prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
import h5py
import numpy as np
import numpy.ma as ma
import numpy.lib.recfunctions as rfn
import logging
ref_region_dtype = np.dtype([('start','i8'), ('stop','i8')])
def print_ref(grp):
'''
Print out all references in file (or group)
'''
l = list()
grp.visititems(lambda n,d: l.append((n,d))\
if n.endswith('/ref') and isinstance(d,h5py.Dataset)
else None
)
if not len(l):
return
max_length = max([len(n) for n,d in l])
for n,d in l:
print(n+' '*(max_length-len(n))+' '+str(d))
def print_data(grp):
'''
Print out all datasets in file (or group)
'''
l = list()
grp.visititems(lambda n,d: l.append((n,d))\
if n.endswith('/data') and isinstance(d,h5py.Dataset)
else None
)
if not len(l):
return
max_length = max([len(n) for n,d in l])
for n,d in l:
print(n+' '*(max_length-len(n))+' '+str(d))
def print_attr(grp):
'''
Print out all attributes in file (or group)
'''
l = list()
grp.visititems(lambda n,d: l.append((n,d.attrs))\
if len(d.attrs) and not (n.endswith('/ref') or n.endswith('/ref_region'))\
else None
)
if not len(l):
return
max_length = max([len(k) for n,d in l for k in d])
for n,d in l:
print(n)
for k,v in d.items():
print('\t'+k+':'+' '*(max_length-len(k))+' '+str(v))
def dereference_chain(sel, refs, data=None, regions=None, mask=None, ref_directions=None, indices_only=False):
'''
Load a "chain" of references. Allows traversal of multiple layers of references,
e.g. for three datasets ``A``, ``B``, and ``C`` linked ``A->B->C``. One
can use a selection in ``A`` and load the ``C`` data associated with it.
Example usage::
sel = slice(0,100)
refs = [f['A/ref/B/ref'], f['C/ref/B/ref']]
ref_dirs = [(0,1), (1,0)]
data = f['C/data']
regions = [f['A/ref/B/ref_region'], f['B/ref/C/ref_region']]
mask = np.r_[sel] > 50
c_data = dereference_chain(sel, refs, data, regions=regions, mask=mask, ref_directions=ref_dirs)
c_data.shape # (100, max_a2b_assoc, max_b2c_assoc)
:param sel: iterable of indices, a slice, or an integer, see ``sel`` argument in ``dereference``
:param refs: a list of reference datasets to load, in order, see ``ref`` argument in ``dereference``
:param data: a dataset to load dereferenced data from, optional if ``indices_only=True``
:param regions: lookup table into ``refs`` for each selection, see ``region`` argument in ``dereference``
:param mask: a boolean mask into the first selection, true will not load the entry
:param ref_directions: intepretation of reference datasets, see ``ref_direction`` argument in ``dereference``
:param indices_only: flag to skip loading the data and instead just return indices into the final dataset
'''
sel = np.r_[sel]
mask = np.zeros_like(sel, dtype=bool) | (mask if mask is not None else False)
sel = ma.array(sel, mask=mask, shrink=False)
shape = (len(sel),)
dref = None
nsteps = len(refs)
for i in range(nsteps):
dset = data if i == nsteps-1 else None
ref = refs[i]
ref_dir = ref_directions[i] if ref_directions else (0,1) # default to (0,1)
reg = regions[i] if regions else None
dref = dereference(sel.data.ravel(), ref,
data=dset, region=reg,
mask=mask.ravel(), ref_direction=ref_dir,
indices_only=True if i != nsteps-1 else indices_only)
shape += dref.shape[-1:]
mask = np.expand_dims(mask, axis=-1) | \
(rfn.structured_to_unstructured(dref.mask).any(axis=-1).reshape(shape) \
if dref.mask.dtype.kind == 'V' else dref.mask.reshape(shape))
dref = ma.array(dref.data.reshape(shape), mask=mask, shrink=False)
if i != nsteps-1:
sel = dref
return dref
def dereference(sel, ref, data=None, region=None, mask=None, ref_direction=(0,1), indices_only=False, as_masked=True):
'''
Load ``data`` referred to by ``ref`` that corresponds to the desired
positions specified in ``sel``.
:param sel: iterable of indices, an index, or a ``slice`` to match against ``ref[:,ref_direction[0]]``. Return value will have same first dimension as ``sel``, e.g. ``dereference(slice(100), ref, data).shape[0] == 100``
:param ref: a shape (N,2) ``h5py.Dataset`` or array of pairs of indices linking ``sel`` and ``data``
:param data: a ``h5py.Dataset`` or array to load dereferenced data from, can be omitted if ``indices_only==True``
:param region: a 1D ``h5py.Dataset`` or array with a structured array type of [('start','i8'), ('stop','i8')]; 'start' defines the earliest index within the ``ref`` dataset for each value in ``sel``, and 'stop' defines the last index + 1 within the ``ref`` dataset (optional). If a ``h5py.Dataset`` is used, the ``sel`` spec will be used to load data from the dataset (i.e. ``region[sel]``), otherwise ``len(sel) == len(region)`` and a 1:1 correspondence is assumed
:param mask: mask off specific items in selection (boolean, True == don't dereference selection), len(mask) == len(np.r_[sel])
:param ref_direction: defines how to interpret second dimension of ``ref``. ``ref[:,ref_direction[0]]`` are matched against items in ``sel``, and ``ref[:,ref_direction[1]]`` are indices into the ``data`` array (``default=(0,1)``). So for a simple example: ``dereference([0,1,2], [[1,0], [2,1]], ['A','B','C','D'], ref_direction=(0,1))`` returns an array equivalent to ``[[],['A'],['B']]`` and ``dereference([0,1,2], [[1,0], [2,1]], ['A','B','C','D'], ref_direction=(1,0))`` returns an array equivalent to ``[['B'],['C'],[]]``
:param indices_only: if ``True``, only returns the indices into ``data``, does not fetch data from ``data``
:returns: ``numpy`` masked array (or if ``as_masked=False`` a ``list``) of length equivalent to ``sel``
'''
# set up selection
sel_mask = mask
sel_idcs = np.r_[sel][~sel_mask] if sel_mask is not None else np.r_[sel]
n_elem = len(sel_idcs) if sel_mask is None else len(sel_mask)
return_dtype = data.dtype if not indices_only else ref.dtype
if not len(sel_idcs) and n_elem:
# special case for if there is nothing selected in the mask
if as_masked:
return ma.array(np.empty((n_elem,1), dtype=return_dtype), mask=True, shrink=False)
else:
return [np.empty(0, data.dtype) for _ in range(n_elem)]
elif not len(sel_idcs):
if as_masked:
return ma.array(np.empty((0,1), dtype=return_dtype), mask=True, shrink=False)
else:
return []
# load fast region lookup
if region is not None:
if isinstance(region, h5py.Dataset):
if isinstance(sel, slice):
region = region[sel] # load parent reference region information
else:
region_offset = np.min(sel_idcs)
region_sel = slice(region_offset, int(np.max(sel_idcs)+1))
region = region[region_sel][sel_idcs - region_offset]
else:
region = region[sel_idcs]
# load relevant references
region_valid = region['start'] != region['stop'] if region is not None else None
if not region is None and np.count_nonzero(region_valid) == 0:
# special case for if there are no valid references
if as_masked:
return ma.array( | np.empty((n_elem,1), dtype=return_dtype) | numpy.empty |
import numpy as np
from numpy.linalg import det, inv
import matplotlib.pyplot as plt
from scipy.special import gamma, digamma
from gaussian import simpleGaussian
pca_dim = 23
class factorAnalyzer():
def __init__(self, mean, covariance, phi, K):
self.mean = mean
self.covariance = covariance
self.phi = phi
self.K = K
self.D = pca_dim
self.E_h = np.zeros((1000,self.K, self.D))
self.E_h_T = np.zeros((1000,self.K, self.K))
def pdf(self, i, X):
# Effective covariance of the distribution
sigma = np.matmul(self.phi, self.phi.T) + self.covariance
x = X[:,i].reshape(-1,1) - self.mean
temp = np.matmul(x.T, inv(self.covariance))
numerator = np.exp(-0.5*np.matmul(temp,x))
det_sigma = | det(sigma) | numpy.linalg.det |
import collections
import logging
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.cuda.random as trandom
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data.sampler import RandomSampler, WeightedRandomSampler
from tqdm import tqdm
import constants as c
import loss_bank as lb
import model_bank as mb
import optimizer_bank as ob
import util
from dataset import CellDataset, PairDataset, SubimageDataset, SubimageControlDataset, DataPrefetcher
cudnn.benchmark = True
cudnn.deterministic = False
def _get_plate_group(g2rna, id_codes, prediction):
plate_group = dict()
for id_code, pred in zip(id_codes, prediction):
exp = id_code.split('_')[0]
plate = int(id_code.split('_')[1])
key = (exp, plate)
if key not in plate_group:
plate_group[key] = [0, 0, 0, 0]
sirna = np.argmax(pred)
for i in range(4):
if sirna in g2rna[i]:
plate_group[key][i] += 1
break
return plate_group
def get_plate_postprocessing(id_codes, prediction):
g2rna, masks = util.get_g2rna()
plate_group = _get_plate_group(g2rna, id_codes, prediction)
for i, id_code in enumerate(id_codes):
exp = id_code.split('_')[0]
plate = int(id_code.split('_')[1])
key = (exp, plate)
group = np.argmax(plate_group[key])
prediction[i, masks[group]] = -np.inf
if prediction.shape[1] > c.N_CLASS:
prediction[:, c.N_CLASS:] = -np.inf
return prediction
def _balancing_label(prob):
idxs = np.dstack(np.unravel_index(np.argsort(prob.ravel()), prob.shape))[0][::-1]
pred = -np.ones(prob.shape[0])
used_idx = np.zeros(prob.shape[0])
used_rna = np.zeros(prob.shape[1])
for idx in idxs:
if used_idx[idx[0]] == 0 and used_rna[idx[1]] == 0:
pred[idx[0]] = idx[1]
used_idx[idx[0]] = 1
used_rna[idx[1]] = 1
return pred
def balancing_class_prediction(id_codes, prediction):
# at most 1 instance each class
prediction = get_plate_postprocessing(id_codes, prediction)
plates = set()
for id_code in id_codes:
plate = '_'.join(id_code.split('_')[:2])
plates.add(plate)
plates = sorted(plates)
y_pred = np.zeros(len(id_codes))
for plate in plates:
idx = [i for i, x in enumerate(id_codes) if x.startswith(plate)]
y_pred_i = _balancing_label(prediction[idx])
y_pred[idx] = y_pred_i
return y_pred
class Model:
def __init__(self, model_name='resnet', ckpt_path=None, ckpt_epoch=None,
ckpt_full_path=None, output_ckpt_path=None, cell_type=None, criterion='cross_entropy',
train_transform=list(), progress_func=tqdm, lr=0.0001, load_optimizer=True,
freeze_eval=True, precision=16, plate_group=None, train_control=False, optimizer='adam',
training=True, gaussian_sigma=0):
assert torch.cuda.is_available()
torch.manual_seed(c.SEED)
trandom.manual_seed_all(c.SEED)
self.freeze_eval = freeze_eval
self.device = torch.device('cuda')
self.progress_func = progress_func
self.train_transform = train_transform
self.eval_transform = []
self.cell_type = cell_type
self.plate_group = plate_group
self.criterion = criterion
self.train_control = train_control
self.gaussian_sigma = gaussian_sigma
if train_control:
n_class = c.N_CLASS + c.N_CLASS_CONTROL
else:
n_class = c.N_CLASS
if model_name.startswith('resnet2in2out'):
self.model = mb.Resnet2in2out(int(model_name[13:]), n_class)
elif model_name.startswith('resnet'):
self.model = mb.Resnet(int(model_name[6:]), n_class)
elif model_name.startswith('arcresnet'):
self.model = mb.Resnet(int(model_name[9:]), n_class)
elif model_name.startswith('resnext'):
self.model = mb.Resnet(int(model_name[7:]), n_class)
elif model_name.startswith('densenet'):
self.model = mb.Densenet(int(model_name[8:]), n_class)
elif model_name.startswith('efficientnet'):
if training:
self.model = mb.EfficientNet(model_name, n_class, nn.BatchNorm2d, mb.mish_efficientnet.swish)
else:
self.model = mb.EfficientNet(model_name, n_class, mb.mish_efficientnet.MovingBatchNorm2d,
mb.mish_efficientnet.swish)
elif model_name.startswith('mishefficientnet'):
if training:
self.model = mb.EfficientNet(model_name, n_class, nn.BatchNorm2d, mb.mish_efficientnet.mish)
else:
self.model = mb.EfficientNet(model_name, n_class, mb.mish_efficientnet.MovingBatchNorm2d,
mb.mish_efficientnet.mish)
elif model_name.startswith('arcefficientnet'):
self.model = mb.ArcEfficientNet(model_name[3:], n_class, nn.BatchNorm2d, mb.mish_efficientnet.swish)
else:
return
self.model.cuda()
# fixme: should be double - 64 bits, float - 32 bits, half - 16 bits
if precision == 32:
self.model.double()
elif precision == 16:
self.model.float()
elif precision == 8:
self.model.half()
else:
raise Exception('Precision %d not in (8, 16, 32)' % precision)
self.precision = precision
# training_params = []
# for name, param in self.model.named_parameters():
# if 'fc' not in name:
# param.requires_grad = False
# training_params.append(param)
if optimizer.lower().startswith('adam'):
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
elif optimizer.lower().startswith('ranger'):
self.optimizer = ob.Ranger(self.model.parameters(), lr=lr)
elif optimizer.lower().startswith('sgd'):
self.optimizer = optim.SGD(self.model.parameters(), lr=lr, weight_decay=lr * 0.05, momentum=0.9)
self.start_epoch = 0
self.loss_history = {'train': [], 'valid': [], 'test': []}
self.acc_history = {'train': [], 'valid': [], 'test': []}
self.pp_acc_history = {'train': [], 'valid': []}
self.ckpt_path = ckpt_path
self.ckpt_full_path = ckpt_full_path
self.ckpt_epoch = None
self.output_ckpt_path = output_ckpt_path
if output_ckpt_path:
os.makedirs(output_ckpt_path, exist_ok=True)
self._load_ckpt(ckpt_full_path, ckpt_path, ckpt_epoch, load_optimizer)
if self.start_epoch == 0:
logging.info('No checkpoint loaded.')
if optimizer.endswith('swa'):
self.optimizer = ob.StochasticWeightAverage(self.optimizer, swa_start=1, swa_freq=1, swa_lr=lr)
g2rna, masks = util.get_g2rna()
self.label2mask = []
for i in range(c.N_CLASS):
for j in range(4):
if i in g2rna[j]:
self.label2mask.append(masks[j])
break
assert len(self.label2mask) == c.N_CLASS
def _load_ckpt(self, ckpt_full_path, ckpt_path, ckpt_epoch, load_optimizer=True):
if ckpt_full_path is not None:
path = ckpt_full_path
elif ckpt_path is not None:
cell_str = self.cell_type + '_' if self.cell_type else ''
group_str = str(self.plate_group) + '_' if self.plate_group is not None else ''
epoch_str = str(ckpt_epoch) if ckpt_epoch else 'best'
path = os.path.join(ckpt_path, '%s%s%s.tar' % (cell_str, group_str, epoch_str))
if not os.path.exists(path):
path = os.path.join(ckpt_path, '%s%s.tar' % (cell_str, epoch_str))
else:
return False
if os.path.exists(path):
model_ckpt = torch.load(path)
try:
self.model.load_state_dict(model_ckpt['model'])
except RuntimeError:
weights = model_ckpt['model']
new_weights = collections.OrderedDict()
for k, v in weights.items():
new_weights['model.' + k] = v
self.model.load_state_dict(new_weights)
if load_optimizer:
self.optimizer.load_state_dict(model_ckpt['optimizer'])
self.start_epoch = model_ckpt['epoch'] + 1
self.ckpt_epoch = model_ckpt['epoch']
self.loss_history = model_ckpt['loss']
self.acc_history = model_ckpt['acc']
if 'pp_acc' in model_ckpt:
self.pp_acc_history = model_ckpt['pp_acc']
logging.info('Check point %s loaded', path)
return True
elif ckpt_path is not None:
os.makedirs(ckpt_path, exist_ok=True)
return False
def _save_ckpt(self, path, epoch):
torch.save({
'epoch': epoch,
'model': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'loss': self.loss_history,
'acc': self.acc_history,
'pp_acc': self.pp_acc_history,
}, path)
def _forward_batch(self, images, labels):
if len(images.size()) == 5:
B, T, C, H, W = images.size()
outputs = self.model(images.view(-1, C, H, W))
if labels is not None:
labels = labels.view(-1)
else:
T = 1
outputs = self.model(images)
return outputs, labels, T
def _predict_batch(self, images):
if len(images.size()) == 5:
B, T, C, H, W = images.size()
outputs = self.model(images.view(-1, C, H, W))
outputs = outputs.view(B, T, -1)
outputs = outputs.mean(dim=1)
else:
outputs = self.model(images)
return outputs
def _train_epoch(self, dataloader, criterion):
running_loss = 0.0
running_corrects = 0
self.model.train()
prefetcher = DataPrefetcher(dataloader)
images, labels = prefetcher.next()
for _ in self.progress_func(range(len(dataloader))):
# zero the parameter gradients
self.optimizer.zero_grad()
with torch.set_grad_enabled(True):
outputs, labels, T = self._forward_batch(images, labels)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# backward + optimize only if in training phase
loss.backward()
self.optimizer.step()
# statistics
running_loss += loss.item() * labels.size(0) / T
running_corrects += torch.sum(preds == labels).cpu().numpy() / T
images, labels = prefetcher.next()
assert images is None
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects / len(dataloader.dataset)
return epoch_loss, epoch_acc
def _eval_epoch(self, dataloader, criterion):
running_loss = 0.0
running_corrects = 0
running_pp_corrects = 0
if self.freeze_eval:
self.model.eval()
prefetcher = DataPrefetcher(dataloader)
images, labels = prefetcher.next()
for _ in self.progress_func(range(len(dataloader))):
# forward
with torch.set_grad_enabled(False):
outputs = self._predict_batch(images)
loss = criterion(outputs, labels)
outputs = outputs.cpu().numpy()
labels = labels.cpu().numpy()
preds = np.argmax(outputs, axis=1)
# statistics
running_loss += loss.item() * labels.shape[0]
running_corrects += np.sum(preds == labels)
for i, l in enumerate(labels):
# do not eval control data in eval_epoch for consistency
if l < c.N_CLASS:
outputs[i, self.label2mask[l]] = -np.inf
preds = np.argmax(outputs, axis=1)
running_pp_corrects += np.sum(preds == labels)
images, labels = prefetcher.next()
assert images is None
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects / len(dataloader.dataset)
epoch_pp_acc = running_pp_corrects / len(dataloader.dataset)
return epoch_loss, epoch_acc, epoch_pp_acc
def _eval_kld_epoch(self, dataloader, criterion):
running_loss = 0.0
running_kld_loss = 0.0
running_corrects = 0
running_pp_corrects = 0
if self.freeze_eval:
self.model.eval()
for images1, images2, labels, masks in self.progress_func(dataloader):
images1 = images1.to(self.device)
images2 = images2.to(self.device)
labels = labels.to(self.device)
# forward
with torch.set_grad_enabled(False):
outputs1 = self._predict_batch(images1)
outputs2 = self._predict_batch(images2)
outputs = ((outputs1 + outputs2) / 2)
loss = criterion(outputs, labels)
for i, mask in enumerate(masks):
outputs1[i, mask] = -np.inf
outputs2[i, mask] = -np.inf
kld_loss = nn.KLDivLoss(reduction='batchmean')(F.log_softmax(outputs1, dim=1),
F.softmax(outputs2, dim=1))
kld_loss += nn.KLDivLoss(reduction='batchmean')(F.log_softmax(outputs2, dim=1),
F.softmax(outputs1, dim=1))
kld_loss /= 2
outputs = outputs.cpu().numpy()
labels = labels.cpu().numpy()
preds = np.argmax(outputs, axis=1)
# statistics
running_loss += loss.item() * labels.shape[0]
running_kld_loss += kld_loss.item() * labels.shape[0]
running_corrects += np.sum(preds == labels)
for i, l in enumerate(labels):
# do not eval control data in eval_epoch for consistency
if l < c.N_CLASS:
outputs[i, self.label2mask[l]] = -np.inf
preds = np.argmax(outputs, axis=1)
running_pp_corrects += np.sum(preds == labels)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_kld_loss = running_kld_loss / len(dataloader.dataset)
epoch_acc = running_corrects / len(dataloader.dataset)
epoch_pp_acc = running_pp_corrects / len(dataloader.dataset)
return epoch_loss, epoch_kld_loss, epoch_acc, epoch_pp_acc
@staticmethod
def _get_instance_weight(train_files):
exp_count = dict()
for f in train_files:
exp_now = ''
for exp in c.EXPS:
if exp in f:
exp_now = exp
break
if exp_now not in exp_count:
exp_count[exp_now] = 0
exp_count[exp_now] += 1
weights = []
for f in train_files:
exp_now = ''
for exp in c.EXPS:
if exp in f:
exp_now = exp
break
weights.append(1 / exp_count[exp_now])
return weights
def get_best_epoch(self, valid_exps):
best_epoch = [-1] * len(valid_exps)
best_loss = [np.inf] * len(valid_exps)
for i, loss_dict in enumerate(self.loss_history['valid']):
for j, exp in enumerate(valid_exps):
if isinstance(loss_dict, dict):
loss = loss_dict[exp]
else:
loss = loss_dict
if loss < best_loss[j]:
best_loss[j] = loss
best_epoch[j] = i
return best_loss, best_epoch
def train(self, train_files, train_labels, train_stats, valid_files, valid_labels, valid_stats,
test_files, test_labels, test_stats,
epochs=10, patient=5, batch_size=32, num_workers=6, valid_exps=c.EXPS, dataset_class=CellDataset,
balance_exp=False, eval_batch_size=32, eval_bn_batch_size=0, restore_loss=True):
tw = 0
for exp in valid_exps:
tw += c.TEST_COUNT[exp]
if restore_loss:
best_loss, best_epoch = self.get_best_epoch(valid_exps)
else:
best_epoch = [-1] * len(valid_exps)
best_loss = [np.inf] * len(valid_exps)
train_dataset = dataset_class(train_files, train_labels, train_stats, self.train_transform, 'train',
gaussian_sigma=self.gaussian_sigma)
if balance_exp:
sampler = WeightedRandomSampler(Model._get_instance_weight(train_dataset.files), len(train_dataset))
else:
sampler = RandomSampler(train_dataset)
train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=num_workers, sampler=sampler,
pin_memory=True)
valid_loaders = dict()
test_loaders = dict()
bn_loaders = dict()
for exp in valid_exps:
idx = util.get_exp_index(exp, valid_files)
valid_loaders[exp] = DataLoader(
dataset_class(valid_files[idx], valid_labels[idx], np.array(valid_stats)[idx], self.eval_transform,
'valid', gaussian_sigma=self.gaussian_sigma), batch_size=eval_batch_size, shuffle=False,
num_workers=num_workers, pin_memory=True)
if eval_bn_batch_size > 0:
bn_loaders[exp] = DataLoader(
dataset_class(valid_files[idx], valid_labels[idx], np.array(valid_stats)[idx], self.eval_transform,
'valid', gaussian_sigma=self.gaussian_sigma), batch_size=eval_bn_batch_size,
shuffle=False, num_workers=num_workers, pin_memory=True)
idx = util.get_exp_index(exp, test_files)
test_loaders[exp] = DataLoader(
dataset_class(test_files[idx], test_labels[idx], np.array(test_stats)[idx], self.eval_transform,
'valid', gaussian_sigma=self.gaussian_sigma), batch_size=eval_batch_size, shuffle=False,
num_workers=num_workers, pin_memory=True)
# start swa after {swa_start_epoch} epochs
swa_start_epoch = 5
if isinstance(self.optimizer, ob.StochasticWeightAverage):
epoch_steps = int(np.ceil(len(train_dataset) / batch_size))
self.optimizer.set_swa_param(epoch_steps * swa_start_epoch, epoch_steps)
criterion = lb.get_criterion(self.criterion)
for epoch in range(self.start_epoch, self.start_epoch + epochs):
train_loss, train_acc = self._train_epoch(train_loader, criterion)
valid_loss_dict = dict()
valid_acc_dict = dict()
valid_pp_acc_dict = dict()
test_loss_dict = dict()
test_acc_dict = dict()
if isinstance(self.optimizer, ob.StochasticWeightAverage) and epoch - self.start_epoch >= swa_start_epoch:
logging.info('Update for SWA')
self.optimizer.update_swa()
if isinstance(self.optimizer, ob.StochasticWeightAverage) and self.optimizer.has_swa():
logging.info('Swap SWA')
self.optimizer.swap_swa_sgd()
if self.freeze_eval:
logging.info('Update SWA BN params')
self.optimizer.bn_update(train_loader, self.model, device=self.device)
for exp in valid_exps:
valid_loss, valid_acc, valid_pp_acc = self._eval_epoch(valid_loaders[exp], criterion)
valid_loss_dict[exp] = valid_loss
valid_acc_dict[exp] = valid_acc
valid_pp_acc_dict[exp] = valid_pp_acc
if self.train_control:
self.model.eval()
test_loss, test_acc, test_pp_acc = self._eval_epoch(test_loaders[exp], criterion)
test_loss_dict[exp] = test_loss
test_acc_dict[exp] = test_acc
valid_loss = np.sum([valid_loss_dict[exp] * c.TEST_COUNT[exp] / tw for exp in valid_exps])
valid_acc = np.sum([valid_acc_dict[exp] * c.TEST_COUNT[exp] / tw for exp in valid_exps])
valid_pp_acc = np.sum([valid_pp_acc_dict[exp] * c.TEST_COUNT[exp] / tw for exp in valid_exps])
if self.train_control:
test_loss = np.sum([test_loss_dict[exp] * c.TEST_COUNT[exp] / tw for exp in valid_exps])
test_acc = np.sum([test_acc_dict[exp] * c.TEST_COUNT[exp] / tw for exp in valid_exps])
logging.info('Epoch {} - Train / Valid / Test Loss: {:.6f} / {:.6f} / {:.6f}'.format(epoch, train_loss,
valid_loss,
test_loss))
logging.info(
'Epoch {} - Train / Valid / Valid Plate / Test Acc: {:.4f}% / {:.4f}% / {:.4f}% / {:.4f}%'.format(
epoch, train_acc * 100, valid_acc * 100, valid_pp_acc * 100, test_acc * 100))
else:
logging.info('Epoch {} - Train / Valid Loss: {:.6f} / {:.6f}'.format(epoch, train_loss, valid_loss))
logging.info(
'Epoch {} - Train / Valid / Valid Plate Acc: {:.4f}% / {:.4f}% / {:.4f}%'.format(
epoch, train_acc * 100, valid_acc * 100, valid_pp_acc * 100))
for exp in valid_exps:
logging.info('Epoch {} - {} Valid Loss / Acc / Plate Acc: {:.6f} / {:.4f}% / {:.4f}%'.format(epoch, exp,
valid_loss_dict[
exp],
valid_acc_dict[
exp] * 100,
valid_pp_acc_dict[
exp] * 100))
if self.train_control:
for exp in valid_exps:
logging.info(
'Epoch {} - {} Test Loss / Acc: {:.6f} / {:.4f}%'.format(epoch, exp, test_loss_dict[exp],
test_acc_dict[exp] * 100))
self.loss_history['train'].append(train_loss)
self.acc_history['train'].append(train_acc)
self.loss_history['valid'].append(valid_loss_dict)
self.acc_history['valid'].append(valid_acc_dict)
self.pp_acc_history['valid'].append(valid_pp_acc_dict)
if self.train_control:
self.loss_history['test'].append(test_loss_dict)
self.acc_history['test'].append(test_acc_dict)
# save best model
if self.cell_type and self.output_ckpt_path:
group_str = str(self.plate_group) + '_' if self.plate_group is not None else ''
tar_name = os.path.join(self.output_ckpt_path, '%s_%s%d.tar' % (self.cell_type, group_str, epoch))
else:
tar_name = os.path.join(self.ckpt_path, '%d.tar' % epoch)
self._save_ckpt(tar_name, epoch)
best_loss_sum = np.sum([best_loss[i] * c.TEST_COUNT[exp] / tw for i, exp in enumerate(valid_exps)])
if best_loss_sum > valid_loss:
if self.cell_type and self.output_ckpt_path:
group_str = str(self.plate_group) + '_' if self.plate_group is not None else ''
tar_name = os.path.join(self.output_ckpt_path, '%s_%sbest.tar' % (self.cell_type, group_str))
else:
tar_name = os.path.join(self.ckpt_path, 'best.tar')
self._save_ckpt(tar_name, epoch)
if isinstance(self.optimizer, ob.StochasticWeightAverage) and self.optimizer.has_swa():
logging.info('Swap SWA')
self.optimizer.swap_swa_sgd()
if train_loss >= 2:
_patient = patient * 2
else:
_patient = patient
for i, exp in enumerate(valid_exps):
if best_loss[i] > valid_loss_dict[exp]:
best_loss[i] = valid_loss_dict[exp]
best_epoch[i] = epoch
logging.info('%s best epoch %d loss %f', exp, epoch, valid_loss_dict[exp])
if epoch - max(best_epoch) >= _patient:
logging.info('Loss not improving for %d epochs! Break.', epoch - max(best_epoch))
break
return best_loss
def get_swa_from_ckpts(self, train_files, train_labels, train_stats, valid_files, valid_labels, valid_stats,
ckpt_prefix, cell_type, first_epoch, last_epoch, epoch_step=5, batch_size=32, num_workers=6,
dataset_class=CellDataset, eval_batch_size=32):
train_dataset = dataset_class(train_files, train_labels, train_stats, self.train_transform, 'train',
gaussian_sigma=self.gaussian_sigma)
train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False,
pin_memory=True)
valid_loader = DataLoader(dataset_class(valid_files, valid_labels, np.array(valid_stats), self.eval_transform,
'valid', gaussian_sigma=self.gaussian_sigma), batch_size=eval_batch_size,
shuffle=False, num_workers=num_workers, pin_memory=True)
best_loss = np.inf
criterion = lb.get_criterion(self.criterion)
swa_optimizer = ob.StochasticWeightAverage(self.optimizer, swa_start=1, swa_freq=1, swa_lr=1)
for epoch in range(first_epoch, last_epoch + 1, epoch_step):
ckpt_path = os.path.join('%s' % ckpt_prefix, '%s_%d.tar' % (cell_type, epoch))
self._load_ckpt(ckpt_path, None, -1, False)
swa_optimizer.update_swa()
if self.freeze_eval:
logging.info('Update SWA BN params')
swa_optimizer.bn_update(train_loader, self.model, device=self.device)
swa_optimizer.swap_swa_sgd()
train_loss, train_acc, train_pp_acc = self._eval_epoch(train_loader, criterion)
valid_loss, valid_acc, valid_pp_acc = self._eval_epoch(valid_loader, criterion)
logging.info('Epoch {} - Train / Valid Loss: {:.6f} / {:.6f}'.format(epoch, train_loss, valid_loss))
logging.info('Epoch {} - Train / Valid / Valid Plate Acc: {:.4f}% / {:.4f}% / {:.4f}%'.format(
epoch, train_acc * 100, valid_acc * 100, valid_pp_acc * 100))
self.loss_history['train'].append(train_loss)
self.acc_history['train'].append(train_acc)
self.loss_history['valid'].append({cell_type: valid_loss})
self.acc_history['valid'].append({cell_type: valid_acc})
self.pp_acc_history['valid'].append({cell_type: valid_pp_acc})
if self.cell_type and self.output_ckpt_path:
group_str = str(self.plate_group) + '_' if self.plate_group is not None else ''
tar_name = os.path.join(self.output_ckpt_path, '%s_%s%d.tar' % (self.cell_type, group_str, epoch))
else:
tar_name = os.path.join(self.ckpt_path, '%d.tar' % epoch)
self._save_ckpt(tar_name, epoch)
if valid_loss < best_loss:
best_loss = valid_loss
if self.cell_type and self.output_ckpt_path:
group_str = str(self.plate_group) + '_' if self.plate_group is not None else ''
tar_name = os.path.join(self.output_ckpt_path, '%s_%sbest.tar' % (self.cell_type, group_str))
else:
tar_name = os.path.join(self.ckpt_path, 'best.tar')
self._save_ckpt(tar_name, epoch)
swa_optimizer.swap_swa_sgd()
return best_loss
def eval_kld(self, files, stats, labels=None, batch_size=32):
valid_loader = DataLoader(PairDataset(files, labels, stats, self.eval_transform, 'valid'),
batch_size=batch_size, shuffle=False, num_workers=6)
criterion = lb.get_criterion(self.criterion)
loss, kld_loss, acc, pp_acc = self._eval_kld_epoch(valid_loader, criterion)
logging.info('loss: %.6f', loss)
logging.info('KLD loss: %.6f', kld_loss)
logging.info('accuracy: %.4f%%', acc * 100)
logging.info('pp accuracy: %.4f%%', pp_acc * 100)
def predict(self, files, stats, labels=None, dataset='test', dataset_class=CellDataset, batch_size=32,
eval_bn_batch_size=0, tta=(True, True, True, True)):
dataloader = DataLoader(dataset_class(files, labels, stats, self.eval_transform, dataset, tta=tta),
batch_size=batch_size, shuffle=False, num_workers=6)
if self.freeze_eval:
self.model.eval()
prediction = []
labels = np.array([])
for images, label in tqdm(dataloader):
images = images.to(self.device)
if self.precision == 8:
images = images.half()
with torch.set_grad_enabled(False):
outputs = self._predict_batch(images)
prediction.append(outputs.cpu().numpy())
labels = np.concatenate((labels, label))
return np.vstack(prediction), labels
def saliency_map(self, files, stats, labels, output_dir, batch_size=32, dataset_class=SubimageDataset):
dataloader = DataLoader(dataset_class(files, labels, stats, self.eval_transform, 'valid'),
batch_size=batch_size, shuffle=False, num_workers=6)
i = 0
corrects = 0.0
self.model.eval()
for images, label in tqdm(dataloader):
images = images.to(self.device)
label = label.to(self.device)
if self.precision == 8:
images = images.half()
images.requires_grad = True
B, T, C, H, W = images.size()
images_flatten = images.view(-1, C, H, W)
outputs = self.model(images_flatten)
preds = outputs.detach().view(B, T, -1).mean(dim=1).cpu().numpy()
raw_preds = outputs.detach().view(B, T, -1).cpu().numpy()
label_flatten = label.repeat_interleave(T)
outputs = outputs.gather(1, label_flatten.view(-1, 1)).squeeze()
outputs.backward(torch.ones_like(outputs))
for k, l in enumerate(label):
# do not eval control data in eval_epoch for consistency
if l < c.N_CLASS:
preds[k, self.label2mask[l]] = -np.inf
preds = np.argmax(preds, axis=1)
corrects += np.sum(preds == label.cpu().numpy())
# save gradient image
file_name = files[i:i + label.size(0)]
# B, T, C, H, W to B, T, H, W, C
grad_images = np.transpose(images.grad.cpu().numpy(), axes=(0, 1, 3, 4, 2))
for j in range(label.size(0)):
for idx in range(8):
path_i = file_name[j][idx // 4].replace('./data/train', output_dir).replace('//', '/')\
.replace('s%d' % (idx // 4 + 1), 's%d_%d' % (idx // 4 + 1, idx))
dir_i = path_i.rsplit('/', 1)[0]
os.makedirs(dir_i, exist_ok=True)
np.save(path_i, grad_images[j][idx])
for idx in range(2):
path_i = file_name[j][idx].replace('./data/train', output_dir).replace('//', '/') \
.replace('s%d' % (idx + 1), 's%d_prob' % (idx + 1))
raw_pred_i = raw_preds[idx * 4:(idx + 1) * 4]
| np.save(path_i, raw_pred_i) | numpy.save |
import os,sys
import igraph as ig
import numpy as np
import matplotlib.pyplot as plt
import plotly.offline as py
import math
import random
import matplotlib.pyplot as plt
import feather
import pandas as pd
import pygeos as pyg
import logging
from codetiming import Timer
import geopandas as gpd
from timeit import default_timer as timer
from tqdm import tqdm
from pathlib import Path
from plotly.graph_objs import *
import traceback
from numpy import inf
from numpy.ma import masked
from population_OD import create_bbox,create_grid
data_path = Path(__file__).resolve().parents[2].joinpath('data','percolation')
code_timer = Timer("time_code", text="Time spent: {:.2f}")
from pathos.multiprocessing import Pool,cpu_count
from itertools import repeat
from functools import reduce
import operator
#import warnings
#warnings.filterwarnings("ignore")
def metrics(graph):
"""This method prints some basic network metrics of an iGraph
Args:
graph (iGraph.Graph object):
Returns:
m:
"""
g = graph
return pd.DataFrame([[g.ecount(),g.vcount(),g.density(),g.omega(),g.average_path_length(directed=False),g.assortativity_degree(False),g.diameter(directed=False),g.edge_connectivity(),g.maxdegree(),np.sum(g.es['distance'])]],columns=["Edge_No","Node_No","Density","Clique_No", "Ave_Path_Length", "Assortativity","Diameter","Edge_Connectivity","Max_Degree","Total_Edge_Length"])
def metrics_Print(graph):
"""This method prints some basic network metrics of an iGraph
Args:
graph (iGraph.Graph object):
Returns:
m:
"""
g = graph
m = []
print("Number of edges: ", g.ecount())
print("Number of nodes: ", g.vcount())
print("Density: ", g.density())
print("Number of cliques: ", g.omega())#omega or g.clique_number()
print("Average path length: ", g.average_path_length(directed=False))
print("Assortativity: ", g.assortativity_degree(False))
print("Diameter: ",g.diameter(directed=False))
print("Edge Connectivity: ", g.edge_connectivity())
print("Maximum degree: ", g.maxdegree())
print("Total Edge length ", np.sum(g.es['distance']))
#Creates a graph
def graph_load(edges):
"""Creates
Args:
edges (pandas.DataFrame) : containing road network edges, with from and to ids, and distance / time columns
Returns:
igraph.Graph (object) : a graph with distance and time attributes
"""
#return ig.Graph.TupleList(gdfNet.edges[['from_id','to_id','distance']].itertuples(index=False),edge_attrs=['distance'])
edges = edges.reindex(['from_id','to_id'] + [x for x in list(edges.columns) if x not in ['from_id','to_id']],axis=1)
graph = ig.Graph.TupleList(edges.itertuples(index=False), edge_attrs=list(edges.columns)[2:],directed=False)
graph.vs['id'] = graph.vs['name']
# graph = ig.Graph(directed=False)
# max_node_id = max(max(edges.from_id),max(edges.to_id))
# graph.add_vertices(max_node_id+1)
# edge_tuples = zip(edges.from_id,edges.to_id)
# graph.add_edges(edge_tuples)
# graph.es['distance'] = edges.distance
# graph.es['time'] = edges.time
return graph
def graph_load_largest(edges):
"""Returns the largest component of a graph given an edge dataframe
Args:
edges (pandas.DataFrame): A dataframe containing from, to ids; time and distance attributes for each edge
Returns:
igraph.Graph (object) : a graph with distance and time attributes
"""
graph = graph_load(gdfNet)
return graph.clusters().giant()
def largest_component_df(edges,nodes):
"""Returns the largest component of a network object (network.edges pd
and network.nodes pd) with reset ids. Uses igraphs built in function, while adding ids as attributes
Args:
edges (pandas.DataFrame): A dataframe containing from and to ids
nodes (pandas.DataFrame): A dataframe containing node ids
Returns:
edges, nodes (pandas.DataFrame) : 2 dataframes containing only those edges and nodes belonging to the giant component
"""
edges = edges
nodes = nodes
edge_tuples = zip(edges['from_id'],edges['to_id'])
graph = ig.Graph(directed=False)
graph.add_vertices(len(nodes))
graph.vs['id'] = nodes['id']
graph.add_edges(edge_tuples)
graph.es['id'] = edges['id']
graph = graph.clusters().giant()
edges_giant = edges.loc[edges.id.isin(graph.es()['id'])]
nodes_giant = nodes.loc[nodes.id.isin(graph.vs()['id'])]
return reset_ids(edges_giant,nodes_giant)
def create_demand(OD_nodes, OD_orig, node_pop):
"""This function creates a demand matrix from the equation:
Demand_a,b = Population_a * Population_b * e^ [-p * Distance_a,b]
-p is set to 1, populations represent the grid square of the origin,
Args:
OD_nodes (list): a list of nodes to use for the OD, a,b
OD_orig (np.matrix): A shortest path matrix used for the distance calculation
node_pop (list): population per OD node
Returns:
demand (np.ndarray) : A matrix with demand calculations for each OD pair
"""
demand = np.zeros((len(OD_nodes), len(OD_nodes)))
dist_decay = 1
maxtrips = 100
for o in range(0, len(OD_nodes)):
for d in range(0, len(OD_nodes)):
if o == d:
demand[o][d] = 0
else:
normalized_dist = OD_orig[o,d] / OD_orig.max()
demand[o][d] = ((node_pop[o] * node_pop[d]) * np.exp(-1 * dist_decay * normalized_dist))
demand = ((demand / demand.max()) * maxtrips)
demand = np.ceil(demand).astype(int)
return demand
def choose_OD(pos_OD, OD_no):
"""Chooses nodes for OD matrix according to their population size stochastically and probabilistically
Args:
pos_OD (list): a list of tuples representing the nodes and their population
OD_no (int): Number of OD pairs to create
Returns:
OD_nodes [list]: The nodes chosen for the OD
mapped_pops [list]: Population for nodes chosen
"""
#creates 2 tuples of the node ids and their total representative population
node_ids, tot_pops = zip(*pos_OD)
#Assigns a probability by population size
pop_probs = [x/sum(tot_pops) for x in tot_pops]
#OD nodes chosen
OD_nodes = list(np.random.choice(node_ids, size=OD_no, replace = False, p=pop_probs))
#Population counts in a mapped list
node_positions = [node_ids.index(i) for i in OD_nodes]
mapped_pops = [tot_pops[j] for j in node_positions]
#returns the nodes, and their populations, should this be zipped?
return OD_nodes, mapped_pops
def prepare_possible_OD(gridDF, nodes, tolerance = 1):
"""Returns an array of tuples, with the first value the node ID to consider, and the
second value the total population associated with this node.
The tolerance is the size of the bounding box to search for nodes within
Args:
gridDF (pandas.DataFrame): A dataframe with the grid centroids and their population
nodes (pandas.DataFrame): A dataframe of the road network nodes
tolerance (float, optional): size of the bounding box . Defaults to 0.1.
Returns:
final_possible_pop (list): a list of tuples representing the nodes and their population
"""
nodeIDs = []
sindex = pyg.STRtree(nodes['geometry'])
pos_OD_nodes = []
pos_tot_pop = []
for i in gridDF.itertuples():
ID = nearest(i.geometry, nodes, sindex, tolerance)
#If a node was found
if ID > -1:
pos_OD_nodes.append(ID)
pos_tot_pop.append(i.tot_pop)
a = nodes.loc[nodes.id.isin(pos_OD_nodes)]
#Create a geopackage of the possible ODs
#with Geopackage('nodyBGR.gpkg', 'w') as out:
# out.add_layer(a, name='finanod', crs='EPSG:4326')
nodes = np.array([pos_OD_nodes])
node_unique = np.unique(nodes)
count = np.array([pos_tot_pop])
#List comprehension to add total populations of recurring nodes
final_possible_pop = [(i, count[nodes==i].sum()) for i in node_unique]
return final_possible_pop
def nearest(geom, gdf,sindex, tolerance):
"""Finds the nearest node
Args:
geom (pygeos.Geometry) : Geometry to find nearest
gdf (pandas.index): Node dataframe to provide possible nodes
sindex (pygeos.Sindex): Spatial index for faster lookup
tolerance (float): Size of buffer to use to find nodes
Returns:
nearest_geom.id [int]: The node id that is closest to the geom
"""
matches_idx = sindex.query(geom)
if not matches_idx.any():
buf = pyg.buffer(geom, tolerance)
matches_idx = sindex.query(buf,'contains').tolist()
try:
nearest_geom = min(
[gdf.iloc[match_idx] for match_idx in matches_idx],
key=lambda match: pyg.measurement.distance(match.geometry,geom)
)
except:
#print("Couldn't find node")
return -1
return nearest_geom.id
def simple_OD_calc(OD, comparisonOD,pos_trip_no):
"""An alternative OD calculation that counts how many trips exceed threshold length
Args:
OD ([type]): [description]
comparisonOD ([type]): [description]
pos_trip_no ([type]): [description]
Returns:
[type]: [description]
"""
compare_thresh = np.greater(OD,comparisonOD)
over_thresh_no = np.sum(compare_thresh) / 2
return over_thresh_no / pos_trip_no
def reset_ids(edges, nodes):
"""Resets the ids of the nodes and edges, editing
the references in edge table using dict masking
Args:
edges (pandas.DataFrame): edges to re-reference ids
nodes (pandas.DataFrame): nodes to re-reference ids
Returns:
edges, nodes (pandas.DataFrame) : The re-referenced edges and nodes.
"""
nodes = nodes.copy()
edges = edges.copy()
to_ids = edges['to_id'].to_numpy()
from_ids = edges['from_id'].to_numpy()
new_node_ids = range(len(nodes))
#creates a dictionary of the node ids and the actual indices
id_dict = dict(zip(nodes.id,new_node_ids))
nt = np.copy(to_ids)
nf = np.copy(from_ids)
#updates all from and to ids, because many nodes are effected, this
#is quite optimal approach for large dataframes
for k,v in id_dict.items():
nt[to_ids==k] = v
nf[from_ids==k] = v
edges.drop(labels=['to_id','from_id'],axis=1,inplace=True)
edges['from_id'] = nf
edges['to_id'] = nt
nodes.drop(labels=['id'],axis=1,inplace=True)
nodes['id'] = new_node_ids
edges['id'] = range(len(edges))
edges.reset_index(drop=True,inplace=True)
nodes.reset_index(drop=True,inplace=True)
return edges,nodes
def get_metrics_and_split(x):
try:
data_path = Path(r'/scistor/ivm/data_catalogue/open_street_map/')
#data_path = Path(r'C:/data/')
if data_path.joinpath("percolation_metrics","{}_0_metrics.csv".format(x)).is_file():
print("{} already finished!".format(x))
return None
print(x+' has started!')
edges = feather.read_dataframe(data_path.joinpath("road_networks","{}-edges.feather".format(x)))
nodes = feather.read_dataframe(data_path.joinpath("road_networks","{}-nodes.feather".format(x)))
#edges = edges.drop('geometry',axis=1)
edges = edges.reindex(['from_id','to_id'] + [x for x in list(edges.columns) if x not in ['from_id','to_id']],axis=1)
graph= ig.Graph.TupleList(edges.itertuples(index=False), edge_attrs=list(edges.columns)[2:],directed=False)
graph.vs['id'] = graph.vs['name']
#all_df = metrics(graph)
#all_df.to_csv(data_path.joinpath("percolation_metrics","{}_all_metrics.csv".format(x)))
cluster_sizes = graph.clusters().sizes()
cluster_sizes.sort(reverse=True)
cluster_loc = [graph.clusters().sizes().index(x) for x in cluster_sizes[:5]]
main_cluster = graph.clusters().giant()
main_edges = edges.loc[edges.id.isin(main_cluster.es()['id'])]
main_nodes = nodes.loc[nodes.id.isin(main_cluster.vs()['id'])]
main_edges, main_nodes = reset_ids(main_edges,main_nodes)
feather.write_dataframe(main_edges,data_path.joinpath("percolation_networks","{}_0-edges.feather".format(x)))
feather.write_dataframe(main_nodes,data_path.joinpath("percolation_networks","{}_0-nodes.feather".format(x)))
main_df = metrics(main_cluster)
main_df.to_csv(data_path.joinpath("percolation_metrics","{}_0_metrics.csv".format(x)))
skipped_giant = False
counter = 1
for y in cluster_loc:
if not skipped_giant:
skipped_giant=True
continue
if len(graph.clusters().subgraph(y).vs) < 500:
break
g = graph.clusters().subgraph(y)
g_edges = edges.loc[edges.id.isin(g.es()['id'])]
g_nodes = nodes.loc[nodes.id.isin(g.vs()['id'])]
if len(g_edges) == len(main_edges) & len(g_nodes) == len(main_nodes):
continue
g_edges, g_nodes = reset_ids(g_edges,g_nodes)
feather.write_dataframe(g_edges,data_path.joinpath("percolation_networks","{}_{}-edges.feather".format(x,str(counter))))
feather.write_dataframe(g_nodes,data_path.joinpath("percolation_networks","{}_{}-nodes.feather".format(x,str(counter))))
g_df = metrics(g)
g_df.to_csv("/scistor/ivm/data_catalogue/open_street_map/percolation_metrics/"+x+"_"+str(counter)+"_metrics.csv")
counter += 1
print(x+' has finished!')
except Exception as e:
print(x+" failed because of {}".format(e))
def SummariseOD(OD, fail_value, demand, baseline, GDP_per_capita, frac_counter,distance_disruption, time_disruption):
"""Function returns the % of total trips between origins and destinations that exceed fail value
Almost verbatim from world bank /GOSTnets world_files_criticality_v2.py
Args:
OD (np.matrix): Current OD matrix times (during percolation)
fail_value (int): Came form GOSTNETS , seems just to be a huge int
demand (np.ndarray): Demand matrix
baseline (np.matrix): OD matrix before percolation
GDP_per_capita (int): GDP of relevant area
frac_counter (float): Keeps track of current fraction for ease of results storage
Returns:
frac_counter, pct_isolated, average_time_disruption, pct_thirty_plus, pct_twice_plus, pct_thrice_plus,total_surp_loss_e1, total_pct_surplus_loss_e1, total_surp_loss_e2, total_pct_surplus_loss_e2
"""
#adjusted time
adj_time = OD-baseline
# total trips
total_trips = (baseline.shape[0]*baseline.shape[1])-baseline.shape[0]
#isolated_trips = np.ma.masked_array(masked_demand,~masked_OD.mask)
isolated_trips_sum = OD[OD == fail_value].shape[1]
# get percentage of isolated trips
pct_isolated = (isolated_trips_sum / total_trips)*100
## get travel times for remaining trips
time_unaffected_trips = OD[OD == baseline]
# get unaffected trips travel times
if not (np.isnan(np.array(time_unaffected_trips)).all()):
unaffected_percentiles = []
unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),10))
unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),25))
unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),50))
unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),75))
unaffected_percentiles.append(np.nanpercentile(np.array(time_unaffected_trips),90))
unaffected_percentiles.append(np.nanmean((time_unaffected_trips)))
else:
unaffected_percentiles = [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan]
# save delayed trips travel times
delayed_trips_time = adj_time[(OD != baseline) & (np.nan_to_num(np.array(OD),nan=fail_value) != fail_value)]
unaffected_trips = np.array(time_unaffected_trips).shape[1]
delayed_trips = np.array(delayed_trips_time).shape[1]
# save percentage unaffected and delayed
pct_unaffected = (unaffected_trips/total_trips)*100
pct_delayed = (delayed_trips/total_trips)*100
# get delayed trips travel times
if not (np.isnan(np.array(delayed_trips_time)).all()):
delayed_percentiles = []
delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),10))
delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),25))
delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),50))
delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),75))
delayed_percentiles.append(np.nanpercentile(np.array(delayed_trips_time),90))
delayed_percentiles.append(np.nanmean(np.array(delayed_trips_time)))
average_time_disruption = np.nanmean(np.array(delayed_trips_time))
else:
delayed_percentiles = [np.nan,np.nan,np.nan,np.nan,np.nan,np.nan]
average_time_disruption = np.nan
# Flexing demand with trip cost
def surplus_loss(e, C2, C1, D1):
"""[summary]
Args:
e ([type]): [description]
C2 ([type]): [description]
C1 ([type]): [description]
D1 ([type]): [description]
Returns:
[type]: [description]
"""
Y_intercept_max_cost = C1 - (e * D1)
C2 = np.minimum(C2, Y_intercept_max_cost)
delta_cost = C2 - C1
delta_demand = (delta_cost / e)
D2 = (D1 + delta_demand)
surplus_loss_ans = ((delta_cost * D2) + ((delta_cost * -delta_demand) / 2))
triangle = (D1 * (Y_intercept_max_cost - C1) ) / 2
total_surp_loss = surplus_loss_ans.sum()
total_pct_surplus_loss = total_surp_loss / triangle.sum()
return total_surp_loss, total_pct_surplus_loss*100
adj_cost = (OD * GDP_per_capita) / (365 * 8 ) #* 3600) time is in hours, so not sure why we do this multiplications with 3600? and minutes would be times 60?
baseline_cost = (baseline * GDP_per_capita) / (365 * 8 ) #* 3600) time is in hours, so not sure why we do this multiplications with 3600? and minutes would be times 60?
adj_cost = np.nan_to_num(np.array(adj_cost),nan=np.nanmax(adj_cost))
total_surp_loss_e1, total_pct_surplus_loss_e1 = surplus_loss(-0.15, adj_cost, baseline_cost, demand)
total_surp_loss_e2, total_pct_surplus_loss_e2 = surplus_loss(-0.36, adj_cost, baseline_cost, demand)
return frac_counter, pct_isolated, pct_unaffected, pct_delayed, average_time_disruption, total_surp_loss_e1, total_pct_surplus_loss_e1, total_surp_loss_e2, total_pct_surplus_loss_e2, distance_disruption, time_disruption, unaffected_percentiles, delayed_percentiles
def percolation_random_attack(edges, del_frac=0.01, OD_list=[], pop_list=[], GDP_per_capita=50000):
"""Final version of percolation, runs a simulation on the network provided, to give an indication of network resilience.
Args:
edges (pandas.DataFrame): A dataframe containing edge information: the nodes to and from, the time and distance of the edge
del_frac (float): The fraction to increment the percolation. Defaults to 0.01. e.g.0.01 removes 1 percent of edges at each step
OD_list (list, optional): OD nodes to use for matrix and calculations. Defaults to [].
pop_list (list, optional): Corresponding population sizes for ODs for demand calculations. Defaults to [].
GDP_per_capita (int, optional): The GDP of the country/area for surplus cost calculations. Defaults to 50000.
Returns:
result_df [pandas.DataFrame]: The results! 'frac_counter', 'pct_isolated', 'average_time_disruption', 'pct_thirty_plus', 'pct_twice_plus', 'pct_thrice_plus','total_surp_loss_e1', 'total_pct_surplus_loss_e1', 'total_surp_loss_e2', 'total_pct_surplus_loss_e2' """
edges.geometry = pyg.from_wkb(edges.geometry)
result_df = []
g = graph_load(edges)
#These if statements allow for an OD and population list to be randomly generated
if OD_list == []:
OD_nodes = random.sample(range(g.vcount()-1),100)
else:
OD_nodes = OD_list
edge_no = g.ecount()
OD_node_no = len(OD_nodes)
if pop_list == []:
node_pop = random.sample(range(4000), OD_node_no)
else:
node_pop = pop_list
#Creates a matrix of shortest path times between OD nodes
base_shortest_paths = g.shortest_paths_dijkstra(source=OD_nodes,target = OD_nodes,weights='time')
OD_orig = np.matrix(base_shortest_paths)
demand = create_demand(OD_nodes, OD_orig, node_pop)
exp_g = g.copy()
trips_possible = True
frac_counter = 0
tot_edge_length = np.sum(g.es['distance'])
tot_edge_time = np.sum(g.es['time'])
# add frac 0.00 for better figures and results
result_df.append((0.00, 0, 100, 0, 0.0, 0, 0.0, 0, 0.0, 0.0, 0.0,
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
[0.0,0.0, 0.0, 0.0, 0.0, 0.0]))
while trips_possible:
if frac_counter > 0.3 and frac_counter <= 0.5: del_frac = 0.02
if frac_counter > 0.5: del_frac = 0.05
exp_edge_no = exp_g.ecount()
#sample_probabilities = np.array(exp_g.es['distance'])/sum(exp_g.es['distance'])
#The number of edges to delete
no_edge_del = max(1,math.floor(del_frac * edge_no))
try:
edges_del = random.sample(range(exp_edge_no),no_edge_del)
#edges_del = np.random.choice(range(exp_edge_no), size=no_edge_del, replace = False, p=sample_probabilities)
except:
edges_del = range(exp_edge_no)
exp_g.delete_edges(edges_del)
frac_counter += del_frac
cur_dis_length = 1 - (np.sum(exp_g.es['distance'])/tot_edge_length)
cur_dis_time = 1 - (np.sum(exp_g.es['time'])/tot_edge_time)
new_shortest_paths = exp_g.shortest_paths_dijkstra(source=OD_nodes,target = OD_nodes,weights='time')
perc_matrix = np.matrix(new_shortest_paths)
perc_matrix[perc_matrix == inf] = 99999999999
perc_matrix[perc_matrix == 0] = np.nan
results = SummariseOD(perc_matrix, 99999999999, demand, OD_orig, GDP_per_capita,round(frac_counter,3),cur_dis_length,cur_dis_time)
result_df.append(results)
#If the frac_counter goes past 0.99
if results[0] >= 0.99: break
#If there are no edges left to remove
if exp_edge_no < 1: break
result_df = pd.DataFrame(result_df, columns=['frac_counter', 'pct_isolated','pct_unaffected', 'pct_delayed',
'average_time_disruption','total_surp_loss_e1',
'total_pct_surplus_loss_e1', 'total_surp_loss_e2', 'total_pct_surplus_loss_e2',
'distance_disruption','time_disruption','unaffected_percentiles','delayed_percentiles'])
result_df = result_df.replace('--',0)
return result_df
def percolation_random_attack_od_buffer(edges, nodes,grid_height, del_frac=0.01, OD_list=[], pop_list=[], GDP_per_capita=50000):
"""Final version of percolation, runs a simulation on the network provided, to give an indication of network resilience.
Args:
edges (pandas.DataFrame): A dataframe containing edge information: the nodes to and from, the time and distance of the edge
del_frac (float): The fraction to increment the percolation. Defaults to 0.01. e.g.0.01 removes 1 percent of edges at each step
OD_list (list, optional): OD nodes to use for matrix and calculations. Defaults to [].
pop_list (list, optional): Corresponding population sizes for ODs for demand calculations. Defaults to [].
GDP_per_capita (int, optional): The GDP of the country/area for surplus cost calculations. Defaults to 50000.
Returns:
result_df [pandas.DataFrame]: The results! 'frac_counter', 'pct_isolated', 'average_time_disruption', 'pct_thirty_plus', 'pct_twice_plus', 'pct_thrice_plus','total_surp_loss_e1', 'total_pct_surplus_loss_e1', 'total_surp_loss_e2', 'total_pct_surplus_loss_e2' """
nodes.geometry = pyg.from_wkb(nodes.geometry)
edges.geometry = pyg.from_wkb(edges.geometry)
result_df = []
g = graph_load(edges)
#These if statements allow for an OD and population list to be randomly generated
if OD_list == []:
OD_nodes = random.sample(range(g.vcount()-1),100)
else:
OD_nodes = OD_list
edge_no = g.ecount()
OD_node_no = len(OD_nodes)
if pop_list == []:
node_pop = random.sample(range(4000), OD_node_no)
else:
node_pop = pop_list
buffer_centroids = pyg.buffer(nodes.loc[nodes.id.isin(OD_list)].geometry,grid_height*0.05).values
OD_buffers = dict(zip(OD_nodes,buffer_centroids))
edges_per_OD = {}
for OD_buffer in OD_buffers:
get_list_edges = list(edges.id.loc[pyg.intersects(pyg.make_valid(OD_buffers[OD_buffer]),pyg.make_valid(edges.geometry.values))].values)
edges_per_OD[OD_buffer] = get_list_edges,get_list_edges
#Creates a matrix of shortest path times between OD nodes
base_shortest_paths = g.shortest_paths_dijkstra(source=OD_nodes,target=OD_nodes,weights='time')
OD_orig = np.matrix(base_shortest_paths)
OD_thresh = OD_orig * 10
demand = create_demand(OD_nodes, OD_orig, node_pop)
exp_g = g.copy()
trips_possible = True
pos_trip_no = (((OD_node_no**2) - OD_node_no) / 2) - ((np.count_nonzero(np.isinf(OD_orig)))/2)
counter = 0
frac_counter = 0
tot_edge_length = | np.sum(g.es['distance']) | numpy.sum |
'''
Classes for extracting "decodable features" from various types of neural signal sources.
Examples include spike rate estimation, LFP power, and EMG amplitude.
'''
import numpy as np
import time
from scipy.signal import butter, lfilter
import math
import os
import nitime.algorithms as tsa
from riglib.ripple.pyns import pyns
class FeatureExtractor(object):
'''
Parent of all feature extractors, used only for interfacing/type-checking.
Feature extractors are objects tha gets the data that it needs (e.g., spike timestamps, LFP voltages, etc.)
from the neural data source object and extracts features from it
'''
@classmethod
def extract_from_file(cls, *args, **kwargs):
raise NotImplementedError
class DummyExtractor(FeatureExtractor):
'''
An extractor which does nothing. Used for tasks which are only pretending to be BMI tasks, e.g., visual feedback tasks
'''
feature_type = 'obs'
feature_dtype = [('obs', 'f8', (1,))]
def __call__(self, *args, **kwargs):
return dict(obs=np.array([[np.nan]]))
class BinnedSpikeCountsExtractor(FeatureExtractor):
'''
Extracts spike counts from spike timestamps separated into rectangular window.
This extractor is (currently) the main type of feature extractor in intracortical BMIs
'''
feature_type = 'spike_counts'
def __init__(self, source, n_subbins=1, units=[]):
'''
Constructor for BinnedSpikeCountsExtractor
Parameters
----------
source: DataSource instance
Source must implement a '.get()' function which returns the appropriate data
(appropriateness will change depending on the source)
n_subbins: int, optional, default=1
Number of bins into which to divide the observed spike counts
units: np.ndarray of shape (N, 2), optional, default=[]
Units which need spike binning. Each row of the array corresponds to (channel, unit). By default no units will be binned.
Returns
-------
BinnedSpikeCountsExtractor instance
'''
self.feature_dtype = [('spike_counts', 'u4', (len(units), n_subbins)), ('bin_edges', 'f8', 2)]
self.source = source
self.n_subbins = n_subbins
self.units = units
extractor_kwargs = dict()
extractor_kwargs['n_subbins'] = self.n_subbins
extractor_kwargs['units'] = self.units
self.extractor_kwargs = extractor_kwargs
self.last_get_spike_counts_time = 0
def set_n_subbins(self, n_subbins):
'''
Alter the # of subbins without changing the extractor kwargs of a decoder
Parameters
----------
n_subbins : int
Number of bins into which to divide the observed spike counts
Returns
-------
None
'''
self.n_subbins = n_subbins
self.extractor_kwargs['n_subbins'] = n_subbins
self.feature_dtype = [('spike_counts', 'u4', (len(self.units), n_subbins)), ('bin_edges', 'f8', 2)]
def get_spike_ts(self, *args, **kwargs):
'''
Get the spike timestamps from the neural data source. This function has no type checking,
i.e., it is assumed that the Extractor object was created with the proper source
Parameters
----------
None are needed (args and kwargs are ignored)
Returns
-------
numpy record array
Spike timestamps in the format of riglib.plexon.Spikes.dtype
'''
return self.source.get()
def get_bin_edges(self, ts):
'''
Determine the first and last spike timestamps to allow HDF files
created by the BMI to be semi-synchronized with the neural data file
Parameters
----------
ts : numpy record array
Must have field 'ts' of spike timestamps in seconds
Returns
-------
np.ndarray of shape (2,)
The smallest and largest timestamps corresponding to the current feature;
useful for rough synchronization of the BMI event loop with the neural recording system.
'''
if len(ts) == 0:
bin_edges = np.array([np.nan, np.nan])
else:
min_ind = np.argmin(ts['ts'])
max_ind = np.argmax(ts['ts'])
bin_edges = np.array([ts[min_ind]['ts'], ts[max_ind]['ts']])
@classmethod
def bin_spikes(cls, ts, units, max_units_per_channel=13):
'''
Count up the number of BMI spikes in a list of spike timestamps.
Parameters
----------
ts : numpy record array
Must have field 'ts' of spike timestamps in seconds
units : np.ndarray of shape (N, 2)
Each row corresponds to the channel index (typically the electrode number) and
the unit index (an index to differentiate the possibly many units on the same electrode). These are
the units used in the BMI.
max_units_per_channel : int, optional, default=13
This int is used to map from a (channel, unit) index to a single 'unit_ind'
for faster binning of spike timestamps. Just set to a large number.
Returns
-------
np.ndarray of shape (N, 1)
Column vector of counts of spike events for each of the N units.
'''
unit_inds = units[:,0]*max_units_per_channel + units[:,1]
edges = np.sort(np.hstack([unit_inds - 0.5, unit_inds + 0.5]))
spiking_unit_inds = ts['chan']*max_units_per_channel + ts['unit']
counts, _ = np.histogram(spiking_unit_inds, edges)
return counts[::2]
def __call__(self, start_time, *args, **kwargs):
'''
Main function to retreive new spike data and bin the counts
Parameters
----------
start_time : float
Absolute time from the task event loop. This is used only to subdivide
the spike timestamps into multiple bins, if desired (if the 'n_subbins' attribute is > 1)
*args, **kwargs : optional positional/keyword arguments
These are passed to the source, or ignored (not needed for this extractor).
Returns
-------
dict
Extracted features to be saved in the task.
'''
ts = self.get_spike_ts(*args, **kwargs)
if len(ts) == 0:
counts = np.zeros([len(self.units), self.n_subbins])
elif self.n_subbins > 1:
subbin_edges = np.linspace(self.last_get_spike_counts_time, start_time, self.n_subbins+1)
# Decrease the first subbin index to include any spikes that were
# delayed in getting to the task layer due to threading issues
# An acceptable delay is 1 sec or less. Realistically, most delays should be
# on the millisecond order
subbin_edges[0] -= 1
subbin_inds = np.digitize(ts['arrival_ts'], subbin_edges)
counts = np.vstack([self.bin_spikes(ts[subbin_inds == k], self.units) for k in range(1, self.n_subbins+1)]).T
else:
counts = self.bin_spikes(ts, self.units).reshape(-1, 1)
print("Units", self.units)
print("Counts:", counts)
counts = np.array(counts, dtype=np.uint32)
bin_edges = self.get_bin_edges(ts)
self.last_get_spike_counts_time = start_time
return dict(spike_counts=counts, bin_edges=bin_edges)
@classmethod
def extract_from_file(cls, files, neurows, binlen, units, extractor_kwargs, strobe_rate=60.0):
'''
Compute binned spike count features
Parameters
----------
files : dict
Data files used to train the decoder. Should contain exactly one type of neural data file (e.g., Plexon, Blackrock, TDT, Ripple)
neurows: np.ndarray of shape (T,)
Timestamps in the plexon time reference corresponding to bin boundaries
binlen: float
Length of time over which to sum spikes from the specified cells
units: np.ndarray of shape (N, 2)
List of units that the decoder will be trained on. The first column specifies the electrode number and the second specifies the unit on the electrode
extractor_kwargs: dict
Any additional parameters to be passed to the feature extractor. This function is agnostic to the actual extractor utilized
strobe_rate: 60.0
The rate at which the task sends the sync pulse to the neural recording file
Returns
-------
spike_counts : np.ndarray of shape (N, T)
Spike counts binned over the length of the datafile.
units : np.ndarray of shape (N, 2)
Each row corresponds to the channel index (typically the electrode number) and
the unit index (an index to differentiate the possibly many units on the same electrode). These are
the units used in the BMI.
extractor_kwargs : dict
Parameters used to instantiate the feature extractor, to be stored
along with the trained decoder so that the exact same feature extractor can be re-created at runtime.
'''
if 'plexon' in files:
from plexon import plexfile
plx = plexfile.openFile(str(files['plexon']))
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
print(('step: ', step))
from plexon import psth
spike_bin_fn = psth.SpikeBin(units, binlen)
spike_counts = np.array(list(plx.spikes.bin(interp_rows, spike_bin_fn)))
# discard units that never fired at all
discard_zero_units = extractor_kwargs.pop('discard_zero_units', True)
if discard_zero_units:
unit_inds, = np.nonzero(np.sum(spike_counts, axis=0))
units = units[unit_inds,:]
spike_counts = spike_counts[:, unit_inds]
extractor_kwargs['units'] = units
return spike_counts, units, extractor_kwargs
elif 'blackrock' in files:
nev_fname = [name for name in files['blackrock'] if '.nev' in name][0] # only one of them
nev_hdf_fname = [name for name in files['blackrock'] if '.nev' in name and name[-4:]=='.hdf']
nsx_fnames = [name for name in files['blackrock'] if '.ns' in name]
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
if len(nev_hdf_fname) == 0:
nev_hdf_fname = nev_fname + '.hdf'
if not os.path.isfile(nev_hdf_fname):
# convert .nev file to hdf file using Blackrock's n2h5 utility
subprocess.call(['n2h5', nev_fname, nev_hdf_fname])
else:
nev_hdf_fname = nev_hdf_fname[0]
try:
nev_hdf = h5py.File(nev_hdf_fname, 'r')
open_method = 1
except:
import tables
nev_hdf = tables.openFile(nev_hdf_fname)
open_method = 2
#print 'open method 2'
n_bins = len(interp_rows)
n_units = units.shape[0]
spike_counts = np.zeros((n_bins, n_units))
for i in range(n_units):
chan = units[i, 0]
# 1-based numbering (comes from web interface)
unit = units[i, 1]
chan_str = str(chan).zfill(5)
path = 'channel/channel%s/spike_set' % chan_str
if open_method == 1:
ts = nev_hdf.get(path).value['TimeStamp']
# the units corresponding to each timestamp in ts
# 0-based numbering (comes from .nev file), so add 1
units_ts = nev_hdf.get(path).value['Unit']
elif open_method == 2:
try:
grp = nev_hdf.getNode('/'+path)
ts = grp[:]['TimeStamp']
units_ts = grp[:]['Unit']
except:
print(('no spikes recorded on channel: ', chan_str, ': adding zeros'))
ts = []
units_ts = []
# get the ts for this unit, in units of secs
fs = 30000.
ts = [t/fs for idx, (t, u_t) in enumerate(zip(ts, units_ts)) if u_t == unit]
# insert value interp_rows[0]-step to beginning of interp_rows array
interp_rows_ = np.insert(interp_rows, 0, interp_rows[0]-step)
# use ts to fill in the spike_counts that corresponds to unit i
spike_counts[:, i] = np.histogram(ts, interp_rows_)[0]
# discard units that never fired at all
if 'keep_zero_units' in extractor_kwargs:
print('keeping zero firing units')
else:
unit_inds, = np.nonzero(np.sum(spike_counts, axis=0))
units = units[unit_inds,:]
spike_counts = spike_counts[:, unit_inds]
extractor_kwargs['units'] = units
return spike_counts, units, extractor_kwargs
elif 'ripple' in files:
nev_fname = [name for name in files['ripple'] if '.nev' in name][0] # only one of them
nevfile = pyns.NSFile(nev_fname)
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
electrode_list = units[:,0] # first column is electrode numbers
# access spike data for all electrodes indicated in units array
spike_entities = [e for e in nevfile.get_entities() if e.entity_type ==3]
spike_entities = [e for e in spike_entities if int(e.label[4:]) in electrode_list]
print('checkpoint1')
print(units)
print(units.shape[0])
print(electrode_list)
# there is one entity per electrode. now extract spike times and ids to do binning.
# spike_counts should be units x time
n_bins = len(interp_rows)
n_units = units.shape[0]
spike_counts = np.zeros((n_bins, n_units))
# insert value interp_rows[0]-step to beginning of interp_rows array
interp_rows_ = np.insert(interp_rows, 0, interp_rows[0]-step)
i = 0
print('checkpoint2')
print(n_bins)
print(interp_rows_)
for entity in spike_entities:
# placeholder matrix: spike count x 2, holds spike time in first column and spike id in second column
spike_data = np.zeros((entity.item_count, 2))
elec = int(entity.label[4:]) # electrode number
elec_uids = units[units[:,0]==elec,1] # units on this electrode to be included
print(entity)
print(elec)
print(elec_uids)
for item in range(0,entity.item_count):
spike_data[item,0], data, spike_data[item,1] = entity.get_segment_data(item)
# check which spike data will be used
for uid in elec_uids:
ts = spike_data[spike_data[:,1]==uid,0]
print(ts)
spike_counts[:, i] = np.histogram(ts, interp_rows_)[0]
i += 1
# discard units that never fired at all
if 'keep_zero_units' in extractor_kwargs:
print('keeping zero firing units')
else:
print(np.sum(spike_counts, axis=0))
unit_inds, = np.nonzero(np.sum(spike_counts, axis=0))
print(unit_inds)
units = units[unit_inds,:]
spike_counts = spike_counts[:, unit_inds]
extractor_kwargs['units'] = units
print('File Extractor.py')
print(units)
return spike_counts, units, extractor_kwargs
elif 'tdt' in files:
raise NotImplementedError
# bands should be a list of tuples representing ranges
# e.g., bands = [(0, 10), (10, 20), (130, 140)] for 0-10, 10-20, and 130-140 Hz
start = 0
end = 150
step = 10
default_bands = []
for freq in range(start, end, step):
default_bands.append((freq, freq+step))
class LFPMTMPowerExtractor(object):
'''
Computes log power of the LFP in different frequency bands (for each
channel) in freq-domain using the multi-taper method.
'''
feature_type = 'lfp_power'
def __init__(self, source, channels=[], bands=default_bands, win_len=0.2, NW=3, fs=1000, **kwargs):
'''
Constructor for LFPMTMPowerExtractor, which extracts LFP power using the multi-taper method
Parameters
----------
source : riglib.source.Source object
Object which yields new data when its 'get' method is called
channels : list
LFP electrode indices to use for feature extraction
bands : list of tuples
Each tuple defines a frequency band of interest as (start frequency, end frequency)
Returns
-------
LFPMTMPowerExtractor instance
'''
#self.feature_dtype = ('lfp_power', 'f8', (len(channels)*len(bands), 1))
self.source = source
self.channels = channels
self.bands = bands
self.win_len = win_len
self.NW = NW
if source is not None:
self.fs = source.source.update_freq
else:
self.fs = fs
extractor_kwargs = dict()
extractor_kwargs['channels'] = self.channels
extractor_kwargs['bands'] = self.bands
extractor_kwargs['win_len'] = self.win_len
extractor_kwargs['NW'] = self.NW
extractor_kwargs['fs'] = self.fs
extractor_kwargs['no_log'] = 'no_log' in kwargs and kwargs['no_log']==True #remove log calculation
extractor_kwargs['no_mean'] = 'no_mean' in kwargs and kwargs['no_mean']==True #r
self.extractor_kwargs = extractor_kwargs
self.n_pts = int(self.win_len * self.fs)
self.nfft = 2**int(np.ceil(np.log2(self.n_pts))) # nextpow2(self.n_pts)
fft_freqs = np.arange(0., fs, float(fs)/self.nfft)[:int(self.nfft/2) + 1]
#fft_freqs = np.arange(0., fs, float(fs)/self.nfft)[:self.nfft/2 + 1]
self.fft_inds = dict()
for band_idx, band in enumerate(bands):
self.fft_inds[band_idx] = [freq_idx for freq_idx, freq in enumerate(fft_freqs) if band[0] <= freq < band[1]]
extractor_kwargs['fft_inds'] = self.fft_inds
extractor_kwargs['fft_freqs'] = fft_freqs
self.epsilon = 1e-9
if extractor_kwargs['no_mean']: #Used in lfp 1D control task
self.feature_dtype = ('lfp_power', 'f8', (len(channels)*len(fft_freqs), 1))
else:
self.feature_dtype = ('lfp_power', 'f8', (len(channels)*len(bands), 1))
def get_cont_samples(self, *args, **kwargs):
'''
Retreives the last n_pts number of samples for each LPF channel from the neural data 'source'
Parameters
----------
*args, **kwargs : optional arguments
Ignored for this extractor (not necessary)
Returns
-------
np.ndarray of shape ???
'''
return self.source.get(self.n_pts, self.channels)
def extract_features(self, cont_samples):
'''
Extract spectral features from a block of time series samples
Parameters
----------
cont_samples : np.ndarray of shape (n_channels, n_samples)
Raw voltage time series (one per channel) from which to extract spectral features
Returns
-------
lfp_power : np.ndarray of shape (n_channels * n_features, 1)
Multi-band power estimates for each channel, for each band specified when the feature extractor was instantiated.
'''
psd_est = tsa.multi_taper_psd(cont_samples, Fs=self.fs, NW=self.NW, jackknife=False, low_bias=True, NFFT=self.nfft)[1]
if ('no_mean' in self.extractor_kwargs) and (self.extractor_kwargs['no_mean'] is True):
return psd_est.reshape(psd_est.shape[0]*psd_est.shape[1], 1)
else:
# compute average power of each band of interest
n_chan = len(self.channels)
lfp_power = np.zeros((n_chan * len(self.bands), 1))
for idx, band in enumerate(self.bands):
if self.extractor_kwargs['no_log']:
lfp_power[idx*n_chan : (idx+1)*n_chan, 0] = np.mean(psd_est[:, self.fft_inds[idx]], axis=1)
else:
lfp_power[idx*n_chan : (idx+1)*n_chan, 0] = np.mean(np.log10(psd_est[:, self.fft_inds[idx]] + self.epsilon), axis=1)
return lfp_power
def __call__(self, start_time, *args, **kwargs):
'''
Parameters
----------
start_time : float
Absolute time from the task event loop. This is unused by LFP extractors in their current implementation
and only passed in to ensure that function signatures are the same across extractors.
*args, **kwargs : optional positional/keyword arguments
These are passed to the source, or ignored (not needed for this extractor).
Returns
-------
dict
Extracted features to be saved in the task.
'''
cont_samples = self.get_cont_samples(*args, **kwargs) # dims of channels x time
print(cont_samples)
lfp_power = self.extract_features(cont_samples['samples'])
return dict(lfp_power=lfp_power)
@classmethod
def extract_from_file(cls, files, neurows, binlen, units, extractor_kwargs, strobe_rate=60.0):
'''
Compute binned spike count features
Parameters
----------
files : dict
Data files used to train the decoder. Should contain exactly one type of neural data file (e.g., Plexon, Blackrock, TDT)
neurows: np.ndarray of shape (T,)
Timestamps in the plexon time reference corresponding to bin boundaries
binlen: float
Length of time over which to sum spikes from the specified cells
units: np.ndarray of shape (N, 2)
List of units that the decoder will be trained on. The first column specifies the electrode number and the second specifies the unit on the electrode
extractor_kwargs: dict
Any additional parameters to be passed to the feature extractor. This function is agnostic to the actual extractor utilized
strobe_rate: 60.0
The rate at which the task sends the sync pulse to the plx file
Returns
-------
spike_counts : np.ndarray of shape (N, T)
Spike counts binned over the length of the datafile.
units :
Not used by this type of extractor, just passed back from the input argument to make the outputs consistent with spike count extractors
extractor_kwargs : dict
Parameters used to instantiate the feature extractor, to be stored
along with the trained decoder so that the exact same feature extractor can be re-created at runtime.
'''
if 'plexon' in files:
from plexon import plexfile
plx = plexfile.openFile(str(files['plexon']))
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
# create extractor object
f_extractor = LFPMTMPowerExtractor(None, **extractor_kwargs)
extractor_kwargs = f_extractor.extractor_kwargs
win_len = f_extractor.win_len
bands = f_extractor.bands
channels = f_extractor.channels
fs = f_extractor.fs
print(('bands:', bands))
n_itrs = len(interp_rows)
n_chan = len(channels)
lfp_power = np.zeros((n_itrs, n_chan * len(bands)))
# for i, t in enumerate(interp_rows):
# cont_samples = plx.lfp[t-win_len:t].data[:, channels-1]
# lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
lfp = plx.lfp[:].data[:, channels-1]
n_pts = int(win_len * fs)
for i, t in enumerate(interp_rows):
try:
sample_num = int(t * fs)
cont_samples = lfp[sample_num-n_pts:sample_num, :]
lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
except:
print("Error with LFP decoder training")
print((i, t))
pass
# TODO -- discard any channel(s) for which the log power in any frequency
# bands was ever equal to -inf (i.e., power was equal to 0)
# or, perhaps just add a small epsilon inside the log to avoid this
# then, remember to do this: extractor_kwargs['channels'] = channels
# and reset the units variable
return lfp_power, units, extractor_kwargs
elif 'blackrock' in files:
raise NotImplementedError
elif 'ripple' in files:
ns5_fname = [name for name in files['ripple'] if '.ns5' in name][0] # only one of them
ns5file = pyns.NSFile(ns5_fname)
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
electrode_list = units[:,0] # first column is electrode numbers
# access spike data for all electrodes indicated in units array
lfp_entities = [e for e in ns5file.get_entities() if e.entity_type ==2]
lfp_entities = [e for e in lfp_entities if (e.label[:3]=='lfp') and (int(e.label.split('\x00')[0][4:]) in electrode_list)]
print('checkpoint1')
print(units)
print(units.shape[0])
print(electrode_list)
# create extractor object
f_extractor = LFPMTMPowerExtractor(None, **extractor_kwargs)
extractor_kwargs = f_extractor.extractor_kwargs
win_len = f_extractor.win_len
bands = f_extractor.bands
channels = f_extractor.channels
fs = f_extractor.fs
print(('bands:', bands))
n_itrs = len(interp_rows)
n_chan = len(channels)
lfp_power = np.zeros((n_itrs, n_chan * len(bands)))
n_data = lfp_entities[0].item_count
lfp = np.zeros((n_data, n_chan))
for i, e in enumerate(lfp_entities):
lfp[:, i] = e.get_analog_data()
# for i, t in enumerate(interp_rows):
# cont_samples = plx.lfp[t-win_len:t].data[:, channels-1]
# lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
#lfp = plx.lfp[:].data[:, channels-1]
n_pts = int(win_len * fs)
for i, t in enumerate(interp_rows):
try:
sample_num = int(t * fs)
cont_samples = lfp[sample_num-n_pts:sample_num, :]
lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
except:
print("Error with LFP decoder training")
print((i, t))
pass
# TODO -- discard any channel(s) for which the log power in any frequency
# bands was ever equal to -inf (i.e., power was equal to 0)
# or, perhaps just add a small epsilon inside the log to avoid this
# then, remember to do this: extractor_kwargs['channels'] = channels
# and reset the units variable
return lfp_power, units, extractor_kwargs
#########################################################
##### Reconstruction extractors, used in test cases #####
#########################################################
class ReplaySpikeCountsExtractor(BinnedSpikeCountsExtractor):
'''
A "feature extractor" that replays spike counts from an HDF file
'''
feature_type = 'spike_counts'
def __init__(self, hdf_table, source='spike_counts', cycle_rate=60.0, units=[]):
'''
Parameters
----------
hdf_table : HDF table
Data table to replay. Usually the 'task' table.
source : string, optional, default=spike_counts
Column of the HDF table to replay
cycle_rate : float, optional, default=60.0
Rate at which the task FSM "cycles", i.e., the rate at which the task will ask for new observations
units : iterable, optional, default=[]
Names (channel, unit) of the units. If none specified, some fake names are created
Returns
-------
ReplaySpikeCountsExtractor instance
'''
self.idx = 0
self.hdf_table = hdf_table
self.source = source
self.units = units
self.n_subbins = hdf_table[0][source].shape[1]
self.last_get_spike_counts_time = 0
self.cycle_rate = cycle_rate
n_units = hdf_table[0]['spike_counts'].shape[0]
self.feature_dtype = [('spike_counts', 'u4', (n_units, self.n_subbins)),
('bin_edges', 'f8', 2)]
def get_spike_ts(self):
'''
Make up fake timestamps to go with the spike counts extracted from the HDF file
'''
from . import sim_neurons
# Get counts from HDF file
counts = self.hdf_table[self.idx][self.source]
n_subbins = counts.shape[1]
# Convert counts to timestamps between (self.idx*1./cycle_rate, (self.idx+1)*1./cycle_rate)
# NOTE: this code is mostly copied from riglib.bmi.sim_neurons.CLDASimPointProcessEnsemble
ts_data = []
cycle_rate = self.cycle_rate
for k in range(n_subbins):
fake_time = (self.idx - 1) * 1./cycle_rate + (k + 0.5)*1./cycle_rate*1./n_subbins
nonzero_units, = np.nonzero(counts[:,k])
for unit_ind in nonzero_units:
n_spikes = counts[unit_ind, k]
for m in range(n_spikes):
ts = (fake_time, self.units[unit_ind, 0], self.units[unit_ind, 1], fake_time)
ts_data.append(ts)
ts_dtype_new = sim_neurons.ts_dtype_new
return np.array(ts_data, dtype=ts_dtype_new)
def get_bin_edges(self, ts):
'''
Get the first and last timestamp of spikes in the current "bin" as saved in the HDF file
'''
return self.hdf_table[self.idx]['bin_edges']
def __call__(self, *args, **kwargs):
'''
See BinnedSpikeCountsExtractor.__call__ for documentation
'''
output = super(ReplaySpikeCountsExtractor, self).__call__(*args, **kwargs)
if not np.array_equal(output['spike_counts'], self.hdf_table[self.idx][self.source]):
print(("spike binning error: ", self.idx))
self.idx += 1
return output
class ReplayLFPPowerExtractor(BinnedSpikeCountsExtractor):
'''
A "feature extractor" that replays LFP power estimates from an HDF file
'''
feature_type = 'lfp_power'
def __init__(self, hdf_table, source='lfp_power'):
'''
Constructor for ReplayLFPPowerExtractor
Parameters
----------
hdf_table : HDF table
Data table to replay. Usually the 'task' table.
source : string, optional, default=spike_counts
Column of the HDF table to replay
Returns
-------
ReplayLFPPowerExtractor instance
'''
self.idx = 0
self.hdf_table = hdf_table
self.source = source
self.n_subbins = hdf_table[0][source].shape[1]
self.last_get_spike_counts_time = 0
n_units = hdf_table[0][source].shape[0]
self.feature_dtype = [('lfp_power', 'f8', (n_units, self.n_subbins)), ]
def __call__(self, *args, **kwargs):
'''
See BinnedSpikeCountsExtractor.__call__ for documentation
'''
output = self.hdf_table[self.idx][self.source]
self.idx += 1
return dict(lfp_power=output)
#################################
##### Simulation extractors #####
#################################
class SimBinnedSpikeCountsExtractor(BinnedSpikeCountsExtractor):
'''
Spike count features are generated by a population of synthetic neurons
'''
feature_type = 'spike_counts'
def __init__(self, input_device, encoder, n_subbins, units, task=None):
'''
Constructor for SimBinnedSpikeCountsExtractor
Parameters
----------
input_device: object with a "calc_next_state" method
Generate the "intended" next state, e.g., by feedback control policy
encoder: callable with 1 argument
Maps the "control" input into the spike timestamps of a set of neurons
n_subbins:
Number of subbins to divide the spike counts into, e.g. 3 are necessary for the PPF
units: np.ndarray of shape (N, 2)
Each row of the array corresponds to (channel, unit)
Returns
-------
SimBinnedSpikeCountsExtractor instance
'''
self.input_device = input_device
print("Yes we go here SimBinnedSpikeCountsExtractor")
self.encoder = encoder
self.n_subbins = n_subbins
self.units = units
self.last_get_spike_counts_time = 0
self.feature_dtype = [('spike_counts', 'f8', (len(units), n_subbins)), ('bin_edges', 'f8', 2),
('ctrl_input', 'f8', self.encoder.C.shape[1])]
self.task = task
self.sim_ctrl = np.zeros((self.encoder.C.shape[1]))
def get_spike_ts(self):
'''
see BinnedSpikeCountsExtractor.get_spike_ts for docs
'''
current_state = self.task.get_current_state()
target_state = self.task.get_target_BMI_state()
ctrl = self.input_device.calc_next_state(current_state, target_state)
#print current_state.T, target_state.T, ctrl.T
self.sim_ctrl = ctrl
print("Yes we go here SimBinnedSpikeCountsExtractor")
ts_data = self.encoder(ctrl)
return ts_data
class SimDirectObsExtractor(SimBinnedSpikeCountsExtractor):
'''
This extractor just passes back the observation vector generated by the encoder
'''
def __call__(self, start_time, *args, **kwargs):
y_t = self.get_spike_ts(*args, **kwargs)
return dict(spike_counts=y_t)
#############################################
##### Feature extractors in development #####
#############################################
class LFPButterBPFPowerExtractor(object):
'''
Computes log power of the LFP in different frequency bands (for each
channel) in time-domain using Butterworth band-pass filters.
'''
feature_type = 'lfp_power'
def __init__(self, source, channels=[], bands=default_bands, win_len=0.2, filt_order=5, fs=1000):
self.feature_dtype = ('lfp_power', 'u4', (len(channels)*len(bands), 1))
self.source = source
self.channels = channels
self.bands = bands
self.win_len = win_len # secs
self.filt_order = filt_order
if source is not None:
self.fs = source.source.update_freq
else:
self.fs = fs
extractor_kwargs = dict()
extractor_kwargs['channels'] = self.channels
extractor_kwargs['bands'] = self.bands
extractor_kwargs['win_len'] = self.win_len
extractor_kwargs['filt_order'] = self.filt_order
extractor_kwargs['fs'] = self.fs
self.extractor_kwargs = extractor_kwargs
self.n_pts = int(self.win_len * self.fs)
self.filt_coeffs = dict()
for band in bands:
nyq = 0.5 * self.fs
low = band[0] / nyq
high = band[1] / nyq
self.filt_coeffs[band] = butter(self.filt_order, [low, high], btype='band') # returns (b, a)
self.epsilon = 1e-9
self.last_get_lfp_power_time = 0 # TODO -- is this variable necessary for LFP?
def get_cont_samples(self, *args, **kwargs):
return self.source.get(self.n_pts, self.channels)
def extract_features(self, cont_samples):
n_chan = len(self.channels)
lfp_power = np.zeros((n_chan * len(self.bands), 1))
for i, band in enumerate(self.bands):
b, a = self.filt_coeffs[band]
y = lfilter(b, a, cont_samples)
lfp_power[i*n_chan:(i+1)*n_chan] = np.log((1. / self.n_pts) * np.sum(y**2, axis=1) + self.epsilon).reshape(-1, 1)
return lfp_power
def __call__(self, start_time, *args, **kwargs):
cont_samples = self.get_cont_samples(*args, **kwargs) # dims of channels x time
lfp_power = self.extract_features(cont_samples)
self.last_get_lfp_power_time = start_time
return dict(lfp_power=lfp_power)
@classmethod
def extract_from_file(cls, files, neurows, binlen, units, extractor_kwargs, strobe_rate=60.0):
'''Compute lfp power features from a blackrock data file.'''
nsx_fnames = [name for name in files['blackrock'] if '.ns' in name]
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
# TODO -- for now, use .ns3 or .ns2 file (2 kS/s)
nsx_fname = None
for fname in nsx_fnames:
if '.ns3' in fname:
nsx_fname = fname
fs_ = 2000
if nsx_fname is None:
for fname in nsx_fnames:
if '.ns2' in fname:
nsx_fname = fname
fs_ = 1000
if nsx_fname is None:
raise Exception('Need an nsx file --> .ns2 or .ns3 is acceptable. Higher nsx files yield memory errors')
extractor_kwargs['fs'] = fs_
# default order of 5 seems to cause problems when fs > 1000
extractor_kwargs['filt_order'] = 3
if nsx_fname[-4:] == '.hdf':
nsx_hdf_fname = nsx_fname
else:
nsx_hdf_fname = nsx_fname + '.hdf'
if not os.path.isfile(nsx_hdf_fname):
# convert .nsx file to hdf file using Blackrock's n2h5 utility
from db.tracker import models
models.parse_blackrock_file(None, [nsx_fname], )
import h5py
nsx_hdf = h5py.File(nsx_hdf_fname, 'r')
# create extractor object
f_extractor = LFPButterBPFPowerExtractor(None, **extractor_kwargs)
extractor_kwargs = f_extractor.extractor_kwargs
win_len = f_extractor.win_len
bands = f_extractor.bands
channels = f_extractor.channels
fs = f_extractor.fs
n_itrs = len(interp_rows)
n_chan = len(channels)
lfp_power = np.zeros((n_itrs, n_chan * len(bands)))
n_pts = int(win_len * fs)
# for i, t in enumerate(interp_rows):
# sample_num = int(t * fs)
# # cont_samples = np.zeros((n_chan, n_pts))
# # for j, chan in enumerate(channels):
# # chan_str = str(chan).zfill(5)
# # path = 'channel/channel%s/continuous_set' % chan_str
# # cont_samples[j, :] = nsx_hdf.get(path).value[sample_num-n_pts:sample_num]
# cont_samples = abs(np.random.randn(n_chan, n_pts))
# feats = f_extractor.extract_features(cont_samples).T
# print feats
# lfp_power[i, :] = f_extractor.extract_features(cont_samples).T
print(('*' * 40))
print('WARNING: replacing LFP values from .ns3 file with random values!!')
print(('*' * 40))
lfp_power = abs(np.random.randn(n_itrs, n_chan * len(bands)))
# TODO -- discard any channel(s) for which the log power in any frequency
# bands was ever equal to -inf (i.e., power was equal to 0)
# or, perhaps just add a small epsilon inside the log to avoid this
# then, remember to do this: extractor_kwargs['channels'] = channels
# and reset the units variable
return lfp_power, units, extractor_kwargs
class AIMTMPowerExtractor(LFPMTMPowerExtractor):
''' Multitaper extractor for Plexon analog input channels'''
feature_type = 'ai_power'
def __init__(self, source, channels=[], bands=default_bands, win_len=0.2, NW=3, fs=1000, **kwargs):
#self.feature_dtype = ('lfp_power', 'f8', (len(channels)*len(bands), 1))
self.source = source
self.channels = channels
self.bands = bands
self.win_len = win_len
self.NW = NW
if source is not None:
self.fs = source.source.update_freq
else:
self.fs = fs
extractor_kwargs = dict()
extractor_kwargs['channels'] = self.channels
extractor_kwargs['bands'] = self.bands
extractor_kwargs['win_len'] = self.win_len
extractor_kwargs['NW'] = self.NW
extractor_kwargs['fs'] = self.fs
extractor_kwargs['no_log'] = 'no_log' in kwargs and kwargs['no_log']==True #remove log calculation
extractor_kwargs['no_mean'] = 'no_mean' in kwargs and kwargs['no_mean']==True #r
self.extractor_kwargs = extractor_kwargs
self.n_pts = int(self.win_len * self.fs)
self.nfft = 2**int(np.ceil(np.log2(self.n_pts))) # nextpow2(self.n_pts)
fft_freqs = np.arange(0., fs, float(fs)/self.nfft)[:self.nfft/2 + 1]
self.fft_inds = dict()
for band_idx, band in enumerate(bands):
self.fft_inds[band_idx] = [freq_idx for freq_idx, freq in enumerate(fft_freqs) if band[0] <= freq < band[1]]
extractor_kwargs['fft_inds'] = self.fft_inds
extractor_kwargs['fft_freqs'] = fft_freqs
self.epsilon = 1e-9
if extractor_kwargs['no_mean']: #Used in lfp 1D control task
self.feature_dtype = ('ai_power', 'f8', (len(channels)*len(fft_freqs), 1))
else: #Else:
self.feature_dtype = ('ai_power', 'f8', (len(channels)*len(bands), 1))
def __call__(self, start_time, *args, **kwargs):
cont_samples = self.get_cont_samples(*args, **kwargs) # dims of channels x time
#cont_samples = np.random.randn(len(self.channels), self.n_pts) # change back!
lfp_power = self.extract_features(cont_samples)
return dict(ai_power=lfp_power)
@classmethod
def extract_from_file(cls, files, neurows, binlen, units, extractor_kwargs, strobe_rate=60.0):
'''
Compute binned spike count features
Parameters
----------
plx: neural data file instance
neurows: np.ndarray of shape (T,)
Timestamps in the plexon time reference corresponding to bin boundaries
binlen: float
Length of time over which to sum spikes from the specified cells
units: np.ndarray of shape (N, 2)
List of units that the decoder will be trained on. The first column specifies the electrode number and the second specifies the unit on the electrode
extractor_kwargs: dict
Any additional parameters to be passed to the feature extractor. This function is agnostic to the actual extractor utilized
strobe_rate: 60.0
The rate at which the task sends the sync pulse to the plx file
Returns
-------
'''
if 'plexon' in files:
from plexon import plexfile
plx = plexfile.openFile(str(files['plexon']))
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
# create extractor object
f_extractor = AIMTMPowerExtractor(None, **extractor_kwargs)
extractor_kwargs = f_extractor.extractor_kwargs
win_len = f_extractor.win_len
bands = f_extractor.bands
channels = f_extractor.channels
fs = f_extractor.fs
print(('bands:', bands))
n_itrs = len(interp_rows)
n_chan = len(channels)
lfp_power = np.zeros((n_itrs, n_chan * len(bands)))
# for i, t in enumerate(interp_rows):
# cont_samples = plx.lfp[t-win_len:t].data[:, channels-1]
# lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
lfp = plx.lfp[:].data[:, channels-1]
n_pts = int(win_len * fs)
for i, t in enumerate(interp_rows):
try:
sample_num = int(t * fs)
cont_samples = lfp[sample_num-n_pts:sample_num, :]
lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
except:
print("Error with LFP decoder training")
print((i, t))
pass
# TODO -- discard any channel(s) for which the log power in any frequency
# bands was ever equal to -inf (i.e., power was equal to 0)
# or, perhaps just add a small epsilon inside the log to avoid this
# then, remember to do this: extractor_kwargs['channels'] = channels
# and reset the units variable
return lfp_power, units, extractor_kwargs
elif 'blackrock' in files:
raise NotImplementedError
class AIAmplitudeExtractor(object):
'''
Computes the analog input channel amplitude. Out of date...
