ Fails for invalid module arguments. """ with clib.Session() as lib: with pytest.raises(GMTCLibError): lib.call_module("info", "bogus-data.bla") def test_call_module_invalid_name(): """ Fails when given bad input. """ with clib.Session() as lib: with pytest.raises(GMTCLibError): lib.call_module("meh", "") def test_call_module_error_message(): """ Check is the GMT error message was captured. """ with clib.Session() as lib: try: lib.call_module("info", "bogus-data.bla") except GMTCLibError as error: assert "Module 'info' failed with status code" in str(error) assert "gmtinfo [ERROR]: Cannot find file bogus-data.bla" in str(error) def test_method_no_session(): """ Fails when not in a session. """ # Create an instance of Session without "with" so no session is created. lib = clib.Session() with pytest.raises(GMTCLibNoSessionError): lib.call_module("gmtdefaults", "") with pytest.raises(GMTCLibNoSessionError): lib.session_pointer # pylint: disable=pointless-statement def test_parse_constant_single(): """ Parsing a single family argument correctly. """ lib = clib.Session() for family in FAMILIES: parsed = lib._parse_constant(family, valid=FAMILIES) assert parsed == lib[family] def test_parse_constant_composite(): """ Parsing a composite constant argument (separated by |) correctly. """ lib = clib.Session() test_cases = ((family, via) for family in FAMILIES for via in VIAS) for family, via in test_cases: composite = "|".join([family, via]) expected = lib[family] + lib[via] parsed = lib._parse_constant(composite, valid=FAMILIES, valid_modifiers=VIAS) assert parsed == expected def test_parse_constant_fails(): """ Check if the function fails when given bad input. """ lib = clib.Session() test_cases = [ "SOME_random_STRING", "GMT_IS_DATASET|GMT_VIA_MATRIX|GMT_VIA_VECTOR", "GMT_IS_DATASET|NOT_A_PROPER_VIA", "NOT_A_PROPER_FAMILY|GMT_VIA_MATRIX", "NOT_A_PROPER_FAMILY|ALSO_INVALID", ] for test_case in test_cases: with pytest.raises(GMTInvalidInput): lib._parse_constant(test_case, valid=FAMILIES, valid_modifiers=VIAS) # Should also fail if not given valid modifiers but is using them anyway. # This should work... lib._parse_constant( "GMT_IS_DATASET|GMT_VIA_MATRIX", valid=FAMILIES, valid_modifiers=VIAS ) # But this shouldn't. with pytest.raises(GMTInvalidInput): lib._parse_constant( "GMT_IS_DATASET|GMT_VIA_MATRIX", valid=FAMILIES, valid_modifiers=None ) def test_create_data_dataset(): """ Run the function to make sure it doesn't fail badly. """ with clib.Session() as lib: # Dataset from vectors data_vector = lib.create_data( family="GMT_IS_DATASET|GMT_VIA_VECTOR", geometry="GMT_IS_POINT", mode="GMT_CONTAINER_ONLY", dim=[10, 20, 1, 0], # columns, rows, layers, dtype ) # Dataset from matrices data_matrix = lib.create_data( family="GMT_IS_DATASET|GMT_VIA_MATRIX", geometry="GMT_IS_POINT", mode="GMT_CONTAINER_ONLY", dim=[10, 20, 1, 0], ) assert data_vector != data_matrix def test_create_data_grid_dim(): """ Create a grid ignoring range and inc. """ with clib.Session() as lib: # Grids from matrices using dim lib.create_data( family="GMT_IS_GRID|GMT_VIA_MATRIX", geometry="GMT_IS_SURFACE", mode="GMT_CONTAINER_ONLY", dim=[10, 20, 1, 0], ) def test_create_data_grid_range(): """ Create a grid specifying range and inc instead of dim. """ with clib.Session() as lib: # Grids from matrices using range and int lib.create_data( family="GMT_IS_GRID|GMT_VIA_MATRIX", geometry="GMT_IS_SURFACE", mode="GMT_CONTAINER_ONLY", ranges=[150.0, 250.0, -20.0, 20.0], inc=[0.1, 0.2], ) def test_create_data_fails(): """ Check that create_data raises exceptions for invalid input and output. """ # Passing in invalid mode with pytest.raises(GMTInvalidInput): with clib.Session() as lib: lib.create_data( family="GMT_IS_DATASET", geometry="GMT_IS_SURFACE", mode="Not_a_valid_mode", dim=[0, 0, 1, 0], ranges=[150.0, 250.0, -20.0, 20.0], inc=[0.1, 0.2], ) # Passing in invalid geometry with pytest.raises(GMTInvalidInput): with clib.Session() as lib: lib.create_data( family="GMT_IS_GRID", geometry="Not_a_valid_geometry", mode="GMT_CONTAINER_ONLY", dim=[0, 0, 1, 0], ranges=[150.0, 250.0, -20.0, 20.0], inc=[0.1, 0.2], ) # If the data pointer returned is None (NULL pointer) with pytest.raises(GMTCLibError): with clib.Session() as lib: with mock(lib, "GMT_Create_Data", returns=None): lib.create_data( family="GMT_IS_DATASET", geometry="GMT_IS_SURFACE", mode="GMT_CONTAINER_ONLY", dim=[11, 10, 2, 0], ) def test_virtual_file(): """ Test passing in data via a virtual file with a Dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() shape = (5, 3) for dtype in dtypes: with clib.Session() as lib: family = "GMT_IS_DATASET|GMT_VIA_MATRIX" geometry = "GMT_IS_POINT" dataset = lib.create_data( family=family, geometry=geometry, mode="GMT_CONTAINER_ONLY", dim=[shape[1], shape[0], 1, 0], # columns, rows, layers, dtype ) data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) lib.put_matrix(dataset, matrix=data) # Add the dataset to a virtual file and pass it along to gmt info vfargs = (family, geometry, "GMT_IN|GMT_IS_REFERENCE", dataset) with lib.open_virtual_file(*vfargs) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T] ) expected = "<matrix memory>: N = {}\t{}\n".format(shape[0], bounds) assert output == expected def test_virtual_file_fails(): """ Check that opening and closing virtual files raises an exception for non- zero return codes. """ vfargs = ( "GMT_IS_DATASET|GMT_VIA_MATRIX", "GMT_IS_POINT", "GMT_IN|GMT_IS_REFERENCE", None, ) # Mock Open_VirtualFile to test the status check when entering the context. # If the exception is raised, the code won't get to the closing of the # virtual file. with clib.Session() as lib, mock(lib, "GMT_Open_VirtualFile", returns=1): with pytest.raises(GMTCLibError): with lib.open_virtual_file(*vfargs): print("Should not get to this code") # Test the status check when closing the virtual file # Mock the opening to return 0 (success) so that we don't open a file that # we won't close later. with clib.Session() as lib, mock(lib, "GMT_Open_VirtualFile", returns=0), mock( lib, "GMT_Close_VirtualFile", returns=1 ): with pytest.raises(GMTCLibError): with lib.open_virtual_file(*vfargs): pass print("Shouldn't get to this code either") def test_virtual_file_bad_direction(): """ Test passing an invalid direction argument. """ with clib.Session() as lib: vfargs = ( "GMT_IS_DATASET|GMT_VIA_MATRIX", "GMT_IS_POINT", "GMT_IS_GRID", # The invalid direction argument 0, ) with pytest.raises(GMTInvalidInput): with lib.open_virtual_file(*vfargs): print("This should have failed") def test_virtualfile_from_vectors(): """ Test the automation for transforming vectors to virtual file dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() size = 10 for dtype in dtypes: x = np.arange(size, dtype=dtype) y = np.arange(size, size * 2, 1, dtype=dtype) z = np.arange(size * 2, size * 3, 1, dtype=dtype) with clib.Session() as lib: with lib.virtualfile_from_vectors(x, y, z) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(i.min(), i.max()) for i in (x, y, z)] ) expected = "<vector memory>: N = {}\t{}\n".format(size, bounds) assert output == expected @pytest.mark.parametrize("dtype", [str, object]) def test_virtualfile_from_vectors_one_string_or_object_column(dtype): """ Test passing in one column with string or object dtype into virtual file dataset. """ size = 5 x = np.arange(size, dtype=np.int32) y = np.arange(size, size * 2, 1, dtype=np.int32) strings = np.array(["a", "bc", "defg", "hijklmn", "opqrst"], dtype=dtype) with clib.Session() as lib: with lib.virtualfile_from_vectors(x, y, strings) as vfile: with GMTTempFile() as outfile: lib.call_module("convert", f"{vfile} ->{outfile.name}") output = outfile.read(keep_tabs=True) expected = "".join(f"{i}\t{j}\t{k}\n" for i, j, k in zip(x, y, strings)) assert output == expected @pytest.mark.parametrize("dtype", [str, object]) def test_virtualfile_from_vectors_two_string_or_object_columns(dtype): """ Test passing in two columns of string or object dtype into virtual file dataset. """ size = 5 x = np.arange(size, dtype=np.int32) y = np.arange(size, size * 2, 1, dtype=np.int32) strings1 = np.array(["a", "bc", "def", "ghij", "klmno"], dtype=dtype) strings2 = np.array(["pqrst", "uvwx", "yz!", "@#", "$"], dtype=dtype) with clib.Session() as lib: with lib.virtualfile_from_vectors(x, y, strings1, strings2) as vfile: with GMTTempFile() as outfile: lib.call_module("convert", f"{vfile} ->{outfile.name}") output = outfile.read(keep_tabs=True) expected = "".join( f"{h}\t{i}\t{j} {k}\n" for h, i, j, k in zip(x, y, strings1, strings2) ) assert output == expected def test_virtualfile_from_vectors_transpose(): """ Test transforming matrix columns to virtual file dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() shape = (7, 5) for dtype in dtypes: data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) with clib.Session() as lib: with lib.virtualfile_from_vectors(*data.T) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} -C ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["{:.0f}\t{:.0f}".format(col.min(), col.max()) for col in data.T] ) expected = "{}\n".format(bounds) assert output == expected def test_virtualfile_from_vectors_diff_size(): """ Test the function fails for arrays of different sizes. """ x = np.arange(5) y = np.arange(6) with clib.Session() as lib: with pytest.raises(GMTInvalidInput): with lib.virtualfile_from_vectors(x, y): print("This should have failed") def test_virtualfile_from_matrix(): """ Test transforming a matrix to virtual file dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() shape = (7, 5) for dtype in dtypes: data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) with clib.Session() as lib: with lib.virtualfile_from_matrix(data) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T] ) expected = "<matrix memory>: N = {}\t{}\n".format(shape[0], bounds) assert output == expected def test_virtualfile_from_matrix_slice(): """ Test transforming a slice of a larger array to virtual file dataset. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() shape = (10, 6) for dtype in dtypes: full_data = np.arange(shape[0] * shape[1], dtype=dtype).reshape(shape) rows = 5 cols = 3 data = full_data[:rows, :cols] with clib.Session() as lib: with lib.virtualfile_from_matrix(data) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(col.min(), col.max()) for col in data.T] ) expected = "<matrix memory>: N = {}\t{}\n".format(rows, bounds) assert output == expected def test_virtualfile_from_vectors_pandas(): """ Pass vectors to a dataset using pandas Series. """ dtypes = "float32 float64 int32 int64 uint32 uint64".split() size = 13 for dtype in dtypes: data = pd.DataFrame( data=dict( x=np.arange(size, dtype=dtype), y=np.arange(size, size * 2, 1, dtype=dtype), z=np.arange(size * 2, size * 3, 1, dtype=dtype), ) ) with clib.Session() as lib: with lib.virtualfile_from_vectors(data.x, data.y, data.z) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( [ "<{:.0f}/{:.0f}>".format(i.min(), i.max()) for i in (data.x, data.y, data.z) ] ) expected = "<vector memory>: N = {}\t{}\n".format(size, bounds) assert output == expected def test_virtualfile_from_vectors_arraylike(): """ Pass array-like vectors to a dataset. """ size = 13 x = list(range(0, size, 1)) y = tuple(range(size, size * 2, 1)) z = range(size * 2, size * 3, 1) with clib.Session() as lib: with lib.virtualfile_from_vectors(x, y, z) as vfile: with GMTTempFile() as outfile: lib.call_module("info", "{} ->{}".format(vfile, outfile.name)) output = outfile.read(keep_tabs=True) bounds = "\t".join( ["<{:.0f}/{:.0f}>".format(min(i), max(i)) for i in (x, y, z)] ) expected = "<vector memory>: N = {}\t{}\n".format(size, bounds) assert output == expected def test_extract_region_fails(): """ Check that extract region fails if nothing has been plotted. """ Figure() with pytest.raises(GMTCLibError): with clib.Session() as lib: lib.extract_region() def test_extract_region_two_figures(): """ Extract region should handle multiple figures existing at the same time. """ # Make two figures before calling extract_region to make sure that it's # getting from the current figure, not the last figure. fig1 = Figure() region1 = np.array([0, 10, -20, -10]) fig1.coast(region=region1, projection="M6i", frame=True, land="black") fig2 = Figure() fig2.basemap(region="US.HI+r5", projection="M6i", frame=True) # Activate the first figure and extract the region from it # Use in a different session to avoid any memory problems. with clib.Session() as lib: lib.call_module("figure", "{} -".format(fig1._name)) with clib.Session() as lib: wesn1 = lib.extract_region() npt.assert_allclose(wesn1, region1) # Now try it with the second one with clib.Session() as lib: lib.call_module("figure", "{} -".format(fig2._name)) with clib.Session() as lib: wesn2 = lib.extract_region() npt.assert_allclose(wesn2, np.array([-165.0, -150.0, 15.0, 25.0])) def test_write_data_fails(): """ Check that write data raises an exception for non-zero return codes. """ # It's hard to make the C API function fail without causing a Segmentation # Fault. Can't test this if by giving a bad file name because if # output=='', GMT will just write to stdout and spaces are valid file # names. Use a mock instead just to exercise this part of the code. with clib.Session() as lib: with mock(lib, "GMT_Write_Data", returns=1): with pytest.raises(GMTCLibError): lib.write_data( "GMT_IS_VECTOR", "GMT_IS_POINT", "GMT_WRITE_SET", [1] * 6, "some-file-name", None, ) def test_dataarray_to_matrix_works(): """ Check that dataarray_to_matrix returns correct output. """ data = np.diag(v=np.arange(3)) x = np.linspace(start=0, stop=4, num=3) y = np.linspace(start=5, stop=9, num=3) grid = xr.DataArray(data, coords=[("y", y), ("x", x)]) matrix, region, inc = dataarray_to_matrix(grid) npt.assert_allclose(actual=matrix, desired=np.flipud(data)) npt.assert_allclose(actual=region, desired=[x.min(), x.max(), y.min(), y.max()]) npt.assert_allclose(actual=inc, desired=[x[1] - x[0], y[1] - y[0]]) def test_dataarray_to_matrix_negative_x_increment(): """ Check if dataarray_to_matrix returns correct output with flipped x. """ data = np.diag(v=np.arange(3)) x = np.linspace(start=4, stop=0, num=3) y = np.linspace(start=5, stop=9, num=3) grid = xr.DataArray(data, coords=[("y", y), ("x", x)]) matrix, region, inc = dataarray_to_matrix(grid) npt.assert_allclose(actual=matrix, desired=
np.flip(data, axis=(0, 1))
numpy.flip
from astropy.io import fits from astropy.stats import sigma_clipped_stats from astropy.wcs import WCS from astropy.coordinates import SkyCoord from scipy.optimize import curve_fit from scipy.integrate import quad from scipy.interpolate import interp2d from photutils import CircularAnnulus,CircularAperture,aperture_photometry from photutils.utils import calc_total_error from photutils import centroid_sources,centroid_2dg,centroid_com from kbastroutils.grismconf import GrismCONF from kbastroutils.grismsens import GrismSens from kbastroutils.grismapcorr import GrismApCorr from kbastroutils.dqmask import DQMask from kbastroutils.make_sip import make_SIP from kbastroutils.photapcorr import PhotApCorr from kbastroutils.grismmeta import GrismMeta from kbastroutils.grismmodel import GrismModel from kbastroutils.grismcrclean import GrismCRClean from kbastroutils.grismcalibpath import GrismCalibPath from kbastroutils.grismdrz import GrismDRZ import copy,os,pickle,sys,re,shutil import pandas as pd import numpy as np import matplotlib.pyplot as plt class GND: def __init__(self,files): meta = GrismMeta(files) self.files = copy.deepcopy(meta.files) self.meta = copy.deepcopy(meta.meta) #################### #################### #################### def make_pair(self,pairs=None): if pairs: self.pairs = copy.deepcopy(pairs) gid,did = [],[] for i in pairs: did.append(i) for j in pairs[i]: gid.append(j) self.meta[j]['DIRECT'] = (i,(self.meta[j]['FILTER'],self.meta[i]['FILTER'])) self.did = copy.deepcopy(did) self.gid = copy.deepcopy(gid) else: self.gid,self.did = self.make_pair_id() pairs = self.make_pair_auto() self.make_pair(pairs) def make_pair_id(self): KEYS = { 'DIRECT': ['F.