'''
feature_type = 'ai_amplitude'
def __init__(self, source, channels=[], win_len=0.1, fs=1000):
self.feature_dtype = ('emg_amplitude', 'u4', (len(channels), 1))
self.source = source
self.channels = channels
self.win_len = win_len
if source is not None:
self.fs = source.source.update_freq
else:
self.fs = fs
extractor_kwargs = dict()
extractor_kwargs['channels'] = self.channels
extractor_kwargs['fs'] = self.fs
extractor_kwargs['win_len'] = self.win_len
self.extractor_kwargs = extractor_kwargs
self.n_pts = int(self.win_len * self.fs)
def get_cont_samples(self, *args, **kwargs):
return self.source.get(self.n_pts, self.channels)
def extract_features(self, cont_samples):
n_chan = len(self.channels)
emg_amplitude = np.mean(cont_samples,axis=1)
emg_amplitude = emg_amplitude[:,None]
return emg_amplitude
def __call__(self, start_time, *args, **kwargs):
cont_samples = self.get_cont_samples(*args, **kwargs) # dims of channels x time
emg = self.extract_features(cont_samples)
return emg, None
class WaveformClusterCountExtractor(FeatureExtractor):
feature_type = 'cluster_counts'
def __init__(self, source, gmm_model_params, n_subbins=1, units=[]):
self.feature_dtype = [('cluster_counts', 'f8', (len(units), n_subbins)), ('bin_edges', 'f8', 2)]
self.source = source
self.gmm_model_params = gmm_model_params
self.n_subbins = n_subbins
self.units = units
self.n_units = len(units)
extractor_kwargs = dict()
extractor_kwargs['n_subbins'] = self.n_subbins
extractor_kwargs['units'] = self.units
extractor_kwargs['gmm_model_params'] = gmm_model_params
self.extractor_kwargs = extractor_kwargs
self.last_get_spike_counts_time = 0
def get_spike_data(self):
'''
Get the spike timestamps from the neural data source. This function has no type checking,
i.e., it is assumed that the Extractor object was created with the proper source
'''
return self.source.get()
def get_bin_edges(self, ts):
'''
Determine the first and last spike timestamps to allow HDF files
created by the BMI to be semi-synchronized with the neural data file
'''
if len(ts) == 0:
bin_edges = np.array([np.nan, np.nan])
else:
min_ind = np.argmin(ts['ts'])
max_ind = np.argmax(ts['ts'])
bin_edges = np.array([ts[min_ind]['ts'], ts[max_ind]['ts']])
def __call__(self, start_time, *args, **kwargs):
spike_data = self.get_spike_data()
if len(spike_data) == 0:
counts = np.zeros([len(self.units), self.n_subbins])
elif self.n_subbins > 1:
subbin_edges = np.linspace(self.last_get_spike_counts_time, start_time, self.n_subbins+1)
# Decrease the first subbin index to include any spikes that were
# delayed in getting to the task layer due to threading issues
# An acceptable delay is 1 sec or less. Realistically, most delays should be
# on the millisecond order
# subbin_edges[0] -= 1
# subbin_inds = np.digitize(spike_data['arrival_ts'], subbin_edges)
# counts = np.vstack([bin_spikes(ts[subbin_inds == k], self.units) for k in range(1, self.n_subbins+1)]).T
raise NotImplementedError
else:
# TODO pull the waveforms
waveforms = []
# TODO determine p(class) for each waveform against the model params
counts = np.zeros(self.n_units)
wf_class_probs = []
for wf in waveforms:
raise NotImplementedError
# counts = bin_spikes(ts, self.units).reshape(-1, 1)
counts = np.array(counts, dtype=np.uint32)
bin_edges = self.get_bin_edges(ts)
self.last_get_spike_counts_time = start_time
return dict(spike_counts=counts, bin_edges=bin_edges)
@classmethod
def extract_from_file(cls, files, neurows, binlen, units, extractor_kwargs, strobe_rate=60.0):
from sklearn.mixture import GMM
if 'plexon' in files:
from plexon import plexfile
plx = plexfile.openFile(str(files['plexon']))
channels = units[:,0]
channels = np.unique(channels)
np.sort(channels)
spike_chans = plx.spikes[:].data['chan']
spike_times = plx.spikes[:].data['ts']
waveforms = plx.spikes[:].waveforms
# construct the feature matrix (n_timepoints, n_units)
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
# digitize the spike timestamps into interp_rows
spike_bin_ind = np.digitize(spike_times, interp_rows)
spike_counts = np.zeros(len(interp_rows), n_units)
for ch in channels:
ch_waveforms = waveforms[spike_chans == ch]
# cluster the waveforms using a GMM
# TODO pick the number of components in an unsupervised way!
n_components = len(np.nonzero(units[:,0] == ch)[0])
gmm = GMM(n_components=n_components)
gmm.fit(ch_waveforms)
# store the cluster probabilities back in the same order that the waveforms were extracted
wf_probs = gmm.predict_proba(ch_waveforms)
ch_spike_bin_inds = spike_bin_ind[spike_chans == ch]
ch_inds, = np.nonzero(units[:,0] == ch)
# TODO don't assume the units are sorted!
for bin_ind, wf_prob in zip(ch_spike_bin_inds, wf_probs):
spike_counts[bin_ind, ch_inds] += wf_prob
# discard units that never fired at all
unit_inds, = np.nonzero(np.sum(spike_counts, axis=0))
units = units[unit_inds,:]
spike_counts = spike_counts[:, unit_inds]
extractor_kwargs['units'] = units
return spike_counts, units, extractor_kwargs
else:
raise NotImplementedError('Not implemented for blackrock/TDT data yet!')
def get_butter_bpf_lfp_power(plx, neurows, binlen, units, extractor_kwargs, strobe_rate=60.0):
'''
Compute lfp power features -- corresponds to LFPButterBPFPowerExtractor.
'''
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
# create extractor object
f_extractor = extractor.LFPButterBPFPowerExtractor(None, **extractor_kwargs)
extractor_kwargs = f_extractor.extractor_kwargs
win_len = f_extractor.win_len
bands = f_extractor.bands
channels = f_extractor.channels
fs = f_extractor.fs
n_itrs = len(interp_rows)
n_chan = len(channels)
lfp_power = np.zeros((n_itrs, n_chan * len(bands)))
# for i, t in enumerate(interp_rows):
# cont_samples = plx.lfp[t-win_len:t].data[:, channels-1]
# lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
lfp = plx.lfp[:].data[:, channels-1]
n_pts = int(win_len * fs)
for i, t in enumerate(interp_rows):
sample_num = int(t * fs)
cont_samples = lfp[sample_num-n_pts:sample_num, :]
lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
# TODO -- discard any channel(s) for which the log power in any frequency
# bands was ever equal to -inf (i.e., power was equal to 0)
# or, perhaps just add a small epsilon inside the log to avoid this
# then, remember to do this: extractor_kwargs['channels'] = channels
# and reset the units variable
return lfp_power, units, extractor_kwargs
def get_mtm_lfp_power(plx, neurows, binlen, units, extractor_kwargs, strobe_rate=60.0):
'''
Compute lfp power features -- corresponds to LFPMTMPowerExtractor.
'''
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
# create extractor object
f_extractor = extractor.LFPMTMPowerExtractor(None, **extractor_kwargs)
extractor_kwargs = f_extractor.extractor_kwargs
win_len = f_extractor.win_len
bands = f_extractor.bands
channels = f_extractor.channels
fs = f_extractor.fs
print(('bands:', bands))
n_itrs = len(interp_rows)
n_chan = len(channels)
lfp_power = np.zeros((n_itrs, n_chan * len(bands)))
# for i, t in enumerate(interp_rows):
# cont_samples = plx.lfp[t-win_len:t].data[:, channels-1]
# lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
lfp = plx.lfp[:].data[:, channels-1]
n_pts = int(win_len * fs)
for i, t in enumerate(interp_rows):
sample_num = int(t * fs)
cont_samples = lfp[sample_num-n_pts:sample_num, :]
lfp_power[i, :] = f_extractor.extract_features(cont_samples.T).T
# TODO -- discard any channel(s) for which the log power in any frequency
# bands was ever equal to -inf (i.e., power was equal to 0)
# or, perhaps just add a small epsilon inside the log to avoid this
# then, remember to do this: extractor_kwargs['channels'] = channels
# and reset the units variable
return lfp_power, units, extractor_kwargs
def get_emg_amplitude(plx, neurows, binlen, units, extractor_kwargs, strobe_rate=60.0):
'''
Compute EMG features.
'''
# interpolate between the rows to 180 Hz
if binlen < 1./strobe_rate:
interp_rows = []
neurows = np.hstack([neurows[0] - 1./strobe_rate, neurows])
for r1, r2 in zip(neurows[:-1], neurows[1:]):
interp_rows += list(np.linspace(r1, r2, 4)[1:])
interp_rows = np.array(interp_rows)
else:
step = int(binlen/(1./strobe_rate)) # Downsample kinematic data according to decoder bin length (assumes non-overlapping bins)
interp_rows = neurows[::step]
# create extractor object
f_extractor = extractor.EMGAmplitudeExtractor(None, **extractor_kwargs)
extractor_kwargs = f_extractor.extractor_kwargs
win_len = f_extractor.win_len
channels = f_extractor.channels
fs = f_extractor.fs
n_itrs = len(interp_rows)
n_chan = len(channels)
emg = | np.zeros((n_itrs, n_chan)) | numpy.zeros |
import numpy as np
import numbers
from scipy import sparse
from scipy import linalg
import scipy.sparse.linalg as spla
from mesh import Vertex, Interval, HalfEdge, QuadCell, convert_to_array
from function import Map, Nodal, Constant
from fem import parse_derivative_info, Basis
from inspect import signature
import time
class GaussRule():
"""
Description:
------------
Gaussian Quadrature weights and nodes on reference cell
"""
def __init__(self, order, element=None, shape=None):
"""
Constructor
Inputs:
order: int, order of quadrature rule
1D rule: order in {1,2,3,4,5,6}
2D rule: order in {1,4,9,16,25,36} for quadrilaterals
{1,3,7,13} for triangles
element: Element object
OR
shape: str, 'interval', 'triangle', or 'quadrilateral'.
"""
#
# Determine shape of cells
#
if element is None:
# Shape specified directly
assert shape is not None, 'Must specify either element or cell shape.'
else:
# Element given
shape = element.cell_type()
# Check if shape is supported
assert shape in ['interval','triangle','quadrilateral'], \
"Use 'interval', 'triangle', or 'quadrilateral'."
# Get dimension
dim = 1 if shape=='interval' else 2
#
# Tensorize 1D rules if cell is quadrilateral
#
use_tensor_product_rules = \
( dim == 1 or shape == 'quadrilateral' )
if use_tensor_product_rules:
#
# Determine the order of constituent 1D rules
#
if dim == 1:
assert order in [1,2,3,4,5,6], 'Gauss rules in 1D: 1,2,3,4,5,6.'
order_1d = order
elif dim == 2:
assert order in [1,4,9,16,25,36], 'Gauss rules over quads in 2D: 1,4,16,25'
order_1d = int( | np.sqrt(order) | numpy.sqrt |
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Tests models.parameters
"""
from __future__ import (absolute_import, division, print_function,
unicode_literals)
import itertools
import pytest
import numpy as np
from . import irafutil
from .. import models, fitting
from ..core import Model, FittableModel
from ..parameters import Parameter, InputParameterError
from ...utils.data import get_pkg_data_filename
def setter1(val):
return val
def setter2(val, model):
model.do_something(val)
return val * model.p
class SetterModel(FittableModel):
inputs = ('x', 'y')
outputs = ('z',)
xc = Parameter(default=1, setter=setter1)
yc = Parameter(default=1, setter=setter2)
def __init__(self, xc, yc, p):
self.p = p # p is a value intended to be used by the setter
super(SetterModel, self).__init__()
self.xc = xc
self.yc = yc
def evaluate(self, x, y, xc, yc):
return ((x - xc)**2 + (y - yc)**2)
def do_something(self, v):
pass
class TParModel(Model):
"""
A toy model to test parameters machinery
"""
coeff = Parameter()
e = Parameter()
def __init__(self, coeff, e, **kwargs):
super(TParModel, self).__init__(coeff=coeff, e=e, **kwargs)
@staticmethod
def evaluate(coeff, e):
pass
class MockModel(FittableModel):
alpha = Parameter(name='alpha', default=42)
@staticmethod
def evaluate(*args):
pass
def test_parameter_properties():
"""Test if getting / setting of Parameter properties works."""
m = MockModel()
p = m.alpha
assert p.name == 'alpha'
# Parameter names are immutable
with pytest.raises(AttributeError):
p.name = 'beta'
assert p.fixed is False
p.fixed = True
assert p.fixed is True
assert p.tied is False
p.tied = lambda _: 0
p.tied = False
assert p.tied is False
assert p.min is None
p.min = 42
assert p.min == 42
p.min = None
assert p.min is None
assert p.max is None
# TODO: shouldn't setting a max < min give an error?
p.max = 41
assert p.max == 41
def test_parameter_operators():
"""Test if the parameter arithmetic operators work."""
m = MockModel()
par = m.alpha
num = 42.
val = 3
assert par - val == num - val
assert val - par == val - num
assert par / val == num / val
assert val / par == val / num
assert par ** val == num ** val
assert val ** par == val ** num
assert par < 45
assert par > 41
assert par <= par
assert par >= par
assert par == par
assert -par == -num
assert abs(par) == abs(num)
class TestParameters(object):
def setup_class(self):
"""
Unit tests for parameters
Read an iraf database file created by onedspec.identify. Use the
information to create a 1D Chebyshev model and perform the same fit.
Create also a gausian model.
"""
test_file = get_pkg_data_filename('data/idcompspec.fits')
f = open(test_file)
lines = f.read()
reclist = lines.split("begin")
f.close()
record = irafutil.IdentifyRecord(reclist[1])
self.icoeff = record.coeff
order = int(record.fields['order'])
self.model = models.Chebyshev1D(order - 1)
self.gmodel = models.Gaussian1D(2, mean=3, stddev=4)
self.linear_fitter = fitting.LinearLSQFitter()
self.x = record.x
self.y = record.z
self.yy = np.array([record.z, record.z])
def test_set_slice(self):
"""
Tests updating the parameters attribute with a slice.
This is what fitters internally do.
"""
self.model.parameters[:] = np.array([3, 4, 5, 6, 7])
assert (self.model.parameters == [3., 4., 5., 6., 7.]).all()
def test_set_parameters_as_list(self):
"""Tests updating parameters using a list."""
self.model.parameters = [30, 40, 50, 60, 70]
assert (self.model.parameters == [30., 40., 50., 60, 70]).all()
def test_set_parameters_as_array(self):
"""Tests updating parameters using an array."""
self.model.parameters = np.array([3, 4, 5, 6, 7])
assert (self.model.parameters == [3., 4., 5., 6., 7.]).all()
def test_set_as_tuple(self):
"""Tests updating parameters using a tuple."""
self.model.parameters = (1, 2, 3, 4, 5)
assert (self.model.parameters == [1, 2, 3, 4, 5]).all()
def test_set_model_attr_seq(self):
"""
Tests updating the parameters attribute when a model's
parameter (in this case coeff) is updated.
"""
self.model.parameters = [0, 0., 0., 0, 0]
self.model.c0 = 7
assert (self.model.parameters == [7, 0., 0., 0, 0]).all()
def test_set_model_attr_num(self):
"""Update the parameter list when a model's parameter is updated."""
self.gmodel.amplitude = 7
assert (self.gmodel.parameters == [7, 3, 4]).all()
def test_set_item(self):
"""Update the parameters using indexing."""
self.model.parameters = [1, 2, 3, 4, 5]
self.model.parameters[0] = 10.
assert (self.model.parameters == [10, 2, 3, 4, 5]).all()
assert self.model.c0 == 10
def test_wrong_size1(self):
"""
Tests raising an error when attempting to reset the parameters
using a list of a different size.
"""
with pytest.raises(InputParameterError):
self.model.parameters = [1, 2, 3]
def test_wrong_size2(self):
"""
Tests raising an exception when attempting to update a model's
parameter (in this case coeff) with a sequence of the wrong size.
"""
with pytest.raises(InputParameterError):
self.model.c0 = [1, 2, 3]
def test_wrong_shape(self):
"""
Tests raising an exception when attempting to update a model's
parameter and the new value has the wrong shape.
"""
with pytest.raises(InputParameterError):
self.gmodel.amplitude = [1, 2]
def test_par_against_iraf(self):
"""
Test the fitter modifies model.parameters.
Uses an iraf example.
"""
new_model = self.linear_fitter(self.model, self.x, self.y)
np.testing.assert_allclose(
new_model.parameters,
np.array([4826.1066602783685, 952.8943813407858, 12.641236013982386,
-1.7910672553339604, 0.90252884366711317]),
rtol=10 ** (-2))
def testPolynomial1D(self):
d = {'c0': 11, 'c1': 12, 'c2': 13, 'c3': 14}
p1 = models.Polynomial1D(3, **d)
np.testing.assert_equal(p1.parameters, [11, 12, 13, 14])
def test_poly1d_multiple_sets(self):
p1 = models.Polynomial1D(3, n_models=3)
np.testing.assert_equal(p1.parameters, [0.0, 0.0, 0.0, 0, 0, 0,
0, 0, 0, 0, 0, 0])
np.testing.assert_array_equal(p1.c0, [0, 0, 0])
p1.c0 = [10, 10, 10]
np.testing.assert_equal(p1.parameters, [10.0, 10.0, 10.0, 0, 0,
0, 0, 0, 0, 0, 0, 0])
def test_par_slicing(self):
"""
Test assigning to a parameter slice
"""
p1 = models.Polynomial1D(3, n_models=3)
p1.c0[:2] = [10, 10]
np.testing.assert_equal(p1.parameters, [10.0, 10.0, 0.0, 0, 0,
0, 0, 0, 0, 0, 0, 0])
def test_poly2d(self):
p2 = models.Polynomial2D(degree=3)
p2.c0_0 = 5
np.testing.assert_equal(p2.parameters, [5, 0, 0, 0, 0, 0, 0, 0, 0, 0])
def test_poly2d_multiple_sets(self):
kw = {'c0_0': [2, 3], 'c1_0': [1, 2], 'c2_0': [4, 5],
'c0_1': [1, 1], 'c0_2': [2, 2], 'c1_1': [5, 5]}
p2 = models.Polynomial2D(2, **kw)
np.testing.assert_equal(p2.parameters, [2, 3, 1, 2, 4, 5,
1, 1, 2, 2, 5, 5])
def test_shift_model_parameters1d(self):
sh1 = models.Shift(2)
sh1.offset = 3
assert sh1.offset == 3
assert sh1.offset.value == 3
def test_scale_model_parametersnd(self):
sc1 = models.Scale([2, 2])
sc1.factor = [3, 3]
assert np.all(sc1.factor == [3, 3])
np.testing.assert_array_equal(sc1.factor.value, [3, 3])
def test_parameters_wrong_shape(self):
sh1 = models.Shift(2)
with pytest.raises(InputParameterError):
sh1.offset = [3, 3]
class TestMultipleParameterSets(object):
def setup_class(self):
self.x1 = np.arange(1, 10, .1)
self.y, self.x = np.mgrid[:10, :7]
self.x11 = np.array([self.x1, self.x1]).T
self.gmodel = models.Gaussian1D([12, 10], [3.5, 5.2], stddev=[.4, .7],
n_models=2)
def test_change_par(self):
"""
Test that a change to one parameter as a set propagates to param_sets.
"""
self.gmodel.amplitude = [1, 10]
np.testing.assert_almost_equal(
self.gmodel.param_sets,
np.array([[1.,
10],
[3.5,
5.2],
[0.4,
0.7]]))
np.all(self.gmodel.parameters == [1.0, 10.0, 3.5, 5.2, 0.4, 0.7])
def test_change_par2(self):
"""
Test that a change to one single parameter in a set propagates to
param_sets.
"""
self.gmodel.amplitude[0] = 11
np.testing.assert_almost_equal(
self.gmodel.param_sets,
np.array([[11.,
10],
[3.5,
5.2],
[0.4,
0.7]]))
np.all(self.gmodel.parameters == [11.0, 10.0, 3.5, 5.2, 0.4, 0.7])
def test_change_parameters(self):
self.gmodel.parameters = [13, 10, 9, 5.2, 0.4, 0.7]
np.testing.assert_almost_equal(self.gmodel.amplitude.value, [13., 10.])
np.testing.assert_almost_equal(self.gmodel.mean.value, [9., 5.2])
class TestParameterInitialization(object):
"""
This suite of tests checks most if not all cases if instantiating a model
with parameters of different shapes/sizes and with different numbers of
parameter sets.
"""
def test_single_model_scalar_parameters(self):
t = TParModel(10, 1)
assert len(t) == 1
assert t.model_set_axis is False
assert np.all(t.param_sets == [[10], [1]])
assert np.all(t.parameters == [10, 1])
assert t.coeff.shape == ()
assert t.e.shape == ()
def test_single_model_scalar_and_array_parameters(self):
t = TParModel(10, [1, 2])
assert len(t) == 1
assert t.model_set_axis is False
assert np.issubdtype(t.param_sets.dtype, np.object_)
assert len(t.param_sets) == 2
assert np.all(t.param_sets[0] == [10])
assert np.all(t.param_sets[1] == [[1, 2]])
assert np.all(t.parameters == [10, 1, 2])
assert t.coeff.shape == ()
assert t.e.shape == (2,)
def test_single_model_1d_array_parameters(self):
t = TParModel([10, 20], [1, 2])
assert len(t) == 1
assert t.model_set_axis is False
assert np.all(t.param_sets == [[[10, 20]], [[1, 2]]])
assert np.all(t.parameters == [10, 20, 1, 2])
assert t.coeff.shape == (2,)
assert t.e.shape == (2,)
def test_single_model_1d_array_different_length_parameters(self):
with pytest.raises(InputParameterError):
# Not broadcastable
t = TParModel([1, 2], [3, 4, 5])
def test_single_model_2d_array_parameters(self):
t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]])
assert len(t) == 1
assert t.model_set_axis is False
assert np.all(t.param_sets == [[[[10, 20], [30, 40]]],
[[[1, 2], [3, 4]]]])
assert np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4])
assert t.coeff.shape == (2, 2)
assert t.e.shape == (2, 2)
def test_single_model_2d_non_square_parameters(self):
coeff = np.array([[10, 20], [30, 40], [50, 60]])
e = np.array([[1, 2], [3, 4], [5, 6]])
t = TParModel(coeff, e)
assert len(t) == 1
assert t.model_set_axis is False
assert np.all(t.param_sets == [[[[10, 20], [30, 40], [50, 60]]],
[[[1, 2], [3, 4], [5, 6]]]])
assert np.all(t.parameters == [10, 20, 30, 40, 50, 60,
1, 2, 3, 4, 5, 6])
assert t.coeff.shape == (3, 2)
assert t.e.shape == (3, 2)
t2 = TParModel(coeff.T, e.T)
assert len(t2) == 1
assert t2.model_set_axis is False
assert np.all(t2.param_sets == [[[[10, 30, 50], [20, 40, 60]]],
[[[1, 3, 5], [2, 4, 6]]]])
assert np.all(t2.parameters == [10, 30, 50, 20, 40, 60,
1, 3, 5, 2, 4, 6])
assert t2.coeff.shape == (2, 3)
assert t2.e.shape == (2, 3)
# Not broadcastable
with pytest.raises(InputParameterError):
TParModel(coeff, e.T)
with pytest.raises(InputParameterError):
TParModel(coeff.T, e)
def test_single_model_2d_broadcastable_parameters(self):
t = TParModel([[10, 20, 30], [40, 50, 60]], [1, 2, 3])
assert len(t) == 1
assert t.model_set_axis is False
assert len(t.param_sets) == 2
assert np.issubdtype(t.param_sets.dtype, np.object_)
assert np.all(t.param_sets[0] == [[[10, 20, 30], [40, 50, 60]]])
assert np.all(t.param_sets[1] == [[1, 2, 3]])
assert np.all(t.parameters == [10, 20, 30, 40, 50, 60, 1, 2, 3])
@pytest.mark.parametrize(('p1', 'p2'), [
(1, 2), (1, [2, 3]), ([1, 2], 3), ([1, 2, 3], [4, 5]),
([1, 2], [3, 4, 5])])
def test_two_model_incorrect_scalar_parameters(self, p1, p2):
with pytest.raises(InputParameterError):
TParModel(p1, p2, n_models=2)
@pytest.mark.parametrize('kwargs', [
{'n_models': 2}, {'model_set_axis': 0},
{'n_models': 2, 'model_set_axis': 0}])
def test_two_model_scalar_parameters(self, kwargs):
t = TParModel([10, 20], [1, 2], **kwargs)
assert len(t) == 2
assert t.model_set_axis == 0
assert np.all(t.param_sets == [[10, 20], [1, 2]])
assert np.all(t.parameters == [10, 20, 1, 2])
assert t.coeff.shape == ()
assert t.e.shape == ()
@pytest.mark.parametrize('kwargs', [
{'n_models': 2}, {'model_set_axis': 0},
{'n_models': 2, 'model_set_axis': 0}])
def test_two_model_scalar_and_array_parameters(self, kwargs):
t = TParModel([10, 20], [[1, 2], [3, 4]], **kwargs)
assert len(t) == 2
assert t.model_set_axis == 0
assert len(t.param_sets) == 2
assert np.issubdtype(t.param_sets.dtype, np.object_)
assert np.all(t.param_sets[0] == [[10], [20]])
assert np.all(t.param_sets[1] == [[1, 2], [3, 4]])
assert np.all(t.parameters == [10, 20, 1, 2, 3, 4])
assert t.coeff.shape == ()
assert t.e.shape == (2,)
def test_two_model_1d_array_parameters(self):
t = TParModel([[10, 20], [30, 40]], [[1, 2], [3, 4]], n_models=2)
assert len(t) == 2
assert t.model_set_axis == 0
assert np.all(t.param_sets == [[[10, 20], [30, 40]],
[[1, 2], [3, 4]]])
assert np.all(t.parameters == [10, 20, 30, 40, 1, 2, 3, 4])
assert t.coeff.shape == (2,)
assert t.e.shape == (2,)
t2 = TParModel([[10, 20, 30], [40, 50, 60]],
[[1, 2, 3], [4, 5, 6]], n_models=2)
assert len(t2) == 2
assert t2.model_set_axis == 0
assert np.all(t2.param_sets == [[[10, 20, 30], [40, 50, 60]],
[[1, 2, 3], [4, 5, 6]]])
assert np.all(t2.parameters == [10, 20, 30, 40, 50, 60,
1, 2, 3, 4, 5, 6])
assert t2.coeff.shape == (3,)
assert t2.e.shape == (3,)
def test_two_model_mixed_dimension_array_parameters(self):
with pytest.raises(InputParameterError):
# Can't broadcast different array shapes
TParModel([[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
[[9, 10, 11], [12, 13, 14]], n_models=2)
t = TParModel([[[10, 20], [30, 40]], [[50, 60], [70, 80]]],
[[1, 2], [3, 4]], n_models=2)
assert len(t) == 2
assert t.model_set_axis == 0
assert len(t.param_sets) == 2
assert | np.issubdtype(t.param_sets.dtype, np.object_) | numpy.issubdtype |
import os
import tempfile
import numpy as np
import scipy.ndimage.measurements as meas
from functools import reduce
import warnings
import sys
sys.path.append(os.path.abspath(r'../lib'))
import NumCppPy as NumCpp # noqa E402
####################################################################################
def factors(n):
return set(reduce(list.__add__,
([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0)))
####################################################################################
def test_seed():
np.random.seed(1)
####################################################################################
def test_abs():
randValue = np.random.randint(-100, -1, [1, ]).astype(np.double).item()
assert NumCpp.absScaler(randValue) == np.abs(randValue)
components = np.random.randint(-100, -1, [2, ]).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.absScaler(value), 9) == np.round(np.abs(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.absArray(cArray), np.abs(data))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \
1j * np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.absArray(cArray), 9), np.round(np.abs(data), 9))
####################################################################################
def test_add():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(-100, 100, [shape.rows, shape.cols])
data2 = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
value = np.random.randint(-100, 100)
assert np.array_equal(NumCpp.add(cArray, value), data + value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
value = np.random.randint(-100, 100)
assert np.array_equal(NumCpp.add(value, cArray), data + value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100)
assert np.array_equal(NumCpp.add(cArray, value), data + value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100)
assert np.array_equal(NumCpp.add(value, cArray), data + value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArray(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
data2 = np.random.randint(1, 100, [shape.rows, shape.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
data1 = np.random.randint(1, 100, [shape.rows, shape.cols])
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100)
assert np.array_equal(NumCpp.add(cArray, value), data + value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100)
assert np.array_equal(NumCpp.add(value, cArray), data + value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
value = np.random.randint(-100, 100)
assert np.array_equal(NumCpp.add(cArray, value), data + value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
value = np.random.randint(-100, 100)
assert np.array_equal(NumCpp.add(value, cArray), data + value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2)
####################################################################################
def test_alen():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert NumCpp.alen(cArray) == shape.rows
####################################################################################
def test_all():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item()
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item()
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.all(data, axis=1))
####################################################################################
def test_allclose():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
cArray3 = NumCpp.NdArray(shape)
tolerance = 1e-5
data1 = np.random.randn(shape.rows, shape.cols)
data2 = data1 + tolerance / 10
data3 = data1 + 1
cArray1.setArray(data1)
cArray2.setArray(data2)
cArray3.setArray(data3)
assert NumCpp.allclose(cArray1, cArray2, tolerance) and not NumCpp.allclose(cArray1, cArray3, tolerance)
####################################################################################
def test_amax():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert NumCpp.amax(cArray, NumCpp.Axis.NONE).item() == np.max(data)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.ROW).flatten(), np.max(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.amax(cArray, NumCpp.Axis.COL).flatten(), np.max(data, axis=1))
####################################################################################
def test_amin():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert NumCpp.amin(cArray, NumCpp.Axis.NONE).item() == np.min(data)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.ROW).flatten(), np.min(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.amin(cArray, NumCpp.Axis.COL).flatten(), np.min(data, axis=1))
####################################################################################
def test_angle():
components = np.random.randint(-100, -1, [2, ]).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.angleScaler(value), 9) == np.round(np.angle(value), 9) # noqa
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \
1j * np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.angleArray(cArray), 9), np.round(np.angle(data), 9))
####################################################################################
def test_any():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item()
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert NumCpp.any(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.any(data).item()
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.any(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.any(cArray, NumCpp.Axis.COL).flatten().astype(bool), np.any(data, axis=1))
####################################################################################
def test_append():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(0, 100, [shape.rows, shape.cols])
data2 = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(),
np.append(data1, data2))
shapeInput = np.random.randint(20, 100, [2, ])
numRows = np.random.randint(1, 100, [1, ]).item()
shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
shape2 = NumCpp.Shape(shapeInput[0].item() + numRows, shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape1)
cArray2 = NumCpp.NdArray(shape2)
data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols])
data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(),
np.append(data1, data2, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
NumCppols = np.random.randint(1, 100, [1, ]).item()
shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + NumCppols)
cArray1 = NumCpp.NdArray(shape1)
cArray2 = NumCpp.NdArray(shape2)
data1 = np.random.randint(0, 100, [shape1.rows, shape1.cols])
data2 = np.random.randint(0, 100, [shape2.rows, shape2.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.append(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(),
np.append(data1, data2, axis=1))
####################################################################################
def test_arange():
start = np.random.randn(1).item()
stop = np.random.randn(1).item() * 100
step = np.abs(np.random.randn(1).item())
if stop < start:
step *= -1
data = np.arange(start, stop, step)
assert np.array_equal(np.round(NumCpp.arange(start, stop, step).flatten(), 9), np.round(data, 9))
####################################################################################
def test_arccos():
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.arccosScaler(value), 9) == np.round(np.arccos(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.arccosArray(cArray), 9), np.round(np.arccos(data), 9))
####################################################################################
def test_arccosh():
value = np.abs(np.random.rand(1).item()) + 1
assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.arccoshScaler(value), 9) == np.round(np.arccosh(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols) + 1
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.arccoshArray(cArray), 9), np.round(np.arccosh(data), 9))
####################################################################################
def test_arcsin():
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.arcsinScaler(value), 9) == np.round(np.arcsin(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
np.array_equal(np.round(NumCpp.arcsinArray(cArray), 9), np.round(np.arcsin(data), 9))
####################################################################################
def test_arcsinh():
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.arcsinhScaler(value), 9) == np.round(np.arcsinh(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
np.array_equal(np.round(NumCpp.arcsinhArray(cArray), 9), np.round(np.arcsinh(data), 9))
####################################################################################
def test_arctan():
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.arctanScaler(value), 9) == np.round(np.arctan(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
np.array_equal(np.round(NumCpp.arctanArray(cArray), 9), np.round(np.arctan(data), 9))
####################################################################################
def test_arctan2():
xy = np.random.rand(2) * 2 - 1
assert np.round(NumCpp.arctan2Scaler(xy[1], xy[0]), 9) == np.round(np.arctan2(xy[1], xy[0]), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArrayX = NumCpp.NdArray(shape)
cArrayY = NumCpp.NdArray(shape)
xy = np.random.rand(*shapeInput, 2) * 2 - 1
xData = xy[:, :, 0].reshape(shapeInput)
yData = xy[:, :, 1].reshape(shapeInput)
cArrayX.setArray(xData)
cArrayY.setArray(yData)
assert np.array_equal(np.round(NumCpp.arctan2Array(cArrayY, cArrayX), 9), np.round(np.arctan2(yData, xData), 9))
####################################################################################
def test_arctanh():
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.arctanhScaler(value), 9) == np.round(np.arctanh(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
np.array_equal(np.round(NumCpp.arctanhArray(cArray), 9), np.round(np.arctanh(data), 9))
####################################################################################
def test_argmax():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.NONE).item(), np.argmax(data))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.ROW).flatten(), np.argmax(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.argmax(cArray, NumCpp.Axis.COL).flatten(), np.argmax(data, axis=1))
####################################################################################
def test_argmin():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.NONE).item(), np.argmin(data))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.ROW).flatten(), np.argmin(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.argmin(cArray, NumCpp.Axis.COL).flatten(), np.argmin(data, axis=1))
####################################################################################
def test_argsort():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
dataFlat = data.flatten()
assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)],
dataFlat[np.argsort(data, axis=None)])
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
dataFlat = data.flatten()
assert np.array_equal(dataFlat[NumCpp.argsort(cArray, NumCpp.Axis.NONE).flatten().astype(np.uint32)],
dataFlat[np.argsort(data, axis=None)])
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
pIdx = np.argsort(data, axis=0)
cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16)
allPass = True
for idx, row in enumerate(data.T):
if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]):
allPass = False
break
assert allPass
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
pIdx = np.argsort(data, axis=0)
cIdx = NumCpp.argsort(cArray, NumCpp.Axis.ROW).astype(np.uint16)
allPass = True
for idx, row in enumerate(data.T):
if not np.array_equal(row[cIdx[:, idx]], row[pIdx[:, idx]]):
allPass = False
break
assert allPass
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
pIdx = np.argsort(data, axis=1)
cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16)
allPass = True
for idx, row in enumerate(data):
if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]): # noqa
allPass = False
break
assert allPass
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
pIdx = np.argsort(data, axis=1)
cIdx = NumCpp.argsort(cArray, NumCpp.Axis.COL).astype(np.uint16)
allPass = True
for idx, row in enumerate(data):
if not np.array_equal(row[cIdx[idx, :]], row[pIdx[idx, :]]):
allPass = False
break
assert allPass
####################################################################################
def test_argwhere():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
randValue = np.random.randint(0, 100, [1, ]).item()
data2 = data > randValue
cArray.setArray(data2)
assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten())
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
randValue = np.random.randint(0, 100, [1, ]).item()
data2 = data > randValue
cArray.setArray(data2)
assert np.array_equal(NumCpp.argwhere(cArray).flatten(), np.argwhere(data.flatten() > randValue).flatten())
####################################################################################
def test_around():
value = np.abs(np.random.rand(1).item()) * np.random.randint(1, 10, [1, ]).item()
numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item()
assert NumCpp.aroundScaler(value, numDecimalsRound) == np.round(value, numDecimalsRound)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols) * np.random.randint(1, 10, [1, ]).item()
cArray.setArray(data)
numDecimalsRound = np.random.randint(0, 10, [1, ]).astype(np.uint8).item()
assert np.array_equal(NumCpp.aroundArray(cArray, numDecimalsRound), np.round(data, numDecimalsRound))
####################################################################################
def test_array_equal():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
cArray3 = NumCpp.NdArray(shape)
data1 = np.random.randint(1, 100, shapeInput)
data2 = np.random.randint(1, 100, shapeInput)
cArray1.setArray(data1)
cArray2.setArray(data1)
cArray3.setArray(data2)
assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
cArray3 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data1)
cArray3.setArray(data2)
assert NumCpp.array_equal(cArray1, cArray2) and not NumCpp.array_equal(cArray1, cArray3)
####################################################################################
def test_array_equiv():
shapeInput1 = np.random.randint(1, 100, [2, ])
shapeInput3 = np.random.randint(1, 100, [2, ])
shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item())
shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item())
shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item())
cArray1 = NumCpp.NdArray(shape1)
cArray2 = NumCpp.NdArray(shape2)
cArray3 = NumCpp.NdArray(shape3)
data1 = np.random.randint(1, 100, shapeInput1)
data3 = np.random.randint(1, 100, shapeInput3)
cArray1.setArray(data1)
cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()]))
cArray3.setArray(data3)
assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3)
shapeInput1 = np.random.randint(1, 100, [2, ])
shapeInput3 = np.random.randint(1, 100, [2, ])
shape1 = NumCpp.Shape(shapeInput1[0].item(), shapeInput1[1].item())
shape2 = NumCpp.Shape(shapeInput1[1].item(), shapeInput1[0].item())
shape3 = NumCpp.Shape(shapeInput3[0].item(), shapeInput3[1].item())
cArray1 = NumCpp.NdArrayComplexDouble(shape1)
cArray2 = NumCpp.NdArrayComplexDouble(shape2)
cArray3 = NumCpp.NdArrayComplexDouble(shape3)
real1 = np.random.randint(1, 100, [shape1.rows, shape1.cols])
imag1 = np.random.randint(1, 100, [shape1.rows, shape1.cols])
data1 = real1 + 1j * imag1
real3 = np.random.randint(1, 100, [shape3.rows, shape3.cols])
imag3 = np.random.randint(1, 100, [shape3.rows, shape3.cols])
data3 = real3 + 1j * imag3
cArray1.setArray(data1)
cArray2.setArray(data1.reshape([shapeInput1[1].item(), shapeInput1[0].item()]))
cArray3.setArray(data3)
assert NumCpp.array_equiv(cArray1, cArray2) and not NumCpp.array_equiv(cArray1, cArray3)
####################################################################################
def test_asarray():
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayArray1D(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayArray1DCopy(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayArray2D(*values), data)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayArray2D(*values), data)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayArray2DCopy(*values), data)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayVector1D(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayVector1DCopy(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayVector2D(*values), data)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayVector2D(*values), data)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayVectorArray2D(*values), data)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayVectorArray2DCopy(*values), data)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayDeque1D(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayDeque2D(*values), data)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayDeque2D(*values), data)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayList(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayIterators(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayPointerIterators(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayPointer(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayPointer2D(*values), data)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayPointer2D(*values), data)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayPointerShell(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayPointerShell2D(*values), data)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
assert np.array_equal(NumCpp.asarrayPointerShellTakeOwnership(*values).flatten(), values)
values = np.random.randint(0, 100, [2, ]).astype(np.double)
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data)
real = np.random.randint(0, 100, [2, ]).astype(np.double)
imag = np.random.randint(0, 100, [2, ]).astype(np.double)
values = real + 1j * imag
data = np.vstack([values, values])
assert np.array_equal(NumCpp.asarrayPointerShell2DTakeOwnership(*values), data)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
cArrayCast = NumCpp.astypeDoubleToUint32(cArray).getNumpyArray()
assert np.array_equal(cArrayCast, data.astype(np.uint32))
assert cArrayCast.dtype == np.uint32
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
cArrayCast = NumCpp.astypeDoubleToComplex(cArray).getNumpyArray()
assert np.array_equal(cArrayCast, data.astype(np.complex128))
assert cArrayCast.dtype == np.complex128
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
cArrayCast = NumCpp.astypeComplexToComplex(cArray).getNumpyArray()
assert np.array_equal(cArrayCast, data.astype(np.complex64))
assert cArrayCast.dtype == np.complex64
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
cArrayCast = NumCpp.astypeComplexToDouble(cArray).getNumpyArray()
warnings.filterwarnings('ignore', category=np.ComplexWarning)
assert np.array_equal(cArrayCast, data.astype(np.double))
warnings.filters.pop() # noqa
assert cArrayCast.dtype == np.double
####################################################################################
def test_average():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.round(NumCpp.average(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.average(data), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.round(NumCpp.average(cArray, NumCpp.Axis.NONE).item(), 9) == np.round(np.average(data), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.ROW).flatten(), 9),
np.round(np.average(data, axis=0), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.ROW).flatten(), 9),
np.round(np.average(data, axis=0), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.COL).flatten(), 9),
np.round(np.average(data, axis=1), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.average(cArray, NumCpp.Axis.COL).flatten(), 9),
np.round(np.average(data, axis=1), 9))
####################################################################################
def test_averageWeighted():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
cWeights = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
weights = np.random.randint(1, 5, [shape.rows, shape.cols])
cArray.setArray(data)
cWeights.setArray(weights)
assert np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.NONE).item(), 9) == \
np.round(np.average(data, weights=weights), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
cWeights = NumCpp.NdArray(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
weights = np.random.randint(1, 5, [shape.rows, shape.cols])
cArray.setArray(data)
cWeights.setArray(weights)
assert np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.NONE).item(), 9) == \
np.round(np.average(data, weights=weights), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
cWeights = NumCpp.NdArray(1, shape.cols)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
weights = np.random.randint(1, 5, [1, shape.rows])
cArray.setArray(data)
cWeights.setArray(weights)
assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.ROW).flatten(), 9),
np.round(np.average(data, weights=weights.flatten(), axis=0), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
cWeights = NumCpp.NdArray(1, shape.cols)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
weights = np.random.randint(1, 5, [1, shape.rows])
cArray.setArray(data)
cWeights.setArray(weights)
assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.ROW).flatten(), 9),
np.round(np.average(data, weights=weights.flatten(), axis=0), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
cWeights = NumCpp.NdArray(1, shape.rows)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
weights = np.random.randint(1, 5, [1, shape.cols])
cWeights.setArray(weights)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.COL).flatten(), 9),
np.round(np.average(data, weights=weights.flatten(), axis=1), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
cWeights = NumCpp.NdArray(1, shape.rows)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
weights = np.random.randint(1, 5, [1, shape.cols])
cWeights.setArray(weights)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.averageWeighted(cArray, cWeights, NumCpp.Axis.COL).flatten(), 9),
np.round(np.average(data, weights=weights.flatten(), axis=1), 9))
####################################################################################
def test_binaryRepr():
value = np.random.randint(0, np.iinfo(np.uint64).max, [1, ], dtype=np.uint64).item()
assert NumCpp.binaryRepr(np.uint64(value)) == np.binary_repr(value, np.iinfo(np.uint64).bits)
####################################################################################
def test_bincount():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayUInt32(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16)
cArray.setArray(data)
assert np.array_equal(NumCpp.bincount(cArray, 0).flatten(), np.bincount(data.flatten(), minlength=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayUInt32(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16)
cArray.setArray(data)
minLength = int(np.max(data) + 10)
assert np.array_equal(NumCpp.bincount(cArray, minLength).flatten(),
np.bincount(data.flatten(), minlength=minLength))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayUInt32(shape)
cWeights = NumCpp.NdArrayUInt32(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16)
weights = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16)
cArray.setArray(data)
cWeights.setArray(weights)
assert np.array_equal(NumCpp.bincountWeighted(cArray, cWeights, 0).flatten(),
np.bincount(data.flatten(), minlength=0, weights=weights.flatten()))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayUInt32(shape)
cWeights = NumCpp.NdArrayUInt32(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16)
weights = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint16)
cArray.setArray(data)
cWeights.setArray(weights)
minLength = int(np.max(data) + 10)
assert np.array_equal(NumCpp.bincountWeighted(cArray, cWeights, minLength).flatten(),
np.bincount(data.flatten(), minlength=minLength, weights=weights.flatten()))
####################################################################################
def test_bitwise_and():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayUInt64(shape)
cArray2 = NumCpp.NdArrayUInt64(shape)
data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64)
data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.bitwise_and(cArray1, cArray2), np.bitwise_and(data1, data2))
####################################################################################
def test_bitwise_not():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayUInt64(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64)
cArray.setArray(data)
assert np.array_equal(NumCpp.bitwise_not(cArray), np.bitwise_not(data))
####################################################################################
def test_bitwise_or():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayUInt64(shape)
cArray2 = NumCpp.NdArrayUInt64(shape)
data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64)
data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.bitwise_or(cArray1, cArray2), np.bitwise_or(data1, data2))
####################################################################################
def test_bitwise_xor():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayUInt64(shape)
cArray2 = NumCpp.NdArrayUInt64(shape)
data1 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64)
data2 = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.bitwise_xor(cArray1, cArray2), np.bitwise_xor(data1, data2))
####################################################################################
def test_byteswap():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayUInt64(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.uint64)
cArray.setArray(data)
assert np.array_equal(NumCpp.byteswap(cArray).shape, shapeInput)
####################################################################################
def test_cbrt():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols]).astype(np.double)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.cbrtArray(cArray), 9), np.round(np.cbrt(data), 9))
####################################################################################
def test_ceil():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.ceilArray(cArray), 9), np.round(np.ceil(data), 9))
####################################################################################
def test_center_of_mass():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.NONE).flatten(), 9),
np.round(meas.center_of_mass(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000
cArray.setArray(data)
coms = list()
for col in range(data.shape[1]):
coms.append(np.round(meas.center_of_mass(data[:, col])[0], 9))
assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.ROW).flatten(), 9), np.round(coms, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randn(shape.rows, shape.cols).astype(np.double) * 1000
cArray.setArray(data)
coms = list()
for row in range(data.shape[0]):
coms.append(np.round(meas.center_of_mass(data[row, :])[0], 9))
assert np.array_equal(np.round(NumCpp.centerOfMass(cArray, NumCpp.Axis.COL).flatten(), 9), np.round(coms, 9))
####################################################################################
def test_clip():
value = np.random.randint(0, 100, [1, ]).item()
minValue = np.random.randint(0, 10, [1, ]).item()
maxValue = np.random.randint(90, 100, [1, ]).item()
assert NumCpp.clipScaler(value, minValue, maxValue) == np.clip(value, minValue, maxValue)
value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item()
minValue = np.random.randint(0, 10, [1, ]).item() + 1j * np.random.randint(0, 10, [1, ]).item()
maxValue = np.random.randint(90, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item()
assert NumCpp.clipScaler(value, minValue, maxValue) == np.clip(value, minValue, maxValue) # noqa
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
minValue = np.random.randint(0, 10, [1, ]).item()
maxValue = np.random.randint(90, 100, [1, ]).item()
assert np.array_equal(NumCpp.clipArray(cArray, minValue, maxValue), np.clip(data, minValue, maxValue))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
minValue = np.random.randint(0, 10, [1, ]).item() + 1j * np.random.randint(0, 10, [1, ]).item()
maxValue = np.random.randint(90, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item()
assert np.array_equal(NumCpp.clipArray(cArray, minValue, maxValue), np.clip(data, minValue, maxValue)) # noqa
####################################################################################
def test_column_stack():
shapeInput = np.random.randint(20, 100, [2, ])
shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item())
shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item())
shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item())
cArray1 = NumCpp.NdArray(shape1)
cArray2 = NumCpp.NdArray(shape2)
cArray3 = NumCpp.NdArray(shape3)
cArray4 = NumCpp.NdArray(shape4)
data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols])
data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols])
data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols])
data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
cArray3.setArray(data3)
cArray4.setArray(data4)
assert np.array_equal(NumCpp.column_stack(cArray1, cArray2, cArray3, cArray4),
np.column_stack([data1, data2, data3, data4]))
####################################################################################
def test_complex():
real = np.random.rand(1).astype(np.double).item()
value = complex(real)
assert np.round(NumCpp.complexScaler(real), 9) == np.round(value, 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.complexScaler(components[0], components[1]), 9) == np.round(value, 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
realArray = NumCpp.NdArray(shape)
real = np.random.rand(shape.rows, shape.cols)
realArray.setArray(real)
assert np.array_equal(np.round(NumCpp.complexArray(realArray), 9), np.round(real + 1j * np.zeros_like(real), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
realArray = NumCpp.NdArray(shape)
imagArray = NumCpp.NdArray(shape)
real = np.random.rand(shape.rows, shape.cols)
imag = np.random.rand(shape.rows, shape.cols)
realArray.setArray(real)
imagArray.setArray(imag)
assert np.array_equal(np.round(NumCpp.complexArray(realArray, imagArray), 9), np.round(real + 1j * imag, 9))
####################################################################################
def test_concatenate():
shapeInput = np.random.randint(20, 100, [2, ])
shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item())
shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item())
shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item())
cArray1 = NumCpp.NdArray(shape1)
cArray2 = NumCpp.NdArray(shape2)
cArray3 = NumCpp.NdArray(shape3)
cArray4 = NumCpp.NdArray(shape4)
data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols])
data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols])
data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols])
data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
cArray3.setArray(data3)
cArray4.setArray(data4)
assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.NONE).flatten(),
np.concatenate([data1.flatten(), data2.flatten(), data3.flatten(), data4.flatten()]))
shapeInput = np.random.randint(20, 100, [2, ])
shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
shape2 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item())
shape3 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item())
shape4 = NumCpp.Shape(shapeInput[0].item() + np.random.randint(1, 10, [1, ]).item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape1)
cArray2 = NumCpp.NdArray(shape2)
cArray3 = NumCpp.NdArray(shape3)
cArray4 = NumCpp.NdArray(shape4)
data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols])
data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols])
data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols])
data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
cArray3.setArray(data3)
cArray4.setArray(data4)
assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.ROW),
np.concatenate([data1, data2, data3, data4], axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
shape2 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item())
shape3 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item())
shape4 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item() + np.random.randint(1, 10, [1, ]).item())
cArray1 = NumCpp.NdArray(shape1)
cArray2 = NumCpp.NdArray(shape2)
cArray3 = NumCpp.NdArray(shape3)
cArray4 = NumCpp.NdArray(shape4)
data1 = np.random.randint(1, 100, [shape1.rows, shape1.cols])
data2 = np.random.randint(1, 100, [shape2.rows, shape2.cols])
data3 = np.random.randint(1, 100, [shape3.rows, shape3.cols])
data4 = np.random.randint(1, 100, [shape4.rows, shape4.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
cArray3.setArray(data3)
cArray4.setArray(data4)
assert np.array_equal(NumCpp.concatenate(cArray1, cArray2, cArray3, cArray4, NumCpp.Axis.COL),
np.concatenate([data1, data2, data3, data4], axis=1))
####################################################################################
def test_conj():
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.conjScaler(value), 9) == np.round(np.conj(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.conjArray(cArray), 9), np.round(np.conj(data), 9))
####################################################################################
def test_contains():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
value = np.random.randint(0, 100, [1, ]).item()
cArray.setArray(data)
assert NumCpp.contains(cArray, value, NumCpp.Axis.NONE).getNumpyArray().item() == (value in data)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item()
cArray.setArray(data)
assert NumCpp.contains(cArray, value, NumCpp.Axis.NONE).getNumpyArray().item() == (value in data)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
value = np.random.randint(0, 100, [1, ]).item()
cArray.setArray(data)
truth = list()
for row in data:
truth.append(value in row)
assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.COL).getNumpyArray().flatten(), np.asarray(truth))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item()
cArray.setArray(data)
truth = list()
for row in data:
truth.append(value in row)
assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.COL).getNumpyArray().flatten(), np.asarray(truth))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
value = np.random.randint(0, 100, [1, ]).item()
cArray.setArray(data)
truth = list()
for row in data.T:
truth.append(value in row)
assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.asarray(truth))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
value = np.random.randint(0, 100, [1, ]).item() + 1j * np.random.randint(0, 100, [1, ]).item()
cArray.setArray(data)
truth = list()
for row in data.T:
truth.append(value in row)
assert np.array_equal(NumCpp.contains(cArray, value, NumCpp.Axis.ROW).getNumpyArray().flatten(), np.asarray(truth))
####################################################################################
def test_copy():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.copy(cArray), data)
####################################################################################
def test_copysign():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(-100, 100, [shape.rows, shape.cols])
data2 = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.copysign(cArray1, cArray2), np.copysign(data1, data2))
####################################################################################
def test_copyto():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray()
data1 = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray1.setArray(data1)
assert np.array_equal(NumCpp.copyto(cArray2, cArray1), data1)
####################################################################################
def test_cos():
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.cosScaler(value), 9) == np.round(np.cos(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.cosScaler(value), 9) == np.round(np.cos(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.cosArray(cArray), 9), np.round(np.cos(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.cosArray(cArray), 9), np.round(np.cos(data), 9))
####################################################################################
def test_cosh():
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.coshScaler(value), 9) == np.round(np.cosh(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.coshScaler(value), 9) == np.round(np.cosh(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.coshArray(cArray), 9), np.round(np.cosh(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.coshArray(cArray), 9), np.round(np.cosh(data), 9))
####################################################################################
def test_count_nonzero():
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32)
cArray.setArray(data)
assert NumCpp.count_nonzero(cArray, NumCpp.Axis.NONE) == np.count_nonzero(data)
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 3, [shape.rows, shape.cols])
imag = np.random.randint(1, 3, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert NumCpp.count_nonzero(cArray, NumCpp.Axis.NONE) == np.count_nonzero(data)
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32)
cArray.setArray(data)
assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.ROW).flatten(), np.count_nonzero(data, axis=0))
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 3, [shape.rows, shape.cols])
imag = np.random.randint(1, 3, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.ROW).flatten(), np.count_nonzero(data, axis=0))
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(0, 3, [shape.rows, shape.cols], dtype=np.uint32)
cArray.setArray(data)
assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.COL).flatten(), np.count_nonzero(data, axis=1))
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 3, [shape.rows, shape.cols])
imag = np.random.randint(1, 3, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.count_nonzero(cArray, NumCpp.Axis.COL).flatten(), np.count_nonzero(data, axis=1))
####################################################################################
def test_cross():
shape = NumCpp.Shape(1, 2)
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).item() == np.cross(data1, data2).item()
shape = NumCpp.Shape(1, 2)
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).item() == np.cross(data1, data2).item()
shape = NumCpp.Shape(2, np.random.randint(1, 100, [1, ]).item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray().flatten(),
np.cross(data1, data2, axis=0))
shape = NumCpp.Shape(2, np.random.randint(1, 100, [1, ]).item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray().flatten(),
np.cross(data1, data2, axis=0))
shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 2)
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray().flatten(),
np.cross(data1, data2, axis=1))
shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 2)
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray().flatten(),
np.cross(data1, data2, axis=1))
shape = NumCpp.Shape(1, 3)
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(),
np.cross(data1, data2).flatten())
shape = NumCpp.Shape(1, 3)
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.NONE).getNumpyArray().flatten(),
np.cross(data1, data2).flatten())
shape = NumCpp.Shape(3, np.random.randint(1, 100, [1, ]).item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(),
np.cross(data1, data2, axis=0))
shape = NumCpp.Shape(3, np.random.randint(1, 100, [1, ]).item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.ROW).getNumpyArray(),
np.cross(data1, data2, axis=0))
shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 3)
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
data2 = np.random.randint(1, 10, [shape.rows, shape.cols]).astype(np.double)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(),
np.cross(data1, data2, axis=1))
shape = NumCpp.Shape(np.random.randint(1, 100, [1, ]).item(), 3)
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.cross(cArray1, cArray2, NumCpp.Axis.COL).getNumpyArray(),
np.cross(data1, data2, axis=1))
####################################################################################
def test_cube():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.cube(cArray), 9), np.round(data * data * data, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.cube(cArray), 9), np.round(data * data * data, 9))
####################################################################################
def test_cumprod():
shapeInput = np.random.randint(1, 5, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 4, [shape.rows, shape.cols], dtype=np.uint32)
cArray.setArray(data)
assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.NONE).flatten(), data.cumprod())
shapeInput = np.random.randint(1, 5, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 4, [shape.rows, shape.cols])
imag = np.random.randint(1, 4, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.NONE).flatten(), data.cumprod())
shapeInput = np.random.randint(1, 5, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 4, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.ROW), data.cumprod(axis=0))
shapeInput = np.random.randint(1, 5, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 4, [shape.rows, shape.cols])
imag = np.random.randint(1, 4, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.ROW), data.cumprod(axis=0))
shapeInput = np.random.randint(1, 5, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 4, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.COL), data.cumprod(axis=1))
shapeInput = np.random.randint(1, 5, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 4, [shape.rows, shape.cols])
imag = np.random.randint(1, 4, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.cumprod(cArray, NumCpp.Axis.COL), data.cumprod(axis=1))
####################################################################################
def test_cumsum():
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.NONE).flatten(), data.cumsum())
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 50, [shape.rows, shape.cols])
imag = np.random.randint(1, 50, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.NONE).flatten(), data.cumsum())
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.ROW), data.cumsum(axis=0))
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 50, [shape.rows, shape.cols])
imag = np.random.randint(1, 50, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.ROW), data.cumsum(axis=0))
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.COL), data.cumsum(axis=1))
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 50, [shape.rows, shape.cols])
imag = np.random.randint(1, 50, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.cumsum(cArray, NumCpp.Axis.COL), data.cumsum(axis=1))
####################################################################################
def test_deg2rad():
value = np.abs(np.random.rand(1).item()) * 360
assert np.round(NumCpp.deg2radScaler(value), 9) == np.round(np.deg2rad(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols) * 360
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.deg2radArray(cArray), 9), np.round(np.deg2rad(data), 9))
####################################################################################
def test_degrees():
value = np.abs(np.random.rand(1).item()) * 2 * np.pi
assert np.round(NumCpp.degreesScaler(value), 9) == np.round(np.degrees(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols) * 2 * np.pi
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.degreesArray(cArray), 9), np.round(np.degrees(data), 9))
####################################################################################
def test_deleteIndices():
shapeInput = np.asarray([100, 100])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
indices = NumCpp.Slice(0, 100, 4)
indicesPy = slice(0, 99, 4)
cArray.setArray(data)
assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.NONE).flatten(),
np.delete(data, indicesPy, axis=None))
shapeInput = np.asarray([100, 100])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
indices = NumCpp.Slice(0, 100, 4)
indicesPy = slice(0, 99, 4)
cArray.setArray(data)
assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.ROW),
np.delete(data, indicesPy, axis=0))
shapeInput = np.asarray([100, 100])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
indices = NumCpp.Slice(0, 100, 4)
indicesPy = slice(0, 99, 4)
cArray.setArray(data)
assert np.array_equal(NumCpp.deleteIndicesSlice(cArray, indices, NumCpp.Axis.COL),
np.delete(data, indicesPy, axis=1))
shapeInput = np.asarray([100, 100])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
index = np.random.randint(0, shape.size(), [1, ]).item()
cArray.setArray(data)
assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.NONE).flatten(),
np.delete(data, index, axis=None))
shapeInput = np.asarray([100, 100])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
index = np.random.randint(0, 100, [1, ]).item()
cArray.setArray(data)
assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.ROW), np.delete(data, index, axis=0))
shapeInput = np.asarray([100, 100])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
index = np.random.randint(0, 100, [1, ]).item()
cArray.setArray(data)
assert np.array_equal(NumCpp.deleteIndicesScaler(cArray, index, NumCpp.Axis.COL), np.delete(data, index, axis=1))
####################################################################################
def test_diag():
shapeInput = np.random.randint(2, 25, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
k = np.random.randint(0, np.min(shapeInput), [1, ]).item()
elements = np.random.randint(1, 100, shapeInput)
cElements = NumCpp.NdArray(shape)
cElements.setArray(elements)
assert np.array_equal(NumCpp.diag(cElements, k).flatten(), np.diag(elements, k))
shapeInput = np.random.randint(2, 25, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
k = np.random.randint(0, np.min(shapeInput), [1, ]).item()
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
elements = real + 1j * imag
cElements = NumCpp.NdArrayComplexDouble(shape)
cElements.setArray(elements)
assert np.array_equal(NumCpp.diag(cElements, k).flatten(), np.diag(elements, k))
####################################################################################
def test_diagflat():
numElements = np.random.randint(2, 25, [1, ]).item()
shape = NumCpp.Shape(1, numElements)
k = np.random.randint(0, 10, [1, ]).item()
elements = np.random.randint(1, 100, [numElements, ])
cElements = NumCpp.NdArray(shape)
cElements.setArray(elements)
assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k))
numElements = np.random.randint(2, 25, [1, ]).item()
shape = NumCpp.Shape(1, numElements)
k = np.random.randint(0, 10, [1, ]).item()
real = np.random.randint(1, 100, [numElements, ])
imag = np.random.randint(1, 100, [numElements, ])
elements = real + 1j * imag
cElements = NumCpp.NdArrayComplexDouble(shape)
cElements.setArray(elements)
assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k))
numElements = np.random.randint(1, 25, [1, ]).item()
shape = NumCpp.Shape(1, numElements)
k = np.random.randint(0, 10, [1, ]).item()
elements = np.random.randint(1, 100, [numElements, ])
cElements = NumCpp.NdArray(shape)
cElements.setArray(elements)
assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k))
numElements = np.random.randint(1, 25, [1, ]).item()
shape = NumCpp.Shape(1, numElements)
k = np.random.randint(0, 10, [1, ]).item()
real = np.random.randint(1, 100, [numElements, ])
imag = np.random.randint(1, 100, [numElements, ])
elements = real + 1j * imag
cElements = NumCpp.NdArrayComplexDouble(shape)
cElements.setArray(elements)
assert np.array_equal(NumCpp.diagflat(cElements, k), np.diagflat(elements, k))
####################################################################################
def test_diagonal():
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols])
cArray.setArray(data)
offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item()
assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.ROW).flatten(),
np.diagonal(data, offset, axis1=0, axis2=1))
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 50, [shape.rows, shape.cols])
imag = np.random.randint(1, 50, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item()
assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.ROW).flatten(),
np.diagonal(data, offset, axis1=0, axis2=1))
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols])
cArray.setArray(data)
offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item()
assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.COL).flatten(),
np.diagonal(data, offset, axis1=1, axis2=0))
shapeInput = np.random.randint(1, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 50, [shape.rows, shape.cols])
imag = np.random.randint(1, 50, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
offset = np.random.randint(0, min(shape.rows, shape.cols), [1, ]).item()
assert np.array_equal(NumCpp.diagonal(cArray, offset, NumCpp.Axis.COL).flatten(),
np.diagonal(data, offset, axis1=1, axis2=0))
####################################################################################
def test_diff():
shapeInput = np.random.randint(10, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.NONE).flatten(),
np.diff(data.flatten()))
shapeInput = np.random.randint(10, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 50, [shape.rows, shape.cols])
imag = np.random.randint(1, 50, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.NONE).flatten(),
np.diff(data.flatten()))
shapeInput = np.random.randint(10, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.ROW), np.diff(data, axis=0))
shapeInput = np.random.randint(10, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 50, [shape.rows, shape.cols])
imag = np.random.randint(1, 50, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.ROW), np.diff(data, axis=0))
shapeInput = np.random.randint(10, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.uint32)
cArray.setArray(data)
assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.COL).astype(np.uint32), np.diff(data, axis=1))
shapeInput = np.random.randint(10, 50, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 50, [shape.rows, shape.cols])
imag = np.random.randint(1, 50, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.diff(cArray, NumCpp.Axis.COL), np.diff(data, axis=1))
####################################################################################
def test_divide():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(-100, 100, [shape.rows, shape.cols])
data2 = np.random.randint(-100, 100, [shape.rows, shape.cols])
data2[data2 == 0] = 1
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9),
np.round(data1 / data2, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
value = 0
while value == 0:
value = np.random.randint(-100, 100)
assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9),
np.round(data / value, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
data[data == 0] = 1
cArray.setArray(data)
value = np.random.randint(-100, 100)
assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9),
np.round(value / data, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
data2[data2 == complex(0)] = complex(1)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9),
np.round(data1 / data2, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
value = 0
while value == complex(0):
value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100)
assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9),
np.round(data / value, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
data[data == complex(0)] = complex(1)
cArray.setArray(data)
value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100)
assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9),
np.round(value / data, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArray(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
data2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2[data2 == 0] = 1
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9),
np.round(data1 / data2, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
data1 = np.random.randint(1, 100, [shape.rows, shape.cols])
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
data2[data2 == complex(0)] = complex(1)
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(np.round(NumCpp.divide(cArray1, cArray2), 9),
np.round(data1 / data2, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
cArray.setArray(data)
while value == complex(0):
value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100)
assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9),
np.round(data / value, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(-100, 100, [shape.rows, shape.cols])
data[data == 0] = 1
cArray.setArray(data)
value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100)
assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9),
np.round(value / data, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
value = 0
while value == 0:
value = np.random.randint(-100, 100)
assert np.array_equal(np.round(NumCpp.divide(cArray, value), 9),
np.round(data / value, 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
data[data == complex(0)] = complex(1)
cArray.setArray(data)
value = np.random.randint(-100, 100)
assert np.array_equal(np.round(NumCpp.divide(value, cArray), 9),
np.round(value / data, 9))
####################################################################################
def test_dot():
size = np.random.randint(1, 100, [1, ]).item()
shape = NumCpp.Shape(1, size)
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(1, 50, [shape.rows, shape.cols])
data2 = np.random.randint(1, 50, [shape.rows, shape.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item()
size = np.random.randint(1, 100, [1, ]).item()
shape = NumCpp.Shape(1, size)
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
data1 = np.random.randint(1, 50, [shape.rows, shape.cols])
real2 = np.random.randint(1, 50, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 50, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item()
size = np.random.randint(1, 100, [1, ]).item()
shape = NumCpp.Shape(1, size)
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 50, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 50, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 50, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 50, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item()
size = np.random.randint(1, 100, [1, ]).item()
shape = NumCpp.Shape(1, size)
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArray(shape)
real1 = np.random.randint(1, 50, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 50, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
data2 = np.random.randint(1, 50, [shape.rows, shape.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert NumCpp.dot(cArray1, cArray2).item() == np.dot(data1, data2.T).item()
shapeInput = np.random.randint(1, 100, [2, ])
shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
shape2 = NumCpp.Shape(shapeInput[1].item(), np.random.randint(1, 100, [1, ]).item())
cArray1 = NumCpp.NdArray(shape1)
cArray2 = NumCpp.NdArray(shape2)
data1 = np.random.randint(1, 50, [shape1.rows, shape1.cols])
data2 = np.random.randint(1, 50, [shape2.rows, shape2.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.dot(cArray1, cArray2), np.dot(data1, data2))
shapeInput = np.random.randint(1, 100, [2, ])
shape1 = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
shape2 = NumCpp.Shape(shapeInput[1].item(), np.random.randint(1, 100, [1, ]).item())
cArray1 = NumCpp.NdArrayComplexDouble(shape1)
cArray2 = NumCpp.NdArrayComplexDouble(shape2)
real1 = np.random.randint(1, 50, [shape1.rows, shape1.cols])
imag1 = np.random.randint(1, 50, [shape1.rows, shape1.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 50, [shape2.rows, shape2.cols])
imag2 = np.random.randint(1, 50, [shape2.rows, shape2.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.dot(cArray1, cArray2), np.dot(data1, data2))
####################################################################################
def test_empty():
shapeInput = np.random.randint(1, 100, [2, ])
cArray = NumCpp.emptyRowCol(shapeInput[0].item(), shapeInput[1].item())
assert cArray.shape[0] == shapeInput[0]
assert cArray.shape[1] == shapeInput[1]
assert cArray.size == shapeInput.prod()
shapeInput = np.random.randint(1, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.emptyShape(shape)
assert cArray.shape[0] == shape.rows
assert cArray.shape[1] == shape.cols
assert cArray.size == shapeInput.prod()
shapeInput = np.random.randint(1, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.empty_like(cArray1)
assert cArray2.shape().rows == shape.rows
assert cArray2.shape().cols == shape.cols
assert cArray2.size() == shapeInput.prod()
####################################################################################
def test_endianess():
shapeInput = np.random.randint(1, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
assert NumCpp.endianess(cArray) == NumCpp.Endian.NATIVE
####################################################################################
def test_equal():
shapeInput = np.random.randint(1, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randint(0, 10, [shape.rows, shape.cols])
data2 = np.random.randint(0, 10, [shape.rows, shape.cols])
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.equal(cArray1, cArray2), np.equal(data1, data2))
shapeInput = np.random.randint(1, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
cArray2 = NumCpp.NdArrayComplexDouble(shape)
real1 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag1 = np.random.randint(1, 100, [shape.rows, shape.cols])
data1 = real1 + 1j * imag1
real2 = np.random.randint(1, 100, [shape.rows, shape.cols])
imag2 = np.random.randint(1, 100, [shape.rows, shape.cols])
data2 = real2 + 1j * imag2
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.equal(cArray1, cArray2), np.equal(data1, data2))
####################################################################################
def test_exp2():
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.expScaler(value), 9) == np.round(np.exp(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.expScaler(value), 9) == np.round(np.exp(value), 9)
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.exp2Scaler(value), 9) == np.round(np.exp2(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.exp2Array(cArray), 9), np.round(np.exp2(data), 9))
####################################################################################
def test_exp():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.expArray(cArray), 9), np.round(np.exp(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
data = np.random.rand(shape.rows, shape.cols) + 1j * np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.expArray(cArray), 9), np.round(np.exp(data), 9))
value = np.abs(np.random.rand(1).item())
assert np.round(NumCpp.expm1Scaler(value), 9) == np.round(np.expm1(value), 9)
components = np.random.rand(2).astype(np.double)
value = complex(components[0], components[1])
assert np.round(NumCpp.expm1Scaler(value), 9) == np.round(np.expm1(value), 9)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.rand(shape.rows, shape.cols)
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.expm1Array(cArray), 9), np.round(np.expm1(data), 9))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.rand(shape.rows, shape.cols)
imag = np.random.rand(shape.rows, shape.cols)
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(np.round(NumCpp.expm1Array(cArray), 9), np.round(np.expm1(data), 9))
####################################################################################
def test_eye():
shapeInput = np.random.randint(1, 100, [1, ]).item()
randK = np.random.randint(0, shapeInput, [1, ]).item()
assert np.array_equal(NumCpp.eye1D(shapeInput, randK), np.eye(shapeInput, k=randK))
shapeInput = np.random.randint(1, 100, [1, ]).item()
randK = np.random.randint(0, shapeInput, [1, ]).item()
assert np.array_equal(NumCpp.eye1DComplex(shapeInput, randK),
np.eye(shapeInput, k=randK) + 1j * np.zeros([shapeInput, shapeInput]))
shapeInput = np.random.randint(10, 100, [2, ])
randK = np.random.randint(0, np.min(shapeInput), [1, ]).item()
assert np.array_equal(NumCpp.eye2D(shapeInput[0].item(), shapeInput[1].item(), randK),
np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK))
shapeInput = np.random.randint(10, 100, [2, ])
randK = np.random.randint(0, np.min(shapeInput), [1, ]).item()
assert np.array_equal(NumCpp.eye2DComplex(shapeInput[0].item(), shapeInput[1].item(), randK),
np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK) +
1j * np.zeros(shapeInput))
shapeInput = np.random.randint(10, 100, [2, ])
cShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
randK = np.random.randint(0, np.min(shapeInput), [1, ]).item()
assert np.array_equal(NumCpp.eyeShape(cShape, randK), np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK))
shapeInput = np.random.randint(10, 100, [2, ])
cShape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
randK = np.random.randint(0, np.min(shapeInput), [1, ]).item()
assert np.array_equal(NumCpp.eyeShapeComplex(cShape, randK),
np.eye(shapeInput[0].item(), shapeInput[1].item(), k=randK) +
1j * np.zeros(shapeInput))
####################################################################################
def test_fill_diagonal():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randn(shape.rows, shape.cols) * 100
cArray.setArray(data)
NumCpp.fillDiagonal(cArray, 666)
np.fill_diagonal(data, 666)
assert np.array_equal(cArray.getNumpyArray(), data)
####################################################################################
def test_find():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randn(shape.rows, shape.cols) * 100
cArray.setArray(data)
value = data.mean()
cMask = NumCpp.operatorGreater(cArray, value)
cMaskArray = NumCpp.NdArrayBool(cMask.shape[0], cMask.shape[1])
cMaskArray.setArray(cMask)
idxs = NumCpp.find(cMaskArray).astype(np.int64)
idxsPy = np.nonzero((data > value).flatten())[0]
assert np.array_equal(idxs.flatten(), idxsPy)
####################################################################################
def test_findN():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randn(shape.rows, shape.cols) * 100
cArray.setArray(data)
value = data.mean()
cMask = NumCpp.operatorGreater(cArray, value)
cMaskArray = NumCpp.NdArrayBool(cMask.shape[0], cMask.shape[1])
cMaskArray.setArray(cMask)
idxs = NumCpp.findN(cMaskArray, 8).astype(np.int64)
idxsPy = np.nonzero((data > value).flatten())[0]
assert np.array_equal(idxs.flatten(), idxsPy[:8])
####################################################################################
def fix():
value = np.random.randn(1).item() * 100
assert NumCpp.fixScaler(value) == np.fix(value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randn(shape.rows, shape.cols) * 100
cArray.setArray(data)
assert np.array_equal(NumCpp.fixArray(cArray), np.fix(data))
####################################################################################
def test_flatten():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.flatten(cArray).getNumpyArray(), np.resize(data, [1, data.size]))
####################################################################################
def test_flatnonzero():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.flatnonzero(cArray).getNumpyArray().flatten(), np.flatnonzero(data))
####################################################################################
def test_flip():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.flip(cArray, NumCpp.Axis.NONE).getNumpyArray(),
np.flip(data.reshape(1, data.size), axis=1).reshape(shapeInput))
####################################################################################
def test_fliplr():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.fliplr(cArray).getNumpyArray(), np.fliplr(data))
####################################################################################
def test_flipud():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.flipud(cArray).getNumpyArray(), np.flipud(data))
####################################################################################
def test_floor():
value = np.random.randn(1).item() * 100
assert NumCpp.floorScaler(value) == np.floor(value)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randn(shape.rows, shape.cols) * 100
cArray.setArray(data)
assert np.array_equal(NumCpp.floorArray(cArray), np.floor(data))
####################################################################################
def test_floor_divide():
value1 = np.random.randn(1).item() * 100 + 1000
value2 = np.random.randn(1).item() * 100 + 1000
assert NumCpp.floor_divideScaler(value1, value2) == np.floor_divide(value1, value2)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000
data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.floor_divideArray(cArray1, cArray2), np.floor_divide(data1, data2))
####################################################################################
def test_fmax():
value1 = np.random.randn(1).item() * 100 + 1000
value2 = np.random.randn(1).item() * 100 + 1000
assert NumCpp.fmaxScaler(value1, value2) == np.fmax(value1, value2)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000
data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.fmaxArray(cArray1, cArray2), np.fmax(data1, data2))
####################################################################################
def test_fmin():
value1 = np.random.randn(1).item() * 100 + 1000
value2 = np.random.randn(1).item() * 100 + 1000
assert NumCpp.fminScaler(value1, value2) == np.fmin(value1, value2)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
cArray2 = NumCpp.NdArray(shape)
data1 = np.random.randn(shape.rows, shape.cols) * 100 + 1000
data2 = np.random.randn(shape.rows, shape.cols) * 100 + 1000
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.fminArray(cArray1, cArray2), np.fmin(data1, data2))
####################################################################################
def test_fmod():
value1 = np.random.randint(1, 100, [1, ]).item() * 100 + 1000
value2 = np.random.randint(1, 100, [1, ]).item() * 100 + 1000
assert NumCpp.fmodScaler(value1, value2) == np.fmod(value1, value2)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayUInt32(shape)
cArray2 = NumCpp.NdArrayUInt32(shape)
data1 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) * 100 + 1000
data2 = np.random.randint(1, 100, [shape.rows, shape.cols], dtype=np.uint32) * 100 + 1000
cArray1.setArray(data1)
cArray2.setArray(data2)
assert np.array_equal(NumCpp.fmodArray(cArray1, cArray2), np.fmod(data1, data2))
####################################################################################
def test_fromfile():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double)
cArray.setArray(data)
tempDir = r'C:\Temp'
if not os.path.exists(tempDir):
os.mkdir(tempDir)
tempFile = os.path.join(tempDir, 'NdArrayDump.bin')
NumCpp.dump(cArray, tempFile)
assert os.path.isfile(tempFile)
data2 = NumCpp.fromfile(tempFile, '').reshape(shape)
assert np.array_equal(data, data2)
os.remove(tempFile)
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 50, [shape.rows, shape.cols]).astype(np.double)
cArray.setArray(data)
tempDir = tempfile.gettempdir()
tempFile = os.path.join(tempDir, 'NdArrayDump')
NumCpp.tofile(cArray, tempFile, '\n')
assert os.path.exists(tempFile + '.txt')
data2 = NumCpp.fromfile(tempFile + '.txt', '\n').reshape(shape)
assert np.array_equal(data, data2)
os.remove(tempFile + '.txt')
####################################################################################
def test_fromiter():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 100, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.fromiter(cArray).flatten(), data.flatten())
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 100, [shape.rows, shape.cols])
imag = np.random.randint(1, 100, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.fromiter(cArray).flatten(), data.flatten())
####################################################################################
def test_full():
shapeInput = np.random.randint(1, 100, [1, ]).item()
value = np.random.randint(1, 100, [1, ]).item()
cArray = NumCpp.fullSquare(shapeInput, value)
assert (cArray.shape[0] == shapeInput and cArray.shape[1] == shapeInput and
cArray.size == shapeInput**2 and np.all(cArray == value))
shapeInput = np.random.randint(1, 100, [1, ]).item()
value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item()
cArray = NumCpp.fullSquareComplex(shapeInput, value)
assert (cArray.shape[0] == shapeInput and cArray.shape[1] == shapeInput and
cArray.size == shapeInput**2 and np.all(cArray == value))
shapeInput = np.random.randint(1, 100, [2, ])
value = np.random.randint(1, 100, [1, ]).item()
cArray = NumCpp.fullRowCol(shapeInput[0].item(), shapeInput[1].item(), value)
assert (cArray.shape[0] == shapeInput[0] and cArray.shape[1] == shapeInput[1] and
cArray.size == shapeInput.prod() and np.all(cArray == value))
shapeInput = np.random.randint(1, 100, [2, ])
value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item()
cArray = NumCpp.fullRowColComplex(shapeInput[0].item(), shapeInput[1].item(), value)
assert (cArray.shape[0] == shapeInput[0] and cArray.shape[1] == shapeInput[1] and
cArray.size == shapeInput.prod() and np.all(cArray == value))
shapeInput = np.random.randint(1, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
value = np.random.randint(1, 100, [1, ]).item()
cArray = NumCpp.fullShape(shape, value)
assert (cArray.shape[0] == shape.rows and cArray.shape[1] == shape.cols and
cArray.size == shapeInput.prod() and np.all(cArray == value))
shapeInput = np.random.randint(1, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
value = np.random.randint(1, 100, [1, ]).item()
cArray = NumCpp.fullShape(shape, value)
assert (cArray.shape[0] == shape.rows and cArray.shape[1] == shape.cols and
cArray.size == shapeInput.prod() and np.all(cArray == value))
####################################################################################
def test_full_like():
shapeInput = np.random.randint(1, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArray(shape)
value = np.random.randint(1, 100, [1, ]).item()
cArray2 = NumCpp.full_like(cArray1, value)
assert (cArray2.shape().rows == shape.rows and cArray2.shape().cols == shape.cols and
cArray2.size() == shapeInput.prod() and np.all(cArray2.getNumpyArray() == value))
shapeInput = np.random.randint(1, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray1 = NumCpp.NdArrayComplexDouble(shape)
value = np.random.randint(1, 100, [1, ]).item() + 1j * np.random.randint(1, 100, [1, ]).item()
cArray2 = NumCpp.full_likeComplex(cArray1, value)
assert (cArray2.shape().rows == shape.rows and cArray2.shape().cols == shape.cols and
cArray2.size() == shapeInput.prod() and np.all(cArray2.getNumpyArray() == value))
####################################################################################
def test_gcd():
if not NumCpp.NUMCPP_NO_USE_BOOST or NumCpp.STL_GCD_LCM:
value1 = np.random.randint(1, 1000, [1, ]).item()
value2 = np.random.randint(1, 1000, [1, ]).item()
assert NumCpp.gcdScaler(value1, value2) == np.gcd(value1, value2)
if not NumCpp.NUMCPP_NO_USE_BOOST:
size = np.random.randint(20, 100, [1, ]).item()
cArray = NumCpp.NdArrayUInt32(1, size)
data = np.random.randint(1, 1000, [size, ], dtype=np.uint32)
cArray.setArray(data)
assert NumCpp.gcdArray(cArray) == np.gcd.reduce(data) # noqa
####################################################################################
def test_gradient():
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 1000, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.ROW), np.gradient(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 1000, [shape.rows, shape.cols])
imag = np.random.randint(1, 1000, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.ROW), np.gradient(data, axis=0))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArray(shape)
data = np.random.randint(1, 1000, [shape.rows, shape.cols])
cArray.setArray(data)
assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.COL), np.gradient(data, axis=1))
shapeInput = np.random.randint(20, 100, [2, ])
shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item())
cArray = NumCpp.NdArrayComplexDouble(shape)
real = np.random.randint(1, 1000, [shape.rows, shape.cols])
imag = np.random.randint(1, 1000, [shape.rows, shape.cols])
data = real + 1j * imag
cArray.setArray(data)
assert np.array_equal(NumCpp.gradient(cArray, NumCpp.Axis.COL), | np.gradient(data, axis=1) | numpy.gradient |
import numpy as np
import collections
import argparse
import matplotlib.pyplot as plt
import matplotlib.animation as anim
import copy
import random
import time
from bp94nball.qsr_util import circles
from bp94nball.qsr_util import qsr_part_of_characteristic_function
from bp94nball.qsr_util import qsr_disconnect_characteristic_function
from bp94nball.qsr_util import vec_length
from bp94nball.colors import cnames
colorList = ['blue', 'green', 'red', 'cyan', 'magenta', 'yellow','black', 'seagreen', 'pink',
'navy','violet', 'crimson'] + list(cnames.keys())
r0=0.05
rock_1 = [np.cos(np.pi / 4), np.sin(np.pi / 4), 10,r0]
stone = [np.cos(np.pi / 4 + np.pi / 100), np.sin(np.pi / 4 + np.pi / 100), 10, r0]
basalt = [np.cos(np.pi / 4 - np.pi / 200), np.sin(np.pi / 4 - np.pi / 200), 10, r0]
material = [np.cos(np.pi / 4 - np.pi / 100), np.sin(np.pi / 4 - np.pi / 100), 10, r0]
substance = [np.cos(np.pi / 4 - np.pi / 50), np.sin(np.pi / 4 - np.pi / 50), 10, r0]
entity = [np.cos(np.pi / 4- np.pi / 40), np.sin(np.pi / 4- np.pi / 40), 10, r0]
rock_2 = [np.cos(np.pi / 4 + np.pi / 30), np.sin(np.pi / 4 + np.pi / 30), 10, r0]
pop = [np.cos(np.pi / 4 + np.pi / 50), np.sin(np.pi / 4 + np.pi / 50), 10, r0]
jazz = [np.cos(np.pi / 3 - np.pi / 50), np.sin(np.pi / 3 - np.pi / 50), 10, r0]
music = [np.cos(np.pi / 4 + np.pi / 15), np.sin(np.pi / 4 + np.pi / 15), 10, r0]
communication = [np.cos(np.pi / 3), np.sin(np.pi / 3), 10, r0]
event = [np.cos(np.pi / 3 + np.pi / 50), np.sin(np.pi / 3 + np.pi / 50), 10, r0]
wDic = {
'rock_1': rock_1,
'stone': stone,
'basalt': basalt,
'material' : material,
'substance' : substance,
'entity': entity,
'rock_2': rock_2,
'pop': pop,
'jazz': jazz,
'music': music,
'communication': communication,
'event': event
}
kw0 = [
['rock_1', 'material', 'rock_2'],
['stone', 'material', 'jazz'],
['basalt', 'material', 'communication'],
['material', 'substance', 'event'],
['substance', 'entity', 'music']
]
kw1=[
['rock_2', 'music', 'material'],
['pop', 'music', 'substance'],
['jazz', 'music', 'basalt'],
['music', 'communication', 'entity'],
['communication', 'event', 'entity'],
]
def do_func(funcName="part_of"):
fdic = {
"part_of": qsr_part_of_characteristic_function,
"disconnect": qsr_disconnect_characteristic_function
}
if funcName in fdic.keys():
return fdic[funcName]
else:
print("unknown qsr reltion:", funcName)
return -1
def energy_2(ball1, ball2, func="part_of"):
"""
compute the energy of ball1 being part of ball2
ball1 \part_of ball2 = distance
:param ball1:
:param ball2:
:return:
"""
qsr_func = do_func(funcName=func)
assert qsr_func != -1
qsrIndicator = qsr_func(ball1, ball2)
if qsrIndicator <= 0:
return 0
else:
return min(0.999, 2/(1 + np.exp(-qsrIndicator)) - 1)
def loss(ball_w, ball_u, negBalls=[], func="part_of", func_neg="disconnect"):
"""
:param ball_w:
:param ball_u:
:param negBalls: a list of balls as negative sample
:return:
"""
qsr_func = do_func(funcName=func)
qsrIndicator = qsr_func(ball_u, ball_w)
if qsrIndicator <= 0:
Lw = 0
else:
Lw = energy_2(ball_u, ball_w, func=func)
for ball_i in negBalls:
qsr_func = do_func(funcName=func_neg)
qsrIndicator = qsr_func(ball_i, ball_w)
if qsrIndicator > 0:
Lw += energy_2(ball_i, ball_w, func=func_neg)
return Lw
def total_loss(klst, wDic, func="part_of", func_neg="disconnect", numNeg=0):
value = 0
for piece in klst:
value += loss(wDic[piece[1]], wDic[piece[0]], negBalls=[wDic[nball] for nball in piece[2:]][0:numNeg],
func=func, func_neg=func_neg)
return value
def partial_derative_lw(ball_w, ball_u, negBalls=[], func="part_of", func_neg="disconnect"):
"""
:param ball_w:
:param ball_u:
:param negBalls:
:param func:
:return:
"""
alpha_w, lw, rw = ball_w[:-2], ball_w[-2], ball_w[-1]
alpha_u, lu, ru = ball_u[:-2], ball_u[-2], ball_u[-1]
hight = np.dot(alpha_w, alpha_u)
e1 = energy_2(ball_u, ball_w, func=func)
if e1 == 0:
result = 0
else:
dis2 = lw * lw + lu * lu - np.multiply(2*lu*lw, hight)
assert dis2 > 0
result = (2 - 2*e1)* e1 * (lw - np.multiply(lu, hight))\
/ np.sqrt(dis2)
i = 0
for ball_i in negBalls:
# print('neg i', i)
i += 1
alpha_i, li, ri = ball_i[:-2], ball_i[-2], ball_i[-1]
hight = np.dot(alpha_i, alpha_w)
e2 = energy_2(ball_i, ball_w, func=func_neg)
if e2 != 0:
dis2 = lw * lw + li * li - np.multiply(2*li*lw, hight)
assert (dis2 > 0), "lw: {0}, li: {1}, hight: {2}, dis: {3}".format(float(lw), float(li),
float(hight), float(dis2))
result -= (2 - 2*e2)* e2 * (lw - np.multiply(li, hight))\
/ np.sqrt(dis2)
return result
def partial_derative_rw(ball_w, ball_u, negBalls=[], func="part_of", func_neg="disconnect"):
"""
:param ball_w:
:param ball_u:
:param negBalls:
:param func:
:return:
"""
e1 = energy_2(ball_u, ball_w, func=func)
result = (2*e1 - 2)*e1
for ball_i in negBalls:
e2 = energy_2(ball_i, ball_w, func=func_neg)
result += (2 - 2*e2) * e2
return result
def partial_derative_lu(ball_w, ball_u, negBalls=[], func="part_of", func_neg="disconnect"):
"""
:param ball_w:
:param ball_u:
:param negBalls:
:param func:
:return:
"""
alpha_w, lw, rw = ball_w[:-2], ball_w[-2], ball_w[-1]
alpha_u, lu, ru = ball_u[:-2], ball_u[-2], ball_u[-1]
hight = | np.dot(alpha_w, alpha_u) | numpy.dot |
from __future__ import print_function
try:
import cv2
except ModuleNotFoundError:
print("Please install opencv-python module using following command:\npip3 install opencv-python")
import stmpy
import numpy as np
import scipy as sp
import matplotlib as mpl
import matplotlib.pyplot as plt
import scipy.optimize as opt
import scipy.ndimage as snd
from scipy.interpolate import interp1d, interp2d
from skimage import transform as tf
from skimage.feature import peak_local_max
from pprint import pprint
import types
'''
REFERENCES:
[1] <NAME>, et al. "Picometer registration of zinc impurity states in Bi2Sr2CaCu2O8+d for phase determination in intra-unit-cell Fourier transform STM", New J. Phys. 14, 053017 (2012).
[2] <NAME>, PhD thesis (Ch. 3), http://davisgroup.lassp.cornell.edu/theses/Thesis_JamesSlezak.pdf
History:
2017-04-28 CREATED BY <NAME>
04/29/2019 RL : Add documents for all functions. Add another method to calculate phasemap.
Add inverse FFT method to apply the drift field.
03/25/2021 RL : Change the whole drift corr library to function based library
'''
##################################################################################
######################### Wrapped functions for easy use #########################
##################################################################################
def find_drift_parameter(A, r=None, w=None, mask3=None, cut1=None, cut2=None, bp_angle=None, orient=None, bp_c=None,\
sigma=10, method='lockin', even_out=False, show=True, **kwargs):
'''
This method find drift parameters from a 2D map automatically.
Input:
A - Required : 2D array of topo or LIY in real space.
r - Optional : width of the gaussian mask, ratio to the full map size, to remove low-q noise, =r*width
Set r=None will disable this mask.
w - Optional : width of the mask that filters out noise along qx=0 and qy=0 lines.
Set w=None will disable this mask.
mask3 - Optional : Tuple for custom-defined mask. mask3 = [n, offset, width], where n is order of symmetry,
offset is initial angle, width is the width of the mask. e.g., mask3 = [4, np.pi/4, 5],
or mask3 = [6, 0, 10].
Set mask3=None will disable this mask.
even_out - Optional : Boolean, if True then Bragg peaks will be rounded to the make sure there are even number of lattice
cut1 - Optional : List of length 1 or length 4, specifying how much bad area or area with too large drift to be cut
cut2 - Optional : List of length 1 or length 4, specifying after local drift correction how much to crop on the edge
angle_offset- Optional : The min offset angle of the Bragg peak to the x-axis, in unit of rad
bp_angle - Optional : The angle between neighboring Bragg peaks, if not given, it will be computed based on all Bragg peaks
orient - Optional : The orientation of the Bragg peaks with respect to the x-axis
bp_c - Optional : The correct Bragg peak position that user wants after the drift correction
sigma - Optional : Floating number specifying the size of mask to be used in phasemap()
method - Optional : Specifying which method to apply the drift correction
"lockin": Interpolate A and then apply it to a new set of coordinates, (x-ux, y-uy)
"convolution": Used inversion fft to apply the drift fields
show - Optional : Boolean, if True then A and Bragg peaks will be plotted out.
**kwargs - Optional : key word arguments for findBraggs function
Returns:
p : A dict of parameters that can be directly applied to drift correct orther 2D or 3D datasets
Usage:
p = find_drift(z, sigma=4, cut1=None, cut2=[0,7,0,7], show=True)
History:
06/23/2020 - RL : Initial commit.
'''
p = {}
if cut1 is not None:
A = cropedge(A, n=cut1)
# find the Bragg peak before the drift correction
bp1 = findBraggs(A, r=r, w=w, mask3=mask3, show=show, **kwargs)
bp1 = sortBraggs(bp1, s=np.shape(A))
if bp_c is None:
# Find the angle between each Bragg peaks
if bp_angle is None:
N = len(bp1)
Q = bp_to_q(bp1, A)
angles = []
for i in range(N-1):
angles.append(np.arctan2(*Q[i+1]) - np.arctan2(*Q[i]))
# Here is the commonly used angles in the real world
angle_list = np.array([0, np.pi/6, np.pi/4, np.pi/3, np.pi/2])
offset = np.absolute(np.mean(angles) - angle_list)
index = np.argmin(offset)
bp_angle = angle_list[index]
if orient is None:
orient = np.absolute(np.arctan2(*Q[0]))
# Calculate the correction position of each Bragg peak
bp_c = generate_bp(A, bp1, angle=bp_angle, orient= orient, even_out=even_out)
# Find the phasemap
thetax, thetay, Q1, Q2 = phasemap(A, bp=bp_c, method=method, sigma=sigma)
phix = fixphaseslip(thetax, method='unwrap')
phiy = fixphaseslip(thetay, method='unwrap')
ux, uy = driftmap(phix, phiy, Q1, Q2, method=method)
z_temp = driftcorr(A, ux, uy, method=method, interpolation='cubic')
# This part interpolates the drift corrected maps
if cut2 is None:
z_c = z_temp
else:
bp3 = findBraggs(z_temp, r=r, w=w, mask3=mask3, **kwargs)
z_c = cropedge(z_temp, n=cut2, bp=bp3, force_commen=True)
p['bp3'] = bp3
# This part displays the intermediate maps in the process of drift correction
if show is True:
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
c = np.mean(phix)
s = np.std(phix)
fig.suptitle('Phasemaps after fixing phase slips:')
ax[0].imshow(phix, origin='lower', clim=[c-5*s, c+5*s])
ax[1].imshow(phiy, origin='lower', clim=[c-5*s, c+5*s])
A_fft = stmpy.tools.fft(A, zeroDC=True)
B_fft = stmpy.tools.fft(z_c, zeroDC=True)
c1 = np.mean(A_fft)
s1 = np.std(A_fft)
c2 = np.mean(A)
s2 = np.std(A)
fig, ax = plt.subplots(2, 2, figsize=[8, 8])
fig.suptitle('Maps before and after drift correction:')
ax[0,0].imshow(A, cmap=stmpy.cm.blue2, origin='lower', clim=[c2-5*s2, c2+5*s2])
ax[0,1].imshow(A_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c1+5*s1])
ax[1,0].imshow(z_c, cmap=stmpy.cm.blue2, origin='lower', clim=[c2-5*s2, c2+5*s2])
ax[1,1].imshow(B_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c1+5*s1])
p['cut1'] = cut1
p['cut2'] = cut2
p['r'] = r
p['w'] = w
p['mask3'] = mask3
p['sigma'] = sigma
p['method'] = method
p['even_out'] = even_out
p['bp_c'] = bp_c
p['bp_angle'] = bp_angle
p['orient'] = orient
p['bp1'] = bp1
p['phix'] = phix
p['phiy'] = phiy
p['ux'] = ux
p['uy'] = uy
return z_c, p
def apply_drift_parameter(A, p, **kwargs):
'''
Apply the drifr correction parameters p to the 2D or 3D map A.
Input:
A - Required : 2D or 3D map to be drift corrected
p - Required : A collection of parameters to be used in drift correction.
Use parameters (those parameters should be generated by find_drift_parameter automatically)
cut1 :
cut2 :
ux :
uy :
method :
bp3 :
**kwargs - Optional :
Returns:
A_c : 2D or 3D map with drift removed.
Usage:
A_c = apply_drift_parameter(A, p)
History:
06/23/2020 - RL : Initial commit.
'''
data_c = np.copy(A)
if p['cut1'] is None:
data_c = data_c
else:
data_c = cropedge(data_c, n=p['cut1'])
data_corr = driftcorr(data_c, ux=p['ux'], uy=p['uy'], method=p['method'], interpolation='cubic')
if p['cut2'] is None:
data_out = data_corr
else:
data_out = cropedge(data_corr, bp=p['bp3'], n=p['cut2'], force_commen=True)
return data_out
##################################################################################
###################### Basic building blocks for OOD use #########################
##################################################################################
def get_para(A, a0=None, size=None, angle=np.pi/2, orient=np.pi/4,
pixels=None, even_out=False, use_a0=False):
'''
Get parameters that are useful for the drift correction
Input:
A - Required : Spy object of topo (2D) or map (3D).
a0 - Optional : Lattice constant in the unit of nm.
size - Optional : Size of the map in the unit of nm. If not offered, it'll be created
automatically from header file.
angle - Optional : Angle of the lattice. If the lattice is n-fold symmetry, then angle = 2*pi/n
orient - Optional : Angle of the 1st Bragg peak. It's actually the orientation of the scan frame
with respect to the Lattice.
pixels - Optional : Number of pixels of the topo/map. If not offered, it'll be created
automatically from header file.
even_out - Optional : Boolean, if True then Bragg peaks will be rounded to the make sure there are even number of lattice
Returns:
p - Dict, contains necessary information for the
Usage:
import stmpy.driftcorr as dfc
dfc.getAttrs(topo, a0=a0)
'''
if size is None:
try:
size = A.header['scan_range'][-2:]
except KeyError:
try:
#size = float(A.header['Grid settings'].split(";")[-2])
size = [float(k)
for k in A.header['Grid settings'].split(";")[-2:]]
except:
print(
"Error: Cannot find map size from header. Please input it manually.")
if pixels is None:
try:
#pixels = int(A.header['scan_pixels'][-1])
pixels = [int(k) for k in A.header['scan_pixels'][-2:]]
except KeyError:
try:
pixels = int(A.header['Grid dim'].split()[-1][:-1])
except:
print(
"Error: Cannot find number of pixels from header. Please input it manually.")
if not isinstance(size, list):
sizex, sizey = size, size
else:
sizex, sizey = size
if not isinstance(pixels, list):
pixelx, pixely = pixels, pixels
else:
pixelx, pixely = pixels
if a0 is None:
use_a0 = False
a0 = 1
# parameters related to the map itself
A.dfc_para = {
'a0': a0,
'size': np.array([sizex, sizey]),
'pixels': np.array([pixelx, pixely]),
'qmag': np.array([sizex, sizey]) / a0,
'qscale': np.array([pixelx, pixely]) / (2*np.array([sizex, sizey]) / a0),
'angle': angle,
'orient': orient,
'use_a0': use_a0,
'even_out': even_out,
}
def find_drift(self, A, r=None, w=None, mask3=None, cut1=None, cut2=None, \
sigma=10, method='convolution', even_out=False, show=True, **kwargs):
'''
This method find drift field from a 2D map automatically.
Input:
A - Required : 2D array of topo or LIY in real space.
r - Optional : width of the gaussian mask to remove low-q noise, =r*width
Set r=None will disable this mask.
w - Optional : width of the mask that filters out noise along qx=0 and qy=0 lines.
Set w=None will disable this mask.
mask3 - Optional : Tuple for custom-defined mask. mask3 = [n, offset, width], where n is order of symmetry, offset is initial angle, width is
the width of the mask. e.g., mask3 = [4, np.pi/4, 5], or mask3 = [6, 0, 10]
Set mask3=None will disable this mask.
even_out - Optional : Boolean, if True then Bragg peaks will be rounded to the make sure there are even number of lattice
cut1 - Optional : List of length 1 or length 4, specifying after global shear correction how much to crop on the edge
cut2 - Optional : List of length 1 or length 4, specifying after local drift correction how much to crop on the edge
sigma - Optional : Floating number specifying the size of mask to be used in phasemap()
method - Optional : Specifying which method to apply the drift correction
"lockin": Interpolate A and then apply it to a new set of coordinates,
(x-ux, y-uy)
"convolution": Used inversion fft to apply the drift fields
show - Optional : Boolean, if True then A and Bragg peaks will be plotted out.
**kwargs - Optional : key word arguments for findBraggs function
Returns:
coords - (4x2) array contains Bragg peaks in the format of [[x1,y1],[x2,y2],...,[x4,y4]]
Usage:
t.find_drift(t.z, sigma=4, cut1=None, cut2=[0,7,0,7], show=True)
History:
06/09/2020 - RL : Initial commit.
'''
if not hasattr(self, 'parameters'):
self = getAttrs(self, a0=None, size=None, angle=np.pi/2, orient=np.pi/4, pixels=np.shape(A)[::-1], \
even_out=even_out, use_a0=None)
# Find Bragg peaks that will be used in the drift correction part
self.dfcPara = {
'cut1': cut1,
'cut2': cut2,
'method': method,
'sigma': sigma,
}
if cut1 is not None:
A = cropedge(A, n=cut1)
if not hasattr(self, 'bp_parameters'):
self.bp1 = findBraggs(A, r=r, w=w, mask3=mask3, update_obj=True, obj=self, \
show=show, even_out=even_out, **kwargs)
else:
self.bp1 = findBraggs(A, r=r, w=w, mask3=mask3, update_obj=True, obj=self, \
show=show, even_out=even_out, **kwargs)
# self.bp1 = findBraggs(A, obj=self, show=show)
self.bp1 = sortBraggs(self.bp1, s=np.shape(A))
if self.parameters['angle'] is None:
N = len(self.bp1)
Q = bp_to_q(self.bp1, A)
angles = []
for i in range(N-1):
angles.append(np.arctan2(*Q[i+1]) - np.arctan2(*Q[i]))
# Here are the commonly used angles in the real world
angle_list = np.array([0, np.pi/6, np.pi/4, np.pi/3, np.pi/2])
offset = np.absolute(np.mean(angles) - angle_list)
index = np.argmin(offset)
self.parameters['angle'] = angle_list[index]
if self.parameters['orient'] is None:
orient = np.absolute(np.arctan2(*Q[0]))
self.parameters['orient'] = orient
# This is the correct value for the Bragg peak
self.bp2 = generate_bp(A, self.bp1, angle=self.parameters['angle'], orient= self.parameters['orient'],
even_out=self.parameters['even_out'], obj=self)
# This part corrects for the drift
thetax, thetay, Q1, Q2 = phasemap(A, bp=self.bp2, method=method, sigma=sigma)
self.phix = fixphaseslip(thetax, method='unwrap')
self.phiy = fixphaseslip(thetay, method='unwrap')
self.ux, self.uy = driftmap(self.phix, self.phiy, Q1, Q2, method=method)
ztemp = driftcorr(A, self.ux, self.uy, method=method, interpolation='cubic')
# This part interpolates the drift corrected maps
self.bp3 = findBraggs(ztemp, obj=self)
if cut2 is None:
cut2 = 0
force_commen = False
else:
force_commen = True
self.zc = cropedge(ztemp, n=cut2, bp=self.bp3, force_commen=force_commen)
# This part displays the intermediate maps in the process of drift correction
if show is True:
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
c = np.mean(self.phix)
s = np.std(self.phix)
fig.suptitle('Phasemaps after fixing phase slips:')
ax[0].imshow(self.phix, origin='lower', clim=[c-5*s, c+5*s])
ax[1].imshow(self.phiy, origin='lower', clim=[c-5*s, c+5*s])
A_fft = stmpy.tools.fft(A, zeroDC=True)
B_fft = stmpy.tools.fft(self.zc, zeroDC=True)
c1 = np.mean(A_fft)
s1 = np.std(A_fft)
c2 = np.mean(A)
s2 = np.std(A)
fig, ax = plt.subplots(2, 2, figsize=[8, 8])
fig.suptitle('Maps before and after drift correction:')
ax[0,0].imshow(A, cmap=stmpy.cm.blue2, origin='lower', clim=[c2-5*s2, c2+5*s2])
ax[0,1].imshow(A_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c1+5*s1])
ax[1,0].imshow(self.zc, cmap=stmpy.cm.blue2, origin='lower', clim=[c2-5*s2, c2+5*s2])
ax[1,1].imshow(B_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c1+5*s1])
self.bp = findBraggs(self.zc, obj=self)
def correct(self, use):
'''
Use attributes of object "self" to correc the 3D map use.
Input:
self - Required : Spy object of topo (2D) or map (3D).
use - Required : 3D map to be corrected with attributes of the object.
Returns:
N/A
Usage:
d.correct(d.LIY)
History:
06/09/2020 - RL : Initial commit.
'''
data_c = np.copy(use)
if self.dfcPara['cut1'] is None:
data_c = data_c
else:
data_c = cropedge(data_c, n=self.dfcPara['cut1'])
data_corr = driftcorr(data_c, ux=self.ux, uy=self.uy,
method=self.dfcPara['method'], interpolation='cubic')
if self.dfcPara['cut2'] is None:
data_out = cropedge(data_corr, bp=self.bp3, n=0, force_commen=False)
else:
data_out = cropedge(data_corr, bp=self.bp3, n=self.dfcPara['cut2'], force_commen=True)
self.liy_c = data_out
def __update_parameters(obj, a0=None, bp=None, pixels=None, size=None, use_a0=True):
if use_a0 is True:
center = (np.array(pixels)-1) // 2
Q = bp - center
q1, q2, q3, q4, *_ = Q
delta_qx = (np.absolute(q1[0]-q3[0])+np.absolute(q2[0]-q4[0])) / 2
delta_qy = (np.absolute(q1[1]-q3[1])+np.absolute(q2[1]-q4[1])) / 2
sizex = np.absolute(
delta_qx / (4 * a0 * np.cos(obj.parameters['angle'])))
sizey = np.absolute(
delta_qy / (4 * a0 * np.cos(obj.parameters['angle'])))
bp_x = np.min(bp[:, 0])
ext_x = pixels[0] / (pixels[0] - 2*bp_x)
bp_y = np.min(bp[:, 1])
ext_y = pixels[1] / (pixels[1] - 2*bp_y)
obj.parameters['size'] = np.array([sizex, sizey])
obj.parameters['pixels'] = np.array(pixels)
obj.parameters['qscale'] = np.array([ext_x, ext_y])
obj.qx = bp[0] - center
obj.qy = bp[1] - center
else:
center = (np.array(pixels)-1) // 2
bp_x = np.min(bp[:, 0])
ext_x = pixels[0] / (pixels[0] - 2*bp_x)
bp_y = np.min(bp[:, 1])
ext_y = pixels[1] / (pixels[1] - 2*bp_y)
obj.parameters['size'] = np.array(
pixels) / obj.parameters['pixels'] * obj.parameters['size']
obj.parameters['pixels'] = np.array(pixels)
obj.parameters['qscale'] = np.array([ext_x, ext_y])
obj.qx = bp[0] - center
obj.qy = bp[1] - center
##################################################################################
################## Basic building blocks for drift correction ####################
##################################################################################
#1 - findBraggs
def findBraggs(A, rspace=True, min_dist=5, thres=0.25, r=None,
w=None, mask3=None, even_out=False, precise=False,
width=10, p0=None, show=False):
'''
Find Bragg peaks in the unit of pixels of topo or FT pattern A using peak_local_max. If obj is offered,
an attribute of bp will be created for obj.
Input:
A - Required : 2D array of topo in real space, or FFT in q space.
min_dist - Optional : Minimum distance (in pixels) between peaks. Default: 5
thres - Optional : Minimum intensity of Bragg peaks relative to max value. Default: 0.25
rspace - Optional : Boolean indicating if A is real or Fourier space image. Default: True
r - Optional : width of the gaussian mask to remove low-q noise, =r*width
Set r=None will disable this mask.
w - Optional : width of the mask that filters out noise along qx=0 and qy=0 lines.
Set w=None will disable this mask.
mask3 - Optional : Tuple for custom-defined mask. mask3 = [n, offset, width], where n is order of symmetry, offset is initial angle, width is
the width of the mask. e.g., mask3 = [4, np.pi/4, 5], or mask3 = [6, 0, 10]
Set mask3=None will disable this mask.
even_out - Optional : Boolean, if True then Bragg peaks will be rounded to the make sure there are even number of lattice
precise - Optional : Boolean, if True then a 2D Gaussian fit will be used to find the precise location of Bragg peaks
width - Optional : Integer, defines how large the 2D Gaussian fit will be performed around each Bragg peaks
p0 - Optional : List of initial parameters for fitting. Default: p0 = [amplitude,x0,y0,sigmaX,sigmaY,offset]=[1, width, width, 1, 1, 0]
show - Optional : Boolean, if True then data A and Bragg peaks will be plotted.
Returns:
coords - (4x2) array contains Bragg peaks in the format of [[x1,y1],[x2,y2],...,[x4,y4]]
Usage:
import stmpy.driftcorr as dfc
bp = dfc.findBraggs(A, min_dist=10, thres=0.2, rspace=True, show=True)
History:
04/28/2017 JG : Initial commit.
04/29/2019 RL : Add maskon option, add outAll option, and add documents.
'''
if rspace is True:
F = stmpy.tools.fft(A, zeroDC=True)
else:
F = np.copy(A)
# Remove low-q high intensity data with multiple masks
*_, Y, X = np.shape(A)
if r is not None:
Lx = X * r
Ly = Y * r
x = np.arange(X)
y = np.arange(Y)
p0 = [int(X/2), int(Y/2), Lx, Ly, 1, np.pi/2]
G = 1-stmpy.tools.gauss2d(x, y, p=p0)
else:
G = 1
if w is not None:
mask2 = np.ones([Y, X])
mask2[Y//2-int(Y*w):Y//2+int(Y*w), :] = 0
mask2[:, X//2-int(X*w):X//2+int(X*w)] = 0
else:
mask2 = 1
if mask3 is None:
mask3 = 1
else:
mask3 = mask_bp(A, p=mask3)
F *= G * mask2 * mask3
coords = peak_local_max(F, min_distance=min_dist, threshold_rel=thres)
coords = np.fliplr(coords)
# This part is to make sure the Bragg peaks are located at even number of pixels
if even_out is not False:
coords = __even_bp(coords, s=np.shape(A))
if precise is not False:
coords = np.asarray(coords, dtype='float32')
if p0 is None:
p0 = [1, width, width, 1, 1, 0]
for i in range(len(coords)):
area = stmpy.tools.crop(F/np.sum(F), cen=[int(k) for k in coords[i]], width=width)
popt, g = fitGaussian2d(area, p0=p0)
coords[i][0] += popt[1] - width
coords[i][1] += popt[2] - width
# This part shows the Bragg peak positions
if show is not False:
plt.figure(figsize=[4, 4])
c = np.mean(F)
s = np.std(F)
plt.imshow(F, cmap=plt.cm.gray_r, interpolation='None',
origin='lower', clim=[0, c+5*s], aspect=1)
plt.plot(coords[:, 0], coords[:, 1], 'r.')
plt.gca().set_aspect(1)
plt.axis('tight')
center = (np.array(np.shape(A)[::-1])-1) // 2
print('The coordinates of the Bragg peaks are:')
pprint(coords)
print()
print('The coordinates of the Q vectors are:')
pprint(coords-center)
return coords
# help function: fitting 2D gaussian peaks around Bragg peaks
def fitGaussian2d(data, p0):
''' Fit a 2D gaussian to the data with initial parameters p0. '''
data = np.array(data)
def gauss(xy,amplitude,x0,y0,sigmaX,sigmaY,offset):
x,y = xy
theta = 90
x0=float(x0);y0=float(y0)
a = 0.5*(np.cos(theta)/sigmaX)**2 + 0.5*(np.sin(theta)/sigmaY)**2
b = -np.sin(2*theta)/(2*sigmaX)**2 + np.sin(2*theta)/(2*sigmaY)**2
c = 0.5*(np.sin(theta)/sigmaX)**2 + 0.5*(np.cos(theta)/sigmaY)**2
g = offset+amplitude*np.exp(-( a*(x-x0)**2 -2*b*(x-x0)*(y-y0) + c*(y-y0)**2 ))
return g.ravel()
x = np.arange(data.shape[0]); y = np.arange(data.shape[1])
X,Y = np.meshgrid(x,y)
popt, pcov = opt.curve_fit(gauss, (X,Y), data.ravel(), p0=p0)
return popt, gauss((X,Y),*popt).reshape(data.shape)
# help function: custom mask to remove unwanted Bragg peaks
def mask_bp(A, p):
n, offset, thres, *_ = p
s = np.shape(A)[-1]
t = np.arange(s)
x, y = np.meshgrid(t, t)
center = (np.array([s, s])-1) // 2
mask = np.ones_like(x)
theta = 2 * np.pi / n
for i in range(n):
angle = theta * i + offset
index = np.where(np.absolute(np.cos(angle)*(y-center[1]) - \
np.sin(angle)*(x-center[0])) < thres)
mask[index] = 0
return mask
# help function: make sure the Bragg peaks are located on even pixels
def __even_bp(bp, s):
'''
This internal function rounds the Bragg peaks to their nearest even number of Q vectors.
'''
*_, s2, s1 = s
center = (np.array([s1, s2])-1) // 2
bp_temp = bp - center
for i, ix in enumerate(bp_temp):
for j, num in enumerate(ix):
if (num % 2) != 0:
if num > 0:
bp_temp[i, j] = num + 1
elif num <0:
bp_temp[i, j] = num - 1
else:
pass
bp_even = bp_temp + center
return bp_even
#2 - cropedge
def cropedge(A, n, bp=None, c1=2, c2=2,
a1=None, a2=None, force_commen=False):
"""
Crop out bad pixels or highly drifted regions from topo/dos map.
Inputs:
A - Required : 2D or 3D array of image to be cropped.
n - Required : List of integers specifying how many bad pixels to crop on each side.
Order: [left, right, down, up].
force_commen- Optional : Boolean determining if the atomic lattice is commensurate with
the output image.
Returns:
A_crop - 2D or 3D array of image after cropping.
Usage:
import stmpy.driftcorr as dfc
A_crop = dfc.cropedge(A, n=5)
History:
06/04/2019 RL : Initial commit.
11/30/2019 RL : Add support for non-square dataset
"""
if not isinstance(n, list):
n = [n]
if force_commen is False:
B = _rough_cut(A, n=n)
print('Shape before crop:', end=' ')
print(A.shape)
print('Shape after crop:', end=' ')
print(B.shape)
return B
else:
if n != 0:
B = _rough_cut(A, n)
else:
B = np.copy(A)
*_, L2, L1 = np.shape(A)
if bp is None:
bp = findBraggs(A, show=False)
bp = sortBraggs(bp, s=np.shape(A))
bp_new = bp - (np.array([L1, L2])-1) // 2
N1 = compute_dist(bp_new[0], bp_new[1])
N2 = compute_dist(bp_new[0], bp_new[-1])
if a1 is None:
a1 = c1 * L1 / N1
if a2 is None:
a2 = a1
#a2 = c2 * L2 / N2
*_, L2, L1 = np.shape(B)
L_new1 = a1 * ((L1)//(a1))
L_new2 = a2 * ((L2)//(a2))
t1 = np.arange(L1)
t2 = np.arange(L2)
if len(np.shape(A)) == 2:
f = interp2d(t1, t2, B, kind='cubic')
t_new1 = np.linspace(0, L_new1, num=L1+1)
t_new2 = np.linspace(0, L_new2, num=L2+1)
z_new = f(t_new1[:-1], t_new2[:-1])
elif len(np.shape(A)) == 3:
z_new = np.zeros([np.shape(A)[0], L2, L1])
for i in range(len(A)):
f = interp2d(t1, t2, B[i], kind='cubic')
t_new1 = np.linspace(0, L_new1, num=L1+1)
t_new2 = np.linspace(0, L_new2, num=L2+1)
z_new[i] = f(t_new1[:-1], t_new2[:-1])
else:
print('ERR: Input must be 2D or 3D numpy array!')
return z_new
# help function: crop edge without any interpolation
def _rough_cut(A, n):
B = np.copy(A)
if len(n) == 1:
n1 = n2 = n3 = n4 = n[0]
else:
n1, n2, n3, n4, *_ = n
if len(B.shape) is 2:
if n2 == 0:
n2 = -B.shape[1]
if n4 == 0:
n4 = -B.shape[0]
return B[n3:-n4, n1:-n2]
elif len(B.shape) is 3:
if n2 == 0:
n2 = -B.shape[2]
if n4 == 0:
n4 = -B.shape[1]
return B[:, n3:-n4, n1:-n2]
# 4. phasemap
def phasemap(A, bp, sigma=10, method="lockin"):
'''
Calculate local phase and phase shift maps. Two methods are available now: spatial lockin or Gaussian mask convolution
Input:
A - Required : 2D arrays after global shear correction with bad pixels cropped on the edge
bp - Required : Coords of Bragg peaks of FT(A), can be computed by findBraggs(A)
sigma - Optional : width of DC filter in lockin method or len(A)/s
method - Optional : Specify which method to use to calculate phase map.
"lockin": Spatial lock-in method to find phase map
"convolution": Gaussian mask convolution method to find phase map
Returns:
thetax - 2D array, Phase shift map in x direction, relative to perfectly generated cos lattice
thetay - 2D array, Phase shift map in y direction, relative to perfectly generated cos lattice
Q1 - Coordinates of 1st Bragg peak
Q2 - Coordinates of 2nd Bragg peak
Usage:
import stmpy.driftcorr as dfc
thetax, thetay, Q1, Q2 = dfc.phasemap(A, bp, sigma=10, method='lockin')
History:
04/28/2017 JG : Initial commit.
04/29/2019 RL : Add "convolution" method, and add documents.
11/30/2019 RL : Add support for non-square dataset
'''
*_, s2, s1 = A.shape
if not isinstance(sigma, list):
sigma = [sigma]
if len(sigma) == 1:
sigmax = sigmay = sigma[0]
else:
sigmax, sigmay, *_ = sigma
s = np.minimum(s1, s2)
bp = sortBraggs(bp, s=np.shape(A))
t1 = np.arange(s1, dtype='float')
t2 = np.arange(s2, dtype='float')
x, y = np.meshgrid(t1, t2)
Q1 = 2*np.pi*np.array([(bp[0][0]-int((s1-1)/2))/s1,
(bp[0][1]-int((s2-1)/2))/s2])
Q2 = 2*np.pi*np.array([(bp[1][0]-int((s1-1)/2))/s1,
(bp[1][1]-int((s2-1)/2))/s2])
if method is "lockin":
Axx = A * np.sin(Q1[0]*x+Q1[1]*y)
Axy = A * np.cos(Q1[0]*x+Q1[1]*y)
Ayx = A * np.sin(Q2[0]*x+Q2[1]*y)
Ayy = A * np.cos(Q2[0]*x+Q2[1]*y)
Axxf = FTDCfilter(Axx, sigmax, sigmay)
Axyf = FTDCfilter(Axy, sigmax, sigmay)
Ayxf = FTDCfilter(Ayx, sigmax, sigmay)
Ayyf = FTDCfilter(Ayy, sigmax, sigmay)
thetax = np.arctan2(Axxf, Axyf)
thetay = np.arctan2(Ayxf, Ayyf)
return thetax, thetay, Q1, Q2
elif method is "convolution":
t_x = np.arange(s1)
t_y = np.arange(s2)
xcoords, ycoords = np.meshgrid(t_x, t_y)
# (2.* np.pi/s)*(Q1[0] * xcoords + Q1[1] * ycoords)
exponent_x = (Q1[0] * xcoords + Q1[1] * ycoords)
# (2.* np.pi/s)*(Q2[0] * xcoords + Q2[1] * ycoords)
exponent_y = (Q2[0] * xcoords + Q2[1] * ycoords)
A_x = A * np.exp(np.complex(0, -1)*exponent_x)
A_y = A * np.exp(np.complex(0, -1)*exponent_y)
# sx = sigma
# sy = sigma * s1 / s2
sx = sigmax
sy = sigmay
Amp = 1/(4*np.pi*sx*sy)
p0 = [int((s-1)/2), int((s-1)/2), sx, sy, Amp, np.pi/2]
G = stmpy.tools.gauss2d(t_x, t_y, p=p0, symmetric=True)
T_x = sp.signal.fftconvolve(A_x, G, mode='same',)
T_y = sp.signal.fftconvolve(A_y, G, mode='same',)
R_x = np.abs(T_x)
R_y = np.abs(T_y)
phi_y = np.angle(T_y)
phi_x = np.angle(T_x)
return phi_x, phi_y, Q1, Q2
else:
print('Only two methods are available now:\n1. lockin\n2. convolution')
#5 - fixphaseslip
def fixphaseslip(A, thres=None, maxval=None, method='unwrap', orient=0):
'''
Fix phase slip by adding 2*pi at phase jump lines.
Inputs:
A - Required : 2D arrays of phase shift map, potentially containing phase slips
thres - Optional : Float number, specifying threshold for finding phase jumps in diff(A). Default: None
method - Optional : Specifying which method to fix phase slips.
"unwrap": fix phase jumps line by line in x direction and y direction, respectively
"spiral": fix phase slip in phase shift maps by flattening A into a 1D array in a spiral way
orient - Optional : Used in "spiral" phase fixing method. 0 for clockwise and 1 for counter-clockwise
Returns:
phase_corr - 2D arrays of phase shift map with phase slips corrected
Usage:
import stmpy.driftcorr as dfc
thetaxf = dfc.fixphaseslip(thetax, method='unwrap')
History:
04/28/2017 JG : Initial commit.
04/29/2019 RL : Add "unwrap" method, and add documents.
'''
output = np.copy(A[::-1, ::-1])
maxval = 2 * np.pi
tol = 0.25 * maxval
if len(np.shape(A)) == 2:
*_, s2, s1 = np.shape(A)
mid2 = s2 // 2
mid1 = s1 // 2
for i in range(s2):
output[i, :] = unwrap_phase(
output[i, :], tolerance=thres, maxval=maxval)
for i in range(s1):
output[:, i] = unwrap_phase(
output[:, i], tolerance=thres, maxval=maxval)
linex = output[:, mid1]
liney = output[mid2, :]
dphx = np.diff(linex)
dphy = np.diff(liney)
dphx[np.where(np.abs(dphx) < tol)] = 0
dphx[np.where(dphx < -tol)] = 1
dphx[np.where(dphx > tol)] = -1
dphy[np.where(np.abs(dphy) < tol)] = 0
dphy[np.where(dphy < -tol)] = 1
dphy[np.where(dphy > tol)] = -1
for i in range(s2):
output[i, 1:] += 2*np.pi * np.cumsum(dphy)
for i in range(s1):
output[1:, i] += 2*np.pi * np.cumsum(dphx)
return output[::-1, ::-1]
#6 - unwrap_phase
def unwrap_phase(ph, tolerance=None, maxval=None):
maxval = 2 * np.pi if maxval is None else maxval
tol = 0.25*maxval if tolerance is None else tolerance*maxval
if len(ph) < 2:
return ph
dph = np.diff(ph)
dph[np.where(np.abs(dph) < tol)] = 0
dph[np.where(dph < -tol)] = 1
dph[np.where(dph > tol)] = -1
ph[1:] += maxval * np.cumsum(dph)
return ph
def unwrap_phase_2d(A, thres=None):
output = np.copy(A[::-1, ::-1])
if len(np.shape(A)) == 2:
n = np.shape(A)[-1]
for i in range(n):
output[i, :] = unwrap_phase(output[i, :], tolerance=thres)
for i in range(n):
output[:, i] = unwrap_phase(output[:, i], tolerance=thres)
return output[::-1, ::-1]
#7 - driftmap
def driftmap(phix=None, phiy=None, Q1=None, Q2=None, method="lockin"):
'''
Calculate drift fields based on phase shift maps, with Q1 and Q2 generated by phasemap.
Inputs:
phix - Optional : 2D arrays of phase shift map in x direction with phase slips corrected
phiy - Optional : 2D arrays of phase shift map in y direction with phase slips corrected
Q1 - Optional : Coordinates of 1st Bragg peak, generated by phasemap
Q2 - Optional : Coordinates of 2nd Bragg peak, generated by phasemap
method - Optional : Specifying which method to use.
"lockin": Used for phase shift map generated by lockin method
"convolution": Used for phase shift map generated by lockin method
Returns:
ux - 2D array of drift field in x direction
uy - 2D array of drift field in y direction
Usage:
import stmpy.driftcorr as dfc
ux, uy = dfc.driftmap(thetaxf, thetayf, Q1, Q2, method='lockin')
History:
04/28/2017 JG : Initial commit.
04/29/2019 RL : Add "lockin" method, and add documents.
11/30/2019 RL : Add support for non-square dataset
'''
if method is "lockin":
tx = np.copy(phix)
ty = np.copy(phiy)
ux = -(Q2[1]*tx - Q1[1]*ty) / (Q1[0]*Q2[1]-Q1[1]*Q2[0])
uy = -(Q2[0]*tx - Q1[0]*ty) / (Q1[1]*Q2[0]-Q1[0]*Q2[1])
return ux, uy
elif method is "convolution":
#s = np.shape(thetax)[-1]
Qx_mag = np.sqrt((Q1[0])**2 + (Q1[1])**2)
Qy_mag = np.sqrt((Q2[0])**2 + (Q2[1])**2)
Qx_ang = np.arctan2(Q1[1], Q1[0]) # in radians
Qy_ang = np.arctan2(Q2[1], Q2[0]) # in radians
Qxdrift = 1/(Qx_mag) * phix # s/(2*np.pi*Qx_mag) * thetax
Qydrift = 1/(Qy_mag) * phiy # s/(2*np.pi*Qy_mag) * thetay
ux = Qxdrift * np.cos(Qx_ang) - Qydrift * np.sin(Qy_ang-np.pi/2)
uy = Qxdrift * np.sin(Qx_ang) + Qydrift * np.cos(Qy_ang-np.pi/2)
return -ux, -uy
else:
print("Only two methods are available now:\n1. lockin\n2. convolution")
#8. - driftcorr
def driftcorr(A, ux=None, uy=None, method="lockin", interpolation='cubic'):
'''
Correct the drift in the topo according to drift fields
Inputs:
A - Required : 2D or 3D arrays of topo to be drift corrected
ux - Optional : 2D arrays of drift field in x direction, generated by driftmap()
uy - Optional : 2D arrays of drift field in y direction, generated by driftmap()
method - Optional : Specifying which method to use.
"lockin": Interpolate A and then apply it to a new set of coordinates,
(x-ux, y-uy)
"convolution": Used inversion fft to apply the drift fields
interpolation - Optional : Specifying which method to use for interpolating
Returns:
A_corr - 2D or 3D array of topo with drift corrected
Usage:
import stmpy.driftcorr as dfc
A_corr = dfc.driftcorr(ux, uy, method='interpolate', interpolation='cubic')
History:
04/28/2017 JG : Initial commit.
04/29/2019 RL : Add "invfft" method, and add documents.
11/30/2019 RL : Add support for non-square dataset
'''
if method is "lockin":
A_corr = np.zeros_like(A)
*_, s2, s1 = np.shape(A)
t1 = np.arange(s1, dtype='float')
t2 = np.arange(s2, dtype='float')
x, y = np.meshgrid(t1, t2)
xnew = (x - ux).ravel()
ynew = (y - uy).ravel()
tmp = np.zeros(s1*s2)
if len(A.shape) is 2:
tmp_f = interp2d(t1, t2, A, kind=interpolation)
for ix in range(tmp.size):
tmp[ix] = tmp_f(xnew[ix], ynew[ix])
A_corr = tmp.reshape(s2, s1)
return A_corr
elif len(A.shape) is 3:
for iz, layer in enumerate(A):
tmp_f = interp2d(t1, t2, layer, kind=interpolation)
for ix in range(tmp.size):
tmp[ix] = tmp_f(xnew[ix], ynew[ix])
A_corr[iz] = tmp.reshape(s2, s1)
print('Processing slice %d/%d...' %
(iz+1, A.shape[0]), end='\r')
return A_corr
else:
print('ERR: Input must be 2D or 3D numpy array!')
elif method is "convolution":
A_corr = np.zeros_like(A)
if len(A.shape) is 2:
return _apply_drift_field(A, ux=ux, uy=uy, zeroOut=True)
elif len(A.shape) is 3:
for iz, layer in enumerate(A):
A_corr[iz] = _apply_drift_field(
layer, ux=ux, uy=uy, zeroOut=True)
print('Processing slice %d/%d...' %
(iz+1, A.shape[0]), end='\r')
return A_corr
else:
print('ERR: Input must be 2D or 3D numpy array!')
# help function: apply drift field using inverse FT method
def _apply_drift_field(A, ux, uy, zeroOut=True):
A_corr = np.copy(A)
*_, s2, s1 = np.shape(A)
t1 = np.arange(s1, dtype='float')
t2 = np.arange(s2, dtype='float')
x, y = np.meshgrid(t1, t2)
xshifted = x - ux
yshifted = y - uy
if zeroOut is True:
A_corr[np.where(xshifted < 0)] = 0
A_corr[np.where(yshifted < 0)] = 0
A_corr[np.where(xshifted > s1)] = 0
A_corr[np.where(yshifted > s2)] = 0
qcoordx = (2*np.pi/s1)*(np.arange(s1)-int(s1/2))
qcoordy = (2*np.pi/s2)*(np.arange(s2)-int(s2/2))
#qcoord = (2*np.pi/s)*(np.arange(s)-(s/2))
xshifted = np.reshape(xshifted, [1, s1*s2])
yshifted = np.reshape(yshifted, [1, s1*s2])
qcoordx = np.reshape(qcoordx, [s1, 1])
qcoordy = np.reshape(qcoordy, [s2, 1])
xphase = np.exp(-1j*(np.matmul(xshifted.T, qcoordx.T).T))
yphase = np.exp(-1j*(np.matmul(yshifted.T, qcoordy.T).T))
avgData = np.mean(A_corr)
A_corr -= avgData
A_corr = np.reshape(A_corr, s1*s2)
data_temp = np.zeros([s2, s1*s2])
for i in range(s2):
data_temp[i] = A_corr
FT = np.matmul(data_temp * xphase, yphase.T).T
invFT = np.fft.ifft2(np.fft.fftshift(FT)) + avgData
return np.real(invFT)
#9
def generate_bp(A, bp, angle=np.pi/2, orient=np.pi/4, even_out=False, obj=None):
'''
Generate Bragg peaks with given q-vectorss
Input:
A - Required : 2D array of topo in real space, or FFT in q space.
bp - Required : Bragg peaks associated with A, to be checked
angle - Optional : Angle of the lattice. If the lattice is n-fold symmetry, then angle = 2*pi/n
orient - Optional : Initial angle of Bragg peak, or orientation of the scan. Default is np.pi/4
obj - Optional : Data object that has bp_parameters with it,
Return:
bp_new : new Bragg peak generated from q-vectors
Usage:
bp_new = dfc.check_bp(A, qx=[qx1,qx2], qy=[qy1,qy2], obj=obj)
History:
05-25-2020 RL : Initial commit.
06-08-2020 RL : Add the ability to compute correct Bragg peaks automatically
'''
*_, s2, s1 = np.shape(A)
bp = sortBraggs(bp, s=np.shape(A))
center = (np.array([s1, s2])-1) // 2
Q1, Q2, Q3, Q4, *_ = bp
Qx_mag = compute_dist(Q1, center)
Qy_mag = compute_dist(Q2, center)
Q_corr = np.mean([Qx_mag, Qy_mag])
Qc1 = np.array([int(k) for k in Q_corr*np.array([np.cos(orient+np.pi), np.sin(orient+np.pi)])])
Qc2 = np.array([int(k) for k in Q_corr*np.array([np.cos(-angle+orient+np.pi), np.sin(-angle+orient+np.pi)])])
bp_out = np.array([Qc1, Qc2, -Qc1, -Qc2]) + center
if even_out is not False:
bp_out = __even_bp(bp_out, s=np.shape(A))
if obj is not None:
pixels = np.shape(A)[::-1]
__update_parameters(obj, a0=obj.parameters['a0'], bp=bp_out, pixels=pixels,
size=obj.parameters['size'], use_a0=obj.parameters['use_a0'])
return sortBraggs(bp_out, s=np.shape(A))
##################################################################################
####################### Useful functions in the processing #######################
##################################################################################
def sortBraggs(bp, s):
''' Sort the Bragg peaks in the order of "lower left, lower right, upper right, and upper left" '''
*_, s2, s1 = s
center = np.array([(s1 - 1) // 2, (s2 - 1) // 2])
out = np.array(sorted(bp-center, key=lambda x: np.arctan2(*x))) + center
return out
def Gaussian2d(x, y, sigma_x, sigma_y, theta, x0, y0, Amp):
'''
x, y: ascending 1D array
x0, y0: center
'''
a = np.cos(theta)**2/2/sigma_x**2 + np.sin(theta)**2/2/sigma_y**2
b = -np.sin(2*theta)**2/4/sigma_x**2 + np.sin(2*theta)**2/4/sigma_y**2
c = np.sin(theta)**2/2/sigma_x**2 + np.cos(theta)**2/2/sigma_y**2
z = np.zeros((len(x), len(y)))
X, Y = np.meshgrid(x, y)
z = Amp * np.exp(-(a*(X-x0)**2 + 2*b*(X-x0)*(Y-y0) + c*(Y-y0)**2))
return z
def FTDCfilter(A, sigma1, sigma2):
'''
Filtering DC component of Fourier transform and inverse FT, using a gaussian with one parameter sigma
A is a 2D array, sigma is in unit of px
'''
*_, s2, s1 = A.shape
m1, m2 = np.arange(s1, dtype='float'), np.arange(s2, dtype='float')
c1, c2 = np.float((s1-1)/2), np.float((s2-1)/2)
# sigma1 = sigma
# sigma2 = sigma * s1 / s2
g = Gaussian2d(m1, m2, sigma1, sigma2, 0, c1, c2, 1)
ft_A = np.fft.fftshift(np.fft.fft2(A))
ft_Af = ft_A * g
Af = np.fft.ifft2(np.fft.ifftshift(ft_Af))
return np.real(Af)
def compute_dist(x1, x2, p=None):
'''
Compute the distance between point x1 and x2.
'''
if p is None:
p1, p2 = 1, 1
else:
p1, p2 = p
return np.sqrt(((x1[0]-x2[0])*p1)**2+((x1[1]-x2[1])*p2)**2)
def bp_to_q(bp, A):
'''
Convert the Bragg peaks to Q vectors by subtracting the center of the image.
Input:
bp - Required : Array of Bragg peaks
A - Required :
'''
center = (np.array(np.shape(A)[::-1])-1) // 2
return bp - center
#15. - display
def display(A, B=None, sigma=3, clim_same=True):
'''
Display or compare images in both real space and q-space.
Inputs:
A - Required : Real space image to display.
B - Optional : Another real space image to be compared with A.
sigma - Optional : sigma for the color limit.
clim_same - Optional : If True, then both FT of A and B will be displayed under the
same color limit (determined by A).
Returns:
N/A
Usage:
import stmpy.driftcorr as dfc
dfc.display(topo.z)
'''
if B is None:
A_fft = stmpy.tools.fft(A, zeroDC=True)
c = np.mean(A_fft)
s = np.std(A_fft)
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
ax[0].imshow(A, cmap=stmpy.cm.blue2, origin='lower')
ax[1].imshow(A_fft, cmap=stmpy.cm.gray_r,
origin='lower', clim=[0, c+sigma*s])
for ix in ax:
ix.set_aspect(1)
else:
A_fft = stmpy.tools.fft(A, zeroDC=True)
B_fft = stmpy.tools.fft(B, zeroDC=True)
c1 = np.mean(A_fft)
s1 = np.std(A_fft)
if clim_same is True:
c2 = c1
s2 = s1
else:
c2 = np.mean(B_fft)
s2 = np.std(B_fft)
fig, ax = plt.subplots(2, 2, figsize=[8, 8])
ax[0, 0].imshow(A, cmap=stmpy.cm.blue2, origin='lower')
ax[0, 1].imshow(A_fft, cmap=stmpy.cm.gray_r,
origin='lower', clim=[0, c1+sigma*s1])
ax[1, 0].imshow(B, cmap=stmpy.cm.blue2, origin='lower')
ax[1, 1].imshow(B_fft, cmap=stmpy.cm.gray_r,
origin='lower', clim=[0, c2+sigma*s2])
for ix in ax.flatten():
ix.set_aspect(1)
def quick_linecut(A, width=2, n=4, bp=None, ax=None, thres=3):
"""
Take four linecuts automatically, horizontal, vertical, and two diagonal.
Inputs:
A - Required : FT space image to take linecuts.
width - Optional : Number of pixels for averaging.
bp - Optional : Bragg peaks
thres - Optional : threshold for displaying FT
Returns:
N/A
Usage:
import stmpy.driftcorr as dfc
r, cut = dfc.quick_linecut(A)
"""
Y = np.shape(A)[-2] / 2
X = np.shape(A)[-1] / 2
r = []
cut = []
start = [[0, Y], [X, 0], [0, 0], [0, Y*2]]
end = [[X*2, Y], [X, Y*2], [X*2, Y*2], [X*2, 0]]
color = ['r', 'g', 'b', 'k']
plt.figure(figsize=[4, 4])
if len(np.shape(A)) == 3:
if bp is None:
bp_x = np.min(findBraggs(np.mean(A, axis=0), rspace=False))
else:
bp_x = bp
cm = np.mean(np.mean(A, axis=0))
cs = np.std(np.mean(A, axis=0))
plt.imshow(np.mean(A, axis=0), clim=[0, cm+thres*cs])
elif len(np.shape(A)) == 2:
if bp is None:
bp_x = np.min(findBraggs(A, rspace=False))
else:
bp_x = bp
cm = np.mean(A)
cs = np.std(A)
plt.imshow(A, clim=[0, cm+thres*cs])
qscale = X*2 / (X*2 - bp_x * 2)
for i in range(n):
r1, cut1 = stmpy.tools.linecut(A, start[i], end[i],
width=width, show=True, ax=plt.gca(), color=color[i])
r.append(r1)
cut.append(cut1)
plt.gca().set_xlim(-1, X*2+1)
plt.gca().set_ylim(-1, Y*2+1)
return qscale, cut
def quick_show(A, en, thres=5, rspace=True, saveon=False, qlimit=1.2, imgName='', extension='png'):
layers = len(A)
if rspace is False:
imgsize = np.shape(A)[-1]
bp_x = np.min(findBraggs(np.mean(A, axis=0),
min_dist=int(imgsize/10), rspace=rspace))
ext = imgsize / (imgsize - 2*bp_x)
if layers > 12:
skip = layers // 12
else:
skip = 1
fig, ax = plt.subplots(3, 4, figsize=[16, 12])
try:
for i in range(12):
c = np.mean(A[i*skip])
s = np.std(A[i*skip])
if rspace is True:
ax[i//4, i % 4].imshow(A[i*skip], clim=[c -
thres*s, c+thres*s], cmap=stmpy.cm.jackyPSD)
else:
ax[i//4, i % 4].imshow(A[i*skip], extent=[-ext, ext, -ext, ext, ],
clim=[0, c+thres*s], cmap=stmpy.cm.gray_r)
ax[i//4, i % 4].set_xlim(-qlimit, qlimit)
ax[i//4, i % 4].set_ylim(-qlimit, qlimit)
stmpy.image.add_label("${}$ mV".format(
int(en[i*skip])), ax=ax[i//4, i % 4])
except IndexError:
pass
if saveon is True:
plt.savefig("{}.{}".format(imgName, extension), bbox_inches='tight')
def quick_show_cut(A, en, qscale, thres=5, thres2=None, saveon=False, qlimit=1.2, imgName='', extension="png"):
fname = ["M-0", "M-90", "X-45", "X-135"]
X1, Y1 = np.shape(A[0])
X2, Y2 = np.shape(A[-1])
q1 = np.linspace(-qscale, qscale, num=Y1)
q2 = np.linspace(-qscale*np.sqrt(2), qscale*np.sqrt(2), num=Y2)
if thres2 is None:
thres2 = thres
for i, ix in enumerate(A):
plt.figure(figsize=[6, 3])
c = np.mean(ix)
s = np.std(ix)
if i in [0, 1]:
plt.pcolormesh(q1, en, ix, cmap=stmpy.cm.gray_r,
vmin=0, vmax=c+thres*s)
else:
plt.pcolormesh(q2, en, ix, cmap=stmpy.cm.gray_r,
vmin=0, vmax=c+thres2*s)
plt.gca().set_xlim(-qlimit, qlimit)
plt.axvline(-1, linestyle='--')
plt.axvline(1, linestyle='--')
if saveon is True:
plt.savefig(
imgName + " along {}.{}".format(fname[i], extension), facecolor='w')
# Quick show single images
def quick_show_single(A, en, thres=5, fs=4, qscale=None, rspace=False, saveon=False, qlimit=1.2, imgName='', extension='png', dpi=400):
layers = len(A)
if rspace is False:
if qscale is None:
imgsize = np.shape(A)[-1]
if len(np.shape(A)) == 3:
A_topo = np.mean(A, axis=0)
else:
A_topo = A
bp_x = np.min(findBraggs(
A_topo, min_dist=int(imgsize/10), rspace=rspace))
ext = imgsize / (imgsize - 2*bp_x)
else:
ext = qscale
if len(np.shape(A)) == 3:
for i in range(layers):
plt.figure(figsize=[fs, fs])
c = np.mean(A[i])
s = np.std(A[i])
if rspace is True:
plt.imshow(A[i], clim=[c-thres*s, c+thres*s],
cmap=stmpy.cm.jackyPSD)
else:
plt.imshow(A[i], extent=[-ext, ext, -ext, ext, ],
clim=[0, c+thres*s], cmap=stmpy.cm.gray_r)
plt.xlim(-qlimit, qlimit)
plt.ylim(-qlimit, qlimit)
#stmpy.image.add_label("${}$ mV".format(int(en[i])), ax=plt.gca())
plt.gca().axes.get_xaxis().set_visible(False)
plt.gca().axes.get_yaxis().set_visible(False)
plt.gca().set_frame_on(False)
plt.gca().set_aspect(1)
if saveon is True:
if extension == 'png':
plt.savefig("{} at {} mV.{}".format(imgName, int(
en[i]), extension), dpi=dpi, bbox_inches='tight', pad_inches=0)
else:
plt.savefig("{} at {} mV.{}".format(imgName, int(
en[i]), extension), bbox_inches='tight', pad_inches=0)
elif len(np.shape(A)) == 2:
plt.figure(figsize=[fs, fs])
c = np.mean(A)
s = np.std(A)
if rspace is True:
plt.imshow(A, clim=[c-thres*s, c+thres*s], cmap=stmpy.cm.jackyPSD)
else:
plt.imshow(A, extent=[-ext, ext, -ext, ext, ],
clim=[0, c+thres*s], cmap=stmpy.cm.gray_r)
plt.xlim(-qlimit, qlimit)
plt.ylim(-qlimit, qlimit)
#stmpy.image.add_label("${}$ mV".format(int(en)), ax=plt.gca())
plt.gca().axes.get_xaxis().set_visible(False)
plt.gca().axes.get_yaxis().set_visible(False)
plt.gca().set_frame_on(False)
plt.gca().set_aspect(1)
if saveon is True:
if extension == 'png':
plt.savefig("{} at {} mV.{}".format(imgName, int(
en), extension), dpi=dpi, bbox_inches='tight', pad_inches=0)
else:
plt.savefig("{} at {} mV.{}".format(imgName, int(
en), extension), bbox_inches='tight', pad_inches=0)
#11. - global_corr
def global_corr(A, bp=None, show=False, angle=np.pi/2, orient=np.pi/4, obj=None, update_obj=False, **kwargs):
"""
Global shear correct the 2D topo automatically.
Inputs:
A - Required : 2D array of topo to be shear corrected.
bp - Optional : Bragg points. If not offered, it will calculated from findBraggs(A)
show - Optional : Boolean specifying if the results are plotted or not
angle - Optional : Angle of the lattice. If the lattice is n-fold symmetry, then angle = 2*pi/n
orient - Optional : orientation of the Bragg peaks, default as pi/4. Will be passed to gshearcorr
**kwargs - Optional : keyword arguments for gshearcorr function
obj - Optional : Data object that has bp_parameters with it,
update_obj - Optional : Boolean, determines if the bp_parameters attribute will be updated according to current input.
Returns:
bp_1 - Bragg peaks returned by gshearcorr. To be used in local_corr()
data_1 - 2D array of topo after global shear correction
Usage:
import stmpy.driftcorr as dfc
matrix1, data1 = dfc.global_corr(A, show=True)
History:
04/29/2019 RL : Initial commit.
"""
if obj is None:
return __global_corr(A, bp=bp, show=show, angle=angle, orient=orient, **kwargs)
else:
if bp is None:
bp = findBraggs(A, obj=obj)
matrix, A_gcorr = __global_corr(
A, bp=bp, show=show, angle=angle, orient=orient, **kwargs)
if update_obj is not False:
obj.matrix.append(matrix)
bp_new = findBraggs(A_gcorr, obj=obj)
pixels = np.shape(A_gcorr)[::-1]
__update_parameters(obj, a0=obj.parameters['a0'], bp=bp_new, pixels=pixels,
size=obj.parameters['size'], use_a0=obj.parameters['use_a0'])
return matrix, A_gcorr
def __global_corr(A, bp=None, show=False, angle=np.pi/2, orient=np.pi/4, **kwargs):
*_, s2, s1 = np.shape(A)
if bp is None:
bp_1 = findBraggs(A, thres=0.2, show=show)
else:
bp_1 = bp
m, data_1 = gshearcorr(A, bp_1, rspace=True, angle=angle, orient=orient, **kwargs)
if show is True:
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
ax[0].imshow(data_1, cmap=stmpy.cm.blue2, origin='lower')
ax[0].set_xlim(0, s1)
ax[0].set_ylim(0, s2)
ax[1].imshow(stmpy.tools.fft(data_1, zeroDC=True),
cmap=stmpy.cm.gray_r, origin='lower')
fig.suptitle('After global shear correction', fontsize=14)
fig, ax = plt.subplots(2, 2, figsize=[8, 8])
ax[0, 0].imshow(data_1, cmap=stmpy.cm.blue2, origin='lower')
ax[0, 1].imshow(data_1, cmap=stmpy.cm.blue2, origin='lower')
ax[1, 0].imshow(data_1, cmap=stmpy.cm.blue2, origin='lower')
ax[1, 1].imshow(data_1, cmap=stmpy.cm.blue2, origin='lower')
ax[0, 0].set_xlim(0, s1/10)
ax[0, 0].set_ylim(s2-s2/10, s2)
ax[0, 1].set_xlim(s1-s1/10, s1)
ax[0, 1].set_ylim(s2-s2/10, s2)
ax[1, 0].set_xlim(0, s1/10)
ax[1, 0].set_ylim(0, s2/10)
ax[1, 1].set_xlim(s1-s1/10, s1)
ax[1, 1].set_ylim(0, s2/10)
fig.suptitle('Bad pixels in 4 corners', fontsize=14)
return m, data_1
#12. - local_corr
def local_corr(A, bp=None, sigma=10, method="lockin", fixMethod='unwrap',
obj=None, update_obj=False, show=False):
"""
Locally drift correct 2D topo automatically.
Inputs:
A - Required : 2D array of topo after global shear correction, with bad pixels removed on the edge
sigma - Optional : Floating number or list specifying the size of mask to be used in phasemap()
bp - Optional : Bragg points. If not offered, it will calculated from findBraggs(A)
method - Optional : Specifying which method to in phasemap()
"lockin": Spatial lock-in method to find phase map
"convolution": Gaussian mask convolution method to find phase map
fixMethod - Optional : Specifying which method to use in fixphaseslip()
"unwrap": fix phase jumps line by line in x direction and y direction, respectively
"spiral": fix phase slip in phase shift maps by flattening A into a 1D array in a spiral way
show - Optional : Boolean specifying if the results are plotted or not
obj - Optional : Data object that has bp_parameters with it,
update_obj - Optional : Boolean, determines if the bp_parameters attribute will be updated according to current input.
**kwargs - Optional : key word arguments for findBraggs function
Returns:
ux - 2D array of drift field in x direction
uy - 2D array of drift field in y direction
data_corr - 2D array of topo after local drift corrected
Usage:
import stmpy.driftcorr as dfc
ux, uy, data_corr = dfc.local_corr(A, sigma=5, method='lockin', fixMethod='unwrap', show=True)
History:
04/29/2019 RL : Initial commit.
"""
if obj is None:
return __local_corr(A, bp=bp, sigma=sigma, method=method, fixMethod=fixMethod, show=show)
else:
if bp is None:
bp = findBraggs(A, obj=obj)
ux, uy, A_corr = __local_corr(A, bp=bp, sigma=sigma, method=method,
fixMethod=fixMethod, show=show)
if update_obj is not False:
obj.ux.append(ux)
obj.uy.append(uy)
return ux, uy, A_corr
def __local_corr(A, bp=None, sigma=10, method="lockin", fixMethod='unwrap', show=False):
*_, s2, s1 = np.shape(A)
if bp is None:
bp_2 = findBraggs(A, thres=0.2, show=show)
else:
bp_2 = bp
thetax, thetay, Q1, Q2 = phasemap(A, bp=bp_2, method=method, sigma=sigma)
if show is True:
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
ax[0].imshow(thetax, origin='lower')
ax[1].imshow(thetay, origin='lower')
fig.suptitle('Raw phase maps')
thetaxf = fixphaseslip(thetax, method=fixMethod)
thetayf = fixphaseslip(thetay, method=fixMethod)
if show is True:
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
ax[0].imshow(thetaxf, origin='lower')
ax[1].imshow(thetayf, origin='lower')
fig.suptitle('After fixing phase slips')
ux, uy = driftmap(thetaxf, thetayf, Q1, Q2, method=method)
if method == 'lockin':
data_corr = driftcorr(A, ux, uy, method='lockin',
interpolation='cubic')
elif method == 'convolution':
data_corr = driftcorr(A, ux, uy, method='convolution',)
else:
print("Error: Only two methods are available, lockin or convolution.")
if show is True:
fig, ax = plt.subplots(2, 2, figsize=[8, 8])
ax[1, 0].imshow(data_corr, cmap=stmpy.cm.blue1, origin='lower')
ax[1, 1].imshow(stmpy.tools.fft(data_corr, zeroDC=True),
cmap=stmpy.cm.gray_r, origin='lower')
ax[0, 0].imshow(A, cmap=stmpy.cm.blue1, origin='lower')
ax[0, 1].imshow(stmpy.tools.fft(A, zeroDC=True),
cmap=stmpy.cm.gray_r, origin='lower')
fig.suptitle('Before and after local drift correction')
return ux, uy, data_corr
#14. - apply_dfc_3d
def apply_dfc_3d(A, ux=None, uy=None, matrix=None, bp=None, n1=None, n2=None, obj=None, update_obj=False, method='lockin'):
"""
Apply drift field (both global and local) found in 2D to corresponding 3D map.
Inputs:
A - Required : 3D array of map to be drift corrected
bp - Required : Coordinates of Bragg peaks returned by local_corr()
ux - Required : 2D array of drift field in x direction. Usually generated by local_corr()
uy - Required : 2D array of drift field in y direction. Usually generated by local_corr()
crop1 - Optional : List of length 1 or length 4, specifying after global shear correction how much to crop on the edge
crop2 - Optional : List of length 1 or length 4, specifying after local drift correction how much to crop on the edge
method - Optional : Specifying which method to apply the drift correction
"lockin": Interpolate A and then apply it to a new set of coordinates,
(x-ux, y-uy)
"convolution": Used inversion fft to apply the drift fields
obj - Optional : Data object that has bp_parameters with it,
update_obj - Optional : Boolean, determines if the bp_parameters attribute will be updated according to current input.
Returns:
data_corr - 3D array of topo after local drift corrected
Usage:
import stmpy.driftcorr as dfc
data_corr = dfc.apply_dfc_3d(A, bp=bp, ux=ux, uy=uy, n1=n1, n2=n2, bp=bp, method='convolution')
History:
04-29-2019 RL : Initial commit.
05-25-2020 RL : Add support for object inputs
"""
if obj is None:
return __apply_dfc_3d(A, ux=ux, uy=uy, matrix=matrix, bp=bp, n1=n1, n2=n2, method=method)
else:
ux = obj.ux if ux is None else ux
uy = obj.uy if uy is None else uy
# matrix = obj.matrix if matrix is None else matrix
bp = obj.bp if bp is None else bp
return __apply_dfc_3d(A, ux=ux, uy=uy, matrix=matrix, bp=bp, n1=n1, n2=n2, method=method)
def __apply_dfc_3d(A, ux, uy, matrix, bp=None, n1=None, n2=None, method='lockin'):
data_c = np.zeros_like(A)
if matrix is None:
data_c = | np.copy(A) | numpy.copy |
import numpy as np
import scipy.io as sio
from sklearn.svm import LinearSVC
def flatImageByClass(data, tag):
X, y = [], []
h, w, n = data.shape
for i in range(n):
X.append(data[:, :, i].reshape(h * w))
y.append(tag)
return X, y
data = sio.loadmat("../ExtYaleB10.mat")
data_train, data_test = data["train"], data["test"]
X_train, y_train = [], []
for tag in range(10):
X_add, y_add = flatImageByClass(data_train[0][tag], tag)
X_train += X_add
y_train += y_add
X_train, y_train = np.array(X_train), np.array(y_train)
X_test, y_test = [], []
for tag in range(10):
X_add, y_add = flatImageByClass(data_test[0][tag], tag)
X_test += X_add
y_test += y_add
X_test, y_test = | np.array(X_test) | numpy.array |
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import scipy.io as sio
np.set_printoptions(formatter={'float': '{: .1e}'.format})
""" Clip Gradients
Created on Wed Apr 14 21:01:53 2018
@author: <NAME>
"""
# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("./Data/MNIST/", one_hot=True)
tf.reset_default_graph()
# sess = tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)))
# Training Params
num_steps = 20000
batch_size = 200
rho_mb = mnist.train.num_examples / batch_size
# Network Params
MethodName = 'GO'
#MethodName = 'GRep'
#MethodName = 'RSVI'
Layers = 2
K = [784., 128., 64., 32.]
h_dim = [0, 1024, 256, 128]
alpha_z = 0.1
LR_q_z1 = 5e-5 # 5e-4
LR_q_W1 = 1.5 # 2e-1
LR_q_z2 = 1e-5 # 5e-4
LR_q_W2 = 0.5 # 2e-1
LR_q_W3 = 1.5 # 2e-1
min_z = 1e-5
min_W = 1e-5
min_z_alpha = 1e-3
min_z_beta = 1e-3
min_W_alpha = 1e-3
min_W_beta = 1e-3 # min_mean = 1e-4
min_z_alpha_rate = float(np.log(np.exp(min_z_alpha) - 1.))
min_z_beta_rate = float(np.log(np.exp(min_z_beta) - 1.))
min_W_alpha_rate = float(np.log(np.exp(min_W_alpha) - 1.))
min_W_beta_rate = float(np.log(np.exp(min_W_beta) - 1.))
# Compared method parameters
B = 5
Bf = 5.
def reject_h_boosted(p, alpha):
# compute eps
alpha_jian = alpha + B
sqrtAlpha = tf.sqrt(9. * alpha_jian - 3.)
t = alpha_jian - 1. / 3.
powZA = tf.pow((p / t), 1. / 3.)
eps = tf.stop_gradient( sqrtAlpha * (powZA - 1.))
b = (alpha_jian) - 1. / 3.
c = 1. / tf.sqrt(9. * b)
v = 1. + eps * c
v = tf.sign(v)*tf.maximum(tf.abs(v),1e-7)
z_jian = b * tf.pow(v, 3.)
z_jian = tf.maximum(z_jian,1e-7)
# compute z_bo
ni = alpha.shape[0]
ki = alpha.shape[1]
alpha = alpha[:, :, tf.newaxis]
tmp = tf.range(Bf)
tmp = tmp[tf.newaxis, tf.newaxis, :]
alpha_vec = tf.tile(alpha, [1, 1, B]) + tf.tile(tmp, [ni, ki, 1])
u = tf.maximum(tf.random_uniform([int(ni), int(ki), B]), 1e-7)
u_pow = tf.pow(u, 1. / alpha_vec)
z_bo = tf.keras.backend.prod(u_pow, axis=2) * z_jian
# g_corr
log_q = - tf.lgamma(alpha_jian) + (alpha_jian - 1.) * tf.log(z_jian) - z_jian
log_PzPeps = tf.log(3. * b) + 2 * tf.log(v) - 0.5 * tf.log(9. * b)
f_corr = tf.reduce_sum(log_q + log_PzPeps)
return z_bo, f_corr
# Recognition Model - q_z_x
def q_z_x(name, x, K, reuse=False):
with tf.variable_scope('q_z_x' + name, reuse=reuse):
# h1 = tf.nn.relu(tf.layers.dense(x, units=h_dim[1]))
h1 = x
z_Ralpha1 = tf.layers.dense(h1, units=K, kernel_initializer=tf.random_normal_initializer(0, 0.01))
z_Ralpha1 = max_m_grad(min_z_alpha_rate, z_Ralpha1)
# z_Ralpha1 = tf.maximum(min_z_alpha_rate, z_Ralpha1)
z_alpha1 = tf.nn.softplus(z_Ralpha1)
z_Rbeta1 = tf.layers.dense(h1, units=K, kernel_initializer=tf.random_normal_initializer(0, 0.01))
z_Rbeta1 = max_m_grad(min_z_beta_rate, z_Rbeta1)
# z_Rbeta1 = tf.maximum(min_z_beta_rate, z_Rbeta1)
z_beta1 = tf.nn.softplus(z_Rbeta1)
# z_beta1 = min_m_grad(z_alpha1 / min_mean, z_beta1)
if MethodName == 'GO':
z_hat1s = tf.random_gamma([1], tf.stop_gradient(z_alpha1), 1.)
z_hat1s = tf.maximum(min_z, tf.squeeze(z_hat1s, 0))
Grad_z_alpha1 = GO_Gamma_v2(tf.stop_gradient(z_hat1s), tf.stop_gradient(z_alpha1))
z_hat1 = z_alpha1 * tf.stop_gradient(Grad_z_alpha1) - \
tf.stop_gradient(z_alpha1 * Grad_z_alpha1) + \
tf.stop_gradient(z_hat1s)
z1_Fcorr = tf.zeros([1])
if MethodName == 'GRep':
posi0 = tf.polygamma(tf.constant(0,dtype=tf.float32),z_alpha1)
posi1 = tf.polygamma(tf.constant(1,dtype=tf.float32),z_alpha1)
z_hat1s = tf.random_gamma([1], tf.stop_gradient(z_alpha1), 1.)
z_hat1s = tf.maximum(min_z, tf.squeeze(z_hat1s, 0))
epsilo = tf.stop_gradient( (tf.log(z_hat1s)-posi0)/tf.maximum((tf.pow(posi1,0.5)),1e-5) )
log_z_hat1 = epsilo*tf.pow(posi1,0.5)+posi0
z_hat1 = tf.exp( log_z_hat1 )
z1_Fcorr = tf.reduce_sum(
- tf.lgamma(z_alpha1) + (z_alpha1-1.)*log_z_hat1 - z_hat1
+ log_z_hat1 + 0.5 * tf.log( posi1 )
)
if MethodName == 'RSVI':
lambda_z1 = tf.squeeze(tf.random_gamma([1], z_alpha1 + Bf, 1.), 0)
lambda_z1 = tf.stop_gradient(tf.maximum(min_z, lambda_z1))
z_hat1, z1_Fcorr = reject_h_boosted(lambda_z1, z_alpha1)
z1 = z_hat1 / z_beta1
# z1 = tf.maximum(min_z, z1)
z1 = max_m_grad(min_z, z1)
return z1, z_alpha1, z_beta1, z1_Fcorr
def max_m_grad(epsi, x):
y = tf.maximum(epsi, x)
yout = x - tf.stop_gradient(x) + tf.stop_gradient(y)
return yout
def min_m_grad(epsi, x):
y = tf.minimum(epsi, x)
yout = x - tf.stop_gradient(x) + tf.stop_gradient(y)
return yout
def map_Dir_64(Phi, Eps):
# Phi: V * K
Eps = tf.cast(Eps, tf.float64)
Phi = tf.cast(Phi, tf.float64)
PhiT = tf.transpose(Phi)
Kphi = PhiT.shape[0]
Vphi = PhiT.shape[1]
PhiTsort, _ = tf.nn.top_k(PhiT, Vphi)
CumPhiT = tf.cumsum(PhiTsort, 1)
i_v = tf.range(1, tf.cast(Vphi, tf.float64), dtype=tf.float64)
tmp = CumPhiT[:, :Vphi - 1] - tf.expand_dims(i_v, 0) * PhiTsort[:, 1:]
tmp1 = tf.to_float(tmp >= (1. - tf.cast(Vphi, tf.float64) * Eps))
B, I = tf.nn.top_k(tmp1)
B = tf.cast(B, tf.float64)
I = tf.cast(I, tf.float64)
I = I + (1. - B) * (tf.cast(Vphi, tf.float64) - 1.)
indx0 = tf.range(Kphi, dtype=tf.int64)
indx = tf.concat([indx0[:, tf.newaxis], tf.cast(I, tf.int64)], axis=1)
delta = (1. - Eps * (tf.cast(Vphi, tf.float64) - I - 1.) - tf.expand_dims(tf.gather_nd(CumPhiT, indx), 1)) / (
I + 1.)
Phihat = tf.maximum(Eps, Phi + tf.transpose(delta))
Phiout = Phi - tf.stop_gradient(Phi) + tf.stop_gradient(Phihat)
Phiout = tf.cast(Phiout, tf.float32)
return Phiout
# GO Gamma Gradients
def GO_Gamma_v2(x, alpha):
# x sim Gamma(alpha, 1)
x = tf.cast(x, tf.float64)
alpha = tf.cast(alpha, tf.float64)
logx = tf.log(x)
ex_gamma_xa = tf.exp(x + tf.lgamma(alpha) + (1. - alpha) * logx)
psi_m_log = tf.digamma(alpha + 1.) - logx
igamma_up_reg = tf.igammac(alpha, x)
# Part 1
indx1 = tf.where(x <= 1e-2)
x_indx1 = tf.gather_nd(x, indx1)
alpha_indx1 = tf.gather_nd(alpha, indx1)
GO_Gamma_alpha_value1 = tf.exp(x_indx1) * x_indx1 / alpha_indx1 * (
tf.gather_nd(psi_m_log, indx1) +
x_indx1 / tf.pow(alpha_indx1 + 1., 2) -
tf.pow(x_indx1 / (alpha_indx1 + 2.), 2) +
0.5 * tf.pow(x_indx1, 3) / tf.pow(alpha_indx1 + 3., 2)
)
# Part 2
N_alpha = tf.round(tf.exp(
- 0.488484605941243044124888683654717169702053070068359375 * tf.log(alpha)
+ 1.6948389987594634220613443176262080669403076171875
))
indx2 = tf.where(tf.logical_and(
tf.logical_and(x > 1e-2, alpha <= 3.),
(x <= (alpha + N_alpha * tf.sqrt(alpha)))
))
KK = 15
kk = tf.cast(tf.range(1, KK + 1), tf.float64)
x_indx2 = tf.gather_nd(x, indx2)
alpha_indx2 = tf.gather_nd(alpha, indx2)
GO_Gamma_alpha_value2 = tf.gather_nd(ex_gamma_xa, indx2) * (
-tf.gather_nd(psi_m_log, indx2) * tf.gather_nd(igamma_up_reg, indx2) +
(
tf.digamma(alpha_indx2 + KK + 1.) - tf.gather_nd(logx, indx2) -
tf.reduce_sum(
tf.igammac(tf.expand_dims(alpha_indx2, 1) + tf.expand_dims(kk, 0), tf.expand_dims(x_indx2, 1)) /
(tf.expand_dims(alpha_indx2, 1) + tf.expand_dims(kk, 0))
, 1)
)
)
# Part 2_1
indx2_1 = tf.where(tf.logical_and(
tf.logical_and(x > 1e-2, alpha <= 3.),
(x > (alpha + N_alpha * tf.sqrt(alpha)))
))
KK = 15
kk = tf.cast(tf.range(1, KK + 1), tf.float64)
x_indx2_1 = tf.gather_nd(x, indx2_1)
alpha_indx2_1 = tf.gather_nd(alpha, indx2_1)
GO_Gamma_alpha_value2_1 = tf.gather_nd(ex_gamma_xa, indx2_1) * (
-tf.gather_nd(psi_m_log, indx2_1) * tf.gather_nd(igamma_up_reg, indx2_1) +
(
tf.digamma(alpha_indx2_1 + KK + 1.) - tf.gather_nd(logx, indx2_1) -
tf.reduce_sum(
tf.igammac(tf.expand_dims(alpha_indx2_1, 1) + tf.expand_dims(kk, 0),
tf.expand_dims(x_indx2_1, 1)) /
(tf.expand_dims(alpha_indx2_1, 1) + tf.expand_dims(kk, 0))
, 1)
)
)
GO_Gamma_alpha_value2_1 = tf.maximum(
GO_Gamma_alpha_value2_1,
1. / alpha_indx2_1 - tf.gather_nd(ex_gamma_xa, indx2_1) *
tf.gather_nd(psi_m_log, indx2_1) * tf.gather_nd(igamma_up_reg, indx2_1)
)
# Part 3
indx3 = tf.where(
tf.logical_and(
tf.logical_and(x > 1e-2, alpha > 3.),
alpha <= 500.
)
)
KK = 10
kk = tf.cast(tf.range(1, KK + 1), tf.float64)
x_indx3 = tf.gather_nd(x, indx3)
alpha_indx3 = tf.gather_nd(alpha, indx3)
x_l = alpha_indx3 - tf.log(alpha_indx3) * tf.sqrt(alpha_indx3)
logx_l = tf.log(x_l)
ex_gamma_xa_l = tf.exp(x_l + tf.lgamma(alpha_indx3) + (1. - alpha_indx3) * logx_l)
psi_m_log_l = tf.digamma(alpha_indx3 + 1.) - logx_l
igamma_low_reg_l = tf.igamma(alpha_indx3, x_l)
# igamma_up_reg_l = tf.igammac(alpha_indx3, x_l)
# f_l = ex_gamma_xa_l * (
# -psi_m_log_l * igamma_up_reg_l +
# (tf.digamma(alpha_indx3 + KK + 1.) - logx_l -
# tf.reduce_sum(
# tf.igammac(tf.expand_dims(alpha_indx3, 1) + tf.expand_dims(kk, 0), tf.expand_dims(x_l, 1)) /
# (tf.expand_dims(alpha_indx3, 1) + tf.expand_dims(kk, 0))
# , 1))
# )
f_l = ex_gamma_xa_l * (
psi_m_log_l * igamma_low_reg_l +
tf.reduce_sum(
tf.igamma(tf.expand_dims(alpha_indx3, 1) + tf.expand_dims(kk, 0), tf.expand_dims(x_l, 1)) /
(tf.expand_dims(alpha_indx3, 1) + tf.expand_dims(kk, 0))
, 1)
)
g_l = (1. + (1. - alpha_indx3) / x_l) * f_l + (
-ex_gamma_xa_l / x_l * igamma_low_reg_l + (psi_m_log_l +
tf.reduce_sum(
tf.exp(
tf.expand_dims(kk, 0) * tf.log(tf.expand_dims(x_l, 1)) +
tf.lgamma(tf.expand_dims(alpha_indx3, 1)) -
tf.lgamma(
tf.expand_dims(alpha_indx3, 1) + tf.expand_dims(kk,
0) + 1.)
)
, 1))
)
x_m = alpha_indx3
f_m = 1. + 0.167303227226226980395296095593948848545551300048828125 / \
(
tf.pow(x_m, 1.0008649793164192676186985409003682434558868408203125) -
0.07516433982238841793321881823430885560810565948486328125
)
x_r = 2. * alpha_indx3 - x_l
f_r = 1. / alpha_indx3 - tf.exp(x_r + tf.lgamma(alpha_indx3) + (1. - alpha_indx3) * tf.log(x_r)) * (
(tf.digamma(alpha_indx3 + 1.) - tf.log(x_r)) * tf.igammac(alpha_indx3, x_r)
)
lambda_r = tf.exp(
959.627335718427275423891842365264892578125 / (
tf.pow(alpha_indx3, 1.324768828487964622553363369661383330821990966796875) +
142.427456986662718918523751199245452880859375
)
- 13.01439996187340142341781756840646266937255859375
)
x_mat_i = tf.concat([tf.expand_dims(x_l, 1), tf.expand_dims(x_m, 1), tf.expand_dims(x_r, 1)], 1)
x_mat_bar_i = x_mat_i - tf.expand_dims(alpha_indx3, 1)
x_mat_hat_i = tf.sqrt(x_mat_i) - tf.sqrt(tf.expand_dims(alpha_indx3, 1))
f_mat_i = tf.concat([tf.expand_dims(f_l, 1), tf.expand_dims(f_m, 1), tf.expand_dims(f_r, 1)], 1)
lambda_mat_i = tf.concat([tf.expand_dims(tf.ones_like(alpha_indx3), 1),
tf.expand_dims(tf.ones_like(alpha_indx3), 1),
tf.expand_dims(lambda_r, 1)
], 1)
x_mat_j = tf.expand_dims(x_l, 1)
g_mat_j = tf.expand_dims(g_l, 1)
lambda_mat_j = tf.expand_dims(tf.ones_like(alpha_indx3), 1)
A = tf.reduce_sum(lambda_mat_i * tf.pow(x_mat_bar_i, 2), 1) + tf.reduce_sum(lambda_mat_j, 1)
B = tf.reduce_sum(lambda_mat_i * x_mat_bar_i * x_mat_hat_i, 1) + \
tf.reduce_sum(lambda_mat_j / 2. / tf.sqrt(x_mat_j), 1)
C = tf.reduce_sum(lambda_mat_i * x_mat_bar_i, 1)
D = tf.reduce_sum(lambda_mat_i * tf.pow(x_mat_hat_i, 2), 1) + tf.reduce_sum(lambda_mat_j / 4. / x_mat_j, 1)
E = tf.reduce_sum(lambda_mat_i * x_mat_hat_i, 1)
F = tf.reduce_sum(lambda_mat_i, 1)
G = tf.reduce_sum(lambda_mat_i * x_mat_bar_i * f_mat_i, 1) + tf.reduce_sum(lambda_mat_j * g_mat_j, 1)
H = tf.reduce_sum(lambda_mat_i * x_mat_hat_i * f_mat_i, 1) + \
tf.reduce_sum(lambda_mat_j / 2. / tf.sqrt(x_mat_j) * g_mat_j, 1)
I = tf.reduce_sum(lambda_mat_i * f_mat_i, 1)
Z = F * tf.pow(B, 2) - 2. * B * C * E + D * tf.pow(C, 2) + A * tf.pow(E, 2) - A * D * F
a_cor = 1. / Z * (G * (tf.pow(E, 2) - D * F) + H * (B * F - C * E) - I * (B * E - C * D))
b_cor = 1. / Z * (G * (B * F - C * E) + H * (tf.pow(C, 2) - A * F) - I * (B * C - A * E))
c_cor = 1. / Z * (-G * (B * E - C * D) + I * (tf.pow(B, 2) - A * D) - H * (B * C - A * E))
GO_Gamma_alpha_value3 = a_cor * (x_indx3 - alpha_indx3) + b_cor * (tf.sqrt(x_indx3) - tf.sqrt(alpha_indx3)) + c_cor
GO_Gamma_alpha_value3 = tf.maximum(
GO_Gamma_alpha_value3,
1. / alpha_indx3 - tf.gather_nd(ex_gamma_xa, indx3) *
tf.gather_nd(psi_m_log, indx3) * tf.gather_nd(igamma_up_reg, indx3)
)
# Part 4
# indx4 = tf.where(
# tf.logical_and(
# tf.logical_and(x > 1e-2, alpha > 500.),
# (x <= (alpha + 2. * tf.log(alpha) * tf.sqrt(alpha)))
# )
# )
indx4 = tf.where(
tf.logical_and(x > 1e-2, alpha > 500.)
)
x_indx4 = tf.gather_nd(x, indx4)
alpha_indx4 = tf.gather_nd(alpha, indx4)
f_m_large = 1. + 0.167303227226226980395296095593948848545551300048828125 / \
(
tf.pow(alpha_indx4, 1.0008649793164192676186985409003682434558868408203125) -
0.07516433982238841793321881823430885560810565948486328125
)
g_m_large = 0.54116502161502622048061539317131973803043365478515625 * \
tf.pow(alpha_indx4, -1.010274491769996618728555404231883585453033447265625)
GO_Gamma_alpha_value4 = f_m_large + g_m_large * (x_indx4 - alpha_indx4)
# Part 4_1
# indx4_1 = tf.where(
# tf.logical_and(
# tf.logical_and(x > 1e-2, alpha > 500.),
# (x > (alpha + 2. * tf.log(alpha) * tf.sqrt(alpha)))
# )
# )
# alpha_indx4_1 = tf.gather_nd(alpha, indx4_1)
# GO_Gamma_alpha_value4_1 = 1. / alpha_indx4_1 - tf.gather_nd(ex_gamma_xa, indx4_1) * \
# tf.gather_nd(psi_m_log, indx4_1) * tf.gather_nd(igamma_up_reg, indx4_1)
# Summerize
GO_Gamma_alpha = tf.sparse_to_dense(indx1, x.shape, GO_Gamma_alpha_value1) + \
tf.sparse_to_dense(indx2, x.shape, GO_Gamma_alpha_value2) + \
tf.sparse_to_dense(indx2_1, x.shape, GO_Gamma_alpha_value2_1) + \
tf.sparse_to_dense(indx3, x.shape, GO_Gamma_alpha_value3) + \
tf.sparse_to_dense(indx4, x.shape, GO_Gamma_alpha_value4)
# + \
# tf.sparse_to_dense(indx4_1, x.shape, GO_Gamma_alpha_value4_1)
GO_Gamma_alpha = tf.cast(GO_Gamma_alpha, tf.float32)
return GO_Gamma_alpha # , x_l, x_r, f_l, f_m, f_r, g_l
# Recognition Model - q_W
def q_W(name, V, K, reuse=False):
with tf.variable_scope('q_W' + name, reuse=reuse):
W_aW = tf.get_variable("W_aW", [V, K], tf.float32,
tf.random_uniform_initializer(0.1, 10))
RW_aW = max_m_grad(min_W_alpha_rate, W_aW)
# RW_aW = tf.maximum(min_W_alpha_rate, W_aW)
W_alpha = tf.nn.softplus(RW_aW)
W_bW = tf.get_variable("W_bW", [V, K], tf.float32,
tf.random_uniform_initializer(0.1, 10))
RW_bW = max_m_grad(min_W_beta_rate, W_bW)
# RW_bW = tf.maximum(min_W_beta_rate, W_bW)
W_beta = tf.nn.softplus(RW_bW)
# W_beta = tf.nn.softplus(W_bW)
# W_beta = min_m_grad(W_alpha / min_mean, W_beta)
if MethodName == 'GO':
W_hat1s = tf.random_gamma([1], tf.stop_gradient(W_alpha), 1.)
W_hat1s = tf.maximum(min_W, tf.squeeze(W_hat1s, 0))
Grad_W_alpha1 = GO_Gamma_v2(tf.stop_gradient(W_hat1s), tf.stop_gradient(W_alpha))
W_hat1 = W_alpha * tf.stop_gradient(Grad_W_alpha1) - \
tf.stop_gradient(W_alpha * Grad_W_alpha1) + \
tf.stop_gradient(W_hat1s)
W1_Fcorr = tf.zeros([1])
if MethodName == 'GRep':
posi0 = tf.polygamma(tf.constant(0,dtype=tf.float32),W_alpha)
posi1 = tf.polygamma(tf.constant(1,dtype=tf.float32),W_alpha)
W_hat1s = tf.random_gamma([1], tf.stop_gradient(W_alpha), 1.)
W_hat1s = tf.maximum(min_W, tf.squeeze(W_hat1s, 0))
epsilo = tf.stop_gradient( (tf.log(W_hat1s)-posi0)/tf.maximum((tf.pow(posi1,0.5)),1e-8) )
log_W_hat1 = epsilo*tf.pow(posi1,0.5)+posi0
W_hat1 = tf.exp( log_W_hat1 )
W1_Fcorr = tf.reduce_sum(
- tf.lgamma(W_alpha) + (W_alpha-1.)*log_W_hat1 - W_hat1
+ log_W_hat1 + 0.5 * tf.log( posi1 )
)
if MethodName == 'RSVI':
lambda_W1 = tf.squeeze(tf.random_gamma([1], W_alpha + Bf, 1.), 0)
lambda_W1 = tf.stop_gradient(tf.maximum(min_W, lambda_W1))
W_hat1, W1_Fcorr = reject_h_boosted(lambda_W1, W_alpha)
W = W_hat1 / W_beta
# W = tf.maximum(min_W, W)
W = max_m_grad(min_W, W)
return W, W_alpha, W_beta, W1_Fcorr
def log_gamma_minus(x, a1, b1, a2, b2):
yout = tf.reduce_sum(
a1 * tf.log(b1) - a2 * tf.log(b2)
+ tf.lgamma(a2) - tf.lgamma(a1)
+ (a1 - a2) * tf.log(x) - (b1 - b2) * x
)
return yout
def log_Gamma(x, a1, b1):
yout = tf.reduce_sum(
a1 * tf.log(b1) - tf.lgamma(a1)
+ (a1 - 1.) * tf.log(x) - b1 * x
)
return yout
def log_Poisson(x, lambda1):
yout = tf.reduce_sum(
x * tf.log(lambda1) - lambda1 - tf.lgamma(x + 1.)
)
return yout
# z ~ q(z|x) & W ~ q(W)
x = tf.placeholder(tf.float32, shape=[batch_size, K[0]])
z1, z_alpha1, z_beta1, z1_Fcorr = q_z_x('_z_1', x, K[1])
W1, W_alpha1, W_beta1, W1_Fcorr = q_W('_W_1', K[0], K[1])
if Layers >= 2:
z2, z_alpha2, z_beta2, z2_Fcorr = q_z_x('_z_2', z1, K[2])
W2, W_alpha2, W_beta2, W2_Fcorr = q_W('_W_2', K[1], K[2])
if Layers >= 3:
z3, z_alpha3, z_beta3, z3_Fcorr = q_z_x('_z_3', z2, K[3])
W3, W_alpha3, W_beta3, W3_Fcorr = q_W('_W_3', K[2], K[3])
# Calculate ELBO
# truncate Phitheta
ELBO_z_trunc = tf.placeholder(tf.float32, [5], name='ELBO_z_trunc')
ELBO_W_trunc = tf.placeholder(tf.float32, [5], name='ELBO_W_trunc')
ELBO_Wz_trunc = tf.placeholder(tf.float32, [5], name='ELBO_Wz_trunc')
# Layer 1
Wz1 = tf.matmul(z1, tf.transpose(W1))
Loglike = log_Poisson(x, Wz1) / (K[0] * batch_size)
Loglike_E = log_Poisson(x, Wz1) / (K[0] * batch_size)
E_recon1 = tf.reduce_mean(tf.abs(x - Wz1))
z1T = max_m_grad(ELBO_z_trunc[1], z1)
W1T = max_m_grad(ELBO_W_trunc[1], W1)
# z1T = tf.maximum(ELBO_z_trunc[1], z1)
# W1T = tf.maximum(ELBO_W_trunc[1], W1)
#z1T = z1
#W1T = W1
if Layers == 1:
Log_pmq_z1 = log_gamma_minus(z1T, 0.1, 0.1,
tf.stop_gradient(z_alpha1), tf.stop_gradient(z_beta1)
) / (K[0] * batch_size)
Log_pmq_z1_E = log_gamma_minus(z1, 0.1, 0.1, z_alpha1, z_beta1) / (K[0] * batch_size)
else:
Wz2 = tf.matmul(z2, tf.transpose(W2))
# Wz2 = max_m_grad(ELBO_Wz_trunc[2], Wz2)
Log_pmq_z1 = log_gamma_minus(z1T, alpha_z, alpha_z / Wz2,
tf.stop_gradient(z_alpha1), tf.stop_gradient(z_beta1)
) / (K[0] * batch_size)
Log_pmq_z1_E = log_gamma_minus(z1, alpha_z, alpha_z / Wz2, z_alpha1, z_beta1) / (K[0] * batch_size)
E_recon2 = tf.reduce_mean(tf.abs(x - tf.matmul(Wz2, tf.transpose(W1))))
Log_pmq_W1 = log_gamma_minus(W1T, 0.1, 0.3,
tf.stop_gradient(W_alpha1), tf.stop_gradient(W_beta1)
) / (K[0] * rho_mb * batch_size)
Log_pmq_W1_E = log_gamma_minus(W1, 0.1, 0.3, W_alpha1, W_beta1) / (K[0] * rho_mb * batch_size)
ELBO = Loglike + Log_pmq_z1 + Log_pmq_W1
ELBO_E = Loglike_E + Log_pmq_z1_E + Log_pmq_W1_E
# Layer 2
if Layers >= 2:
z2T = max_m_grad(ELBO_z_trunc[2], z2)
W2T = max_m_grad(ELBO_W_trunc[2], W2)
# z2T = tf.maximum(ELBO_z_trunc[2], z2)
# W2T = tf.maximum(ELBO_W_trunc[2], W2)
# z2T = z2
# W2T = W2
if Layers == 2:
Log_pmq_z2 = log_gamma_minus(z2T, 0.1, 0.1,
tf.stop_gradient(z_alpha2), tf.stop_gradient(z_beta2)
) / (K[0] * batch_size)
Log_pmq_z2_E = log_gamma_minus(z2, 0.1, 0.1, z_alpha2, z_beta2) / (K[0] * batch_size)
else:
Wz3 = tf.matmul(z3, tf.transpose(W3))
# Wz3 = max_m_grad(ELBO_Wz_trunc[3], Wz3)
Log_pmq_z2 = log_gamma_minus(z2T, alpha_z, alpha_z / Wz3,
tf.stop_gradient(z_alpha2), tf.stop_gradient(z_beta2)
) / (K[0] * batch_size)
Log_pmq_z2_E = log_gamma_minus(z2, alpha_z, alpha_z / Wz3, z_alpha2, z_beta2) / (K[0] * batch_size)
E_recon3 = tf.reduce_mean(tf.abs(x - tf.matmul(tf.matmul(Wz3, tf.transpose(W2)), tf.transpose(W1))))
Log_pmq_W2 = log_gamma_minus(W2T, 0.1, 0.3,
tf.stop_gradient(W_alpha2), tf.stop_gradient(W_beta2)
) / (K[0] * rho_mb * batch_size)
Log_pmq_W2_E = log_gamma_minus(W2, 0.1, 0.3, W_alpha2, W_beta2) / (K[0] * rho_mb * batch_size)
ELBO = ELBO + Log_pmq_z2 + Log_pmq_W2
ELBO_E = ELBO_E + Log_pmq_z2_E + Log_pmq_W2_E
# Layer 3
if Layers >= 3:
# z3T = max_m_grad(ELBO_z_trunc[3], z3)
# W3T = max_m_grad(ELBO_W_trunc[3], W3)
# z3T = tf.maximum(ELBO_z_trunc[3], z3)
# W3T = tf.maximum(ELBO_W_trunc[3], W3)
z3T = z3
W3T = W3
if Layers == 3:
Log_pmq_z3 = log_gamma_minus(z3T, 0.1, 0.1,
tf.stop_gradient(z_alpha3), tf.stop_gradient(z_beta3)
) / (K[0] * batch_size)
Log_pmq_z3_E = log_gamma_minus(z3, 0.1, 0.1, z_alpha3, z_beta3) / (K[0] * batch_size)
else:
Wz4 = tf.matmul(z4, tf.transpose(W4))
# Wz4 = max_m_grad(ELBO_Wz_trunc[4], Wz4)
Log_pmq_z3 = log_gamma_minus(z3T, alpha_z, alpha_z / Wz4,
tf.stop_gradient(z_alpha3), tf.stop_gradient(z_beta3)
) / (K[0] * batch_size)
Log_pmq_z3_E = log_gamma_minus(z3, alpha_z, alpha_z / Wz4, z_alpha3, z_beta3) / (K[0] * batch_size)
Log_pmq_W3 = log_gamma_minus(W3T, 0.1, 0.3,
tf.stop_gradient(W_alpha3), tf.stop_gradient(W_beta3)
) / (K[0] * rho_mb * batch_size)
Log_pmq_W3_E = log_gamma_minus(W3, 0.1, 0.3, W_alpha3, W_beta3) / (K[0] * rho_mb * batch_size)
ELBO = ELBO + Log_pmq_z3 + Log_pmq_W3
ELBO_E = ELBO_E + Log_pmq_z3_E + Log_pmq_W3_E
if MethodName != 'GO':
# ELBO = tf.stop_gradient(ELBO) * (z1_Fcorr + W1_Fcorr + z2_Fcorr + W2_Fcorr)\
# - tf.stop_gradient(ELBO * (z1_Fcorr + W1_Fcorr + z2_Fcorr + W2_Fcorr)) \
# + ELBO
ELBO = tf.stop_gradient(ELBO) * (z1_Fcorr + W1_Fcorr) \
- tf.stop_gradient(ELBO * (z1_Fcorr + W1_Fcorr)) \
+ ELBO
# Optimizer
optimizer_q_z1 = tf.train.AdamOptimizer(learning_rate=LR_q_z1)
q_z_vars1 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='q_z_x_z_1')
train_q_z1 = optimizer_q_z1.minimize(-ELBO, var_list=q_z_vars1)
optimizer_q_W1 = tf.train.AdamOptimizer(learning_rate=LR_q_W1)
q_W_vars1 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='q_W_W_1')
train_q_W1 = optimizer_q_W1.minimize(-ELBO, var_list=q_W_vars1)
if Layers >= 2:
optimizer_q_z2 = tf.train.AdamOptimizer(learning_rate=LR_q_z2)
q_z_vars2 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='q_z_x_z_2')
train_q_z2 = optimizer_q_z2.minimize(-ELBO, var_list=q_z_vars2)
optimizer_q_W2 = tf.train.AdamOptimizer(learning_rate=LR_q_W2)
q_W_vars2 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='q_W_W_2')
train_q_W2 = optimizer_q_W2.minimize(-ELBO, var_list=q_W_vars2)
init = tf.global_variables_initializer()
ELBOTrset = []
ELBOEvalset = []
with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))) as sess:
sess.run(init)
for i in range(1, num_steps + 1):
batch_x, _ = mnist.train.next_batch(batch_size)
batch_x = np.round(batch_x * 10.)