+'], 'GRISM': ['G.+'] } gid,did = [],[] for i in self.meta: filt = self.meta[i]['FILTER'] y = None for j in KEYS: for k in KEYS[j]: if re.search(k,filt): y = j if y=='DIRECT': did.append(i) elif y=='GRISM': gid.append(i) else: print('Warning: cannot assign DIRECT or GRISM. {0} {1}'.format(i,self.meta[i]['FILE'])) return gid,did def make_pair_auto(self): KEY = 'EXPSTART' out = {} dmeta = {} for i in self.did: dmeta[i] = self.meta[i] dtab = pd.DataFrame(dmeta).T did,dval = dtab['ID'].values,dtab[KEY].values tmp = [] for i in self.gid: gval = self.meta[i][KEY] tmpp = np.abs(dval-gval) tmppp = np.where(tmpp == np.min(tmpp))[0][0] tmp.append((did[tmppp],i)) for i in tmp: if i[0] not in out.keys(): out[i[0]] = [i[1]] else: tmpppp = out[i[0]] tmpppp.append(i[1]) return out #################### #################### #################### def make_calibpath(self, keysconf=['DQMASK','DRZSCALE','BEAMA','DYDX_ORDER_A','XOFF_A','YOFF_A','DISP_ORDER_A'], keyssens=None ): self.calibpath = GrismCalibPath() self.make_calibpath_conf(keysconf) self.make_calibpath_sens(keyssens) def make_calibpath_conf(self,keysconf): for i in self.gid: self.meta[i]['CONF'] = GrismCONF(keysconf,self.meta[i],self.calibpath.table) self.meta[i]['CONF'].fetch(self.meta[i]['CONF'].keysconf) self.meta[i]['CONF'].value['DQMASK'] = int(self.meta[i]['CONF'].value['DQMASK'][0]) def make_calibpath_sens(self,keyssens): for i in self.gid: self.meta[i]['SENS'] = GrismSens(keyssens,self.meta[i],self.calibpath.table) #################### #################### #################### def make_crclean(self,identifier,group=None,params=None,run=False,outpath=None): pairs = self.pairs meta = self.meta self.crclean = GrismCRClean(identifier,pairs,group,params,run,outpath,meta) if run: for i in self.crclean.meta: self.meta[i]['CRCLEAN'] = self.crclean.meta[i] #################### #################### #################### def make_xyref(self): self.make_xyoff() self.make_xydif() for j in self.gid: xyoff = self.meta[j]['XYOFF'] xydif = self.meta[j]['XYDIF'] direct = self.meta[j]['DIRECT'][0] xyd = self.meta[direct]['XYD'] xref = xyd[0] + xyoff[0] + xydif[0] yref = xyd[1] + xyoff[1] + xydif[1] xyref = (xref,yref) self.meta[j]['XYREF'] = xyref def make_xyoff(self): for i in self.gid: coefxoff = self.meta[i]['CONF'].value['XOFF_A'] coefyoff = self.meta[i]['CONF'].value['YOFF_A'] orderx,ordery = self.make_xyofforder(coefxoff),self.make_xyofforder(coefyoff) direct = self.meta[i]['DIRECT'][0] xyd = self.meta[direct]['XYD'] if self.meta[i]['SUBARRAY']: corner = self.meta[i]['SUBARRAY_PARAMS']['CORNER'] naxis1 = xyd[0] + corner[0] naxis2 = xyd[1] + corner[1] xoff = make_SIP(coefxoff,naxis1,naxis2,startx=True) yoff = make_SIP(coefyoff,naxis2,naxis2,startx=True) else: xoff = make_SIP(coefxoff,xyd[0],xyd[1],startx=True) yoff = make_SIP(coefyoff,xyd[0],xyd[1],startx=True) self.meta[i]['XYOFF'] = (xoff[0],yoff[0]) def make_xyofforder(self,coef): ncoef = len(coef) out,n = 0,1 while n!=ncoef: out += 1 n += out+1 return out def make_xydif(self): for i in self.gid: post1g,post2g = self.meta[i]['POSTARG1'],self.meta[i]['POSTARG2'] direct = self.meta[i]['DIRECT'][0] post1d,post2d = self.meta[direct]['POSTARG1'],self.meta[direct]['POSTARG2'] scaleg,scaled = self.meta[i]["IDCSCALE"],self.meta[direct]['IDCSCALE'] dx = post1g/scaleg - post1d/scaled dy = post2g/scaleg - post2d/scaled xydif = (dx,dy) self.meta[i]['XYDIF'] = copy.deepcopy(xydif) #################### #################### #################### def make_xyd(self,XYD=None ,inittype='header' ,adjust=True,box_size=25,maskin=[0] ): if XYD: for i in XYD: self.meta[i]['XYD'] = XYD[i] else: init = self.make_xydinit(inittype) if not init: print('Error: cannot initiate. Terminate') sys.exit() if adjust: xyd = self.make_xydadjust(init,box_size,maskin) self.make_xyd(xyd) else: self.make_xyd(init) def make_xydinit(self,inittype): out = {} if inittype=='header': for i in self.did: try: tmp = self.meta[i]['XYD'] continue except: pass ra,dec = self.meta[i]['RA_TARG'],self.meta[i]['DEC_TARG'] w = WCS(header=fits.open(self.files[i])[self.meta[i]['EXT']] ,fobj=fits.open(self.files[i]) ) coord = SkyCoord(ra,dec,unit='deg') xx,yy = w.all_world2pix(coord.ra,coord.dec,1) out[i] = copy.deepcopy((xx,yy)) return out else: print("Error: only inittype='header' is available. Terminate") return False def make_xydadjust(self,init,box_size,maskin): out = {} for i