ELBO_z_trunc_val = [0.1, 0.1, 0.1, 0.1, 0.1]
ELBO_W_trunc_val = [0.01, 0.01, 0.01, 0.01, 0.01] #
ELBO_Wz_trunc_val = [0.3, 0.3, 0.3, 0.3, 0.3] #
if Layers == 1:
_, _, ELBO1, ELBO_Eval1, \
E_recon11, \
z11, z_alpha11, z_beta11, \
W11, W_alpha11, W_beta11, \
= \
sess.run([train_q_z1, train_q_W1, ELBO, ELBO_E,
E_recon1,
z1, z_alpha1, z_beta1,
W1, W_alpha1, W_beta1,
],
feed_dict={x: batch_x,
ELBO_z_trunc: ELBO_z_trunc_val,
ELBO_W_trunc: ELBO_W_trunc_val,
ELBO_Wz_trunc: ELBO_Wz_trunc_val,
})
if Layers == 2:
_, _, _, _, ELBO1, ELBO_Eval1, \
E_recon11, E_recon21, \
Log_pmq_z11, Log_pmq_W11, \
z11, z_alpha11, z_beta11, \
W11, W_alpha11, W_beta11, \
z21, z_alpha21, z_beta21, \
W21, W_alpha21, W_beta21, \
= \
sess.run([train_q_z1, train_q_W1, train_q_z2, train_q_W2, ELBO, ELBO_E,
E_recon1, E_recon2,
Log_pmq_z1, Log_pmq_W1,
z1, z_alpha1, z_beta1,
W1, W_alpha1, W_beta1,
z2, z_alpha2, z_beta2,
W2, W_alpha2, W_beta2,
],
feed_dict={x: batch_x,
ELBO_z_trunc: ELBO_z_trunc_val,
ELBO_W_trunc: ELBO_W_trunc_val,
ELBO_Wz_trunc: ELBO_Wz_trunc_val,
})
if Layers == 3:
_, _, _, _, _, _, ELBO1, ELBO_Eval1, \
E_recon11, E_recon21, E_recon31, \
z11, z_alpha11, z_beta11, \
W11, W_alpha11, W_beta11, \
z21, z_alpha21, z_beta21, \
W21, W_alpha21, W_beta21, \
z31, z_alpha31, z_beta31, \
W31, W_alpha31, W_beta31, \
= \
sess.run([train_q_z1, train_q_W1, train_q_z2, train_q_W2, train_q_z3, train_q_W3, ELBO, ELBO_E,
E_recon1, E_recon2, E_recon3,
z1, z_alpha1, z_beta1,
W1, W_alpha1, W_beta1,
z2, z_alpha2, z_beta2,
W2, W_alpha2, W_beta2,
z3, z_alpha3, z_beta3,
W3, W_alpha3, W_beta3,
],
feed_dict={x: batch_x,
ELBO_z_trunc: ELBO_z_trunc_val,
ELBO_W_trunc: ELBO_W_trunc_val,
ELBO_Wz_trunc: ELBO_Wz_trunc_val,
})
ELBOTrset.append(ELBO1)
ELBOEvalset.append(ELBO_Eval1)
if i % 10 == 0:
if Layers == 1:
print('Step %5i: ELBO:[%.2f/%.2f], E_recon:[%.2f], '
'z1:[%.1e/%.1e/%.1e], W1:[%.1e/%.1e/%.1e], ' % (
i, ELBO_Eval1, ELBO1, E_recon11,
np.max(z11), np.max(z_alpha11), np.max(z_beta11),
np.max(W11), np.max(W_alpha11), np.max(W_beta11),
))
# if i % 200 == 0:
# f, a = plt.subplots(5, 6, sharex=True, sharey=True)
# for iii in range(5):
# for jjj in range(6):
# img = np.reshape(W11[:, iii * 6 + jjj], newshape=(28, 28))
# a[iii][jjj].imshow(img)
# f.show()
if Layers == 2:
print('Step %5i: ELBO:[%.2f/%.2f], E_recon:[%.2f/%.2f], '
'z1:[%.1e/%.1e/%.1e], W1:[%.1e/%.1e/%.1e], '
'z2:[%.1e/%.1e/%.1e], W2:[%.1e/%.1e/%.1e], ' % (
i, ELBO_Eval1, ELBO1, E_recon11, E_recon21,
np.max(z11), np.max(z_alpha11), np.max(z_beta11),
np.max(W11), np.max(W_alpha11), np.max(W_beta11),
np.max(z21), np.max(z_alpha21), np.max(z_beta21),
np.max(W21), np.max(W_alpha21), np.max(W_beta21),
))
# if i % 200 == 0:
# Dict = np.matmul(W11, W21)
# f, a = plt.subplots(5, 6, sharex=True, sharey=True)
# for iii in range(5):
# for jjj in range(6):
# img = np.reshape(Dict[:, iii * 6 + jjj], newshape=(28, 28))
# a[iii][jjj].imshow(img)
# f.show()
if Layers == 3:
print('Step %5i: ELBO:[%.2f/%.2f], E_recon:[%.2f/%.2f/%.2f], '
'z1:[%.1e/%.1e/%.1e], W1:[%.1e/%.1e/%.1e], '
'z2:[%.1e/%.1e/%.1e], W2:[%.1e/%.1e/%.1e], '
'z3:[%.1e/%.1e/%.1e], W3:[%.1e/%.1e/%.1e],' % (
i, ELBO_Eval1, ELBO1, E_recon11, E_recon21, E_recon31,
np.max(z11), np.max(z_alpha11), np.max(z_beta11),
np.max(W11), np.max(W_alpha11), np.max(W_beta11),
| np.max(z21) | numpy.max |
#!/usr/bin/env python
"""
# Author: <NAME>
# Created Time : Thu 16 Jul 2020 07:24:49 PM CST
# File Name: plot.py
# Description:
"""
import numpy as np
import scanpy as sc
import matplotlib.pyplot as plt
import seaborn as sns
def embedding(
adata,
color='celltype',
color_map=None,
groupby='batch',
groups=None,
cond2=None,
v2=None,
save=None,
legend_loc='right margin',
legend_fontsize=None,
legend_fontweight='bold',
na_in_legend=False,
sep='_',
basis='X_umap',
size=10,
show=True,
):
"""
plot separated embeddings with others as background
Parameters
----------
adata
AnnData
color
meta information to be shown
color_map
specific color map
groupby
condition which is based-on to separate
groups
specific groups to be shown
cond2
another targeted condition
v2
another targeted values of another condition
basis
embeddings used to visualize, default is X_umap for UMAP
size
dot size on the embedding
"""
if groups is None:
groups = adata.obs[groupby].cat.categories
for b in groups:
adata.obs['tmp'] = adata.obs[color].astype(str)
adata.obs['tmp'][adata.obs[groupby]!=b] = ''
if cond2 is not None:
adata.obs['tmp'][adata.obs[cond2]!=v2] = ''
groups = list(adata[(adata.obs[groupby]==b) &
(adata.obs[cond2]==v2)].obs[color].astype('category').cat.categories.values)
size = min(size, 120000/len(adata[(adata.obs[groupby]==b) & (adata.obs[cond2]==v2)]))
else:
groups = list(adata[adata.obs[groupby]==b].obs[color].astype('category').cat.categories.values)
size = min(size, 120000/len(adata[adata.obs[groupby]==b]))
adata.obs['tmp'] = adata.obs['tmp'].astype('category')
if color_map is not None:
palette = [color_map[i] if i in color_map else 'gray' for i in adata.obs['tmp'].cat.categories]
else:
palette = None
title = b if cond2 is None else v2+sep+b
if save is not None:
save_ = '_'+b+save
show = False
else:
save_ = None
show = True
sc.pl.embedding(adata, color='tmp', basis=basis, groups=groups, title=title, palette=palette, size=size, save=save_,
na_in_legend=na_in_legend,legend_loc=legend_loc, legend_fontsize=legend_fontsize, legend_fontweight=legend_fontweight,
show=show)
del adata.obs['tmp']
del adata.uns['tmp_colors']
def plot_meta(
adata,
use_rep=None,
color='celltype',
batch='batch',
colors=None,
cmap='Blues',
vmax=1,
vmin=0,
mask=True,
annot=False,
save=None,
fontsize=8
):
"""
Plot meta correlations among batches
Parameters
----------
adata
AnnData
use_rep
the cell representations or embeddings used to calculate the correlations, default is `latent` generated by `SCALE v2`
batch
the meta information based-on, default is batch
colors
colors for each batch
cmap
color map for information to be shown
vmax
max value
vmin
min value
mask
value to be masked
annot
show specific values
save
save the figure
fontsize
font size
"""
meta = []
name = []
color = []
if colors is None:
colors = ['#FFFF00', '#1CE6FF', '#FF34FF', '#FF4A46', '#008941', '#006FA6', '#A30059', '#FFDBE5', '#7A4900', '#0000A6',
'#63FFAC', '#B79762', '#004D43', '#8FB0FF', '#997D87', '#5A0007', '#809693', '#6A3A4C', '#1B4400', '#4FC601',
'#3B5DFF', '#4A3B53', '#FF2F80', '#61615A', '#BA0900', '#6B7900', '#00C2A0', '#FFAA92', '#FF90C9', '#B903AA',
'#D16100', '#DDEFFF', '#000035', '#7B4F4B', '#A1C299', '#300018', '#0AA6D8', '#013349', '#00846F', '#372101',
'#FFB500', '#C2FFED', '#A079BF', '#CC0744', '#C0B9B2', '#C2FF99', '#001E09']
adata.obs[color] = adata.obs[color].astype('category')
batches = np.unique(adata.obs[batch])
for i,b in enumerate(batches):
for cat in adata.obs[color].cat.categories:
index = np.where((adata.obs[color]==cat) & (adata.obs[batch]==b))[0]
if len(index) > 0:
if use_rep and use_rep in adata.obsm:
meta.append(adata.obsm[use_rep][index].mean(0))
elif use_rep and use_rep in adata.layers:
meta.append(adata.layers[use_rep][index].mean(0))
else:
meta.append(adata.X[index].mean(0))
name.append(cat)
color.append(colors[i])
meta = np.stack(meta)
plt.figure(figsize=(10, 10))
corr = np.corrcoef(meta)
if mask:
mask = np.zeros_like(corr)
mask[np.triu_indices_from(mask, k=1)] = True
grid = sns.heatmap(corr, mask=mask, xticklabels=name, yticklabels=name, annot=annot, # name -> []
cmap=cmap, square=True, cbar=True, vmin=vmin, vmax=vmax)
[ tick.set_color(c) for tick,c in zip(grid.get_xticklabels(),color) ]
[ tick.set_color(c) for tick,c in zip(grid.get_yticklabels(),color) ]
plt.xticks(rotation=45, horizontalalignment='right', fontsize=fontsize)
plt.yticks(fontsize=fontsize)
if save:
plt.save(save, bbox_inches='tight')
else:
plt.show()
def plot_meta2(
adata,
use_rep='latent',
color='celltype',
batch='batch',
color_map=None,
figsize=(10, 10),
cmap='Blues',
batches=None,
annot=False,
save=None,
cbar=True,
keep=False,
fontsize=8,
vmin=0,
vmax=1
):
"""
Plot meta correlations between two batches
Parameters
----------
adata
AnnData
use_rep
the cell representations or embeddings used to calculate the correlations, default is `latent` generated by `SCALE v2`
batch
the meta information based-on, default is batch
colors
colors for each batch
cmap
color map for information to be shown
vmax
max value
vmin
min value
mask
value to be masked
annot
show specific values
save
save the figure
fontsize
font size
"""
meta = []
name = []
adata.obs[color] = adata.obs[color].astype('category')
if batches is None:
batches = np.unique(adata.obs[batch]);#print(batches)
for i,b in enumerate(batches):
for cat in adata.obs[color].cat.categories:
index = np.where((adata.obs[color]==cat) & (adata.obs[batch]==b))[0]
if len(index) > 0:
if use_rep and use_rep in adata.obsm:
meta.append(adata.obsm[use_rep][index].mean(0))
elif use_rep and use_rep in adata.layers:
meta.append(adata.layers[use_rep][index].mean(0))
else:
meta.append(adata.X[index].mean(0))
name.append(cat)
meta = np.stack(meta)
plt.figure(figsize=figsize)
corr = np.corrcoef(meta)
xticklabels = adata[adata.obs[batch]==batches[0]].obs[color].cat.categories
yticklabels = adata[adata.obs[batch]==batches[1]].obs[color].cat.categories
# print(len(xticklabels), len(yticklabels))
corr = corr[len(xticklabels):, :len(xticklabels)] #;print(corr.shape)
if keep:
categories = adata.obs[color].cat.categories
corr_ = np.zeros((len(categories), len(categories)))
x_ind = [i for i,k in enumerate(categories) if k in xticklabels]
y_ind = [i for i,k in enumerate(categories) if k in yticklabels]
corr_[np.ix_(y_ind, x_ind)] = corr
corr = corr_
xticklabels, yticklabels = categories, categories
# xticklabels, yticklabels = [], []
grid = sns.heatmap(corr, xticklabels=xticklabels, yticklabels=yticklabels, annot=annot,
cmap=cmap, square=True, cbar=cbar, vmin=vmin, vmax=vmax)
if color_map is not None:
[ tick.set_color(color_map[tick.get_text()]) for tick in grid.get_xticklabels() ]
[ tick.set_color(color_map[tick.get_text()]) for tick in grid.get_yticklabels() ]
plt.xticks(rotation=45, horizontalalignment='right', fontsize=fontsize)
plt.yticks(fontsize=fontsize)
plt.xlabel(batches[0], fontsize=fontsize)
plt.ylabel(batches[1], fontsize=fontsize)
if save:
plt.save(save, bbox_inches='tight')
else:
plt.show()
from sklearn.metrics import confusion_matrix
from sklearn.metrics import adjusted_rand_score, normalized_mutual_info_score, f1_score
def reassign_cluster_with_ref(Y_pred, Y):
"""
Reassign cluster to reference labels
Parameters
----------
Y_pred: predict y classes
Y: true y classes
Returns
-------
f1_score: clustering f1 score
y_pred: reassignment index predict y classes
indices: classes assignment
"""
def reassign_cluster(y_pred, index):
y_ = np.zeros_like(y_pred)
for i, j in index:
y_[np.where(y_pred==i)] = j
return y_
# from sklearn.utils.linear_assignment_ import linear_assignment
from scipy.optimize import linear_sum_assignment as linear_assignment
# print(Y_pred.size, Y.size)
assert Y_pred.size == Y.size
D = max(Y_pred.max(), Y.max())+1
w = np.zeros((D,D), dtype=np.int64)
for i in range(Y_pred.size):
w[Y_pred[i], Y[i]] += 1
ind = linear_assignment(w.max() - w)
return reassign_cluster(Y_pred, ind), ind
def plot_confusion(y, y_pred, save=None, cmap='Blues'):
"""
Plot confusion matrix
Parameters
----------
y
ground truth labels
y_pred
predicted labels
save
save the figure
cmap
color map
Return
------
F1 score
NMI score
ARI score
"""
y_class, pred_class_ = np.unique(y), | np.unique(y_pred) | numpy.unique |
import keras.backend as K
import cv2, time, os
import numpy as np
import model as modellib
from skimage import morphology
class MAPCallback:
def __init__(self,
model,
val_dataset,
class_names,
threshold=5,
inference_num=50,
batch_size=1,
old_version=False):
super(MAPCallback, self).__init__()
self.model = model
self.inference_num = inference_num
self.class_names = class_names
self.num_classes = len(class_names)
self.val_dataset = val_dataset
self.threshold = threshold
self.batch_size = batch_size
self.old_version = old_version
def _voc_ap(self, rec, prec):
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def calculate_result(self):
true_res = {}
pred_res = []
inference_time = 0
for i in range(self.inference_num):
image, class_ids, bbox, point = modellib.load_image_gt_eval(self.val_dataset, i)
start = time.time()
results = self.model.detect([image])[0]
end = time.time()
inference_time = inference_time + (end - start)
out_boxes = results['rois']
out_scores = results['scores']
out_masks = results['masks']
pred_res_0 = []
pred_res_1 = []
if len(out_boxes) > 0:
for out_box, out_score, out_mask in zip(
out_boxes, out_scores, out_masks):
det_point = np.unravel_index(out_mask[:, :, 0].argmax(), out_mask[:, :, 0].shape)
if self.old_version:
pred_res_0.append([i, 0, out_score, det_point[1] + 1, det_point[0] + 1])
else:
pred_res_0.append([i, 0, out_score * out_mask[:, :, 0].max(), det_point[1] + 1, det_point[0] + 1])
# print([i, 0, out_mask[:, :, 0].max(), det_point[1] + 1, det_point[0] + 1])
det_point = np.unravel_index(out_mask[:, :, 1].argmax(), out_mask[:, :, 1].shape)
if self.old_version:
pred_res_1.append([i, 1, out_score, det_point[1] + 1, det_point[0] + 1])
else:
pred_res_1.append([i, 1, out_score * out_mask[:, :, 1].max(), det_point[1] + 1, det_point[0] + 1])
# print([i, 1, out_score * out_mask[:, :, 1].max(), det_point[1] + 1, det_point[0] + 1])
pred_res_0 = nms_point(pred_res_0, 10)
pred_res_1 = nms_point(pred_res_1, 10)
pred_res.extend(pred_res_0)
pred_res.extend(pred_res_1)
true_res[i] = point # [num_guidewire, num_point, 2]
# print(point)
print('avg_infer_time:' + str(inference_time / self.inference_num))
return true_res, pred_res
def compute_aps(self, true_res, pred_res, threshold):
APs = {}
for cls in range(self.num_classes):
pred_res_cls = [x for x in pred_res if x[1] == cls]
if len(pred_res_cls) == 0:
APs[cls] = 0
continue
true_res_cls = {}
npos = 0
for index in true_res: # index is the image_id
guidewires = true_res[index] # [num_guidewire, num_point, 2]
npos += len(guidewires) # compute recall
point_pos = np.array([x[cls] for x in guidewires]) # [num_guidewire, 2]
true_res_cls[index] = {
'point_pos': point_pos,
}
ids = [x[0] for x in pred_res_cls]
scores = np.array([x[2] for x in pred_res_cls])
points = np.array([x[3:] for x in pred_res_cls])
sorted_ind = np.argsort(-scores)
points = points[sorted_ind, :] # sorted
ids = [ids[x] for x in sorted_ind] # sorted
nd = len(ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for j in range(nd):
ture_point = true_res_cls[ids[j]]
point1 = points[j, :] # [2]
dis_min = np.inf
PGT = ture_point['point_pos'] # [num_guidewire, 2]
if len(PGT) > 0:
dis_square = np.square(PGT[:, 0] - point1[0]) + np.square(PGT[:, 1] - point1[1])
dis_min = np.min(dis_square)
if dis_min < threshold * threshold:
tp[j] = 1.
else:
fp[j] = 1.
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / np.maximum(float(npos), np.finfo(np.float64).eps)
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = self._voc_ap(rec, prec)
APs[cls] = ap
return APs
def on_epoch_end(self, logs=None):
logs = logs or {}
K.set_learning_phase(0)
true_res, pred_res = self.calculate_result()
for th in [3, 5, 7, 9]:
APs = self.compute_aps(true_res, pred_res, th)
for cls in range(self.num_classes):
if cls in APs:
print(self.class_names[cls] + ' ap: ', APs[cls])
mAP = np.mean([APs[cls] for cls in APs])
print('mAP: ', mAP)
logs['mAP'] = mAP
def nms_point(point_list, thresh):
'''point_list: [i, point_id, score, x, y]'''
keep = []
while point_list:
keep.append(point_list[0])
now = point_list[0]
del point_list[0]
del_inds = []
for i in range(len(point_list)):
dis_square = np.square(point_list[i][3] - now[3]) + np.square(point_list[i][4] - now[4])
if dis_square < thresh * thresh:
del_inds.append(i)
if del_inds:
del_inds.reverse()
for i in del_inds:
del point_list[i]
return keep
class MAPCallbackSame(MAPCallback):
def __init__(self,
model,
val_dataset,
class_names,
threshold=5,
inference_num=50,
batch_size=1):
super(MAPCallbackSame, self).__init__()
self.model = model
self.inference_num = inference_num
self.class_names = class_names
self.num_classes = len(class_names)
self.val_dataset = val_dataset
self.threshold = threshold
self.batch_size = batch_size
def compute_point(self, pred, thresh, sigma):
point = -1 * np.ones((2, 2), np.int32)
idx = np.unravel_index(pred.argmax(), pred.shape)
# print(pred.shape)
if pred[idx[0], idx[1]] > thresh:
point[0] = [idx[0], idx[1]]
minus = makeGaussian(pred.shape[0], pred.shape[1], sigma, (idx[1], idx[0])) * pred[idx[0], idx[1]]
pred = pred - minus
idx_1 = np.unravel_index(pred.argmax(), pred.shape)
if pred[idx_1[0], idx_1[1]] > thresh:
point[1] = [idx_1[0], idx_1[1]]
return point
def calculate_result(self):
true_res = {}
pred_res = []
inference_time = 0
for i in range(self.inference_num):
image, class_ids, bbox, point = modellib.load_image_gt_eval(self.val_dataset, i)
start = time.time()
results = self.model.detect([image])[0]
end = time.time()
inference_time = inference_time + (end - start)
out_boxes = results['rois']
out_scores = results['scores']
out_masks = results['masks']
if len(out_boxes) > 0:
for out_box, out_score, out_mask in zip(
out_boxes, out_scores, out_masks):
det_point = self.compute_point(out_mask[:, :, 0], 0.1, 6)
pred_res.append([i, 0, out_score, det_point[0][1] + 1, det_point[0][0] + 1])
pred_res.append([i, 0, out_score, det_point[1][1] + 1, det_point[1][0] + 1])
# print([i, 0, out_score, det_point[0][1], det_point[0][0]])
# print([i, 0, out_score, det_point[1][1], det_point[1][0]])
true_res[i] = point # [num_guidewire, num_point, 2]
print('avg_infer_time:' + str(inference_time / self.inference_num))
return true_res, pred_res
def compute_aps(self, true_res, pred_res, threshold):
APs = {}
for cls in range(self.num_classes):
pred_res_cls = [x for x in pred_res if x[1] == cls]
if len(pred_res_cls) == 0:
APs[cls] = 0
continue
true_res_cls = {}
npos = 0
for index in true_res: # index is the image_id
guidewires = true_res[index] # [num_guidewire, num_point, 2]
guidewires = np.reshape(guidewires, [guidewires.shape[0] * guidewires.shape[1], 1, 2])
npos += len(guidewires) # compute recall
point_pos = np.array([x[cls] for x in guidewires]) # [num_guidewire, 2]
true_res_cls[index] = {
'point_pos': point_pos,
}
ids = [x[0] for x in pred_res_cls]
scores = np.array([x[2] for x in pred_res_cls])
points = np.array([x[3:] for x in pred_res_cls])
sorted_ind = np.argsort(-scores)
points = points[sorted_ind, :] # sorted
ids = [ids[x] for x in sorted_ind] # sorted
nd = len(ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for j in range(nd):
ture_point = true_res_cls[ids[j]]
point1 = points[j, :] # [2]
dis_min = np.inf
PGT = ture_point['point_pos'] # [num_guidewire, 2]
if len(PGT) > 0:
dis_square = np.square(PGT[:, 0] - point1[0]) + np.square(PGT[:, 1] - point1[1])
dis_min = np.min(dis_square)
if dis_min < threshold * threshold:
tp[j] = 1.
else:
fp[j] = 1.
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / np.maximum(float(npos), np.finfo(np.float64).eps)
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = self._voc_ap(rec, prec)
APs[cls] = ap
return APs
def makeGaussian(height, width, sigma=3, center=None):
""" make一个高斯核,是生成heatmap的一个部分
"""
x = np.arange(0, width, 1, float)
y = np.arange(0, height, 1, float)[:, np.newaxis]
if center is None:
x0 = width // 2
y0 = height // 2
else:
x0 = center[0]
y0 = center[1]
return np.exp(-4 * np.log(2) * ((x - x0) ** 2 + (y - y0) ** 2) / (sigma ** 2))
class MAPCallbackMask(MAPCallbackSame):
def __init__(self,
model,
val_dataset,
class_names,
threshold=0.1,
inference_num=50,
batch_size=1):
# super(MAPCallbackMask, self).__init__()
self.model = model
self.inference_num = inference_num
self.class_names = class_names
self.num_classes = len(class_names)
self.val_dataset = val_dataset
self.threshold = threshold
self.batch_size = batch_size
def compute_point_from_mask(self, pred, thresh):
pred = (pred > thresh).astype('uint8')
skeleton = morphology.skeletonize(pred)
fil = np.array([[1, 1, 1], [1, 8, 1], [1, 1, 1]])
conv = cv2.filter2D(np.float32(skeleton), -1, fil)
result = conv == 9
x, y = np.where(result == True)
endpoint = []
num_point = min(len(x), 2)
for i in range(num_point):
endpoint.append(np.array([x[i], y[i]]))
return endpoint
def calculate_result(self):
true_res = {}
pred_res = []
inference_time = 0
for i in range(self.inference_num):
image, class_ids, bbox, point = modellib.load_image_gt_eval(self.val_dataset, i)
start = time.time()
results = self.model.detect([image])[0]
end = time.time()
inference_time = inference_time + (end - start)
out_boxes = results['rois']
out_scores = results['scores']
out_masks = results['masks']
if len(out_boxes) > 0:
for out_box, out_score, out_mask in zip(
out_boxes, out_scores, out_masks):
det_point = self.compute_point_from_mask(out_mask[:, :, 0], self.threshold)
for det_point_i in det_point:
pred_res.append([i, 0, out_score, det_point_i[1] + 1, det_point_i[0] + 1])
# print([i, 0, out_score, det_point[0][1], det_point[0][0]])
# print([i, 0, out_score, det_point[1][1], det_point[1][0]])
true_res[i] = point # [num_guidewire, num_point, 2]
# print(point)
print('avg_infer_time:' + str(inference_time / self.inference_num))
return true_res, pred_res
def compute_aps(self, true_res, pred_res, threshold):
APs = {}
for cls in range(self.num_classes):
pred_res_cls = [x for x in pred_res if x[1] == cls]
if len(pred_res_cls) == 0:
APs[cls] = 0
continue
true_res_cls = {}
npos = 0
for index in true_res: # index is the image_id
guidewires = true_res[index] # [num_guidewire, num_point, 2]
guidewires = np.reshape(guidewires, [guidewires.shape[0] * guidewires.shape[1], 1, 2])
npos += len(guidewires) # compute recall
point_pos = np.array([x[cls] for x in guidewires]) # [num_guidewire, 2]
true_res_cls[index] = {
'point_pos': point_pos,
}
ids = [x[0] for x in pred_res_cls]
scores = np.array([x[2] for x in pred_res_cls])
points = np.array([x[3:] for x in pred_res_cls])
sorted_ind = np.argsort(-scores)
points = points[sorted_ind, :] # sorted
ids = [ids[x] for x in sorted_ind] # sorted
nd = len(ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for j in range(nd):
ture_point = true_res_cls[ids[j]]
point1 = points[j, :] # [2]
dis_min = np.inf
PGT = ture_point['point_pos'] # [num_guidewire, 2]
if len(PGT) > 0:
dis_square = np.square(PGT[:, 0] - point1[0]) + np.square(PGT[:, 1] - point1[1])
dis_min = np.min(dis_square)
if dis_min < threshold * threshold:
tp[j] = 1.
else:
fp[j] = 1.
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / np.maximum(float(npos), np.finfo(np.float64).eps)
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = self._voc_ap(rec, prec)
APs[cls] = ap
return APs
def makeGaussian(height, width, sigma=3, center=None):
""" make一个高斯核,是生成heatmap的一个部分
"""
x = np.arange(0, width, 1, float)
y = np.arange(0, height, 1, float)[:, np.newaxis]
if center is None:
x0 = width // 2
y0 = height // 2
else:
x0 = center[0]
y0 = center[1]
return np.exp(-4 * np.log(2) * ((x - x0) ** 2 + (y - y0) ** 2) / (sigma ** 2))
class MAPCallbackBox:
def __init__(self,
model,
val_dataset,
class_names,
inference_num=50,
batch_size=1):
super(MAPCallbackBox, self).__init__()
self.model = model
self.inference_num = inference_num
self.class_names = class_names
self.num_classes = len(class_names)
self.val_dataset = val_dataset
self.batch_size = batch_size
def _voc_ap(self, rec, prec):
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def calculate_result(self):
true_res = {}
pred_res = []
inference_time = 0
for i in range(self.inference_num):
image, class_ids, bbox, point = modellib.load_image_gt_eval(self.val_dataset, i)
start = time.time()
results = self.model.detect([image])[0]
end = time.time()
inference_time = inference_time + (end - start)
out_boxes = results['rois']
out_scores = results['scores']
if len(out_boxes) > 0:
for out_box, out_score in zip(
out_boxes, out_scores):
pred_res.append([i, 0, out_score, out_box])
# print([i, 0, out_score, out_box])
true_res[i] = bbox # [num_guidewire, 4]
# print(bbox)
print('avg_infer_time:' + str(inference_time / self.inference_num))
return true_res, pred_res
def compute_iou(self, box, boxes, box_area, boxes_area):
# Calculate intersection areas
y1 = np.maximum(box[0], boxes[:, 0])
y2 = np.minimum(box[2], boxes[:, 2])
x1 = np.maximum(box[1], boxes[:, 1])
x2 = np.minimum(box[3], boxes[:, 3])
intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0)
union = box_area + boxes_area[:] - intersection[:]
iou = intersection / union
return iou
def compute_aps(self, true_res, pred_res):
APs = {}
for cls in range(self.num_classes):
pred_res_cls = [x for x in pred_res if x[1] == cls]
if len(pred_res_cls) == 0:
APs[cls] = 0
continue
true_res_cls = {}
npos = 0
for index in true_res: # index is the image_id
guidewires = true_res[index] # [num_guidewire, 4]
npos += len(guidewires) # compute recall
point_pos = np.array([x for x in guidewires]) # [num_guidewire, 4]
true_res_cls[index] = {
'point_pos': point_pos,
}
ids = [x[0] for x in pred_res_cls]
scores = np.array([x[2] for x in pred_res_cls])
points = np.array([x[3] for x in pred_res_cls])
sorted_ind = np.argsort(-scores)
points = points[sorted_ind, :] # sorted
ids = [ids[x] for x in sorted_ind] # sorted
nd = len(ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for j in range(nd):
ture_point = true_res_cls[ids[j]]
box = points[j, :] # [4]
PGT = ture_point['point_pos'] # [num_guidewire, 4]
box_area = (box[2] - box[0]) * (box[3] - box[1])
boxes_area = (PGT[:, 2] - PGT[:, 0]) * (PGT[:, 3] - PGT[:, 1])
if len(PGT) > 0:
IOU = self.compute_iou(box, PGT, box_area, boxes_area)
iou_max = np.max(IOU)
if iou_max > 0.5:
tp[j] = 1.
else:
fp[j] = 1.
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / np.maximum(float(npos), np.finfo(np.float64).eps)
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = self._voc_ap(rec, prec)
APs[cls] = ap
return APs
def on_epoch_end(self, logs=None):
logs = logs or {}
K.set_learning_phase(0) # For BN
true_res, pred_res = self.calculate_result()
APs = self.compute_aps(true_res, pred_res)
for cls in range(self.num_classes):
if cls in APs:
print(self.class_names[cls] + ' ap: ', APs[cls])
mAP = np.mean([APs[cls] for cls in APs])
print('mAP: ', mAP)
logs['mAP'] = mAP
class MAPCallbackPCK:
def __init__(self,
model,
val_dataset,
class_names,
inference_num=50,
batch_size=1):
super(MAPCallbackPCK, self).__init__()
self.model = model
self.inference_num = inference_num
self.class_names = class_names
self.num_classes = len(class_names)
self.val_dataset = val_dataset
self.batch_size = batch_size
def _voc_ap(self, rec, prec):
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def check_dt(self, box, gtbox):
box_area = (box[2] - box[0]) * (box[3] - box[1])
boxes_area = (gtbox[:, 2] - gtbox[:, 0]) * (gtbox[:, 3] - gtbox[:, 1])
IOU = self.compute_iou(box, gtbox, box_area, boxes_area)
iou_max = np.max(IOU)
if iou_max > 0.5:
return True
else:
return False
def calculate_result(self):
true_res = {}
pred_res = []
inference_time = 0
for i in range(self.inference_num):
image, class_ids, bbox, point = modellib.load_image_gt_eval(self.val_dataset, i)
start = time.time()
out_masks = self.model.localization([image], [bbox])[0]
# print(out_masks.shape)
end = time.time()
inference_time = inference_time + (end - start)
for out_mask in out_masks:
det_point = np.unravel_index(out_mask[:, :, 0].argmax(), out_mask[:, :, 0].shape)
pred_res.append([i, 0, det_point[1] + 1, det_point[0] + 1])
# print([i, 0, det_point[1] + 1, det_point[0] + 1])
det_point = np.unravel_index(out_mask[:, :, 1].argmax(), out_mask[:, :, 1].shape)
pred_res.append([i, 1, det_point[1] + 1, det_point[0] + 1])
# print([i, 1, det_point[1] + 1, det_point[0] + 1])
true_res[i] = point # [num_guidewire, num_point, 2]
print('avg_infer_time:' + str(inference_time / self.inference_num))
return true_res, pred_res
def compute_iou(self, box, boxes, box_area, boxes_area):
# Calculate intersection areas
y1 = np.maximum(box[0], boxes[:, 0])
y2 = np.minimum(box[2], boxes[:, 2])
x1 = np.maximum(box[1], boxes[:, 1])
x2 = np.minimum(box[3], boxes[:, 3])
intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0)
union = box_area + boxes_area[:] - intersection[:]
iou = intersection / union
return iou
def compute_pck(self, true_res, pred_res, threshold):
APs = {}
for cls in range(self.num_classes):
true_num = 0
pred_res_cls = [x for x in pred_res if x[1] == cls]
num_all = len(pred_res_cls)
if num_all == 0:
APs[cls] = 0
continue
true_res_cls = {}
for index in true_res: # index is the image_id
guidewires = true_res[index] # [num_guidewire, num_point, 2]
point_pos = np.array([x[cls] for x in guidewires]) # [num_guidewire, 2]
true_res_cls[index] = {
'point_pos': point_pos,
}
for j in pred_res_cls:
ture_point = true_res_cls[j[0]]
point1 = j[2:] # [2]
PGT = ture_point['point_pos'] # [num_guidewire, 2]
if len(PGT) > 0:
dis_square = np.square(PGT[:, 0] - point1[0]) + np.square(PGT[:, 1] - point1[1])
dis_min = np.min(dis_square)
if dis_min < threshold * threshold:
true_num += 1
print(true_num, num_all)
APs[cls] = true_num / num_all
return APs
def on_epoch_end(self, logs=None):
logs = logs or {}
K.set_learning_phase(0) # For BN
true_res, pred_res = self.calculate_result()
for th in [3, 5, 7, 9]:
APs = self.compute_pck(true_res, pred_res, th)
for cls in range(self.num_classes):
if cls in APs:
print(self.class_names[cls] + ' ap: ', APs[cls])
mAP = np.mean([APs[cls] for cls in APs])
print('mAP: ', mAP)
logs['mAP'] = mAP
def read_point(txt_path):
with open(txt_path, 'r')as f:
string = f.readlines()
num_guidewire = len(string)
point = np.zeros([num_guidewire, 2, 2], dtype=np.int32)
bbox = np.zeros([num_guidewire, 4], dtype=np.int32)
for index, s in enumerate(string):
item = [int(i) for i in s[:-1].split(' ')]
bbox[index] = | np.array([item[2], item[0], item[3], item[1]]) | numpy.array |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time : 2019/8/8
@Author : AnNing
"""
import numpy as np
from pyproj import Proj, transform
# 角度 -> 弧度
DEGREES_TO_RADIANS = np.pi / 180.
# 弧度 -> 角度
RADIANS_TO_DEGREES = 180. / np.pi
# 地球平均半径
EARTH_MEAN_RADIUS_KM = 6371.009
# 地球极半径
EARTH_POLAR_RADIUS_KM = 6356.752
# 地球赤道半径
EARTH_EQUATOR_RADIUS_KM = 6378.137
WGS84_A = 6378137.0
WGS84_F = 1.0 / 298.257223563
WGS84_B = WGS84_A * (1.0 - WGS84_F)
WGS84_E2 = 2 * WGS84_F - WGS84_F ** 2
# Rotational angular velocity of Earth in radians/sec from IERS
# Conventions (2003).
ANGVEL = 7.2921150e-5
def degree2meter(degree):
return degree * np.pi * EARTH_EQUATOR_RADIUS_KM * 1000. / 180.
def meter2degree(meter):
return (meter * 180) / (np.pi * EARTH_EQUATOR_RADIUS_KM * 1000)
class ProjCore:
"""
投影公共类
"""
def __init__(self, projstr, res, unit,
row=None, col=None, pt_tl=None, pt_br=None,):
"""
[args]:
projstr proj4投影参数字符串
res 分辨率
unit 分辨率单位,支持 m km deg, 确保单位与投影方式一致
row 行数
col 列数
pt_tl 左上角经纬度元组, 形式如 (lon, lat)
pt_br 右下角经纬度元组, 形式如 (lon, lat)
row、 col 和 pt_tl、 pt_br 两对里必须传一对,用以确定网格大小, 不能都是None
projstr 样例:
1. 等经纬
"+init=epsg:4326" or "+proj=longlat +datum=WGS84 +no_defs"
# "+proj=eqc +lat_ts=0 +lat_0=0 +lon_0=0 +x_0=0 +y_0=0 +datum=WGS84 +x_0=-half_res +y_0=half_res"
2. 极射赤面
"+proj=stere +ellps=clrk66 +lat_0=90 +lat_ts=70 +lon_0=0 +k_0=0.969858730377 +a=6371000 +units=m"
3. 兰勃特等面积
"+proj=laea +lat_0=-74.180000 +lon_0=-146.620000 +x_0=0 +y_0=0 +ellps=WGS84"
4. 阿伯斯 (常用于中国区域)
"+proj=aea +lat_0=0 +lon_0=105 +lat_1=25 +lat_2=47 +x_0=0 +y_0=0 +ellps=krass +a=6378245.0 +b=6356863.0"
5. 待补充
"""
self.proj4str = projstr
self.pfunc = Proj(self.proj4str) # 转换函数
print(self.pfunc)
if unit == "km":
self.res = res * 1000
self.unit = "m"
elif unit == "deg":
# self.res = np.deg2rad(res) # pyproj < 2.0使用
self.res = res # pyproj >= 2.0使用
self.unit = unit
else:
self.unit = unit
self.res = res
if row is not None and col is not None:
self.row = row
self.col = col
self.x_tl = -(self.col - 1) / 2 * self.res
self.y_tl = (self.row - 1) / 2 * self.res
elif pt_tl is not None and pt_br is not None:
self.x_tl, self.y_tl = self.pfunc(*pt_tl)
x_br, y_br = self.pfunc(*pt_br)
self.row = int(round((self.y_tl - y_br) / self.res)) + 1
self.col = int(round((x_br - self.x_tl) / self.res)) + 1
else:
raise ValueError("row、 col 和 pt_tl、 pt_br 两对里必须传一对,用以确定网格大小, 不能都是None")
self.lons = None
self.lats = None
print("投影后的网络大小: ({},{})".format(self.row, self.col))
def lonslats2ij(self, lons, lats):
"""
'经纬度转行列号 lons,lats -> i,j
'参数是n维数组 经纬度
'返回值是n维数组 行列号
"""
if isinstance(lons, (list, tuple)):
lons = np.array(lons)
if isinstance(lats, (list, tuple)):
lats = np.array(lats)
if isinstance(lons, np.ndarray):
assert lons.shape == lats.shape, \
"lons and lats must have same shape."
args_shape = lons.shape
# 转成1维,因为proj只接收1维参数
lons = lons.reshape((-1))
lats = lats.reshape((-1))
# 通过平面坐标系计算投影后的行和列
x, y = self.pfunc(lons, lats)
i = self.__y2i(y)
j = self.__x2j(x)
return i.reshape(args_shape), j.reshape(args_shape)
else:
x, y = self.pfunc(lons, lats)
i = self.__y2i(y)
j = self.__x2j(x)
return i, j
def __y2i(self, y):
"""
y 转 行号
"""
if isinstance(y, (list, tuple)):
y = np.array(y)
return np.rint((self.y_tl - y) / self.res).astype(int)
def __x2j(self, x):
"""
x 转 列号
"""
if isinstance(x, (list, tuple)):
x = np.array(x)
return np.rint((x - self.x_tl) / self.res).astype(int)
def grid_lonslats(self):
"""
'生成投影后网格 各格点的经纬度
"""
# 制作一个2维的矩阵
i, j = np.mgrid[0:self.row:1, 0:self.col:1]
y = self.__i2y(i)
x = self.__j2x(j)
# 把二维的x,y 转成1维,因为proj只接收1维参数
x = x.reshape((-1))
y = y.reshape((-1))
lons, lats = self.pfunc(x, y, inverse=True)
# 转回2维
self.lons = lons.reshape((self.row, self.col))
self.lats = lats.reshape((self.row, self.col))
return self.lons, self.lats
def __i2y(self, i):
"""
'行号 转 y
"""
if isinstance(i, (list, tuple)):
i = np.array(i)
y = self.y_tl - i * self.res
return y
def __j2x(self, j):
"""
'列号 转 x
"""
if isinstance(j, (list, tuple)):
j = np.array(j)
x = j * self.res + self.x_tl
return x
def create_lut(self, lons, lats):
"""
'创建投影查找表, (字典)
'即 源数据经纬度位置与投影后位置的对应关系
"""
if isinstance(lons, (list, tuple)):
lons = np.array(lons)
if isinstance(lats, (list, tuple)):
lats = np.array(lats)
assert lons.shape == lats.shape, "Lons and Lats must have same shape."
# 投影后必是2维的,行列 proj1_i,proj1_j
prj_i, prj_j = self.lonslats2ij(lons, lats)
valid_index = np.logical_and.reduce((prj_i >= 0, prj_i < self.row,
prj_j >= 0, prj_j < self.col))
if lons.ndim == 1:
pre_n = np.arange(0, lons.size, 1, "i4")
# 投影方格以外的数据过滤掉
prj_i = prj_i[valid_index]
prj_j = prj_j[valid_index]
pre_n = pre_n[valid_index]
return {"pre_n": pre_n, "prj_i": prj_i, "prj_j": prj_j}
elif lons.ndim == 2:
pre_row, pre_col = lons.shape
pre_i, pre_j = np.mgrid[0:pre_row:1, 0:pre_col:1]
# 投影方格以外的数据过滤掉
prj_i = prj_i[valid_index]
prj_j = prj_j[valid_index]
pre_i = pre_i[valid_index]
pre_j = pre_j[valid_index]
return {"pre_i": pre_i, "pre_j": pre_j, "prj_i": prj_i, "prj_j": prj_j}
def transform2ij(self, proj_str1, x1, y1):
"""
'不同投影方式之间转换
'返回值是整数
"""
args_shape = x1.shape
x1 = np.array(x1).reshape((-1)) # 转成1维
y1 = np.array(y1).reshape((-1))
p1 = Proj(proj_str1)
x2, y2 = transform(p1, self.pfunc, x1, y1)
i = self.__y2i(y2)
j = self.__x2j(x2)
return i.reshape(args_shape), j.reshape(args_shape)
class ProjGLL:
"""
等经纬度区域类
"""
def __init__(self, nlat=90., slat=-90., wlon=-180., elon=180., res_lat=None, res_lon=None, row_max=None,
col_max=None):
"""
nlat, slat, wlon, elon: 北纬, 南纬, 西经, 东经
resLat: 纬度分辨率(度)
resLon: 经度分辨率(度)
"""
self.nlat = float(nlat) # 北纬
self.slat = float(slat) # 南纬
self.wlon = float(wlon) # 西经
self.elon = float(elon) # 东经
if res_lat is None and row_max is None:
raise ValueError("resLat and rowMax must set one")
if res_lon is None and col_max is None:
raise ValueError("resLon and colMax must set one")
if res_lat is None:
self.rowMax = int(row_max)
self.resLat = (self.nlat - self.slat) / self.rowMax
else:
self.resLat = float(res_lat)
self.rowMax = int(
round((self.nlat - self.slat) / self.resLat)) # 最大行数
if res_lon is None:
self.colMax = int(col_max)
self.resLon = (self.elon - self.wlon) / self.colMax
else:
self.resLon = float(res_lon)
self.colMax = int(
round((self.elon - self.wlon) / self.resLon)) # 最大列数
def generate_lats_lons(self):
lats, lons = np.mgrid[
self.nlat - self.resLat / 2.: self.slat + self.resLat * 0.1:-self.resLat,
self.wlon + self.resLon / 2.: self.elon - self.resLon * 0.1: self.resLon]
return lats, lons
def lonslats2ij(self, lons, lats):
j = self.lons2j(lons)
i = self.lats2i(lats)
return i, j
def lons2j(self, lons):
"""
lons: 输入经度
ret: 返回 输入经度在等经纬度网格上的列号,以左上角为起点0,0
"""
if isinstance(lons, (list, tuple)):
lons = np.array(lons)
if isinstance(lons, np.ndarray):
idx = np.isclose(lons, 180.)
lons[idx] = -180.
return np.floor((lons - self.wlon) / self.resLon).astype(int) # 列号
def lats2i(self, lats):
"""
lats: 输入纬度
ret: 返回 输入纬度在等经纬度网格上的行号,以左上角为起点0,0
"""
if isinstance(lats, (list, tuple)):
lats = np.array(lats)
return np.floor((self.nlat - lats) / self.resLat).astype(int) # 行号
def fill_2d(array2d, mask, use_from):
"""
2维矩阵无效值补点
array2d 2维矩阵
mask 无效值掩模矩阵
useFrom u/d/l/r, 用上/下/左/右的点来补点
"""
assert len(array2d.shape) == 2, \
"array2d must be 2d array."
assert array2d.shape == mask.shape, \
"array2d and musk must have same shape."
condition = np.empty_like(mask)
# 用上方的有效点补点
if use_from == 'up' or use_from == 'u':
condition[1:, :] = mask[1:, :] * (~mask)[:-1, :]
condition[0, :] = False
index = np.where(condition)
array2d[index[0], index[1]] = array2d[index[0] - 1, index[1]]
# 用右方的有效点补点
elif use_from == 'right' or use_from == 'r':
condition[:, :-1] = mask[:, :-1] * (~mask)[:, 1:]
condition[:, -1] = False
index = np.where(condition)
array2d[index[0], index[1]] = array2d[index[0], index[1] + 1]
# 用下方的有效点补点
elif use_from == 'down' or use_from == 'd':
condition[:-1, :] = mask[:-1, :] * (~mask)[1:, :]
condition[-1, :] = False
index = np.where(condition)
array2d[index[0], index[1]] = array2d[index[0] + 1, index[1]]
# 用左方的有效点补点
elif use_from == 'left' or use_from == 'l':
condition[:, 1:] = mask[:, 1:] * (~mask)[:, :-1]
condition[:, 0] = False
index = np.where(condition)
array2d[index[0], index[1]] = array2d[index[0], index[1] - 1]
def fill_points_2d(array2d, invalid_value=0):
"""
2维矩阵无效值补点
array2d 2维矩阵
invalidValue 无效值
"""
# 用右方的有效点补点
mask = np.isclose(array2d, invalid_value)
fill_2d(array2d, mask, 'r')
# 用左方的有效点补点
mask = np.isclose(array2d, invalid_value)
fill_2d(array2d, mask, 'l')
# 用上方的有效点补点
mask = np.isclose(array2d, invalid_value)
fill_2d(array2d, mask, 'u')
# 用下方的有效点补点
mask = np.isclose(array2d, invalid_value)
fill_2d(array2d, mask, 'd')
def fill_points_2d_nan(array2d):
"""
2维矩阵无效值补点
array2d 2维矩阵
invalidValue 无效值
"""
# 用右方的有效点补点
mask = np.isnan(array2d)
fill_2d(array2d, mask, 'r')
# 用左方的有效点补点
mask = | np.isnan(array2d) | numpy.isnan |
'''
This module includes different trigger policies that are simulated
'''
#breakpoint()
import json
import numpy as np
from VaccineAllocation import config
from itertools import product, permutations
import copy
import iteround
import datetime as dt
CONSTANT_TR = 'constant'
STEP_TR = 'step'
LINEAR_TR = 'linear'
THRESHOLD_TYPES = [CONSTANT_TR, STEP_TR, LINEAR_TR]
datetime_formater = '%Y-%m-%d %H:%M:%S'
def build_multi_tier_policy_candidates(instance, tiers, threshold_type='constant', lambda_start=None):
assert len(tiers) >= 2, 'At least two tiers need to be defined'
threshold_candidates = []
if threshold_type == CONSTANT_TR:
#breakpoint()
gz = config['grid_size']
# lambda_start is given by the field pub; if it is none, then we use the square root staffing rule
if lambda_start is None:
if np.size(instance.epi.eq_mu) == 1:
lambda_start = int(np.floor(instance.epi.eq_mu * instance.lambda_star))
else:
lambda_start = int(np.floor(np.max(instance.epi.eq_mu) * instance.lambda_star))
params_trials = []
for tier in tiers:
if 'candidate_thresholds' in tier and isinstance(tier['candidate_thresholds'], list):
params_trials.append(tier['candidate_thresholds'])
else:
candidates = [gz * i for i in range(0, int(lambda_start / gz) + 1)] + [lambda_start]
params_trials.append(np.unique(candidates))
for policy_params in product(*params_trials):
is_valid = True
for p_ix in range(len(policy_params) - 1):
if policy_params[p_ix] >= policy_params[p_ix + 1]:
is_valid = False
break
if is_valid:
T = len(instance.cal)
lockdown_thresholds = [[policy_params[i]] * T for i in range(len(policy_params))]
threshold_candidates.append(lockdown_thresholds)
#breakpoint()
return threshold_candidates
elif threshold_type == STEP_TR:
#breakpoint()
# TODO: we need to set a time and two levels
gz = config['grid_size']
lambda_start = int(np.floor(instance.epi.eq_mu * instance.lambda_star))
params_trials = []
for tier in tiers:
if tier['candidate_thresholds'] is not None:
# construct the trial parameters according to the candidate threshold
# the candidate threshold should be a list of 2 lists
if isinstance(tier['candidate_thresholds'][0], list):
candidates1 = tier['candidate_thresholds'][0]
else:
candidates1 = [gz * i for i in range(0, int(lambda_start / gz) + 1)] + [lambda_start]
if isinstance(tier['candidate_thresholds'][1], list):
candidates2 = tier['candidate_thresholds'][1]
else:
candidates2 = [gz * i for i in range(0, int(lambda_start / gz) + 1)] + [lambda_start]
else:
candidates1 = [gz * i for i in range(0, int(lambda_start / gz) + 1)] + [lambda_start]
candidates2 = [gz * i for i in range(0, int(lambda_start / gz) + 1)] + [lambda_start]
params_trials.append([(t1, t2) for t1 in candidates1 for t2 in candidates2 if t1 <= t2])
# obtain the possible stepping time points, limited to the start of months
T_trials = instance.cal.month_starts
for policy_params in product(*params_trials):
is_valid = True
for p_ix in range(len(policy_params) - 1):
if (policy_params[p_ix][0] >= policy_params[p_ix + 1][0]) \
or (policy_params[p_ix][1] >= policy_params[p_ix + 1][1]):
is_valid = False
break
if is_valid:
T = len(instance.cal)
for tChange in T_trials:
lockdown_thresholds = [[policy_params[i][0]] * tChange + [policy_params[i][1]] * (T - tChange)
for i in range(len(policy_params))]
threshold_candidates.append(lockdown_thresholds)
return threshold_candidates
elif threshold_type == LINEAR_TR:
gz = config['grid_size']
sgz = config['slope_grid_size'] # the grid size for slope search.
max_slope = config['max_slope']
# The date the thresholds start to increase (constant threshold up until this point):
slope_start = dt.datetime.strptime(config['slope_start_date'], datetime_formater)
T_slope_start = np.where(np.array(instance.cal.calendar) == slope_start)[0][0]
# lambda_start is given by the field pub; if it is none, then we use the square root staffing rule
if lambda_start is None:
if np.size(instance.epi.eq_mu) == 1:
lambda_start = int(np.floor(instance.epi.eq_mu * instance.lambda_star))
else:
lambda_start = int(np.floor(np.max(instance.epi.eq_mu) * instance.lambda_star))
params_trials = []
for tier in tiers:
# construct the trial parameters according to the candidate threshold
if 'candidate_thresholds' in tier and isinstance(tier['candidate_thresholds'], list):
params_trials.append(tier['candidate_thresholds'])
else:
candidates = [gz * i for i in range(0, int(lambda_start / gz) + 1)] + [lambda_start]
params_trials.append(np.unique(candidates))
for policy_params in product(*params_trials):
is_valid = True
for p_ix in range(len(policy_params) - 1):
if policy_params[p_ix] >= policy_params[p_ix + 1]:
is_valid = False
break
if is_valid:
T = len(instance.cal)
T_slope = T - T_slope_start
if config['candidate_slopes'] is not None:
slope_candidates = config['candidate_slopes']
else:
slope_candidates = [sgz * i for i in range(0, int(max_slope / sgz) + 1)] + [max_slope]
# If the intercept is valid, create grids according to slope:
for slope in slope_candidates:
# The lower bound for green will be constant at -1:
lockdown_thresholds = [[policy_params[0]] * T]
# The lower bound will be increasing for other stages:
lockdown_thresholds += [[policy_params[i]] * T_slope_start + \
[policy_params[i] + (slope) * (t + 1) for t in range(T_slope)]
for i in range(1, len(policy_params))]
threshold_candidates.append(lockdown_thresholds)
#breakpoint()
return threshold_candidates
else:
raise NotImplementedError
def build_ACS_policy_candidates(instance, tiers, acs_bounds, acs_time_bounds, threshold_type='constant', lambda_start=None):
#breakpoint()
assert len(tiers) >= 2, 'At least two tiers need to be defined'
threshold_candidates = []
if threshold_type == CONSTANT_TR:
gz = config['grid_size']
if lambda_start is None:
if np.size(instance.epi.eq_mu) == 1:
lambda_start = int(np.floor(instance.epi.eq_mu * instance.lambda_star))
else:
lambda_start = int(np.floor(np.max(instance.epi.eq_mu) * instance.lambda_star))
params_trials = []
for tier in tiers:
if 'candidate_thresholds' in tier and isinstance(tier['candidate_thresholds'], list):
params_trials.append(tier['candidate_thresholds'])
else:
candidates = [gz * i for i in range(0, int(lambda_start / gz) + 1)] + [lambda_start]
params_trials.append(candidates)
# append the acs_trigger and acs_length
acs_trigger_candidates = np.unique([gz * i for i in range(int(acs_bounds[0] / gz), int(acs_bounds[1] / gz) + 1)] + [acs_bounds[1]])
acs_time_candidates = np.unique([gz * i for i in range(int(acs_time_bounds[0] / gz), int(acs_time_bounds[1] / gz) + 1)] + [acs_time_bounds[1]])
params_trials.append(acs_trigger_candidates)
params_trials.append(acs_time_candidates)
for policy_params in product(*params_trials):
is_valid = True
for p_ix in range(len(policy_params) - 3):
if policy_params[p_ix] >= policy_params[p_ix + 1]:
is_valid = False
break
if is_valid:
T = len(instance.cal)
lockdown_thresholds = [[policy_params[i]] * T for i in range(len(policy_params) - 2)]
output_trials = [lockdown_thresholds, policy_params[-2], policy_params[-1]]
threshold_candidates.append(output_trials)
# breakpoint()
return threshold_candidates
else:
raise NotImplementedError
def build_CDC_policy_thresholds(instance, tiers):
"""
Currently there is no optimization on CDC system.
Implement the existing system.
Assuming only one candidate threshold for each metric.
"""
nonsurge_staffed_bed, surge_staffed_bed = {}, {}
nonsurge_hosp_adm,surge_hosp_adm = {}, {}
for id_t, tier in enumerate(tiers):
nonsurge_staffed_bed[id_t] = tier["nonsurge_thresholds"]["staffed_bed"][0]
nonsurge_hosp_adm[id_t] = tier["nonsurge_thresholds"]["hosp_adm"][0]
surge_staffed_bed[id_t] = tier["surge_thresholds"]["staffed_bed"][0]
surge_hosp_adm[id_t] = tier["surge_thresholds"]["hosp_adm"][0]
nonsurge_thresholds = {"hosp_adm":nonsurge_hosp_adm, "staffed_bed":nonsurge_staffed_bed}
surge_thresholds = {"hosp_adm":surge_hosp_adm, "staffed_bed":surge_staffed_bed}
nonsurge_hosp_adm_ub = [nonsurge_hosp_adm[i] for i in range(1, len(nonsurge_hosp_adm))]
nonsurge_hosp_adm_ub.append(np.inf)
nonsurge_staffed_bed_ub = [nonsurge_staffed_bed[i] for i in range(1, len(nonsurge_staffed_bed))]
nonsurge_staffed_bed_ub.append(np.inf)
surge_hosp_adm_ub =[surge_hosp_adm[i] for i in range(1, len(surge_hosp_adm))]
surge_hosp_adm_ub.append(np.inf)
surge_staffed_bed_ub = [surge_staffed_bed[i] for i in range(1, len(surge_staffed_bed))]
surge_staffed_bed_ub.append(np.inf)
nonsurge_thresholds_ub = {"hosp_adm":nonsurge_hosp_adm_ub, "staffed_bed":nonsurge_staffed_bed_ub}
surge_thresholds_ub = {"hosp_adm":surge_hosp_adm_ub, "staffed_bed":surge_staffed_bed_ub}
return nonsurge_thresholds, surge_thresholds, nonsurge_thresholds_ub, surge_thresholds_ub
class CDCTierPolicy():
"""
CDC's community levels. CDC system includes three tiers. Green and orange
stages are deprecated but maintained for code consitency with our system.
"""
def __init__(self, instance,
tiers,
case_threshold,
nonsurge_thresholds,
surge_thresholds,
nonsurge_thresholds_ub,
surge_thresholds_ub):
"""
instance : (Instance) data instance
tiers (list of dict): a list of the tiers characterized by a dictionary
with the following entries:
{
"transmission_reduction": float [0,1)
"cocooning": float [0,1)
"school_closure": int {0,1}
}
case_thresholds : (Surge threshold. New COVID-19 Cases Per 100,000 people
in the past 7 days
(non)surge_thresholds : (dict of dict) with entries:
{ hosp_adm : (list of list) a list with the thresholds for
every tier. New COVID-19 admissions per 100,000
population (7-day total)
staffed_bed : (list of list) a list with the thresholds for
every tier.Percent of staffed inpatient beds
occupied by COVID-19 patients (7-day average)
}
"""
self.tiers = tiers
self.case_threshold = case_threshold
self.nonsurge_thresholds = nonsurge_thresholds
self.surge_thresholds = surge_thresholds
self.nonsurge_thresholds_ub = nonsurge_thresholds_ub
self.surge_thresholds_ub = surge_thresholds_ub
self._n = len(self.tiers)
self._tier_history = None
self._surge_history = None
self._intervention_history = None
self._instance = instance
self.red_counter = 0
@classmethod
def policy(cls, instance, tiers):
nonsurge_thresholds, surge_thresholds, nonsurge_thresholds_ub, surge_thresholds_ub = build_CDC_policy_thresholds(instance, tiers.tier)
case_threshold = tiers.case_threshold
return cls(instance, tiers.tier,
case_threshold,
nonsurge_thresholds,
surge_thresholds,
nonsurge_thresholds_ub,
surge_thresholds_ub)
def deep_copy(self):
p = CDCTierPolicy(self._instance,
self.tiers,
self.case_threshold,
self.nonsurge_thresholds,
self.surge_thresholds,
self.nonsurge_thresholds_ub,
self.surge_thresholds_ub)
p.set_tier_history(self._tier_history_copy)
p.set_intervention_history(self._intervention_history_copy)
p.set_surge_history(self._surge_history_copy)
return p
def set_tier_history(self, history):
# Set history and saves a copy to reset
self._tier_history = history.copy()
self._tier_history_copy = history.copy()
def set_intervention_history(self, history):
# Set history and saves a copy to reset
self._intervention_history = history.copy()
self._intervention_history_copy = history.copy()
def set_surge_history(self, history):
'''
Creaate surge history array
'''
t = len(history)
self._surge_history = np.zeros(t)
self._surge_history_copy = np.zeros(t)
def reset_history(self):
# reset history so that a new simulation can be excecuted
self.set_tier_history(self._tier_history_copy)
self.set_intervention_history(self._intervention_history_copy)
self.set_surge_history(self._surge_history_copy)
def compute_cost(self):
return sum(self.tiers[i]['daily_cost'] for i in self._tier_history if i is not None and i in range(self._n))
def get_tier_history(self):
return self._tier_history
def get_interventions_history(self):
return self._intervention_history
def get_surge_history(self):
return self._surge_history
def __repr__(self):
p_str = "CDC_community_levels"
p_str = p_str.replace(' ', '')
p_str = p_str.replace(',', '_')
p_str = p_str.replace("'", "")
p_str = p_str.replace('[', '')
p_str = p_str.replace('(', '')
p_str = p_str.replace(']', '')
p_str = p_str.replace(')', '')
return p_str
def __call__(self, t, ToIHT, IH, ToIY, ICU, *args, **kwargs):
'''
Function that makes an instance of a policy a callable.
Args:
t (int): time period in the simulation
ToIHT (ndarray): daily hospital admission, passed by the simulator
IH (ndarray): hospitalizations, passed by the simulator
ToIY (ndarray): new symptomatic cases, passed by the simulator
** kwargs: additional parameters that are passed and are used elsewhere
'''
if self._tier_history[t] is not None:
return self._intervention_history[t],kwargs
# Compute 7-day total new cases:
N = self._instance.N
moving_avg_start = np.maximum(0, t - config['moving_avg_len'])
ToIY_total = ToIY.sum((1, 2))
ToIY_total = ToIY_total[moving_avg_start:].sum()* 100000/np.sum(N, axis=(0,1))
# Compute 7-day total daily admission:
ToIHT_total = ToIHT.sum((1, 2))
ToIHT_total = ToIHT_total[moving_avg_start:].sum()* 100000/np.sum(N, axis=(0,1))
# Compute 7-day average percent of COVID beds:
IHT_total = IH.sum((1, 2)) + ICU.sum((1,2))
IHT_avg = IHT_total[moving_avg_start:].mean()/self._instance.hosp_beds
current_tier = self._tier_history[t - 1]
valid_interventions_t = kwargs['feasible_interventions'][t]
T = self._instance.T
effective_tiers = range(len(self.tiers))
if ToIY_total < self.case_threshold: # Nonsurge
hosp_adm_thresholds = self.nonsurge_thresholds["hosp_adm"]
staffed_bed_thresholds = self.nonsurge_thresholds["staffed_bed"]
surge_state = 0
else:
hosp_adm_thresholds = self.surge_thresholds["hosp_adm"]
staffed_bed_thresholds = self.surge_thresholds["staffed_bed"]
surge_state = 1
hosp_adm_thresholds_ub, staffed_bed_thresholds_ub = {}, {}
for id_t in effective_tiers:
if id_t!= len(effective_tiers) - 1:
hosp_adm_thresholds_ub[id_t] = hosp_adm_thresholds[id_t + 1]
staffed_bed_thresholds_ub[id_t] = staffed_bed_thresholds[id_t + 1]
else:
hosp_adm_thresholds_ub[id_t] = np.inf
staffed_bed_thresholds_ub[id_t] = np.inf
hosp_adm_tier = effective_tiers[[
hosp_adm_thresholds[tier_ix] <= ToIHT_total < hosp_adm_thresholds_ub[tier_ix]
for tier_ix in effective_tiers].index(True)]
staffed_bed_tier = effective_tiers[[
staffed_bed_thresholds[tier_ix] <= IHT_avg < staffed_bed_thresholds_ub[tier_ix]
for tier_ix in effective_tiers].index(True)]
new_tier = max(hosp_adm_tier, staffed_bed_tier)
if new_tier > current_tier: # bump to the next tier
t_end = | np.minimum(t + self.tiers[new_tier]['min_enforcing_time'], T) | numpy.minimum |
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/03_hamiltonian.ipynb (unless otherwise specified).
__all__ = ['Hamiltonian1D', 'XYHamiltonian', 'XXHamiltonian', 'XYZHamiltonian']
# Cell
import numpy as np
import picos
import networkx as nx
import matplotlib.pyplot as plt
# Cell
class Hamiltonian1D:
x = picos.Constant('x', [[0, 1], [1, 0]])
y = picos.Constant('y', [[0, -1j], [1j, 0]])
z = picos.Constant('z', [[1, 0], [0, -1]])
Id = picos.Constant('Id', [[1, 0], [0, 1]])
def __init__(self, N, linear, quadratic):
self.N = N
self.linear = linear
self.quadratic = quadratic
def draw_system(self, figsize=(8,6), cmap=plt.cm.plasma):
"Conceptual drawing of the system showing interaction strength and on-site field."
G = nx.Graph()
G.add_nodes_from([(node,{'w': w}) for node,w in zip(np.arange(self.N),self.linear)])
G.add_edges_from([(n,n+1,{'w': w}) if n<self.N-1 else (n,0,{'w': w}) for n,w in zip(np.arange(self.N), self.quadratic)])
plt.figure(figsize=figsize)
pos = nx.circular_layout(G)
for (n, d) in G.nodes(data=True):
nx.draw_networkx_nodes(G, pos=pos, nodelist=[n], node_size=400, node_color=[d['w']/np.max(self.linear)],
cmap=cmap, vmin=0, vmax=1)
for (u,v,d) in G.edges(data=True):
nx.draw_networkx_edges(G, pos=pos, edgelist=[(u,v)], width=5, alpha=d['w']/np.max(self.quadratic))
d = np.array([-0.1, 0])
label_pos = {k: v+d if v[0]<0 else v-d for k,v in pos.items()}
nx.draw_networkx_labels(G, pos=label_pos, font_size=25);
# Cell
class XYHamiltonian(Hamiltonian1D):
def __init__(self, N, linear, quadratic, g):
super().__init__(N, linear, quadratic)
self.g = g
self.model = 'xy'
def to_sdp(self):
"Returns hamiltonian in terms of SDP variables."
linear = [( | np.array([i]) | numpy.array |
import numpy as np
import random
import warnings
import cv2
from tensorflow import keras
import albumentations as A
from utils.anchors import anchors_for_shape, anchor_targets_bbox, AnchorParameters
from utils.bbox_transform import forward_convert
from utils.bbox_transform import backward_convert
from utils.bbox_transform import get_best_begin_point
from utils.bbox_transform import change_rbox_definition
from utils.bbox_transform import rotate
from utils.anchors import Anchor
class Generator(keras.utils.Sequence):
"""
Abstract generator class.
"""
def __init__(
self,
phi=0,
image_sizes=(512, 640, 768, 896, 768, 1280, 1408),
misc_effect=None,
visual_effect=None,
use_augmentations=None,
horizontal_flip = None,
vertical_flip = None,
RandomBrightnessContrast = None,
RandomColorShift = None,
RandomRotate90 = None,
batch_size=1,
group_method='random', # one of 'none', 'random', 'ratio'
shuffle_groups=True,
detect_text=False,
detect_quadrangle=False,
):
"""
Initialize Generator object.
Args:
batch_size: The size of the batches to generate.
group_method: Determines how images are grouped together (defaults to 'ratio', one of ('none', 'random', 'ratio')).
shuffle_groups: If True, shuffles the groups each epoch.
image_sizes:
"""
self.misc_effect = misc_effect
self.visual_effect = visual_effect
self.use_augmentations = use_augmentations
self.horizontal_flip = horizontal_flip
self.vertical_flip = vertical_flip
self.RandomBrightnessContrast = RandomBrightnessContrast,
self.RandomColorShift = RandomColorShift
self.RandomRotate90 = RandomRotate90
self.batch_size = int(batch_size)
self.group_method = group_method
self.shuffle_groups = shuffle_groups
self.detect_text = detect_text
self.detect_quadrangle = detect_quadrangle
self.image_size = image_sizes[phi]
self.groups = None
# self.anchors = Anchor(image_size =(self.image_size, self.image_size))._boxes
self.anchor_parameters = AnchorParameters.default if not self.detect_text else AnchorParameters(
ratios=(0.25, 0.5, 1., 2.),
sizes=(16, 32, 64, 128, 256))
self.anchors = anchors_for_shape((self.image_size, self.image_size), anchor_params=self.anchor_parameters)
self.num_anchors = self.anchor_parameters.num_anchors()
# Define groups
self.group_images()
# Shuffle when initializing
if self.shuffle_groups:
random.shuffle(self.groups)
def on_epoch_end(self):
if self.shuffle_groups:
random.shuffle(self.groups)
def size(self):
"""
Size of the dataset.
"""
raise NotImplementedError('size method not implemented')
def get_anchors(self):
"""
loads the anchors from a txt file
"""
with open(self.anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
# (N, 2), wh
return np.array(anchors).reshape(-1, 2)
def num_classes(self):
"""
Number of classes in the dataset.
"""
raise NotImplementedError('num_classes method not implemented')
def has_label(self, label):
"""
Returns True if label is a known label.
"""
raise NotImplementedError('has_label method not implemented')
def has_name(self, name):
"""
Returns True if name is a known class.
"""
raise NotImplementedError('has_name method not implemented')
def name_to_label(self, name):
"""
Map name to label.
"""
raise NotImplementedError('name_to_label method not implemented')
def label_to_name(self, label):
"""
Map label to name.
"""
raise NotImplementedError('label_to_name method not implemented')
def image_aspect_ratio(self, image_index):
"""
Compute the aspect ratio for an image with image_index.
"""
raise NotImplementedError('image_aspect_ratio method not implemented')
def load_image(self, image_index):
"""
Load an image at the image_index.
"""
raise NotImplementedError('load_image method not implemented')
def load_annotations(self, image_index):
"""
Load annotations for an image_index.
"""
raise NotImplementedError('load_annotations method not implemented')
def load_annotations_group(self, group):
"""
Load annotations for all images in group.
"""
annotations_group = [self.load_annotations(image_index) for image_index in group]
for annotations in annotations_group:
assert (isinstance(annotations,
dict)), '\'load_annotations\' should return a list of dictionaries, received: {}'.format(
type(annotations))
assert (
'labels' in annotations), '\'load_annotations\' should return a list of dictionaries that contain \'labels\' and \'bboxes\'.'
assert (
'bboxes' in annotations), '\'load_annotations\' should return a list of dictionaries that contain \'labels\' and \'bboxes\'.'
return annotations_group
def filter_annotations(self, image_group, annotations_group, group):
"""
Filter annotations by removing those that are outside of the image bounds or whose width/height < 0.
"""
# test all annotations
for index, (image, annotations) in enumerate(zip(image_group, annotations_group)):
# test x2 < x1 | y2 < y1 | x1 < 0 | y1 < 0 | x2 <= 0 | y2 <= 0 | x2 >= image.shape[1] | y2 >= image.shape[0]
invalid_indices = np.where(
(annotations['bboxes'][:, 2] <= annotations['bboxes'][:, 0]) |
(annotations['bboxes'][:, 3] <= annotations['bboxes'][:, 1]) |
(annotations['bboxes'][:, 0] < 0) |
(annotations['bboxes'][:, 1] < 0) |
(annotations['bboxes'][:, 2] <= 0) |
(annotations['bboxes'][:, 3] <= 0) |
(annotations['bboxes'][:, 2] > image.shape[1]) |
(annotations['bboxes'][:, 3] > image.shape[0])
)[0]
# delete invalid indices
if len(invalid_indices):
warnings.warn('Image with id {} (shape {}) contains the following invalid boxes: {}.'.format(
group[index],
image.shape,
annotations['bboxes'][invalid_indices, :]
))
for k in annotations_group[index].keys():
annotations_group[index][k] = np.delete(annotations[k], invalid_indices, axis=0)
# if annotations['bboxes'].shape[0] == 0:
# warnings.warn('Image with id {} (shape {}) contains no valid boxes before transform'.format(
# group[index],
# image.shape,
# ))
return image_group, annotations_group
def clip_transformed_annotations(self, image_group, annotations_group):
"""
Filter annotations by removing those that are outside of the image bounds or whose width/height < 0.
"""
# test all annotations
filtered_image_group = []
filtered_annotations_group = []
for index, (image, annotations) in enumerate(zip(image_group, annotations_group)):
image_height = image.shape[0]
image_width = image.shape[1]
# x1
# annotations['bboxes'][:, 0] = np.clip(annotations['bboxes'][:, 0], 0, image_width - 2)
# # y1
# annotations['bboxes'][:, 1] = np.clip(annotations['bboxes'][:, 1], 0, image_height - 2)
# # x2
# annotations['bboxes'][:, 2] = np.clip(annotations['bboxes'][:, 2], 1, image_width - 1)
# # y2
# annotations['bboxes'][:, 3] = np.clip(annotations['bboxes'][:, 3], 1, image_height - 1)
# test x2 < x1 | y2 < y1 | x1 < 0 | y1 < 0 | x2 <= 0 | y2 <= 0 | x2 >= image.shape[1] | y2 >= image.shape[0]
out_indices = np.where(
((annotations['bboxes'][:, 2] + annotations['bboxes'][:, 0])/2 < 0) |
((annotations['bboxes'][:, 3] + annotations['bboxes'][:, 1])/2 < 0) |
((annotations['bboxes'][:, 2] + annotations['bboxes'][:, 0])/2 > image_width) |
((annotations['bboxes'][:, 3] + annotations['bboxes'][:, 1])/2 > image_height)
)[0]
small_indices = np.where(
(annotations['bboxes'][:, 2] - annotations['bboxes'][:, 0] < 3) |
(annotations['bboxes'][:, 3] - annotations['bboxes'][:, 1] < 3)
)[0]
# delete invalid indices
if len(small_indices) or len(out_indices):
# print('!!!!!!!!!!')
for k in annotations_group[index].keys():
annotations_group[index][k] = np.delete(annotations[k], small_indices, axis=0)
annotations_group[index][k] = np.delete(annotations[k], out_indices, axis=0)
# print(annotations['bboxes'][out_indices])
# import cv2
# for invalid_index in small_indices:
# x1, y1, x2, y2 = annotations['bboxes'][invalid_index]
# label = annotations['labels'][invalid_index]
# class_name = self.labels[label]
# print('width: {}'.format(x2 - x1))
# print('height: {}'.format(y2 - y1))
# cv2.rectangle(image, (int(round(x1)), int(round(y1))), (int(round(x2)), int(round(y2))), (0, 255, 0), 2)
# cv2.putText(image, class_name, (int(round(x1)), int(round(y1))), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 1)
# cv2.namedWindow('image', cv2.WINDOW_NORMAL)
# cv2.imshow('image', image)
# cv2.waitKey(0)
filtered_image_group.append(image)
filtered_annotations_group.append(annotations_group[index])
return filtered_image_group, filtered_annotations_group
def load_image_group(self, group):
"""
Load images for all images in a group.
"""
return [self.load_image(image_index) for image_index in group]
def augmentations_pipeline(self,image_group, annotations_group):
# augmentations_list = list()
# if self.horizontal_flip:
# H = A.HorizontalFlip(p=0.5)
# augmentations_list.append(H)
# if self.vertical_flip:
# V = A.VerticalFlip(p=0.5)
# augmentations_list.append(V)
# if self.RandomBrightnessContrast:
# B = A.OneOf([
# A.RandomBrightnessContrast(brightness_limit=0.3,
# contrast_limit=0.2,
# p=.8),
# A.RandomGamma(gamma_limit=(80, 120))
# ],p=.8)
# augmentations_list.append(B)
# if self.RandomColorShift:
# C = A.OneOf([
# A.HueSaturationValue(hue_shift_limit=.2, sat_shift_limit=.2,
# val_shift_limit=0.2,p=.8),
# A.RGBShift(r_shift_limit=20, b_shift_limit=15, g_shift_limit=15)
# ])
# augmentations_list.append(C)
# augmentations_list.append(A.CLAHE(p=0.8))
# augmentations_list.append(A.ToGray(p=0.01))
# if self.RandomRotate90:
# R = A.RandomRotate90(p=0.5)
# augmentations_list.append(R)
augmentations_list_1= [
# A.Resize(height=1024, width=1024, p=1),
# A.RandomSizedCrop(min_max_height=(824, 824), height=1024, width=1024, p=0.5),
A.OneOf([
A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit= 0.2,
val_shift_limit=0.2, p=0.9),
A.RandomBrightnessContrast(brightness_limit=0.2,
contrast_limit=0.2, p=0.9),
],p=0.9),
# augmentations_list_2 = [
A.Rotate (limit=list(np.arange(-90, 90+16, 15)), interpolation=1, border_mode=0, p=0.8),
A.ToGray(p=0.01),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.Resize(height=640, width=640, p=1),
]
transform_1 = A.Compose(augmentations_list_1,
keypoint_params=A.KeypointParams(
format='xy',remove_invisible=False),
p=1
)
# transform_2 = A.Compose(augmentations_list_2,
# keypoint_params=A.KeypointParams(
# format='xy',remove_invisible=False),
# p=1
# )
for index, (image, annotations) in enumerate(zip(image_group, annotations_group)):
# preprocess a single group entry
quadrangles = annotations['quadrangles'].reshape(-1,2)
transformed = transform_1(image=image,
keypoints=(quadrangles)
)
aug_quadrangles = np.array(transformed['keypoints']).reshape(-1,4,2).astype(np.float32)
xmin = np.min(aug_quadrangles, axis=1)[:, 0]
ymin = np.min(aug_quadrangles, axis=1)[:, 1]
xmax = np.max(aug_quadrangles, axis=1)[:, 0]
ymax = np.max(aug_quadrangles, axis=1)[:, 1]
annotations['bboxes'] = np.stack([xmin,ymin,xmax,ymax],axis=1)
annotations['quadrangles'] = aug_quadrangles
image_group[index] = transformed['image']
# image_group, annotations_group = self.clip_transformed_annotations(image_group, annotations_group)
# for index, (image, annotations) in enumerate(zip(image_group, annotations_group)):
# # preprocess a single group entry
# quadrangles = annotations['quadrangles'].reshape(-1,2)
# transformed = transform_2(image=image,
# keypoints=(quadrangles)
# )
# aug_quadrangles = np.array(transformed['keypoints']).reshape(-1,4,2).astype(np.float32)
# xmin = np.min(aug_quadrangles, axis=1)[:, 0]
# ymin = np.min(aug_quadrangles, axis=1)[:, 1]
# xmax = np.max(aug_quadrangles, axis=1)[:, 0]
# ymax = np.max(aug_quadrangles, axis=1)[:, 1]
# annotations['bboxes'] = np.stack([xmin,ymin,xmax,ymax],axis=1)
# annotations['quadrangles'] = aug_quadrangles
# image_group[index] = transformed['image']
return image_group, annotations_group
def random_visual_effect_group_entry(self, image, annotations):
"""
Randomly transforms image and annotation.
"""
# apply visual effect
image = self.visual_effect(image)
return image, annotations
def random_visual_effect_group(self, image_group, annotations_group):
"""
Randomly apply visual effect on each image.
"""
assert (len(image_group) == len(annotations_group))
if self.visual_effect is None:
# do nothing
return image_group, annotations_group
for index in range(len(image_group)):
# apply effect on a single group entry
image_group[index], annotations_group[index] = self.random_visual_effect_group_entry(
image_group[index], annotations_group[index]
)
return image_group, annotations_group
def random_misc_group_entry(self, image, annotations):
"""
Randomly transforms image and annotation.
"""
# randomly transform both image and annotations
image, annotations = self.misc_effect(image, annotations)
return image, annotations
def random_misc_group(self, image_group, annotations_group):
"""
Randomly transforms each image and its annotations.
"""
assert (len(image_group) == len(annotations_group))
if self.misc_effect is None:
return image_group, annotations_group
for index in range(len(image_group)):
# transform a single group entry
image_group[index], annotations_group[index] = self.random_misc_group_entry(image_group[index],
annotations_group[index])
return image_group, annotations_group
def preprocess_group_entry(self, image, annotations):
"""
Preprocess image and its annotations.
"""
# preprocess the image
image, scale = self.preprocess_image(image)
# print(image.shape)
# print(scale)
annotations['bboxes'] *= scale
if self.detect_quadrangle:
annotations['quadrangles'] *= scale
# quadrangles = np.array([self.xywhtheta_to_coords(
# self.coords_to_xywhtheta(q.reshape(1,8)))
# for q in annotations['quadrangles']
# ]
# ).reshape(-1,4,2)
# quadrangles = np.array([self.reorder_vertexes(q) for q in quadrangles])
quadrangles = np.array([get_best_begin_point(
forward_convert(
backward_convert(
q.reshape(-1,8))))
for q in annotations['quadrangles']
]).reshape(-1,4,2)
annotations['quadrangles'] = quadrangles
# print(quadrangles.shape)
return image,annotations
# apply resizing to annotations too
def preprocess_group(self, image_group, annotations_group):
"""
Preprocess each image and its annotations in its group.
"""
assert (len(image_group) == len(annotations_group))
# print(len(image_group))
# print(len(annotations_group))
for index,(image,annotations) in enumerate( zip(image_group,annotations_group)):
# preprocess a single group entry
image_group[index], annotations_group[index] = self.preprocess_group_entry(image,annotations)
return image_group, annotations_group
def group_images(self):
"""
Order the images according to self.order and makes groups of self.batch_size.
"""
# determine the order of the images
order = list(range(self.size()))
if self.group_method == 'random':
random.shuffle(order)
elif self.group_method == 'ratio':
order.sort(key=lambda x: self.image_aspect_ratio(x))
# divide into groups, one group = one batch
self.groups = [[order[x % len(order)] for x in range(i, i + self.batch_size)] for i in
range(0, len(order), self.batch_size)]
def compute_inputs(self, image_group, annotations_group):
"""
Compute inputs for the network using an image_group.
"""
batch_images = np.array(image_group).astype(np.float32)
return [batch_images]
def compute_alphas_and_ratios(self, annotations_group):
for i, annotations in enumerate(annotations_group):
# print(quadrangles)
quadrangles = annotations['quadrangles']
alphas = np.zeros((quadrangles.shape[0], 2), dtype=np.float32)
xmin = np.min(quadrangles, axis=1)[:, 0]
ymin = np.min(quadrangles, axis=1)[:, 1]
xmax = np.max(quadrangles, axis=1)[:, 0]
ymax = np.max(quadrangles, axis=1)[:, 1]
annotations['bboxes'] = np.vstack([xmin,ymin,xmax,ymax]).T
# alpha1, alpha2, alpha3, alpha4
alphas[:, 0] = (quadrangles[:, 0, 0] - xmin) / (xmax - xmin)
alphas[:, 1] = (quadrangles[:, 1, 1] - ymin) / (ymax - ymin)
# alphas[:, 2] = (xmax - quadrangles[:, 2, 0]) / (xmax - xmin)
# alphas[:, 3] = (ymax - quadrangles[:, 3, 1]) / (ymax - ymin)
annotations['alphas'] = alphas
# ratio
area1 = 0.5 * alphas[:, 0] * (1 - alphas[:, 1])
area2 = 0.5 * alphas[:, 1] * (1 - alphas[:, 0])
# area3 = 0.5 * alphas[:, 2] * (1 - alphas[:, 1])
# area4 = 0.5 * alphas[:, 3] * (1 - alphas[:, 2])
annotations['ratios'] = 1 - area1 - area2# - area3 - area4
return annotations_group
def compute_angle(self, annotations_group):
for i, annotations in enumerate(annotations_group):
# print(quadrangles)
quadrangles = annotations['quadrangles']
angles = np.zeros((quadrangles.shape[0], 1), dtype=np.float64)
bboxes = np.zeros((quadrangles.shape[0], 4), dtype=np.float64)
rbboxes = change_rbox_definition(backward_convert(quadrangles.reshape(-1,8)))
# print(rbboxes.shape)
angles[:,0] = rbboxes[:,4]/45.0
quads_off = np.array([rotate(q ,rbboxes[i,4]) for i,q in enumerate(quadrangles)])
# print(bboxes_q.shape)
if quads_off.shape[0]==0:
quads_off = np.zeros((quadrangles.shape[0], 4,2), dtype=np.float32)
bboxes[:,0] = np.min(quads_off, axis=1)[:, 0]
bboxes[:,1] = np.min(quads_off, axis=1)[:, 1]
bboxes[:,2] = np.max(quads_off, axis=1)[:, 0]
bboxes[:,3] = np.max(quads_off, axis=1)[:, 1]
# print(bboxes.shape)
annotations['bboxes'] = bboxes
annotations['quads_off'] = quads_off
annotations['angles'] = angles
annotations_group[i]= annotations
return annotations_group
def compute_targets(self, image_group, annotations_group):
"""
Compute target outputs for the network using images and their annotations.
"""
"""
Compute target outputs for the network using images and their annotations.
"""
# print(annotations_group)
batches_targets = anchor_targets_bbox(
self.anchors,
image_group,
annotations_group,
num_classes=self.num_classes(),
detect_quadrangle=self.detect_quadrangle
)
return list(batches_targets)
def compute_inputs_targets(self, group, debug=False):
"""
Compute inputs and target outputs for the network.
"""
# load images and annotations
# list
image_group = self.load_image_group(group)
annotations_group = self.load_annotations_group(group)
# check validity of annotations
# image_group, annotations_group = self.filter_annotations(image_group, annotations_group, group)
# randomly apply visual effect
image_group, annotations_group = self.random_visual_effect_group(image_group, annotations_group)
# randomly transform data
# image_group, annotations_group = self.random_transform_group(image_group, annotations_group)
# randomly apply misc effect
image_group, annotations_group = self.random_misc_group(image_group, annotations_group)
if self.use_augmentations:
image_group, annotations_group = self.augmentations_pipeline(image_group, annotations_group)
# perform preprocessing steps
# print((image_group)[0])
# print((annotations_group)[0])
image_group, annotations_group = self.preprocess_group(image_group, annotations_group)
# check validity of annotations
image_group, annotations_group = self.clip_transformed_annotations(image_group, annotations_group)
assert len(image_group) != 0
assert len(image_group) == len(annotations_group)
if self.detect_quadrangle:
# compute alphas and ratio for targets
annotations_group = self.compute_alphas_and_ratios(annotations_group)
annotations_group = self.compute_angle(annotations_group)
# print(annotations_group)
# compute network inputs
inputs = self.compute_inputs(image_group, annotations_group)
# compute network targets
targets = self.compute_targets(image_group, annotations_group)
if debug:
return inputs, targets, annotations_group
return inputs, targets
def __len__(self):
"""
Number of batches for generator.
"""
return len(self.groups)
def __getitem__(self, index):
"""
Keras sequence method for generating batches.
"""
group = self.groups[index]
inputs, targets = self.compute_inputs_targets(group)
return inputs, targets
def preprocess_image(self, image):
# image, RGB
image_height, image_width = image.shape[:2]
if image_height > image_width:
scale = self.image_size / image_height
resized_height = self.image_size
resized_width = int(image_width * scale)
else:
scale = self.image_size / image_width
resized_height = int(image_height * scale)
resized_width = self.image_size
image = cv2.resize(image, (resized_width, resized_height))
image = image.astype(np.float32)
image /= 255.
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
image -= mean
image /= std
pad_h = self.image_size - resized_height
pad_w = self.image_size - resized_width
image = | np.pad(image, [(0, pad_h), (0, pad_w), (0, 0)], mode='constant') | numpy.pad |
"""
Tests for the bootstrap_calcs.py file.
"""
import unittest
import numpy as np
import numpy.testing as npt
import pandas as pd
from scipy.stats import norm, gumbel_r
import pylogit.bootstrap_calcs as bc
try:
# Python 3.x does not natively support xrange
from past.builtins import xrange
except ImportError:
pass
class ComputationalTests(unittest.TestCase):
def setUp(self):
"""
Note that the spatial test data used in many of these tests comes from
Efron, Bradley, and <NAME>. An Introduction to the
Bootstrap. CRC press, 1994. Chapter 14.
"""
# Determine the number of parameters and number of bootstrap replicates
num_replicates = 100
num_params = 5
# Create a set of fake bootstrap replicates
self.bootstrap_replicates =\
(np.arange(1, 1 + num_replicates)[:, None] *
np.arange(1, 1 + num_params)[None, :])
# Create a fake maximum likelihood parameter estimate
self.mle_params = self.bootstrap_replicates[50, :]
# Create a set of fake jackknife replicates
array_container = []
for est in self.mle_params:
array_container.append(gumbel_r.rvs(loc=est, size=10))
self.jackknife_replicates =\
np.concatenate([x[:, None] for x in array_container], axis=1)
# Create a fake confidence percentage.
self.conf_percentage = 94.88
# Store the spatial test data from Efron and Tibshirani (1994)
self.test_data =\
np.array([48, 36, 20, 29, 42, 42, 20, 42, 22, 41, 45, 14, 6,
0, 33, 28, 34, 4, 32, 24, 47, 41, 24, 26, 30, 41])
# Note how many test data observations there are.
num_test_obs = self.test_data.size
# Create the function to calculate the jackknife replicates.
def calc_theta(array):
result = ((array - array.mean())**2).sum() / float(array.size)
return result
self.calc_theta = calc_theta
self.test_theta_hat = np.array([calc_theta(self.test_data)])
# Create a pandas series of the data. Allows for easy case deletion.
raw_series = pd.Series(self.test_data)
# Create the array of jackknife replicates
jackknife_replicates = np.empty((num_test_obs, 1), dtype=float)
for obs in xrange(num_test_obs):
current_data = raw_series[raw_series.index != obs].values
jackknife_replicates[obs] = calc_theta(current_data)
self.test_jackknife_replicates = jackknife_replicates
return None
def test_calc_percentile_interval(self):
# Get the alpha percentage. Should be 5.12 so alpha / 2 should be 2.56
alpha = bc.get_alpha_from_conf_percentage(self.conf_percentage)
# These next 2 statements work because there are exactly 100 replicates
# We should have the value in BR[lower_row, 0] = 3 so that there are 2
# elements in bootstrap_replicates (BR) that are less than this. I.e.
# we want lower_row = 2. Note 2.56 rounded down is 2.
lower_row = int(np.floor(alpha / 2.0))
# 100 - 2.56 is 97.44. Rounded up, this is 98.
# We want the row such that the value in the first column of that row
# is 98, i.e. we want the row at index 97.
upper_row = int(np.floor(100 - (alpha / 2.0)))
# Create the expected results
expected_results =\
bc.combine_conf_endpoints(self.bootstrap_replicates[lower_row],
self.bootstrap_replicates[upper_row])
# Alias the function being tested
func = bc.calc_percentile_interval
# Get the function results
func_results = func(self.bootstrap_replicates, self.conf_percentage)
# Perform the desired tests
self.assertIsInstance(func_results, np.ndarray)
self.assertEqual(func_results.shape, expected_results.shape)
npt.assert_allclose(func_results, expected_results)
return None
def test_calc_bias_correction_bca(self):
# There are 100 bootstrap replicates, already in ascending order for
# each column. If we take row 51 to be the mle, then 50% of the
# replicates are less than the mle, and we should have bias = 0.
expected_result = np.zeros(self.mle_params.size)
# Alias the function to be tested.
func = bc.calc_bias_correction_bca
# Perform the desired test
func_result = func(self.bootstrap_replicates, self.mle_params)
self.assertIsInstance(func_result, np.ndarray)
self.assertEqual(func_result.shape, expected_result.shape)
npt.assert_allclose(func_result, expected_result)
# Create a fake mle that should be higher than 95% of the results
fake_mle = self.bootstrap_replicates[95]
expected_result_2 = norm.ppf(0.95) * np.ones(self.mle_params.size)
func_result_2 = func(self.bootstrap_replicates, fake_mle)
self.assertIsInstance(func_result_2, np.ndarray)
self.assertEqual(func_result_2.shape, expected_result_2.shape)
npt.assert_allclose(func_result_2, expected_result_2)
return None
def test_calc_acceleration_bca(self):
# Get the expected result. See page 186 of Efron and Tibshirani (1994)
expected_result = np.array([0.061])
# Alias the function being tested
func = bc.calc_acceleration_bca
# Perform the desired test
func_result = func(self.test_jackknife_replicates)
self.assertIsInstance(func_result, np.ndarray)
self.assertEqual(func_result.shape, expected_result.shape)
# Note the absolute tolerance of 5e-4 is used because the results
# should agree when rounded to 3 decimal places. This will be the case
# if the two sets of results agree to within 5e-4 of each other.
npt.assert_allclose(func_result, expected_result, atol=5e-4)
return None
def test_calc_lower_bca_percentile(self):
# Use the parameter values from
# Efron, Bradley, and <NAME>. An Introduction to the
# Bootstrap. CRC press, 1994. Pages 185-186
# Note that my alpha is Efron's alpha / 2, in percents not decimals
alpha_percent = 10
bias_correction = np.array([0.146])
acceleration = np.array([0.061])
# Note the expected results
expected_result = np.array([0.110])
# Alias the function being tested
func = bc.calc_lower_bca_percentile
# Perform the desired tests
# Note we divide the function results by 100 since our results are in
# terms of percents and Efron's results are in decimals.
func_result = func(alpha_percent, bias_correction, acceleration) / 100
self.assertIsInstance(func_result, np.ndarray)
self.assertEqual(func_result.shape, expected_result.shape)
# Note the absolute tolerance of 5e-4 is used because the results
# should agree when rounded to 3 decimal places. This will be the case
# if the two sets of results agree to within 5e-4 of each other.
npt.assert_allclose(func_result, expected_result, atol=5e-4)
return None
def test_calc_upper_bca_percentile(self):
# Use the parameter values from
# Efron, Bradley, and <NAME>. An Introduction to the
# Bootstrap. CRC press, 1994. Pages 185-186
# Note that my alpha is Efron's alpha / 2, in percents not decimals
alpha_percent = 10
bias_correction = np.array([0.146])
acceleration = np.array([0.061])
# Note the expected results
expected_result = np.array([0.985])
# Alias the function being tested
func = bc.calc_upper_bca_percentile
# Perform the desired tests
# Note we divide the function results by 100 since our results are in
# terms of percents and Efron's results are in decimals.
func_result = func(alpha_percent, bias_correction, acceleration) / 100
self.assertIsInstance(func_result, np.ndarray)
self.assertEqual(func_result.shape, expected_result.shape)
# Note the absolute tolerance of 1e-3 is used because the results
# should be within 0.001 of each other.
| npt.assert_allclose(func_result, expected_result, atol=1e-3) | numpy.testing.assert_allclose |
"""
Derived module from dmdbase.py for dmd with control.
Reference:
- <NAME>., <NAME>. and <NAME>., 2016. Dynamic mode decomposition
with control. SIAM Journal on Applied Dynamical Systems, 15(1), pp.142-161.
"""
from .dmdbase import DMDBase
from past.utils import old_div
import numpy as np
class DMDc(DMDBase):
"""
Dynamic Mode Decomposition with control.
This version does not allow to manipulate the temporal window within the
system is reconstructed.
:param svd_rank: the rank for the truncation; If 0, the method computes the
optimal rank and uses it for truncation; if positive interger, the
method uses the argument for the truncation; if float between 0 and 1,
the rank is the number of the biggest singular values that are needed
to reach the 'energy' specified by `svd_rank`; if -1, the method does
not compute truncation.
:type svd_rank: int or float
:param int tlsq_rank: rank truncation computing Total Least Square. Default
is 0, that means no truncation.
:param bool opt: flag to compute optimal amplitudes. See :class:`DMDBase`.
Default is False.
"""
def __init__(self, svd_rank=0, tlsq_rank=0, opt=False):
self.svd_rank = svd_rank
self.tlsq_rank = tlsq_rank
self.opt = opt
self.original_time = None
self._eigs = None
self._Atilde = None
self._B = None
self._modes = None # Phi
self._b = None # amplitudes
self._snapshots = None
self._snapshots_shape = None
self._controlin = None
self._controlin_shape = None
self._basis = None
@property
def B(self):
"""
Get the operator B.
:return: the operator B.
:rtype: numpy.ndarray
"""
return self._B
@property
def basis(self):
"""
Get the basis used to reduce the linear operator to the low dimensional
space.
:return: the matrix which columns are the basis vectors.
:rtype: numpy.ndarray
"""
return self._basis
def reconstructed_data(self, control_input=None):
"""
Return the reconstructed data, computed using the `control_input`
argument. If the `control_input` is not passed, the original input (in
the `fit` method) is used. The input dimension has to be consistent
with the dynamics.
:param numpy.ndarray control_input: the input control matrix.
:return: the matrix that contains the reconstructed snapshots.
:rtype: numpy.ndarray
"""
if control_input is None:
controlin, controlin_shape = self._controlin, self._controlin_shape
else:
controlin, controlin_shape = self._col_major_2darray(control_input)
if controlin.shape[1] != self.dynamics.shape[1]-1:
raise RuntimeError(
'The number of control inputs and the number of snapshots to reconstruct has to be the same')
if np.isnan(self.modes).any():
print('Modes contain nans; aborting without error')
return np.nan * np.zeros_like(self._snapshots)
omega = old_div(np.log(self.eigs), self.original_time['dt'])
eigs = np.exp(omega * self.dmd_time['dt'])
A = self.modes.dot(np.diag(eigs)).dot(np.linalg.pinv(self.modes))
data = [self._snapshots[:, 0]]
for i, u in enumerate(controlin.T):
data.append(A.dot(data[i]) + self._B.dot(u))
data = np.array(data).T
return data
def _fit_B_known(self, X, Y, B):
"""
Private method that performs the dynamic mode decomposition algorithm
with control when the matrix `B` is provided.
:param numpy.ndarray X: the first matrix of original snapshots.
:param numpy.ndarray Y: the second matrix of original snapshots.
:param numpy.ndarray I: the input control matrix.
:param numpy.ndarray B: the matrib B.
"""
X, Y = self._compute_tlsq(X, Y, self.tlsq_rank)
U, s, V = self._compute_svd(X, self.svd_rank)
self._Atilde = U.T.conj().dot(Y - B.dot(self._controlin)).dot(V).dot(
np.diag(np.reciprocal(s)))
self._eigs, self._modes = self._eig_from_lowrank_op(
self._Atilde, (Y - B.dot(self._controlin)), U, s, V, True)
self._b = self._compute_amplitudes(self._modes, self._snapshots,
self._eigs, self.opt)
self._B = B
self._basis = U
return self
def _fit_B_unknown(self, X, Y):
"""
Private method that performs the dynamic mode decomposition algorithm
with control when the matrix `B` is not provided.
:param numpy.ndarray X: the first matrix of original snapshots.
:param numpy.ndarray Y: the second matrix of original snapshots.
:param numpy.ndarray I: the input control matrix.
"""
omega = np.vstack([X, self._controlin])
Up, sp, Vp = self._compute_svd(omega, self.svd_rank)
Up1 = Up[:self._snapshots.shape[0], :]
Up2 = Up[self._snapshots.shape[0]:, :]
# TODO: a second svd_rank?
Ur, sr, Vr = self._compute_svd(Y, -1)
self._basis = Ur
reg = 1e-10 # Prevents nan in the reciprocal
self._Atilde = Ur.T.conj().dot(Y).dot(Vp).dot(
np.diag(np.reciprocal(sp+reg))).dot(Up1.T.conj()).dot(Ur)
self._Btilde = Ur.T.conj().dot(Y).dot(Vp).dot(
np.diag(np.reciprocal(sp+reg))).dot(Up2.T.conj())
self._B = Ur.dot(self._Btilde)
self._eigs, modes = | np.linalg.eig(self._Atilde) | numpy.linalg.eig |
import os
import sys
import subprocess
import argparse
import time
import math
import numpy as np
import mrcfile
import matplotlib.pyplot as plt
from cv2 import *
from scipy import ndimage
import scipy.signal
from scipy.spatial.distance import directed_hausdorff
from skimage import feature
from skimage.feature import match_template
from skimage.filters import threshold_otsu
from skimage.transform import rescale
import imutils
from joblib import Parallel, effective_n_jobs, delayed
from sklearn.utils import gen_even_slices
from sklearn.metrics.pairwise import euclidean_distances
from pathlib import Path
from shutil import copyfile
from helper_functions import load_obj, save_obj, sort_dict
from extract_relion_particle_counts import gen_particle_counts
cs2star_path = '/home_local/landeradmin/pyem' #UPDATE THIS depending on where pyem is located in your machine
def crop_image(img):
"""
Crop image based on first nonzero elements
Parameters
------------
img: 2d np.ndarray
A single class average
Returns
-----------
2d np.ndarray
Cropped image
"""
row_idx, col_idx = np.nonzero(img)
return(img[np.min(row_idx):np.max(row_idx)+1,np.min(col_idx):np.max(col_idx)+1])
def norm_cross_correlation_cv(img1, img2):
"""
Calculate the normalized cross-correlation between two images
Parameters
------------
img1: 2d np.ndarray
A single class average
img2: 2d np.ndarray
A single class average
Returns
-----------
2d np.ndarray
Cross-correlation matrix
tuple
2D Index corresponding to maximum cross-correlation
int
Relative delta x to shift img2 to maximize cross-correlation with img1
int
Relative delta y to shift img2 to maximize cross-correlation with img1
"""
cross_image = cv2.filter2D(img1, -1, img2, borderType=cv2.BORDER_CONSTANT)
max_idx = np.unravel_index(np.argmax(cross_image), cross_image.shape)
relative_diff_y = max_idx[0] - img1.shape[0]//2
relative_diff_x = max_idx[1] - img1.shape[1]//2
return(cross_image, max_idx, relative_diff_x, relative_diff_y)
def get_image_rotation_matrix_map(image_2d_matrix, scale_factor, mirror):
"""
Wrapper to calclate and store rotated images for each of the class averages
Parameters
------------
image_2d_matrix: 3d np.ndarray
Axis 0 corresponds to class average number, axis 1 corresponds to class average width, and axis 2 corresponds to class average height
scale_factor: float
Factor by which to downsample image
mirror: int
Whether or not to calculate rotations for mirror image
Returns
-----------
dict
Dictionary of dictionaries storing each rotation for each image in image_2d_matrix
dict
Dictionary of dictionaries storing the maximum shape among all rotations for each image in image_2d_matrix
"""
#each image has a unique maximum shape
image_2d_rotation_matrix_map = {}
image_2d_rotation_matrix_max_shape_map = {}
image_2d_rotation_mirror_matrix_map = {}
image_2d_rotation_mirror_matrix_max_shape_map = {}
for i in range(0,image_2d_matrix.shape[0]):
curr_img = np.copy(image_2d_matrix[i,:,:])
if scale_factor is not None:
curr_img = rescale(curr_img, scale_factor, anti_aliasing=True)
max_height, max_width, rotation_matrix_map = get_rotated_image_max_shape(curr_img)
image_2d_rotation_matrix_map[i] = rotation_matrix_map
image_2d_rotation_matrix_max_shape_map[i] = [max_height, max_width]
if mirror:
curr_img = np.flip(curr_img, axis=0)
max_height, max_width, rotation_matrix_map = get_rotated_image_max_shape(curr_img)
image_2d_rotation_mirror_matrix_map[i] = rotation_matrix_map
image_2d_rotation_mirror_matrix_max_shape_map[i] = [max_height, max_width]
rotation_matrix_map = {}
max_shape_map = {}
rotation_matrix_map['original'] = image_2d_rotation_matrix_map
max_shape_map['original'] = image_2d_rotation_matrix_max_shape_map
if mirror:
rotation_matrix_map['mirror'] = image_2d_rotation_mirror_matrix_map
max_shape_map['mirror'] = image_2d_rotation_mirror_matrix_max_shape_map
return(rotation_matrix_map, max_shape_map)
def get_rotated_image_max_shape(img):
"""
Calculates and stores rotated images for a class average
Parameters
------------
img: 2d np.ndarray
A single class average
Returns
-----------
int
Maximium height among all rotated images
int
Maximum width among all rotated images
dict
Dictionary storing each rotation for an image
"""
rotation_angles = range(0,360,6)
max_shape = np.array([0,0])
max_idx_row = -1
max_idx_col = -1
curr_img = np.copy(img)
rotation_matrix_map = {}
for j in rotation_angles:
rotated_img = imutils.rotate_bound(curr_img, j)
rotated_img_cropped = crop_image(rotated_img)
rotated_img_cropped_shape = rotated_img_cropped.shape
if rotated_img_cropped_shape[0] > max_shape[0]:
max_shape[0] = rotated_img_cropped_shape[0]
max_idx_row = j
if rotated_img_cropped_shape[1] > max_shape[1]:
max_shape[1] = rotated_img_cropped_shape[1]
max_idx_col = j
rotation_matrix_map[j] = rotated_img_cropped
return((max_shape[0], max_shape[1], rotation_matrix_map))
def rot_trans_invariant_dist_optimized(image_2d_rotation_matrix_map, image_2d_rotation_matrix_max_shape_map, img1_idx, img2_idx, mirror_bool, mrc_height, mrc_width, corr_only=False):
"""
Calculates rotational and reflectional invariant normalized cross-correlation and shape based distance using the 95th-percentile hausdorff distance between edges.
Note that rotation and reflection operations are applied to img2.
Parameters
------------
image_2d_rotation_matrix_map: dict
Dictionary of dictionaries storing each rotation for each image in image_2d_matrix
image_2d_rotation_matrix_max_shape_map: dict
Dictionary of dictionaries storing the maximum shape among all rotations for each image in image_2d_matrix
img1_idx: int
Index of first class average
img2_idx: int
Index of second class average
mirror_bool:
Whether or not to calculate distance between mirror image of img2_idx class average
mrc_height:
Height of input class average
mrc_width:
Width of input class average
Returns
-----------
float:
Maximum normalized-cross correlation between img2 and img1
float:
Minimum 95th percentile hausdorff distance between img2 and img1
int
Angle to rotate img2 to maximize cross-correlation with img1
int
Relative delta y to shift img2 to maximize cross-correlation with img1
int
Relative delta x to shift img2 to maximize cross-correlation with img1
"""
rotation_angles = range(0,360,6)
img1_cropped = image_2d_rotation_matrix_map['original'][img1_idx][0]
max_height = img1_cropped.shape[0]
max_width = img1_cropped.shape[1]
if mirror_bool:
img2_max_height = image_2d_rotation_matrix_max_shape_map['mirror'][img2_idx][0]
img2_max_width = image_2d_rotation_matrix_max_shape_map['mirror'][img2_idx][1]
else:
img2_max_height = image_2d_rotation_matrix_max_shape_map['original'][img2_idx][0]
img2_max_width = image_2d_rotation_matrix_max_shape_map['original'][img2_idx][1]
if img2_max_height > max_height:
max_height = img2_max_height
if img2_max_width > max_width:
max_width = img2_max_width
###img1 and img2 are mapped to the same dimensions -- note that comparisons between different sets of images are not of the same size###
###normalized cross correlation is independent of size (in the zero-padded sense) but hausdroff distance is not###
img1_cropped_padded = np.zeros((max_height,max_width))
# compute offset
x_start_new = (max_width - img1_cropped.shape[1]) // 2
y_start_new = (max_height - img1_cropped.shape[0]) // 2
# copy image into center of result image
img1_cropped_padded[y_start_new:y_start_new+img1_cropped.shape[0],
x_start_new:x_start_new+img1_cropped.shape[1]] = img1_cropped
img2_rotation_2d_matrix = np.zeros((len(rotation_angles), max_height, max_width))
for i,angle in enumerate(rotation_angles):
if mirror_bool:
rotated_img2_cropped = image_2d_rotation_matrix_map['mirror'][img2_idx][angle]
else:
rotated_img2_cropped = image_2d_rotation_matrix_map['original'][img2_idx][angle]
padded_output = np.zeros((max_height,max_width))
# compute offset
x_start_new = (max_width - rotated_img2_cropped.shape[1]) // 2
y_start_new = (max_height - rotated_img2_cropped.shape[0]) // 2
# copy image into center of result image
padded_output[y_start_new:y_start_new+rotated_img2_cropped.shape[0],
x_start_new:x_start_new+rotated_img2_cropped.shape[1]] = rotated_img2_cropped
img2_rotation_2d_matrix[i,:,:] = padded_output
correlation_dist_matrix = np.zeros(len(rotation_angles))
correlation_params = np.zeros((len(rotation_angles), 3)) #rotation angle, relative_diff_y, relative_diff_x
#normalize each image
img1_cropped_padded -= np.mean(img1_cropped_padded)
img2_rotation_2d_matrix_mean = np.mean(img2_rotation_2d_matrix, axis=(1,2))
img2_rotation_2d_matrix = img2_rotation_2d_matrix - img2_rotation_2d_matrix_mean.reshape(img2_rotation_2d_matrix_mean.shape[0],1,1)
img1_cropped_padded /= np.std(img1_cropped_padded)
img2_rotation_2d_matrix_std = np.std(img2_rotation_2d_matrix, axis=(1,2))
img2_rotation_2d_matrix = img2_rotation_2d_matrix/img2_rotation_2d_matrix_std.reshape(img2_rotation_2d_matrix_std.shape[0],1,1)
img1_cropped_padded_length_norm = img1_cropped_padded/(img1_cropped_padded.shape[0]*img1_cropped_padded.shape[1])
for i in range(0,len(rotation_angles)):
cross_image_mat, max_idx, relative_diff_x, relative_diff_y = norm_cross_correlation_cv(img1_cropped_padded_length_norm, img2_rotation_2d_matrix[i,:,:]) #shift of img2 wrt img1
max_cross_cor = cross_image_mat[max_idx]
correlation_dist_matrix[i] = max_cross_cor
'''img2_shifted = ndimage.shift(np.copy(img2_rotation_2d_matrix[i,:,:]), (relative_diff_y, relative_diff_x))
if blur:
cross_corr_match_template = match_template(cv2.GaussianBlur(img2_shifted,(51,51),0), cv2.GaussianBlur(np.copy(img1_cropped_padded),(51,51),0))
else:
cross_corr_match_template = match_template(img2_shifted, img1_cropped_padded)
print("This %f and this %f should roughly match" % (max_cross_cor, cross_corr_match_template[0][0]))
print("relative y %d, relative x %d" % (relative_diff_y, relative_diff_x))'''
correlation_params[i,0] = rotation_angles[i]
correlation_params[i,1] = relative_diff_y
correlation_params[i,2] = relative_diff_x
max_corr_idx = np.argmax(correlation_dist_matrix)
angle_optimal = correlation_params[max_corr_idx,0]
relative_diff_y_optimal = correlation_params[max_corr_idx,1]
relative_diff_x_optimal = correlation_params[max_corr_idx,2]
if corr_only:
return(np.max(correlation_dist_matrix), angle_optimal, relative_diff_y_optimal, relative_diff_x_optimal)
zero_val_mapping = img2_rotation_2d_matrix_mean[max_corr_idx]/img2_rotation_2d_matrix_std[max_corr_idx]
img2_shifted = ndimage.shift(np.copy(img2_rotation_2d_matrix[max_corr_idx,:,:]), (relative_diff_y_optimal, relative_diff_x_optimal), cval = 0-zero_val_mapping)
#to ignore background noise when calculating edges -- 2 rounds of otsu thresholding
img1_th = (float(threshold_otsu(cv2.GaussianBlur(img1_cropped_padded,(21,21),0))))
img2_th = (float(threshold_otsu(cv2.GaussianBlur(img2_shifted,(21,21),0))))
img2_shifted[img2_shifted < img2_th] = 0
img1_cropped_padded[img1_cropped_padded < img1_th] = 0
img1_th = (float(threshold_otsu(img1_cropped_padded)))
img2_th = (float(threshold_otsu(img2_shifted)))
img2_shifted[img2_shifted < img2_th] = 0
img1_cropped_padded[img1_cropped_padded < img1_th] = 0
##calculate distance between edges using hausdroff metric looping thorugh different values of sigma
sigma_vals = [1,2]
hausdorff_norm = math.sqrt(math.pow(mrc_height,2) + math.pow(mrc_width,2))
hausdroff_dist_matrix = np.zeros((len(sigma_vals), len(sigma_vals)))
img2_edge_matrix = np.zeros((len(sigma_vals), img2_shifted.shape[0], img2_shifted.shape[1]))
for i,s1 in enumerate(sigma_vals):
img2_edge = feature.canny(img2_shifted, sigma=s1).astype(float)
img2_edge_matrix[i,:,:] = img2_edge
for i,s1 in enumerate(sigma_vals):
img1_edge = feature.canny(img1_cropped_padded, sigma=s1).astype(float)
for j,s2 in enumerate(sigma_vals):
img2_edge = img2_edge_matrix[j,:,:]
img1_edge_idx = np.argwhere(img1_edge == 1)
img2_edge_idx = np.argwhere(img2_edge == 1)
#hausdroff_21 = directed_hausdorff(img2_edge_idx, img1_edge_idx)[0]
#hausdroff_12 = directed_hausdorff(img1_edge_idx, img2_edge_idx)[0]
hausdroff_21 = (np.quantile(euclidean_distances(img2_edge_idx, img1_edge_idx).min(axis = 0), .95, axis=0))
hausdroff_12 = (np.quantile(euclidean_distances(img2_edge_idx, img1_edge_idx).min(axis = 1), .95, axis=0))
max_hausdroff_dist = np.max([hausdroff_21, hausdroff_12])
#at certain values of sigma, no edges may be detected leading to a 0 hausdroff distance; we should ignore these
#if two images are identical, hausdorff matrix will be all np.inf which is equivalent to all zeros
if max_hausdroff_dist == 0:
if len(img1_edge_idx) == 0 and len(img2_edge_idx) == 0:
max_hausdroff_dist = np.inf
hausdroff_dist_matrix[i,j] = max_hausdroff_dist
else:
hausdroff_dist_matrix[i,j] = max_hausdroff_dist/hausdorff_norm
return(np.max(correlation_dist_matrix), | np.min(hausdroff_dist_matrix) | numpy.min |
"""Functions to help generate Barrier Certificates (Extra).
Written by: The Robotarium Team
Modified by: <NAME> (zmk5)
"""
import time
from typing import Union
from typing import Callable
from cvxopt import matrix
from cvxopt import solvers
import numpy as np
import quadprog as solver2
solvers.options['show_progress'] = False
solvers.options['reltol'] = 1e-2 # was e-2
solvers.options['feastol'] = 1e-2 # was e-4
solvers.options['maxiters'] = 50 # default is 100
def create_robust_barriers(
max_num_obstacles: int = 100,
max_num_robots: int = 30,
d: int = 5,
wheel_vel_limit: float = 12.5,
base_length: float = 0.105,
wheel_radius: float = 0.016,
projection_distance: float = 0.05,
gamma: Union[int, float] = 150,
safety_radius: float = 0.12) -> Callable:
"""Create a robust barrier certificate function."""
D = np.matrix([
[wheel_radius/2, wheel_radius/2],
[-wheel_radius/base_length, wheel_radius/base_length]])
L = np.matrix([[1, 0], [0, projection_distance]]) * D
disturb = np.matrix([
[-d, -d, d, d],
[-d, d, d, -d]])
num_disturbs = np.size(disturb[1, :])
# TODO: Take out 4*max_num_robots?
max_num_constraints = (max_num_robots**2-max_num_robots)//2 + max_num_robots*max_num_obstacles + 4*max_num_robots
A = np.matrix(np.zeros([max_num_constraints, 2*max_num_robots]))
b = np.matrix(np.zeros([max_num_constraints, 1]))
Os = np.matrix(np.zeros([2, max_num_robots]))
ps = np.matrix(np.zeros([2, max_num_robots]))
Ms = np.matrix(np.zeros([2, 2*max_num_robots]))
def robust_barriers(dxu, x, obstacles):
"""Output robust barrier certificate array."""
num_robots = np.size(dxu[0,:])
if obstacles.size != 0:
num_obstacles = np.size(obstacles[0,:])
else:
num_obstacles = 0
if num_robots < 2:
temp = 0
else:
temp = (num_robots**2-num_robots)//2
if num_robots == 0:
return []
# Generate constraints for barrier certificates based on the size of the safety radius
num_constraints = temp + num_robots*num_obstacles
A[0:num_constraints, 0:2*num_robots] = 0
Os[0, 0:num_robots] = np.cos(x[2, :])
Os[1, 0:num_robots] = | np.sin(x[2, :]) | numpy.sin |
from ...util import set_units
from ...config import default_units, observing_bands
from ...field import Grid, SeparatedCoords, CartesianGrid, Field, UnstructuredCoords
import numpy as np
import astropy.constants as const
import warnings
import astropy.units as u
__all__ = ['make_spectrum_unit_field', 'make_wavelengths', 'convolve_to_resolution', 'doppler_shift_wavelengths']
@set_units(wavelengths=default_units.length)
def make_spectrum_unit_field(wavelengths, spectrum, convert_units_to_default=True):
if convert_units_to_default:
spectrum = spectrum.to(default_units.flux_wavelength_density, equivalencies = u.spectral_density(wavelengths))
# check if wavelength grid is regular
if np.any(np.diff(wavelengths) != | np.diff(wavelengths) | numpy.diff |
import os
import numpy as np
from pymoo.model.problem import Problem
from pymoo.problems.util import load_pareto_front_from_file
class MODAct(Problem):
"""Multi-Objective Design of Actuators
MODAct is a framework for real-world constrained multi-objective optimization.
Refer to the python package https://github.com/epfl-lamd/modact from requirements.
Best-known Pareto fronts must be downloaded from here: https://doi.org/10.5281/zenodo.3824302
Parameters
----------
function: str or modact.problems
The name of the benchmark problem to use either as a string or the
problem object instance. Example values: cs1, cs3, ct2, ct4, cts3
References:
----------
<NAME> and <NAME>, “Realistic Constrained Multi-Objective Optimization Benchmark Problems from Design,”
IEEE Transactions on Evolutionary Computation, pp. 1–1, 2020.
"""
def __init__(self, function, **kwargs):
try:
import modact.problems as pb
except:
raise Exception("Please install the modact library: https://github.com/epfl-lamd/modact")
if isinstance(function, pb.Problem):
self.fct = function
else:
self.fct = pb.get_problem(function)
lb, ub = self.fct.bounds()
n_var = len(lb)
n_obj = len(self.fct.weights)
n_constr = len(self.fct.c_weights)
xl = lb
xu = ub
self.weights = np.array(self.fct.weights)
self.c_weights = | np.array(self.fct.c_weights) | numpy.array |
import matplotlib.pyplot as plt
import numpy as np
def get_measurements(filename: str):
time_list = []
with open(filename, 'r') as file:
line = file.readline()
while line:
time_list.append(float(line[:-1]))
line = file.readline()
file.close()
return time_list
three_time_list_stream = get_measurements('threelayerstreamingscenario_map_stream.txt')
amount_of_runs = len(three_time_list_stream)
three_time_list_classic = get_measurements('threelayerstreamingscenario_map_classic.txt')
plt.figure(0)
plt.plot(list(range(1, amount_of_runs+1)), three_time_list_stream, 'ro', label="stream")
plt.plot(list(range(1, amount_of_runs+1)), three_time_list_classic, 'bo', label="classic")
plt.legend(loc="upper left")
plt.axis([0, amount_of_runs+1, 20, 21])
plt.xticks(np.arange(0, amount_of_runs+1, 1))
plt.xlabel("run number")
plt.ylabel("time in s")
plt.title("Three hop scenario map combined")
plt.savefig('three_hop_scenario_map_combined.png')
plt.show()
six_time_list_stream = get_measurements('sixlayerstreamingscenario_map_stream.txt')
amount_of_runs = len(six_time_list_stream)
six_time_list_classic = get_measurements('sixlayerstreamingscenario_map_classic.txt')
plt.figure(1)
plt.plot(list(range(1, amount_of_runs+1)), six_time_list_stream, 'ro', label="stream")
plt.plot(list(range(1, amount_of_runs+1)), six_time_list_classic, 'bo', label="classic")
plt.legend(loc="upper left")
plt.axis([0, amount_of_runs+1, 20.5, 21.5])
plt.xticks(np.arange(0, amount_of_runs+1, 1))
plt.xlabel("run number")
plt.ylabel("time in s")
plt.title("Six hop scenario map combined")
plt.savefig('six_hop_scenario_map_combined.png')
plt.show()
# Error bars
three_time_list_stream = np.array(three_time_list_stream)
three_time_list_classic = np.array(three_time_list_classic)
six_time_list_stream = np.array(six_time_list_stream)
six_time_list_classic = np.array(six_time_list_classic)
three_stream_mean = np.mean(three_time_list_stream)
three_classic_mean = np.mean(three_time_list_classic)
six_stream_mean = np.mean(six_time_list_stream)
six_classic_mean = np.mean(six_time_list_classic)
three_stream_median = np.median(three_time_list_stream)
three_classic_median = np.median(three_time_list_classic)
six_stream_median = | np.mean(six_time_list_stream) | numpy.mean |
import abc
import math
import six
import numpy as np
from neupy.core.docs import SharedDocsABCMeta
__all__ = ('Initializer', 'Constant', 'Normal', 'Uniform', 'Orthogonal',
'HeNormal', 'HeUniform', 'XavierNormal', 'XavierUniform')
class UninitializedException(Exception):
"""
Exception for uninitialized parameters.
"""
def identify_fans(shape):
"""
Identify fans from shape.
Parameters
----------
shape : tuple or list
Matrix shape.
Returns
-------
tuple
Tuple that contains :math:`fan_{in}` and :math:`fan_{out}`.
"""
fan_in = shape[0]
output_feature_shape = shape[1:]
if output_feature_shape:
fan_out = np.prod(output_feature_shape).item(0)
else:
fan_out = 1
return fan_in, fan_out
def classname(instance):
"""
Returns instance class name.
Parameters
----------
instance : object
Returns
-------
str
"""
return instance.__class__.__name__
class Initializer(six.with_metaclass(SharedDocsABCMeta)):
"""
Base class for parameter initialization.
Methods
-------
sample(shape)
Returns tensor with specified shape.
"""
inherit_method_docs = True
@abc.abstractmethod
def sample(self, shape):
"""
Returns tensor with specified shape.
Parameters
----------
shape : tuple
Parameter shape.
Returns
-------
array-like
"""
raise NotImplementedError
def get_value(self):
"""
This method is the same as ``get_value`` for the Theano
shared variables. The main point is to be able to
generate understandable message when user try to get
value from the uninitialized parameter.
"""
raise UninitializedException("Cannot get parameter value. "
"Parameter hasn't been initialized yet.")
def __repr__(self):
return '{}()'.format(classname(self))
class Constant(Initializer):
"""
Initialize parameter that has constant values.
Parameters
----------
value : float, int
All parameters in the tensor will be equal to
this value. Defaults to ``0``.
Methods
-------
{Initializer.Methods}
"""
def __init__(self, value=0):
self.value = value
def sample(self, shape):
return | np.ones(shape) | numpy.ones |
'''
Unit-tests for SuffStatBag
'''
from bnpy.suffstats.SuffStatBag import SuffStatBag
import numpy as np
import unittest
class TestSuffStatBag(unittest.TestCase):
def shortDescription(self):
return None
def test_copy(self, K=2, D=2):
SS = self.makeSuffStatBagAndFillWithOnes(K, D)
self.addELBOtoSuffStatBag(SS, K)
SS2 = SS.copy()
assert SS2.s == SS.s
assert np.all(SS2.N == SS.N)
assert np.all(SS2.getELBOTerm('Elogz') == SS.getELBOTerm('Elogz'))
assert id(SS2.s) != id(SS.s)
assert id(SS2.N) != id(SS.N)
def test_removeELBO_and_restoreELBO(self, K=2, D=2):
SS = self.makeSuffStatBagAndFillWithOnes(K, D)
self.addELBOtoSuffStatBag(SS, K)
tmpSS = SS.copy()
E = tmpSS.removeELBOTerms()
assert SS.hasELBOTerms()
assert not tmpSS.hasELBOTerms()
with self.assertRaises(AttributeError):
tmpSS.getELBOTerm('Elogz')
assert hasattr(E, 'Elogz')
tmpSS.restoreELBOTerms(E)
for key in E._FieldDims:
assert np.allclose(SS.getELBOTerm(key), tmpSS.getELBOTerm(key))
def test_ampFactor(self, K=2, D=2):
SS = self.makeSuffStatBagAndFillWithOnes(K, D)
SS.applyAmpFactor(3.0)
assert np.allclose(SS.s, 3.0)
assert np.allclose(SS.N, 3.0 * np.ones(K))
assert np.allclose(SS.x, 3.0 * np.ones((K, D)))
assert np.allclose(SS.xxT, 3.0 * np.ones((K, D, D)))
assert SS.hasAmpFactor()
assert SS.ampF == 3.0
def makeSuffStatBagAndFillWithOnes(self, K, D):
SS = SuffStatBag(K=K, D=D)
s = 1.0
N = np.ones(K)
x = np.ones((K, D))
xxT = np.ones((K, D, D))
SS.setField('s', s)
SS.setField('N', N, dims='K')
SS.setField('x', x, dims=('K', 'D'))
SS.setField('xxT', xxT, dims=('K', 'D', 'D'))
return SS
def addELBOtoSuffStatBag(self, SS, K):
SS.setELBOTerm('Elogz', np.ones(K), dims='K')
SS.setELBOTerm('Econst', 1.0, dims=None)
SS.setMergeTerm('Elogz', 2 * np.ones((K, K)), dims=('K', 'K'))
return SS
def getExpectedMergedFields(self, K, D, kA=0):
s = 1.0
N = | np.ones(K - 1) | numpy.ones |
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
from math import *
import random
# -------------CORE DEFINITIONS----------- #
class Error(Exception):
"""Base class for exceptions in this module."""
pass
class InputError(Error):
"""Exception raised for errors in the input.
Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error
"""
def __init__(self, message):
self.message = message
#-------------DEFINE SOME UNIVERSAL FUNCTIONS------------#
def get_curve_color(buffer):
"""
Return prefered color for plots for any buffer
Parameters
----------
buffer: str
Name of buffer
Returns
-------
str
color name
"""
color = {'NNO': 'green',
'QFM': 'darkorange',
'IW': 'black',
'HM': 'red',
'CoCoO': 'blue',
'ReReO': 'magenta',
'Graphite': 'gray',
'QIF': 'mediumaquamarine',
'SiSiO2': 'purple',
'CrCr2O3': 'teal',
'MoMoO2': 'olive',
'CaCaO': 'peru',
'AlAl2O3': 'chartreuse',
'KK2O': 'deeppink',
'MgMgO': 'maroon',
'MnMnO': 'midnightblue',
'NaNa2O': 'dodgerblue',
'TiTiO2': 'orangered'}
return color[buffer]
def get_calibration_temp_range(buffer, units='C'):
"""
Get upper and lower T bounds for which a buffer is calibrated
=============================================================
Parameters
----------
buffer: str
Name of buffer
units: str
Can be 'K' or 'C'. Specifies which units to return.
Returns
-------
tuple
(lower_bound, upper_bound)
"""
if units == 'K' or units == 'C':
pass
else:
raise InputError('Units must be one of "K" or "C".')
temp_ranges_C = {'NNO': (600, 1200),
'QFM': (400, 1200),
'IW': (565, 1200),
'HM': (300, 1100),
'CoCoO': (600, 1200),
'ReReO': (565, 1200),
'Graphite': (565, 1200),
'QIF': (150, 1200),
'SiSiO2': (565, 1200),
'CrCr2O3': (327, 1527),
'MoMoO2': (951, 1311),
'CaCaO': (25, 1527),
'AlAl2O3': (25, 1527),
'KK2O': (25, 1527),
'MgMgO': (25, 1527),
'MnMnO': (25, 1527),
'NaNa2O': (25, 1527),
'TiTiO2': (25, 1527)}
temp_ranges_K = {k: (v[0]+273, v[1]+273) for k, v in temp_ranges_C.items()}
if units == 'C':
return temp_ranges_C[buffer]
elif units == 'K':
return temp_ranges_K[buffer]
def set_calibration_temp_range(temperature_min, temperature_max, buffer_min_T, buffer_max_T):
"""
Set calibrated temperature range for plotting
=============================================
Returns variables representing the temperature range over which a particular buffer is calibrated and
the user-defined temperatures that fall outside of this range. Outside of the calibrated temperature
range, buffer curves are plotted as dashed lines (inside, as solid lines).
Parameters
----------
buffer_min_T: float
Minimum calibrated temperature of the buffer in degrees C.
buffer_max_T: float
Maximum calibrated temperature of the buffer in degrees C.
Returns
-------
Four numpy arrays
1. Usable temperature range in degrees C, with steps of 1 degree
2. Usable temperature range in degrees K, with steps of 1 degree
3. Any user input temperature values that fall below the calibrated temperature range for this buffer, in K
4. Any user input temperature values that fall above the calibrated temperature range for this buffer, in K
"""
temp_range = np.arange(temperature_min, temperature_max, 1)
extrap_lower_min = None
extrap_upper_min = None
if temp_range[0] >= buffer_min_T:
min_range = temp_range[0]
else:
min_range = buffer_min_T
extrap_lower_min = temp_range[0]
extrap_lower_max = buffer_min_T
if temp_range[-1]+1 <= buffer_max_T:
max_range = temp_range[-1]+1
else:
max_range = buffer_max_T
extrap_upper_min = buffer_max_T
extrap_upper_max = temp_range[-1] + 1
usable_temp_range_C = np.arange(min_range, max_range, 1)
usable_temp_range_K = usable_temp_range_C + 273.15
if extrap_lower_min is not None:
extrap_lower_range = np.arange(extrap_lower_min, extrap_lower_max, 1) + 273.15
else:
extrap_lower_range = None
if extrap_upper_min is not None:
extrap_upper_range = np.arange(extrap_upper_min, extrap_upper_max, 1) + 273.15
else:
extrap_upper_range = None
return usable_temp_range_C, usable_temp_range_K, extrap_lower_range, extrap_upper_range
#-----------------DEFINE BUFFER EQUATIONS-------------#
def calc_buffer(P, T, buffer):
"""
Master function to calc any buffer given a name.
Parameters
----------
P: float
Pressure in GPa
T: float or numpy array
Temperature in degrees K
buffer: str
Name of buffer
Returns
-------
float or numpy array
logfO2
"""
if buffer == 'NNO':
return calc_NNO(P, T)
elif buffer == 'QFM':
return calc_QFM(P, T)
elif buffer == 'IW':
return calc_IW(P, T)
elif buffer == 'CrCr2O3':
return calc_CrCr2O3(P, T)
elif buffer == 'SiSiO2':
return calc_SiSiO2(P, T)
elif buffer == 'HM':
return calc_HM(P, T)
elif buffer == 'CoCoO':
return calc_CoCoO(P, T)
elif buffer == 'ReReO':
return calc_ReReO(P, T)
elif buffer == 'Graphite':
return calc_Graphite(P, T)
elif buffer == 'QIF':
return calc_QIF(P, T)
elif buffer == 'MoMoO2':
return calc_MoMoO2(P,T)
elif buffer == 'CaCaO':
return calc_CaCaO(P,T)
elif buffer == 'AlAl2O3':
return calc_AlAl2O3(P,T)
elif buffer == 'KK2O':
return calc_KK2O(P,T)
elif buffer == 'MgMgO':
return calc_MgMgO(P,T)
elif buffer == 'MnMnO':
return calc_MnMnO(P,T)
elif buffer == 'NaNa2O':
return calc_NaNa2O(P,T)
elif buffer == 'TiTiO2':
return calc_TiTiO2(P,T)
else:
raise InputError('Buffer name not recognized')
def calc_NNO(P, T):
"""
Ni-NiO (NNO)
============
Define NNO buffer value at P
References
----------
Campbell et al. (2009) High-pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen fugacity buffers
Parameters
----------
P: float
Pressure in GPa
T: float or numpy array
Temperature in degrees K
Returns
-------
float or numpy array
logfO2
Polynomial coefficients
-----------------------
log fO2 = (a0+a1*P+a2*P^2+a3*P^3+a4*P^4) + (b0+b1*P+b2*P^2+b3*P^3)/T
a0: 8.699
a1: 0.01642
a2: -0.0002755
a3: 0.000002683
a4: -1.015E-08
b0: -24205
b1: 444.73
b2: -0.59288
b3:0.0015292
"""
if isinstance(T, float) or isinstance(T, int):
log_fO2 = (8.699 + 0.01642*P -0.0003*P**2 + (2.7*10**(-6))*P**3 - (10**(-8))*P**4) + (-24205 + 444.73*P - 0.5929*P**2 + 0.00153*P**3)/T
if isinstance(T, np.ndarray):
log_fO2_list = []
for temp in T:
log_fO2_list.append((8.699 + 0.01642*P -0.0003*P**2 + (2.7*10**(-6))*P**3 -
(10**(-8))*P**4) + (-24205 + 444.73*P - 0.5929*P**2 +
0.00153*P**3)/temp)
log_fO2 = np.array(log_fO2_list)
return log_fO2
def calc_QFM(P, T):
"""
Quartz-Fayalite-Magnetite (QFM)
===============================
Define QFM buffer value at P
Parameters
----------
P: float
Pressure in GPa
T: float or numpy array
Temperature in degrees K
Returns
-------
float or numpy array
logfO2
References
----------
<NAME> in Mineralogical Society of America "Reviews in Mineralogy" Volume 25
"""
# translate P to bars
P_bars = P*10000
if isinstance(T, float) or isinstance(T, int):
if T<573:
log_fO2 = (-26445.3/T) + 10.344 + 0.092 * (P_bars-1)/T
if T>=573:
log_fO2 = (-25096.3/T) + 8.735 + 0.11 * (P_bars-1)/T
if isinstance(T, np.ndarray):
log_fO2_list = []
for temp in T:
if temp<573:
log_fO2_list.append((-26445.3/temp) + 10.344 + 0.092 * (P_bars-1)/temp)
if temp>=573:
log_fO2_list.append((-25096.3/temp) + 8.735 + 0.11 * (P_bars-1)/temp)
log_fO2 = | np.array(log_fO2_list) | numpy.array |
import numpy as np
import tensorflow as tf
from scipy import sparse as sp
from tensorflow.python.ops import gen_sparse_ops
from . import ops
def sp_matrix_to_sp_tensor(x):
"""
Converts a Scipy sparse matrix to a SparseTensor.
:param x: a Scipy sparse matrix.
:return: a SparseTensor.
"""
if len(x.shape) != 2:
raise ValueError("x must have rank 2")
row, col, values = sp.find(x)
out = tf.SparseTensor(
indices=np.array([row, col]).T, values=values, dense_shape=x.shape
)
return tf.sparse.reorder(out)
def sp_batch_to_sp_tensor(a_list):
"""
Converts a list of Scipy sparse matrices to a rank 3 SparseTensor.
:param a_list: list of Scipy sparse matrices with the same shape.
:return: SparseTensor of rank 3.
"""
tensor_data = []
for i, a in enumerate(a_list):
row, col, values = sp.find(a)
batch = | np.ones_like(col) | numpy.ones_like |
import pretty_midi as pyd
import numpy as np
import pandas as pd
import time
import datetime
from util_tools.acc_utils import split_phrases, chord_shift
import util_tools.format_converter_update as cvt
from util_tools.AccoMontage import find_by_length, dp_search, render_acc, ref_spotlight, get_texture_filter
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
if __name__ == '__main__':
"""
Inference Script of AccoMontage
To run inference with AccoMontage, you should specify the following:
Required:
SONG_NAME & SONG_ROOT
-- directory to a MIDI lead sheet file. This MIDI file should consists of two tracks, each containing melody (monophonic) and chord (polyphonic). Now complex chords (9th, 11th, and more) is supported.
SEGMENTATION
-- phrase annotation (string) of the MIDI file. For example, for an AABB song with 8 bars for each phrase, the annotation should be in the format 'A8A8B8B8\n'. Note that by default we only support the transition among 4-bar, 6-bar, and 8-bar phrases
NOTE_SHIFT
-- The number of upbeats in the pickup bar (can be float). If no upbeat, specify 0.
Optional:
SPOTLIGHT
-- a list of names of your prefered reference songs. See all 860 supported reference songs (Chinese POP) at ./data files/POP909 4bin quntization/four_beat_song_index.
PREFILTER
-- a tuple (a, b) controlling rhythmic patters. a, b can be integers in [0, 4], each controlling horrizontal rhythmic density and vertical voice number. Ther higher number, the denser rhythms.
"""
"""
Configurations upon inference
"""
#SPOTLIGHT = ['一曲红尘', '向天再借五百年', '夜曲', '我只在乎你', '撕夜', '放生', '明天你是否依然爱我', '映山红', '浪人情歌', '海芋恋', '狂浪生', '用心良苦', '男孩', '祝我生日快乐', '背对背拥抱', '舍得', '葫芦娃', '香水', '小乌龟']
#SPOTLIGHT = ['小龙人']
SPOTLIGHT = []
#PREFILTER = None
PREFILTER = (4, 1)
#SONG_NAME, SEGMENTATION, NOTE_SHIFT = 'Boggy Brays.mid', 'A8A8B8B8\n', 0
#SONG_NAME, SEGMENTATION, NOTE_SHIFT = 'Cuillin Reel.mid', 'A4A4B8B8\n', 1
#SONG_NAME, SEGMENTATION, NOTE_SHIFT = "<NAME> Champion.mid", 'A4A4B4B4A4A4B4B4\n', 1
SONG_NAME, SEGMENTATION, NOTE_SHIFT = 'Castles in the Air.mid', 'A8A8B8B8\n', 1
#SONG_NAME, SEGMENTATION, NOTE_SHIFT = "Proudlocks's Variation.mid", 'A8A8B8B8\n', 1
#SONG_NAME, SEGMENTATION, NOTE_SHIFT = 'ECNU University Song.mid', 'A8A8B8B8C8D8E4F6A8A8B8B8C8D8E4F6\n', 0
SONG_ROOT='./demo/demo lead sheets'
"""
Inferencing
"""
print('Loading Reference Data')
data = np.load('./data files/phrase_data0714.npz', allow_pickle=True)
melody = data['melody']
acc = data['acc']
chord = data['chord']
#For saving time, we directly load in edge weights instead of actually infering the model. Currently, we only support the transition among 4-bar, 6-bar, and 8-bar phrases
edge_weights=np.load('./data files/edge_weights_0714.npz', allow_pickle=True)
print('Processing Query Lead Sheet')
midi = pyd.PrettyMIDI(os.path.join(SONG_ROOT, SONG_NAME))
melody_track, chord_track = midi.instruments[0], midi.instruments[1]
downbeats = midi.get_downbeats()
melody_matrix = cvt.melody_data2matrix(melody_track, downbeats)# T*130, quantized at 16th note
if not NOTE_SHIFT == 0:
melody_matrix = np.concatenate((melody_matrix[int(NOTE_SHIFT*4):, :], melody_matrix[-int(NOTE_SHIFT*4):, :]), axis=0)
chroma = cvt.chord_data2matrix(chord_track, downbeats, 'quater') # T*36, quantized at 16th note (quater beat)
if not NOTE_SHIFT == 0:
chroma = np.concatenate((chroma[int(NOTE_SHIFT*4):, :], chroma[-int(NOTE_SHIFT*4):, :]), axis=0)
chord_table = chroma[::4, :] #T'*36, quantized at 4th notes
#chord_table[-8:, :] = chord_table[56:64, :]
chroma = chroma[:, 12: -12] #T*12, quantized at 16th notes
pianoRoll = | np.concatenate((melody_matrix, chroma), axis=-1) | numpy.concatenate |
# machine learning module
import numpy as np, pandas as pd
from sklearn.cluster import KMeans
from sklearn.cluster import AgglomerativeClustering
import statistics
import matplotlib.pyplot as plt
import statsmodels.api as sm
from sklearn.linear_model import LogisticRegression
from sklearn import svm, metrics
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import RandomForestClassifier
# statsquest on youtube is useful
def k_means(measures_table, clusters=4, data_only=False, plot=False, loud=False):
"""
Applies the k-means clustering algorithm to a measures table.
The resulting clustering is then reported in terms of its inertia (sum of squared distances of samples to their closest cluster center) and its silhouette score (how distinct clusters are within the sample
[see the skikit learn docs for details]).
The measures passed as the first parameter can be returned with an added column reporting the cluster each player belongs to using the data_only parameter.
Parameters
----------
measures_table : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
Behavioural measures for a collection of players.
clusters : int
Number of clusters to compute, default is 4.
data_only : bool
Whether or not to only return the clustered measures and not the goodness of fit measures, default is False (return only the inertia and silhouette scores).
plot : bool
Whether or not to plot the distribution of players within the clusters as a bar chart, default is False.
loud : bool
Whether or not to output status updates as the function progresses, default is False.
Returns
----------
item : tuple
(Inertia, Silhouette, Clustered measures table) OR just the dataframe.
Examples
----------
>>> # this doesn't work yet but put code here
"""
# get variable names from the behavioural measures
variables = list(measures_table.columns)[1:]
Kmean = KMeans(n_clusters=clusters)
data = np.array(measures_table[variables].values)
Kmean.fit(data)
silhouette = metrics.silhouette_score(data, Kmean.labels_, metric="euclidean")
cluster_centers = Kmean.cluster_centers_
clustered_data = measures_table.copy()
clustered_data["cluster"] = Kmean.labels_
if loud:
print("variables:", variables)
print("centers:", Kmean.cluster_centers_)
print("inertia:", Kmean.inertia_)
print("silhouette:", silhouette)
if plot:
bars = []
heights = []
for label in set(sorted(Kmean.labels_)):
bars.append(label)
heights.append(list(Kmean.labels_).count(label))
colors = ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"]
plt.bar(bars, heights, color=colors[: len(bars)])
plt.title(
"\nClusters: "
+ str(len(bars))
+ "\nInertia: "
+ str(round(Kmean.inertia_))
+ "\nIterations: " # Kmean.inertia_ is the sum of squared distances of samples to their closest cluster center
+ str(Kmean.n_iter_),
x=1.01,
y=0.5,
ha="left",
)
plt.xlabel("Cluster ID")
plt.ylabel("Number of Members")
plt.show()
if data_only:
return clustered_data
return clustered_data, Kmean.inertia_, silhouette
def k_means_range(measures_table, min_clusters=2, max_clusters=13):
"""
Computes the k_means calculation above across a range of cluster counts, returning their goodness of fit measures (inertia and silhouette).
Parameters
----------
measures_table : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
Behavioural measures for a collection of players.
min_clusters : int
The minimum number of clusters to compute, default is 2.
max_clusters : int
The maximum (inclusive) number of clusters to compute, default is 13.
Returns
----------
Two arrays, the inertias for each of the cluster counts, and the silhouette scores for each of the cluster counts.
"""
# print('calculating k means in range', min_clusters, max_clusters)
inertias = []
silhouettes = []
for x in range(min_clusters, max_clusters + 1):
k_means_result = k_means(measures_table, clusters=x)
inertias.append(k_means_result[1])
silhouettes.append(k_means_result[2])
return inertias, silhouettes
def k_means_ensemble(measures_table, ensemble_size=100, min_clusters=2, max_clusters=13):
"""
Computes the k_means clustering algorithm across a range of cluster counts, a number of times.
This is useful for determining clusters in a more robust way but can be slow on large data sets.
Parameters
----------
measures_table : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
Behavioural measures for a collection of players.
ensemble_size : int
The number of times to repeat the clustering computations, default is 100.
min_clusters : int
The minimum number of clusters to compute, default is 2.
max_clusters : int
The maximum (inclusive) number of clusters to compute, default is 13.
Returns
----------
Two arrays, the mean inertias for each of the cluster counts, and the mean silhouette scores for each of the cluster counts.
"""
all_inertias = []
all_silhouettes = []
# call the k_means_range function n times, storing scores in the above arrays
for x in range(ensemble_size):
k_means_range_result = k_means_range(
measures_table, min_clusters=min_clusters, max_clusters=max_clusters
)
all_inertias.append(k_means_range_result[0])
all_silhouettes.append(k_means_range_result[1])
# now average each of the elements in the score lists
ensemble_inertias = []
ensemble_silhouettes = []
for cluster_num in range(len(all_inertias[0])):
inertia_scores = [all_inertias[x][cluster_num] for x in range(ensemble_size)]
ensemble_inertias.append(statistics.mean(inertia_scores))
silhouette_scores = [
all_silhouettes[x][cluster_num] for x in range(ensemble_size)
]
ensemble_silhouettes.append(statistics.mean(silhouette_scores))
return ensemble_inertias, ensemble_silhouettes
def agglomerative_cluster(measures_table, distance_threshold=0, n_clusters=None):
"""
Performs sklearn's agglomerative clustering algorithm on a dataframe of behavioural measures.
See their documentation for details.
Note: Either the distance threshold or the n_cluster parameter must be None.
Parameters
----------
measures_table : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
Behavioural measures for a collection of players.
distance_threshold : int
The maximum distance threshold to perform the clustering to.
n_clusters : int
The number of clusters to perform the clustering to.
Returns
----------
model : sklearn.AgglomerativClustering
A fit agglomerative clustering model.
"""
variables = list(measures_table.columns)[1:]
X = measures_table[variables].values
model = AgglomerativeClustering(
distance_threshold=distance_threshold, n_clusters=n_clusters
)
model = model.fit(X)
return model
def describe_clusters(clustered_measures_table, cluster_col="cluster"):
"""
Describes cluster centroids (mean values of each measure) for each cluster in a clustered measures table.
Parameters
----------
clustered_measures_table : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
A measures table with a cluster column (e.g. output of k_means() function).
Returns
--------
dataframe
A table describing each cluster as a pandas dataframe.
"""
unique_clusters = list(set(clustered_measures_table["cluster"].values))
descriptive_table = pd.DataFrame()
descriptive_table["cluster_centroid"] = clustered_measures_table.columns[1:]
for value in unique_clusters:
members = clustered_measures_table[
clustered_measures_table[cluster_col] == value
]
centroid = [members[col].mean() for col in members.columns[1:]]
descriptive_table["n=" + str(len(members))] = centroid
descriptive_table.set_index("cluster_centroid", inplace=True)
return descriptive_table
def logistic_regression(train_measures, test_measures, label):
"""
Performs a logistic regression using the `statsmodels library <https://www.statsmodels.org/stable/index.html>`_, returning the predicted labels rounded to the nearest integer.
Note: this method is currently hard-coded to only function on Philander 2014's data set. Abstracted logistic regression function coming soon tm.
Parameters
------------
train_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The training portion of a measures table returned by the `split_measures_table` function in the measures module.
test_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The (smaller) test portion of a measures table returned by the `split_measures_table` function in the measures module.
label : string
The column name of the dependent variable in the train and test measures tables, e.g. 'self_exclude'.
Returns
--------
list
A list corresponding to the predicted values for the label column in the test measures table. These can be used with the actual values to compute performance metrics.
"""
# defines the R style formula to fit
formula = str(label) + " ~ gender+age+total_wagered+num_bets+frequency+duration+bets_per_day+net_loss+intensity+variability+frequency_1m+trajectory+z_intensity+z_variability+z_frequency+z_trajectory"
model = sm.formula.glm(formula=formula, family=sm.families.Binomial(), data=train_measures)
# this is where the stepwise bit could happen - see original code
fit_model = model.fit()
raw_prediction = fit_model.predict(test_measures)
predicted_labels = [value for value in np.where(raw_prediction >= 0.5, 1, 0)]
#print(fit_model.summary())
return predicted_labels
def lasso_logistic_regression(train_measures, test_measures, label):
"""
Performs a 'lasso' (optimizes a least-square problem with L1 penalty) logistic regression using `sklearn's linear_model <https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model>`_.
This `stackoverflow post <https://stackoverflow.com/questions/41639557/how-to-perform-logistic-lasso-in-python>`_ contains a useful discussion on this type of function-estimation regression pair.
Parameters
------------
train_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The training portion of a measures table returned by the `split_measures_table` function in the measures module.
test_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The (smaller) test portion of a measures table returned by the `split_measures_table` function in the measures module.
label : string
The column name of the dependent variable in the train and test measures tables, e.g. 'self_exclude'.
Returns
--------
list
A list corresponding to the predicted values for the label column in the test measures table. These can be used with the actual values to compute performance metrics.
"""
train_data = train_measures.drop(['player_id', label], axis=1)
train_labels = train_measures[label]
test_data = test_measures.drop(['player_id', label], axis=1)
model = LogisticRegression(penalty='l1', solver='liblinear')
model.fit(train_data, train_labels)
predicted_labels = model.predict(test_data)
return predicted_labels
def svm_eps_regression(train_measures, test_measures, label):
"""
Creates and trains a support vector machine for epsilon-support vector regression using the sklearn library's implementation.
Parameters
------------
train_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The training portion of a measures table returned by the `split_measures_table` function in the measures module.
test_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The (smaller) test portion of a measures table returned by the `split_measures_table` function in the measures module.
label : string
The column name of the dependent variable in the train and test measures tables, e.g. 'self_exclude'.
Returns
--------
list
A list corresponding to the predicted values for the label column in the test measures table. These can be used with the actual values to compute performance metrics.
"""
train_data = train_measures.drop(['player_id', label], axis=1)
train_labels = train_measures[label]
test_data = test_measures.drop(['player_id', label], axis=1)
model = svm.SVR(kernel='rbf')
model.fit(train_data, train_labels)
predicted_labels = model.predict(test_data)
# convert probabilities to binary labels for comparison
regression_cutoff = 0.5
predicted_labels = np.where(predicted_labels < regression_cutoff, 0, 1)
return predicted_labels
def svm_c_classification(train_measures, test_measures, label):
"""
Parameters
------------
train_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The training portion of a measures table returned by the `split_measures_table` function in the measures module.
test_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The (smaller) test portion of a measures table returned by the `split_measures_table` function in the measures module.
label : string
The column name of the dependent variable in the train and test measures tables, e.g. 'self_exclude'.
Returns
--------
list
A list corresponding to the predicted values for the label column in the test measures table. These can be used with the actual values to compute performance metrics.
"""
train_data = train_measures.drop(['player_id', label], axis=1)
train_labels = train_measures[label]
test_data = test_measures.drop(['player_id', label], axis=1)
model = svm.SVC(kernel='rbf')
model.fit(train_data, train_labels)
predicted_labels = model.predict(test_data)
return predicted_labels
def svm_one_classification(train_measures, test_measures, label):
"""
Parameters
------------
train_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The training portion of a measures table returned by the `split_measures_table` function in the measures module.
test_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The (smaller) test portion of a measures table returned by the `split_measures_table` function in the measures module.
label : string
The column name of the dependent variable in the train and test measures tables, e.g. 'self_exclude'.
Returns
--------
list
A list corresponding to the predicted values for the label column in the test measures table. These can be used with the actual values to compute performance metrics.
"""
train_data = train_measures.drop(['player_id', label], axis=1)
train_labels = train_measures[label]
test_data = test_measures.drop(['player_id', label], axis=1)
model = svm.OneClassSVM(kernel='rbf')
model.fit(train_data, train_labels)
predicted_labels = model.predict(test_data)
# need to add a correction step for the labels here as OneClassSVM returns -1 for outliers and 1 for inliers
predicted_labels = np.where(predicted_labels < 0, 1, 0)
return predicted_labels
def rf_regression(train_measures, test_measures, label):
"""
Creates and fits a random forest regressor using `sklearn's ensemble module <https://scikit-learn.org/stable/modules/ensemble.html#forest>`_, returning the predicted labels rounded to the nearest integer.
Parameters
------------
train_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The training portion of a measures table returned by the `split_measures_table` function in the measures module.
test_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The (smaller) test portion of a measures table returned by the `split_measures_table` function in the measures module.
label : string
The column name of the dependent variable in the train and test measures tables, e.g. 'self_exclude'.
Returns
--------
list
A list corresponding to the predicted values for the label column in the test measures table. These can be used with the actual values to compute performance metrics.
"""
train_data = train_measures.drop(['player_id', label], axis=1)
train_labels = train_measures[label]
test_data = test_measures.drop(['player_id', label], axis=1)
model = RandomForestRegressor()
model.fit(train_data, train_labels)
predicted_labels = model.predict(test_data)
# convert probabilities to binary labels for comparison
regression_cutoff = 0.5
predicted_labels = np.where(predicted_labels < regression_cutoff, 0, 1)
return predicted_labels
def rf_classification(train_measures, test_measures, label):
"""
Parameters
------------
train_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The training portion of a measures table returned by the `split_measures_table` function in the measures module.
test_measures : `dataframe <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html>`_
The (smaller) test portion of a measures table returned by the `split_measures_table` function in the measures module.
label : string
The column name of the dependent variable in the train and test measures tables, e.g. 'self_exclude'.
Returns
--------
list
A list corresponding to the predicted values for the label column in the test measures table. These can be used with the actual values to compute performance metrics.
"""
train_data = train_measures.drop(['player_id', label], axis=1)
train_labels = train_measures[label]
test_data = test_measures.drop(['player_id', label], axis=1)
model = RandomForestClassifier(n_estimators=100)
model.fit(train_data, train_labels)
predicted_labels = model.predict(test_data)
return predicted_labels
def compute_performance(method_name, actual, predicted):
"""
Computes performance metrics including sensitivity, specificity, accuracy, confusion matrix values, odds ratio, and area under curve, for a given classification/regression using its actual and predicted values.
Parameters
-----------
method_name : string
The name of the method which has been applied (for labelling the final performance table), e.g. 'random forest classification'.
actual : list
The actual values of the test measures table.
predicted : list
The values predicted by the method for the test measures table.
"""
# resources:
# describes odds ratio and precision equations
# https://cran.r-project.org/web/packages/ROCR/ROCR.pdf
# describes sklearn's confusion matrix
# https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html#sklearn-metrics-confusion-matrix
result = metrics.classification_report(actual, y_pred=predicted, output_dict=True)
sensitivity = result['1']['recall']
specificity = result['0']['recall']
accuracy = result['accuracy']
fpr, tpr, thresholds = metrics.roc_curve(actual, predicted)
auc = metrics.auc(fpr, tpr)
confusion_matrix = metrics.confusion_matrix(actual, predicted)
tn, fp, fn, tp = confusion_matrix.ravel()
# odds ratio is (tp x tn)/(fp x fn)
odds_ratio = 0
if fp != 0 and fn != 0:
odds_ratio = (tp * tn)/(fp * fn)
# precision is tp / (tp + fp)
precision = tp / (tp + fp)
metrics_df = pd.DataFrame()
metrics_df['sensitivity'] = [round(sensitivity, 3)]
metrics_df['specificity'] = [round(specificity, 3)]
metrics_df['accuracy'] = [round(accuracy, 3)]
metrics_df['precision'] = [round(precision, 3)]
metrics_df['auc'] = [round(auc, 3)]
metrics_df['odds_ratio'] = [round(odds_ratio, 3)]
metrics_df.index = [method_name]
return metrics_df
# =========================================================
# Plotting Functions for the Machine Learning Module
# =========================================================
import scipy.cluster.hierarchy as sch
import scipy.ndimage.filters as snf
def plot_cluster_sizes(model):
"""
Create a bar chart using a previously computed clustering model.
Each bar represents a single cluster, with the height of the bars representing the number of members (players) in each cluster.
Args:
model (sklearn.cluster model): A trained sklearn clustering model, e.g. sklearn.cluster.AgglomerativeClustering.
Returns:
Matplotlib.pyplot plot object.
"""
plt.figure()
cluster_ids = list(set(list(model.labels_)))
cluster_sizes = [list(model.labels_).count(x) for x in cluster_ids]
plt.bar(
cluster_ids,
cluster_sizes,
color=plt.rcParams["axes.prop_cycle"].by_key()["color"],
)
locs, labels = plt.xticks()
plt.xticks(range(len(cluster_ids)), cluster_ids)
plt.xlabel("Cluster ID")
plt.ylabel("Number of Players per Cluster")
plt.grid(axis="x")
return plt
def plot_agglomeration_dendrogram(model, dt_cutoff=None, **kwargs):
"""
Create a dendrogram visualising a heirarchical clustering method (agglomerative clustering).
A horisontal line can be added using the dt_cutoff parameter to visualise the number of clusters at a given distance threshold.
Args:
model (sklearn.cluster model): A trained sklearn clustering model, e.g. sklearn.cluster.AgglomerativeClustering.
dt_cutoff (Integer): The distance threshold value at which to mark a grey dashed horisontal line.
Returns:
Matplotlib.pyplot plot object.
"""
# Create linkage matrix and then plot the sch.dendrogram
# create the counts of samples under each node
counts = | np.zeros(model.children_.shape[0]) | numpy.zeros |
import argparse
import torch
import logging
import json
import numpy as np
import cv2
from tqdm import tqdm
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
sns.set(style="darkgrid")
parser = argparse.ArgumentParser(prog='calc_mAP.py')
parser.add_argument('--net-type', default="RFB", type=str,
help='The network architecture ,optional: RFB (higher precision) or slim (faster)')
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
parser.add_argument('--iou-thres', type=float, default=0.5, help='iou threshold required to qualify as detected')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--nms-thres', type=float, default=0.5, help='iou threshold for non-maximum suppression')
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
parser.add_argument('--img-size', type=int, default=160, help='inference size (pixels)')
parser.add_argument('--weights', type=str, default='models/train-coco_person_face-0.0.3-RFB-160/RFB-Epoch-199-Loss-4.073122353780837.pth', help='weight path')
opt = parser.parse_args()
print(opt)
from vision.ssd.config.fd_config import define_img_size
from vision.datasets.coco_dataset import COCODataset
from torch.utils.data import DataLoader
define_img_size(opt.img_size, "coco_person_face")
from vision.ssd.config import fd_config
from vision.ssd.data_preprocessing import TestTransform
from vision.ssd.mb_tiny_RFB_fd import create_Mb_Tiny_RFB_fd, create_Mb_Tiny_RFB_fd_predictor
from vision.ssd.mb_tiny_fd import create_mb_tiny_fd, create_mb_tiny_fd_predictor
from vision.ssd.ssd import MatchPrior
from vision.utils.box_utils import iou_of
config = fd_config
def calc_mAP(weights,
batch_size=16,
img_size=640,
iou_thres=0.5,
conf_thres=0.001,
nms_thres=0.5,
save_json=False,
model=None):
label_path = "models/train-coco_person_face-0.0.3-RFB-160/coco-person-face-labels.txt"
class_names = [name.strip() for name in open(label_path).readlines()]
num_classes = len(class_names)
if opt.net_type == 'RFB':
net = create_Mb_Tiny_RFB_fd(len(class_names), is_test=True, device="cuda:0")
predictor = create_Mb_Tiny_RFB_fd_predictor(net, candidate_size=100, device="cuda:0")
elif opt.net_type == 'slim':
net = create_mb_tiny_fd(len(class_names), is_test=True, device="cuda:0")
predictor = create_mb_tiny_fd_predictor(net, candidate_size=100, device="cuda:0")
net.load(weights)
net.eval()
device = "cuda:0"
# target_transform = MatchPrior(config.priors, config.center_variance,
# config.size_variance, 0.34999999404)
#
# test_transform = TestTransform(config.image_size, config.image_mean_test, config.image_std)
# val_dataset = COCODataset("/media/test/data/coco", transform=test_transform,
# target_transform=target_transform, is_test=True)
# logging.info("validation dataset size: {}".format(len(val_dataset)))
#
# val_loader = DataLoader(val_dataset, batch_size,
# num_workers=4,
# shuffle=False)
data_list = json.load(open("/media/test/data/coco/test_datalist.json"))
all_correct = None
all_p_prob = None
all_p_label = None
all_g_label = None
seen = 0
for data in tqdm(data_list):
image_id = data['image_file']
gt_boxes = np.array(data['boxes'], dtype=np.float32)
gt_labels = np.array(data['labels'], dtype=np.int64)
image = cv2.imread(image_id)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
p_boxes, p_labels, p_probs = predictor.predict(image)
nl = gt_labels.shape[0]
correct = np.array([0] * p_boxes.shape[0])
for i, gt_box in enumerate(gt_boxes):
seen += 1
p_index = np.array(range(p_boxes.shape[0]))
gt_label = gt_labels[i]
valid_p_boxes = p_boxes[correct == 0] # remove matched predic box
valid_p_index = p_index[correct == 0]
valid_p_probs = p_probs[correct == 0]
valid_p_labels = p_labels[correct == 0]
valid_p_boxes = valid_p_boxes[valid_p_labels == gt_label] # select predict label == gt label
valid_p_index = valid_p_index[valid_p_labels == gt_label]
valid_p_probs = valid_p_probs[valid_p_labels == gt_label]
if valid_p_boxes.shape[0] == 0:
continue
iou = iou_of(torch.tensor(valid_p_boxes), torch.tensor(np.expand_dims(gt_box, axis=0)))
max_val = torch.max(iou)
if max_val.item() > iou_thres:
correct[valid_p_index[torch.argmax(iou).item()]] = 1
all_correct = np.concatenate([all_correct, correct], axis=0) if all_correct is not None else correct
all_p_prob = | np.concatenate([all_p_prob, p_probs], axis=0) | numpy.concatenate |
"""SGTR algorithm for iteratively solving Ax=b over multiple A's and b's."""
import numpy as np
from numpy.linalg import norm as Norm
import pandas as pd
from .optimizer import Optimizer
from .ridge import Ridge
from .group_loss_function import GroupLossFunction
from .pde_loss_function import PDELossFunction
class SGTR:
"""Class containing logic for the SGTR algorithm."""
def __init__(self,
point_optimizer: Optimizer = Ridge(lambda_ = 1e-5),
loss_func: GroupLossFunction = PDELossFunction(),
threshold_func: callable = Norm,
num_tols: int = 50,
normalize_by: int = 2):
"""Initialize components of the SGTR algorithm.
Keyword arguments:
point_optimizer -- the solver for a single Ax=b problem (Ridge in SGTR)
loss_func -- The loss function used for grading prospective solutions.
threshold_func -- the function used for thresholding
num_tols -- number of threshold tolerances to try for iterative thresh.
normalize_by -- the norm by which to normalize the cols in As and bs
"""
self.point_optimizer = point_optimizer.optimize
self.loss_func = loss_func.score
self.threshold_func = threshold_func
self.num_tols = num_tols
self.normalize = normalize_by
def format_inputs(self, As, bs):
"""Format As and bs to list of ndarrays.
Keyword arguments:
As -- list of As
bs -- list of bs
Returns:
As -- list of As as a list of ndarrays
bs -- list of bs as a list of ndarrays
"""
As = [self.convert_to_ndarray(A.copy()) for A in As]
bs = [self.convert_to_ndarray(b.copy()) for b in bs]
return As, bs
def convert_to_ndarray(self, array_like):
"""Convert an ndarray-like object to an ndarray.
Keyword arguments:
array_like -- an ndarray-like object
Returns:
ndarray -- object converted to ndarray
"""
if type(array_like) == pd.DataFrame:
return array_like.values
else:
try:
return np.asarray(array_like)
except Exception as err:
print("Exception on convering data:")
print(err)
raise(Exception("can't convert data to numpy array!"))
def compute_norms(self, As, bs):
"""Compute the norms of As and bs. As list is computed column-wise.
Keyword argument:
As -- list of As
bs -- list of bs
Returns:
As_norms -- list of As norms
bs_norms -- list of bs norms
The norm computed is based on the attribute self.normalize. Note that
As_norms is computed by taking all As, stacking them, and then
computing the norm of each column.
"""
m = len(As) # m is the number of individual optimizations to run
# in SINDy-BVP, m is the number of spatial positions
n, d = As[0].shape # d is the number of candidate functions
# and n is the number of trials
# Initialize an empty vector to hold the norm of each candidate
# function. the norm is evaluated over ALL spatial positions for
# each candidate function.
As_norms = np.zeros(d)
for i in range(d):
data = np.hstack([A[:, i] for A in As])
As_norms[i] = Norm(data, self.normalize)
# Now normalize the bs
bs_norms = [m*Norm(b, self.normalize) for b in bs]
return As_norms, bs_norms
def normalize_data(self, As, bs, As_norms, bs_norms):
"""Normalize the data in As and bs by norms As_norms, bs_norms.
Keyword arguments:
As -- list of As
bs -- list of bs
As_norms -- list of As norms
bs_norms -- list of bs norms
Returns:
normalized_As -- As normalized by the As_norms
normalized_bs -- bs normalized by the bs_norms
"""
normalized_As = [A.copy() for A in As]
normalized_bs = [b.copy() for b in bs]
for i in range(len(As)):
normalized_As[i] = As[i].dot(np.diag(As_norms**-1))
normalized_bs[i] = bs[i]/bs_norms[i]
return normalized_As, normalized_bs
def compute_tolerances(self, As, bs):
"""Compute the range of tolerances to use for iterative thresholding.
Keyword arguments:
As -- list of As
bs -- list of bs
Returns:
tols -- range of tolerances to use for iterative thresholding.
"""
# Compute the range of tolerances to use for thresholding
opt = self.point_optimizer # Use shortcut for optimizer
# Compute the solution x for each group using ridge regression
x_ridges = [opt(A, b) for (A, b) in zip(As, bs)]
# Stack the solutions into matrix, so that each column contains
# the coefficient vector for a single candidate function, where
# each row is a single spatial point.
x_ridge = np.hstack(x_ridges)
# Get the norm for each of the candidate function coefficient vectors
xr_norms = [Norm(x_ridge[j, :]) for j in range(x_ridge.shape[0])]
# Determine the maximum of these norms
max_tol = np.max(xr_norms)
# And the minimum
min_tol = | np.min([x for x in xr_norms if x != 0]) | numpy.min |
from scirpy._util import (
_is_na,
_is_false,
_is_true,
_normalize_counts,
_is_symmetric,
_reduce_nonzero,
)
from scirpy._util._graph import layout_components
from itertools import combinations
import igraph as ig
import numpy as np
import pandas as pd
import numpy.testing as npt
import pytest
import scipy.sparse
import warnings
def test_reduce_nonzero():
A = np.array([[0, 0, 3], [1, 2, 5], [7, 0, 0]])
B = np.array([[1, 0, 3], [2, 1, 0], [6, 0, 5]])
A_csr = scipy.sparse.csr_matrix(A)
B_csr = scipy.sparse.csr_matrix(B)
A_csc = scipy.sparse.csc_matrix(A)
B_csc = scipy.sparse.csc_matrix(B)
expected = np.array([[1, 0, 3], [1, 1, 5], [6, 0, 5]])
with pytest.raises(ValueError):
_reduce_nonzero(A, B)
npt.assert_equal(_reduce_nonzero(A_csr, B_csr).toarray(), expected)
npt.assert_equal(_reduce_nonzero(A_csc, B_csc).toarray(), expected)
npt.assert_equal(_reduce_nonzero(A_csr, A_csr.copy()).toarray(), A_csr.toarray())
def test_is_symmatric():
M = np.array([[1, 2, 2], [2, 1, 3], [2, 3, 1]])
S_csr = scipy.sparse.csr_matrix(M)
S_csc = scipy.sparse.csc_matrix(M)
S_lil = scipy.sparse.lil_matrix(M)
assert _is_symmetric(M)
assert _is_symmetric(S_csr)
assert _is_symmetric(S_csc)
assert _is_symmetric(S_lil)
M = np.array([[1, 2, 2], [2, 1, np.nan], [2, np.nan, np.nan]])
S_csr = scipy.sparse.csr_matrix(M)
S_csc = scipy.sparse.csc_matrix(M)
S_lil = scipy.sparse.lil_matrix(M)
assert _is_symmetric(M)
assert _is_symmetric(S_csr)
assert _is_symmetric(S_csc)
assert _is_symmetric(S_lil)
M = np.array([[1, 2, 2], [2, 1, 3], [3, 2, 1]])
S_csr = scipy.sparse.csr_matrix(M)
S_csc = scipy.sparse.csc_matrix(M)
S_lil = scipy.sparse.lil_matrix(M)
assert not _is_symmetric(M)
assert not _is_symmetric(S_csr)
assert not _is_symmetric(S_csc)
assert not _is_symmetric(S_lil)
def test_is_na():
warnings.filterwarnings("error")
assert _is_na(None)
assert _is_na(np.nan)
assert _is_na("nan")
assert not _is_na(42)
assert not _is_na("Foobar")
assert not _is_na(dict())
array_test = np.array(["None", "nan", None, np.nan, "foobar"])
array_expect = np.array([True, True, True, True, False])
array_test_bool = | np.array([True, False, True]) | numpy.array |
# -*- coding: utf-8 -*-
"""
@author: <NAME>
"""
import matplotlib.figure as figure
import matplotlib.pyplot as plt
import numpy as np
import optuna
from sklearn import datasets, model_selection, metrics
from sklearn.model_selection import train_test_split
method_flag = 0 # 0: LightGBM, 1: XGBoost, 2: scikit-learn
number_of_test_samples = 150 # the number of test samples
fold_number = 2 # "fold_number"-fold cross-validation
fraction_of_validation_samples = 0.2 # fraction of validation samples for early stopping. If early stopping is not required and the number of sub-models is set, please set this to 0
number_of_sub_models = 500 # (This is active only when fraction_of_validation_samples = 0) The number of sub-models
# load boston dataset
boston = datasets.load_boston()
x = boston.data
y = boston.target
# divide samples into training samples and test samples
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=number_of_test_samples, random_state=0)
autoscaled_y_train = (y_train - y_train.mean()) / y_train.std() # autoscaling
x_train_tmp, x_validation, autoscaled_y_train_tmp, autoscaled_y_validation = train_test_split(x_train,
autoscaled_y_train,
test_size=fraction_of_validation_samples,
random_state=0)
# hyperparameter optimization with optuna and modeling6
if method_flag == 0: # LightGBM
import lightgbm as lgb
if fraction_of_validation_samples == 0:
best_n_estimators_in_cv = number_of_sub_models
else:
model = lgb.LGBMRegressor(n_estimators=1000)
model.fit(x_train_tmp, autoscaled_y_train_tmp, eval_set=(x_validation, autoscaled_y_validation),
eval_metric='l2', early_stopping_rounds=100)
best_n_estimators_in_cv = model.best_iteration_
def objective(trial):
param = {
'verbosity': -1,
'boosting_type': trial.suggest_categorical('boosting', ['gbdt', 'dart', 'goss']),
'num_leaves': trial.suggest_int('num_leaves', 10, 1000),
'learning_rate': trial.suggest_loguniform('learning_rate', 1e-8, 1.0)
}
if param['boosting_type'] == 'dart':
param['drop_rate'] = trial.suggest_loguniform('drop_rate', 1e-8, 1.0)
param['skip_drop'] = trial.suggest_loguniform('skip_drop', 1e-8, 1.0)
if param['boosting_type'] == 'goss':
param['top_rate'] = trial.suggest_uniform('top_rate', 0.0, 1.0)
param['other_rate'] = trial.suggest_uniform('other_rate', 0.0, 1.0 - param['top_rate'])
model = lgb.LGBMRegressor(**param, n_estimators=best_n_estimators_in_cv)
estimated_y_in_cv = model_selection.cross_val_predict(model, x_train, autoscaled_y_train, cv=fold_number)
estimated_y_in_cv = estimated_y_in_cv * y_train.std() + y_train.mean()
r2 = metrics.r2_score(y_train, estimated_y_in_cv)
return 1.0 - r2
study = optuna.create_study()
study.optimize(objective, n_trials=100)
if fraction_of_validation_samples == 0:
best_n_estimators = number_of_sub_models
else:
model = lgb.LGBMRegressor(**study.best_params, n_estimators=1000)
model.fit(x_train_tmp, autoscaled_y_train_tmp, eval_set=(x_validation, autoscaled_y_validation),
eval_metric='l2', early_stopping_rounds=100)
best_n_estimators = model.best_iteration_
model = lgb.LGBMRegressor(**study.best_params, n_estimators=best_n_estimators)
elif method_flag == 1: # XGBoost
import xgboost as xgb
if fraction_of_validation_samples == 0:
best_n_estimators_in_cv = number_of_sub_models
else:
model = xgb.XGBRegressor(n_estimators=1000)
model.fit(x_train_tmp, autoscaled_y_train_tmp,
eval_set=[(x_validation, autoscaled_y_validation.reshape([len(autoscaled_y_validation), 1]))],
eval_metric='rmse', early_stopping_rounds=100)
best_n_estimators_in_cv = model.best_iteration
def objective(trial):
param = {
'silent': 1,
'objective': 'reg:linear',
'booster': trial.suggest_categorical('booster', ['gbtree', 'gblinear', 'dart']),
'lambda': trial.suggest_loguniform('lambda', 1e-8, 1.0),
'alpha': trial.suggest_loguniform('alpha', 1e-8, 1.0)
}
if param['booster'] == 'gbtree' or param['booster'] == 'dart':
param['max_depth'] = trial.suggest_int('max_depth', 1, 9)
param['eta'] = trial.suggest_loguniform('eta', 1e-8, 1.0)
param['gamma'] = trial.suggest_loguniform('gamma', 1e-8, 1.0)
param['grow_policy'] = trial.suggest_categorical('grow_policy', ['depthwise', 'lossguide'])
if param['booster'] == 'dart':
param['sample_type'] = trial.suggest_categorical('sample_type', ['uniform', 'weighted'])
param['normalize_type'] = trial.suggest_categorical('normalize_type', ['tree', 'forest'])
param['rate_drop'] = trial.suggest_loguniform('rate_drop', 1e-8, 1.0)
param['skip_drop'] = trial.suggest_loguniform('skip_drop', 1e-8, 1.0)
model = xgb.XGBRegressor(**param, n_estimators=best_n_estimators_in_cv)
estimated_y_in_cv = model_selection.cross_val_predict(model, x_train, autoscaled_y_train, cv=fold_number)
estimated_y_in_cv = estimated_y_in_cv * y_train.std() + y_train.mean()
r2 = metrics.r2_score(y_train, estimated_y_in_cv)
return 1.0 - r2
study = optuna.create_study()
study.optimize(objective, n_trials=100)
if fraction_of_validation_samples == 0:
best_n_estimators = number_of_sub_models
else:
model = xgb.XGBRegressor(**study.best_params, n_estimators=1000)
model.fit(x_train_tmp, autoscaled_y_train_tmp,
eval_set=[(x_validation, autoscaled_y_validation.reshape([len(autoscaled_y_validation), 1]))],
eval_metric='rmse', early_stopping_rounds=100)
best_n_estimators = model.best_iteration
model = xgb.XGBRegressor(**study.best_params, n_estimators=best_n_estimators)
elif method_flag == 2: # scikit-learn
from sklearn.ensemble import GradientBoostingRegressor
if fraction_of_validation_samples == 0:
best_n_estimators_in_cv = number_of_sub_models
else:
model = GradientBoostingRegressor(n_estimators=1000, validation_fraction=fraction_of_validation_samples,
n_iter_no_change=100)
model.fit(x_train, autoscaled_y_train)
best_n_estimators_in_cv = len(model.estimators_)
def objective(trial):
param = {
'learning_rate': trial.suggest_loguniform('learning_rate', 0.01, 1),
'max_depth': trial.suggest_int('max_depth', 1, 9),
'min_samples_leaf': trial.suggest_int('min_samples_leaf', 3, 20),
'max_features': trial.suggest_loguniform('max_features', 0.1, 1.0)
}
model = GradientBoostingRegressor(**param, n_estimators=best_n_estimators_in_cv)
estimated_y_in_cv = model_selection.cross_val_predict(model, x_train, autoscaled_y_train, cv=fold_number)
estimated_y_in_cv = estimated_y_in_cv * y_train.std() + y_train.mean()
r2 = metrics.r2_score(y_train, estimated_y_in_cv)
return 1.0 - r2
study = optuna.create_study()
study.optimize(objective, n_trials=100)
if fraction_of_validation_samples == 0:
best_n_estimators = number_of_sub_models
else:
model = GradientBoostingRegressor(**study.best_params, n_estimators=1000,
validation_fraction=fraction_of_validation_samples, n_iter_no_change=100)
model.fit(x_train, autoscaled_y_train)
best_n_estimators = len(model.estimators_)
model = GradientBoostingRegressor(**study.best_params, n_estimators=best_n_estimators)
model.fit(x_train, autoscaled_y_train)
calculated_y_train = model.predict(x_train) * y_train.std() + y_train.mean()
predicted_y_test = model.predict(x_test) * y_train.std() + y_train.mean()
# yy-plot for training data
plt.figure(figsize=figure.figaspect(1))
plt.scatter(y_train, calculated_y_train)
y_max = np.max(np.array([np.array(y_train), calculated_y_train]))
y_min = np.min(np.array([np.array(y_train), calculated_y_train]))
plt.plot([y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)],
[y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min)], 'k-')
plt.ylim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min))
plt.xlim(y_min - 0.05 * (y_max - y_min), y_max + 0.05 * (y_max - y_min))
plt.xlabel('Actual Y')
plt.ylabel('Calculated Y')
plt.show()
# r2, RMSE, MAE
print('r2: {0}'.format(float(1 - sum((y_train - calculated_y_train) ** 2) / sum((y_train - y_train.mean()) ** 2))))
print('RMSE: {0}'.format(float((sum((y_train - calculated_y_train) ** 2) / len(y_train)) ** 0.5)))
print('MAE: {0}'.format(float(sum(abs(y_train - calculated_y_train)) / len(y_train))))
# estimated_y in cross-validation
estimated_y_in_cv = model_selection.cross_val_predict(model, x_train, autoscaled_y_train, cv=fold_number)
estimated_y_in_cv = estimated_y_in_cv * y_train.std() + y_train.mean()
# yy-plot in cross-validation
plt.figure(figsize=figure.figaspect(1))
plt.scatter(y_train, estimated_y_in_cv)
y_max = np.max(np.array([ | np.array(y_train) | numpy.array |
"""Utilities for level object transforms."""
import numpy as np, quaternion
from distance.classes import DefaultClasses
quaternion # suppress warning
SIMPLE_SIZE = 64
WEDGE_DEF_ROT = np.quaternion(np.cos(np.pi/4), 0, np.sin(np.pi/4), 0)
_mkwedge = DefaultClasses.level_objects.factory('WedgeGS')
def convquat(quat):
return np.array([quat.x, quat.y, quat.z, quat.w])
def length(vec):
return np.linalg.norm(vec)
def normalized(vec):
return vec / np.linalg.norm(vec)
def rotpoint(rot, point):
res = rot * np.quaternion(0, *point)
res /= rot
return res.imag
def rotpointrev(rot, point):
res = rot.conj()
res *= np.quaternion(0, *point)
res *= rot
return res.imag
def vec_angle(va, vb):
ua = normalized(va)
ub = normalized(vb)
return np.arccos(np.clip( | np.dot(ua, ub) | numpy.dot |
"""
# =============================================================================
# Simulating the double pendulum using Runge–Kutta method (RK4)
# =============================================================================
Created on Tue Jul 21 2020
@author: <NAME>
"""
import numpy as np
import matplotlib.pyplot as plt
#initial conditions
mercury_arr_x = np.array([ 0.384,0])
mercury_arr_y = np.array([0,10.090399])
venus_arr_x = np.array([ 0.72,0])
venus_arr_y = np.array([0,7.4203409])
earth_arr_x = np.array([ 0.996,0])
earth_arr_y = np.array([0,2*np.pi])
mars_arr_x = np.array([ 1.57,0])
mars_arr_y = np.array([0,4.9117598])
jupiter_arr_x = np.array([ 5.13,0])
jupiter_arr_y = np.array([0,2.80370840])
saturn_arr_x = np.array([ 8.99,0])
saturn_arr_y = np.array([0,2.1502124])
uranus_arr_x = np.array([ 19.1,0])
uranus_arr_y = np.array([0,1.441907])
neptune_arr_x = np.array([ 30,0])
neptune_arr_y = np.array([0,1.150996])
def deriv(planet_arr1,planet_arr2,t):
return np.array([planet_arr1[1],-4*pow(np.pi,2)*planet_arr1[0]/(pow(pow(planet_arr1[0],2)+pow(planet_arr2[0],2),1.5))])#pow((pow(planet_arr1[0],2)+pow(planet_arr2[0],2)),1.5)
def rk4(deriv,func_i,func_i2, x_i,h):
"""
Implements the RK4 method
Inputs-> deriv: a function that takes two arguments;
func_i: the function to be calculated;
func_i2: this is just passed as an argument for func_i (see above deriv_a1 and deriv_a2);
x_i: the dependent variable of func_i;
h: the step size;
"""
k1 = deriv(func_i,func_i2,x_i)
k2 = deriv(func_i+h/2,func_i2,h*k1/2)
k3 = deriv(func_i+h/2,func_i2,h*k2/2)
k4 = deriv(func_i+h,func_i2,h*k3)
func = func_i + (1/6) * h * (k1 +2*k2+2*k3+k4)
x = x_i + h
return (x,func)
def implement_rk4(earth_arr_x,earth_arr_y,t,h,steps_no):
time_arr = np.array([t])
func_array1 = np.array([earth_arr_x])
func_array2 = np.array([earth_arr_y])
for i in range(steps_no):
temp =earth_arr_x
(t,earth_arr_x) = rk4(deriv,earth_arr_x,earth_arr_y,t,h)
t -=h
(t,earth_arr_y) = rk4(deriv,earth_arr_y,temp,t,h)
time_arr = | np.append(time_arr, t) | numpy.append |
from __future__ import division
import glob
import numpy as NP
from functools import reduce
import numpy.ma as MA
import progressbar as PGB
import h5py
import healpy as HP
import warnings
import copy
import astropy.cosmology as CP
from astropy.time import Time, TimeDelta
from astropy.io import fits
from astropy import units as U
from astropy import constants as FCNST
from scipy import interpolate
from astroutils import DSP_modules as DSP
from astroutils import constants as CNST
from astroutils import nonmathops as NMO
from astroutils import mathops as OPS
from astroutils import lookup_operations as LKP
import prisim
from prisim import interferometry as RI
from prisim import primary_beams as PB
from prisim import delay_spectrum as DS
try:
from pyuvdata import UVBeam
except ImportError:
uvbeam_module_found = False
else:
uvbeam_module_found = True
prisim_path = prisim.__path__[0]+'/'
cosmoPlanck15 = CP.Planck15 # Planck 2015 cosmology
cosmo100 = cosmoPlanck15.clone(name='Modified Planck 2015 cosmology with h=1.0', H0=100.0) # Modified Planck 2015 cosmology with h=1.0, H= 100 km/s/Mpc
################################################################################
def write_PRISim_bispectrum_phase_to_npz(infile_prefix, outfile_prefix,
triads=None, bltriplet=None,
hdf5file_prefix=None, infmt='npz',
datakey='noisy', blltol=0.1):
"""
----------------------------------------------------------------------------
Write closure phases computed in a PRISim simulation to a NPZ file with
appropriate format for further analysis.
Inputs:
infile_prefix
[string] HDF5 file or NPZ file created by a PRISim simulation or
its replication respectively. If infmt is specified as 'hdf5',
then hdf5file_prefix will be ignored and all the observing
info will be read from here. If infmt is specified as 'npz',
then hdf5file_prefix needs to be specified in order to read the
observing parameters.
triads [list or numpy array or None] Antenna triads given as a list of
3-element lists or a ntriads x 3 array. Each element in the
inner list is an antenna label. They will be converted to
strings internally. If set to None, then all triads determined
by bltriplet will be used. If specified, then inputs in blltol
and bltriplet will be ignored.
bltriplet [numpy array or None] 3x3 numpy array containing the 3 baseline
vectors. The first axis denotes the three baselines, the second
axis denotes the East, North, Up coordinates of the baseline
vector. Units are in m. Will be used only if triads is set to
None.
outfile_prefix
[string] Prefix of the NPZ file. It will be appended by
'_noiseless', '_noisy', and '_noise' and further by extension
'.npz'
infmt [string] Format of the input file containing visibilities.
Accepted values are 'npz' (default), and 'hdf5'. If infmt is
specified as 'npz', then hdf5file_prefix also needs to be
specified for reading the observing parameters
datakey [string] Specifies which -- 'noiseless', 'noisy' (default), or
'noise' -- visibilities are to be written to the output. If set
to None, and infmt is 'hdf5', then all three sets of
visibilities are written. The datakey string will also be added
as a suffix in the output file.
blltol [scalar] Baseline length tolerance (in m) for matching baseline
vectors in triads. It must be a scalar. Default = 0.1 m. Will
be used only if triads is set to None and bltriplet is to be
used.
----------------------------------------------------------------------------
"""
if not isinstance(infile_prefix, str):
raise TypeError('Input infile_prefix must be a string')
if not isinstance(outfile_prefix, str):
raise TypeError('Input outfile_prefix must be a string')
if (triads is None) and (bltriplet is None):
raise ValueError('One of triads or bltriplet must be set')
if triads is None:
if not isinstance(bltriplet, NP.ndarray):
raise TypeError('Input bltriplet must be a numpy array')
if not isinstance(blltol, (int,float)):
raise TypeError('Input blltol must be a scalar')
if bltriplet.ndim != 2:
raise ValueError('Input bltriplet must be a 2D numpy array')
if bltriplet.shape[0] != 3:
raise ValueError('Input bltriplet must contain three baseline vectors')
if bltriplet.shape[1] != 3:
raise ValueError('Input bltriplet must contain baseline vectors along three corrdinates in the ENU frame')
else:
if not isinstance(triads, (list, NP.ndarray)):
raise TypeError('Input triads must be a list or numpy array')
triads = NP.asarray(triads).astype(str)
if not isinstance(infmt, str):
raise TypeError('Input infmt must be a string')
if infmt.lower() not in ['npz', 'hdf5']:
raise ValueError('Input file format must be npz or hdf5')
if infmt.lower() == 'npz':
if not isinstance(hdf5file_prefix, str):
raise TypeError('If infmt is npz, then hdf5file_prefix needs to be specified for observing parameters information')
if datakey is None:
datakey = ['noisy']
if isinstance(datakey, str):
datakey = [datakey]
elif not isinstance(datakey, list):
raise TypeError('Input datakey must be a list')
for dkey in datakey:
if dkey.lower() not in ['noiseless', 'noisy', 'noise']:
raise ValueError('Invalid input found in datakey')
if infmt.lower() == 'hdf5':
fullfnames_with_extension = glob.glob(infile_prefix + '*' + infmt.lower())
fullfnames_without_extension = [fname.split('.hdf5')[0] for fname in fullfnames_with_extension]
else:
fullfnames_without_extension = [infile_prefix]
if len(fullfnames_without_extension) == 0:
raise IOError('No input files found with pattern {0}'.format(infile_prefix))
try:
if infmt.lower() == 'hdf5':
simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[0])
else:
simvis = RI.InterferometerArray(None, None, None, init_file=hdf5file_prefix)
except:
raise IOError('Input PRISim file does not contain a valid PRISim output')
latitude = simvis.latitude
longitude = simvis.longitude
location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude))
last = simvis.lst / 15.0 / 24.0 # from degrees to fraction of day
last = last.reshape(-1,1)
daydata = NP.asarray(simvis.timestamp[0]).ravel()
if infmt.lower() == 'npz':
simvisinfo = NP.load(fullfnames_without_extension[0]+'.'+infmt.lower())
skyvis = simvisinfo['noiseless'][0,...]
vis = simvisinfo['noisy']
noise = simvisinfo['noise']
n_realize = vis.shape[0]
else:
n_realize = len(fullfnames_without_extension)
cpdata = {}
outfile = {}
for fileind in range(n_realize):
if infmt.lower() == 'npz':
simvis.vis_freq = vis[fileind,...]
simvis.vis_noise_freq = noise[fileind,...]
else:
simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[fileind])
if fileind == 0:
if triads is None:
triads, bltriplets = simvis.getThreePointCombinations(unique=False)
# triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3)
# bltriplets = NP.asarray(prisim_BSP_info['baseline_triplets'])
triads = NP.asarray(triads).reshape(-1,3)
bltriplets = NP.asarray(bltriplets)
blinds = []
matchinfo = LKP.find_NN(bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol)
revind = []
for blnum in NP.arange(bltriplet.shape[0]):
if len(matchinfo[0][blnum]) == 0:
revind += [blnum]
if len(revind) > 0:
flip_factor = NP.ones(3, dtype=NP.float)
flip_factor[NP.array(revind)] = -1
rev_bltriplet = bltriplet * flip_factor.reshape(-1,1)
matchinfo = LKP.find_NN(rev_bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol)
for blnum in NP.arange(bltriplet.shape[0]):
if len(matchinfo[0][blnum]) == 0:
raise ValueError('Some baselines in the triplet are not found in the model triads')
triadinds = []
for blnum in NP.arange(bltriplet.shape[0]):
triadind, blind = NP.unravel_index(NP.asarray(matchinfo[0][blnum]), (bltriplets.shape[0], bltriplets.shape[1]))
triadinds += [triadind]
triadind_intersection = NP.intersect1d(triadinds[0], NP.intersect1d(triadinds[1], triadinds[2]))
if triadind_intersection.size == 0:
raise ValueError('Specified triad not found in the PRISim model. Try other permutations of the baseline vectors and/or reverse individual baseline vectors in the triad before giving up.')
triads = triads[triadind_intersection,:]
selected_bltriplets = bltriplets[triadind_intersection,:,:].reshape(-1,3,3)
prisim_BSP_info = simvis.getClosurePhase(antenna_triplets=triads.tolist(),
delay_filter_info=None,
specsmooth_info=None,
spectral_window_info=None,
unique=False)
if fileind == 0:
triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3) # Re-establish the triads returned after the first iteration (to accunt for any order flips)
for outkey in datakey:
if fileind == 0:
outfile[outkey] = outfile_prefix + '_{0}.npz'.format(outkey)
if outkey == 'noiseless':
if fileind == 0:
# cpdata = prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...]
cpdata[outkey] = prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...]
else:
# cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0)
cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...]), axis=0)
if outkey == 'noisy':
if fileind == 0:
# cpdata = prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...]
cpdata[outkey] = prisim_BSP_info['closure_phase_vis'][NP.newaxis,...]
else:
# cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0)
cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_vis'][NP.newaxis,...]), axis=0)
if outkey == 'noise':
if fileind == 0:
# cpdata = prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:]
cpdata[outkey] = prisim_BSP_info['closure_phase_noise'][NP.newaxis,:,:]
else:
# cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:][NP.newaxis,...]), axis=0)
cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_noise'][NP.newaxis,...]), axis=0)
for outkey in datakey:
cpdata[outkey] = NP.rollaxis(cpdata[outkey], 3, start=0)
flagsdata = NP.zeros(cpdata[outkey].shape, dtype=NP.bool)
NP.savez_compressed(outfile[outkey], closures=cpdata[outkey],
flags=flagsdata, triads=triads,
last=last+NP.zeros((1,n_realize)),
days=daydata+NP.arange(n_realize))
################################################################################
def loadnpz(npzfile, longitude=0.0, latitude=0.0, lst_format='fracday'):
"""
----------------------------------------------------------------------------
Read an input NPZ file containing closure phase data output from CASA and
return a dictionary
Inputs:
npzfile [string] Input NPZ file including full path containing closure
phase data. It must have the following files/keys inside:
'closures' [numpy array] Closure phase (radians). It is of
shape (nlst,ndays,ntriads,nchan)
'triads' [numpy array] Array of triad tuples, of shape
(ntriads,3)
'flags' [numpy array] Array of flags (boolean), of shape
(nlst,ndays,ntriads,nchan)
'last' [numpy array] Array of LST for each day (CASA units
which is MJD+6713). Shape is (nlst,ndays)
'days' [numpy array] Array of days, shape is (ndays,)
'averaged_closures'
[numpy array] optional array of closure phases
averaged across days. Shape is (nlst,ntriads,nchan)
'std_dev_lst'
[numpy array] optional array of standard deviation
of closure phases across days. Shape is
(nlst,ntriads,nchan)
'std_dev_triads'
[numpy array] optional array of standard deviation
of closure phases across triads. Shape is
(nlst,ndays,nchan)
latitude [scalar int or float] Latitude of site (in degrees).
Default=0.0 deg.
longitude [scalar int or float] Longitude of site (in degrees).
Default=0.0 deg.
lst_format [string] Specifies the format/units in which the 'last' key
is to be interpreted. If set to 'hourangle', the LST is in
units of hour angle. If set to 'fracday', the fractional
portion of the 'last' value is the LST in units of days.
Output:
cpinfo [dictionary] Contains one top level keys, namely, 'raw'
Under key 'raw' which holds a dictionary, the subkeys
include 'cphase' (nlst,ndays,ntriads,nchan),
'triads' (ntriads,3), 'lst' (nlst,ndays), and 'flags'
(nlst,ndays,ntriads,nchan), and some other optional keys
----------------------------------------------------------------------------
"""
npzdata = NP.load(npzfile)
cpdata = npzdata['closures']
triadsdata = npzdata['triads']
flagsdata = npzdata['flags']
location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude))
daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location)
# lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD
if lst_format.lower() == 'hourangle':
lstHA = npzdata['last']
lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s)
elif lst_format.lower() == 'fracday':
lstfrac, lstint = NP.modf(npzdata['last'])
lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD
lstHA = lstfrac * 24.0 # in hours
else:
raise ValueError('Input lst_format invalid')
cp = cpdata.astype(NP.float64)
flags = flagsdata.astype(NP.bool)
cpinfo = {}
datapool = ['raw']
for dpool in datapool:
cpinfo[dpool] = {}
if dpool == 'raw':
qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst']
for qty in qtys:
if qty == 'cphase':
cpinfo[dpool][qty] = NP.copy(cp)
elif qty == 'triads':
cpinfo[dpool][qty] = NP.copy(triadsdata)
elif qty == 'flags':
cpinfo[dpool][qty] = NP.copy(flags)
elif qty == 'lst':
cpinfo[dpool][qty] = NP.copy(lstHA)
elif qty == 'lst-day':
cpinfo[dpool][qty] = NP.copy(lstday.jd)
elif qty == 'days':
cpinfo[dpool][qty] = NP.copy(daydata.jd)
elif qty == 'dayavg':
if 'averaged_closures' in npzdata:
cpinfo[dpool][qty] = NP.copy(cp_dayavg)
elif qty == 'std_triads':
if 'std_dev_triad' in npzdata:
cpinfo[dpool][qty] = NP.copy(cp_std_triads)
elif qty == 'std_lst':
if 'std_dev_lst' in npzdata:
cpinfo[dpool][qty] = NP.copy(cp_std_lst)
return cpinfo
################################################################################
def npz2hdf5(npzfile, hdf5file, longitude=0.0, latitude=0.0,
lst_format='fracday'):
"""
----------------------------------------------------------------------------
Read an input NPZ file containing closure phase data output from CASA and
save it to HDF5 format
Inputs:
npzfile [string] Input NPZ file including full path containing closure
phase data. It must have the following files/keys inside:
'closures' [numpy array] Closure phase (radians). It is of
shape (nlst,ndays,ntriads,nchan)
'triads' [numpy array] Array of triad tuples, of shape
(ntriads,3)
'flags' [numpy array] Array of flags (boolean), of shape
(nlst,ndays,ntriads,nchan)
'last' [numpy array] Array of LST for each day (CASA units
ehich is MJD+6713). Shape is (nlst,ndays)
'days' [numpy array] Array of days, shape is (ndays,)
'averaged_closures'
[numpy array] optional array of closure phases
averaged across days. Shape is (nlst,ntriads,nchan)
'std_dev_lst'
[numpy array] optional array of standard deviation
of closure phases across days. Shape is
(nlst,ntriads,nchan)
'std_dev_triads'
[numpy array] optional array of standard deviation
of closure phases across triads. Shape is
(nlst,ndays,nchan)
hdf5file [string] Output HDF5 file including full path.
latitude [scalar int or float] Latitude of site (in degrees).
Default=0.0 deg.
longitude [scalar int or float] Longitude of site (in degrees).
Default=0.0 deg.
lst_format [string] Specifies the format/units in which the 'last' key
is to be interpreted. If set to 'hourangle', the LST is in
units of hour angle. If set to 'fracday', the fractional
portion of the 'last' value is the LST in units of days.
----------------------------------------------------------------------------
"""
npzdata = NP.load(npzfile)
cpdata = npzdata['closures']
triadsdata = npzdata['triads']
flagsdata = npzdata['flags']
location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude))
daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location)
# lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD
if lst_format.lower() == 'hourangle':
lstHA = npzdata['last']
lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s)
elif lst_format.lower() == 'fracday':
lstfrac, lstint = NP.modf(npzdata['last'])
lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD
lstHA = lstfrac * 24.0 # in hours
else:
raise ValueError('Input lst_format invalid')
cp = cpdata.astype(NP.float64)
flags = flagsdata.astype(NP.bool)
if 'averaged_closures' in npzdata:
day_avg_cpdata = npzdata['averaged_closures']
cp_dayavg = day_avg_cpdata.astype(NP.float64)
if 'std_dev_triad' in npzdata:
std_triads_cpdata = npzdata['std_dev_triad']
cp_std_triads = std_triads_cpdata.astype(NP.float64)
if 'std_dev_lst' in npzdata:
std_lst_cpdata = npzdata['std_dev_lst']
cp_std_lst = std_lst_cpdata.astype(NP.float64)
with h5py.File(hdf5file, 'w') as fobj:
datapool = ['raw']
for dpool in datapool:
if dpool == 'raw':
qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst']
for qty in qtys:
data = None
if qty == 'cphase':
data = NP.copy(cp)
elif qty == 'triads':
data = NP.copy(triadsdata)
elif qty == 'flags':
data = NP.copy(flags)
elif qty == 'lst':
data = NP.copy(lstHA)
elif qty == 'lst-day':
data = NP.copy(lstday.jd)
elif qty == 'days':
data = NP.copy(daydata.jd)
elif qty == 'dayavg':
if 'averaged_closures' in npzdata:
data = NP.copy(cp_dayavg)
elif qty == 'std_triads':
if 'std_dev_triad' in npzdata:
data = NP.copy(cp_std_triads)
elif qty == 'std_lst':
if 'std_dev_lst' in npzdata:
data = NP.copy(cp_std_lst)
if data is not None:
dset = fobj.create_dataset('{0}/{1}'.format(dpool, qty), data=data, compression='gzip', compression_opts=9)
################################################################################
def save_CPhase_cross_power_spectrum(xcpdps, outfile):
"""
----------------------------------------------------------------------------
Save cross-power spectrum information in a dictionary to a HDF5 file
Inputs:
xcpdps [dictionary] This dictionary is essentially an output of the
member function compute_power_spectrum() of class
ClosurePhaseDelaySpectrum. It has the following key-value
structure:
'triads' ((ntriads,3) array), 'triads_ind',
((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst'
((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,)
array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array),
'dday' ((ndays,) array), 'oversampled' and 'resampled'
corresponding to whether resample was set to False or True in
call to member function FT(). Values under keys 'triads_ind'
and 'lst_ind' are numpy array corresponding to triad and time
indices used in selecting the data. Values under keys
'oversampled' and 'resampled' each contain a dictionary with
the following keys and values:
'z' [numpy array] Redshifts corresponding to the band
centers in 'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,)
'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding
to 'lags'. It has shape=(nspw,nlags)
'freq_center'
[numpy array] contains the center frequencies (in Hz)
of the frequency subbands of the subband delay spectra.
It is of size n_win. It is roughly equivalent to
redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on
each frequency sub-band during the subband delay
transform. It is of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz)
of the subbands being delay transformed. It is of size
n_win. It is roughly equivalent to width in redshift or
along line-of-sight
'shape' [string] shape of the frequency window function applied.
Usual values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was
raised. The value is be a positive scalar with
default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in
pixels) of the subband delay spectra. It is proportional
to inverse of effective bandwidth. It is of size n_win.
The unit size of a pixel is determined by the difference
between adjacent pixels in lags under key 'lags' which
in turn is effectively inverse of the effective
bandwidth of the subband specified in bw_eff
It further contains one or more of the following keys named
'whole', 'submodel', 'residual', and 'errinfo' each of which is
a dictionary. 'whole' contains power spectrum info about the
input closure phases. 'submodel' contains power spectrum info
about the model that will have been subtracted (as closure
phase) from the 'whole' model. 'residual' contains power
spectrum info about the closure phases obtained as a difference
between 'whole' and 'submodel'. It contains the following keys
and values:
'mean' [numpy array] Delay power spectrum incoherently
estimated over the axes specified in xinfo['axes']
using the 'mean' key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are
not set, those axes will be replaced with square
covariance matrices. If collapse_axes is provided but
avgcov is False, those axes will be of shape 2*Naxis-1.
'median'
[numpy array] Delay power spectrum incoherently averaged
over the axes specified in incohax using the 'median'
key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not
set, those axes will be replaced with square covariance
matrices. If collapse_axes is provided bu avgcov is
False, those axes will be of shape 2*Naxis-1.
'diagoffsets'
[dictionary] Same keys corresponding to keys under
'collapse_axes' in input containing the diagonal
offsets for those axes. If 'avgcov' was set, those
entries will be removed from 'diagoffsets' since all the
leading diagonal elements have been collapsed (averaged)
further. Value under each key is a numpy array where
each element in the array corresponds to the index of
that leading diagonal. This should match the size of the
output along that axis in 'mean' or 'median' above.
'diagweights'
[dictionary] Each key is an axis specified in
collapse_axes and the value is a numpy array of weights
corresponding to the diagonal offsets in that axis.
'axesmap'
[dictionary] If covariance in cross-power is calculated
but is not collapsed, the number of dimensions in the
output will have changed. This parameter tracks where
the original axis is now placed. The keys are the
original axes that are involved in incoherent
cross-power, and the values are the new locations of
those original axes in the output.
'nsamples_incoh'
[integer] Number of incoherent samples in producing the
power spectrum
'nsamples_coh'
[integer] Number of coherent samples in producing the
power spectrum
outfile [string] Full path to the external HDF5 file where the cross-
power spectrum information provided in xcpdps will be saved
----------------------------------------------------------------------------
"""
if not isinstance(xcpdps, dict):
raise TypeError('Input xcpdps must be a dictionary')
with h5py.File(outfile, 'w') as fileobj:
hdrgrp = fileobj.create_group('header')
hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday']
for key in hdrkeys:
dset = hdrgrp.create_dataset(key, data=xcpdps[key])
sampling = ['oversampled', 'resampled']
sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length']
dpool_keys = ['whole', 'submodel', 'residual', 'errinfo']
for smplng in sampling:
if smplng in xcpdps:
smplgrp = fileobj.create_group(smplng)
for key in sampling_keys:
dset = smplgrp.create_dataset(key, data=xcpdps[smplng][key])
for dpool in dpool_keys:
if dpool in xcpdps[smplng]:
dpoolgrp = smplgrp.create_group(dpool)
keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh']
for key in keys:
if key in xcpdps[smplng][dpool]:
if isinstance(xcpdps[smplng][dpool][key], dict):
subgrp = dpoolgrp.create_group(key)
for subkey in xcpdps[smplng][dpool][key]:
dset = subgrp.create_dataset(str(subkey), data=xcpdps[smplng][dpool][key][subkey])
else:
dset = dpoolgrp.create_dataset(key, data=xcpdps[smplng][dpool][key])
for stat in ['mean', 'median']:
if stat in xcpdps[smplng][dpool]:
if isinstance(xcpdps[smplng][dpool][stat], list):
for ii in range(len(xcpdps[smplng][dpool][stat])):
dset = dpoolgrp.create_dataset(stat+'/diagcomb_{0}'.format(ii), data=xcpdps[smplng][dpool][stat][ii].si.value)
dset.attrs['units'] = str(xcpdps[smplng][dpool][stat][ii].si.unit)
else:
dset = dpoolgrp.create_dataset(stat, data=xcpdps[smplng][dpool][stat].si.value)
dset.attrs['units'] = str(xcpdps[smplng][dpool][stat].si.unit)
################################################################################
def read_CPhase_cross_power_spectrum(infile):
"""
----------------------------------------------------------------------------
Read information about cross power spectrum from an external HDF5 file into
a dictionary. This is the counterpart to save_CPhase_corss_power_spectrum()
Input:
infile [string] Full path to the external HDF5 file that contains info
about cross-power spectrum.
Output:
xcpdps [dictionary] This dictionary has structure the same as output
of the member function compute_power_spectrum() of class
ClosurePhaseDelaySpectrum. It has the following key-value
structure:
'triads' ((ntriads,3) array), 'triads_ind',
((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst'
((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,)
array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array),
'dday' ((ndays,) array), 'oversampled' and 'resampled'
corresponding to whether resample was set to False or True in
call to member function FT(). Values under keys 'triads_ind'
and 'lst_ind' are numpy array corresponding to triad and time
indices used in selecting the data. Values under keys
'oversampled' and 'resampled' each contain a dictionary with
the following keys and values:
'z' [numpy array] Redshifts corresponding to the band
centers in 'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,)
'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding
to 'lags'. It has shape=(nspw,nlags)
'freq_center'
[numpy array] contains the center frequencies (in Hz)
of the frequency subbands of the subband delay spectra.
It is of size n_win. It is roughly equivalent to
redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on
each frequency sub-band during the subband delay
transform. It is of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz)
of the subbands being delay transformed. It is of size
n_win. It is roughly equivalent to width in redshift or
along line-of-sight
'shape' [string] shape of the frequency window function applied.
Usual values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was
raised. The value is be a positive scalar with
default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in
pixels) of the subband delay spectra. It is proportional
to inverse of effective bandwidth. It is of size n_win.