in self.did: try: tmp = self.meta[i]['XYD'] continue except: pass x = fits.open(self.files[i]) xdata = x[self.meta[i]['EXT']].data xdq = x['DQ',self.meta[i]['EXT'][1]].data xi,yi = int(init[i][0]),int(init[i][1]) mask = DQMask(maskin) mask.make_mask(xdq) try: xx,yy = centroid_sources(xdata,xi,yi,box_size=box_size,mask=~mask.mask) tmp = np.full_like(xdata,False,dtype=bool) xi,yi = int(xx[0]),int(yy[0]) tmp[yi-box_size:yi+box_size+1,xi-box_size:xi+box_size+1] = True newmask = (mask.mask & tmp) xx,yy = centroid_2dg(xdata,mask=~newmask) except: print('Error: cannot make_xydadjust. {0} {1}. Set to inits'.format(i,self.files[i].split('/')[-1])) xx,yy = copy.deepcopy(init[i][0]),copy.deepcopy(init[i][1]) out[i] = copy.deepcopy((xx,yy)) return out #################### #################### #################### def make_traceNwavelength(self): self.make_trace() self.make_wavelength() def make_trace(self): for j in self.gid: xhbound = self.meta[j]['CONF'].value['BEAMA'] xh = np.arange(xhbound[0],xhbound[1]+1,step=1) xyref = self.meta[j]['XYREF'] order = self.meta[j]['CONF'].value['DYDX_ORDER_A'] sip = [] for k in np.arange(order+1): string = 'DYDX_A_' + str(int(k)) coef = self.meta[j]['CONF'].value[string] x = make_SIP(coef,*xyref,startx=True) sip.append(x) yh = np.full_like(xh,0.,dtype=float) for k,kk in enumerate(sip): yh += kk*xh**k xg = xh + xyref[0] yg = yh + xyref[1] self.meta[j]['XG'] = xg self.meta[j]['YG'] = yg self.meta[j]['DYDX'] = sip def make_wavelength(self): varclength = np.vectorize(self.arclength) for j in self.gid: xhbound = self.meta[j]['CONF'].value['BEAMA'] xh = np.arange(xhbound[0],xhbound[1]+1,step=1) xyref = self.meta[j]['XYREF'] order = self.meta[j]['CONF'].value['DISP_ORDER_A'].astype(int) dydx = self.meta[j]['DYDX'] d = [] sip = [] for k in np.arange(order+1): string = 'DLDP_A_' + str(int(k)) coef = self.meta[j]['CONF'].value[string] x = make_SIP(coef,*xyref,startx=True) sip.append(x) arc,earc = np.array(varclength(xh,*dydx)) ww = np.full_like(xh,0.,dtype=float) for k,kk in enumerate(sip): ww += kk*arc**k self.meta[j]['WW'] = ww self.meta[j]['WWUNIT'] = r'$\AA$' def arclength_integrand(self,Fa,*coef): s = 0 for i,ii in enumerate(coef): if i==0: continue s += i * ii * (Fa**(i-1)) return np.sqrt(1. + np.power(s,2)) def arclength(self,Fa,*coef): integral,err = quad(self.arclength_integrand, 0., Fa, args=coef) return integral,err #################### #################### #################### def make_bkg(self,method='median',sigma=3.,iters=5,usecrclean=True,maskin=None): for j in self.gid: x = fits.open(self.files[j]) ext = self.meta[j]['EXT'] identifier = self.meta[j]['IDENTIFIER'] filt = self.meta[j]['FILTER'] try: xdq = fits.open(self.meta[j]['CRCLEAN'])[('DQ',ext[1])].data except: xdq = x[('DQ',ext[1])].data xdata = x[ext].data if not maskin: maskin = [self.meta[j]['CONF'].value['DQMASK']] a = DQMask(value=maskin,declass=True,makeclass=True) a.make_mask(xdq) mean,median,std = sigma_clipped_stats(xdata,mask=~a.mask,sigma=sigma,maxiters=iters) self.meta[j]['BKG'] = None self.meta[j]['BKG_FILE'] = None if method=='median': bkgim = np.full_like(xdata,median,dtype=float) self.meta[j]['BKG'] = bkgim self.meta[j]['BKG_FILE'] = (method,median,'No file') elif method=='master': if identifier==('HST','WFC3','IR'): bkg = self.calibpath.table['BKG'][identifier][filt] elif identifier==('HST','ACS','WFC'): bkg = self.calibpath.table['BKG'][identifier][(self.meta[j]['CCDCHIP'])] if not bkg: print('Error: bkg file is required. Terminate') sys.exit() elif bkg: mask = np.full_like(a.mask,True,dtype=bool) mask[np.where(np.abs((xdata - median)/std) > sigma)] = False mask = copy.deepcopy(mask & a.mask) bkgdata = fits.open(bkg)[0].data if self.meta[j]['SUBARRAY']: shape = mask.shape corner = self.meta[j]['SUBARRAY_PARAMS']['CORNER'] naxis1 = corner[0] + shape[1] naxis2 = corner[1] + shape[0] tmp = bkgdata[corner[1]:naxis2,corner[0]:naxis1] bkgdata = copy.deepcopy(tmp) masktmp = np.full_like(mask,False,dtype=bool) m = np.where(bkgdata>0.) masktmp[m] = True mask = copy.deepcopy(mask & masktmp) scale = self.make_mastersky(xdata,mask,bkgdata) self.meta[j]['BKG'] = scale[0] * bkgdata self.meta[j]['BKG_FILE'] = (method,scale,bkg) def make_mastersky(self,xdata,xmask,bkgdata): x,y = bkgdata[xmask],xdata[xmask] popt,pcov = curve_fit(lambda x, *p: p[0]*x, x,y,p0=[1.]) return (popt,pcov) #################### #################### #################### def make_flat(self,method='uniform'): for j in self.gid: x = fits.open(self.files[j]) ext = self.meta[j]['EXT'] xdata = x[ext].data identifier = self.meta[j]['IDENTIFIER'] filt = self.meta[j]['FILTER'] self.meta[j]['FLAT'] = None self.meta[j]['FLAT_FILE'] = None if method=='uniform': flatim = np.full_like(xdata,1.,dtype=float) self.meta[j]['FLAT'] = flatim self.meta[j]['FLAT_FILE'] = (method,'No file') elif method=='master': if identifier==('HST','WFC3','IR'): flatfile = self.calibpath.table['FLAT'][identifier][filt] elif identifier==('HST','ACS','WFC'): flatfile = self.calibpath.table['FLAT'][identifier][(self.meta[j]['CCDCHIP'])] if not flatfile: print('Error: flat file is required. Set to None') else: flatim = np.full_like(xdata,np.nan,dtype=float) nrow,ncol = xdata.shape[0],xdata.shape[1] y = fits.open(flatfile) wmin,wmax = y[0].header['WMIN'],y[0].header['WMAX'] a = {} for k,kk in enumerate(y): if self.meta[j]['SUBARRAY']: shape = xdata.shape corner = self.meta[j]['SUBARRAY_PARAMS']['CORNER'] naxis1 = corner[0] + shape[1] naxis2 = corner[1] + shape[0] a[k] = y[k].data[corner[1]:naxis2,corner[0]:naxis1] else: a[k] = y[k].data x1 = np.copy(self.meta[j]['XG'].astype(int)) w1 = np.copy(self.meta[j]['WW']) w1[np.where(w1<=wmin)],w1[np.where(w1>=wmax)] = wmin,wmax x1min,x1max = np.min(x1),np.max(x1) x0,x2 = np.arange(0,x1min),