The unit size of a pixel is determined by the difference
between adjacent pixels in lags under key 'lags' which
in turn is effectively inverse of the effective
bandwidth of the subband specified in bw_eff
It further contains one or more of the following keys named
'whole', 'submodel', 'residual', and 'errinfo' each of which is
a dictionary. 'whole' contains power spectrum info about the
input closure phases. 'submodel' contains power spectrum info
about the model that will have been subtracted (as closure
phase) from the 'whole' model. 'residual' contains power
spectrum info about the closure phases obtained as a difference
between 'whole' and 'submodel'. It contains the following keys
and values:
'mean' [numpy array] Delay power spectrum incoherently
estimated over the axes specified in xinfo['axes']
using the 'mean' key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are
not set, those axes will be replaced with square
covariance matrices. If collapse_axes is provided but
avgcov is False, those axes will be of shape 2*Naxis-1.
'median'
[numpy array] Delay power spectrum incoherently averaged
over the axes specified in incohax using the 'median'
key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not
set, those axes will be replaced with square covariance
matrices. If collapse_axes is provided bu avgcov is
False, those axes will be of shape 2*Naxis-1.
'diagoffsets'
[dictionary] Same keys corresponding to keys under
'collapse_axes' in input containing the diagonal
offsets for those axes. If 'avgcov' was set, those
entries will be removed from 'diagoffsets' since all the
leading diagonal elements have been collapsed (averaged)
further. Value under each key is a numpy array where
each element in the array corresponds to the index of
that leading diagonal. This should match the size of the
output along that axis in 'mean' or 'median' above.
'diagweights'
[dictionary] Each key is an axis specified in
collapse_axes and the value is a numpy array of weights
corresponding to the diagonal offsets in that axis.
'axesmap'
[dictionary] If covariance in cross-power is calculated
but is not collapsed, the number of dimensions in the
output will have changed. This parameter tracks where
the original axis is now placed. The keys are the
original axes that are involved in incoherent
cross-power, and the values are the new locations of
those original axes in the output.
'nsamples_incoh'
[integer] Number of incoherent samples in producing the
power spectrum
'nsamples_coh'
[integer] Number of coherent samples in producing the
power spectrum
outfile [string] Full path to the external HDF5 file where the cross-
power spectrum information provided in xcpdps will be saved
----------------------------------------------------------------------------
"""
if not isinstance(infile, str):
raise TypeError('Input infile must be a string')
xcpdps = {}
with h5py.File(infile, 'r') as fileobj:
hdrgrp = fileobj['header']
hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday']
for key in hdrkeys:
xcpdps[key] = hdrgrp[key].value
sampling = ['oversampled', 'resampled']
sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length']
dpool_keys = ['whole', 'submodel', 'residual', 'errinfo']
for smplng in sampling:
if smplng in fileobj:
smplgrp = fileobj[smplng]
xcpdps[smplng] = {}
for key in sampling_keys:
xcpdps[smplng][key] = smplgrp[key].value
for dpool in dpool_keys:
if dpool in smplgrp:
xcpdps[smplng][dpool] = {}
dpoolgrp = smplgrp[dpool]
keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh']
for key in keys:
if key in dpoolgrp:
if isinstance(dpoolgrp[key], h5py.Group):
xcpdps[smplng][dpool][key] = {}
for subkey in dpoolgrp[key]:
xcpdps[smplng][dpool][key][int(subkey)] = dpoolgrp[key][subkey].value
elif isinstance(dpoolgrp[key], h5py.Dataset):
xcpdps[smplng][dpool][key] = dpoolgrp[key].value
else:
raise TypeError('Invalid h5py data type encountered')
for stat in ['mean', 'median']:
if stat in dpoolgrp:
if isinstance(dpoolgrp[stat], h5py.Dataset):
valunits = dpoolgrp[stat].attrs['units']
xcpdps[smplng][dpool][stat] = dpoolgrp[stat].value * U.Unit(valunits)
elif isinstance(dpoolgrp[stat], h5py.Group):
xcpdps[smplng][dpool][stat] = []
for diagcomb_ind in range(len(dpoolgrp[stat].keys())):
if 'diagcomb_{0}'.format(diagcomb_ind) in dpoolgrp[stat]:
valunits = dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].attrs['units']
xcpdps[smplng][dpool][stat] += [dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].value * U.Unit(valunits)]
return xcpdps
################################################################################
def incoherent_cross_power_spectrum_average(xcpdps, excpdps=None, diagoffsets=None):
"""
----------------------------------------------------------------------------
Perform incoherent averaging of cross power spectrum along specified axes
Inputs:
xcpdps [dictionary or list of dictionaries] If provided as a list of
dictionaries, each dictionary consists of cross power spectral
information coming possible from different sources, and they
will be averaged be averaged incoherently. If a single
dictionary is provided instead of a list of dictionaries, the
said averaging does not take place. Each dictionary is
essentially an output of the member function
compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It
has the following key-value structure:
'triads' ((ntriads,3) array), 'triads_ind',
((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst'
((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,)
array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array),
'dday' ((ndays,) array), 'oversampled' and 'resampled'
corresponding to whether resample was set to False or True in
call to member function FT(). Values under keys 'triads_ind'
and 'lst_ind' are numpy array corresponding to triad and time
indices used in selecting the data. Values under keys
'oversampled' and 'resampled' each contain a dictionary with
the following keys and values:
'z' [numpy array] Redshifts corresponding to the band
centers in 'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,)
'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding
to 'lags'. It has shape=(nspw,nlags)
'freq_center'
[numpy array] contains the center frequencies (in Hz)
of the frequency subbands of the subband delay spectra.
It is of size n_win. It is roughly equivalent to
redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on
each frequency sub-band during the subband delay
transform. It is of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz)
of the subbands being delay transformed. It is of size
n_win. It is roughly equivalent to width in redshift or
along line-of-sight
'shape' [string] shape of the frequency window function applied.
Usual values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was
raised. The value is be a positive scalar with
default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in
pixels) of the subband delay spectra. It is proportional
to inverse of effective bandwidth. It is of size n_win.
The unit size of a pixel is determined by the difference
between adjacent pixels in lags under key 'lags' which
in turn is effectively inverse of the effective
bandwidth of the subband specified in bw_eff
It further contains 3 keys named 'whole', 'submodel', and
'residual' each of which is a dictionary. 'whole' contains power
spectrum info about the input closure phases. 'submodel'
contains power spectrum info about the model that will have been
subtracted (as closure phase) from the 'whole' model. 'residual'
contains power spectrum info about the closure phases obtained
as a difference between 'whole' and 'submodel'. It contains the
following keys and values:
'mean' [numpy array] Delay power spectrum incoherently
estimated over the axes specified in xinfo['axes']
using the 'mean' key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are
not set, those axes will be replaced with square
covariance matrices. If collapse_axes is provided but
avgcov is False, those axes will be of shape 2*Naxis-1.
'median'
[numpy array] Delay power spectrum incoherently averaged
over the axes specified in incohax using the 'median'
key in input cpds or attribute
cPhaseDS['processed']['dspec']. It has shape that
depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not
set, those axes will be replaced with square covariance
matrices. If collapse_axes is provided bu avgcov is
False, those axes will be of shape 2*Naxis-1.
'diagoffsets'
[dictionary] Same keys corresponding to keys under
'collapse_axes' in input containing the diagonal
offsets for those axes. If 'avgcov' was set, those
entries will be removed from 'diagoffsets' since all the
leading diagonal elements have been collapsed (averaged)
further. Value under each key is a numpy array where
each element in the array corresponds to the index of
that leading diagonal. This should match the size of the
output along that axis in 'mean' or 'median' above.
'diagweights'
[dictionary] Each key is an axis specified in
collapse_axes and the value is a numpy array of weights
corresponding to the diagonal offsets in that axis.
'axesmap'
[dictionary] If covariance in cross-power is calculated
but is not collapsed, the number of dimensions in the
output will have changed. This parameter tracks where
the original axis is now placed. The keys are the
original axes that are involved in incoherent
cross-power, and the values are the new locations of
those original axes in the output.
'nsamples_incoh'
[integer] Number of incoherent samples in producing the
power spectrum
'nsamples_coh'
[integer] Number of coherent samples in producing the
power spectrum
excpdps [dictionary or list of dictionaries] If provided as a list of
dictionaries, each dictionary consists of cross power spectral
information of subsample differences coming possible from
different sources, and they will be averaged be averaged
incoherently. This is optional. If not set (default=None), no
incoherent averaging happens. If a single dictionary is provided
instead of a list of dictionaries, the said averaging does not
take place. Each dictionary is essentially an output of the
member function compute_power_spectrum_uncertainty() of class
ClosurePhaseDelaySpectrum. It has the following key-value
structure:
'triads' ((ntriads,3) array), 'triads_ind',
((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst'
((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,)
array), 'days' ((ndaycomb,) array), 'day_ind' ((ndaycomb,)
array), 'dday' ((ndaycomb,) array), 'oversampled' and
'resampled' corresponding to whether resample was set to False
or True in call to member function FT(). Values under keys
'triads_ind' and 'lst_ind' are numpy array corresponding to
triad and time indices used in selecting the data. Values under
keys 'oversampled' and 'resampled' each contain a dictionary
with the following keys and values:
'z' [numpy array] Redshifts corresponding to the band
centers in 'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,)
'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding
to 'lags'. It has shape=(nspw,nlags)
'freq_center'
[numpy array] contains the center frequencies (in Hz) of
the frequency subbands of the subband delay spectra. It
is of size n_win. It is roughly equivalent to
redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on each
frequency sub-band during the subband delay transform.
It is of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz)
of the subbands being delay transformed. It is of size
n_win. It is roughly equivalent to width in redshift or
along line-of-sight
'shape' [string] shape of the frequency window function applied.
Usual values are 'rect' (rectangular), 'bhw'
(Blackman-Harris), 'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was
raised. The value is be a positive scalar with
default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in
pixels) of the subband delay spectra. It is proportional
to inverse of effective bandwidth. It is of size n_win.
The unit size of a pixel is determined by the difference
between adjacent pixels in lags under key 'lags' which
in turn is effectively inverse of the effective
bandwidth of the subband specified in bw_eff
It further contains a key named 'errinfo' which is a dictionary.
It contains information about power spectrum uncertainties
obtained from subsample differences. It contains the following
keys and values:
'mean' [numpy array] Delay power spectrum uncertainties
incoherently estimated over the axes specified in
xinfo['axes'] using the 'mean' key in input cpds or
attribute cPhaseDS['errinfo']['dspec']. It has shape
that depends on the combination of input parameters. See
examples below. If both collapse_axes and avgcov are not
set, those axes will be replaced with square covariance
matrices. If collapse_axes is provided but avgcov is
False, those axes will be of shape 2*Naxis-1.
'median'
[numpy array] Delay power spectrum uncertainties
incoherently averaged over the axes specified in incohax
using the 'median' key in input cpds or attribute
cPhaseDS['errinfo']['dspec']. It has shape that depends
on the combination of input parameters. See examples
below. If both collapse_axes and avgcov are not set,
those axes will be replaced with square covariance
matrices. If collapse_axes is provided but avgcov is
False, those axes will be of shape 2*Naxis-1.
'diagoffsets'
[dictionary] Same keys corresponding to keys under
'collapse_axes' in input containing the diagonal offsets
for those axes. If 'avgcov' was set, those entries will
be removed from 'diagoffsets' since all the leading
diagonal elements have been collapsed (averaged) further.
Value under each key is a numpy array where each element
in the array corresponds to the index of that leading
diagonal. This should match the size of the output along
that axis in 'mean' or 'median' above.
'diagweights'
[dictionary] Each key is an axis specified in
collapse_axes and the value is a numpy array of weights
corresponding to the diagonal offsets in that axis.
'axesmap'
[dictionary] If covariance in cross-power is calculated
but is not collapsed, the number of dimensions in the
output will have changed. This parameter tracks where
the original axis is now placed. The keys are the
original axes that are involved in incoherent
cross-power, and the values are the new locations of
those original axes in the output.
'nsamples_incoh'
[integer] Number of incoherent samples in producing the
power spectrum
'nsamples_coh'
[integer] Number of coherent samples in producing the
power spectrum
diagoffsets [NoneType or dictionary or list of dictionaries] This info is
used for incoherent averaging along specified diagonals along
specified axes. This incoherent averaging is performed after
incoherently averaging multiple cross-power spectra (if any).
If set to None, this incoherent averaging is not performed.
Many combinations of axes and diagonals can be specified as
individual dictionaries in a list. If only one dictionary is
specified, then it assumed that only one combination of axes
and diagonals is requested. If a list of dictionaries is given,
each dictionary in the list specifies a different combination
for incoherent averaging. Each dictionary should have the
following key-value pairs. The key is the axis number (allowed
values are 1, 2, 3) that denote the axis type (1=LST, 2=Days,
3=Triads to be averaged), and the value under they keys is a
list or numpy array of diagonals to be averaged incoherently.
These axes-diagonal combinations apply to both the inputs
xcpdps and excpdps, except axis=2 does not apply to excpdps
(since it is made of subsample differences already) and will be
skipped.
Outputs:
A tuple consisting of two dictionaries. The first dictionary contains the
incoherent averaging of xcpdps as specified by the inputs, while the second
consists of incoherent of excpdps as specified by the inputs. The structure
of these dictionaries are practically the same as the dictionary inputs
xcpdps and excpdps respectively. The only differences in dictionary
structure are:
* Under key ['oversampled'/'resampled']['whole'/'submodel'/'residual'
/'effinfo']['mean'/'median'] is a list of numpy arrays, where each
array in the list corresponds to the dictionary in the list in input
diagoffsets that defines the axes-diagonal combination.
----------------------------------------------------------------------------
"""
if isinstance(xcpdps, dict):
xcpdps = [xcpdps]
if not isinstance(xcpdps, list):
raise TypeError('Invalid data type provided for input xcpdps')
if excpdps is not None:
if isinstance(excpdps, dict):
excpdps = [excpdps]
if not isinstance(excpdps, list):
raise TypeError('Invalid data type provided for input excpdps')
if len(xcpdps) != len(excpdps):
raise ValueError('Inputs xcpdps and excpdps found to have unequal number of values')
out_xcpdps = {'triads': xcpdps[0]['triads'], 'triads_ind': xcpdps[0]['triads_ind'], 'lst': xcpdps[0]['lst'], 'lst_ind': xcpdps[0]['lst_ind'], 'dlst': xcpdps[0]['dlst'], 'days': xcpdps[0]['days'], 'day_ind': xcpdps[0]['day_ind'], 'dday': xcpdps[0]['dday']}
out_excpdps = None
if excpdps is not None:
out_excpdps = {'triads': excpdps[0]['triads'], 'triads_ind': excpdps[0]['triads_ind'], 'lst': excpdps[0]['lst'], 'lst_ind': excpdps[0]['lst_ind'], 'dlst': excpdps[0]['dlst'], 'days': excpdps[0]['days'], 'day_ind': excpdps[0]['day_ind'], 'dday': excpdps[0]['dday']}
for smplng in ['oversampled', 'resampled']:
if smplng in xcpdps[0]:
out_xcpdps[smplng] = {'z': xcpdps[0][smplng]['z'], 'kprll': xcpdps[0][smplng]['kprll'], 'lags': xcpdps[0][smplng]['lags'], 'freq_center': xcpdps[0][smplng]['freq_center'], 'bw_eff': xcpdps[0][smplng]['bw_eff'], 'shape': xcpdps[0][smplng]['shape'], 'freq_wts': xcpdps[0][smplng]['freq_wts'], 'lag_corr_length': xcpdps[0][smplng]['lag_corr_length']}
if excpdps is not None:
out_excpdps[smplng] = {'z': excpdps[0][smplng]['z'], 'kprll': excpdps[0][smplng]['kprll'], 'lags': excpdps[0][smplng]['lags'], 'freq_center': excpdps[0][smplng]['freq_center'], 'bw_eff': excpdps[0][smplng]['bw_eff'], 'shape': excpdps[0][smplng]['shape'], 'freq_wts': excpdps[0][smplng]['freq_wts'], 'lag_corr_length': excpdps[0][smplng]['lag_corr_length']}
for dpool in ['whole', 'submodel', 'residual']:
if dpool in xcpdps[0][smplng]:
out_xcpdps[smplng][dpool] = {'diagoffsets': xcpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': xcpdps[0][smplng][dpool]['axesmap']}
for stat in ['mean', 'median']:
if stat in xcpdps[0][smplng][dpool]:
out_xcpdps[smplng][dpool][stat] = {}
arr = []
diagweights = []
for i in range(len(xcpdps)):
arr += [xcpdps[i][smplng][dpool][stat].si.value]
arr_units = xcpdps[i][smplng][dpool][stat].si.unit
if isinstance(xcpdps[i][smplng][dpool]['diagweights'], dict):
diagwts = 1.0
diagwts_shape = NP.ones(xcpdps[i][smplng][dpool][stat].ndim, dtype=NP.int)
for ax in xcpdps[i][smplng][dpool]['diagweights']:
tmp_shape = NP.copy(diagwts_shape)
tmp_shape[xcpdps[i][smplng][dpool]['axesmap'][ax]] = xcpdps[i][smplng][dpool]['diagweights'][ax].size
diagwts = diagwts * xcpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape))
elif isinstance(xcpdps[i][smplng][dpool]['diagweights'], NP.ndarray):
diagwts = NP.copy(xcpdps[i][smplng][dpool]['diagweights'])
else:
raise TypeError('Diagonal weights in input must be a dictionary or a numpy array')
diagweights += [diagwts]
diagweights = NP.asarray(diagweights)
arr = NP.asarray(arr)
arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units
diagweights = NP.nansum(diagweights, axis=0)
out_xcpdps[smplng][dpool][stat] = arr
out_xcpdps[smplng][dpool]['diagweights'] = diagweights
for dpool in ['errinfo']:
if dpool in excpdps[0][smplng]:
out_excpdps[smplng][dpool] = {'diagoffsets': excpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': excpdps[0][smplng][dpool]['axesmap']}
for stat in ['mean', 'median']:
if stat in excpdps[0][smplng][dpool]:
out_excpdps[smplng][dpool][stat] = {}
arr = []
diagweights = []
for i in range(len(excpdps)):
arr += [excpdps[i][smplng][dpool][stat].si.value]
arr_units = excpdps[i][smplng][dpool][stat].si.unit
if isinstance(excpdps[i][smplng][dpool]['diagweights'], dict):
diagwts = 1.0
diagwts_shape = NP.ones(excpdps[i][smplng][dpool][stat].ndim, dtype=NP.int)
for ax in excpdps[i][smplng][dpool]['diagweights']:
tmp_shape = NP.copy(diagwts_shape)
tmp_shape[excpdps[i][smplng][dpool]['axesmap'][ax]] = excpdps[i][smplng][dpool]['diagweights'][ax].size
diagwts = diagwts * excpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape))
elif isinstance(excpdps[i][smplng][dpool]['diagweights'], NP.ndarray):
diagwts = NP.copy(excpdps[i][smplng][dpool]['diagweights'])
else:
raise TypeError('Diagonal weights in input must be a dictionary or a numpy array')
diagweights += [diagwts]
diagweights = NP.asarray(diagweights)
arr = NP.asarray(arr)
arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units
diagweights = NP.nansum(diagweights, axis=0)
out_excpdps[smplng][dpool][stat] = arr
out_excpdps[smplng][dpool]['diagweights'] = diagweights
if diagoffsets is not None:
if isinstance(diagoffsets, dict):
diagoffsets = [diagoffsets]
if not isinstance(diagoffsets, list):
raise TypeError('Input diagoffsets must be a list of dictionaries')
for ind in range(len(diagoffsets)):
for ax in diagoffsets[ind]:
if not isinstance(diagoffsets[ind][ax], (list, NP.ndarray)):
raise TypeError('Values in input dictionary diagoffsets must be a list or numpy array')
diagoffsets[ind][ax] = NP.asarray(diagoffsets[ind][ax])
for smplng in ['oversampled', 'resampled']:
if smplng in out_xcpdps:
for dpool in ['whole', 'submodel', 'residual']:
if dpool in out_xcpdps[smplng]:
masks = []
for ind in range(len(diagoffsets)):
mask_ones = NP.ones(out_xcpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool)
mask_agg = None
for ax in diagoffsets[ind]:
mltdim_slice = [slice(None)] * mask_ones.ndim
mltdim_slice[out_xcpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_xcpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0]
mask_tmp = NP.copy(mask_ones)
mask_tmp[tuple(mltdim_slice)] = False
if mask_agg is None:
mask_agg = NP.copy(mask_tmp)
else:
mask_agg = NP.logical_or(mask_agg, mask_tmp)
masks += [NP.copy(mask_agg)]
diagwts = NP.copy(out_xcpdps[smplng][dpool]['diagweights'])
out_xcpdps[smplng][dpool]['diagweights'] = []
for stat in ['mean', 'median']:
if stat in out_xcpdps[smplng][dpool]:
arr = NP.copy(out_xcpdps[smplng][dpool][stat].si.value)
arr_units = out_xcpdps[smplng][dpool][stat].si.unit
out_xcpdps[smplng][dpool][stat] = []
for ind in range(len(diagoffsets)):
masked_diagwts = MA.array(diagwts, mask=masks[ind])
axes_to_avg = tuple([out_xcpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind]])
out_xcpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units]
if len(out_xcpdps[smplng][dpool]['diagweights']) < len(diagoffsets):
out_xcpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)]
if excpdps is not None:
for smplng in ['oversampled', 'resampled']:
if smplng in out_excpdps:
for dpool in ['errinfo']:
if dpool in out_excpdps[smplng]:
masks = []
for ind in range(len(diagoffsets)):
mask_ones = NP.ones(out_excpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool)
mask_agg = None
for ax in diagoffsets[ind]:
if ax != 2:
mltdim_slice = [slice(None)] * mask_ones.ndim
mltdim_slice[out_excpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_excpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0]
mask_tmp = NP.copy(mask_ones)
mask_tmp[tuple(mltdim_slice)] = False
if mask_agg is None:
mask_agg = NP.copy(mask_tmp)
else:
mask_agg = NP.logical_or(mask_agg, mask_tmp)
masks += [NP.copy(mask_agg)]
diagwts = NP.copy(out_excpdps[smplng][dpool]['diagweights'])
out_excpdps[smplng][dpool]['diagweights'] = []
for stat in ['mean', 'median']:
if stat in out_excpdps[smplng][dpool]:
arr = NP.copy(out_excpdps[smplng][dpool][stat].si.value)
arr_units = out_excpdps[smplng][dpool][stat].si.unit
out_excpdps[smplng][dpool][stat] = []
for ind in range(len(diagoffsets)):
masked_diagwts = MA.array(diagwts, mask=masks[ind])
axes_to_avg = tuple([out_excpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind] if ax!=2])
out_excpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units]
if len(out_excpdps[smplng][dpool]['diagweights']) < len(diagoffsets):
out_excpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)]
return (out_xcpdps, out_excpdps)
################################################################################
def incoherent_kbin_averaging(xcpdps, kbins=None, num_kbins=None, kbintype='log'):
"""
----------------------------------------------------------------------------
Averages the power spectrum incoherently by binning in bins of k. Returns
the power spectrum in units of both standard power spectrum and \Delta^2
Inputs:
xcpdps [dictionary] A dictionary that contains the incoherent averaged
power spectrum along LST and/or triads axes. This dictionary is
essentially the one(s) returned as the output of the function
incoherent_cross_power_spectrum_average()
kbins [NoneType, list or numpy array] Bins in k. If set to None
(default), it will be determined automatically based on the
inputs in num_kbins, and kbintype. If num_kbins is None and
kbintype='linear', the negative and positive values of k are
folded into a one-sided power spectrum. In this case, the
bins will approximately have the same resolution as the k-values
in the input power spectrum for all the spectral windows.
num_kbins [NoneType or integer] Number of k-bins. Used only if kbins is
set to None. If kbintype is set to 'linear', the negative and
positive values of k are folded into a one-sided power spectrum.
In this case, the bins will approximately have the same
resolution as the k-values in the input power spectrum for all
the spectral windows.
kbintype [string] Specifies the type of binning, used only if kbins is
set to None. Accepted values are 'linear' and 'log' for linear
and logarithmic bins respectively.
Outputs:
Dictionary containing the power spectrum information. At the top level, it
contains keys specifying the sampling to be 'oversampled' or 'resampled'.
Under each of these keys is another dictionary containing the following
keys:
'z' [numpy array] Redshifts corresponding to the band centers in
'freq_center'. It has shape=(nspw,)
'lags' [numpy array] Delays (in seconds). It has shape=(nlags,).
'freq_center'
[numpy array] contains the center frequencies (in Hz) of the
frequency subbands of the subband delay spectra. It is of size
n_win. It is roughly equivalent to redshift(s)
'freq_wts'
[numpy array] Contains frequency weights applied on each
frequency sub-band during the subband delay transform. It is
of size n_win x nchan.
'bw_eff'
[numpy array] contains the effective bandwidths (in Hz) of the
subbands being delay transformed. It is of size n_win. It is
roughly equivalent to width in redshift or along line-of-sight
'shape' [string] shape of the frequency window function applied. Usual
values are 'rect' (rectangular), 'bhw' (Blackman-Harris),
'bnw' (Blackman-Nuttall).
'fftpow'
[scalar] the power to which the FFT of the window was raised.
The value is be a positive scalar with default = 1.0
'lag_corr_length'
[numpy array] It is the correlation timescale (in pixels) of
the subband delay spectra. It is proportional to inverse of
effective bandwidth. It is of size n_win. The unit size of a
pixel is determined by the difference between adjacent pixels
in lags under key 'lags' which in turn is effectively inverse
of the effective bandwidth of the subband specified in bw_eff
It further contains 3 keys named 'whole', 'submodel', and 'residual'
or one key named 'errinfo' each of which is a dictionary. 'whole'
contains power spectrum info about the input closure phases. 'submodel'
contains power spectrum info about the model that will have been
subtracted (as closure phase) from the 'whole' model. 'residual'
contains power spectrum info about the closure phases obtained as a
difference between 'whole' and 'submodel'. 'errinfo' contains power
spectrum information about the subsample differences. There is also
another dictionary under key 'kbininfo' that contains information about
k-bins. These dictionaries contain the following keys and values:
'whole'/'submodel'/'residual'/'errinfo'
[dictionary] It contains the following keys and values:
'mean' [dictionary] Delay power spectrum information under the
'mean' statistic incoherently obtained by averaging the
input power spectrum in bins of k. It contains output power
spectrum expressed as two quantities each of which is a
dictionary with the following key-value pairs:
'PS' [list of numpy arrays] Standard power spectrum in
units of 'K2 Mpc3'. Each numpy array in the list
maps to a specific combination of axes and axis
diagonals chosen for incoherent averaging in
earlier processing such as in the function
incoherent_cross_power_spectrum_average(). The
numpy array has a shape similar to the input power
spectrum, but that last axis (k-axis) will have a
different size that depends on the k-bins that
were used in the incoherent averaging along that
axis.
'Del2' [list of numpy arrays] power spectrum in Delta^2
units of 'K2'. Each numpy array in the list
maps to a specific combination of axes and axis
diagonals chosen for incoherent averaging in
earlier processing such as in the function
incoherent_cross_power_spectrum_average(). The
numpy array has a shape similar to the input power
spectrum, but that last axis (k-axis) will have a
different size that depends on the k-bins that
were used in the incoherent averaging along that
axis.
'median'
[dictionary] Delay power spectrum information under the
'median' statistic incoherently obtained by averaging the
input power spectrum in bins of k. It contains output power
spectrum expressed as two quantities each of which is a
dictionary with the following key-value pairs:
'PS' [list of numpy arrays] Standard power spectrum in
units of 'K2 Mpc3'. Each numpy array in the list
maps to a specific combination of axes and axis
diagonals chosen for incoherent averaging in
earlier processing such as in the function
incoherent_cross_power_spectrum_average(). The
numpy array has a shape similar to the input power
spectrum, but that last axis (k-axis) will have a
different size that depends on the k-bins that
were used in the incoherent averaging along that
axis.
'Del2' [list of numpy arrays] power spectrum in Delta^2
units of 'K2'. Each numpy array in the list
maps to a specific combination of axes and axis
diagonals chosen for incoherent averaging in
earlier processing such as in the function
incoherent_cross_power_spectrum_average(). The
numpy array has a shape similar to the input power
spectrum, but that last axis (k-axis) will have a
different size that depends on the k-bins that
were used in the incoherent averaging along that
axis.
'kbininfo'
[dictionary] Contains the k-bin information. It contains the
following key-value pairs:
'counts'
[list] List of numpy arrays where each numpy array in the stores
the counts in the determined k-bins. Each numpy array in the
list corresponds to a spectral window (redshift subband). The
shape of each numpy array is (nkbins,)
'kbin_edges'
[list] List of numpy arrays where each numpy array contains the
k-bin edges. Each array in the list corresponds to a spectral
window (redshift subband). The shape of each array is
(nkbins+1,).
'kbinnum'
[list] List of numpy arrays containing the bin number under
which the k value falls. Each array in the list corresponds to
a spectral window (redshift subband). The shape of each array
is (nlags,).
'ri'
[list] List of numpy arrays containing the reverse indices for
each k-bin. Each array in the list corresponds to a spectral
window (redshift subband). The shape of each array is
(nlags+nkbins+1,).
'whole'/'submodel'/'residual' or 'errinfo' [dictionary] k-bin info
estimated for the different datapools under different stats
and PS definitions. It has the keys 'mean' and 'median' for the
mean and median statistic respectively. Each of them contain a
dictionary with the following key-value pairs:
'PS' [list] List of numpy arrays where each numpy array
contains a standard power spectrum typically in units of
'K2 Mpc3'. Its shape is the same as input power spectrum
except the k-axis which now has nkbins number of
elements.
'Del2' [list] List of numpy arrays where each numpy array
contains a Delta^2 power spectrum typically in units of
'K2'. Its shape is the same as input power spectrum
except the k-axis which now has nkbins number of
elements.
----------------------------------------------------------------------------
"""
if not isinstance(xcpdps, dict):
raise TypeError('Input xcpdps must be a dictionary')
if kbins is not None:
if not isinstance(kbins, (list,NP.ndarray)):
raise TypeError('Input kbins must be a list or numpy array')
else:
if not isinstance(kbintype, str):
raise TypeError('Input kbintype must be a string')
if kbintype.lower() not in ['linear', 'log']:
raise ValueError('Input kbintype must be set to "linear" or "log"')
if kbintype.lower() == 'log':
if num_kbins is None:
num_kbins = 10
psinfo = {}
keys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday']
for key in keys:
psinfo[key] = xcpdps[key]
sampling = ['oversampled', 'resampled']
sampling_keys = ['z', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length']
dpool_keys = ['whole', 'submodel', 'residual', 'errinfo']
for smplng in sampling:
if smplng in xcpdps:
psinfo[smplng] = {}
for key in sampling_keys:
psinfo[smplng][key] = xcpdps[smplng][key]
kprll = xcpdps[smplng]['kprll']
lags = xcpdps[smplng]['lags']
eps = 1e-10
if kbins is None:
dkprll = NP.max(NP.mean(NP.diff(kprll, axis=-1), axis=-1))
if kbintype.lower() == 'linear':
bins_kprll = NP.linspace(eps, NP.abs(kprll).max()+eps, num=kprll.shape[1]/2+1, endpoint=True)
else:
bins_kprll = NP.geomspace(eps, NP.abs(kprll).max()+eps, num=num_kbins+1, endpoint=True)
bins_kprll = NP.insert(bins_kprll, 0, -eps)
else:
bins_kprll = NP.asarray(kbins)
num_kbins = bins_kprll.size - 1
psinfo[smplng]['kbininfo'] = {'counts': [], 'kbin_edges': [], 'kbinnum': [], 'ri': []}
for spw in range(kprll.shape[0]):
counts, kbin_edges, kbinnum, ri = OPS.binned_statistic(NP.abs(kprll[spw,:]), statistic='count', bins=bins_kprll)
counts = counts.astype(NP.int)
psinfo[smplng]['kbininfo']['counts'] += [ | NP.copy(counts) | numpy.copy |
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 23 15:34:55 2020
@author: giova
"""
import meshio
import sys
# specify where to look for modules
sys.path.append("modules")
sys.path.append("PRE")
import time
start = time.process_time()
# import modules and specific functions
import numpy as np
import motoremesh
from boundary_conditions import BoundaryConditions
import solver
from stress_recovery import *
# Read mesh file from gmsh
mesh = motoremesh.GMSH('beam')
bcs = BoundaryConditions()
bcs.dirichlet_elements , bcs.dirichlet_nodes = bcs.find_boundary_obj(mesh,'Dirichlet')
bcs.neumann_elements , bcs.neumann_nodes = bcs.find_boundary_obj(mesh,'Neumann')
bcs.load = | np.array([0,20]) | numpy.array |
#!/usr/bin/env python3
###########################################################################
# This file is part of rsp2, and is licensed under EITHER the MIT license
# or the Apache 2.0 license, at your option.
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://opensource.org/licenses/MIT
#
# Be aware that not all of rsp2 is provided under this permissive license,
# and that the project as a whole is licensed under the GPL 3.0.
###########################################################################
import numpy as np
import json
import sys
import scipy.sparse
import typing as tp
from . import eigsh_custom, get_OPinv
from rsp2.internals import info
from rsp2.io import dynmat, eigensols
# The default tolerance for eigsh is machine precision, which I feel is
# overkill. Hopefully a lighter tolerance will save some time.
#
# TODO maybe: experiment with this
TOL = 1e-10
# absolute cosines greater than this are deemed non-orthogonal
OVERLAP_THRESH = 1e-6
DEFAULT_MAX_SOLUTIONS = 12
DEFAULT_SHIFT_INVERT_ATTEMPTS = 4
DEFAULT_NCV = 0
def main_from_rust():
"""
Entry point when called from rsp2's rust code.
Communicates through JSON over the standard IO streams.
"""
info('trace: sending dynmat from rust to python')
d = json.load(sys.stdin)
m = dynmat.from_dict(d.pop('matrix'))
shift_invert_attempts = d.pop('shift-invert-attempts')
dense = d.pop('dense')
max_solutions = d.pop('max-solutions')
assert not d
out = run(m,
dense=dense,
shift_invert_attempts=shift_invert_attempts,
plain_ncv=DEFAULT_NCV, # FIXME add to input json from rust
shift_invert_ncv=DEFAULT_NCV, # FIXME add to input json from rust
use_fallback=True, # FIXME add to input json from rust
max_solutions=max_solutions,
search_solutions=None, # FIXME add to input json from rust
)
info('trace: sending eigensolutions from python to rust')
json.dump(eigensols.to_cereal(out), sys.stdout)
print(file=sys.stdout) # newline
def main_from_cli():
"""
Entry point for the standalone CLI wrapper.
"""
import argparse
p = argparse.ArgumentParser()
p.add_argument('DYNMAT', help='dynmat file (.npz, .json, .json.gz, ...)')
p.add_argument('--output', '-o', type=str, required=True)
p.add_argument(
'--dense', action='store_true',
help="Use a dense eigenvalue solver. Almost all other options will be "
"ignored in this case."
)
p.add_argument('--shift-invert-attempts', type=int, default=DEFAULT_SHIFT_INVERT_ATTEMPTS)
p.add_argument(
'--no-fallback', dest='use_fallback', action='store_false',
help="Disable non-shift-invert-based fallback method."
)
p.add_argument(
'--max-solutions', type=int, default=None,
help="max number of solutions to seek. Default is 12 unless --dense is given."
)
p.add_argument(
'--shift-invert-ncv', type=int, default=DEFAULT_NCV,
help="suggested number of Lanczos vectors. This will automatically be "
"clipped into the range of [min(2*max_solutions + 1, n), n]"
)
p.add_argument(
'--plain-ncv', type=int, default=DEFAULT_NCV,
help="suggested number of Lanczos vectors. This will automatically be "
"clipped into the range of [min(2*max_solutions + 1, n), n]"
)
p.add_argument(
'--search-solutions', type=int, default=None,
help="actually ask the sparse solver for this many solutions instead "
"of --max-solutions. The sparse solver can converge much, much "
"faster when a few hundred solutions are requested rather than "
"just 12."
)
args = p.parse_args()
if (not args.dense
and args.search_solutions is not None
and args.max_solutions is not None
and args.search_solutions < args.max_solutions
):
p.error("--max-solutions must not exceed --search-solutions")
out = run(
m=dynmat.from_path(args.DYNMAT),
dense=args.dense,
shift_invert_attempts=args.shift_invert_attempts,
shift_invert_ncv=args.shift_invert_ncv,
plain_ncv=args.plain_ncv,
max_solutions=args.max_solutions,
use_fallback=args.use_fallback,
search_solutions=args.search_solutions,
)
eigensols.to_path(args.output, out)
def run(m: scipy.sparse.bsr_matrix,
dense: bool,
shift_invert_attempts: int,
shift_invert_ncv: int,
plain_ncv: int,
max_solutions: tp.Optional[int],
use_fallback: bool,
search_solutions: tp.Optional[int],
):
"""
A suitable entry point from pure python code.
"""
if max_solutions is None:
if dense:
max_solutions = m.shape[0]
else:
max_solutions = DEFAULT_MAX_SOLUTIONS
if search_solutions is None:
search_solutions = max_solutions
# Logic for deciding when to use shift invert results
def inner():
if dense:
return try_dense(m, max_solutions)
if shift_invert_attempts:
esols = try_shift_invert(m,
max_solutions=search_solutions,
shift_invert_attempts=shift_invert_attempts,
ncv=shift_invert_ncv,
)
if not all(acousticness(v) > 1. - 1e-3 for v in esols[1]):
return esols
if use_fallback:
return try_regular(m,
max_solutions=search_solutions,
ncv=plain_ncv,
)
else:
raise RuntimeError('Failed to diagonalize matrix!')
# Cutting out other solutions
evals, evecs = inner()
if not len(evals):
raise RuntimeError('No solutions found!')
return evals[:max_solutions], evecs[:max_solutions]
# As an optimization, begin by using shift-invert mode, which can converge
# in **significantly** fewer iterations than regular mode.
# noinspection PyUnreachableCode
def try_shift_invert(m, *, shift_invert_attempts, max_solutions, ncv):
info('trace: precomputing OPinv for shift-invert')
# From what I have seen, shift_invert mode tends to find most of its
# solutions fairly quickly, but some may be incorrect. Furthermore, it does
# not always find all valid negative solutions.
#
# I fear that when incorrect solutions appear, it may compromise those found
# afterwards. So we make multiple calls with a small number of iterations.
MAX_ITER = max(30, int(10 * m.shape[0] ** (1/3)))
# A heavy computational step at the beginning of shift-invert mode is
# factorizing the matrix; do that ahead of time.
OPinv = get_OPinv(m, sigma=0, tol=TOL)
found_evals = []
found_evecs = []
# debug info
counts = []
for call_i in range(shift_invert_attempts):
info('trace: shift-invert call', call_i + 1)
(evals, evecs) = eigsh_custom(
m,
k=max_solutions,
maxiter=MAX_ITER,
sigma=0,
which='SA',
tol=TOL,
OPinv=OPinv,
ncv=ncv,
allow_fewer_solutions=True,
auto_adjust_k=True,
auto_adjust_ncv=True,
)
evecs = np.array(list(map(normalize, evecs)))
# a tree of counts based on direct field assignment so that static
# linters can catch typos. (CLion handles it very impressively!)
class Count:
def total(self): return int(self)
def __int__(self): return sum(map(int, self.__dict__.values()))
count = Count() # total solutions found
count.good = 0 # total solutions kept
count.bad = Count() # total solutions rejected
count.bad.repeat = 0 # linearly dependent with prior solutions
count.bad.wrong = 0 # non-eigenvector solutions
count.bad.ortho_bad = 0 # tried to orthogonalize, got a non-eigenvector
count.bad.ortho_fail = 0 # tried to orthogonalize, and failed
for (eval, ev) in zip(evals, evecs):
# Is it ACTUALLY an eigenvector?
if not is_good_esol(m, eval, ev):
count.bad.wrong += 1
continue
# Linearly dependent with existing solutions?
if sum(np.abs(np.vdot(ev, other))**2 for other in found_evecs) > 0.95:
count.bad.repeat += 1
continue
# Prepare it for possible insertion.
ortho_ev = mgs_step(ev, found_evecs)
# We didn't ruin it, did we?
if not is_good_esol(m, eval, ortho_ev):
count.bad.ortho_bad += 1
continue
if sum(np.abs(np.vdot(ortho_ev, other))**2 for other in found_evecs) > 1e-6:
count.bad.ortho_fail += 1
continue
# ship it
count.good += 1
found_evecs.append(ortho_ev)
found_evals.append(eval)
counts.append(count)
info(" Good -- Bad (Old Wrong OrthoFail OrthoBad)")
for count in counts:
info(
" {:^4} -- {:^3} ({:^3} {:^5} {:^9} {:^8})".format(
count.good,
count.bad.total(),
count.bad.repeat,
count.bad.wrong,
count.bad.ortho_fail,
count.bad.ortho_bad,
)
)
perm = np.argsort(found_evals)
evals = | np.array(found_evals) | numpy.array |
import os
import sys
import time
import numpy
import math
import random
import copy
import json
import tarfile
import xml.etree.ElementTree as xml
import denet.common as common
import denet.common.logging as logging
from denet.dataset import DatasetAbstract
from denet.dataset.image_loader import ImageLoader
class DatasetImagenet(DatasetAbstract):
def copy(self, copy_data=True):
r = super().copy(copy_data)
r.images = self.images
r.image_loader = self.image_loader
return r
def shuffle(self, mode="random"):
random.shuffle(self.images)
def load_from_subset(self, subset):
if self.subset_index == subset:
return
logging.info("Loading from subset %i / %i (%i threads)"%(subset, self.subset_num, self.thread_num))
index_start = subset*self.subset_size
index_end = min((subset+1)*self.subset_size, self.subset_total_size)
self.data = self.image_loader.load(self.images[index_start:index_end])
self.subset_index = subset
def load(self, input_dir, data_format, is_training, thread_num, class_labels=None):
from .basic import DatasetFromDir
self.input_dir = input_dir
if self.input_dir[-1] == '/':
self.input_dir = self.input_dir[:-1]
self.data_format = data_format
self.thread_num = thread_num
#generate class labels
self.class_labels = class_labels
fname = os.path.join(os.path.dirname(self.input_dir), "class_labels.txt")
if os.path.isfile(fname) and self.class_labels is None:
logging.info("Loading class labels from:", fname)
self.class_labels = {}
with open(fname, "r") as f:
for line in f.readlines():
tokens = line.rstrip('\n').split(" ")
self.class_labels[tokens[1]] = int(tokens[0])
elif self.class_labels is None:
self.class_labels = DatasetFromDir.find_class_labels(input_dir)
#check to see if buffered file list is present
list_fname = os.path.join(input_dir, "image_list.json")
if os.path.isfile(list_fname):
logging.info("Loading dataset metadata:", list_fname)
json_data = common.json_from_file(list_fname)
if json_data.get("version", 0) < 1:
logging.warning("Warning: image_list.json is old version, missing bounding boxs!")
self.images= [{"fname":fname, "bboxs":[]} for fname in json_data["images"]]
else:
self.images = json_data["images"]
else:
bbox_dir = os.path.join(os.path.dirname(input_dir), "bbox")
if not os.path.isdir(bbox_dir):
raise Exception("ERROR: cannot find bbox dir:" + bbox_dir)
fnames=[]
for i,c in enumerate(os.listdir(input_dir).sort()):
images_cls = DatasetFromDir.find_paths(os.path.join(input_dir, c), "*.JPEG")
logging.info("Found %i images for class"%len(images_cls), c)
fnames += images_cls
logging.info("Finding bboxs in:", bbox_dir)
self.images=[]
for i,fname in enumerate(fnames):
logging.verbose("%i/%i"%(i, len(fnames)))
cls_name = os.path.basename(os.path.dirname(fname))
obj_fname = os.path.join(bbox_dir, cls_name, os.path.splitext(os.path.basename(fname))[0] + ".xml")
bboxs=[]
if os.path.isfile(obj_fname):
obj_tree = xml.parse(obj_fname).getroot()
size = obj_tree.find("size")
width = int(size.find("width").text)
height = int(size.find("height").text)
for obj in obj_tree.iter("object"):
bndbox = obj.find("bndbox")
min_x = int(bndbox.find("xmin").text)
min_y = int(bndbox.find("ymin").text)
max_x = int(bndbox.find("xmax").text)
max_y = int(bndbox.find("ymax").text)
bboxs.append({"x0":min_x, "x1":max_x, "y0":min_y, "y1":max_y})
self.images.append({"fname":fname, "bboxs":bboxs})
try:
logging.info("Saving dataset metadata:", list_fname)
common.json_to_file(list_fname, {"images":self.images, "version":1})
except Exception as e:
logging.warning("Warning: failed to write buffered image list - ", e)
#add/fix fields to fit new image_loader interface
for image in self.images:
fname = image["fname"]
cls = self.class_labels[os.path.basename(os.path.dirname(fname))]
image["class"] = cls
image["bboxs"] = [(cls, (bb["x0"], bb["y0"], bb["x1"], bb["y1"])) for bb in image["bboxs"]]
param_str = ",".join(data_format.split(",")[1:])
format_params = common.get_params_dict(param_str)
self.image_loader = ImageLoader(thread_num, is_training, format_params)
#from facebook resnet implementation
self.image_loader.rgb_mean = numpy.array([0.485, 0.456, 0.406], dtype=numpy.float32)
self.image_loader.rgb_std = | numpy.array([0.229, 0.224, 0.225], dtype=numpy.float32) | numpy.array |
"""
This module contains all the functions needed for extracting satellite-derived
shorelines (SDS)
Author: <NAME>, Water Research Laboratory, University of New South Wales
"""
# load modules
import os
import numpy as np
import matplotlib.pyplot as plt
import pdb
# image processing modules
import skimage.filters as filters
import skimage.measure as measure
import skimage.morphology as morphology
# machine learning modules
import sklearn
if sklearn.__version__[:4] == '0.20':
from sklearn.externals import joblib
else:
import joblib
from shapely.geometry import LineString
# other modules
import matplotlib.patches as mpatches
import matplotlib.lines as mlines
import matplotlib.cm as cm
from matplotlib import gridspec
import pickle
from datetime import datetime
from pylab import ginput
# CoastSat modules
from coastsat import SDS_tools, SDS_preprocess
np.seterr(all='ignore') # raise/ignore divisions by 0 and nans
# Main function for batch shoreline detection
def extract_shorelines(metadata, settings):
"""
Main function to extract shorelines from satellite images
KV WRL 2018
Arguments:
-----------
metadata: dict
contains all the information about the satellite images that were downloaded
settings: dict with the following keys
'inputs': dict
input parameters (sitename, filepath, polygon, dates, sat_list)
'cloud_thresh': float
value between 0 and 1 indicating the maximum cloud fraction in
the cropped image that is accepted
'cloud_mask_issue': boolean
True if there is an issue with the cloud mask and sand pixels
are erroneously being masked on the images
'buffer_size': int
size of the buffer (m) around the sandy pixels over which the pixels
are considered in the thresholding algorithm
'min_beach_area': int
minimum allowable object area (in metres^2) for the class 'sand',
the area is converted to number of connected pixels
'min_length_sl': int
minimum length (in metres) of shoreline contour to be valid
'sand_color': str
default', 'dark' (for grey/black sand beaches) or 'bright' (for white sand beaches)
'output_epsg': int
output spatial reference system as EPSG code
'check_detection': bool
if True, lets user manually accept/reject the mapped shorelines
'save_figure': bool
if True, saves a -jpg file for each mapped shoreline
'adjust_detection': bool
if True, allows user to manually adjust the detected shoreline
Returns:
-----------
output: dict
contains the extracted shorelines and corresponding dates + metadata
"""
sitename = settings['inputs']['sitename']
filepath_data = settings['inputs']['filepath']
filepath_models = os.path.join(os.getcwd(), 'classification', 'models')
# initialise output structure
output = dict([])
# create a subfolder to store the .jpg images showing the detection
filepath_jpg = os.path.join(filepath_data, sitename, 'jpg_files', 'detection')
if not os.path.exists(filepath_jpg):
os.makedirs(filepath_jpg)
# close all open figures
plt.close('all')
print('Mapping shorelines:')
# loop through satellite list
for satname in metadata.keys():
# get images
filepath = SDS_tools.get_filepath(settings['inputs'],satname)
filenames = metadata[satname]['filenames']
# initialise the output variables
output_timestamp = [] # datetime at which the image was acquired (UTC time)
output_shoreline = [] # vector of shoreline points
output_filename = [] # filename of the images from which the shorelines where derived
output_cloudcover = [] # cloud cover of the images
output_geoaccuracy = []# georeferencing accuracy of the images
output_idxkeep = [] # index that were kept during the analysis (cloudy images are skipped)
output_t_mndwi = [] # MNDWI threshold used to map the shoreline
# load classifiers (if sklearn version above 0.20, learn the new files)
str_new = ''
if not sklearn.__version__[:4] == '0.20':
str_new = '_new'
if satname in ['L5','L7','L8']:
pixel_size = 15
if settings['sand_color'] == 'dark':
clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_dark%s.pkl'%str_new))
elif settings['sand_color'] == 'bright':
clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat_bright%s.pkl'%str_new))
else:
clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_Landsat%s.pkl'%str_new))
elif satname == 'S2':
pixel_size = 10
clf = joblib.load(os.path.join(filepath_models, 'NN_4classes_S2%s.pkl'%str_new))
# convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels
buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size)
min_beach_area_pixels = np.ceil(settings['min_beach_area']/pixel_size**2)
# loop through the images
for i in range(len(filenames)):
print('\r%s: %d%%' % (satname,int(((i+1)/len(filenames))*100)), end='')
# get image filename
fn = SDS_tools.get_filenames(filenames[i],filepath, satname)
# preprocess image (cloud mask + pansharpening/downsampling)
im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue'])
# get image spatial reference system (epsg code) from metadata dict
image_epsg = metadata[satname]['epsg'][i]
# compute cloud_cover percentage (with no data pixels)
cloud_cover_combined = np.divide(sum(sum(cloud_mask.astype(int))),
(cloud_mask.shape[0]*cloud_mask.shape[1]))
if cloud_cover_combined > 0.99: # if 99% of cloudy pixels in image skip
continue
# remove no data pixels from the cloud mask
# (for example L7 bands of no data should not be accounted for)
cloud_mask_adv = np.logical_xor(cloud_mask, im_nodata)
# compute updated cloud cover percentage (without no data pixels)
cloud_cover = np.divide(sum(sum(cloud_mask_adv.astype(int))),
(sum(sum((~im_nodata).astype(int)))))
# skip image if cloud cover is above user-defined threshold
if cloud_cover > settings['cloud_thresh']:
continue
# calculate a buffer around the reference shoreline (if any has been digitised)
im_ref_buffer = create_shoreline_buffer(cloud_mask.shape, georef, image_epsg,
pixel_size, settings)
# classify image in 4 classes (sand, whitewater, water, other) with NN classifier
im_classif, im_labels = classify_image_NN(im_ms, im_extra, cloud_mask,
min_beach_area_pixels, clf)
# if adjust_detection is True, let the user adjust the detected shoreline
if settings['adjust_detection']:
date = filenames[i][:19]
skip_image, shoreline, t_mndwi = adjust_detection(im_ms, cloud_mask, im_labels,
im_ref_buffer, image_epsg, georef,
settings, date, satname, buffer_size_pixels)
# if the user decides to skip the image, continue and do not save the mapped shoreline
if skip_image:
continue
# otherwise map the contours automatically with one of the two following functions:
# if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced)
# otherwise use find_wl_contours2 (traditional)
else:
try: # use try/except structure for long runs
if sum(sum(im_labels[:,:,0])) < 10 : # minimum number of sand pixels
# compute MNDWI image (SWIR-G)
im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# find water contours on MNDWI grayscale image
contours_mwi, t_mndwi = find_wl_contours1(im_mndwi, cloud_mask, im_ref_buffer)
else:
# use classification to refine threshold and extract the sand/water interface
contours_mwi, t_mndwi = find_wl_contours2(im_ms, im_labels, cloud_mask,
buffer_size_pixels, im_ref_buffer)
except:
print('Could not map shoreline for this image: ' + filenames[i])
continue
# process the water contours into a shoreline
shoreline = process_shoreline(contours_mwi, cloud_mask, georef, image_epsg, settings)
# visualise the mapped shorelines, there are two options:
# if settings['check_detection'] = True, shows the detection to the user for accept/reject
# if settings['save_figure'] = True, saves a figure for each mapped shoreline
if settings['check_detection'] or settings['save_figure']:
date = filenames[i][:19]
if not settings['check_detection']:
plt.ioff() # turning interactive plotting off
skip_image = show_detection(im_ms, cloud_mask, im_labels, shoreline,
image_epsg, georef, settings, date, satname)
# if the user decides to skip the image, continue and do not save the mapped shoreline
if skip_image:
continue
# append to output variables
output_timestamp.append(metadata[satname]['dates'][i])
output_shoreline.append(shoreline)
output_filename.append(filenames[i])
output_cloudcover.append(cloud_cover)
output_geoaccuracy.append(metadata[satname]['acc_georef'][i])
output_idxkeep.append(i)
output_t_mndwi.append(t_mndwi)
# create dictionnary of output
output[satname] = {
'dates': output_timestamp,
'shorelines': output_shoreline,
'filename': output_filename,
'cloud_cover': output_cloudcover,
'geoaccuracy': output_geoaccuracy,
'idx': output_idxkeep,
'MNDWI_threshold': output_t_mndwi,
}
print('')
# close figure window if still open
if plt.get_fignums():
plt.close()
# change the format to have one list sorted by date with all the shorelines (easier to use)
output = SDS_tools.merge_output(output)
# save outputput structure as output.pkl
filepath = os.path.join(filepath_data, sitename)
with open(os.path.join(filepath, sitename + '_output.pkl'), 'wb') as f:
pickle.dump(output, f)
return output
###################################################################################################
# IMAGE CLASSIFICATION FUNCTIONS
###################################################################################################
def calculate_features(im_ms, cloud_mask, im_bool):
"""
Calculates features on the image that are used for the supervised classification.
The features include spectral normalized-difference indices and standard
deviation of the image for all the bands and indices.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
RGB + downsampled NIR and SWIR
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
im_bool: np.array
2D array of boolean indicating where on the image to calculate the features
Returns:
-----------
features: np.array
matrix containing each feature (columns) calculated for all
the pixels (rows) indicated in im_bool
"""
# add all the multispectral bands
features = np.expand_dims(im_ms[im_bool,0],axis=1)
for k in range(1,im_ms.shape[2]):
feature = np.expand_dims(im_ms[im_bool,k],axis=1)
features = np.append(features, feature, axis=-1)
# NIR-G
im_NIRG = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,1], cloud_mask)
features = np.append(features, np.expand_dims(im_NIRG[im_bool],axis=1), axis=-1)
# SWIR-G
im_SWIRG = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
features = np.append(features, np.expand_dims(im_SWIRG[im_bool],axis=1), axis=-1)
# NIR-R
im_NIRR = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,2], cloud_mask)
features = np.append(features, np.expand_dims(im_NIRR[im_bool],axis=1), axis=-1)
# SWIR-NIR
im_SWIRNIR = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,3], cloud_mask)
features = np.append(features, np.expand_dims(im_SWIRNIR[im_bool],axis=1), axis=-1)
# B-R
im_BR = SDS_tools.nd_index(im_ms[:,:,0], im_ms[:,:,2], cloud_mask)
features = np.append(features, np.expand_dims(im_BR[im_bool],axis=1), axis=-1)
# calculate standard deviation of individual bands
for k in range(im_ms.shape[2]):
im_std = SDS_tools.image_std(im_ms[:,:,k], 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
# calculate standard deviation of the spectral indices
im_std = SDS_tools.image_std(im_NIRG, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
im_std = SDS_tools.image_std(im_SWIRG, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
im_std = SDS_tools.image_std(im_NIRR, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
im_std = SDS_tools.image_std(im_SWIRNIR, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
im_std = SDS_tools.image_std(im_BR, 1)
features = np.append(features, np.expand_dims(im_std[im_bool],axis=1), axis=-1)
return features
def classify_image_NN(im_ms, im_extra, cloud_mask, min_beach_area, clf):
"""
Classifies every pixel in the image in one of 4 classes:
- sand --> label = 1
- whitewater (breaking waves and swash) --> label = 2
- water --> label = 3
- other (vegetation, buildings, rocks...) --> label = 0
The classifier is a Neural Network that is already trained.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
Pansharpened RGB + downsampled NIR and SWIR
im_extra:
only used for Landsat 7 and 8 where im_extra is the panchromatic band
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
min_beach_area: int
minimum number of pixels that have to be connected to belong to the SAND class
clf: joblib object
pre-trained classifier
Returns:
-----------
im_classif: np.array
2D image containing labels
im_labels: np.array of booleans
3D image containing a boolean image for each class (im_classif == label)
"""
# calculate features
vec_features = calculate_features(im_ms, cloud_mask, np.ones(cloud_mask.shape).astype(bool))
vec_features[np.isnan(vec_features)] = 1e-9 # NaN values are create when std is too close to 0
# remove NaNs and cloudy pixels
vec_cloud = cloud_mask.reshape(cloud_mask.shape[0]*cloud_mask.shape[1])
vec_nan = np.any(np.isnan(vec_features), axis=1)
vec_inf = np.any(np.isinf(vec_features), axis=1)
vec_mask = np.logical_or(vec_cloud,np.logical_or(vec_nan,vec_inf))
vec_features = vec_features[~vec_mask, :]
# classify pixels
labels = clf.predict(vec_features)
# recompose image
vec_classif = np.nan*np.ones((cloud_mask.shape[0]*cloud_mask.shape[1]))
vec_classif[~vec_mask] = labels
im_classif = vec_classif.reshape((cloud_mask.shape[0], cloud_mask.shape[1]))
# create a stack of boolean images for each label
im_sand = im_classif == 1
im_swash = im_classif == 2
im_water = im_classif == 3
# remove small patches of sand or water that could be around the image (usually noise)
im_sand = morphology.remove_small_objects(im_sand, min_size=min_beach_area, connectivity=2)
im_water = morphology.remove_small_objects(im_water, min_size=min_beach_area, connectivity=2)
im_labels = np.stack((im_sand,im_swash,im_water), axis=-1)
return im_classif, im_labels
###################################################################################################
# CONTOUR MAPPING FUNCTIONS
###################################################################################################
def find_wl_contours1(im_ndwi, cloud_mask, im_ref_buffer):
"""
Traditional method for shoreline detection using a global threshold.
Finds the water line by thresholding the Normalized Difference Water Index
and applying the Marching Squares Algorithm to contour the iso-value
corresponding to the threshold.
KV WRL 2018
Arguments:
-----------
im_ndwi: np.ndarray
Image (2D) with the NDWI (water index)
cloud_mask: np.ndarray
2D cloud mask with True where cloud pixels are
im_ref_buffer: np.array
Binary image containing a buffer around the reference shoreline
Returns:
-----------
contours: list of np.arrays
contains the coordinates of the contour lines
t_mwi: float
Otsu threshold used to map the contours
"""
# reshape image to vector
vec_ndwi = im_ndwi.reshape(im_ndwi.shape[0] * im_ndwi.shape[1])
vec_mask = cloud_mask.reshape(cloud_mask.shape[0] * cloud_mask.shape[1])
vec = vec_ndwi[~vec_mask]
# apply otsu's threshold
vec = vec[~np.isnan(vec)]
t_otsu = filters.threshold_otsu(vec)
# use Marching Squares algorithm to detect contours on ndwi image
im_ndwi_buffer = np.copy(im_ndwi)
im_ndwi_buffer[~im_ref_buffer] = np.nan
contours = measure.find_contours(im_ndwi_buffer, t_otsu)
# remove contours that contain NaNs (due to cloud pixels in the contour)
contours = process_contours(contours)
return contours, t_otsu
def find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size, im_ref_buffer):
"""
New robust method for extracting shorelines. Incorporates the classification
component to refine the treshold and make it specific to the sand/water interface.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
RGB + downsampled NIR and SWIR
im_labels: np.array
3D image containing a boolean image for each class in the order (sand, swash, water)
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
buffer_size: int
size of the buffer around the sandy beach over which the pixels are considered in the
thresholding algorithm.
im_ref_buffer: np.array
binary image containing a buffer around the reference shoreline
Returns:
-----------
contours_mwi: list of np.arrays
contains the coordinates of the contour lines extracted from the
MNDWI (Modified Normalized Difference Water Index) image
t_mwi: float
Otsu sand/water threshold used to map the contours
"""
nrows = cloud_mask.shape[0]
ncols = cloud_mask.shape[1]
# calculate Normalized Difference Modified Water Index (SWIR - G)
im_mwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# calculate Normalized Difference Modified Water Index (NIR - G)
im_wi = SDS_tools.nd_index(im_ms[:,:,3], im_ms[:,:,1], cloud_mask)
# stack indices together
im_ind = np.stack((im_wi, im_mwi), axis=-1)
vec_ind = im_ind.reshape(nrows*ncols,2)
# reshape labels into vectors
vec_sand = im_labels[:,:,0].reshape(ncols*nrows)
vec_water = im_labels[:,:,2].reshape(ncols*nrows)
# create a buffer around the sandy beach
se = morphology.disk(buffer_size)
im_buffer = morphology.binary_dilation(im_labels[:,:,0], se)
vec_buffer = im_buffer.reshape(nrows*ncols)
# select water/sand/swash pixels that are within the buffer
int_water = vec_ind[np.logical_and(vec_buffer,vec_water),:]
int_sand = vec_ind[np.logical_and(vec_buffer,vec_sand),:]
# make sure both classes have the same number of pixels before thresholding
if len(int_water) > 0 and len(int_sand) > 0:
if np.argmin([int_sand.shape[0],int_water.shape[0]]) == 1:
int_sand = int_sand[np.random.choice(int_sand.shape[0],int_water.shape[0], replace=False),:]
else:
int_water = int_water[np.random.choice(int_water.shape[0],int_sand.shape[0], replace=False),:]
# threshold the sand/water intensities
int_all = np.append(int_water,int_sand, axis=0)
t_mwi = filters.threshold_otsu(int_all[:,0])
t_wi = filters.threshold_otsu(int_all[:,1])
# find contour with MS algorithm
im_wi_buffer = np.copy(im_wi)
im_wi_buffer[~im_ref_buffer] = np.nan
im_mwi_buffer = np.copy(im_mwi)
im_mwi_buffer[~im_ref_buffer] = np.nan
contours_wi = measure.find_contours(im_wi_buffer, t_wi)
contours_mwi = measure.find_contours(im_mwi_buffer, t_mwi)
# remove contour points that are NaNs (around clouds)
contours_wi = process_contours(contours_wi)
contours_mwi = process_contours(contours_mwi)
# only return MNDWI contours and threshold
return contours_mwi, t_mwi
###################################################################################################
# SHORELINE PROCESSING FUNCTIONS
###################################################################################################
def create_shoreline_buffer(im_shape, georef, image_epsg, pixel_size, settings):
"""
Creates a buffer around the reference shoreline. The size of the buffer is
given by settings['max_dist_ref'].
KV WRL 2018
Arguments:
-----------
im_shape: np.array
size of the image (rows,columns)
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
image_epsg: int
spatial reference system of the image from which the contours were extracted
pixel_size: int
size of the pixel in metres (15 for Landsat, 10 for Sentinel-2)
settings: dict with the following keys
'output_epsg': int
output spatial reference system
'reference_shoreline': np.array
coordinates of the reference shoreline
'max_dist_ref': int
maximum distance from the reference shoreline in metres
Returns:
-----------
im_buffer: np.array
binary image, True where the buffer is, False otherwise
"""
# initialise the image buffer
im_buffer = np.ones(im_shape).astype(bool)
if 'reference_shoreline' in settings.keys():
# convert reference shoreline to pixel coordinates
ref_sl = settings['reference_shoreline']
ref_sl_conv = SDS_tools.convert_epsg(ref_sl, settings['output_epsg'],image_epsg)[:,:-1]
ref_sl_pix = SDS_tools.convert_world2pix(ref_sl_conv, georef)
ref_sl_pix_rounded = np.round(ref_sl_pix).astype(int)
# make sure that the pixel coordinates of the reference shoreline are inside the image
idx_row = np.logical_and(ref_sl_pix_rounded[:,0] > 0, ref_sl_pix_rounded[:,0] < im_shape[1])
idx_col = np.logical_and(ref_sl_pix_rounded[:,1] > 0, ref_sl_pix_rounded[:,1] < im_shape[0])
idx_inside = np.logical_and(idx_row, idx_col)
ref_sl_pix_rounded = ref_sl_pix_rounded[idx_inside,:]
# create binary image of the reference shoreline (1 where the shoreline is 0 otherwise)
im_binary = np.zeros(im_shape)
for j in range(len(ref_sl_pix_rounded)):
im_binary[ref_sl_pix_rounded[j,1], ref_sl_pix_rounded[j,0]] = 1
im_binary = im_binary.astype(bool)
# dilate the binary image to create a buffer around the reference shoreline
max_dist_ref_pixels = np.ceil(settings['max_dist_ref']/pixel_size)
se = morphology.disk(max_dist_ref_pixels)
im_buffer = morphology.binary_dilation(im_binary, se)
return im_buffer
def process_contours(contours):
"""
Remove contours that contain NaNs, usually these are contours that are in contact
with clouds.
KV WRL 2020
Arguments:
-----------
contours: list of np.array
image contours as detected by the function skimage.measure.find_contours
Returns:
-----------
contours: list of np.array
processed image contours (only the ones that do not contains NaNs)
"""
# initialise variable
contours_nonans = []
# loop through contours and only keep the ones without NaNs
for k in range(len(contours)):
if np.any(np.isnan(contours[k])):
index_nan = np.where(np.isnan(contours[k]))[0]
contours_temp = np.delete(contours[k], index_nan, axis=0)
if len(contours_temp) > 1:
contours_nonans.append(contours_temp)
else:
contours_nonans.append(contours[k])
return contours_nonans
def process_shoreline(contours, cloud_mask, georef, image_epsg, settings):
"""
Converts the contours from image coordinates to world coordinates.
This function also removes the contours that are too small to be a shoreline
(based on the parameter settings['min_length_sl'])
KV WRL 2018
Arguments:
-----------
contours: np.array or list of np.array
image contours as detected by the function find_contours
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
image_epsg: int
spatial reference system of the image from which the contours were extracted
settings: dict with the following keys
'output_epsg': int
output spatial reference system
'min_length_sl': float
minimum length of shoreline contour to be kept (in meters)
Returns:
-----------
shoreline: np.array
array of points with the X and Y coordinates of the shoreline
"""
# convert pixel coordinates to world coordinates
contours_world = SDS_tools.convert_pix2world(contours, georef)
# convert world coordinates to desired spatial reference system
contours_epsg = SDS_tools.convert_epsg(contours_world, image_epsg, settings['output_epsg'])
# remove contours that have a perimeter < min_length_sl (provided in settings dict)
# this enables to remove the very small contours that do not correspond to the shoreline
contours_long = []
for l, wl in enumerate(contours_epsg):
coords = [(wl[k,0], wl[k,1]) for k in range(len(wl))]
a = LineString(coords) # shapely LineString structure
if a.length >= settings['min_length_sl']:
contours_long.append(wl)
# format points into np.array
x_points = np.array([])
y_points = np.array([])
for k in range(len(contours_long)):
x_points = np.append(x_points,contours_long[k][:,0])
y_points = np.append(y_points,contours_long[k][:,1])
contours_array = np.transpose(np.array([x_points,y_points]))
shoreline = contours_array
# now remove any shoreline points that are attached to cloud pixels
if sum(sum(cloud_mask)) > 0:
# get the coordinates of the cloud pixels
idx_cloud = np.where(cloud_mask)
idx_cloud = np.array([(idx_cloud[0][k], idx_cloud[1][k]) for k in range(len(idx_cloud[0]))])
# convert to world coordinates and same epsg as the shoreline points
coords_cloud = SDS_tools.convert_epsg(SDS_tools.convert_pix2world(idx_cloud, georef),
image_epsg, settings['output_epsg'])[:,:-1]
# only keep the shoreline points that are at least 30m from any cloud pixel
idx_keep = np.ones(len(shoreline)).astype(bool)
for k in range(len(shoreline)):
if np.any(np.linalg.norm(shoreline[k,:] - coords_cloud, axis=1) < 30):
idx_keep[k] = False
shoreline = shoreline[idx_keep]
return shoreline
###################################################################################################
# PLOTTING FUNCTIONS
###################################################################################################
def show_detection(im_ms, cloud_mask, im_labels, shoreline,image_epsg, georef,
settings, date, satname):
"""
Shows the detected shoreline to the user for visual quality control.
The user can accept/reject the detected shorelines by using keep/skip
buttons.
KV WRL 2018
Arguments:
-----------
im_ms: np.array
RGB + downsampled NIR and SWIR
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
im_labels: np.array
3D image containing a boolean image for each class in the order (sand, swash, water)
shoreline: np.array
array of points with the X and Y coordinates of the shoreline
image_epsg: int
spatial reference system of the image from which the contours were extracted
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
date: string
date at which the image was taken
satname: string
indicates the satname (L5,L7,L8 or S2)
settings: dict with the following keys
'inputs': dict
input parameters (sitename, filepath, polygon, dates, sat_list)
'output_epsg': int
output spatial reference system as EPSG code
'check_detection': bool
if True, lets user manually accept/reject the mapped shorelines
'save_figure': bool
if True, saves a -jpg file for each mapped shoreline
Returns:
-----------
skip_image: boolean
True if the user wants to skip the image, False otherwise
"""
sitename = settings['inputs']['sitename']
filepath_data = settings['inputs']['filepath']
# subfolder where the .jpg file is stored if the user accepts the shoreline detection
filepath = os.path.join(filepath_data, sitename, 'jpg_files', 'detection')
im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
# compute classified image
im_class = np.copy(im_RGB)
cmap = cm.get_cmap('tab20c')
colorpalette = cmap(np.arange(0,13,1))
colours = np.zeros((3,4))
colours[0,:] = colorpalette[5]
colours[1,:] = np.array([204/255,1,1,1])
colours[2,:] = np.array([0,91/255,1,1])
for k in range(0,im_labels.shape[2]):
im_class[im_labels[:,:,k],0] = colours[k,0]
im_class[im_labels[:,:,k],1] = colours[k,1]
im_class[im_labels[:,:,k],2] = colours[k,2]
# compute MNDWI grayscale image
im_mwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask)
# transform world coordinates of shoreline into pixel coordinates
# use try/except in case there are no coordinates to be transformed (shoreline = [])
try:
sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline,
settings['output_epsg'],
image_epsg)[:,[0,1]], georef)
except:
# if try fails, just add nan into the shoreline vector so the next parts can still run
sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]])
if plt.get_fignums():
# get open figure if it exists
fig = plt.gcf()
ax1 = fig.axes[0]
ax2 = fig.axes[1]
ax3 = fig.axes[2]
else:
# else create a new figure
fig = plt.figure()
fig.set_size_inches([18, 9])
mng = plt.get_current_fig_manager()
mng.window.showMaximized()
# according to the image shape, decide whether it is better to have the images
# in vertical subplots or horizontal subplots
if im_RGB.shape[1] > 2.5*im_RGB.shape[0]:
# vertical subplots
gs = gridspec.GridSpec(3, 1)
gs.update(bottom=0.03, top=0.97, left=0.03, right=0.97)
ax1 = fig.add_subplot(gs[0,0])
ax2 = fig.add_subplot(gs[1,0], sharex=ax1, sharey=ax1)
ax3 = fig.add_subplot(gs[2,0], sharex=ax1, sharey=ax1)
else:
# horizontal subplots
gs = gridspec.GridSpec(1, 3)
gs.update(bottom=0.05, top=0.95, left=0.05, right=0.95)
ax1 = fig.add_subplot(gs[0,0])
ax2 = fig.add_subplot(gs[0,1], sharex=ax1, sharey=ax1)
ax3 = fig.add_subplot(gs[0,2], sharex=ax1, sharey=ax1)
# change the color of nans to either black (0.0) or white (1.0) or somewhere in between
nan_color = 1.0
im_RGB = np.where(np.isnan(im_RGB), nan_color, im_RGB)
im_class = np.where(np.isnan(im_class), 1.0, im_class)
# create image 1 (RGB)
ax1.imshow(im_RGB)
ax1.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
ax1.axis('off')
ax1.set_title(sitename, fontweight='bold', fontsize=16)
# create image 2 (classification)
ax2.imshow(im_class)
ax2.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
ax2.axis('off')
orange_patch = mpatches.Patch(color=colours[0,:], label='sand')
white_patch = mpatches.Patch(color=colours[1,:], label='whitewater')
blue_patch = mpatches.Patch(color=colours[2,:], label='water')
black_line = mlines.Line2D([],[],color='k',linestyle='-', label='shoreline')
ax2.legend(handles=[orange_patch,white_patch,blue_patch, black_line],
bbox_to_anchor=(1, 0.5), fontsize=10)
ax2.set_title(date, fontweight='bold', fontsize=16)
# create image 3 (MNDWI)
ax3.imshow(im_mwi, cmap='bwr')
ax3.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3)
ax3.axis('off')
ax3.set_title(satname, fontweight='bold', fontsize=16)
# additional options
# ax1.set_anchor('W')
# ax2.set_anchor('W')
# cb = plt.colorbar()
# cb.ax.tick_params(labelsize=10)
# cb.set_label('MNDWI values')
# ax3.set_anchor('W')
# if check_detection is True, let user manually accept/reject the images
skip_image = False
if settings['check_detection']:
# set a key event to accept/reject the detections (see https://stackoverflow.com/a/15033071)
# this variable needs to be immuatable so we can access it after the keypress event
key_event = {}
def press(event):
# store what key was pressed in the dictionary
key_event['pressed'] = event.key
# let the user press a key, right arrow to keep the image, left arrow to skip it
# to break the loop the user can press 'escape'
while True:
btn_keep = plt.text(1.1, 0.9, 'keep ⇨', size=12, ha="right", va="top",
transform=ax1.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
btn_skip = plt.text(-0.1, 0.9, '⇦ skip', size=12, ha="left", va="top",
transform=ax1.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
btn_esc = plt.text(0.5, 0, '<esc> to quit', size=12, ha="center", va="top",
transform=ax1.transAxes,
bbox=dict(boxstyle="square", ec='k',fc='w'))
plt.draw()
fig.canvas.mpl_connect('key_press_event', press)
plt.waitforbuttonpress()
# after button is pressed, remove the buttons
btn_skip.remove()
btn_keep.remove()
btn_esc.remove()
# keep/skip image according to the pressed key, 'escape' to break the loop
if key_event.get('pressed') == 'right':
skip_image = False
break
elif key_event.get('pressed') == 'left':
skip_image = True
break
elif key_event.get('pressed') == 'escape':
plt.close()
raise StopIteration('User cancelled checking shoreline detection')
else:
plt.waitforbuttonpress()
# if save_figure is True, save a .jpg under /jpg_files/detection
if settings['save_figure'] and not skip_image:
fig.savefig(os.path.join(filepath, date + '_' + satname + '.jpg'), dpi=150)
# don't close the figure window, but remove all axes and settings, ready for next plot
for ax in fig.axes:
ax.clear()
return skip_image
def adjust_detection(im_ms, cloud_mask, im_labels, im_ref_buffer, image_epsg, georef,
settings, date, satname, buffer_size_pixels):
"""
Advanced version of show detection where the user can adjust the detected
shorelines with a slide bar.
KV WRL 2020
Arguments:
-----------
im_ms: np.array
RGB + downsampled NIR and SWIR
cloud_mask: np.array
2D cloud mask with True where cloud pixels are
im_labels: np.array
3D image containing a boolean image for each class in the order (sand, swash, water)
im_ref_buffer: np.array
Binary image containing a buffer around the reference shoreline
image_epsg: int
spatial reference system of the image from which the contours were extracted
georef: np.array
vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale]
date: string
date at which the image was taken
satname: string
indicates the satname (L5,L7,L8 or S2)
buffer_size_pixels: int
buffer_size converted to number of pixels
settings: dict with the following keys
'inputs': dict
input parameters (sitename, filepath, polygon, dates, sat_list)
'output_epsg': int
output spatial reference system as EPSG code
'save_figure': bool
if True, saves a -jpg file for each mapped shoreline
Returns:
-----------
skip_image: boolean
True if the user wants to skip the image, False otherwise
shoreline: np.array
array of points with the X and Y coordinates of the shoreline
t_mndwi: float
value of the MNDWI threshold used to map the shoreline
"""
sitename = settings['inputs']['sitename']
filepath_data = settings['inputs']['filepath']
# subfolder where the .jpg file is stored if the user accepts the shoreline detection
filepath = os.path.join(filepath_data, sitename, 'jpg_files', 'detection')
# format date
date_str = datetime.strptime(date,'%Y-%m-%d-%H-%M-%S').strftime('%Y-%m-%d %H:%M:%S')
im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9)
# compute classified image
im_class = np.copy(im_RGB)
cmap = cm.get_cmap('tab20c')
colorpalette = cmap(np.arange(0,13,1))
colours = np.zeros((3,4))
colours[0,:] = colorpalette[5]
colours[1,:] = | np.array([204/255,1,1,1]) | numpy.array |
__doc__ = """Snake friction case from <NAME> et. al. Nat. Comm. 2021"""
""" This environment is constructed based on the PyElastica:ContinuumSnakeCase """
from typing import Optional
from collections import defaultdict
from functools import partial
from tqdm import tqdm
import gym
from gym import error, spaces, utils
from gym.utils import seeding
from elastica import *
from elastica.utils import _bspline
import numpy as np
from gym_softrobot.utils.render.continuum_snake_postprocessing import (
plot_snake_velocity,
plot_video,
plot_curvature,
)
from gym_softrobot.utils.render.post_processing import plot_video
def compute_projected_velocity(plot_params: dict, period):
time_per_period = np.array(plot_params["time"]) / period
avg_velocity = np.array(plot_params["avg_velocity"])
center_of_mass = np.array(plot_params["center_of_mass"])
# Compute rod velocity in rod direction. We need to compute that because,
# after snake starts to move it chooses an arbitrary direction, which does not
# have to be initial tangent direction of the rod. Thus we need to project the
# snake velocity with respect to its new tangent and roll direction, after that
# we will get the correct forward and lateral speed. After this projection
# lateral velocity of the snake has to be oscillating between + and - values with
# zero mean.
# Number of steps in one period.
period_step = int(1.0 / (time_per_period[-1] - time_per_period[-2]))
number_of_period = int(time_per_period[-1])
if number_of_period-2 <= 0:
return (0,0,0,0)
# Center of mass position averaged in one period
center_of_mass_averaged_over_one_period = np.zeros((number_of_period - 2, 3))
for i in range(1, number_of_period - 1):
# position of center of mass averaged over one period
center_of_mass_averaged_over_one_period[i - 1] = np.mean(
center_of_mass[(i + 1) * period_step : (i + 2) * period_step]
- center_of_mass[(i + 0) * period_step : (i + 1) * period_step],
axis=0,
)
# Average the rod directions over multiple periods and get the direction of the rod.
direction_of_rod = np.mean(center_of_mass_averaged_over_one_period, axis=0)
direction_of_rod /= np.linalg.norm(direction_of_rod, ord=2)
# Compute the projected rod velocity in the direction of the rod
velocity_mag_in_direction_of_rod = np.einsum(
"ji,i->j", avg_velocity, direction_of_rod
)
velocity_in_direction_of_rod = np.einsum(
"j,i->ji", velocity_mag_in_direction_of_rod, direction_of_rod
)
# Get the lateral or roll velocity of the rod after subtracting its projected
# velocity in the direction of rod
velocity_in_rod_roll_dir = avg_velocity - velocity_in_direction_of_rod
# Compute the average velocity over the simulation, this can be used for optimizing snake
# for fastest forward velocity. We start after first period, because of the ramping up happens
# in first period.
average_velocity_over_simulation = np.mean(
velocity_in_direction_of_rod[period_step * 2 :], axis=0
)
return (
velocity_in_direction_of_rod,
velocity_in_rod_roll_dir,
average_velocity_over_simulation[2],
average_velocity_over_simulation[0],
)
class SnakeSimulator(BaseSystemCollection, Constraints, Forcing, CallBacks):
pass
class ContinuumSnakeCallBack(CallBackBaseClass):
"""
Call back function for continuum snake
"""
def __init__(self, step_skip: int, callback_params: dict):
CallBackBaseClass.__init__(self)
self.every = step_skip
self.callback_params = callback_params
def make_callback(self, system, time, current_step: int):
if current_step % self.every == 0:
self.callback_params["time"].append(time)
self.callback_params["step"].append(current_step)
self.callback_params["position"].append(
system.position_collection.copy()
)
self.callback_params["velocity"].append(
system.velocity_collection.copy()
)
self.callback_params["avg_velocity"].append(
system.compute_velocity_center_of_mass()
)
self.callback_params["center_of_mass"].append(
system.compute_position_center_of_mass()
)
self.callback_params["curvature"].append(system.kappa.copy())
return
class ContinuumSnakeEnv(gym.Env):
metadata = {'render.modes': ['rgb_array', 'human']}
def __init__(self):
# Action space
action_space_low = -np.ones(7) * 1e-2; action_space_low[-1] = 0.5
action_space_high = np.ones(7) * 1e-2; action_space_high[-1] = 3.0
self.action_space = spaces.Box(action_space_low, action_space_high, dtype=np.float32)
# State space
self._n_elem = 50
observation_space = (((self._n_elem+1) * 3 * 2) + ((self._n_elem) * 9),)
self.observation_space = spaces.Box(-np.inf, np.inf, shape=observation_space, dtype=np.float32)
self.metadata = {}
# Determinism
self.seed()
self.viewer = None
self.rendere = None
def seed(self, seed=None):
# Deprecated in new gym
self.np_random, seed = seeding.np_random(seed)
return [seed]
def reset(
self,
*,
seed: Optional[int] = None,
return_info: bool = False,
options: Optional[dict] = None,
):
super().reset(seed=seed)
self.snake_sim, self.stepper, self.muscle_torque, self.data = self._build()
self.time= np.float64(0.0)
if return_info:
return self.get_state(), {}
else:
return self.get_state()
def get_state(self):
# Build state
rod = self.shearable_rod
pos_state = rod.position_collection.ravel()
vel_state = rod.velocity_collection.ravel()
dir_state = rod.director_collection.ravel()
return np.concatenate([pos_state, vel_state, dir_state], dtype=np.float32)
def set_action(self, action):
wave_length = action[-1]
b_coeff = action[:-1]
self.muscle_torque().__init__(
base_length=self.base_length,
b_coeff=b_coeff,
period=self.period,
wave_number=2.0 * np.pi / (wave_length),
phase_shift=0.0,
rest_lengths=self.shearable_rod.rest_lengths,
ramp_up_time=self.period,
direction=np.array([0.0, 1.0, 0.0]),
with_spline=True,
)
def step(self, action):
err_msg = f"{action!r} ({type(action)}) invalid: expected {self.action_space}"
assert self.action_space.contains(action), err_msg
""" Set action """
self.set_action(action)
""" Run simulation """
for _ in range(self.step_skip):
self.time = self.stepper(time=self.time)
# Compute the average forward velocity. These will be used for optimization.
[_, _, avg_forward, avg_lateral] = compute_projected_velocity(self.data, self.period)
done = False
if self.time >= self.final_time:
done = True
info = {}
return self.get_state(), avg_forward, done, info
def render(self, mode='human', close=False):
'''
filename_plot = "continuum_snake_velocity.png"
plot_snake_velocity(self.data, self.period, filename_plot, 1)
plot_curvature(self.data, self.shearable_rod.rest_lengths, self.period, 1)
if SAVE_VIDEO:
filename_video = "continuum_snake.mp4"
plot_video(
self.data,
video_name=filename_video,
fps=60,
xlim=(0, 4),
ylim=(-1, 1),
)
'''
maxwidth = 800
aspect_ratio = (3/4)
if self.viewer is None:
from gym_softrobot.utils.render import pyglet_rendering
from gym_softrobot.utils.render.povray_renderer import Session
self.viewer = pyglet_rendering.SimpleImageViewer(maxwidth=maxwidth)
self.renderer = Session(width=maxwidth, height=int(maxwidth*aspect_ratio))
self.renderer.add_rod(self.shearable_rod)
# Temporary rendering to add side-view
state_image = self.renderer.render(maxwidth, int(maxwidth*aspect_ratio*0.7))
state_image_side = self.renderer.render(
maxwidth//2,
int(maxwidth*aspect_ratio*0.3),
camera_param=('location',[0.0, 0.0, -0.5],'look_at',[0.0,0,0])
)
state_image_top = self.renderer.render(
maxwidth//2,
int(maxwidth*aspect_ratio*0.3),
camera_param=('location',[0.0, 0.3, 0.0],'look_at',[0.0,0,0])
)
state_image = np.vstack([
state_image,
np.hstack([state_image_side, state_image_top])
])
self.viewer.imshow(state_image)
return state_image
def close(self):
pass
def _build(self, include_callback:bool=False):
# Initialize the simulation class
snake_sim = SnakeSimulator()
# Simulation parameters
period = 2
self.period = period
final_time = (11.0 + 0.01) * period
self.final_time = final_time
time_step = 8e-6
total_steps = int(final_time / time_step)
rendering_fps = 5
step_skip = int(1.0 / (rendering_fps * time_step))
self.step_skip = step_skip
callback_step_skip = int(1.0 / (60 * time_step))
# setting up test params
n_elem = self._n_elem
start = np.zeros((3,))
direction = np.array([0.0, 0.0, 1.0])
normal = np.array([0.0, 1.0, 0.0])
base_length = 0.35
self.base_length = base_length
base_radius = base_length * 0.011
density = 1000
nu = 1e-4
E = 1e6
poisson_ratio = 0.5
shear_modulus = E / (poisson_ratio + 1.0)
# Add rod
self.shearable_rod = CosseratRod.straight_rod(
n_elem,
start,
direction,
normal,
base_length,
base_radius,
density,
nu,
E,
shear_modulus=shear_modulus,
)
snake_sim.append(self.shearable_rod)
# Add gravitational forces
gravitational_acc = -9.80665
snake_sim.add_forcing_to(self.shearable_rod).using(
GravityForces, acc_gravity=np.array([0.0, gravitational_acc, 0.0])
)
# Add muscle torques
wave_length = 1
muscle_torque = snake_sim.add_forcing_to(self.shearable_rod).using(
MuscleTorques,
base_length=base_length,
b_coeff=np.zeros(4),
period=period,
wave_number=2.0 * np.pi / (wave_length),
phase_shift=0.0,
rest_lengths=self.shearable_rod.rest_lengths,
ramp_up_time=period,
direction=normal,
with_spline=True,
)
# Add friction forces
origin_plane = | np.array([0.0, -base_radius, 0.0]) | numpy.array |
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
# This file is part of pyunicorn.
# Copyright (C) 2008--2019 <NAME> and pyunicorn authors
# URL: <http://www.pik-potsdam.de/members/donges/software>
# License: BSD (3-clause)
#
# Please acknowledge and cite the use of this software and its authors
# when results are used in publications or published elsewhere.
#
# You can use the following reference:
# <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>,
# <NAME>, <NAME>, <NAME>, <NAME>, <NAME>,
# and <NAME>, "Unified functional network and nonlinear time series analysis
# for complex systems science: The pyunicorn package"
"""
Provides classes for analyzing spatially embedded complex networks, handling
multivariate data and generating time series surrogates.
Written by <NAME>.
CMSI Method Reference: [Pompe2011]_
"""
# array object and fast numerics
import numpy
#
# Define class CouplingAnalysisPurePython
#
class CouplingAnalysisPurePython:
"""
Contains methods to calculate coupling matrices from large arrays
of scalar time series.
Comprises linear and information theoretic measures, lagged
and directed (causal) couplings.
"""
#
# Definitions of internal methods
#
def __init__(self, dataarray, only_tri=False, silence_level=0):
"""
Initialize an instance of CouplingAnalysisPurePython.
Possible choices for only_tri:
- "True" will calculate only the upper triangle of the coupling
matrix, excluding the diagonal, assuming symmetry (not for directed
measures)
- "False" will calculate the whole matrix (asymmetry somes from
different integration ranges)
:type dataarray: 4D, 3D or 2D Numpy array [time, index, index] or
[time, index]
:arg dataarray: The time series array with time in first dimension
:arg bool only_tri: Symmetric/asymmetric assumption on coupling matrix.
:arg int silence_level: The inverse level of verbosity of the object.
"""
# only_tri will calculate the upper triangle excluding the diagonal
# only. This assumes stationarity on the time series
self.only_tri = only_tri
# Set silence level
self.silence_level = silence_level
# Flatten observable anomaly array along lon/lat dimension to allow
# for more convinient indexing and transpose the whole array as this
# is faster in loops
if numpy.ndim(dataarray) == 4:
(self.total_time, n_lev, n_lat, n_lon) = dataarray.shape
self.N = n_lev * n_lat * n_lon
self.dataarray = numpy.\
fastCopyAndTranspose(dataarray.reshape(-1, self.N))
if numpy.ndim(dataarray) == 3:
(self.total_time, n_lat, n_lon) = dataarray.shape
self.N = n_lat * n_lon
self.dataarray = numpy.\
fastCopyAndTranspose(dataarray.reshape(-1, self.N))
elif numpy.ndim(dataarray) == 2:
(self.total_time, self.N) = dataarray.shape
self.dataarray = numpy.fastCopyAndTranspose(dataarray)
else:
print("irregular array shape...")
self.dataarray = numpy.fastCopyAndTranspose(dataarray)
# factorials below 10 in a list for permutation patterns
self.factorial = \
numpy.array([1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880])
self.patternized = False
self.has_fft = False
self.originalFFT = None
# lag_mode dict
self.lag_modi = {"all": 0, "sum": 1, "max": 2}
def __str__(self):
"""
Return a string representation of the CouplingAnalysisPurePython
object.
"""
shape = self.dataarray.shape
return 'CouplingAnalysisPurePython: %i variables, %i timesteps.' % (
shape[0], shape[1])
#
# Define methods to calculate correlation strength and lags
#
#
# Routines for calculating Cross Correlation
#
def cross_correlation(self, tau_max=0, lag_mode='all'):
"""
Returns the normalized cross correlation from all pairs of nodes from
a range of time lags.
The calculation ranges are shown below::
(-------------------------total_time--------------------------)
(---tau_max---)(---------corr_range------------)(---tau_max---)
CC is calculated about corr_range and with the other time series
shifted by tau
Possible choices for lag_mode:
- "all" will return the full function for all lags, possible large
memory need if only_tri is True, only the upper triangle contains the
values, the lower one is zeros
- "sum" will return the sum over positive and negative lags seperatly,
each inclunding tau=0 corrmat[0] is the positive sum, corrmat[1] the
negative sum
- "max" will return only the maximum coupling (in corrmat[0]) and its
lag (in corrmat[1])
:arg int tau_max: maximum lag in both directions, including last lag
:arg str lag_mode: the output mode
:rtype: 3D numpy array (float) [index, index, index]
:return: correlation matrix with different lag_mode choices
"""
# Normalize anomaly time series to zero mean and unit variance for all
# lags, array contains normalizations for all lags
corr_range = self.total_time - 2*tau_max
normalized_array = numpy.empty((2*tau_max + 1, self.N, corr_range),
dtype="float32")
for t in range(2*tau_max + 1):
# Remove mean value from time series at each vertex (grid point)
normalized_array[t] = self.dataarray[:, t:t+corr_range] - \
self.dataarray[:, t:t+corr_range].\
mean(axis=1).reshape(self.N, 1)
# Normalize the variance of anomalies to one
normalized_array[t] /= normalized_array[t].\
std(axis=1).reshape(self.N, 1)
# Correct for grid points with zero variance in their time series
normalized_array[t][numpy.isnan(normalized_array[t])] = 0
return self._calculate_cc(normalized_array, corr_range=corr_range,
tau_max=tau_max, lag_mode=lag_mode)
def shuffled_surrogate_for_cc(self, fourier=False, tau_max=1,
lag_mode='all'):
"""
Returns a correlation matrix calculated with an independently shuffled
surrogate of the dataarray of length corr_range for all taus.
:arg int corr_range: length of sample
:arg int tau_max: maximum lag in both directions, including last lag
:arg str lag_mode: output mode
:rtype: 3D numpy array (float) [index, index, index]
:return: correlation matrix with different lag_mode choices
"""
corr_range = self.total_time - 2*tau_max
# Shuffle a copy of dataarray separatly for each node
array = numpy.copy(self.dataarray)
if fourier:
array = self.correlatedNoiseSurrogates(array)
else:
for i in range(self.N):
numpy.random.shuffle(array[i])
sample_array = numpy.zeros((1, self.N, corr_range), dtype="float32")
sample_array[0] = array[:, :corr_range]
sample_array[0] -= sample_array[0].mean(axis=1).reshape(self.N, 1)
sample_array[0] /= sample_array[0].std(axis=1).reshape(self.N, 1)
sample_array[0, numpy.isnan(sample_array[0])] = 0
res = self._calculate_cc(sample_array, corr_range=corr_range,
tau_max=0, lag_mode='all')
if lag_mode == 'all':
corrmat = numpy.repeat(res, 2*tau_max + 1, axis=0)
elif lag_mode == 'sum':
corrmat = numpy.array([abs(res[0]), abs(res[0])]) * (tau_max+1.)
elif lag_mode == 'max':
corrmat = numpy.array([abs(res[0]),
numpy.random.randint(-tau_max, tau_max+1,
(self.N, self.N))])
return corrmat
def time_surrogate_for_cc(self, sample_range=100, tau_max=1,
lag_mode='all'):
"""
Returns a joint shuffled surrogate of the full dataarray of length
sample_range for all taus.
Used for time evolution analysis. First one initializes the
CouplingAnalysis class with the full dataarray and then this function
is called for every single surrogate.
:arg int sample_range: length of sample
:arg int tau_max: maximum lag in both directions, including last lag
:arg str lag_mode: output mode
:rtype: 3D numpy array (float) [index, index, index]
:return: correlation matrix with different lag_mode choices
"""
perm = numpy.random.permutation(
range(tau_max, self.total_time - tau_max))[:sample_range]
sample_array = numpy.empty((2*tau_max + 1, self.N, sample_range),
dtype="float32")
for t in range(2 * tau_max + 1):
tau = t - tau_max
sample_array[t] = self.dataarray[:, perm + tau]
sample_array[t] -= sample_array[t].mean(axis=1).reshape(self.N, 1)
sample_array[t] /= sample_array[t].std(axis=1).reshape(self.N, 1)
sample_array[t][numpy.isnan(sample_array[t])] = 0
return self._calculate_cc(sample_array, corr_range=sample_range,
tau_max=tau_max, lag_mode=lag_mode)
def _calculate_cc(self, array, corr_range, tau_max, lag_mode):
"""
Returns the CC matrix.