np.arange(x1max+1,ncol)
numpy.arange
# coding: utf-8 #details of awesome oscillator can be found here # https://www.tradingview.com/wiki/Awesome_Oscillator_(AO) #basically i use awesome oscillator to compare with macd oscillator #lets see which one makes more money #there is not much difference between two of em #this time i use exponential smoothing on macd #for awesome oscillator, i use simple moving average instead #the rules are quite simple #these two are momentum trading strategy #they compare the short moving average with long moving average #if the difference is positive #we long the asset, vice versa #awesome oscillator has slightly more conditions for signals #we will see about it later #for more details about macd # https://github.com/tattooday/quant-trading/blob/master/MACD%20oscillator%20backtest.py # In[1]: #need to get fix yahoo finance package first import matplotlib.pyplot as plt import numpy as np import pandas as pd import fix_yahoo_finance as yf # In[2]: #this part is macd #i will not go into details as i have another session called macd #the only difference is that i use ewma function to apply exponential smoothing technique def ewmacd(signals,ma1,ma2): signals['macd ma1']=signals['Close'].ewm(span=ma1).mean() signals['macd ma2']=signals['Close'].ewm(span=ma2).mean() return signals def signal_generation(df,method,ma1,ma2): signals=method(df,ma1,ma2) signals['macd positions']=0 signals['macd positions'][ma1:]=np.where(signals['macd ma1'][ma1:]>=signals['macd ma2'][ma1:],1,0) signals['macd signals']=signals['macd positions'].diff() signals['macd oscillator']=signals['macd ma1']-signals['macd ma2'] return signals # In[3]: #for awesome oscillator #moving average is based on the mean of high and low instead of close price def awesome_ma(signals): signals['awesome ma1'],signals['awesome ma2']=0,0 signals['awesome ma1']=((signals['High']+signals['Low'])/2).rolling(window=5).mean() signals['awesome ma2']=((signals['High']+signals['Low'])/2).rolling(window=34).mean() return signals #awesome signal generation,AWESOME! def awesome_signal_generation(df,method): signals=method(df) signals.reset_index(inplace=True) signals['awesome signals']=0 signals['awesome oscillator']=signals['awesome ma1']-signals['awesome ma2'] signals['cumsum']=0 for i in range(2,len(signals)): #awesome oscillator has an extra way to generate signals #its called saucer #A Bearish Saucer setup occurs when the AO is below the Zero Line #in another word, awesome oscillator is negative #A Bearish Saucer entails two consecutive green bars (with the second bar being higher than the first bar) being followed by a red bar. #in another word, green bar refers to open price is higher than close price if (signals['Open'][i]>signals['Close'][i] and signals['Open'][i-1]<signals['Close'][i-1] and signals['Open'][i-2]<signals['Close'][i-2] and signals['awesome oscillator'][i-1]>signals['awesome oscillator'][i-2] and signals['awesome oscillator'][i-1]<0 and signals['awesome oscillator'][i]<0): signals.at[i,'awesome signals']=1 #this is bullish saucer #vice versa if (signals['Open'][i]<signals['Close'][i] and signals['Open'][i-1]>signals['Close'][i-1] and signals['Open'][i-2]>signals['Close'][i-2] and signals['awesome oscillator'][i-1]<signals['awesome oscillator'][i-2] and signals['awesome oscillator'][i-1]>0 and signals['awesome oscillator'][i]>0): signals.at[i,'awesome signals']=-1 #this part is the same as macd signal generation #nevertheless, we have extra rules to get signals ahead of moving average #if we get signals before moving average generate any signal #we will ignore signals generated by moving average then #as it is delayed and probably deliver fewer profit than previous signals #we use cumulated sum to see if there has been created any open positions #if so, we will take a pass if signals['awesome ma1'][i]>signals['awesome ma2'][i]: signals.at[i,'awesome signals']=1 signals['cumsum']=signals['awesome signals'].cumsum() if signals['cumsum'][i]>1: signals.at[i,'awesome signals']=0 if signals['awesome ma1'][i]<signals['awesome ma2'][i]: signals.at[i,'awesome signals']=-1 signals['cumsum']=signals['awesome signals'].cumsum() if signals['cumsum'][i]<0: signals.at[i,'awesome signals']=0 signals['cumsum']=signals['awesome signals'].cumsum() return signals # In[4]: #we plot the results to compare #basically the same as macd #im not gonna explain much def plot(new,ticker): #positions fig=plt.figure() ax=fig.add_subplot(211) new['Close'].plot(label=ticker) ax.plot(new.loc[new['awesome