:arg int tau_max: maximum lag in both directions, including last lag
:arg str lag_mode: output mode
:rtype: 3D numpy array (float) [index, index, index]
:return: correlation matrix with different lag_mode choices
## lag_mode dict
mode = self.lag_modi[lag_mode]
"""
# lag_mode dict
mode = self.lag_modi[lag_mode]
only_tri = int(self.only_tri)
if lag_mode == 'all':
corrmat = numpy.zeros((2*tau_max + 1, self.N, self.N),
dtype='float32')
elif lag_mode == 'sum':
corrmat = numpy.zeros((2, self.N, self.N), dtype='float32')
elif lag_mode == 'max':
corrmat = numpy.zeros((2, self.N, self.N), dtype='float32')
# loop over all node pairs, NOT symmetric due to time shifts!
for i in range(self.N-only_tri):
for j in range((i+1)*only_tri, self.N):
if mode == 2:
maxcross = 0.0
argmax = 0
# loop over taus INCLUDING the last tau value
for t in range(2*tau_max+1):
# here the actual cross correlation is calculated
crossij = (array[tau_max, i, :] * array[t, j, :]).mean()
# fill in values in matrix depending on lag_mode
if mode == 0:
corrmat[t, i, j] = crossij
elif mode == 1:
if t <= tau_max:
corrmat[1, i, j] += numpy.abs(crossij)
if t >= tau_max:
corrmat[0, i, j] += numpy.abs(crossij)
elif mode == 2:
# calculate max and argmax by comparing to previous
# value and storing max
if | numpy.abs(crossij) | numpy.abs |
import numpy as np
def VGGPreprocessing(originImgMatrix):
"The only preprocessing we do is subtracting the mean RGB value, \
computed on the training set, from each pixel.\
原论文中对输入的RGB矩阵做了一个减去均值的预处理,该函数实现这个预处理"
if type(originImgMatrix) is not np.ndarray:
originImgMatrix = | np.ndarray(originImgMatrix) | numpy.ndarray |
# -*- coding: utf-8 -*-
import sys
sys.path.append('..')
import numpy as np
import vectorflow as vf
male_heights = np.random.normal(171, 6, 500)
female_heights = np.random.normal(158, 5, 500)
male_weights = np.random.normal(70, 10, 500)
female_weights = np.random.normal(57, 8, 500)
male_bfrs = np.random.normal(16, 2, 500)
female_bfrs = np.random.normal(22, 2, 500)
male_labels = [1] * 500
female_labels = [-1] * 500
train_set = np.array([np.concatenate((male_heights, female_heights)),
np.concatenate((male_weights, female_weights)),
np.concatenate((male_bfrs, female_bfrs)),
np.concatenate((male_labels, female_labels))]).T
# 随机打乱样本顺序
np.random.shuffle(train_set)
# 构造计算图:输入向量,是一个3x1矩阵,不需要初始化,不参与训练
x = vf.core.Variable(dim=(3, 1), init=False, trainable=False)
# 类别标签,1男,-1女
label = vf.core.Variable(dim=(1, 1), init=False, trainable=False)
# 权值向量,是一个1x3矩阵,需要初始化,参与训练
w = vf.core.Variable(dim=(1, 3), init=True, trainable=True)
# 偏置,是一个1x1矩阵,需要初始化,参与训练
b = vf.core.Variable(dim=(1, 1), init=True, trainable=True)
# 预测输出
output = vf.operator.Add(vf.operator.MatMul(w, x), b)
predict = vf.operator.Logistic(output)
# 对数损失
loss = vf.loss.LogLoss(vf.operator.Multiply(label, output))
# 学习率
learning_rate = 0.0001
# 构造Adam优化器
optimizer = vf.optimizer.Adam(vf.default_graph, loss, learning_rate)
# 批大小为16
batch_size = 16
# 训练执行50个epoch
for epoch in range(50):
# 批计数器清零
batch_count = 0
# 遍历训练集中的样本
for i in range(len(train_set)):
# 取第i个样本的前3列,构造3x1矩阵对象
features = np.mat(train_set[i,:-1]).T
# 取第i个样本的最后一列,是该样本的性别标签(1男,-1女),构造1x1矩阵对象
l = | np.mat(train_set[i,-1]) | numpy.mat |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(209, 'F 4 3 2', transformations)
space_groups[209] = sg
space_groups['F 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(210, 'F 41 3 2', transformations)
space_groups[210] = sg
space_groups['F 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(211, 'I 4 3 2', transformations)
space_groups[211] = sg
space_groups['I 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(212, 'P 43 3 2', transformations)
space_groups[212] = sg
space_groups['P 43 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(213, 'P 41 3 2', transformations)
space_groups[213] = sg
space_groups['P 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(214, 'I 41 3 2', transformations)
space_groups[214] = sg
space_groups['I 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(215, 'P -4 3 m', transformations)
space_groups[215] = sg
space_groups['P -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(216, 'F -4 3 m', transformations)
space_groups[216] = sg
space_groups['F -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(217, 'I -4 3 m', transformations)
space_groups[217] = sg
space_groups['I -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(218, 'P -4 3 n', transformations)
space_groups[218] = sg
space_groups['P -4 3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(219, 'F -4 3 c', transformations)
space_groups[219] = sg
space_groups['F -4 3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(220, 'I -4 3 d', transformations)
space_groups[220] = sg
space_groups['I -4 3 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(221, 'P m -3 m', transformations)
space_groups[221] = sg
space_groups['P m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(222, 'P n -3 n :2', transformations)
space_groups[222] = sg
space_groups['P n -3 n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(223, 'P m -3 n', transformations)
space_groups[223] = sg
space_groups['P m -3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(224, 'P n -3 m :2', transformations)
space_groups[224] = sg
space_groups['P n -3 m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(225, 'F m -3 m', transformations)
space_groups[225] = sg
space_groups['F m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = | N.array([0,1,0,1,0,0,0,0,1]) | numpy.array |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = | N.array([1,1,1]) | numpy.array |
import numpy as np
def haldane_honeycomb(kx, ky, m=0.5, phi=np.pi/2):
k = np.array([kx / np.sqrt(3.), ky * 2. / 3.])
t1 = t2 = 1.
a1 = np.array([np.sqrt(3) * 0.5, 0.5])
a2 = np.array([0, -1])
a3 = np.array([-np.sqrt(3) * 0.5, 0.5])
b1 = a2 - a3
b2 = a3 - a1
b3 = a1 - a2
pauli0 = np.eye(2)
pauli1 = np.array([[0, 1], [1, 0]])
pauli2 = np.array([[0, -1j], [1j, 0]])
pauli3 = np.array([[1, 0], [0, -1]])
hk = 2 * t2 * np.cos(phi) * (
np.cos(k @ b1) + np.cos(k @ b2) + np.cos(k @ b3)
) * pauli0 + t1 * (
(np.cos(k @ a1) + np.cos(k @ a2) + np.cos(k @ a3)) * pauli1 +
( | np.sin(k @ a1) | numpy.sin |
# _*_ coding:utf-8 _*_
'''
@Author: <NAME>
@Date: 2018.12.9
@Purpose: 文本情感分析(positive,negative,neutral)
@Reference: https://github.com/Edward1Chou/SentimentAnalysis
@算法:Bi_LSTM
@需要有事先标准好的数据集
@positive: [1,0,0]
@neutral: [0,1,0]
@negative:[0,0,1]
'''
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import codecs
import jieba
datapaths=r"C:\Users\RY\Desktop\情感分析\SentimentAnalysis-master\data\\"
positive_data=[]
y_positive=[]
neutral_data=[]
y_neutral=[]
negative_data=[]
y_negative=[]
print("#------------------------------------------------------#")
print("加载数据集")
with codecs.open(datapaths+"pos.csv","r","utf-8") as f1,\
codecs.open(datapaths+"neutral.csv","r","utf-8") as f2,\
codecs.open(datapaths+"neg.csv","r","utf-8") as f3:
for line in f1:
positive_data.append(" ".join(i for i in jieba.lcut(line.strip(),cut_all=False)))
y_positive.append([1,0,0])
for line in f2:
neutral_data.append(" ".join(i for i in jieba.lcut(line.strip(),cut_all=False)))
y_neutral.append([0,1,0])
for line in f3:
negative_data.append(" ".join(i for i in jieba.lcut(line.strip(),cut_all=False)))
y_negative.append([0,0,1])
print("positive data:{}".format(len(positive_data)))
print("neutral data:{}".format(len(neutral_data)))
print("negative data:{}".format(len(negative_data)))
x_text=positive_data+neutral_data+negative_data
y_label=y_positive+y_neutral+y_negative
print("#------------------------------------------------------#")
print("\n")
from tensorflow.contrib import learn
import tensorflow as tf
import numpy as np
import collections
max_document_length=200
min_frequency=1
vocab = learn.preprocessing.VocabularyProcessor(max_document_length,min_frequency, tokenizer_fn=list)
x = np.array(list(vocab.fit_transform(x_text)))
vocab_dict = collections.OrderedDict(vocab.vocabulary_._mapping)
with codecs.open(r"C:\Users\RY\Desktop\vocabulary.txt","w","utf-8") as f:
for key,value in vocab_dict.items():
f.write("{} {}\n".format(key,value))
print("#----------------------------------------------------------#")
print("\n")
print("#----------------------------------------------------------#")
print("数据混洗")
np.random.seed(10)
y=np.array(y_label)
shuffle_indices = np.random.permutation(np.arange(len(y)))
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]
test_sample_percentage=0.2
test_sample_index = -1 * int(test_sample_percentage * float(len(y)))
x_train, x_test = x_shuffled[:test_sample_index], x_shuffled[test_sample_index:]
y_train, y_test = y_shuffled[:test_sample_index], y_shuffled[test_sample_index:]
train_positive_label=0
train_neutral_label=0
train_negative_label=0
test_positive_label=0
test_neutral_label=0
test_negative_label=0
for i in range(len(y_train)):
if y_train[i,0] == 1:
train_positive_label += 1
elif y_train[i,1] == 1:
train_neutral_label += 1
else:
train_negative_label += 1
for i in range(len(y_test)):
if y_test[i,0] == 1:
test_positive_label += 1
elif y_test[i,1] == 1:
test_neutral_label += 1
else:
test_negative_label += 1
print("训练集中 positive 样本个数:{}".format(train_positive_label))
print("训练集中 neutral 样本个数:{}".format(train_neutral_label))
print("训练集中 negative 样本个数:{}".format(train_negative_label))
print("测试集中 positive 样本个数:{}".format(test_positive_label))
print("测试集中 neutral 样本个数:{}".format(test_neutral_label))
print("测试集中 negative 样本个数:{}".format(test_negative_label))
print("#----------------------------------------------------------#")
print("\n")
print("#----------------------------------------------------------#")
print("读取預训练词向量矩阵")
pretrainpath=r"E:\中科大MS\預训练模型\\"
embedding_index={}
with codecs.open(pretrainpath+"sgns.wiki.bigram","r","utf-8") as f:
line=f.readline()
nwords=int(line.strip().split(" ")[0])
ndims=int(line.strip().split(" ")[1])
for line in f:
values=line.split()
words=values[0]
coefs=np.asarray(values[1:],dtype="float32")
embedding_index[words]=coefs
print("預训练模型中Token总数:{} = {}".format(nwords,len(embedding_index)))
print("預训练模型的维度:{}".format(ndims))
print("#----------------------------------------------------------#")
print("\n")
print("#----------------------------------------------------------#")
print("将vocabulary中的 index-word 对应关系映射到 index-word vector形式")
embedding_matrix=[]
notfoundword=0
for word in vocab_dict.keys():
if word in embedding_index.keys():
embedding_matrix.append(embedding_index[word])
else:
notfoundword += 1
embedding_matrix.append(np.random.uniform(-1,1,size=ndims))
embedding_matrix= | np.array(embedding_matrix,dtype=np.float32) | numpy.array |
"""Primary tests."""
import copy
import functools
import pickle
from typing import Any, Callable, Dict, List, Optional, Tuple
import warnings
import numpy as np
import pytest
import scipy.optimize
from pyblp import (
Agents, CustomMoment, DemographicCovarianceMoment, Formulation, Integration, Iteration, Optimization, Problem,
Products, Simulation, build_ownership, data_to_dict, parallel
)
from pyblp.utilities.basics import Array, Options, update_matrices, compute_finite_differences
from .conftest import SimulatedProblemFixture
@pytest.mark.usefixtures('simulated_problem')
@pytest.mark.parametrize('solve_options_update', [
pytest.param({'method': '2s'}, id="two-step"),
pytest.param({'scale_objective': True}, id="scaled objective"),
pytest.param({'center_moments': False, 'W_type': 'unadjusted', 'se_type': 'clustered'}, id="complex covariances"),
pytest.param({'delta_behavior': 'last'}, id="faster starting delta values"),
pytest.param({'fp_type': 'linear'}, id="non-safe linear fixed point"),
pytest.param({'fp_type': 'safe_nonlinear'}, id="nonlinear fixed point"),
pytest.param({'fp_type': 'nonlinear'}, id="non-safe nonlinear fixed point"),
pytest.param(
{'iteration': Iteration('hybr', {'xtol': 1e-12}, compute_jacobian=True)},
id="linear Newton fixed point"
),
pytest.param(
{'fp_type': 'safe_nonlinear', 'iteration': Iteration('hybr', {'xtol': 1e-12}, compute_jacobian=True)},
id="nonlinear Newton fixed point"
)
])
def test_accuracy(simulated_problem: SimulatedProblemFixture, solve_options_update: Options) -> None:
"""Test that starting parameters that are half their true values give rise to errors of less than 10%."""
simulation, _, problem, solve_options, _ = simulated_problem
# skip different iteration configurations when they won't matter
if simulation.K2 == 0 and {'delta_behavior', 'fp_type', 'iteration'} & set(solve_options_update):
return pytest.skip("A different iteration configuration has no impact when there is no heterogeneity.")
if simulation.epsilon_scale != 1 and 'nonlinear' in solve_options_update.get('fp_type', 'safe_linear'):
return pytest.skip("Nonlinear fixed point configurations are not supported when epsilon is scaled.")
# update the default options and solve the problem
updated_solve_options = copy.deepcopy(solve_options)
updated_solve_options.update(solve_options_update)
updated_solve_options.update({k: 0.5 * solve_options[k] for k in ['sigma', 'pi', 'rho', 'beta']})
results = problem.solve(**updated_solve_options)
# test the accuracy of the estimated parameters
keys = ['sigma', 'pi', 'rho', 'beta']
if problem.K3 > 0:
keys.append('gamma')
for key in keys:
np.testing.assert_allclose(getattr(simulation, key), getattr(results, key), atol=0, rtol=0.1, err_msg=key)
@pytest.mark.usefixtures('simulated_problem')
@pytest.mark.parametrize('compute_options', [
pytest.param({'method': 'approximate'}, id="approximation"),
pytest.param({'method': 'normal'}, id="normal distribution"),
pytest.param({'method': 'empirical'}, id="empirical distribution")
])
def test_optimal_instruments(simulated_problem: SimulatedProblemFixture, compute_options: Options) -> None:
"""Test that starting parameters that are half their true values also give rise to errors of less than 10% under
optimal instruments.
"""
simulation, _, problem, solve_options, problem_results = simulated_problem
# compute optimal instruments and update the problem (only use a few draws to speed up the test)
compute_options = copy.deepcopy(compute_options)
compute_options.update({
'draws': 5,
'seed': 0
})
new_problem = problem_results.compute_optimal_instruments(**compute_options).to_problem()
# update the default options and solve the problem
updated_solve_options = copy.deepcopy(solve_options)
updated_solve_options.update({k: 0.5 * solve_options[k] for k in ['sigma', 'pi', 'rho', 'beta']})
new_results = new_problem.solve(**updated_solve_options)
# test the accuracy of the estimated parameters
keys = ['beta', 'sigma', 'pi', 'rho']
if problem.K3 > 0:
keys.append('gamma')
for key in keys:
np.testing.assert_allclose(getattr(simulation, key), getattr(new_results, key), atol=0, rtol=0.1, err_msg=key)
@pytest.mark.usefixtures('simulated_problem')
def test_importance_sampling(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that starting parameters that are half their true values also give rise to errors of less than 20% under
importance sampling.
"""
simulation, _, problem, solve_options, problem_results = simulated_problem
# importance sampling is only relevant when there are agent data
if problem.K2 == 0:
return pytest.skip("There are no agent data.")
# it suffices to test importance sampling for problems without demographics
if problem.D > 0:
return pytest.skip("Testing importance sampling is hard with demographics.")
# compute a more precise delta
delta = problem_results.compute_delta(integration=simulation.integration)
# do importance sampling and verify that the mean utility didn't change if precise integration isn't used
sampling_results = problem_results.importance_sampling(
draws=500,
ar_constant=2,
seed=0,
delta=delta,
integration=Integration('mlhs', 50000, {'seed': 0}),
)
# solve the new problem
new_problem = sampling_results.to_problem()
updated_solve_options = copy.deepcopy(solve_options)
updated_solve_options.update({k: 0.5 * solve_options[k] for k in ['sigma', 'pi', 'rho', 'beta']})
new_results = new_problem.solve(**updated_solve_options)
# test the accuracy of the estimated parameters
keys = ['beta', 'sigma', 'pi', 'rho']
if problem.K3 > 0:
keys.append('gamma')
for key in keys:
np.testing.assert_allclose(getattr(simulation, key), getattr(new_results, key), atol=0, rtol=0.2, err_msg=key)
@pytest.mark.usefixtures('simulated_problem')
def test_bootstrap(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that post-estimation output medians are within 5% parametric bootstrap confidence intervals."""
_, _, problem, solve_options, problem_results = simulated_problem
# create bootstrapped results (use only a few draws and don't iterate for speed)
bootstrapped_results = problem_results.bootstrap(draws=100, seed=0, iteration=Iteration('return'))
# test that post-estimation outputs are within 95% confidence intervals
t = problem.products.market_ids[0]
merger_ids = np.where(problem.products.firm_ids == 1, 0, problem.products.firm_ids)
merger_ids_t = merger_ids[problem.products.market_ids == t]
method_mapping = {
"aggregate elasticities": lambda r: r.compute_aggregate_elasticities(),
"consumer surpluses": lambda r: r.compute_consumer_surpluses(),
"approximate prices": lambda r: r.compute_approximate_prices(merger_ids),
"own elasticities": lambda r: r.extract_diagonals(r.compute_elasticities()),
"aggregate elasticity in t": lambda r: r.compute_aggregate_elasticities(market_id=t),
"consumer surplus in t": lambda r: r.compute_consumer_surpluses(market_id=t),
"approximate prices in t": lambda r: r.compute_approximate_prices(merger_ids_t, market_id=t)
}
for name, method in method_mapping.items():
values = method(problem_results)
bootstrapped_values = method(bootstrapped_results)
median = np.median(values)
bootstrapped_medians = np.nanmedian(bootstrapped_values, axis=range(1, bootstrapped_values.ndim))
lb, ub = np.percentile(bootstrapped_medians, [2.5, 97.5])
np.testing.assert_array_less(np.squeeze(lb), np.squeeze(median) + 1e-14, err_msg=name)
np.testing.assert_array_less(np.squeeze(median), np.squeeze(ub) + 1e-14, err_msg=name)
@pytest.mark.usefixtures('simulated_problem')
def test_bootstrap_se(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that bootstrapped SEs are close to analytic ones. Or at least the same order of magnitude -- especially for
large numbers of RCs they may not necessarily be very close to each other.
"""
_, _, _, _, problem_results = simulated_problem
# compute bootstrapped results (ignore supply side iteration because we will only use the parameter draws)
bootstrapped_results = problem_results.bootstrap(draws=1000, seed=0, iteration=Iteration('return'))
# compare SEs
for key in ['sigma', 'pi', 'rho', 'beta', 'gamma']:
analytic_se = np.nan_to_num(getattr(problem_results, f'{key}_se'))
bootstrapped_se = getattr(bootstrapped_results, f'bootstrapped_{key}').std(axis=0)
np.testing.assert_allclose(analytic_se, bootstrapped_se, atol=0.001, rtol=0.5, err_msg=key)
@pytest.mark.usefixtures('simulated_problem')
def test_result_serialization(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that result objects can be serialized and that their string representations are the same when they are
unpickled.
"""
simulation, simulation_results, problem, solve_options, problem_results = simulated_problem
originals = [
Formulation('x + y', absorb='C(z)', absorb_method='lsmr', absorb_options={'tol': 1e-10}),
Integration('halton', size=10, specification_options={'seed': 0, 'scramble': True}),
Iteration('lm', method_options={'max_evaluations': 100}, compute_jacobian=True),
Optimization('nelder-mead', method_options={'xatol': 1e-5}, compute_gradient=False, universal_display=False),
problem,
simulation,
simulation_results,
problem_results,
problem_results.compute_optimal_instruments(),
problem_results.bootstrap(draws=1, seed=0),
data_to_dict(simulation_results.product_data),
solve_options['micro_moments'],
]
for original in originals:
unpickled = pickle.loads(pickle.dumps(original))
assert str(original) == str(unpickled), str(original)
@pytest.mark.usefixtures('simulated_problem')
@pytest.mark.parametrize('solve_options_update', [
pytest.param({'costs_bounds': (-1e10, 1e10)}, id="non-binding costs bounds"),
pytest.param({'check_optimality': 'both'}, id="Hessian computation")
])
def test_trivial_changes(simulated_problem: SimulatedProblemFixture, solve_options_update: Dict) -> None:
"""Test that solving a problem with arguments that shouldn't give rise to meaningful differences doesn't give rise
to any differences.
"""
simulation, _, problem, solve_options, results = simulated_problem
# solve the problem with the updated options
updated_solve_options = copy.deepcopy(solve_options)
updated_solve_options.update(solve_options_update)
updated_results = problem.solve(**updated_solve_options)
# test that all arrays in the results are essentially identical
for key, result in results.__dict__.items():
if isinstance(result, np.ndarray) and result.dtype != np.object:
if 'hessian' not in key:
np.testing.assert_allclose(result, getattr(updated_results, key), atol=1e-14, rtol=0, err_msg=key)
@pytest.mark.usefixtures('simulated_problem')
def test_parallel(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that solving problems and computing results in parallel gives rise to the same results as when using serial
processing.
"""
_, _, problem, solve_options, results = simulated_problem
# compute marginal costs as a test of results (everything else has already been computed without parallelization)
costs = results.compute_costs()
# solve the problem and compute costs in parallel
with parallel(2):
parallel_results = problem.solve(**solve_options)
parallel_costs = parallel_results.compute_costs()
# test that all arrays in the results are essentially identical
for key, result in results.__dict__.items():
if isinstance(result, np.ndarray) and result.dtype != np.object:
np.testing.assert_allclose(result, getattr(parallel_results, key), atol=1e-14, rtol=0, err_msg=key)
# test that marginal costs are essentially equal
np.testing.assert_allclose(costs, parallel_costs, atol=1e-14, rtol=0)
@pytest.mark.usefixtures('simulated_problem')
@pytest.mark.parametrize(['ED', 'ES', 'absorb_method', 'absorb_options'], [
pytest.param(1, 0, None, None, id="1 demand FE, default method"),
pytest.param(0, 1, None, None, id="1 supply FE, default method"),
pytest.param(1, 1, None, None, id="1 demand- and 1 supply FE, default method"),
pytest.param(2, 0, None, None, id="2 demand FEs, default method"),
pytest.param(0, 2, 'sw', None, id="2 supply FEs, SW"),
pytest.param(3, 1, 'lsmr', None, id="3 demand- and 1 supply FEs, LSMR"),
pytest.param(1, 3, 'map', {'transform': 'cimmino', 'acceleration': 'cg'}, id="1 demand- and 3 supply FEs, MAP-CG"),
])
def test_fixed_effects(
simulated_problem: SimulatedProblemFixture, ED: int, ES: int, absorb_method: Optional[str],
absorb_options: Optional[dict]) -> None:
"""Test that absorbing different numbers of demand- and supply-side fixed effects gives rise to essentially
identical first-stage results as does including indicator variables. Also test that optimal instruments results,
marginal costs, and test statistics remain unchanged.
"""
simulation, simulation_results, problem, solve_options, problem_results = simulated_problem
# there cannot be supply-side fixed effects if there isn't a supply side
if problem.K3 == 0:
ES = 0
if ED == ES == 0:
return pytest.skip("There are no fixed effects to test.")
# configure the optimization routine to only do a few iterations to save time and never get to the point where small
# numerical differences between methods build up into noticeable differences
solve_options = copy.deepcopy(solve_options)
solve_options['optimization'] = Optimization('l-bfgs-b', {'maxfun': 3})
# make product data mutable and add instruments
product_data = {k: simulation_results.product_data[k] for k in simulation_results.product_data.dtype.names}
product_data.update({
'demand_instruments': problem.products.ZD[:, :-problem.K1],
'supply_instruments': problem.products.ZS[:, :-problem.K3]
})
# remove constants and delete associated elements in the initial beta
product_formulations = list(problem.product_formulations).copy()
if ED > 0:
assert product_formulations[0] is not None
constant_indices = [i for i, e in enumerate(product_formulations[0]._expressions) if not e.free_symbols]
solve_options['beta'] = np.delete(solve_options['beta'], constant_indices, axis=0)
product_formulations[0] = Formulation(f'{product_formulations[0]._formula} - 1')
if ES > 0:
assert product_formulations[2] is not None
product_formulations[2] = Formulation(f'{product_formulations[2]._formula} - 1')
# add fixed effect IDs to the data
demand_id_names: List[str] = []
supply_id_names: List[str] = []
state = np.random.RandomState(seed=0)
for side, count, names in [('demand', ED, demand_id_names), ('supply', ES, supply_id_names)]:
for index in range(count):
name = f'{side}_ids{index}'
ids = state.choice(['a', 'b', 'c'], problem.N)
product_data[name] = ids
names.append(name)
# split apart excluded demand-side instruments so they can be included in formulations
instrument_names: List[str] = []
for index, instrument in enumerate(product_data['demand_instruments'].T):
name = f'demand_instrument{index}'
product_data[name] = instrument
instrument_names.append(name)
# build formulas for the IDs
demand_id_formula = ' + '.join(demand_id_names)
supply_id_formula = ' + '.join(supply_id_names)
# solve the first stage of a problem in which the fixed effects are absorbed
solve_options1 = copy.deepcopy(solve_options)
product_formulations1 = product_formulations.copy()
if ED > 0:
assert product_formulations[0] is not None
product_formulations1[0] = Formulation(
product_formulations[0]._formula, demand_id_formula, absorb_method, absorb_options
)
if ES > 0:
assert product_formulations[2] is not None
product_formulations1[2] = Formulation(
product_formulations[2]._formula, supply_id_formula, absorb_method, absorb_options
)
problem1 = Problem(
product_formulations1, product_data, problem.agent_formulation, simulation.agent_data,
distributions=simulation.distributions, epsilon_scale=simulation.epsilon_scale,
costs_type=simulation.costs_type
)
if solve_options1['micro_moments']:
solve_options1['W'] = scipy.linalg.pinv(scipy.linalg.block_diag(
problem1.products.ZD.T @ problem1.products.ZD,
problem1.products.ZS.T @ problem1.products.ZS,
np.eye(len(solve_options1['micro_moments'])),
))
problem_results1 = problem1.solve(**solve_options1)
# solve the first stage of a problem in which fixed effects are included as indicator variables
solve_options2 = copy.deepcopy(solve_options)
product_formulations2 = product_formulations.copy()
if ED > 0:
assert product_formulations[0] is not None
product_formulations2[0] = Formulation(f'{product_formulations[0]._formula} + {demand_id_formula}')
if ES > 0:
assert product_formulations[2] is not None
product_formulations2[2] = Formulation(f'{product_formulations[2]._formula} + {supply_id_formula}')
problem2 = Problem(
product_formulations2, product_data, problem.agent_formulation, simulation.agent_data,
distributions=simulation.distributions, epsilon_scale=simulation.epsilon_scale,
costs_type=simulation.costs_type
)
solve_options2['beta'] = np.r_[
solve_options2['beta'],
np.full((problem2.K1 - solve_options2['beta'].size, 1), np.nan)
]
if solve_options2['micro_moments']:
solve_options2['W'] = scipy.linalg.pinv(scipy.linalg.block_diag(
problem2.products.ZD.T @ problem2.products.ZD,
problem2.products.ZS.T @ problem2.products.ZS,
np.eye(len(solve_options2['micro_moments'])),
))
problem_results2 = problem2.solve(**solve_options2)
# solve the first stage of a problem in which some fixed effects are absorbed and some are included as indicators
if ED == ES == 0:
problem_results3 = problem_results2
else:
solve_options3 = copy.deepcopy(solve_options)
product_formulations3 = product_formulations.copy()
if ED > 0:
assert product_formulations[0] is not None
product_formulations3[0] = Formulation(
f'{product_formulations[0]._formula} + {demand_id_names[0]}', ' + '.join(demand_id_names[1:]) or None
)
if ES > 0:
assert product_formulations[2] is not None
product_formulations3[2] = Formulation(
f'{product_formulations[2]._formula} + {supply_id_names[0]}', ' + '.join(supply_id_names[1:]) or None
)
problem3 = Problem(
product_formulations3, product_data, problem.agent_formulation, simulation.agent_data,
distributions=simulation.distributions, epsilon_scale=simulation.epsilon_scale,
costs_type=simulation.costs_type
)
solve_options3['beta'] = np.r_[
solve_options3['beta'],
np.full((problem3.K1 - solve_options3['beta'].size, 1), np.nan)
]
if solve_options3['micro_moments']:
solve_options3['W'] = scipy.linalg.pinv(scipy.linalg.block_diag(
problem3.products.ZD.T @ problem3.products.ZD,
problem3.products.ZS.T @ problem3.products.ZS,
np.eye(len(solve_options3['micro_moments'])),
))
problem_results3 = problem3.solve(**solve_options3)
# compute optimal instruments (use only two draws for speed; accuracy is not a concern here)
Z_results1 = problem_results1.compute_optimal_instruments(draws=2, seed=0)
Z_results2 = problem_results2.compute_optimal_instruments(draws=2, seed=0)
Z_results3 = problem_results3.compute_optimal_instruments(draws=2, seed=0)
# compute marginal costs
costs1 = problem_results1.compute_costs()
costs2 = problem_results2.compute_costs()
costs3 = problem_results3.compute_costs()
J1 = problem_results1.run_hansen_test()
J2 = problem_results2.run_hansen_test()
J3 = problem_results3.run_hansen_test()
LR1 = problem_results1.run_distance_test(problem_results)
LR2 = problem_results2.run_distance_test(problem_results)
LR3 = problem_results3.run_distance_test(problem_results)
LM1 = problem_results1.run_lm_test()
LM2 = problem_results2.run_lm_test()
LM3 = problem_results3.run_lm_test()
wald1 = problem_results1.run_wald_test(
problem_results1.parameters[:2], np.eye(problem_results1.parameters.size)[:2]
)
wald2 = problem_results2.run_wald_test(
problem_results2.parameters[:2], np.eye(problem_results2.parameters.size)[:2]
)
wald3 = problem_results3.run_wald_test(
problem_results3.parameters[:2], np.eye(problem_results3.parameters.size)[:2]
)
# choose tolerances
atol = 1e-8
rtol = 1e-5
# test that all problem results expected to be identical are essentially identical, except for standard errors under
# micro moments, which are expected to be slightly different
problem_results_keys = [
'theta', 'sigma', 'pi', 'rho', 'beta', 'gamma', 'sigma_se', 'pi_se', 'rho_se', 'beta_se', 'gamma_se',
'delta', 'tilde_costs', 'xi', 'omega', 'xi_by_theta_jacobian', 'omega_by_theta_jacobian', 'objective',
'gradient', 'projected_gradient'
]
for key in problem_results_keys:
if key.endswith('_se') and solve_options['micro_moments']:
continue
result1 = getattr(problem_results1, key)
result2 = getattr(problem_results2, key)
result3 = getattr(problem_results3, key)
if key in {'beta', 'gamma', 'beta_se', 'gamma_se'}:
result2 = result2[:result1.size]
result3 = result3[:result1.size]
np.testing.assert_allclose(result1, result2, atol=atol, rtol=rtol, err_msg=key, equal_nan=True)
np.testing.assert_allclose(result1, result3, atol=atol, rtol=rtol, err_msg=key, equal_nan=True)
# test that all optimal instrument results expected to be identical are essentially identical
Z_results_keys = [
'demand_instruments', 'supply_instruments', 'inverse_covariance_matrix', 'expected_xi_by_theta_jacobian',
'expected_omega_by_theta_jacobian'
]
for key in Z_results_keys:
result1 = getattr(Z_results1, key)
result2 = getattr(Z_results2, key)
result3 = getattr(Z_results3, key)
np.testing.assert_allclose(result1, result2, atol=atol, rtol=rtol, err_msg=key)
np.testing.assert_allclose(result1, result3, atol=atol, rtol=rtol, err_msg=key)
# test that marginal costs and test statistics are essentially identical
np.testing.assert_allclose(costs1, costs2, atol=atol, rtol=rtol)
np.testing.assert_allclose(costs1, costs3, atol=atol, rtol=rtol)
np.testing.assert_allclose(J1, J2, atol=atol, rtol=rtol)
np.testing.assert_allclose(J1, J3, atol=atol, rtol=rtol)
np.testing.assert_allclose(LR1, LR2, atol=atol, rtol=rtol)
np.testing.assert_allclose(LR1, LR3, atol=atol, rtol=rtol)
np.testing.assert_allclose(LM1, LM2, atol=atol, rtol=rtol)
np.testing.assert_allclose(LM1, LM3, atol=atol, rtol=rtol)
np.testing.assert_allclose(wald1, wald2, atol=atol, rtol=rtol)
np.testing.assert_allclose(wald1, wald3, atol=atol, rtol=rtol)
@pytest.mark.usefixtures('simulated_problem')
def test_special_ownership(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that ownership matrices constructed according to special cases take on expected forms."""
simulation, simulation_results, _, _, _ = simulated_problem
# test monopoly ownership matrices
monopoly_ownership1 = build_ownership(simulation_results.product_data, 'monopoly')
monopoly_ownership2 = build_ownership(simulation_results.product_data, lambda f, g: 1)
np.testing.assert_equal(monopoly_ownership1, monopoly_ownership2)
assert (monopoly_ownership1[~np.isnan(monopoly_ownership1)] == 1).all()
# test single product ownership matrices
single_ownership = build_ownership(simulation_results.product_data, 'single')
assert np.nansum(single_ownership) == simulation.N
@pytest.mark.usefixtures('simulated_problem')
def test_costs(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that marginal costs computed under specified firm IDs and ownership are the same as costs computed when
firm IDs and ownership are left unspecified.
"""
_, simulation_results, _, _, results = simulated_problem
# compute costs in the simplest way possible
costs1 = results.compute_costs()
# under custom ownership, just test that results are the same under ownership specification
if simulation_results.product_data.ownership.size > 0:
costs2 = results.compute_costs(ownership=simulation_results.product_data.ownership)
np.testing.assert_equal(costs1, costs2)
return
# otherwise, also test that results are the same under a firm IDs specification
costs2 = results.compute_costs(firm_ids=simulation_results.product_data.firm_ids)
costs3 = results.compute_costs(ownership=build_ownership(simulation_results.product_data))
np.testing.assert_equal(costs1, costs2)
np.testing.assert_equal(costs1, costs3)
@pytest.mark.usefixtures('simulated_problem')
@pytest.mark.parametrize('ownership', [
pytest.param(False, id="firm IDs change"),
pytest.param(True, id="ownership change")
])
@pytest.mark.parametrize('solve_options', [
pytest.param({}, id="defaults"),
pytest.param({'iteration': Iteration('simple')}, id="configured iteration")
])
def test_merger(simulated_problem: SimulatedProblemFixture, ownership: bool, solve_options: Options) -> None:
"""Test that prices and shares simulated under changed firm IDs are reasonably close to prices and shares computed
from the results of a solved problem. In particular, test that unchanged prices and shares are farther from their
simulated counterparts than those computed by approximating a merger, which in turn are farther from their simulated
counterparts than those computed by fully solving a merger. Also test that simple acquisitions increase HHI. These
inequalities are only guaranteed because of the way in which the simulations are configured.
"""
simulation, simulation_results, problem, _, results = simulated_problem
# skip simulations that complicate the test
if simulation.products.ownership.size > 0:
return pytest.skip("Merger testing doesn't work with custom ownership.")
if 'shares' in str(simulation.product_formulations[2]):
return pytest.skip("Merger testing doesn't work with quantity-dependent costs.")
# create changed ownership or firm IDs associated with a merger
merger_product_data = copy.deepcopy(simulation_results.product_data)
if ownership:
merger_ids = None
merger_ownership = build_ownership(merger_product_data, lambda f, g: 1 if f == g or (f < 2 and g < 2) else 0)
merger_product_data = update_matrices(merger_product_data, {
'ownership': (merger_ownership, merger_ownership.dtype)
})
else:
merger_ownership = None
merger_product_data.firm_ids[merger_product_data.firm_ids < 2] = 0
merger_ids = merger_product_data.firm_ids
# get actual prices and shares
merger_simulation = Simulation(
simulation.product_formulations, merger_product_data, simulation.beta, simulation.sigma, simulation.pi,
simulation.gamma, simulation.rho, simulation.agent_formulation,
simulation.agent_data, xi=simulation.xi, omega=simulation.omega, distributions=simulation.distributions,
epsilon_scale=simulation.epsilon_scale, costs_type=simulation.costs_type
)
actual = merger_simulation.replace_endogenous(**solve_options)
# compute marginal costs; get estimated prices and shares
costs = results.compute_costs()
results_simulation = Simulation(
simulation.product_formulations[:2], merger_product_data, results.beta, results.sigma, results.pi,
rho=results.rho, agent_formulation=simulation.agent_formulation, agent_data=simulation.agent_data,
xi=results.xi, distributions=simulation.distributions, epsilon_scale=simulation.epsilon_scale
)
estimated = results_simulation.replace_endogenous(costs, problem.products.prices, **solve_options)
estimated_prices = results.compute_prices(merger_ids, merger_ownership, costs, **solve_options)
approximated_prices = results.compute_approximate_prices(merger_ids, merger_ownership, costs)
estimated_shares = results.compute_shares(estimated_prices)
approximated_shares = results.compute_shares(approximated_prices)
# test that we get the same results from solving the simulation
np.testing.assert_allclose(estimated.product_data.prices, estimated_prices, atol=1e-14, rtol=0, verbose=True)
np.testing.assert_allclose(estimated.product_data.shares, estimated_shares, atol=1e-14, rtol=0, verbose=True)
# test that estimated prices are closer to changed prices than approximate prices
approximated_prices_error = np.linalg.norm(actual.product_data.prices - approximated_prices)
estimated_prices_error = np.linalg.norm(actual.product_data.prices - estimated_prices)
np.testing.assert_array_less(estimated_prices_error, approximated_prices_error, verbose=True)
# test that estimated shares are closer to changed shares than approximate shares
approximated_shares_error = np.linalg.norm(actual.product_data.shares - approximated_shares)
estimated_shares_error = np.linalg.norm(actual.product_data.shares - estimated_shares)
np.testing.assert_array_less(estimated_shares_error, approximated_shares_error, verbose=True)
# test that median HHI increases
if not ownership:
hhi = results.compute_hhi()
changed_hhi = results.compute_hhi(merger_ids, estimated_shares)
np.testing.assert_array_less(np.median(hhi), np.median(changed_hhi), verbose=True)
@pytest.mark.usefixtures('simulated_problem')
def test_shares(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that shares computed from estimated parameters are essentially equal to actual shares."""
simulation, simulation_results, _, _, results = simulated_problem
shares1 = results.compute_shares()
shares2 = results.compute_shares(agent_data=simulation.agent_data, delta=results.delta)
np.testing.assert_allclose(simulation_results.product_data.shares, shares1, atol=1e-14, rtol=0, verbose=True)
np.testing.assert_allclose(simulation_results.product_data.shares, shares2, atol=1e-14, rtol=0, verbose=True)
@pytest.mark.usefixtures('simulated_problem')
def test_probabilities(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that integrating over choice probabilities computed from estimated parameters essentially gives actual
shares.
"""
_, simulation_results, problem, _, results = simulated_problem
# only do the test for a single market
t = problem.products.market_ids[0]
shares = problem.products.shares[problem.products.market_ids.flat == t]
weights = problem.agents.weights[problem.agents.market_ids.flat == t]
# compute and compare shares
estimated_shares = results.compute_probabilities(market_id=t) @ weights
np.testing.assert_allclose(shares, estimated_shares, atol=1e-14, rtol=0, verbose=True)
@pytest.mark.usefixtures('simulated_problem')
def test_surplus(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that integrating over individual-level surpluses gives market-level surpluses."""
_, _, problem, _, results = simulated_problem
# compute surpluses for a single market
t = problem.products.market_ids[0]
surpluses = results.compute_consumer_surpluses(market_id=t, keep_all=True)
surplus = results.compute_consumer_surpluses(market_id=t)
# test that we get the same result when manually integrating over surpluses
weights = problem.agents.weights[problem.agents.market_ids.flat == t]
np.testing.assert_allclose(surpluses @ weights, surplus, atol=1e-14, rtol=0, verbose=True)
@pytest.mark.usefixtures('simulated_problem')
def test_shares_by_prices_jacobian(simulated_problem: SimulatedProblemFixture) -> None:
"""Use central finite differences to test that analytic values in the Jacobian of shares with respect to prices are
essentially equal.
"""
simulation, simulation_results, _, _, results = simulated_problem
product_data = simulation_results.product_data
# only do the test for a single market
t = product_data.market_ids[0]
shares = product_data.shares[product_data.market_ids.flat == t]
prices = product_data.prices[product_data.market_ids.flat == t]
# extract the Jacobian from the analytic expression for elasticities and approximate it with finite differences
exact = results.compute_elasticities(market_id=t) * shares / prices.T
approximate = compute_finite_differences(lambda p: results.compute_shares(p, market_id=t), prices)
np.testing.assert_allclose(exact, approximate, atol=1e-8, rtol=0)
@pytest.mark.usefixtures('simulated_problem')
@pytest.mark.parametrize('factor', [pytest.param(0.01, id="large"), pytest.param(0.0001, id="small")])
def test_elasticity_aggregates_and_means(simulated_problem: SimulatedProblemFixture, factor: float) -> None:
"""Test that the magnitude of simulated aggregate elasticities is less than the magnitude of mean elasticities, both
for prices and for other characteristics.
"""
simulation, _, _, _, results = simulated_problem
# test that demand for an entire product category is less elastic for prices than for individual products
np.testing.assert_array_less(
np.abs(results.compute_aggregate_elasticities(factor)),
np.abs(results.extract_diagonal_means(results.compute_elasticities())),
verbose=True
)
# test the same inequality but for all non-price variables (including the mean utility)
names = {n for f in simulation._X1_formulations + simulation._X2_formulations for n in f.names}
for name in names - {'prices'} | {None}:
np.testing.assert_array_less(
np.abs(results.compute_aggregate_elasticities(factor, name)),
np.abs(results.extract_diagonal_means(results.compute_elasticities(name))),
err_msg=name,
verbose=True
)
@pytest.mark.usefixtures('simulated_problem')
def test_diversion_ratios(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that simulated diversion ratio rows sum to one."""
simulation, _, _, _, results = simulated_problem
# only do the test for a single market
t = simulation.products.market_ids[0]
# test price-based ratios
ratios = results.compute_diversion_ratios(market_id=t)
long_run_ratios = results.compute_long_run_diversion_ratios(market_id=t)
np.testing.assert_allclose(ratios.sum(axis=1), 1, atol=1e-14, rtol=0)
np.testing.assert_allclose(long_run_ratios.sum(axis=1), 1, atol=1e-14, rtol=0)
# test ratios based on other variables (including mean utilities)
names = {n for f in simulation._X1_formulations + simulation._X2_formulations for n in f.names}
for name in names - {'prices'} | {None}:
ratios = results.compute_diversion_ratios(name, market_id=t)
np.testing.assert_allclose(ratios.sum(axis=1), 1, atol=1e-14, rtol=0, err_msg=name)
@pytest.mark.usefixtures('simulated_problem')
def test_result_positivity(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that simulated markups, profits, consumer surpluses are positive, both before and after a merger."""
simulation, _, _, _, results = simulated_problem
# only do the test for a single market
t = simulation.products.market_ids[0]
# compute post-merger prices and shares
changed_prices = results.compute_approximate_prices(market_id=t)
changed_shares = results.compute_shares(changed_prices, market_id=t)
# compute surpluses and test positivity
test_positive = lambda x: np.testing.assert_array_less(-1e-14, x, verbose=True)
test_positive(results.compute_markups(market_id=t))
test_positive(results.compute_profits(market_id=t))
test_positive(results.compute_consumer_surpluses(market_id=t))
test_positive(results.compute_markups(changed_prices, market_id=t))
test_positive(results.compute_profits(changed_prices, changed_shares, market_id=t))
test_positive(results.compute_consumer_surpluses(changed_prices, market_id=t))
# compute willingness to pay when the simulation has product IDs and test its positivity
if simulation.products.product_ids.size > 0:
unique_product_ids = np.unique(simulation.products.product_ids[simulation.products.market_ids == t])
eliminate0 = results.compute_consumer_surpluses(market_id=t)
eliminate1 = results.compute_consumer_surpluses(market_id=t, eliminate_product_ids=unique_product_ids[:1])
eliminate2 = results.compute_consumer_surpluses(market_id=t, eliminate_product_ids=unique_product_ids[:2])
test_positive(eliminate0 - eliminate1)
test_positive(eliminate1 - eliminate2)
@pytest.mark.usefixtures('simulated_problem')
def test_second_step(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that results from two-step GMM on simulated data are identical to results from one-step GMM configured with
results from a first step.
"""
simulation, _, problem, solve_options, _ = simulated_problem
# use two steps and remove sigma bounds so that it can't get stuck at zero (use a small number of optimization
# iterations to speed up the test)
updated_solve_options = copy.deepcopy(solve_options)
updated_solve_options.update({
'method': '2s',
'optimization': Optimization('l-bfgs-b', {'maxfun': 3}),
'sigma_bounds': (np.full_like(simulation.sigma, -np.inf), np.full_like(simulation.sigma, +np.inf)),
})
# get two-step GMM results
results12 = problem.solve(**updated_solve_options)
assert results12.last_results is not None
assert results12.last_results.last_results is None or results12.last_results.last_results.step == 0
assert results12.step == 2 and results12.last_results.step == 1
# get results from the first step
updated_solve_options1 = copy.deepcopy(updated_solve_options)
updated_solve_options1['method'] = '1s'
results1 = problem.solve(**updated_solve_options1)
# get results from the second step
updated_solve_options2 = copy.deepcopy(updated_solve_options1)
updated_solve_options2.update({
'sigma': results1.sigma,
'pi': results1.pi,
'rho': results1.rho,
'beta': np.where(np.isnan(solve_options['beta']), np.nan, results1.beta),
'delta': results1.delta,
'W': results1.updated_W,
})
results2 = problem.solve(**updated_solve_options2)
assert results1.last_results is None or results1.last_results.step == 0
assert results2.last_results is None or results2.last_results.step == 0
assert results1.step == results2.step == 1
# test that results are essentially identical
for key, result12 in results12.__dict__.items():
if 'cumulative' not in key and isinstance(result12, np.ndarray) and result12.dtype != np.object:
np.testing.assert_allclose(result12, getattr(results2, key), atol=1e-14, rtol=0, err_msg=key)
@pytest.mark.usefixtures('simulated_problem')
def test_return(simulated_problem: SimulatedProblemFixture) -> None:
"""Test that using a trivial optimization and fixed point iteration routines that just return initial values yield
results that are the same as the specified initial values.
"""
simulation, simulation_results, problem, solve_options, _ = simulated_problem
# specify initial values and the trivial routines
initial_values = {
'sigma': simulation.sigma,
'pi': simulation.pi,
'rho': simulation.rho,
'beta': simulation.beta,
'gamma': simulation.gamma if problem.K3 > 0 else None,
'delta': problem.products.X1 @ simulation.beta + simulation.xi
}
updated_solve_options = copy.deepcopy(solve_options)
updated_solve_options.update({
'optimization': Optimization('return'),
'iteration': Iteration('return'),
**initial_values
})
# obtain problem results and test that initial values are the same
results = problem.solve(**updated_solve_options)
for key, initial in initial_values.items():
if initial is not None:
np.testing.assert_allclose(initial, getattr(results, key), atol=1e-14, rtol=1e-14, err_msg=key)
@pytest.mark.usefixtures('simulated_problem')
@pytest.mark.parametrize('scipy_method', [
pytest.param('l-bfgs-b', id="L-BFGS-B"),
pytest.param('trust-constr', id="Trust Region")
])
def test_gradient_optionality(simulated_problem: SimulatedProblemFixture, scipy_method: str) -> None:
"""Test that the option of not computing the gradient for simulated data does not affect estimates when the gradient
isn't used. Allow Jacobian-based results to differ slightly more when finite differences are used to compute them.
"""
simulation, _, problem, solve_options, results = simulated_problem
# this test only requires a few optimization iterations (enough for gradient problems to be clear)
method_options = {'maxiter': 3}
def custom_method(
initial: Array, bounds: List[Tuple[float, float]], objective_function: Callable, _: Any) -> (
Tuple[Array, bool]):
"""Optimize without gradients."""
optimize_results = scipy.optimize.minimize(
lambda x: objective_function(x)[0], initial, method=scipy_method, bounds=bounds, options=method_options
)
return optimize_results.x, optimize_results.success
# solve the problem when not using gradients and when not computing them (use the identity weighting matrix to make
# tiny gradients with some initial weighting matrices less problematic when comparing values)
updated_solve_options1 = copy.deepcopy(solve_options)
updated_solve_options2 = copy.deepcopy(solve_options)
updated_solve_options1.update({
'optimization': Optimization(custom_method),
})
updated_solve_options2.update({
'optimization': Optimization(scipy_method, method_options, compute_gradient=False),
'finite_differences': True,
})
results1 = problem.solve(**updated_solve_options1)
results2 = problem.solve(**updated_solve_options2)
# test that all arrays close except for those created with finite differences after the fact
for key, result1 in results1.__dict__.items():
if isinstance(result1, np.ndarray) and result1.dtype != np.object:
if not any(s in key for s in ['gradient', '_jacobian', '_se', '_covariances']):
np.testing.assert_allclose(result1, getattr(results2, key), atol=1e-14, rtol=0, err_msg=key)
@pytest.mark.usefixtures('simulated_problem')
@pytest.mark.parametrize('method', [
pytest.param('l-bfgs-b', id="L-BFGS-B"),
pytest.param('trust-constr', id="trust-region"),
pytest.param('tnc', id="TNC"),
pytest.param('slsqp', id="SLSQP"),
pytest.param('knitro', id="Knitro"),
pytest.param('cg', id="CG"),
pytest.param('bfgs', id="BFGS"),
pytest.param('newton-cg', id="Newton-CG"),
pytest.param('nelder-mead', id="Nelder-Mead"),
pytest.param('powell', id="Powell")
])
def test_bounds(simulated_problem: SimulatedProblemFixture, method: str) -> None:
"""Test that non-binding bounds on parameters in simulated problems do not affect estimates and that binding bounds
are respected. Forcing parameters to be far from their optimal values creates instability problems, so this is also
a test of how well estimation handles unstable problems.
"""
simulation, _, problem, solve_options, _ = simulated_problem
# skip optimization methods that haven't been configured properly
updated_solve_options = copy.deepcopy(solve_options)
try:
updated_solve_options['optimization'] = Optimization(
method,
compute_gradient=method not in {'nelder-mead', 'powell'}
)
except OSError as exception:
return pytest.skip(f"Failed to use the {method} method in this environment: {exception}.")
# solve the problem when unbounded
unbounded_solve_options = copy.deepcopy(updated_solve_options)
unbounded_solve_options.update({
'sigma_bounds': (np.full_like(simulation.sigma, -np.inf), | np.full_like(simulation.sigma, +np.inf) | numpy.full_like |
#
# generate mock data for PyCALI.
#
import numpy as np
from numpy import fft
import pycali
import matplotlib.pyplot as plt
import copy
def convolve_fft(con, resp):
"""
convolution continuum with a response function using FFT
"""
resp_pad = | np.zeros(con.shape[0]) | numpy.zeros |
""" Top level process to generate the funscript actions by tracking selected features in the video """
import cv2
import copy
import time
import math
import funscript_editor.utils.logging as logging
import threading
from dataclasses import dataclass
from PyQt5 import QtCore
from scipy.interpolate import interp1d
from funscript_editor.algorithms.videotracker import StaticVideoTracker
from funscript_editor.data.ffmpegstream import FFmpegStream
from funscript_editor.data.funscript import Funscript
from funscript_editor.utils.config import HYPERPARAMETER, SETTINGS, PROJECTION
from funscript_editor.algorithms.scenedetect import SceneDetectFromFile, SceneContentDetector, SceneThresholdDetector
from funscript_editor.algorithms.signal import Signal
from funscript_editor.ui.opencvui import OpenCV_GUI, OpenCV_GUI_Parameters
import multiprocessing as mp
import numpy as np
@dataclass
class FunscriptGeneratorParameter:
""" Funscript Generator Parameter Dataclass with default values """
video_path: str
track_men: bool
supervised_tracking: bool
metric: str
projection: str
invert: bool
start_frame: int
end_frame: int = -1 # default is video end (-1)
number_of_trackers: int = 1
supervised_tracking_is_exit_condition: bool = True
# Settings
points: str = "local_min_max"
additional_points: str = "none"
raw_output: bool = SETTINGS["raw_output"]
max_playback_fps: int = max((0, int(SETTINGS['max_playback_fps'])))
scene_detector: str = SETTINGS['scene_detector']
# General Hyperparameter
skip_frames: int = 1
top_points_offset: float = 10.0
bottom_points_offset: float = -10.0
def merge_score(item: list, number_of_trackers: int, return_queue: mp.Queue = None) -> list:
""" Merge score for given number of trackers
Note:
Python multiprocessing methods use a mp.SimpleQueue to pass tasks to the worker processes.
Everything that goes through the mp.SimpleQueue must be pickable.
In python functions are only picklable if they are defined at the top-level of a module.
Args:
item (list): score for each tracker
number_of_trackers (int): number of used tracker (pairs)
return_queue (mp.Queue, optional): return queue to return values via queue
Returns:
list: merged score
"""
if number_of_trackers == 1:
if return_queue is not None:
return_queue.put(item[0] if len(item) > 0 else [])
else:
return item[0] if len(item) > 0 else []
else:
max_frame_number = max([len(item[i]) for i in range(number_of_trackers)])
arr = | np.ma.empty((max_frame_number,number_of_trackers)) | numpy.ma.empty |
# -*- coding: utf-8 -*-
#
# This file is part of QuTiP: Quantum Toolbox in Python.
#
# Copyright (c) 2011 and later, <NAME> and <NAME>.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
# of its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Significant parts of this code were contributed by <NAME>.
#
###############################################################################
"""
This module contains functions for solving stochastic schrodinger and master
equations. The API should not be considered stable, and is subject to change
when we work more on optimizing this module for performance and features.
"""
__all__ = ['ssesolve', 'ssepdpsolve', 'smesolve', 'smepdpsolve']
import numpy as np
import scipy.sparse as sp
from scipy.linalg.blas import get_blas_funcs
try:
norm = get_blas_funcs("znrm2", dtype=np.float64)
except:
from scipy.linalg import norm
from numpy.random import RandomState
from qutip.qobj import Qobj, isket
from qutip.states import ket2dm
from qutip.solver import Result
from qutip.expect import expect, expect_rho_vec
from qutip.superoperator import (spre, spost, mat2vec, vec2mat,
liouvillian, lindblad_dissipator)
from qutip.cy.spmatfuncs import cy_expect_psi_csr, spmv, cy_expect_rho_vec
from qutip.cy.stochastic import (cy_d1_rho_photocurrent,
cy_d2_rho_photocurrent)
from qutip.parallel import serial_map
from qutip.ui.progressbar import TextProgressBar
from qutip.solver import Options, _solver_safety_check
from qutip.settings import debug
if debug:
import qutip.logging_utils
import inspect
logger = qutip.logging_utils.get_logger()
class StochasticSolverOptions:
"""Class of options for stochastic solvers such as
:func:`qutip.stochastic.ssesolve`, :func:`qutip.stochastic.smesolve`, etc.
Options can be specified either as arguments to the constructor::
sso = StochasticSolverOptions(nsubsteps=100, ...)
or by changing the class attributes after creation::
sso = StochasticSolverOptions()
sso.nsubsteps = 1000
The stochastic solvers :func:`qutip.stochastic.ssesolve`,
:func:`qutip.stochastic.smesolve`, :func:`qutip.stochastic.ssepdpsolve` and
:func:`qutip.stochastic.smepdpsolve` all take the same keyword arguments as
the constructor of these class, and internally they use these arguments to
construct an instance of this class, so it is rarely needed to explicitly
create an instance of this class.
Attributes
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
state0 : :class:`qutip.Qobj`
Initial state vector (ket) or density matrix.
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
c_ops : list of :class:`qutip.Qobj`
List of deterministic collapse operators.
sc_ops : list of :class:`qutip.Qobj`
List of stochastic collapse operators. Each stochastic collapse
operator will give a deterministic and stochastic contribution
to the equation of motion according to how the d1 and d2 functions
are defined.
e_ops : list of :class:`qutip.Qobj`
Single operator or list of operators for which to evaluate
expectation values.
m_ops : list of :class:`qutip.Qobj`
List of operators representing the measurement operators. The expected
format is a nested list with one measurement operator for each
stochastic increament, for each stochastic collapse operator.
args : dict / list
List of dictionary of additional problem-specific parameters.
Implicit methods can adjust tolerance via args = {'tol':value}
ntraj : int
Number of trajectors.
nsubsteps : int
Number of sub steps between each time-spep given in `times`.
d1 : function
Function for calculating the operator-valued coefficient to the
deterministic increment dt.
d2 : function
Function for calculating the operator-valued coefficient to the
stochastic increment(s) dW_n, where n is in [0, d2_len[.
d2_len : int (default 1)
The number of stochastic increments in the process.
dW_factors : array
Array of length d2_len, containing scaling factors for each
measurement operator in m_ops.
rhs : function
Function for calculating the deterministic and stochastic contributions
to the right-hand side of the stochastic differential equation. This
only needs to be specified when implementing a custom SDE solver.
generate_A_ops : function
Function that generates a list of pre-computed operators or super-
operators. These precomputed operators are used in some d1 and d2
functions.
generate_noise : function
Function for generate an array of pre-computed noise signal.
homogeneous : bool (True)
Wheter or not the stochastic process is homogenous. Inhomogenous
processes are only supported for poisson distributions.
solver : string
Name of the solver method to use for solving the stochastic
equations. Valid values are:
1/2 order algorithms: 'euler-maruyama', 'fast-euler-maruyama',
'pc-euler' is a predictor-corrector method which is more
stable than explicit methods,
1 order algorithms: 'milstein', 'fast-milstein', 'platen',
'milstein-imp' is semi-implicit Milstein method,
3/2 order algorithms: 'taylor15',
'taylor15-imp' is semi-implicit Taylor 1.5 method.
Implicit methods can adjust tolerance via args = {'tol':value},
default is {'tol':1e-6}
method : string ('homodyne', 'heterodyne', 'photocurrent')
The name of the type of measurement process that give rise to the
stochastic equation to solve. Specifying a method with this keyword
argument is a short-hand notation for using pre-defined d1 and d2
functions for the corresponding stochastic processes.
distribution : string ('normal', 'poission')
The name of the distribution used for the stochastic increments.
store_measurements : bool (default False)
Whether or not to store the measurement results in the
:class:`qutip.solver.SolverResult` instance returned by the solver.
noise : array
Vector specifying the noise.
normalize : bool (default True)
Whether or not to normalize the wave function during the evolution.
options : :class:`qutip.solver.Options`
Generic solver options.
map_func: function
A map function or managing the calls to single-trajactory solvers.
map_kwargs: dictionary
Optional keyword arguments to the map_func function function.
progress_bar : :class:`qutip.ui.BaseProgressBar`
Optional progress bar class instance.
"""
def __init__(self, H=None, state0=None, times=None, c_ops=[], sc_ops=[],
e_ops=[], m_ops=None, args=None, ntraj=1, nsubsteps=1,
d1=None, d2=None, d2_len=1, dW_factors=None, rhs=None,
generate_A_ops=None, generate_noise=None, homogeneous=True,
solver=None, method=None, distribution='normal',
store_measurement=False, noise=None, normalize=True,
options=None, progress_bar=None, map_func=None,
map_kwargs=None):
if options is None:
options = Options()
if progress_bar is None:
progress_bar = TextProgressBar()
self.H = H
self.d1 = d1
self.d2 = d2
self.d2_len = d2_len
self.dW_factors = dW_factors if dW_factors else np.ones(d2_len)
self.state0 = state0
self.times = times
self.c_ops = c_ops
self.sc_ops = sc_ops
self.e_ops = e_ops
if m_ops is None:
self.m_ops = [[c for _ in range(d2_len)] for c in sc_ops]
else:
self.m_ops = m_ops
self.ntraj = ntraj
self.nsubsteps = nsubsteps
self.solver = solver
self.method = method
self.distribution = distribution
self.homogeneous = homogeneous
self.rhs = rhs
self.options = options
self.progress_bar = progress_bar
self.store_measurement = store_measurement
self.store_states = options.store_states
self.noise = noise
self.args = args
self.normalize = normalize
self.generate_noise = generate_noise
self.generate_A_ops = generate_A_ops
if self.ntraj > 1 and map_func:
self.map_func = map_func
else:
self.map_func = serial_map
self.map_kwargs = map_kwargs if map_kwargs is not None else {}
def ssesolve(H, psi0, times, sc_ops=[], e_ops=[], _safe_mode=True, **kwargs):
"""
Solve the stochastic Schrödinger equation. Dispatch to specific solvers
depending on the value of the `solver` keyword argument.
Parameters
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
psi0 : :class:`qutip.Qobj`
Initial state vector (ket).
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
sc_ops : list of :class:`qutip.Qobj`
List of stochastic collapse operators. Each stochastic collapse
operator will give a deterministic and stochastic contribution
to the equation of motion according to how the d1 and d2 functions
are defined.
e_ops : list of :class:`qutip.Qobj`
Single operator or list of operators for which to evaluate
expectation values.
kwargs : *dictionary*
Optional keyword arguments. See
:class:`qutip.stochastic.StochasticSolverOptions`.
Returns
-------
output: :class:`qutip.solver.SolverResult`
An instance of the class :class:`qutip.solver.SolverResult`.
"""
if debug:
logger.debug(inspect.stack()[0][3])
if isinstance(e_ops, dict):
e_ops_dict = e_ops
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
if _safe_mode:
_solver_safety_check(H, psi0, sc_ops, e_ops)
sso = StochasticSolverOptions(H=H, state0=psi0, times=times,
sc_ops=sc_ops, e_ops=e_ops, **kwargs)
if sso.generate_A_ops is None:
sso.generate_A_ops = _generate_psi_A_ops
if (sso.d1 is None) or (sso.d2 is None):
if sso.method == 'homodyne':
sso.d1 = d1_psi_homodyne
sso.d2 = d2_psi_homodyne
sso.d2_len = 1
sso.homogeneous = True
sso.distribution = 'normal'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([1])
if "m_ops" not in kwargs:
sso.m_ops = [[c + c.dag()] for c in sso.sc_ops]
elif sso.method == 'heterodyne':
sso.d1 = d1_psi_heterodyne
sso.d2 = d2_psi_heterodyne
sso.d2_len = 2
sso.homogeneous = True
sso.distribution = 'normal'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([np.sqrt(2), np.sqrt(2)])
if "m_ops" not in kwargs:
sso.m_ops = [[(c + c.dag()), (-1j) * (c - c.dag())]
for idx, c in enumerate(sso.sc_ops)]
elif sso.method == 'photocurrent':
sso.d1 = d1_psi_photocurrent
sso.d2 = d2_psi_photocurrent
sso.d2_len = 1
sso.homogeneous = False
sso.distribution = 'poisson'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([1])
if "m_ops" not in kwargs:
sso.m_ops = [[None] for c in sso.sc_ops]
else:
raise Exception("Unrecognized method '%s'." % sso.method)
if sso.distribution == 'poisson':
sso.homogeneous = False
if sso.solver == 'euler-maruyama' or sso.solver is None:
sso.rhs = _rhs_psi_euler_maruyama
elif sso.solver == 'platen':
sso.rhs = _rhs_psi_platen
else:
raise Exception("Unrecognized solver '%s'." % sso.solver)
res = _ssesolve_generic(sso, sso.options, sso.progress_bar)
if e_ops_dict:
res.expect = {e: res.expect[n]
for n, e in enumerate(e_ops_dict.keys())}
return res
def smesolve(H, rho0, times, c_ops=[], sc_ops=[], e_ops=[],
_safe_mode=True ,**kwargs):
"""
Solve stochastic master equation. Dispatch to specific solvers
depending on the value of the `solver` keyword argument.
Parameters
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
rho0 : :class:`qutip.Qobj`
Initial density matrix or state vector (ket).
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
c_ops : list of :class:`qutip.Qobj`
Deterministic collapse operator which will contribute with a standard
Lindblad type of dissipation.
sc_ops : list of :class:`qutip.Qobj`
List of stochastic collapse operators. Each stochastic collapse
operator will give a deterministic and stochastic contribution
to the eqaution of motion according to how the d1 and d2 functions
are defined.
e_ops : list of :class:`qutip.Qobj` / callback function single
single operator or list of operators for which to evaluate
expectation values.
kwargs : *dictionary*
Optional keyword arguments. See
:class:`qutip.stochastic.StochasticSolverOptions`.
Returns
-------
output: :class:`qutip.solver.SolverResult`
An instance of the class :class:`qutip.solver.SolverResult`.
TODO
----
Add checks for commuting jump operators in Milstein method.
"""
if debug:
logger.debug(inspect.stack()[0][3])
if isket(rho0):
rho0 = ket2dm(rho0)
if isinstance(e_ops, dict):
e_ops_dict = e_ops
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
if _safe_mode:
_solver_safety_check(H, rho0, c_ops+sc_ops, e_ops)
sso = StochasticSolverOptions(H=H, state0=rho0, times=times, c_ops=c_ops,
sc_ops=sc_ops, e_ops=e_ops, **kwargs)
if (sso.d1 is None) or (sso.d2 is None):
if sso.method == 'homodyne' or sso.method is None:
sso.d1 = d1_rho_homodyne
sso.d2 = d2_rho_homodyne
sso.d2_len = 1
sso.homogeneous = True
sso.distribution = 'normal'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([np.sqrt(1)])
if "m_ops" not in kwargs:
sso.m_ops = [[c + c.dag()] for c in sso.sc_ops]
elif sso.method == 'heterodyne':
sso.d1 = d1_rho_heterodyne
sso.d2 = d2_rho_heterodyne
sso.d2_len = 2
sso.homogeneous = True
sso.distribution = 'normal'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([np.sqrt(2), np.sqrt(2)])
if "m_ops" not in kwargs:
sso.m_ops = [[(c + c.dag()), -1j * (c - c.dag())]
for c in sso.sc_ops]
elif sso.method == 'photocurrent':
sso.d1 = cy_d1_rho_photocurrent
sso.d2 = cy_d2_rho_photocurrent
sso.d2_len = 1
sso.homogeneous = False
sso.distribution = 'poisson'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([1])
if "m_ops" not in kwargs:
sso.m_ops = [[None] for c in sso.sc_ops]
else:
raise Exception("Unrecognized method '%s'." % sso.method)
if sso.distribution == 'poisson':
sso.homogeneous = False
if sso.generate_A_ops is None:
sso.generate_A_ops = _generate_rho_A_ops
if sso.rhs is None:
if sso.solver == 'euler-maruyama' or sso.solver is None:
sso.rhs = _rhs_rho_euler_maruyama
elif sso.solver == 'milstein':
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_milstein_homodyne_single
else:
sso.rhs = _rhs_rho_milstein_homodyne
elif sso.method == 'heterodyne':
sso.rhs = _rhs_rho_milstein_homodyne
sso.d2_len = 1
sso.sc_ops = []
for sc in iter(sc_ops):
sso.sc_ops += [sc / np.sqrt(2), -1.0j * sc / np.sqrt(2)]
elif sso.solver == 'fast-euler-maruyama' and sso.method == 'homodyne':
sso.rhs = _rhs_rho_euler_homodyne_fast
sso.generate_A_ops = _generate_A_ops_Euler
elif sso.solver == 'fast-milstein':
sso.generate_A_ops = _generate_A_ops_Milstein
sso.generate_noise = _generate_noise_Milstein
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_milstein_homodyne_single_fast
elif len(sc_ops) == 2:
sso.rhs = _rhs_rho_milstein_homodyne_two_fast
else:
sso.rhs = _rhs_rho_milstein_homodyne_fast
elif sso.method == 'heterodyne':
sso.d2_len = 1
sso.sc_ops = []
for sc in iter(sc_ops):
sso.sc_ops += [sc / np.sqrt(2), -1.0j * sc / np.sqrt(2)]
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_milstein_homodyne_two_fast
else:
sso.rhs = _rhs_rho_milstein_homodyne_fast
elif sso.solver == 'taylor15':
sso.generate_A_ops = _generate_A_ops_simple
sso.generate_noise = _generate_noise_Taylor_15
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_taylor_15_one
#elif len(sc_ops) == 2:
# sso.rhs = _rhs_rho_taylor_15_two
else:
raise Exception("Only one stochastic operator is supported")
else:
raise Exception("Only homodyne is available")
elif sso.solver == 'milstein-imp':
sso.generate_A_ops = _generate_A_ops_implicit
sso.generate_noise = _generate_noise_Milstein
if sso.args == None:
sso.args = {'tol':1e-6}
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_milstein_implicit
else:
raise Exception("Only one stochastic operator is supported")
else:
raise Exception("Only homodyne is available")
elif sso.solver == 'taylor15-imp':
sso.generate_A_ops = _generate_A_ops_implicit
sso.generate_noise = _generate_noise_Taylor_15
if sso.args == None:
sso.args = {'tol':1e-6}
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_taylor_15_implicit
else:
raise Exception("Only one stochastic operator is supported")
else:
raise Exception("Only homodyne is available")
elif sso.solver == 'pc-euler':
sso.generate_A_ops = _generate_A_ops_Milstein
sso.generate_noise = _generate_noise_Milstein # could also work without this
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_pred_corr_homodyne_single
else:
raise Exception("Only one stochastic operator is supported")
else:
raise Exception("Only homodyne is available")
else:
raise Exception("Unrecognized solver '%s'." % sso.solver)
res = _smesolve_generic(sso, sso.options, sso.progress_bar)
if e_ops_dict:
res.expect = {e: res.expect[n]
for n, e in enumerate(e_ops_dict.keys())}
return res
def ssepdpsolve(H, psi0, times, c_ops, e_ops, **kwargs):
"""
A stochastic (piecewse deterministic process) PDP solver for wavefunction
evolution. For most purposes, use :func:`qutip.mcsolve` instead for quantum
trajectory simulations.
Parameters
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
psi0 : :class:`qutip.Qobj`
Initial state vector (ket).
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
c_ops : list of :class:`qutip.Qobj`
Deterministic collapse operator which will contribute with a standard
Lindblad type of dissipation.
e_ops : list of :class:`qutip.Qobj` / callback function single
single operator or list of operators for which to evaluate
expectation values.
kwargs : *dictionary*
Optional keyword arguments. See
:class:`qutip.stochastic.StochasticSolverOptions`.
Returns
-------
output: :class:`qutip.solver.SolverResult`
An instance of the class :class:`qutip.solver.SolverResult`.
"""
if debug:
logger.debug(inspect.stack()[0][3])
if isinstance(e_ops, dict):
e_ops_dict = e_ops
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
sso = StochasticSolverOptions(H=H, state0=psi0, times=times, c_ops=c_ops,
e_ops=e_ops, **kwargs)
res = _ssepdpsolve_generic(sso, sso.options, sso.progress_bar)
if e_ops_dict:
res.expect = {e: res.expect[n]
for n, e in enumerate(e_ops_dict.keys())}
return res
def smepdpsolve(H, rho0, times, c_ops, e_ops, **kwargs):
"""
A stochastic (piecewse deterministic process) PDP solver for density matrix
evolution.
Parameters
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
rho0 : :class:`qutip.Qobj`
Initial density matrix.
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
c_ops : list of :class:`qutip.Qobj`
Deterministic collapse operator which will contribute with a standard
Lindblad type of dissipation.
sc_ops : list of :class:`qutip.Qobj`
List of stochastic collapse operators. Each stochastic collapse
operator will give a deterministic and stochastic contribution
to the eqaution of motion according to how the d1 and d2 functions
are defined.
e_ops : list of :class:`qutip.Qobj` / callback function single
single operator or list of operators for which to evaluate
expectation values.
kwargs : *dictionary*
Optional keyword arguments. See
:class:`qutip.stochastic.StochasticSolverOptions`.
Returns
-------
output: :class:`qutip.solver.SolverResult`
An instance of the class :class:`qutip.solver.SolverResult`.
"""
if debug:
logger.debug(inspect.stack()[0][3])
if isinstance(e_ops, dict):
e_ops_dict = e_ops
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
sso = StochasticSolverOptions(H=H, state0=rho0, times=times, c_ops=c_ops,
e_ops=e_ops, **kwargs)
res = _smepdpsolve_generic(sso, sso.options, sso.progress_bar)
if e_ops_dict:
res.expect = {e: res.expect[n]
for n, e in enumerate(e_ops_dict.keys())}
return res
# -----------------------------------------------------------------------------
# Generic parameterized stochastic Schrodinger equation solver
#
def _ssesolve_generic(sso, options, progress_bar):
"""
Internal function for carrying out a sse integration. Used by ssesolve.
"""
if debug:
logger.debug(inspect.stack()[0][3])
sso.N_store = len(sso.times)
sso.N_substeps = sso.nsubsteps
sso.dt = (sso.times[1] - sso.times[0]) / sso.N_substeps
nt = sso.ntraj
data = Result()
data.solver = "ssesolve"
data.times = sso.times
data.expect = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
data.ss = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
data.noise = []
data.measurement = []
# pre-compute collapse operator combinations that are commonly needed
# when evaluating the RHS of stochastic Schrodinger equations
sso.A_ops = sso.generate_A_ops(sso.sc_ops, sso.H)
map_kwargs = {'progress_bar': progress_bar}
map_kwargs.update(sso.map_kwargs)
task = _ssesolve_single_trajectory
task_args = (sso,)
task_kwargs = {}
results = sso.map_func(task, list(range(sso.ntraj)),
task_args, task_kwargs, **map_kwargs)
for result in results:
states_list, dW, m, expect, ss = result
data.states.append(states_list)
data.noise.append(dW)
data.measurement.append(m)
data.expect += expect
data.ss += ss
# average density matrices
if options.average_states and np.any(data.states):
data.states = [sum([ket2dm(data.states[mm][n])
for mm in range(nt)]).unit()
for n in range(len(data.times))]
# average
data.expect = data.expect / nt
# standard error
if nt > 1:
data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
else:
data.se = None
# convert complex data to real if hermitian
data.expect = [np.real(data.expect[n, :])
if e.isherm else data.expect[n, :]
for n, e in enumerate(sso.e_ops)]
return data
def _ssesolve_single_trajectory(n, sso):
"""
Internal function. See ssesolve.
"""
dt = sso.dt
times = sso.times
d1, d2 = sso.d1, sso.d2
d2_len = sso.d2_len
e_ops = sso.e_ops
H_data = sso.H.data
A_ops = sso.A_ops
expect = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
ss = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
psi_t = sso.state0.full().ravel()
dims = sso.state0.dims
# reseed the random number generator so that forked
# processes do not get the same sequence of random numbers
np.random.seed((n+1) * np.random.randint(0, 4294967295 // (sso.ntraj+1)))
if sso.noise is None:
if sso.homogeneous:
if sso.distribution == 'normal':
dW = np.sqrt(dt) * \
np.random.randn(len(A_ops), sso.N_store, sso.N_substeps,
d2_len)
else:
raise TypeError('Unsupported increment distribution for ' +
'homogeneous process.')
else:
if sso.distribution != 'poisson':
raise TypeError('Unsupported increment distribution for ' +
'inhomogeneous process.')
dW = np.zeros((len(A_ops), sso.N_store, sso.N_substeps, d2_len))
else:
dW = sso.noise[n]
states_list = []
measurements = np.zeros((len(times), len(sso.m_ops), d2_len),
dtype=complex)
for t_idx, t in enumerate(times):
if e_ops:
for e_idx, e in enumerate(e_ops):
s = cy_expect_psi_csr(e.data.data,
e.data.indices,
e.data.indptr, psi_t, 0)
expect[e_idx, t_idx] += s
ss[e_idx, t_idx] += s ** 2
else:
states_list.append(Qobj(psi_t, dims=dims))
for j in range(sso.N_substeps):
if sso.noise is None and not sso.homogeneous:
for a_idx, A in enumerate(A_ops):
# dw_expect = norm(spmv(A[0], psi_t)) ** 2 * dt
dw_expect = cy_expect_psi_csr(A[3].data,
A[3].indices,
A[3].indptr, psi_t, 1) * dt
dW[a_idx, t_idx, j, :] = np.random.poisson(dw_expect,
d2_len)
psi_t = sso.rhs(H_data, psi_t, t + dt * j,
A_ops, dt, dW[:, t_idx, j, :], d1, d2, sso.args)
# optionally renormalize the wave function
if sso.normalize:
psi_t /= norm(psi_t)
if sso.store_measurement:
for m_idx, m in enumerate(sso.m_ops):
for dW_idx, dW_factor in enumerate(sso.dW_factors):
if m[dW_idx]:
m_data = m[dW_idx].data
m_expt = cy_expect_psi_csr(m_data.data,
m_data.indices,
m_data.indptr,
psi_t, 0)
else:
m_expt = 0
mm = (m_expt + dW_factor *
dW[m_idx, t_idx, :, dW_idx].sum() /
(dt * sso.N_substeps))
measurements[t_idx, m_idx, dW_idx] = mm
if d2_len == 1:
measurements = measurements.squeeze(axis=(2))
return states_list, dW, measurements, expect, ss
# -----------------------------------------------------------------------------
# Generic parameterized stochastic master equation solver
#
def _smesolve_generic(sso, options, progress_bar):
"""
Internal function. See smesolve.
"""
if debug:
logger.debug(inspect.stack()[0][3])
sso.N_store = len(sso.times)
sso.N_substeps = sso.nsubsteps
sso.dt = (sso.times[1] - sso.times[0]) / sso.N_substeps
nt = sso.ntraj
data = Result()
data.solver = "smesolve"
data.times = sso.times
data.expect = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
data.ss = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
data.noise = []
data.measurement = []
# Liouvillian for the deterministic part.
# needs to be modified for TD systems
sso.L = liouvillian(sso.H, sso.c_ops)
# pre-compute suporoperator operator combinations that are commonly needed
# when evaluating the RHS of stochastic master equations
sso.A_ops = sso.generate_A_ops(sso.sc_ops, sso.L.data, sso.dt)
# use .data instead of Qobj ?
sso.s_e_ops = [spre(e) for e in sso.e_ops]
if sso.m_ops:
sso.s_m_ops = [[spre(m) if m else None for m in m_op]
for m_op in sso.m_ops]
else:
sso.s_m_ops = [[spre(c) for _ in range(sso.d2_len)]
for c in sso.sc_ops]
map_kwargs = {'progress_bar': progress_bar}
map_kwargs.update(sso.map_kwargs)
task = _smesolve_single_trajectory
task_args = (sso,)
task_kwargs = {}
results = sso.map_func(task, list(range(sso.ntraj)),
task_args, task_kwargs, **map_kwargs)
for result in results:
states_list, dW, m, expect, ss = result
data.states.append(states_list)
data.noise.append(dW)
data.measurement.append(m)
data.expect += expect
data.ss += ss
# average density matrices
if options.average_states and np.any(data.states):
data.states = [sum([data.states[mm][n] for mm in range(nt)]).unit()
for n in range(len(data.times))]
# average
data.expect = data.expect / nt
# standard error
if nt > 1:
data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
else:
data.se = None
# convert complex data to real if hermitian
data.expect = [np.real(data.expect[n, :])
if e.isherm else data.expect[n, :]
for n, e in enumerate(sso.e_ops)]
return data
def _smesolve_single_trajectory(n, sso):
"""
Internal function. See smesolve.
"""
dt = sso.dt
times = sso.times
d1, d2 = sso.d1, sso.d2
d2_len = sso.d2_len
L_data = sso.L.data
N_substeps = sso.N_substeps
N_store = sso.N_store
A_ops = sso.A_ops
rho_t = mat2vec(sso.state0.full()).ravel()
dims = sso.state0.dims
expect = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
ss = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
# reseed the random number generator so that forked
# processes do not get the same sequence of random numbers
np.random.seed((n+1) * np.random.randint(0, 4294967295 // (sso.ntraj+1)))
if sso.noise is None:
if sso.generate_noise:
dW = sso.generate_noise(len(A_ops), N_store, N_substeps,
sso.d2_len, dt)
elif sso.homogeneous:
if sso.distribution == 'normal':
dW = np.sqrt(dt) * np.random.randn(len(A_ops), N_store,
N_substeps, d2_len)
else:
raise TypeError('Unsupported increment distribution for ' +
'homogeneous process.')
else:
if sso.distribution != 'poisson':
raise TypeError('Unsupported increment distribution for ' +
'inhomogeneous process.')
dW = np.zeros((len(A_ops), N_store, N_substeps, d2_len))
else:
dW = sso.noise[n]
states_list = []
measurements = np.zeros((len(times), len(sso.s_m_ops), d2_len),
dtype=complex)
for t_idx, t in enumerate(times):
if sso.s_e_ops:
for e_idx, e in enumerate(sso.s_e_ops):
s = cy_expect_rho_vec(e.data, rho_t, 0)
expect[e_idx, t_idx] += s
ss[e_idx, t_idx] += s ** 2
if sso.store_states or not sso.s_e_ops:
states_list.append(Qobj(vec2mat(rho_t), dims=dims))
rho_prev = np.copy(rho_t)
for j in range(N_substeps):
if sso.noise is None and not sso.homogeneous:
for a_idx, A in enumerate(A_ops):
dw_expect = cy_expect_rho_vec(A[4], rho_t, 1) * dt
if dw_expect > 0:
dW[a_idx, t_idx, j, :] = np.random.poisson(dw_expect,
d2_len)
else:
dW[a_idx, t_idx, j, :] = np.zeros(d2_len)
rho_t = sso.rhs(L_data, rho_t, t + dt * j,
A_ops, dt, dW[:, t_idx, j, :], d1, d2, sso.args)
if sso.store_measurement:
for m_idx, m in enumerate(sso.s_m_ops):
for dW_idx, dW_factor in enumerate(sso.dW_factors):
if m[dW_idx]:
m_expt = cy_expect_rho_vec(m[dW_idx].data, rho_prev, 0)
else:
m_expt = 0
measurements[t_idx, m_idx, dW_idx] = m_expt + dW_factor * \
dW[m_idx, t_idx, :, dW_idx].sum() / (dt * N_substeps)
if d2_len == 1:
measurements = measurements.squeeze(axis=(2))
return states_list, dW, measurements, expect, ss
# -----------------------------------------------------------------------------
# Generic parameterized stochastic SE PDP solver
#
def _ssepdpsolve_generic(sso, options, progress_bar):
"""
For internal use. See ssepdpsolve.
"""
if debug:
logger.debug(inspect.stack()[0][3])
N_store = len(sso.times)
N_substeps = sso.nsubsteps
dt = (sso.times[1] - sso.times[0]) / N_substeps
nt = sso.ntraj
data = Result()
data.solver = "sepdpsolve"
data.times = sso.tlist
data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
data.ss = np.zeros((len(sso.e_ops), N_store), dtype=complex)
data.jump_times = []
data.jump_op_idx = []
# effective hamiltonian for deterministic part
Heff = sso.H
for c in sso.c_ops:
Heff += -0.5j * c.dag() * c
progress_bar.start(sso.ntraj)
for n in range(sso.ntraj):
progress_bar.update(n)
psi_t = sso.state0.full().ravel()
states_list, jump_times, jump_op_idx = \
_ssepdpsolve_single_trajectory(data, Heff, dt, sso.times,
N_store, N_substeps,
psi_t, sso.state0.dims,
sso.c_ops, sso.e_ops)
data.states.append(states_list)
data.jump_times.append(jump_times)
data.jump_op_idx.append(jump_op_idx)
progress_bar.finished()
# average density matrices
if options.average_states and np.any(data.states):
data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
for n in range(len(data.times))]
# average
data.expect = data.expect / nt
# standard error
if nt > 1:
data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
else:
data.se = None
# convert complex data to real if hermitian
data.expect = [np.real(data.expect[n, :])
if e.isherm else data.expect[n, :]
for n, e in enumerate(sso.e_ops)]
return data
def _ssepdpsolve_single_trajectory(data, Heff, dt, times, N_store, N_substeps,
psi_t, dims, c_ops, e_ops):
"""
Internal function. See ssepdpsolve.
"""
states_list = []
phi_t = np.copy(psi_t)
prng = RandomState() # todo: seed it
r_jump, r_op = prng.rand(2)
jump_times = []
jump_op_idx = []
for t_idx, t in enumerate(times):
if e_ops:
for e_idx, e in enumerate(e_ops):
s = cy_expect_psi_csr(
e.data.data, e.data.indices, e.data.indptr, psi_t, 0)
data.expect[e_idx, t_idx] += s
data.ss[e_idx, t_idx] += s ** 2
else:
states_list.append(Qobj(psi_t, dims=dims))
for j in range(N_substeps):
if norm(phi_t) ** 2 < r_jump:
# jump occurs
p = np.array([norm(c.data * psi_t) ** 2 for c in c_ops])
p = np.cumsum(p / np.sum(p))
n = np.where(p >= r_op)[0][0]
# apply jump
psi_t = c_ops[n].data * psi_t
psi_t /= norm(psi_t)
phi_t = np.copy(psi_t)
# store info about jump
jump_times.append(times[t_idx] + dt * j)
jump_op_idx.append(n)
# get new random numbers for next jump
r_jump, r_op = prng.rand(2)
# deterministic evolution wihtout correction for norm decay
dphi_t = (-1.0j * dt) * (Heff.data * phi_t)
# deterministic evolution with correction for norm decay
dpsi_t = (-1.0j * dt) * (Heff.data * psi_t)
A = 0.5 * np.sum([norm(c.data * psi_t) ** 2 for c in c_ops])
dpsi_t += dt * A * psi_t
# increment wavefunctions
phi_t += dphi_t
psi_t += dpsi_t
# ensure that normalized wavefunction remains normalized
# this allows larger time step than otherwise would be possible
psi_t /= norm(psi_t)
return states_list, jump_times, jump_op_idx
# -----------------------------------------------------------------------------
# Generic parameterized stochastic ME PDP solver
#
def _smepdpsolve_generic(sso, options, progress_bar):
"""
For internal use. See smepdpsolve.
"""
if debug:
logger.debug(inspect.stack()[0][3])
N_store = len(sso.times)
N_substeps = sso.nsubsteps
dt = (sso.times[1] - sso.times[0]) / N_substeps
nt = sso.ntraj
data = Result()
data.solver = "smepdpsolve"
data.times = sso.times
data.expect = np.zeros((len(sso.e_ops), N_store), dtype=complex)
data.jump_times = []
data.jump_op_idx = []
# Liouvillian for the deterministic part.
# needs to be modified for TD systems
L = liouvillian(sso.H, sso.c_ops)
progress_bar.start(sso.ntraj)
for n in range(sso.ntraj):
progress_bar.update(n)
rho_t = mat2vec(sso.rho0.full()).ravel()
states_list, jump_times, jump_op_idx = \
_smepdpsolve_single_trajectory(data, L, dt, sso.times,
N_store, N_substeps,
rho_t, sso.rho0.dims,
sso.c_ops, sso.e_ops)
data.states.append(states_list)
data.jump_times.append(jump_times)
data.jump_op_idx.append(jump_op_idx)
progress_bar.finished()
# average density matrices
if options.average_states and np.any(data.states):
data.states = [sum([data.states[m][n] for m in range(nt)]).unit()
for n in range(len(data.times))]
# average
data.expect = data.expect / sso.ntraj
# standard error
if nt > 1:
data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
else:
data.se = None
return data
def _smepdpsolve_single_trajectory(data, L, dt, times, N_store, N_substeps,
rho_t, dims, c_ops, e_ops):
"""
Internal function. See smepdpsolve.
"""
states_list = []
rho_t = np.copy(rho_t)
sigma_t = np.copy(rho_t)
prng = RandomState() # todo: seed it
r_jump, r_op = prng.rand(2)
jump_times = []
jump_op_idx = []
for t_idx, t in enumerate(times):
if e_ops:
for e_idx, e in enumerate(e_ops):
data.expect[e_idx, t_idx] += expect_rho_vec(e, rho_t)
else:
states_list.append(Qobj(vec2mat(rho_t), dims=dims))
for j in range(N_substeps):
if sigma_t.norm() < r_jump:
# jump occurs
p = np.array([expect(c.dag() * c, rho_t) for c in c_ops])
p = np.cumsum(p / np.sum(p))
n = np.where(p >= r_op)[0][0]
# apply jump
rho_t = c_ops[n] * rho_t * c_ops[n].dag()
rho_t /= expect(c_ops[n].dag() * c_ops[n], rho_t)
sigma_t = np.copy(rho_t)
# store info about jump
jump_times.append(times[t_idx] + dt * j)
jump_op_idx.append(n)
# get new random numbers for next jump
r_jump, r_op = prng.rand(2)
# deterministic evolution wihtout correction for norm decay
dsigma_t = spmv(L.data, sigma_t) * dt
# deterministic evolution with correction for norm decay
drho_t = spmv(L.data, rho_t) * dt
rho_t += drho_t
# increment density matrices
sigma_t += dsigma_t
rho_t += drho_t
return states_list, jump_times, jump_op_idx
# -----------------------------------------------------------------------------
# Helper-functions for stochastic DE
#
# d1 = deterministic part of the contribution to the DE RHS function, to be
# multiplied by the increament dt
#
# d1 = stochastic part of the contribution to the DE RHS function, to be
# multiplied by the increament dW
#
#
# For SSE
#
# Function sigurature:
#
# def d(A, psi):
#
# psi = wave function at the current time step
#
# A[0] = c
# A[1] = c + c.dag()
# A[2] = c - c.dag()
# A[3] = c.dag() * c
#
# where c is a collapse operator. The combinations of c's stored in A are
# precomputed before the time-evolution is started to avoid repeated
# computations.
def _generate_psi_A_ops(sc_ops, H):
"""
pre-compute superoperator operator combinations that are commonly needed
when evaluating the RHS of stochastic schrodinger equations
"""
A_ops = []
for c_idx, c in enumerate(sc_ops):
A_ops.append([c.data,
(c + c.dag()).data,
(c - c.dag()).data,
(c.dag() * c).data])
return A_ops
def d1_psi_homodyne(t, psi, A, args):
"""
OK
Need to cythonize
.. math::
D_1(C, \psi) = \\frac{1}{2}(\\langle C + C^\\dagger\\rangle\\C psi -
C^\\dagger C\\psi - \\frac{1}{4}\\langle C + C^\\dagger\\rangle^2\\psi)
"""
e1 = cy_expect_psi_csr(A[1].data, A[1].indices, A[1].indptr, psi, 0)
return 0.5 * (e1 * spmv(A[0], psi) -
spmv(A[3], psi) -
0.25 * e1 ** 2 * psi)
def d2_psi_homodyne(t, psi, A, args):
"""
OK
Need to cythonize
.. math::
D_2(\psi, t) = (C - \\frac{1}{2}\\langle C + C^\\dagger\\rangle)\\psi
"""
e1 = cy_expect_psi_csr(A[1].data, A[1].indices, A[1].indptr, psi, 0)
return [spmv(A[0], psi) - 0.5 * e1 * psi]
def d1_psi_heterodyne(t, psi, A, args):
"""
Need to cythonize
.. math::
D_1(\psi, t) = -\\frac{1}{2}(C^\\dagger C -
\\langle C^\\dagger \\rangle C +
\\frac{1}{2}\\langle C \\rangle\\langle C^\\dagger \\rangle))\psi
"""
e_C = cy_expect_psi_csr(A[0].data, A[0].indices, A[0].indptr, psi, 0)
B = A[0].T.conj()
e_Cd = cy_expect_psi_csr(B.data, B.indices, B.indptr, psi, 0)
return (-0.5 * spmv(A[3], psi) +
0.5 * e_Cd * spmv(A[0], psi) -
0.25 * e_C * e_Cd * psi)
def d2_psi_heterodyne(t, psi, A, args):
"""
Need to cythonize
X = \\frac{1}{2}(C + C^\\dagger)
Y = \\frac{1}{2}(C - C^\\dagger)
D_{2,1}(\psi, t) = \\sqrt(1/2) (C - \\langle X \\rangle) \\psi
D_{2,2}(\psi, t) = -i\\sqrt(1/2) (C - \\langle Y \\rangle) \\psi
"""
X = 0.5 * cy_expect_psi_csr(A[1].data, A[1].indices, A[1].indptr, psi, 0)
Y = 0.5 * cy_expect_psi_csr(A[2].data, A[2].indices, A[2].indptr, psi, 0)
d2_1 = np.sqrt(0.5) * (spmv(A[0], psi) - X * psi)
d2_2 = -1.0j * np.sqrt(0.5) * (spmv(A[0], psi) - Y * psi)
return [d2_1, d2_2]
def d1_psi_photocurrent(t, psi, A, args):
"""
Need to cythonize.
Note: requires poisson increments
.. math::
D_1(\psi, t) = - \\frac{1}{2}(C^\dagger C \psi - ||C\psi||^2 \psi)
"""
return (-0.5 * (spmv(A[3], psi)
- norm(spmv(A[0], psi)) ** 2 * psi))
def d2_psi_photocurrent(t, psi, A, args):
"""
Need to cythonize
Note: requires poisson increments
.. math::
D_2(\psi, t) = C\psi / ||C\psi|| - \psi
"""
psi_1 = spmv(A[0], psi)
n1 = norm(psi_1)
if n1 != 0:
return [psi_1 / n1 - psi]
else:
return [- psi]
#
# For SME
#
# def d(A, rho_vec):
#
# rho = density operator in vector form at the current time stemp
#
# A[_idx_A_L] = spre(a) = A_L
# A[_idx_A_R] = spost(a) = A_R
# A[_idx_Ad_L] = spre(a.dag()) = Ad_L
# A[_idx_Ad_R] = spost(a.dag()) = Ad_R
# A[_idx_AdA_L] = spre(a.dag() * a) = (Ad A)_L
# A[_idx_AdA_R] = spost(a.dag() * a) = (Ad A)_R
# A[_idx_A_LxAd_R] = (spre(a) * spost(a.dag()) = A_L * Ad_R
# A[_idx_LD] = lindblad_dissipator(a)
_idx_A_L = 0
_idx_A_R = 1
_idx_Ad_L = 2
_idx_Ad_R = 3
_idx_AdA_L = 4
_idx_AdA_R = 5
_idx_A_LxAd_R = 6
_idx_LD = 7
def _generate_rho_A_ops(sc, L, dt):
"""
pre-compute superoperator operator combinations that are commonly needed
when evaluating the RHS of stochastic master equations
"""
out = []
for c_idx, c in enumerate(sc):
n = c.dag() * c
out.append([spre(c).data,
spost(c).data,
spre(c.dag()).data,
spost(c.dag()).data,
spre(n).data,
spost(n).data,
(spre(c) * spost(c.dag())).data,
lindblad_dissipator(c, data_only=True)])
return out
def _generate_A_ops_Euler(sc, L, dt):
"""
combine precomputed operators in one long operator for the Euler method
"""
A_len = len(sc)
out = []
out += [spre(c).data + spost(c.dag()).data for c in sc]
out += [(L + np.sum(
[lindblad_dissipator(c, data_only=True) for c in sc], axis=0)) * dt]
out1 = [[sp.vstack(out).tocsr(), sc[0].shape[0]]]
# the following hack is required for compatibility with old A_ops
out1 += [[] for n in range(A_len - 1)]
# XXX: fix this!
out1[0][0].indices = | np.array(out1[0][0].indices, dtype=np.int32) | numpy.array |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 25 16:10:11 2020
@author: <NAME>
This file contains the functions that are needed for the harmonization of the Hitran
absorption cross section data and for the calculations of the fit coefficients.
"""
from glob import glob
from os import path
import matplotlib.patches as ptch
import matplotlib.pyplot as plt
import numpy as np
import pyarts
from matplotlib.font_manager import FontProperties
from scipy.interpolate import interp1d
from scipy.linalg import lstsq
# %% constants
# speed of light
c0 = 299792458.0 # [m/s]
# %% fit related functions
def fit_poly22(xdata, ydata, zdata):
'''
2d quadratic fit:
z = p00 + p10*x + p01*y + p20*x**2 + p02*y**2
Args:
xdata: vector
independent data.
ydata: vector
independent data.
zdata: vector
data, which depends on xdata and ydata.
Returns:
poly: vector
coefficients of fit, see above for the order.
res: float
summed residuums.
rnk: int
Effective rank of design matrix M.
s: ndarray or None
Singular values of M.
'''
M = np.ones((len(xdata), 5))
M[:, 1] = xdata # p01
M[:, 2] = ydata # p01
M[:, 3] = xdata ** 2 # p20
M[:, 4] = ydata ** 2 # p02
poly, res, rnk, s = lstsq(M, zdata)
return poly, res, rnk, s
def fit_poly21(xdata, ydata, zdata):
'''
2d semi quadratic fit:
z = p00 + p10*x + p01*y + p20*x**2
Args:
xdata: vector
independent data.
ydata: vector
independent data.
zdata: vector
data, which depends on xdata and ydata.
Returns:
poly: vector
coefficients of fit, see above for the order.
res: float
summed residuums.
rnk: int
Effective rank of design matrix M.
s: ndarray or None
Singular values of M.
'''
M = np.ones((len(xdata), 4))
M[:, 1] = xdata # p01
M[:, 2] = ydata # p10
M[:, 3] = xdata ** 2 # p20
poly, res, rnk, s = lstsq(M, zdata)
return poly, res, rnk, s
def fit_poly12(xdata, ydata, zdata):
'''
2d semi quadratic fit:
z = p00 + p10*x + p01*y + p02*y**2
Args:
xdata: vector
independent data.
ydata: vector
independent data.
zdata: vector
data, which depends on xdata and ydata.
Returns:
poly: vector
coefficients of fit, see above for the order.
res: float
summed residuums.
rnk: int
Effective rank of design matrix M.
s: ndarray or None
Singular values of M.
'''
M = np.ones((len(xdata), 4))
M[:, 1] = xdata # p01
M[:, 2] = ydata # p10
M[:, 3] = ydata ** 2 # p02
poly, res, rnk, s = lstsq(M, zdata)
return poly, res, rnk, s
def fit_poly11(xdata, ydata, zdata):
'''
2d linear fit:
z = p00 + p10*x + p01*y
Args:
xdata: vector
independent data.
ydata: vector
independent data.
zdata: vector
data, which depends on xdata and ydata.
Returns:
poly: vector
coefficients of fit, see above for the order.
res: float
summed residuums.
rnk: int
Effective rank of design matrix M.
s: ndarray or None
Singular values of M.
'''
M = np.ones((len(xdata), 3))
M[:, 1] = xdata # p10
M[:, 2] = ydata # p01
poly, res, rnk, s = lstsq(M, zdata)
return poly, res, rnk, s
def fit_poly2(xdata, zdata):
'''
1d quadratic fit:
z = p0 + p1*x + p2*x**2
Args:
xdata: vector
independent data.
zdata: vector
data, which depends on xdata.
Returns:
poly: vector
coefficients of fit, see above for the order.
res: float
summed residuums.
rnk: int
Effective rank of design matrix M.
s: ndarray or None
Singular values of M.
'''
# 1d quadratic fit:
# z = p0 + p1*x + p2*x**2
M = np.ones((len(xdata), 3))
M[:, 1] = xdata # p1
M[:, 2] = xdata ** 2 # p2
poly, res, rnk, s = lstsq(M, zdata)
return poly, res, rnk, s
def fit_poly1(xdata, zdata):
'''
1d linear fit:
z = p0 + p1*x
Args:
xdata: vector
independent data
zdata: vector
data, which depends on xdata
Returns:
poly: vector
coefficients of fit, see above for the order
res: float
summed residuums
rnk: int
Effective rank of design matrix M
s: ndarray or None
Singular values of M
'''
M = np.ones((len(xdata), 2))
M[:, 1] = xdata # p1
poly, res, rnk, s = lstsq(M, zdata)
return poly, res, rnk, s
def calc_Rsquare(y, yfit, Ncoeffs):
'''
calculates the adjusted R-square statistic
Args:
y: vector
true value.
yfit: vector
fited value.