signals']==1].index,new['Close'][new['awesome signals']==1],label='AWESOME LONG',lw=0,marker='^',c='g') ax.plot(new.loc[new['awesome signals']==-1].index,new['Close'][new['awesome signals']==-1],label='AWESOME SHORT',lw=0,marker='v',c='r') plt.legend(loc='best') plt.grid(True) plt.title('Positions') bx=fig.add_subplot(212,sharex=ax) new['Close'].plot(label=ticker) bx.plot(new.loc[new['macd signals']==1].index,new['Close'][new['macd signals']==1],label='MACD LONG',lw=0,marker='^',c='g') bx.plot(new.loc[new['macd signals']==-1].index,new['Close'][new['macd signals']==-1],label='MACD SHORT',lw=0,marker='v',c='r') plt.legend(loc='best') plt.grid(True) plt.show() #oscillator fig=plt.figure() cx=fig.add_subplot(211) c=
np.where(new['Open']>new['Close'],'r','g')
numpy.where
from RNNs import QIFExpAddNoiseSyns import numpy as np import pickle import matplotlib.pyplot as plt from scipy.ndimage import gaussian_filter1d # STEP 0: Define simulation condition ##################################### # parse worker indices from script arguments idx_cond = 570 # STEP 1: Load pre-generated RNN parameters ########################################### path = "/home/rgast/PycharmProjects/BrainNetworks/RC/results" config = pickle.load(open(f"{path}/qif_micro_config.pkl", 'rb')) # connectivity matrix C = config['C'] # input inp = config['inp'] # input weights W_in = config['W_in'] # simulation config T = config['T'] dt = config['dt'] dts = config['dts'] cutoff = config['cutoff'] # target values targets = config['targets'] # adaptation strength alpha = 0.5 # config['alphas'][idx_cond] # eta eta = -3.8 # config['etas'][idx_cond] # STEP 2: define remaining network parameters ############################################# # general parameters N = C.shape[0] m = W_in.shape[0] n_folds = 5 ridge_alpha = 1e-3 # qif parameters Delta = 2.0 J = 15.0*np.sqrt(Delta) D = 0.0 tau_a = 10.0 tau_s = 0.8 # STEP 3: Evaluate classification performance of RNN #################################################### # setup QIF RNN qif_rnn = QIFExpAddNoiseSyns(C, eta, J, Delta=Delta, alpha=alpha, D=D, tau_s=tau_s, tau_a=tau_a) # perform simulation W_in[:, :] = 0.0 X = qif_rnn.run(T, dt, dts, inp=inp, W_in=W_in, state_record_key='t1', cutoff=cutoff) r_qif = np.mean(X, axis=1) # prepare training data buffer_val = 0 for i in range(X.shape[1]): X[:, i] = gaussian_filter1d(X[:, i], 0.05 / dts, mode='constant', cval=buffer_val) y = targets r_qif2 = np.mean(X, axis=1) # split into test and training data split = int(np.round(X.shape[0]*0.75, decimals=0)) X_train = X[:split, :] y_train = y[:split] X_test = X[split:, :] y_test = y[split:] # train RNN key, scores, coefs = qif_rnn.ridge_fit(X=X_train, y=y_train, alpha=ridge_alpha, k=n_folds, fit_intercept=False, copy_X=True, solver='lsqr') score, _ = qif_rnn.test(X=X_test, y=y_test, readout_key=key) y_predict = qif_rnn.predict(X=X, readout_key=key) print(f"Classification performance on test data: {score}") # plotting fig, axes = plt.subplots(nrows=4) ax1 = axes[0] ax1.plot(np.mean(X, axis=1)) ax2 = axes[1] im = ax2.imshow(X.T, aspect='auto', cmap="plasma", vmin=0, vmax=0.005) #plt.colorbar(im, ax=ax2, shrink=0.5) ax3 = axes[2] ax3.plot(y) ax3.plot(y_predict) plt.legend(['target', 'output']) ax4 = axes[3] start = int(cutoff/dt) ax4.plot(inp[0, start:]) ax4.plot(inp[1, start:]) plt.legend(['lorenz', 'stula']) plt.tight_layout() # plot connectivity fig2, ax = plt.subplots() im1 = ax.imshow(C, aspect='auto', cmap="plasma", vmin=0, vmax=np.max(C[:])) plt.colorbar(im1, ax=ax, shrink=0.5) plt.title('C') plt.tight_layout() print(f'Synaptic sparseness: {
np.sum(C[:] == 0)
numpy.sum
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np class Scaler(object): """ Iterative estimation of row and column centering/scaling using the algorithm from page 31 of: Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares """ def __init__( self, center_columns=True, scale_columns=True, min_value=None, max_value=None, verbose=True): self.center_columns = center_columns self.scale_columns = scale_columns self.min_value = min_value self.max_value = max_value self.verbose = verbose self.column_centers = None self.column_scales = None def fit(self, X): if self.center_columns: self.column_centers = np.nanmean(X, axis=0) if self.scale_columns: self.column_scales = np.nanstd(X, axis=0) self.column_scales[self.column_scales == 0] = 1.0 return self def transform(self, X): X = np.asarray(X).copy() if self.center_columns: X -= self.column_centers if self.scale_columns: X /= self.column_scales return X def fit_transform(self, X): self.fit(X) return self.transform(X) def inverse_transform(self, X): X = np.asarray(X).copy() if self.scale_columns: X *= self.column_scales if self.center_columns: X += self.column_centers return X class BiScaler(object): """ Iterative estimation of row and column centering/scaling using the algorithm from page 31 of: Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares """ def __init__( self, center_rows=True, center_columns=True, scale_rows=True, scale_columns=True, min_value=None, max_value=None, max_iters=100, tolerance=0.001, verbose=True): self.center_rows = center_rows self.center_columns = center_columns self.scale_rows = scale_rows self.scale_columns = scale_columns self.min_value = min_value self.max_value = max_value self.max_iters = max_iters self.tolerance = tolerance self.verbose = verbose def estimate_row_means( self, X, observed, column_means, column_scales): """ row_center[i] = sum{j in observed[i, :]}{ (1 / column_scale[j]) * (X[i, j] - column_center[j]) } ------------------------------------------------------------ sum{j in observed[i, :]}{1 / column_scale[j]} """ n_rows, n_cols = X.shape column_means = np.asarray(column_means) if len(column_means) != n_cols: raise ValueError("Expected length %d but got shape %s" % ( n_cols, column_means.shape)) X = X - column_means.reshape((1, n_cols)) column_weights = 1.0 / column_scales X *= column_weights.reshape((1, n_cols)) row_means = np.zeros(n_rows, dtype=X.dtype) row_residual_sums = np.nansum(X, axis=1) for i in range(n_rows): row_mask = observed[i, :] sum_weights = column_weights[row_mask].sum() row_means[i] = row_residual_sums[i] / sum_weights return row_means def estimate_column_means( self, X, observed, row_means, row_scales): """ column_center[j] = sum{i in observed[:, j]}{ (1 / row_scale[i]) * (X[i, j]) - row_center[i]) } ------------------------------------------------------------ sum{i in observed[:, j]}{1 / row_scale[i]} """ n_rows, n_cols = X.shape row_means = np.asarray(row_means) if len(row_means) != n_rows: raise ValueError("Expected length %d but got shape %s" % ( n_rows, row_means.shape)) column_means = np.zeros(n_cols, dtype=X.dtype) X = X - row_means.reshape((n_rows, 1)) row_weights = 1.0 / row_scales X *= row_weights.reshape((n_rows, 1)) col_residual_sums = np.nansum(X, axis=0) for j in range(n_cols): col_mask = observed[:, j] sum_weights = row_weights[col_mask].sum() column_means[j] = col_residual_sums[j] / sum_weights return column_means def center(self, X, row_means, column_means, inplace=False): n_rows, n_cols = X.shape row_means = np.asarray(row_means) column_means = np.asarray(column_means) if len(row_means) != n_rows: raise ValueError("Expected length %d but got shape %s" % ( n_rows, row_means.shape)) if len(column_means) != n_cols: raise ValueError("Expected length %d but got shape %s" % ( n_cols, column_means.shape)) if not inplace: X = X.copy() X -= row_means.reshape((n_rows, 1)) X -= column_means.reshape((1, n_cols)) return X def rescale(self, X, row_scales, column_scales, inplace=False): if not inplace: X = X.copy() n_rows, n_cols = X.shape X /= row_scales.reshape((n_rows, 1)) X /= column_scales.reshape((1, n_cols)) return X def estimate_row_scales( self, X_centered, column_scales): """ row_scale[i]**2 = mean{j in observed[i, :]}{ (X[i, j] - row_center[i] - column_center[j]) ** 2 -------------------------------------------------- column_scale[j] ** 2 } """ n_rows, n_cols = X_centered.shape column_scales = np.asarray(column_scales) if len(column_scales) != n_cols: raise ValueError("Expected length %d but got shape %s" % ( n_cols, column_scales)) row_variances = np.nanmean( X_centered ** 2 / (column_scales ** 2).reshape((1, n_cols)), axis=1) row_variances[row_variances == 0] = 1.0 assert len(row_variances) == n_rows, "%d != %d" % ( len(row_variances), n_rows) return np.sqrt(row_variances) def estimate_column_scales( self, X_centered, row_scales): """ column_scale[j] ** 2 = mean{i in observed[:, j]}{ (X[i, j] - row_center[i] - column_center[j]) ** 2 ------------------------------------------------- row_scale[i] ** 2 } """ n_rows, n_cols = X_centered.shape row_scales = np.asarray(row_scales) if len(row_scales) != n_rows: raise ValueError("Expected length %s, got shape %s" % ( n_rows, row_scales.shape,)) column_variances = np.nanmean( X_centered ** 2 / (row_scales ** 2).reshape((n_rows, 1)), axis=0) column_variances[column_variances == 0] = 1.0 assert len(column_variances) == n_cols, "%d != %d" % ( len(column_variances), n_cols) return np.sqrt(column_variances) def residual(self, X_normalized): total = 0 if self.center_rows: row_means = np.nanmean(X_normalized, axis=1) total += (row_means ** 2).sum() if self.center_columns: column_means = np.nanmean(X_normalized, axis=0) total += (column_means ** 2).sum() if self.scale_rows: row_variances = np.nanvar(X_normalized, axis=1) row_variances[row_variances == 0] = 1.0 total += (np.log(row_variances) ** 2).sum() if self.scale_columns: column_variances = np.nanvar(X_normalized, axis=0) column_variances[column_variances == 0] = 1.0 total += (np.log(column_variances) ** 2).sum() return total def clamp(self, X, inplace=False): if not inplace: X = X.copy() if self.min_value is not None: X[X < self.min_value] = self.min_value if self.max_value is not None: X[X > self.max_value] = self.max_value return X def fit(self, X): X = self.clamp(X) n_rows, n_cols = X.shape dtype = X.dtype # To avoid inefficient memory access we keep around two copies # of the array, one contiguous in the rows and the other # contiguous in the columns X_row_major = np.asarray(X, order="C") X_column_major =
np.asarray(X, order="F")
numpy.asarray