Ncoeffs: int
number of fit coefficients.
Returns:
rsquare: float
adjusted R-square statistic.
'''
Delta_y = y - yfit
Var_y = y - np.nanmean(y)
SSE = np.nansum(Delta_y ** 2)
SST = np.nansum(Var_y ** 2)
n = len(y)
if SST == 0 or (n - Ncoeffs) == 0:
SST = np.nan
n = np.nan
return 1. - SSE * (n - 1.) / (SST * (n - Ncoeffs))
def calculate_xsec(T, P, coeffs):
'''
Low level function to calculate the absorption cross section from the fitted
coefficients
Args:
T: float
Temperature in K.
P: float
Pressure in Pa.
coeffs: matrix
fit coefficients.
Returns:
Xsec: vector
Absorption cross section in m**2.
The fit model
2d quadratic fit:
z= p00 + p10*x + p01*y + p20*x**2 + p02*y**2
z=Xsec
x=T
y=P
coeffs[0,:] p00
coeffs[1,:] p10
coeffs[2,:] p01
coeffs[3,:] p20
coeffs[4,:] p02
'''
#distinguish if we calculate xsec for a lot of frequencies
if len(np.shape(coeffs))>1:
poly = np.zeros(5)
poly[0] = 1
poly[1] = T
poly[2] = P
poly[3] = T ** 2
poly[4] = P ** 2
# allocate
Xsec = np.zeros(np.shape(coeffs))
for i in range(5):
Xsec[i, :] = coeffs[i, :] * poly[i]
#or for a lot of states
else:
poly = np.zeros((5,len(T)))
poly[0,:] = 1.
poly[1,:] = T
poly[2,:] = P
poly[3,:] = T ** 2
poly[4,:] = P ** 2
# allocate
Xsec = np.zeros( (len(coeffs),len(T)) )
for i in range(5):
Xsec[i, :] = coeffs[i] * poly[i,:]
Xsec = np.sum(Xsec, axis=0)
return Xsec
def calculate_xsec_fullmodel(T, P, coeffs, minT=0., maxT=np.inf, minP=0, maxP=np.inf):
'''
Function to calculate the absorption cross section from the fitted
coefficients including extrapolation
Args:
T: float
Temperature in K.
P: float
Pressure in Pa.
coeffs: matrix
fit coefficients.
minT: float
minimum temperature of the data in K.
maxT: float
maximum temperature of the data in K.
minP: float
minimum pressure of the data in Pa.
maxP: float
maximum pressure of the data in Pa.
Returns:
Xsec: vector
Absorption cross section in m**2.
The fit model
2d quadratic fit:
z= p00 + p10*x + p01*y + p20*x**2 + p02*y**2
z=Xsec
x=T
y=P
coeffs[0,:] p00
coeffs[1,:] p10
coeffs[2,:] p01
coeffs[3,:] p20
coeffs[4,:] p02
'''
if (P < minP or P > maxP or
T < minT or T > maxT):
if P < minP:
P0 = minP
elif P > maxP:
P0 = maxP
else:
P0 = P
# P=P0
if T < minT:
T0 = minT
elif T > maxT:
T0 = maxT
else:
T0 = T
xsec_0 = calculate_xsec(T0, P0, coeffs)
DxsecDT, DxsecDp = xsec_derivative(T0, P0, coeffs)
xsec = xsec_0 + DxsecDT * (T - T0) + DxsecDp * (P - P0)
else:
# calculate raw xsecs
xsec = calculate_xsec(T, P, coeffs)
#Check for negative values and remove them without introducing bias, meaning
#the integral over the spectrum must not change.
logic = xsec < 0
if np.sum(logic) > 0:
#original sum over spectrum
sumX_org=np.sum(xsec);
#remove negative values
xsec[logic]=0
if sumX_org>=0:
#estimate ratio between altered and original sum of spectrum
w=sumX_org/np.sum(xsec)
#scale altered spectrum
xsec=xsec*w
return xsec
def xsec_derivative(T, P, coeffs):
'''
Fucntion to calculate the derivative of the absorption cross section
from the fitted coefficients.
Args:
T: float
Temperature in K.
P: float
Pressure in Pa.
coeffs: matrix
fit coefficients.
Returns:
DxsecDT: vector
Temperature derivative.
DxsecDp: vector
Pressure derivative.
The fit model
2d quadratic fit:
z= p00 + p10*x + p01*y + p20*x**2 + p02*y**2
z=Xsec
x=T
y=P
coeffs[0,:] p00
coeffs[1,:] p10
coeffs[2,:] p01
coeffs[3,:] p20
coeffs[4,:] p02
'''
# p00 = coeffs[0, :]
p10 = coeffs[1, :]
p01 = coeffs[2, :]
p20 = coeffs[3, :]
p02 = coeffs[4, :]
# FofP = P
DxsecDT = p10 + 2*p20*T
DxsecDp = p01 + 2*p02*P
return DxsecDT, DxsecDp
def fit_xsec_data(T, P, Xsec, min_deltaP=100, min_deltaT=20.,cnt_limit=2, k_outlier=1.5):
'''
FUnction to calculate the fit of the xsec at an arbitrary frequency
Args:
T: vector
temperatures.
P: vector
pressures same lenghth as `T`.
Xsec: vector
cross section same length as `T`.
min_deltaP: float, optional
minimum variability of sqrt(`P`) for fit. Defaults to 100
min_deltaT: float, optional
minimum variability of `T` for fit. Defaults to 20.
cnt_limit: integer, optional
maximum number of iteration of the fit due to outlier removal.
k_outlier: float, optional
scaling factor for outlier detection
Returns:
fit_result: dictionary
results of the fit.
The fit model
2d quadratic fit:
z= p00 + p10*x + p01*y + p20*x**2 + p02*y**2
z=Xsec
x=T
y=P
coeffs[0,:] p00
coeffs[1,:] p10
coeffs[2,:] p01
coeffs[3,:] p20
coeffs[4,:] p02
'''
FofP = P
FofXsec = Xsec
# check for bad values
logic_inf = np.isinf(T) | np.isinf(FofP) | np.isinf(FofXsec)
logic_nan = np.isnan(T) | np.isnan(FofP) | np.isnan(FofXsec)
logic_bad = logic_inf | logic_nan
if np.sum(logic_bad) < len(T):
# remove bad values
xData = T[~logic_bad]
yData = FofP[~logic_bad]
zData =FofXsec[~logic_bad]
# get number of unique temperatures and pressures
N_Tunique = np.size( | np.unique(xData) | numpy.unique |
"""Module containing functions related to the plotting of data and features.
It contains the following functions:
plot_audio()
"""
import os
import numpy as np
import pandas as pd
import librosa.display
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, roc_auc_score
def plot_audio(audio_filename, sr, waveplot=True):
"""
thingy.
Parameters
----------
audio_filename : TYPE
DESCRIPTION.
sr : TYPE
DESCRIPTION.
waveplot : TYPE, optional
DESCRIPTION. The default is True.
Returns
-------
None.
"""
if audio_filename[-4:] == ".wav":
y, _ = librosa.load(audio_filename, sr=sr)
else:
y = pd.read_csv(audio_filename, header=None).to_numpy().flatten()
y = y[~ | np.isnan(y) | numpy.isnan |
# this tells python to act as if though We are one folder up
import sys
sys.path.insert(0,'..')
import pandas as pd
import FixedEffectModelPyHDFE.api as FEM
from FixedEffectModelPyHDFE.DemeanDataframe import get_np_columns
#import FixedEffectModel.api as FEM
import numpy as np
from patsy import dmatrices
import statsmodels.formula.api as smf
import statsmodels.api as sm
from fastreg import linear
from datetime import datetime
import unittest
from math import isclose
NLS_WORK = "./../data/test_dropped_na.dta"
CEREAL = "./../data/cereal.dta"
AUTO = "./../data/auto_drop_na.dta"
TOLERANCE = 0.01
class FixedEffectsModelTestsVSfastreg(unittest.TestCase):
def setup(self, data_directory, target, regressors, absorb, cluster):
print(self._testMethodName)
print("target: ", target)
print("regressors: ", regressors)
print("absorb: ", absorb)
print("cluster: ", cluster)
df = pd.read_stata(data_directory)
df.reset_index(drop=True, inplace=True)
fem_start = datetime.now()
self.result = FEM.ols_high_d_category(df,
regressors,
target,
absorb,
cluster,
formula=None,
robust=False,
epsilon = 1e-8,
max_iter = 1e6)
fem_end = datetime.now()
print("FEM time taken: " + str(fem_end-fem_start))
self.result.summary()
print()
if absorb[0] == '0':
absorb=None
fastreg_start = datetime.now()
fastreg = linear.ols(y=target[0],
x=regressors,
absorb=absorb,
cluster=cluster,
data=df)
fastreg_end = datetime.now()
print(fastreg)
print("fastreg time taken: " + str(fastreg_end - fastreg_start))
print("\n\n\n\n\n")
#########################################################################
#########################################################################
def test_just_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts'],
cluster=[])
def test_no_absorb_cluster_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts'])
# comparing fvalue
def test_clustering_single_variable_no_absorb2_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['race'])
# comparing fvalue
assert(np.isclose(self.result.fvalue, 127593.72, atol=TOLERANCE))
# comparing standard errors
assert(np.all(np.isclose(self.result.bse, np.asarray([.148934, .0065111, .0113615]), atol=TOLERANCE)))
# comparing tvalues
assert(np.all(np.isclose(self.result.tvalues, np.asarray([27.75, 2.32, 66.61]), atol=TOLERANCE)))
def test_clustering_single_variable_no_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['fifty_clusts'])
assert(np.isclose(self.result.fvalue, 10230.63, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.048274, .0044294, .0052923]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([85.60, 3.42, 143.00]), atol=TOLERANCE)))
def test_clustering_two_variables_no_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['fifty_clusts', 'sixty_clusts'])
assert(np.isclose(self.result.fvalue, 12347.24, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0518019, .0048228, .00492]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([79.77, 3.14, 153.82]), atol=TOLERANCE)))
def test_clustering_many_variables_no_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['0'],
cluster=['fifty_clusts', 'sixty_clusts', 'birth_yr', 'idcode'])
assert(np.isclose(self.result.fvalue, 4664.62, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0551555, .0080815, .007881]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([74.92, 1.87, 96.03]), atol=TOLERANCE)))
def test_just_absorb_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'birth_yr', 'idcode'],
cluster=[])
assert(np.isclose(self.result.fvalue, 3891.51, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0047052, .0096448]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([6.48, 88.22]), atol=TOLERANCE)))
def test_cluster_1_absorb_1_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts'],
cluster=['sixty_clusts'])
assert(np.isclose(self.result.fvalue, 9884.24, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.004654, .0055812]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.18, 135.54]), atol=TOLERANCE)))
def test_cluster_1_absorb_1_2_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts'],
cluster=['fifty_clusts'])
assert(np.isclose(self.result.fvalue, 10100.50, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0044538, .005324]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.33, 142.09]), atol=TOLERANCE)))
def test_cluster_many_absorb_1_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts'],
cluster=['fifty_clusts', 'sixty_clusts', 'idcode', 'year'])
assert(np.isclose(self.result.fvalue, 86.89, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0189465, .0574001]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([0.78, 13.18]), atol=TOLERANCE)))
def test_cluster_3_absorb_3_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'ind_code'],
cluster=['idcode', 'year', 'grade'])
assert(np.isclose(self.result.fvalue, 113.61, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, np.asarray([.0168144, .0501467]), atol=TOLERANCE)))
assert(np.all(np.isclose(self.result.tvalues, np.asarray([0.93, 15.03]), atol=TOLERANCE)))
def test_cluster_3_absorb_3_2_nls_work_dataset(self):
self.setup(NLS_WORK,
target=['ttl_exp'],
regressors=['wks_ue', 'tenure'],
absorb=['fifty_clusts', 'sixty_clusts', 'ind_code'],
cluster=['fifty_clusts', 'sixty_clusts', 'ind_code'])
assert(np.isclose(self.result.fvalue, 2525.34, atol=TOLERANCE))
assert(np.all(np.isclose(self.result.bse, | np.asarray([.004604, .0106474]) | numpy.asarray |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.optimizer import Optimizer
import math
import time
numpy_to_torch_dtype_dict = {
np.dtype('bool') : torch.bool,
np.dtype('uint8') : torch.uint8,
np.dtype('int8') : torch.int8,
np.dtype('int16') : torch.int16,
| np.dtype('int32') | numpy.dtype |
#Helper functions
import sys
import numpy as np
from numpy.lib import scimath as scm
import scipy.constants as con
import scipy.linalg as sli
def generate_channel_tap(*arg):
#arg={'Rxantennalocations': , 'frequency':, 'K':, 'tau':, 'pdb':, 'AS_Tx':, 'AoD':, 'AS_Rx':, 'AoA': }
#Models defined only in the horizontal plane
# IEEE 802.11n-03/940r4 TGn Channel Models
#d is a Mx1 distance vector between antenna elements
#f is the transmission frequency
#sigma is the angular spread (standard deviation in radians.
#AoA is th angle of arrival in degrees
#Add the receiver array at some point
K=arg[0]['K'] #Rician factor
P=10**(arg[0]['pdb']/10.0)
matdict=arg[0] #we can pass the arguments as is
X=generate_corr_mat(matdict)
L=generate_los_mat(matdict)
channel_tap=np.sqrt(P)*(np.sqrt(K/(K+1))*L+np.sqrt(1/(K+1))*X)
return channel_tap
def generate_corr_mat(*arg):
#arg={'Rxantennalocations': , 'frequency':, 'K':, 'tau':, 'pdb':, 'AS_Tx':, 'AoD':, 'AS_Rx':, 'AoA': }
#The same dictionary OK as an argument as for generate channel tap
#Models defined only in the horizontal plane
# IEEE 802.11n-03/940r4 TGn Channel Models
#d is a Mx1 distance vector between antenna elements
#f is the transmission frequency
#sigma is the angular spread (standard deviation in radians.
#AoA is th angle of arrival in radians
#Add the receiver array at some point
Rxantennalocations=arg[0]['Rxantennalocations'] # Distance array for the receiver antenna
Txantennalocations=np.array([0]) # Only one TX antenna
frequency=arg[0]['frequency'] # Frequency
lamda=con.c/frequency
sigmarx=arg[0]['AS_Rx']*2*np.pi/360 # Angle spread for the receiver in degrees
AoA=arg[0]['AoA'] #Angle of arrival for received in degrees
dmatrx=sli.toeplitz(Rxantennalocations,Rxantennalocations)
rxantennas=dmatrx.shape[0] # Number of receive antennas
txantennas=1 #number of transmit antennas
Drx=2*np.pi*dmatrx/lamda
if (sigmarx !=float('-inf')):
#Combine these to matrix
phirangerx=np.linspace(-np.pi,np.pi,2**16)+2*np.pi/360*AoA
dphirx=np.diff(phirangerx)[0]
#There's an error due to numerical integration. With angle 0 the correlation must be 1
#calculate that. Ff the sigmarx =-inf, the is undefined
Kcorrrx=1/(np.sum(laplacian_pdf(sigmarx,phirangerx-2*np.pi/360*AoA))*dphirx)
laplacianweightmatrx=np.ones((rxantennas,1))@laplacian_pdf(sigmarx,phirangerx-2*np.pi/360*AoA)
Rrx=np.zeros((rxantennas,rxantennas),dtype='complex')
for i in range(rxantennas):
Rrx[i,:]=Kcorrrx*np.sum(np.exp(1j*Drx[i,:].reshape((-1,1))*np.sin(phirangerx))*laplacianweightmatrx,1)*dphirx
else:
Rrx=np.zeros((rxantennas,rxantennas),dtype='complex')
#Would require similar computations if the TX would be modeled
Rtx=np.diagflat(np.ones((txantennas,1)))
#Random matrix
Hiid=1/np.sqrt(2)*(np.random.randn(rxantennas,txantennas)+1j*np.random.rand(rxantennas,txantennas))
#Correlation matrix
X=scm.sqrt(Rrx)@[email protected](Rtx)
return X
def generate_los_mat(*arg): #Distance array, frequency, AoA
#arg={'Rxantennalocations': , 'frequency':, 'K':, 'tau':, 'pdb':, 'AS_Tx':, 'AoD':, 'AS_Rx':, 'AoA': }
#The same dictionary OK as an argument as for generate channel tap
#Models defined only in the horizontal plane
# IEEE 802.11n-03/940r4 TGn Channel Models
#Rxantennalocations is a Mx1 distance vector between antenna elements
#frequency is the transmission frequency
#AS_Rx is the angular spread (standard deviation in degrees.
#AoA is th angle of arrival in degrees
#Add the receiver array at some point
Rxantennalocations=arg[0]['Rxantennalocations'] # Distance array for the receiver antenna
Txantennalocations=np.array([0]) # Only one TX antenna
frequency=arg[0]['frequency'] # Frequency
lamda=con.c/frequency
sigmarx=arg[0]['AS_Rx'] # Angle spread for the receiver
if (sigmarx !=float('-inf')):
AoA=arg[0]['AoA'] #Angle of arrival for received in degrees
AoD=np.r_[0]
lamda=con.c/frequency
Drx=2*np.pi*Rxantennalocations/lamda*np.sin(2*np.pi/360*AoA) #Relative phase shift in receiver array
Dtx=2*np.pi*Txantennalocations/lamda*np.sin(2*np.pi/360*AoD) #Relative phase shift in transmitter array
LOS_vectorrx=np.exp(-1j*Drx)
LOS_vectorrx=LOS_vectorrx.reshape((-1,1))
LOS_vectortx=np.exp(1j*Dtx)
LOS_vectortx=LOS_vectortx.reshape((-1,1))
LOS_mat=LOS_vectorrx@LOS_vectortx.transpose()
else:
Drx=np.zeros_like(Rxantennalocations)
Dtx=np.zeros_like(Txantennalocations)
LOS_vectorrx=Drx
LOS_vectorrx=LOS_vectorrx.reshape((-1,1))
LOS_vectortx=Dtx
LOS_vectortx=LOS_vectortx.reshape((-1,1))
LOS_mat=LOS_vectorrx@LOS_vectortx.transpose()
return LOS_mat
def generate_lossless_channel(*arg):
Rxantennalocations=arg[0]['Rxantennalocations']
antennasrx=Rxantennalocations.shape[0] #antennas of the receiver, currently only 1 antenna at the tx
antennastx=1
H=np.ones((1,antennasrx,antennastx))/np.sqrt(antennasrx*antennastx) #No power gain
H.shape=(1,antennasrx,antennastx)
return H
def lambda2meter(distlambda,f):
d=np.array([distlambda*con.c/f])
return d
def channel_propagate(signal,H):
#Calculate the convolution of the 3D matrix filter
#y(n)=SUM s(n-k)@H(k,:,:).T
convlen=signal.shape[0]+H.shape[0]-1
srx=np.zeros((convlen,H.shape[1]))
for i in range(H.shape[0]): #0th dim is the "time", k of the filter in
zt=np.zeros((i,H.shape[1]))
zt.shape=(-1,H.shape[1])
zb=np.zeros((H.shape[0]-1,H.shape[1]))
zb.shape=(-1,H.shape[1])
s_shift=np.r_['0',np.zeros((i,H.shape[1]),dtype='complex'),signal@H[i,:,:].T,np.zeros((H.shape[0]-1-i,H.shape[1]))]
srx=srx+s_shift
return srx
def get_802_11n_channel_params(model):
# See the channel and loss model in IEEE 802.11n-03/940r4 TGn Channel Models
# This function hard-codes the WLAN 802.11n channel model parameters and
# returns the ones corresponding to the desired channel model.
#param_dict={'K':K, 'tau':tau, 'pdb':pdb, 'AS_Tx':AS_Tx, 'AoD':AoD, 'AS_Rx':AS_Rx, 'AoA':AoA}
#The IS a more clever way of doing these but at least they are done now.
if model=='A':
lossdict={'dbp':5, 's1':2, 's2': 3.5, 'f1':3, 'f2':4}
tau = np.array([0])
K=np.zeros(tau.size) #K-factor for Line-of-sight
pdb = np.array([0],ndmin=2)
AoA = np.array([45],ndmin=2)
AS_Rx = np.array([40],ndmin=2)
AoD = np.array([45],ndmin=2)
AS_Tx = np.array([40],ndmin=2)
elif model=='B':
lossdict={'dbp':5, 's1':2, 's2': 3.5, 'f1':3, 'f2':4}
tau = np.array([0,10,20,30,40,50,60,70,80]) * 1e-9 # Path delays, in seconds
K=np.zeros(tau.size) #K-factor for Line-of-sight
# Average path gains of cluster, in dB
pdb1 = np.array([0,-5.4,-10.8,-16.2,-21.7],ndmin=2)
pdb2 = np.array([-3.2,-6.3,-9.4,-12.5,-15.6,-18.7,-21.8],ndmin=2)
#these must be reshaped last because others refer their dimensions
# Angular spreads
AS_Tx_C1 = np.ones(pdb1.shape)*14.4
AS_Tx_C1 = np.r_['1', AS_Tx_C1, -1*np.inf*np.ones((1,4))]
AS_Tx_C2 = np.ones(pdb2.shape)*25.4
AS_Tx_C2 = np.r_['1', -1*np.inf*np.ones((1,2)), AS_Tx_C2 ]
AS_Tx = np.r_['0', AS_Tx_C1, AS_Tx_C2]
# Mean angles of departure
AoD_C1 = np.ones(pdb1.shape)*225.1
AoD_C1 = np.r_['1', AoD_C1, -1*np.inf*np.ones((1,4))]
AoD_C2 = np.ones(pdb2.shape)*106.5
AoD_C2 = np.r_['1', -1*np.inf*np.ones((1,2)), AoD_C2 ]
AoD = np.r_['0',AoD_C1, AoD_C2]
# Spatial parameters on receiver side:
# Angular spreads
AS_Rx_C1 = np.ones(pdb1.shape)*14.4
AS_Rx_C1 = np.r_['1', AS_Rx_C1, -1*np.inf*np.ones((1,4))]
AS_Rx_C2 = np.ones(pdb2.shape)*25.4
AS_Rx_C2 = np.r_['1', -1*np.inf*np.ones((1,2)), AS_Rx_C2 ]
AS_Rx = np.r_['0', AS_Rx_C1, AS_Rx_C2]
# Mean angles of arrival
AoA_C1 = np.ones(pdb1.shape)*4.3
AoA_C2 = np.ones(pdb2.shape)*118.4
AoA_C1 = np.r_['1', AoA_C1, -1*np.inf*np.ones((1,4))]
AoA_C2 = np.r_['1', -1*np.inf*np.ones((1,2)), AoA_C2 ]
AoA = np.r_['0', AoA_C1, AoA_C2]
#Reshape pdb's
pdb1 = np.r_['1', pdb1, -1*np.inf*np.ones((1,4))]
pdb2 = np.r_['1', -1*np.inf*np.ones((1,2)), pdb2 ]
pdb = np.r_['0',pdb1,pdb2]
elif model=='C':
lossdict={'dbp':5, 's1':2, 's2': 3.5, 'f1':3, 'f2':5}
tau = np.array([0,10,20,30,40,50,60,70,80,90,110,140,170,200]) * 1e-9
K=np.zeros(tau.size) #K-factor for Line-of-sight
pdb1 = np.array([0,-2.1,-4.3,-6.5,-8.6,-10.8,-13.0,-15.2,-17.3,-19.5],ndmin=2)
pdb2 = np.array([-5.0,-7.2,-9.3,-11.5,-13.7,-15.8,-18.0,-20.2],ndmin=2)
AoA1 = 290.3*np.ones(pdb1.shape)
AoA1 = np.r_['1',AoA1,-1*np.inf*np.ones((1,4))]
AoA2 = 332.3*np.ones(pdb2.shape)
AoA2 = np.r_['1',-1*np.inf*np.ones((1,6)),AoA2]
AoA = np.r_['0',AoA1, AoA2]
AS_Rx1 = 24.6*np.ones(pdb1.shape)
AS_Rx1 = np.r_['1',AS_Rx1,-1*np.inf*np.ones((1,4))]
AS_Rx2 = 22.4*np.ones(pdb2.shape)
AS_Rx2 = np.r_['1',-1*np.inf*np.ones((1,6)),AS_Rx2]
AS_Rx = np.r_['0',AS_Rx1, AS_Rx2]
AoD1 = 13.5*np.ones(pdb1.shape)
AoD1 = np.r_['1',AoD1,-1*np.inf*np.ones((1,4))]
AoD2 = 56.4*np.ones(pdb2.shape)
AoD2 = np.r_['1',-1*np.inf*np.ones((1,6)),AoD2]
AoD = np.r_['0',AoD1, AoD2]
AS_Tx1 = 24.7*np.ones(pdb1.shape)
AS_Tx1 = np.r_['1',AS_Tx1,-1*np.inf*np.ones((1,4))]
AS_Tx2 = 22.5*np.ones(pdb2.shape)
AS_Tx2 = np.r_['1',-1*np.inf*np.ones((1,6)),AS_Tx2]
AS_Tx = np.r_['0',AS_Tx1, AS_Tx2]
#Reshape pdb's
pdb1 = np.r_['1',pdb1,-1*np.inf*np.ones((1,4))]
pdb2 = np.r_['1',-1*np.inf*np.ones((1,6)),pdb2]
pdb = np.r_['0',pdb1, pdb2]
elif model=='D':
lossdict={'dbp':10, 's1':2, 's2': 3.5, 'f1':3, 'f2':5}
tau = np.array([0,10,20,30,40,50,60,70,80,90,110,140,170,200,240,290,340,390]) * 1e-9
K=np.zeros(tau.size) #K-factor for Line-of-sight
K[0]=3
pdb1 = np.array([0,-0.9,-1.7,-2.6,-3.5,-4.3,-5.2,-6.1,-6.9,-7.8,-9.0,-11.1,-13.7,-16.3,-19.3,-23.2],ndmin=2)
pdb2 = np.array([-6.6,-9.5,-12.1,-14.7,-17.4,-21.9,-25.5],ndmin=2)
pdb3 = np.array([-18.8,-23.2,-25.2,-26.7],ndmin=2) # path losses vector
ASt1 = 27.4*np.ones(pdb1.shape)
ASt1 = np.r_['1',ASt1,-1*np.inf*np.ones((1,2))]
ASt2 = 32.1*np.ones(pdb2.shape)
ASt2 = np.r_['1', -1*np.inf*np.ones((1,10)), ASt2, -1*np.inf*np.ones((1,1)) ]
ASt3 = 36.8*np.ones(pdb3.shape)
ASt3 = np.r_['1',-1*np.inf*np.ones((1,14)),ASt3]
AS_Tx = np.r_['0',ASt1, ASt2, ASt3] # Tx angular spread vector
ASr1 = 27.7*np.ones(pdb1.shape)
ASr1 = np.r_['1',ASr1,-1*np.inf*np.ones((1,2))]
ASr2 = 31.4*np.ones(pdb2.shape)
ASr2 = np.r_['1',-1*np.inf*np.ones((1,10)),ASr2,-1*np.inf*np.ones((1,1))]
ASr3 = 37.4*np.ones(pdb3.shape)
ASr3 = np.r_['1',-1*np.inf*np.ones((1,14)),ASr3]
AS_Rx = np.r_['0',ASr1, ASr2, ASr3] # Rx angular spread vector
AoD1 = 332.1*np.ones(pdb1.shape)
AoD1 = np.r_['1',AoD1,-1*np.inf*np.ones((1,2))]
AoD2 = 49.3*np.ones(pdb2.shape)
AoD2 = np.r_['1',-1*np.inf*np.ones((1,10)),AoD2,-1*np.inf*np.ones((1,1))]
AoD3 = 275.9*np.ones(pdb3.shape)
AoD3 = np.r_['1',-1*np.inf*np.ones((1,14)),AoD3]
AoD = np.r_['0',AoD1, AoD2, AoD3] # Tx angles of departure
AoA1 = 158.9*np.ones(pdb1.shape)
AoA1 = np.r_['1',AoA1,-1*np.inf*np.ones((1,2))]
AoA2 = 320.2*np.ones(pdb2.shape)
AoA2 = np.r_['1',-1*np.inf*np.ones((1,10)),AoA2,-1*np.inf*np.ones((1,1))]
AoA3 = 276.1*np.ones(pdb3.shape)
AoA3 = np.r_['1',-1*np.inf*np.ones((1,14)),AoA3]
AoA = np.r_['0',AoA1, AoA2, AoA3] # Rx angles of arrival
#Reshape pdb's
pdb1 = np.r_['1',pdb1,-1*np.inf*np.ones((1,2))]
pdb2 = np.r_['1',-1*np.inf*np.ones((1,10)),pdb2,-1*np.inf*np.ones((1,1))]
pdb3 = np.r_['1',-1*np.inf*np.ones((1,14)),pdb3]
pdb = np.r_['0',pdb1,pdb2,pdb3] # path loss vector
elif model=='E':
lossdict={'dbp':20, 's1':2, 's2': 3.5, 'f1':3, 'f2':6}
tau = np.array([0,10,20,30,50,80,110,140,180,230,280,330,380,430,490,560,640,730]) * 1e-9
K=np.zeros(tau.size) #K-factor for Line-of-sight
K[0]=6
pdb1 = np.array([-2.6,-3.0,-3.5,-3.9,-4.5,-5.6,-6.9,-8.2,-9.8,-11.7,-13.9,-16.1,-18.3,-20.5,-22.9],ndmin=2)
pdb2 = np.array([-1.8,-3.2,-4.5,-5.8,-7.1,-9.9,-10.3,-14.3,-14.7,-18.7,-19.9,-22.4],ndmin=2)
pdb3 = np.array([-7.9,-9.6,-14.2,-13.8,-18.6,-18.1,-22.8],ndmin=2)
pdb4 = np.array([-20.6,-20.5,-20.7,-24.6],ndmin=2)
AoA1 = 163.7*np.ones(pdb1.shape)
AoA1 = np.r_['1',AoA1,-1*np.inf*np.ones((1,3))]
AoA2 = 251.8*np.ones(pdb2.shape)
AoA2 = np.r_['1',-1*np.inf*np.ones((1,4)),AoA2,-1*np.inf*np.ones((1,2))]
AoA3 = 80.0*np.ones(pdb3.shape)
AoA3 = np.r_['1',-1*np.inf*np.ones((1,8)),AoA3,-1*np.inf*np.ones((1,3))]
AoA4 = 182.0*np.ones(pdb4.shape)
AoA4 = np.r_['1',-1*np.inf*np.ones((1,14)),AoA4]
AoA = np.r_['0',AoA1, AoA2, AoA3, AoA4]
AS_Rx1 = 35.8*np.ones(pdb1.shape)
AS_Rx1 = np.r_['1',AS_Rx1,-1*np.inf*np.ones((1,3))]
AS_Rx2 = 41.6*np.ones(pdb2.shape)
AS_Rx2 = np.r_['1',-1*np.inf*np.ones((1,4)),AS_Rx2,-1*np.inf*np.ones((1,2))]
AS_Rx3 = 37.4*np.ones(pdb3.shape)
AS_Rx3 = np.r_['1',-1*np.inf*np.ones((1,8)),AS_Rx3,-1*np.inf*np.ones((1,3))]
AS_Rx4 = 40.3*np.ones(pdb4.shape)
AS_Rx4 = np.r_['1',-1*np.inf*np.ones((1,14)),AS_Rx4]
AS_Rx = np.r_['0',AS_Rx1, AS_Rx2, AS_Rx3, AS_Rx4]
AoD1 = 105.6*np.ones(pdb1.shape)
AoD1 = np.r_['1',AoD1,-1*np.inf*np.ones((1,3))]
AoD2 = 293.1*np.ones(pdb2.shape)
AoD2 = np.r_['1',-1*np.inf*np.ones((1,4)),AoD2,-1*np.inf*np.ones((1,2))]
AoD3 = 61.9*np.ones(pdb3.shape)
AoD3 = np.r_['1',-1*np.inf*np.ones((1,8)),AoD3,-1*np.inf*np.ones((1,3))]
AoD4 = 275.7*np.ones(pdb4.shape)
AoD4 = np.r_['1',-1*np.inf*np.ones((1,14)),AoD4]
AoD = np.r_['0',AoD1, AoD2, AoD3, AoD4]
AS_Tx1 = 36.1*np.ones(pdb1.shape)
AS_Tx1 = np.r_['1',AS_Tx1,-1*np.inf*np.ones((1,3))]
AS_Tx2 = 42.5*np.ones(pdb2.shape)
AS_Tx2 = np.r_['1',-1*np.inf*np.ones((1,4)),AS_Tx2,-1*np.inf*np.ones((1,2))]
AS_Tx3 = 38.0*np.ones(pdb3.shape)
AS_Tx3 = np.r_['1',-1*np.inf*np.ones((1,8)),AS_Tx3,-1*np.inf*np.ones((1,3))]
AS_Tx4 = 38.7*np.ones(pdb4.shape)
AS_Tx4 = np.r_['1',-1*np.inf*np.ones((1,14)),AS_Tx4]
AS_Tx = np.r_['0',AS_Tx1, AS_Tx2, AS_Tx3, AS_Tx4]
#Reshape pdb's
pdb1 = np.r_['1', pdb1,-1*np.inf*np.ones((1,3))]
pdb2 = np.r_['1',-1*np.inf*np.ones((1,4)),pdb2,-1*np.inf*np.ones((1,2))]
pdb3 = np.r_['1',-1*np.inf*np.ones((1,8)),pdb3,-1*np.inf*np.ones((1,3))]
pdb4 = np.r_['1',-1*np.inf*np.ones((1,14)),pdb4]
pdb = np.r_['0',pdb1, pdb2, pdb3, pdb4]
elif model=='F':
lossdict={'dbp':30, 's1':2, 's2': 3.5, 'f1':3, 'f2':6}
tau = np.array([0,10,20,30,50,80,110,140,180,230,280,330,400,490,600,730,880,1050]) * 1e-9
K=np.zeros(tau.size) #K-factor for Line-of-sight
K[0]=6
pdb1 = np.array([-3.3,-3.6,-3.9,-4.2,-4.6,-5.3,-6.2,-7.1,-8.2,-9.5,-11.0,-12.5,-14.3,-16.7,-19.9],ndmin=2)
pdb2 = np.array([-1.8,-2.8,-3.5,-4.4,-5.3,-7.4,-7.0,-10.3,-10.4,-13.8,-15.7,-19.9],ndmin=2)
pdb3 = np.array([-5.7,-6.7,-10.4,-9.6,-14.1,-12.7,-18.5],ndmin=2)
pdb4 = np.array([-8.8,-13.3,-18.7],ndmin=2)
pdb5 = np.array([-12.9,-14.2],ndmin=2)
pdb6 = np.array([-16.3,-21.2],ndmin=2)
AoA1 = 315.1*np.ones(pdb1.shape)
AoA1 = np.r_['1',AoA1,-1*np.inf*np.ones((1,3))]
AoA2 = 180.4*np.ones(pdb2.shape)
AoA2 = np.r_['1',-1*np.inf*np.ones((1,4)),AoA2, -1*np.inf*np.ones((1,2))]
AoA3 = 74.7*np.ones(pdb3.shape)
AoA3 = np.r_['1',-1*np.inf*np.ones((1,8)),AoA3, -1*np.inf*np.ones((1,3))]
AoA4 = 251.5*np.ones(pdb4.shape)
AoA4 = np.r_['1',-1*np.inf*np.ones((1,12)),AoA4,-1*np.inf*np.ones((1,3)) ]
AoA5 = 68.5*np.ones(pdb5.shape)
AoA5 = np.r_['1',-1*np.inf*np.ones((1,14)),AoA5,-1*np.inf*np.ones((1,2))]
AoA6 = 246.2*np.ones(pdb6.shape)
AoA6 = np.r_['1',-1*np.inf*np.ones((1,16)),AoA6]
AoA = np.r_['0',AoA1, AoA2, AoA3, AoA4, AoA5, AoA6]
AS_Rx1 = 48.0*np.ones(pdb1.shape)
AS_Rx1 = np.r_['1',AS_Rx1,-1*np.inf*np.ones((1,3))]
AS_Rx2 = 55.0*np.ones(pdb2.shape)
AS_Rx2 = np.r_['1',-1*np.inf*np.ones((1,4)),AS_Rx2,-1*np.inf*np.ones((1,2))]
AS_Rx3 = 42.0*np.ones(pdb3.shape)
AS_Rx3 = np.r_['1',-1*np.inf*np.ones((1,8)),AS_Rx3,-1*np.inf*np.ones((1,3))]
AS_Rx4 = 28.6*np.ones(pdb4.shape)
AS_Rx4 = np.r_['1',-1*np.inf*np.ones((1,12)),AS_Rx4,-1*np.inf*np.ones((1,3))]
AS_Rx5 = 30.7*np.ones(pdb5.shape)
AS_Rx5 = np.r_['1',-1*np.inf*np.ones((1,14)),AS_Rx5,-1*np.inf*np.ones((1,2))]
AS_Rx6 = 38.2*np.ones(pdb6.shape)
AS_Rx6 = np.r_['1',-1*np.inf*np.ones((1,16)),AS_Rx6]
AS_Rx = np.r_['0',AS_Rx1, AS_Rx2, AS_Rx3, AS_Rx4, AS_Rx5, AS_Rx6]
AoD1 = 56.2*np.ones(pdb1.shape)
AoD1 = np.r_['1',AoD1,-1*np.inf*np.ones((1,3))]
AoD2 = 183.7*np.ones(pdb2.shape)
AoD2 = np.r_['1',-1*np.inf*np.ones((1,4)),AoD2,-1*np.inf*np.ones((1,2))]
AoD3 = 153.0*np.ones(pdb3.shape)
AoD3 = np.r_['1',-1*np.inf*np.ones((1,8)),AoD3,-1*np.inf*np.ones((1,3))]
AoD4 = 112.5*np.ones(pdb4.shape)
AoD4 = np.r_['1',-1*np.inf*np.ones((1,12)),AoD4,-1*np.inf*np.ones((1,3))]
AoD5 = 291.0*np.ones(pdb5.shape)
AoD5 = np.r_['1',-1*np.inf*np.ones((1,14)),AoD5,-1*np.inf*np.ones((1,2))]
AoD6 = 62.3*np.ones(pdb6.shape)
AoD6 = np.r_['1',-1*np.inf*np.ones((1,16)),AoD6]
AoD = np.r_['0',AoD1, AoD2, AoD3, AoD4, AoD5, AoD6]
AS_Tx1 = 41.6*np.ones(pdb1.shape)
AS_Tx1 = np.r_['1',AS_Tx1,-1*np.inf*np.ones((1,3))]
AS_Tx2 = 55.2*np.ones(pdb2.shape)
AS_Tx2 = np.r_['1',-1*np.inf*np.ones((1,4)),AS_Tx2,-1*np.inf*np.ones((1,2))]
AS_Tx3 = 47.4*np.ones(pdb3.shape)
AS_Tx3 = np.r_['1',-1*np.inf*np.ones((1,8)),AS_Tx3,-1*np.inf*np.ones((1,3))]
AS_Tx4 = 27.2*np.ones(pdb4.shape)
AS_Tx4 = np.r_['1',-1*np.inf*np.ones((1,12)),AS_Tx4,-1*np.inf*np.ones((1,3))]
AS_Tx5 = 33.0*np.ones(pdb5.shape)
AS_Tx5 = np.r_['1',-1*np.inf*np.ones((1,14)),AS_Tx5,-1*np.inf*np.ones((1,2))]
AS_Tx6 = 38.0*np.ones(pdb6.shape)
AS_Tx6 = np.r_['1',-1*np.inf*np.ones((1,16)),AS_Tx6]
AS_Tx = np.r_['0',AS_Tx1, AS_Tx2, AS_Tx3, AS_Tx4,AS_Tx5,AS_Tx6]
#Reshape pdb's
pdb1 = np.r_['1', pdb1,-1*np.inf*np.ones((1,3))]
pdb2 = np.r_['1',-1*np.inf* | np.ones((1,4)) | numpy.ones |
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 3 15:10:24 2020
@author: Nicolai
----------------
"""
import numpy as np
import time
from scipy.stats import cauchy
import testFunctions as tf
def L_SHADE(population, p, H, function, minError, maxGeneration):
'''
implementation of L-SHADE based on: \n
Improving the Search Performance of SHADE Using Linear Population Size Reduction\n
by Tanabe and Fukunaga\n
adaptions:
* no constraint handling implemented
* population size reduction based on generation insteas of function evaluation
Parameters
----------
population: numpy array
2D numpy array where lines are candidates and colums is the dimension
p: float ]0,1]
percentage of best individuals for current-to-p-best mutation
H: int
size of the memory
function: function
fitness function that is optimised
minError: float
stopping condition on function value
maxGeneration: int
stopping condition on max number of generation
Returns
-------
history: tuple
tupel[0] - popDynamic\n
tupel[1] - FEDynamic\n
tupel[2] - FDynamic\n
tupel[3] - CRDynamic\n
Examples
--------
>>> import numpy as np
>>> def sphere(x):
return np.dot(x,x)
>>> maxError = -1*np.inf
>>> maxGen = 10**3
>>> H = 50
>>> population = 100*np.random.rand(50,2)
>>> p = 0.1
>>> (popDynamic, FEDynamic, FDynamic, CRDynamic) =
L_SHADE(population, p, H, sphere, maxError, maxGen)
'''
# initialisation of variables
populationSize, dimension = population.shape
functionValue = np.asarray([function(candidate) for candidate in population])
genCount = 1
F = 0.5
CR = 0.5
archive = np.array([population[0]])
# temorary arrays for holding the population and its function values
# during a generation
trailPopulation = np.copy(population)
trailFunctionValue = np.copy(functionValue)
# memory for control parameters
mCR = 0.5*np.ones(H)
mF = 0.5*np.ones(H)
# k is the running memory index
k = 0
# population size reduction parameter
NGmin = int(np.ceil(1/p))
NGinit = populationSize
popDynamic = []
FEDynamic = []
FDynamic = []
CRDynamic = []
popDynamic.append(np.copy(population))
FEDynamic.append(np.copy(functionValue))
FDynamic.append(np.copy(mF))
CRDynamic.append(np.copy(mCR))
while(genCount < maxGeneration and np.min(functionValue) > minError):
# success history S for control parameters
sCR = []
sF = []
sCRtemp = []
sFtemp = []
for i in range(populationSize):
F = selectF(mF)
sFtemp.append(F)
vi = mutationCurrentToPBest1(population, archive, i, functionValue, F, p)
CR = selectCR(mCR)
sCRtemp.append(CR)
ui = crossoverBIN(np.array([population[i]]), vi, CR)
trailPopulation[i] = ui
#######################################################
# for actual L-SHADE missing constraint handling here #
#######################################################
trailFunctionValue[i] = function(ui)
functionValueDifference = []
for i in range(populationSize):
if(trailFunctionValue[i] <= functionValue[i]):
# build and remove archive
archLength, _ = archive.shape
if (archLength >= populationSize):
randIndex = np.random.randint(0, high=archLength)
archive = np.delete(archive, randIndex, 0)
archive = np.vstack([archive, population[i]])
# create parameter success history and weights for lehmer mean
sF.append(sFtemp[i])
sCR.append(sCRtemp[i])
# equation 9 in paper
functionValueDifference.append(np.abs(trailFunctionValue[i] - functionValue[i]))
# perform selection
population[i] = trailPopulation[i]
functionValue[i] = trailFunctionValue[i]
# calculate lehmer weights
weights = []
sDF = np.sum(functionValueDifference)
for df in functionValueDifference:
if sDF == 0.0:
weights.append(0)
else:
weights.append(df/sDF)
# update parameter memory with success history
if len(sCR) != 0 and len(sF) != 0:
if mCR[k] == np.inf or np.max(mCR) == 0:
mCR[k] = np.inf
else:
mCR[k] = weightedLehmermean(sCR, weights)
mF[k] = weightedLehmermean(sF, weights)
k += 1
if k >= H: k = 0
# perform population size reduction
# calculate new population size based on the current generation count
NG_1 = populationSizeReduction(genCount, maxGeneration, NGinit, NGmin)
# if the new population should be smaller
if NG_1 < populationSize:
# delete worst individuals from the population
functionValueSorted = np.argsort(functionValue)
indizesToRemove = functionValueSorted[-int(populationSize-NG_1):]
population = np.delete(population, indizesToRemove, 0)
functionValue = | np.delete(functionValue, indizesToRemove) | numpy.delete |
import tensorflow as tf
import numpy as np
from tqdm import trange
from utils.config_manager import Config
from data.datasets import TTSDataset, TTSPreprocessor
from utils.decorators import ignore_exception, time_it
from utils.scheduling import piecewise_linear_schedule
from utils.logging_utils import SummaryManager
from model.transformer_utils import create_mel_padding_mask
from utils.scripts_utils import dynamic_memory_allocation, basic_train_parser
from data.metadata_readers import post_processed_reader
| np.random.seed(42) | numpy.random.seed |
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 27 12:29:47 2020
@author: vxr131730
"""
###############################################################################
####################### Import all the required libraries #####################
###############################################################################
import math
import numpy as np
from numpy import linalg as LA
###############################################################################
###############################################################################
################## UNSCENTED KALMAN FILTER IMPLEMENTATION #####################
###############################################################################
###############################################################################
class UKF:
def __init__(self):
# Instantiate the class variables
self.zMean = 0
self.u_k = 0
self.zCovar = 0
self.n_x = 0
self.n_o = 0
self.SigmaW = 0
self.SigmaV = 0
self.CrossCor = 0
self.y_k = 0
self.L = 0
self.dT = 0
self.Wc = 0
self.Wm = 0
self.alpha = 0
self.beta = 0
self.n = 0
self.kappa = 0
self.lambda_ = 0
self.num_sigma_pts = 0
self.Tt = 0
self.knownIP = 0
self.goal_x = 0
self.goal_y = 0
###########################################################################
def Get_Weight_Matrices(self):
# Initialize Van der Merwe's weighting matrix
self.Wc = np.zeros((self.num_sigma_pts, 1))
self.Wm = np.zeros((self.num_sigma_pts, 1))
# Compute the Van der Merwe's weighting matrix values
for i in range(self.num_sigma_pts):
if i == 0:
self.Wc[i,:] = self.lambda_ / (self.n + self.lambda_) + (1 - self.alpha**2 + self.beta)
self.Wm[i,:] = self.lambda_ / (self.n + self.lambda_)
continue
self.Wc[i,:] = 1/(2*(self.n + self.lambda_))
self.Wm[i,:] = 1/(2*(self.n + self.lambda_))
###########################################################################
def Perform_Decorrelation(self):
# Perform Decorrelation Scheme
self.Tt = self.CrossCor @ LA.inv(self.SigmaV)
# Covariance of new process noise which has 0 cross-correlation with sensor noise
self.SigmaW = self.SigmaW - self.Tt @ self.SigmaV @ self.Tt.T
# Fabricate the known input = Tt*y_hat
self.knownIP = np.squeeze(self.Tt @ self.y_k)
# self.knownIP = np.squeeze(self.Tt @ self.MeasurementModel(self.zMean).reshape(-1,1))
###########################################################################
def Generate_Sigma_Points(self):
# Define the direction matrix
U = LA.cholesky((self.n + self.lambda_)*self.zCovar)
# Generate the sigma points using Van der Merwe algorithm
# Define Place holder for all sigma points
sigmaPoints = np.zeros((self.n, self.num_sigma_pts))
# First SigmaPoint is always the mean
sigmaPoints[:,0] = self.zMean.T
# Generate sigmapoints symmetrically around the mean
for k in range(self.n):
sigmaPoints[:, k+1] = sigmaPoints[:,0] + U[:, k]
sigmaPoints[:, self.n+k+1] = sigmaPoints[:,0] - U[:, k]
return sigmaPoints
###########################################################################
def PredictionStep(self, sigmaPoints):
# Get the shape of sigmaPoints
ro, co = np.shape(sigmaPoints)
# Create the data structure to hold the transformed points
aprioriPoints = np.zeros((ro, co))
# Loop through and pass each and every sigmapoint
for i in range(co):
aprioriPoints[:, i] = self.NewMotionModel(sigmaPoints[:, i])
# Compute the mean and covariance of the transformed points
aprioriOutput = self.ComputeStatistics(aprioriPoints, apriori_Flag = 1)
# Add the aprioriPoints to output
aprioriOutput["aprioriPoints"] = aprioriPoints
return aprioriOutput
###########################################################################
def UpdateStep(self, aprioriPoints):
# Get the shape of aprioriPoints
ro, M = np.shape(aprioriPoints)
# Get the number of outputs
num_outputs = self.n_o
# Create the data structure to hold the transformed points
aposterioriPoints = np.zeros((num_outputs, M)) # 4 states, 2 outputs
# Loop through and pass each and every sigmapoint
for i in range(M):
aposterioriPoints[:, i] = self.MeasurementModel(aprioriPoints[:, i])
# Compute the mean and covariance of the transformed points
aposterioriOutput = self.ComputeStatistics(aposterioriPoints, apriori_Flag = 0)
# Add the aposterioriPoints to the output dictionary
aposterioriOutput["aposterioriPoints"] = aposterioriPoints
return aposterioriOutput
###########################################################################
def NewMotionModel(self, oldState):
# newState = self.MotionModel(oldState) - self.Tt @ self.MeasurementModel(oldState) + self.knownIP
newState = self.MotionModel(oldState)
return newState
###########################################################################
def MotionModel(self, oldState):
newState = oldState + [self.dT*oldState[3]*np.cos(oldState[2]),
self.dT*oldState[3]*np.sin(oldState[2]),
self.dT*(oldState[3]/self.L)*np.tan(self.u_k[1]),
self.dT*self.u_k[0],
0,
0]
return newState
###########################################################################
def MeasurementModel(self, newState):
"""
Totally 4 outputs are being returned by the measurement model
[range distance to goal
bearing angle orientation with respect to goal
obstacle x position * cos(6 deg)
obstacle y position * cos(6 deg)]
"""
x_to_goal = newState[0] - self.goal_x
y_to_goal = newState[1] - self.goal_y
output = [math.sqrt(x_to_goal**2 + y_to_goal**2),
math.atan2(y_to_goal, x_to_goal) - newState[2],
newState[4]*np.sin(0.10),
newState[5]*np.cos(0.10)]
return output
###########################################################################
def ComputeCrossCovariance(self, funParam):
# Compute the crossCovarMatrix
input1Shape = np.shape(funParam["input1"])
input2Shape = np.shape(funParam["input2"])
P = np.zeros((input1Shape[0], input2Shape[0]))
for k in range(input1Shape[1]):
diff1 = funParam["input1"][:,k] - funParam["input1Mean"]
diff2 = funParam["input2"][:,k] - funParam["input2Mean"]
P += funParam["weightMatrix"][k]*np.outer(diff1, diff2)
return P
###########################################################################
def ComputeStatistics(self, inputPoints, apriori_Flag):
# Compute the weighted mean
inputPointsMean = np.dot(self.Wm[:,0], inputPoints.T)
# Compute the weighted covariance
inputShape = np.shape(inputPoints)
P = | np.zeros((inputShape[0], inputShape[0])) | numpy.zeros |
import numpy as np
import tensorflow as tf
import dirt
import skimage.io
import skimage
import skimage.transform
import skimage.color
import time
import os
import scipy
import scipy.optimize
import skimage.measure
from sklearn import linear_model, datasets
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import cv2
from sklearn.utils import check_random_state, check_array, check_consistent_length
from sklearn.linear_model import LinearRegression
from sklearn.utils.validation import has_fit_parameter
import sklearn.linear_model
_dynamic_max_trials = sklearn.linear_model.ransac._dynamic_max_trials
canvas_width, canvas_height = 960, 640
centre_x, centre_y = 32, 64
square_size = 16
def ransac_fit_with_weights(self, X, y, sample_weight=None, residual_threshold=None):
"""
Modified sklearn.linear_model.RANSACRegressor.fit()
sample_weight is used in sampling base points, fitting the regressor, and calculating score for candidate model
"""
X = check_array(X, accept_sparse='csr')
y = check_array(y, ensure_2d=False)
check_consistent_length(X, y)
if self.base_estimator is not None:
base_estimator = clone(self.base_estimator)
else:
base_estimator = LinearRegression()
if self.min_samples is None:
# assume linear model by default
min_samples = X.shape[1] + 1
elif 0 < self.min_samples < 1:
min_samples = np.ceil(self.min_samples * X.shape[0])
elif self.min_samples >= 1:
if self.min_samples % 1 != 0:
raise ValueError("Absolute number of samples must be an "
"integer value.")
min_samples = self.min_samples
else:
raise ValueError("Value for `min_samples` must be scalar and "
"positive.")
if min_samples > X.shape[0]:
raise ValueError("`min_samples` may not be larger than number "
"of samples: n_samples = %d." % (X.shape[0]))
if self.stop_probability < 0 or self.stop_probability > 1:
raise ValueError("`stop_probability` must be in range [0, 1].")
if residual_threshold is None:
if self.residual_threshold is None:
# MAD (median absolute deviation)
residual_threshold = np.median(np.abs(y - np.median(y)))
else:
residual_threshold = self.residual_threshold
if self.loss == "absolute_loss":
if y.ndim == 1:
loss_function = lambda y_true, y_pred: np.abs(y_true - y_pred)
else:
loss_function = lambda \
y_true, y_pred: np.sum(np.abs(y_true - y_pred), axis=1)
elif self.loss == "squared_loss":
if y.ndim == 1:
loss_function = lambda y_true, y_pred: (y_true - y_pred) ** 2
else:
loss_function = lambda \
y_true, y_pred: np.sum((y_true - y_pred) ** 2, axis=1)
elif callable(self.loss):
loss_function = self.loss
else:
raise ValueError(
"loss should be 'absolute_loss', 'squared_loss' or a callable."
"Got %s. " % self.loss)
random_state = check_random_state(self.random_state)
try: # Not all estimator accept a random_state
base_estimator.set_params(random_state=random_state)
except ValueError:
pass
estimator_fit_has_sample_weight = has_fit_parameter(base_estimator,
"sample_weight")
estimator_name = type(base_estimator).__name__
if (sample_weight is not None and not
estimator_fit_has_sample_weight):
raise ValueError("%s does not support sample_weight. Samples"
" weights are only used for the calibration"
" itself." % estimator_name)
if sample_weight is not None:
sample_weight = np.asarray(sample_weight)
n_inliers_best = 1
score_best = -np.inf
inlier_mask_best = None
X_inlier_best = None
y_inlier_best = None
weight_inlier_best = None
self.n_skips_no_inliers_ = 0
self.n_skips_invalid_data_ = 0
self.n_skips_invalid_model_ = 0
# number of data samples
n_samples = X.shape[0]
sample_idxs = np.arange(n_samples)
n_samples, _ = X.shape
self.n_trials_ = 0
max_trials = self.max_trials
while self.n_trials_ < max_trials:
self.n_trials_ += 1
if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ +
self.n_skips_invalid_model_) > self.max_skips:
break
# choose random sample set
#subset_idxs = sample_without_replacement(n_samples, min_samples,
# random_state=random_state)
# use np.random.choice here since it allows sample with prob
subset_idxs = np.random.choice(n_samples, min_samples, False, sample_weight / np.sum(sample_weight))
X_subset = X[subset_idxs]
y_subset = y[subset_idxs]
# check if random sample set is valid
if (self.is_data_valid is not None
and not self.is_data_valid(X_subset, y_subset)):
self.n_skips_invalid_data_ += 1
continue
# fit model for current random sample set
if sample_weight is None:
base_estimator.fit(X_subset, y_subset)
else:
base_estimator.fit(X_subset, y_subset,
sample_weight=sample_weight[subset_idxs])
# check if estimated model is valid
if (self.is_model_valid is not None and not
self.is_model_valid(base_estimator, X_subset, y_subset)):
self.n_skips_invalid_model_ += 1
continue
# residuals of all data for current random sample model
y_pred = base_estimator.predict(X)
residuals_subset = loss_function(y, y_pred)
# classify data into inliers and outliers
inlier_mask_subset = residuals_subset < residual_threshold
n_inliers_subset = np.sum(inlier_mask_subset)
# less inliers -> skip current random sample
if n_inliers_subset < n_inliers_best:
self.n_skips_no_inliers_ += 1
continue
# extract inlier data set
inlier_idxs_subset = sample_idxs[inlier_mask_subset]
X_inlier_subset = X[inlier_idxs_subset]
y_inlier_subset = y[inlier_idxs_subset]
if sample_weight is None:
weight_inlier_subset = None
else:
weight_inlier_subset = sample_weight[inlier_idxs_subset]
# score of inlier data set
score_subset = base_estimator.score(X_inlier_subset,
y_inlier_subset,
sample_weight[inlier_idxs_subset])
# same number of inliers but worse score -> skip current random
# sample
if (n_inliers_subset == n_inliers_best
and score_subset < score_best):
continue
# save current random sample as best sample
n_inliers_best = n_inliers_subset
score_best = score_subset
inlier_mask_best = inlier_mask_subset
X_inlier_best = X_inlier_subset
y_inlier_best = y_inlier_subset
weight_inlier_best = weight_inlier_subset
max_trials = min(
max_trials,
_dynamic_max_trials(n_inliers_best, n_samples,
min_samples, self.stop_probability))
# break if sufficient number of inliers or score is reached
if n_inliers_best >= self.stop_n_inliers or \
score_best >= self.stop_score:
break
# if none of the iterations met the required criteria
if inlier_mask_best is None:
if ((self.n_skips_no_inliers_ + self.n_skips_invalid_data_ +
self.n_skips_invalid_model_) > self.max_skips):
raise ValueError(
"RANSAC skipped more iterations than `max_skips` without"
" finding a valid consensus set. Iterations were skipped"
" because each randomly chosen sub-sample failed the"
" passing criteria. See estimator attributes for"
" diagnostics (n_skips*).")
else:
raise ValueError(
"RANSAC could not find a valid consensus set. All"
" `max_trials` iterations were skipped because each"
" randomly chosen sub-sample failed the passing criteria."
" See estimator attributes for diagnostics (n_skips*).")
else:
if (self.n_skips_no_inliers_ + self.n_skips_invalid_data_ +
self.n_skips_invalid_model_) > self.max_skips:
warnings.warn("RANSAC found a valid consensus set but exited"
" early due to skipping more iterations than"
" `max_skips`. See estimator attributes for"
" diagnostics (n_skips*).",
ConvergenceWarning)
# estimate final model using all inliers
base_estimator.fit(X_inlier_best, y_inlier_best, weight_inlier_best)
self.estimator_ = base_estimator
self.inlier_mask_ = inlier_mask_best
return self
linear_model.RANSACRegressor.ransac_fit_with_weights = ransac_fit_with_weights
def get_dirt_pixels(width=canvas_width, height=canvas_height):
square_vertices = tf.constant([[-1, -1, 0, 1], [-1, 1, 0, 1], [1, 1, 0, 1], [1, -1, 0, 1]], dtype=tf.float32)
#background = skimage.io.imread('/n/fs/shaderml/datas_oceanic/test_img/test_middle_ground00000.png')
#background = tf.constant(skimage.img_as_float(background), dtype=tf.float32)
background = tf.zeros([height, width, 3], dtype=tf.float32)
camera_pos = tf.placeholder(tf.float32, 8)
return dirt.rasterise(
vertices=square_vertices,
faces=[[0, 1, 2], [0, 2, 3]],
vertex_colors=tf.ones([4, 3]),
background=background,
camera_pos = camera_pos,
height=height, width=width, channels=3
), camera_pos
def main():
dir = '/n/fs/shaderml/deeplab-pytorch/result'
highlight_dir = '/n/fs/shaderml/drone_videos/drone_frames/ocean3_00/highlight'
orig_img_dir = '/n/fs/shaderml/drone_videos/drone_frames/ocean3_00'
out_dir = 'horizon_optimize'
#files = os.listdir(dir)
#files = sorted([os.path.join(dir, file) for file in files if 'coco_stuff' not in file])
files = [os.path.join(dir, '%05d.png' % ind) for ind in range(0, 1860, 11)]
#camera_pos_vals = np.load(os.path.join(dir, 'camera_pos_' + name + '.npy'))
#render_t = np.load(os.path.join(dir, 'render_t_' + name + '.npy'))
#nframes = camera_pos_vals.shape[0]
feed_dict_arr = np.zeros(8)
feed_dict_arr[1] = 200.0
feed_dict_arr[7] = 0.9
img = np.zeros([640, 960, 3])
nframes = len(files)
session = tf.Session()
ransac = linear_model.RANSACRegressor(stop_probability=0.995, max_trials=200)
line_X = np.arange(960)[:, np.newaxis]
with session.as_default():
dirt_node, camera_pos = get_dirt_pixels()
for idx in range(nframes):
filename = files[idx]
print(filename)
_, filename_short = os.path.split(filename)
filename_only, _ = os.path.splitext(filename_short)
orig_img_name = os.path.join(orig_img_dir, filename_short)
if not os.path.exists(orig_img_name):
raise
orig_img = skimage.transform.resize(skimage.io.imread(orig_img_name), (img.shape[0], img.shape[1]))
seg = skimage.transform.resize(skimage.io.imread(filename), (img.shape[0], img.shape[1]))[:, :, 0]
is_sea_col = | np.argmin(seg, axis=0) | numpy.argmin |
"""
@file
@brief Validates runtime for many :scikit-learn: operators.
The submodule relies on :epkg:`onnxconverter_common`,
:epkg:`sklearn-onnx`.
"""
import numpy
from sklearn.base import ClusterMixin, BiclusterMixin, OutlierMixin
from sklearn.base import RegressorMixin, ClassifierMixin
from sklearn.calibration import CalibratedClassifierCV
from sklearn.cross_decomposition import PLSSVD
from sklearn.datasets import load_iris
from sklearn.decomposition import LatentDirichletAllocation, NMF
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
from sklearn.ensemble import (
AdaBoostRegressor, GradientBoostingRegressor, AdaBoostClassifier,
BaggingClassifier, VotingClassifier, GradientBoostingClassifier,
RandomForestClassifier)
try:
from sklearn.ensemble import StackingClassifier, StackingRegressor
except ImportError: # pragma: no cover
# new in 0.22
StackingClassifier, StackingRegressor = None, None
from sklearn.feature_extraction import DictVectorizer, FeatureHasher
from sklearn.feature_extraction.text import (
CountVectorizer, TfidfVectorizer, TfidfTransformer)
from sklearn.experimental import enable_hist_gradient_boosting # pylint: disable=W0611
from sklearn.ensemble import (
HistGradientBoostingRegressor,
HistGradientBoostingClassifier)
from sklearn.feature_selection import (
RFE, RFECV, GenericUnivariateSelect,
SelectPercentile, SelectFwe, SelectKBest,
SelectFdr, SelectFpr, SelectFromModel)
from sklearn.gaussian_process import GaussianProcessClassifier, GaussianProcessRegressor
from sklearn.isotonic import IsotonicRegression
from sklearn.linear_model import (
ARDRegression, ElasticNetCV,
LarsCV, LassoCV, LassoLarsCV, LassoLarsIC,
SGDRegressor, OrthogonalMatchingPursuitCV,
TheilSenRegressor, BayesianRidge, MultiTaskElasticNet,
MultiTaskElasticNetCV, MultiTaskLassoCV, MultiTaskLasso,
PassiveAggressiveClassifier, RidgeClassifier,
RidgeClassifierCV, PassiveAggressiveRegressor,
HuberRegressor, LogisticRegression, SGDClassifier,
LogisticRegressionCV, Perceptron)
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.multiclass import (
OneVsRestClassifier, OneVsOneClassifier, OutputCodeClassifier)
from sklearn.multioutput import MultiOutputRegressor, MultiOutputClassifier
from sklearn.naive_bayes import BernoulliNB, GaussianNB, MultinomialNB, ComplementNB
from sklearn.neighbors import (
NearestCentroid, RadiusNeighborsClassifier,
NeighborhoodComponentsAnalysis)
from sklearn.preprocessing import (
LabelBinarizer, LabelEncoder,
OneHotEncoder, PowerTransformer)
from sklearn.semi_supervised import LabelPropagation, LabelSpreading
from sklearn.svm import LinearSVC, LinearSVR, NuSVR, SVR, SVC, NuSVC
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, ExtraTreeClassifier
from sklearn.utils import shuffle
from skl2onnx.common.data_types import (
FloatTensorType, DoubleTensorType, StringTensorType, DictionaryType)
from ._validate_problems_helper import (
_noshapevar, _1d_problem, text_alpha_num)
def _modify_dimension(X, n_features, seed=19):
"""
Modifies the number of features to increase
or reduce the number of features.
@param X features matrix
@param n_features number of features
@param seed random seed (to get the same
dataset at each call)
@return new featurs matrix
"""
if n_features is None or n_features == X.shape[1]:
return X
if n_features < X.shape[1]:
return X[:, :n_features]
rstate = numpy.random.RandomState(seed) # pylint: disable=E1101
res = numpy.empty((X.shape[0], n_features), dtype=X.dtype)
res[:, :X.shape[1]] = X[:, :]
div = max((n_features // X.shape[1]) + 1, 2)
for i in range(X.shape[1], res.shape[1]):
j = i % X.shape[1]
col = X[:, j]
if X.dtype in (numpy.float32, numpy.float64):
sigma = numpy.var(col) ** 0.5
rnd = rstate.randn(len(col)) * sigma / div
col2 = col + rnd
res[:, j] -= col2 / div
res[:, i] = col2
elif X.dtype in (numpy.int32, numpy.int64):
perm = rstate.permutation(col)
h = rstate.randint(0, div) % X.shape[0]
col2 = col.copy()
col2[h::div] = perm[h::div] # pylint: disable=E1136
res[:, i] = col2
h = (h + 1) % X.shape[0]
res[h, j] = perm[h] # pylint: disable=E1136
else: # pragma: no cover
raise NotImplementedError( # pragma: no cover
"Unable to add noise to a feature for this type {}".format(X.dtype))
return res
###########
# datasets
###########
def _problem_for_predictor_binary_classification(
dtype=numpy.float32, n_features=None, add_nan=False):
"""
Returns *X, y, intial_types, method, node name, X runtime* for a
binary classification problem.
It is based on Iris dataset.
"""
data = load_iris()
X = data.data
state = numpy.random.RandomState(seed=34) # pylint: disable=E1101
rnd = state.randn(*X.shape) / 3
X += rnd
X = _modify_dimension(X, n_features)
y = data.target
y[y == 2] = 1
if add_nan:
rows = numpy.random.randint(0, X.shape[0] - 1, X.shape[0] // 3)
cols = numpy.random.randint(0, X.shape[1] - 1, X.shape[0] // 3)
X[rows, cols] = numpy.nan
X = X.astype(dtype)
y = y.astype(numpy.int64)
return (X, y, [('X', X[:1].astype(dtype))],
'predict_proba', 1, X.astype(dtype))
def _problem_for_predictor_multi_classification(dtype=numpy.float32, n_features=None):
"""
Returns *X, y, intial_types, method, node name, X runtime* for a
m-cl classification problem.
It is based on Iris dataset.
"""
data = load_iris()
X = data.data
state = numpy.random.RandomState(seed=34) # pylint: disable=E1101
rnd = state.randn(*X.shape) / 3
X += rnd
X = _modify_dimension(X, n_features)
y = data.target
X = X.astype(dtype)
y = y.astype(numpy.int64)
return (X, y, [('X', X[:1].astype(dtype))],
'predict_proba', 1, X.astype(dtype))
def _problem_for_predictor_multi_classification_label(dtype=numpy.float32, n_features=None):
"""
Returns *X, y, intial_types, method, node name, X runtime* for a
m-cl classification problem.
It is based on Iris dataset.
"""
data = load_iris()
X = data.data
state = numpy.random.RandomState(seed=34) # pylint: disable=E1101
rnd = state.randn(*X.shape) / 3
X += rnd
X = _modify_dimension(X, n_features)
y = data.target
y2 = numpy.zeros((y.shape[0], 3), dtype=numpy.int64)
for i, _ in enumerate(y):
y2[i, _] = 1
for i in range(0, y.shape[0], 5):
y2[i, (y[i] + 1) % 3] = 1
X = X.astype(dtype)
y2 = y2.astype(numpy.int64)
return (X, y2, [('X', X[:1].astype(dtype))],
'predict_proba', 1, X.astype(dtype))
def _problem_for_predictor_regression(many_output=False, options=None,
n_features=None, nbrows=None,
dtype=numpy.float32, add_nan=False,
**kwargs):
"""
Returns *X, y, intial_types, method, name, X runtime* for a
regression problem.
It is based on Iris dataset.
"""
data = load_iris()
X = data.data
state = numpy.random.RandomState(seed=34) # pylint: disable=E1101
rnd = state.randn(*X.shape) / 3
X += rnd
X = _modify_dimension(X, n_features)
y = data.target + numpy.arange(len(data.target)) / 100
meth = 'predict' if kwargs is None else ('predict', kwargs)
itt = [('X', X[:1].astype(dtype))]
if n_features is not None:
X = X[:, :n_features]
itt = [('X', X[:1].astype(dtype))]
if nbrows is not None:
X = X[::nbrows, :]
y = y[::nbrows]
itt = [('X', X[:1].astype(dtype))]
if options is not None:
itt = itt, options
if add_nan:
rows = | numpy.random.randint(0, X.shape[0] - 1, X.shape[0] // 3) | numpy.random.randint |
# coding: utf-8
import cmath
import numpy as np
from rcwa.common import matmul, redheffer_star_prod, get_input
from rcwa.structure import HomogeneousStructure
from rcwa.source import Source
from rcwa._constants import UNIT_MAT_2D
def save_outputs(R, T):
with open('output.toml', 'w') as fid:
fid.write('[R]\n00 = {:.4f}\n'.format(R))
fid.write('[T]\n00 = {:.4f}\n'.format(T))
fid.write('[R_T]\n00 = {:.4f}\n'.format(R + T))
class TMM():
'''Calculates transmission through a stack of uniform layers'''
def __prepare(self, structure, source):
nr1 = np.sqrt(structure.UR1*structure.ER1)
self.k_inc = source.K0*nr1*\
np.array(([np.sin(source.THETA)*np.cos(source.PHI),
| np.sin(source.THETA) | numpy.sin |
import argparse
import importlib
import os
import sys
from datetime import datetime
import numpy as np
import torch
from torch.autograd import Variable
import provider
from tensorboardX import SummaryWriter
from frustum_pointnets_v1 import FPointNet
from train_util import get_batch
from model_util import get_loss
from model_util import init_fpointnet
BASE_DIR = os.path.dirname(__file__)
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(BASE_DIR)
writer = SummaryWriter('runs/exp')
parser = argparse.ArgumentParser()
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [default: 2048]')
parser.add_argument('--max_epoch', type=int, default=201, help='Epoch to run [default: 201]')
parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=200000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.7]')
parser.add_argument('--no_intensity', action='store_true', help='Only use XYZ for training')
parser.add_argument('--restore_model_path', default=None, help='Restore model path e.g. log/model.ckpt [default: None]')
parser.add_argument('--train_batch_num', default=None, help='decide how much data to train')
# parse_args() 传递一组参数字符串来解析命令行,返回一个命名空间包含传递给命令的参数
FLAGS = parser.parse_args()
#训练参数
EPOCH_CNT = 1
# batch_size表明这个batch中包含多少个点云数据
BATCH_SIZE = FLAGS.batch_size
# num_point表明每个点云中含有多少个点
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
# GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
# 初始时使用较大的学习率较快地得到较优解,随着迭代学习率呈指数逐渐减小。
# decayed_learning_rate = learning_rate*(decay_rate^(global_steps/decay_steps)
DECAY_RATE = FLAGS.decay_rate
NUM_CHANNEL = 3 if FLAGS.no_intensity else 4 # point feature channel
NUM_CLASSES = 2 # segmentation has two classes
LOG_DIR = FLAGS.log_dir #训练结果log的路径
MODEL_BASE_DIR = os.path.join(LOG_DIR,'models')
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
################################网络参数##################################
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
# Load Frustum Datasets. Use default data paths.
TRAIN_DATASET = provider.FrustumDataset(npoints=NUM_POINT, split='train',
rotate_to_center=True, random_flip=True, random_shift=True, one_hot=True)
TEST_DATASET = provider.FrustumDataset(npoints=NUM_POINT, split='val',
rotate_to_center=True, one_hot=True)
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def compute_summary(end_points,labels_pl,centers_pl,heading_class_label_pl,heading_residual_label_pl,size_class_label_pl,size_residual_label_pl):
'''
计算 iou_2d, iou_3d 用 原作者提供的 numpy 版本 的操作实现可能速度会偏慢
@author chonepeiceyb
:param end_points: 预测结果
:param labels_pl: (B,2)
:param centers_pl: (B,3)
:param heading_class_label_pl: (B,)
:param heading_residual_label_pl:(B,)
:param size_class_label_pl:(B,)
:param size_residual_label_pl:(B,3)
:return:
iou2ds: (B,) birdeye view oriented 2d box ious
iou3ds: (B,) 3d box ious
accuracy: python float 平均预测准确度
'''
end_points_np = {}
# convert tensor to numpy array
for key,value in end_points.items():
end_points_np[key] = value.cpu().data.numpy()
iou2ds, iou3ds = provider.compute_box3d_iou( end_points_np['center'],\
end_points_np['heading_scores'], end_points_np['heading_residuals'], \
end_points_np['size_scores'], end_points_np['size_residuals'],\
centers_pl,\
heading_class_label_pl,heading_residual_label_pl,\
size_class_label_pl,size_residual_label_pl)
correct = torch.eq( torch.argmax(end_points['mask_logits'],dim=1),labels_pl.type(torch.int64)) #end_points['mask_logits'] ,(B,2,N) , 需要调 bug
accuracy = torch.mean(correct.type(torch.float32))
return iou2ds,iou3ds,accuracy
def train():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
fpointnet = FPointNet()
fpointnet=fpointnet.to(device)
init_fpointnet(fpointnet)
optimizer = torch.optim.Adam(fpointnet.parameters(), lr=BASE_LEARNING_RATE)
# for name,param in fpointnet.named_parameters():
# print(name + ':' )
# print(param.requires_grad)
for epoch in range(MAX_EPOCH):
print('epoch: %d' % epoch)
train_one_epoch(fpointnet, device, optimizer)
eval_one_epoch(fpointnet, device)
# save the model every 10 epoch
if (epoch+1)%10 == 0:
path = os.path.join(MODEL_BASE_DIR,'fpointnet_'+str(datetime.now())+'_epoch'+str(epoch)+'.pth')
torch.save(fpointnet.state_dict(),path)
# save the final model
path = os.path.join(MODEL_BASE_DIR, 'fpointnet_' + str(datetime.now()) + '_final' + '.pth')
torch.save(fpointnet.state_dict(), path)
# @torchsnooper.snoop()
def train_one_epoch(fpointnet,device,optimizer):
'''
@author Qiao
:param fpointnet: 网络
:param device: 设备
:return:
'''
global EPOCH_CNT
log_string(str(datetime.now()))
log_string('---- EPOCH %03d TRAINING ----' % (EPOCH_CNT))
# 按照原始数据集大小进行取值
if FLAGS.train_batch_num == None:
train_idxs = np.arange(0, len(TRAIN_DATASET))
np.random.shuffle(train_idxs) #随机
num_batches = len(TRAIN_DATASET)//BATCH_SIZE
else:
num_batches = int(FLAGS.train_batch_num)
num_batches = min(num_batches,len(TRAIN_DATASET)//BATCH_SIZE)
train_idxs = np.arange(0, BATCH_SIZE*num_batches)
np.random.shuffle(train_idxs)
# To collect statistics
total_correct = 0
total_seen = 0
loss_sum = 0
iou2ds_sum = 0
iou3ds_sum = 0
iou3d_correct_cnt = 0
# Training with batches
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
batch_data, batch_label, batch_center, \
batch_hclass, batch_hres, \
batch_sclass, batch_sres, \
batch_rot_angle, batch_one_hot_vec = \
get_batch(TRAIN_DATASET, train_idxs, start_idx, end_idx,
NUM_POINT, NUM_CHANNEL)
pointclouds_pl = torch.from_numpy(batch_data)
pointclouds_pl = pointclouds_pl.permute(0, 2, 1)
pointclouds_pl = pointclouds_pl.to(device,dtype=torch.float32)
one_hot_vec_pl = torch.from_numpy(batch_one_hot_vec)
one_hot_vec_pl = one_hot_vec_pl.to(device,dtype=torch.float32)
labels_pl = torch.from_numpy(batch_label).to(device,dtype=torch.int64)
centers_pl = torch.from_numpy(batch_center).to(device,dtype=torch.float32)
heading_class_label_pl = torch.from_numpy(batch_hclass).to(device,dtype=torch.int64)
heading_residual_label_pl = torch.from_numpy(batch_hres).to(device,dtype=torch.float32)
size_class_label_pl = torch.from_numpy(batch_sclass).to(device,dtype=torch.int64)
size_residual_label_pl = torch.from_numpy(batch_sres).to(device,dtype=torch.float32)
fpointnet.train()
end_points = fpointnet.forward(pointclouds_pl, one_hot_vec_pl)
loss, losses = get_loss(labels_pl, centers_pl,\
heading_class_label_pl, heading_residual_label_pl,\
size_class_label_pl, size_residual_label_pl, end_points)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_val = loss.cpu().detach().numpy()
logits_val = end_points['mask_logits'].cpu().detach().numpy()
iou2ds,iou3ds,accuracy = compute_summary(end_points,labels_pl ,batch_center,\
batch_hclass,batch_hres,batch_sclass,batch_sres)
preds_val = | np.argmax(logits_val, 1) | numpy.argmax |
# -*- coding: utf-8 -*-
# ProDy: A Python Package for Protein Dynamics Analysis
#
# Copyright (C) 2010-2012 <NAME>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>
"""This module defines functions for calculating atomic properties from normal
modes."""
__author__ = '<NAME>'
__copyright__ = 'Copyright (C) 2010-2012 <NAME>'
import time
import numpy as np
from prody import LOGGER
from prody.atomic import AtomGroup
from prody.ensemble import Ensemble, Conformation
from prody.trajectory import TrajBase
from nma import NMA
from modeset import ModeSet
from mode import VectorBase, Mode, Vector
from gnm import GNMBase
__all__ = ['calcCollectivity', 'calcCovariance', 'calcCrossCorr',
'calcFractVariance', 'calcSqFlucts', 'calcTempFactors',
'calcProjection', 'calcCrossProjection', 'calcPerturbResponse', ]
def calcCollectivity(mode, masses=None):
"""Return collectivity of the mode. This function implements collectivity
as defined in equation 5 of [BR95]_. If *masses* are provided, they will
be incorporated in the calculation. Otherwise, atoms are assumed to have
uniform masses.
:arg mode: mode or vector
:type mode: :class:`~.Mode` or :class:`~.Vector`
:arg masses: atomic masses
:type masses: :class:`numpy.ndarray`"""
if not isinstance(mode, Mode):
raise TypeError('mode must be a Mode instance')
is3d = mode.is3d()
if masses is not None:
if len(masses) != mode.numAtoms():
raise ValueError('length of massesmust be equal to number of atoms')
if is3d:
u2in = (mode.getArrayNx3() ** 2).sum(1) / masses
else:
if is3d:
u2in = (mode.getArrayNx3() ** 2 ).sum(1)
else:
u2in = (mode.getArrayNx3() ** 2 )
u2in = u2in * (1 / u2in.sum() ** 0.5)
coll = np.exp(-(u2in * np.log(u2in)).sum()) / mode.numAtoms()
return coll
def calcFractVariance(mode):
"""Return fraction of variance explained by the *mode*. Fraction of
variance is the ratio of the variance along a mode to the trace of the
covariance matrix of the model."""
if isinstance(mode, Mode):
var = mode.getVariance()
trace = mode.getModel()._trace
elif isinstance(mode, (ModeSet, NMA)):
var = mode.getVariances()
if isinstance(mode, ModeSet):
trace = mode.getModel()._trace
else:
trace = mode._trace
else:
raise TypeError('mode must be a Mode instance')
if trace is None:
raise ValueError('modes are not calculated')
return var / trace
def calcProjection(ensemble, modes, rmsd=True):
"""Return projection of conformational deviations onto given modes.
For K conformations and M modes, a (K,M) matrix is returned.
:arg ensemble: an ensemble, trajectory or a conformation for which
deviation(s) will be projected, or a deformation vector
:type ensemble: :class:`~.Ensemble`, :class:`~.Conformation`,
:class:`~.Vector`, :class:`~.Trajectory`
:arg modes: up to three normal modes
:type modes: :class:`~.Mode`, :class:`~.ModeSet`, :class:`~.NMA`
By default root-mean-square deviation (RMSD) along the normal mode is
calculated. To calculate the projection pass ``rmsd=True``.
:class:`~.Vector` instances are accepted as *ensemble* argument to allow
for projecting a deformation vector onto normal modes."""
if not isinstance(ensemble, (Ensemble, Conformation, Vector, TrajBase)):
raise TypeError('ensemble must be Ensemble, Conformation, Vector, '
'or a TrajBase, not {0:s}'.format(type(ensemble)))
if not isinstance(modes, (NMA, ModeSet, VectorBase)):
raise TypeError('rows must be NMA, ModeSet, or Mode, not {0:s}'
.format(type(modes)))
if not modes.is3d():
raise ValueError('modes must be 3-dimensional')
if isinstance(ensemble, Vector):
n_atoms = ensemble.numAtoms()
else:
n_atoms = ensemble.numSelected()
if n_atoms != modes.numAtoms():
raise ValueError('number of atoms are not the same')
if isinstance(ensemble, Vector):
if not ensemble.is3d():
raise ValueError('ensemble must be a 3d vector instance')
deviations = ensemble._getArray()
elif isinstance(ensemble, (Ensemble, Conformation)):
deviations = ensemble.getDeviations()
else:
nfi = ensemble.getNextIndex()
ensemble.goto(0)
deviations = np.array([frame.getDeviations() for frame in ensemble])
ensemble.goto(nfi)
if deviations.ndim == 3:
deviations = deviations.reshape((deviations.shape[0],
deviations.shape[1] * 3))
elif deviations.ndim == 2:
deviations = deviations.reshape((1, deviations.shape[0] * 3))
else:
deviations = deviations.reshape((1, deviations.shape[0]))
projection = np.dot(deviations, modes._getArray())
if rmsd:
projection = (1 / (n_atoms ** 0.5)) * projection
return projection
def calcCrossProjection(ensemble, mode1, mode2, scale=None, **kwargs):
"""Return projection of conformational deviations onto modes from
different models.
:arg ensemble: ensemble for which deviations will be projected
:type ensemble: :class:`~.Ensemble`
:arg mode1: normal mode to project conformations onto
:type mode1: :class:`~.Mode`, :class:`~.Vector`
:arg mode2: normal mode to project conformations onto
:type mode2: :class:`~.Mode`, :class:`~.Vector`
:arg scale: scale width of the projection onto mode ``x`` or ``y``,
best scaling factor will be calculated and printed on the console,
absolute value of scalar makes the with of two projection same,
sign of scalar makes the projections yield a positive correlation"""
if not isinstance(ensemble, (Ensemble, Conformation, Vector, TrajBase)):
raise TypeError('ensemble must be Ensemble, Conformation, Vector, '
'or a Trajectory, not {0:s}'.format(type(ensemble)))
if not isinstance(mode1, VectorBase):
raise TypeError('mode1 must be a Mode instance, not {0:s}'
.format(type(mode1)))
if not mode1.is3d():
raise ValueError('mode1 must be 3-dimensional')
if not isinstance(mode2, VectorBase):
raise TypeError('mode2 must be a Mode instance, not {0:s}'
.format(type(mode2)))
if not mode2.is3d():
raise ValueError('mode2 must be 3-dimensional')
if scale is not None:
assert isinstance(scale, str), 'scale must be a string'
scale = scale.lower()
assert scale in ('x', 'y'), 'scale must be x or y'
xcoords = calcProjection(ensemble, mode1, kwargs.get('rmsd', True))
ycoords = calcProjection(ensemble, mode2, kwargs.pop('rmsd', True))
if scale:
scalar = kwargs.get('scalar', None)
if scalar:
assert isinstance(scalar, (float, int)), 'scalar must be a number'
else:
scalar = ((ycoords.max() - ycoords.min()) /
(xcoords.max() - xcoords.min())
) * np.sign(np.dot(xcoords, ycoords))
if scale == 'x':
LOGGER.info('Projection onto {0:s} is scaled by {1:.2f}'
.format(mode1, scalar))
else:
scalar = 1 / scalar
LOGGER.info('Projection onto {0:s} is scaled by {1:.2f}'
.format(mode2, scalar))
if scale == 'x':
xcoords = xcoords * scalar
else:
ycoords = ycoords * scalar
return xcoords, ycoords
def calcSqFlucts(modes):
"""Return sum of square-fluctuations for given set of normal *modes*.
Square fluctuations for a single mode is obtained by multiplying the
square of the mode array with the variance (:meth:`~.Mode.getVariance`)
along the mode."""
if not isinstance(modes, (VectorBase, NMA, ModeSet)):
raise TypeError('modes must be a Mode, NMA, or ModeSet instance, '
'not {0:s}'.format(type(modes)))
is3d = modes.is3d()
if isinstance(modes, Vector):
if is3d:
return (modes._getArrayNx3()**2).sum(axis=1)
else:
return (modes._getArray() ** 2)
else:
sq_flucts = np.zeros(modes.numAtoms())
if isinstance(modes, VectorBase):
modes = [modes]
for mode in modes:
if is3d:
sq_flucts += ((mode._getArrayNx3()**2).sum(axis=1) *
mode.getVariance())
else:
sq_flucts += (mode._getArray() ** 2) * mode.getVariance()
return sq_flucts
def calcCrossCorr(modes, n_cpu=1):
"""Return cross-correlations matrix. For a 3-d model, cross-correlations
matrix is an NxN matrix, where N is the number of atoms. Each element of
this matrix is the trace of the submatrix corresponding to a pair of atoms.
Covariance matrix may be calculated using all modes or a subset of modes
of an NMA instance. For large systems, calculation of cross-correlations
matrix may be time consuming. Optionally, multiple processors may be
employed to perform calculations by passing ``n_cpu=2`` or more."""
if not isinstance(n_cpu, int):
raise TypeError('n_cpu must be an integer')
elif n_cpu < 1:
raise ValueError('n_cpu must be equal to or greater than 1')
if not isinstance(modes, (Mode, NMA, ModeSet)):
raise TypeError('modes must be a Mode, NMA, or ModeSet instance, '
'not {0:s}'.format(type(modes)))
if modes.is3d():
model = modes
if isinstance(modes, (Mode, ModeSet)):
model = modes._model
if isinstance(modes, (Mode)):
indices = [modes.getIndex()]
n_modes = 1
else:
indices = modes.getIndices()
n_modes = len(modes)
else:
n_modes = len(modes)
indices = np.arange(n_modes)
array = model._array
n_atoms = model._n_atoms
variances = model._vars
if n_cpu == 1:
arvar = (array[:, indices]*variances[indices]).T.reshape(
(n_modes, n_atoms, 3))
array = array[:, indices].T.reshape((n_modes, n_atoms, 3))
covariance = np.tensordot(array.transpose(2, 0, 1),
arvar.transpose(0, 2, 1),
axes=([0, 1], [1, 0]))
else:
import multiprocessing
n_cpu = min(multiprocessing.cpu_count(), n_cpu)
queue = multiprocessing.Queue()
size = n_modes / n_cpu
for i in range(n_cpu):
if n_cpu - i == 1:
indices = modes.indices[i*size:]
else:
indices = modes.indices[i*size:(i+1)*size]
process = multiprocessing.Process(target=_crossCorrelations,
args=(queue, n_atoms, array, variances, indices))
process.start()
while queue.qsize() < n_cpu:
time.sleep(0.05)
covariance = queue.get()
while queue.qsize() > 0:
covariance += queue.get()
else:
covariance = calcCovariance(modes)
diag = np.power(covariance.diagonal(), 0.5)
return covariance / | np.outer(diag, diag) | numpy.outer |
#!/usr/bin/python
import numpy as np
import multiprocessing as mp
from functools import partial
# L1 = n * 2 matrix
# L2 = n * 2 matrix
# RF = array of recombination frequencies of size (n-1)
# k = number of progenies to produce
def cross2(L1, L2, RF, k):
# number of columns in L1
n = L1.shape[1]
# RC = 2k by n matrix
# and first 0.5 probability to RF
# duplicate the probabilities 2k times vertically
# compare the probabilities with random 2k by n matrix
# the first column means which side to choose
# 0 means up and 1 means down
# the rest of the columns mean if they need to change column
# 0 means don't change column and 1 means change column
probabilities = np.hstack((np.array([0.5]), RF))
RC = np.random.random((2*k, n))<=np.tile(probabilities, [2*k, 1])
# Cumulative products of elements along row
# it shows which columns to choose in Y1 and Y2
# In fDown, 0 means up and 1 means down
# In fUp, 0 means down and 1 means up
cumprodRC = np.cumprod(1-2*RC, axis=1, dtype=np.int8)
fDown = cumprodRC < 0
fDown = np.reshape(fDown, (2*k, n), order='F')
fUp = cumprodRC > 0
fUp = np.reshape(fUp, (2*k, n), order='F')
# copy the up sides of L1&L2 and combine them
# copy the down sides of L1&L2 and and combine them
# duplicate the combined matrix k times and
# put them in a 2k by n matrices
splittedL1 = np.vsplit(L1, 2)
splittedL2 = np.vsplit(L2, 2)
combinedUp = np.vstack((splittedL1[0], splittedL2[0]))
combinedDown = np.vstack((splittedL1[1], splittedL2[1]))
Y1 = np.tile(combinedUp, [k, 1])
Y2 = np.tile(combinedDown, [k, 1])
# multiple elements in Y1 and Y2
# by fUp and fDown respectively
# and add them
# this is the result
Y = fUp*Y1 + fDown*Y2
# reshape 2k by n matrix to k by 2 by n matrix
Y = np.reshape(Y, (k, 2, n), order='C')
return Y
# L1 = n * 2 matrix
# L2 = n * 2 matrix
# RF = array of recombination frequencies of size (n-1)
# k = number of progenies to produce
# i = current job number
def cross2iterable(L1, L2, RF, k, i):
print("Job " + str(i))
progenies = cross2(L1, L2, RF, k)
#print("progenies.shape {}".format(progenies.shape))
return progenies
# multi processing version
# L1 = n * 2 matrix
# L2 = n * 2 matrix
# RF = array of recombination frequencies of size (n-1)
# k = number of progenies to produce
def cross2mp(L1, L2, RF, k):
# if this value is too big, you memory cant hold
# all the data and therefore the total execution time
# will be very slow
maxTotalJobSize = 200
# number of jobs
numCores = numJobs = mp.cpu_count()
numJobs = numCores
# number of progenies to produce per job
progenyPerJob = k//numJobs
while(progenyPerJob*numCores > maxTotalJobSize):
numJobs = numJobs * 2
progenyPerJob = k//numJobs
#print("numJobs {}, progenyPerJob {}".format(numJobs, progenyPerJob))
theRestNum = k%numJobs
print("numJobs {}, progenyPerJob {}, theRestNum {}".format(numJobs, progenyPerJob, theRestNum))
progenyList = []
# use multi-thread to calculate
if (numJobs != 0):
iterable = range(0, numJobs)
pool = mp.Pool()
func = partial(cross2iterable, L1, L2, RF, progenyPerJob)
progenyList = pool.map(func, iterable)
pool.close()
pool.join()
#print("progenyList[0].shape {}".format(progenyList[0].shape))
# convert the list to a numpy array
progenies = np.array(progenyList)
# convert the shape to (numJobs*progenyPerJob) by 2 by n
# from numJobs by progenyPerJob by 2 by n
progenies = np.reshape(progenies, (numJobs*progenyPerJob,2,L1.shape[1]))
#print("progenies\n {}".format(progenies))
# do the rest
if (theRestNum != 0):
theRestProgenies = cross2iterable(L1,L2,RF,theRestNum,numJobs)
#print("theRestProgenies\n {}".format(theRestProgenies))
progenies = np.concatenate((progenies, theRestProgenies), axis=0)
#print("progenies\n {}".format(progenies))
return progenies
# single processing version with memory management
# L1 = n * 2 matrix
# L2 = n * 2 matrix
# RF = array of recombination frequencies of size (n-1)
# k = number of progenies to produce
def cross2sp(L1, L2, RF, k):
# if this value is too big, you memory cant hold
# all the data and therefore the total execution time
# will be very slow
maxTotalJobSize = 100
# number of jobs
numCores = numJobs = mp.cpu_count()
numJobs = numCores
# number of progenies to produce per job
progenyPerJob = k//numJobs
while(progenyPerJob*numCores > maxTotalJobSize):
numJobs = numJobs * 2
progenyPerJob = k//numJobs
#print("numJobs {}, progenyPerJob {}".format(numJobs, progenyPerJob))
theRestNum = k%numJobs
print("numJobs {}, progenyPerJob {}, theRestNum {}".format(numJobs, progenyPerJob, theRestNum))
progenyList = []
rangeNumJobs = range(numJobs)
n = L1.shape[1]
# use multi-thread to calculate
if (numJobs != 0):
for i in rangeNumJobs:
progenyList.append(cross2iterable(L1,L2,RF,progenyPerJob,i))
#print("progenyList[0].shape {}".format(progenyList[0].shape))
# convert the list to a numpy array
progenies = np.array(progenyList)
#print(progenies.shape)
# convert the shape to (numJobs*progenyPerJob) by 2 by n
# from numJobs by progenyPerJob by 2 by n
progenies = np.reshape(progenies, (numJobs*progenyPerJob,2,L1.shape[1]))
#print("progenies\n {}".format(progenies))
# do the rest
if (theRestNum != 0):
theRestProgenies = cross2iterable(L1,L2,RF,theRestNum,numJobs)
#print("theRestProgenies\n {}".format(theRestProgenies))
progenies = | np.concatenate((progenies, theRestProgenies), axis=0) | numpy.concatenate |
# coding: utf-8
# Copyright (c) Pymatgen Development Team.
# Distributed under the terms of the MIT License.
from __future__ import division, unicode_literals
import numpy as np
import warnings
import scipy.constants as const
from monty.json import MSONable
from pymatgen.analysis.structure_matcher import StructureMatcher, \
OrderDisorderElementComparator
from pymatgen.core.periodic_table import get_el_sp
from pymatgen.core.structure import Structure
from pymatgen.io.vasp.outputs import Vasprun
from pymatgen.util.coord_utils import pbc_diff
"""
A module to perform diffusion analyses (e.g. calculating diffusivity from
mean square displacements etc.). If you use this module, please consider
citing the following papers::
<NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>.
(2013). Phase stability, electrochemical stability and ionic conductivity
of the Li10+-1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family
of superionic conductors. Energy & Environmental Science, 6(1), 148.
doi:10.1039/c2ee23355j
<NAME>., <NAME>., & <NAME>. (2012). First Principles Study of the
Li10GeP2S12 Lithium Super Ionic Conductor Material. Chemistry of Materials,
24(1), 15-17. doi:10.1021/cm203303y
"""
__author__ = "<NAME>, <NAME>"
__version__ = "0.2"
__maintainer__ = "<NAME>"
__email__ = "<EMAIL>"
__status__ = "Beta"
__date__ = "5/2/13"
class DiffusionAnalyzer(MSONable):
"""
Class for performing diffusion analysis.
.. attribute: diffusivity
Diffusivity in cm^2 / s
.. attribute: conductivity
Conductivity in mS / cm
.. attribute: diffusivity_components
A vector with diffusivity in the a, b and c directions in cm^2 / s
.. attribute: conductivity_components
A vector with conductivity in the a, b and c directions in mS / cm
.. attribute: diffusivity_sigma
Std dev in diffusivity in cm^2 / s. Note that this makes sense only
for non-smoothed analyses.
.. attribute: conductivity_sigma
Std dev in conductivity in mS / cm. Note that this makes sense only
for non-smoothed analyses.
.. attribute: diffusivity_components_sigma
A vector with std dev. in diffusivity in the a, b and c directions in
cm^2 / cm. Note that this makes sense only for non-smoothed analyses.
.. attribute: conductivity_components_sigma
A vector with std dev. in conductivity in the a, b and c directions
in mS / cm. Note that this makes sense only for non-smoothed analyses.
.. attribute: max_framework_displacement
The maximum (drift adjusted) distance of any framework atom from its
starting location in A.
.. attribute: max_ion_displacements
nions x 1 array of the maximum displacement of each individual ion.
.. attribute: msd
nsteps x 1 array of the mean square displacement of specie.
.. attribute: msd_components
nsteps x 3 array of the MSD in each lattice direction of specie.
.. attribute: sq_disp_ions
The square displacement of all ion (both specie and other ions) as a
nions x nsteps array.
.. attribute: dt
Time coordinate array.
"""
def __init__(self, structure, displacements, specie, temperature,
time_step, step_skip, smoothed="max", min_obs=30,
avg_nsteps=1000, lattices=None):
"""
This constructor is meant to be used with pre-processed data.
Other convenient constructors are provided as class methods (see
from_vaspruns and from_files).
Given a matrix of displacements (see arguments below for expected
format), the diffusivity is given by::
D = 1 / 2dt * <mean square displacement>
where d is the dimensionality, t is the time. To obtain a reliable
diffusion estimate, a least squares regression of the MSD against
time to obtain the slope, which is then related to the diffusivity.
For traditional analysis, use smoothed=False and weighted=False.
Args:
structure (Structure): Initial structure.
displacements (array): Numpy array of with shape [site,
time step, axis]
specie (Element/Specie): Specie to calculate diffusivity for as a
String. E.g., "Li".
temperature (float): Temperature of the diffusion run in Kelvin.
time_step (int): Time step between measurements.
step_skip (int): Sampling frequency of the displacements (
time_step is multiplied by this number to get the real time
between measurements)
smoothed (str): Whether to smooth the MSD, and what mode to smooth.
Supported modes are:
i. "max", which tries to use the maximum #
of data points for each time origin, subject to a
minimum # of observations given by min_obs, and then
weights the observations based on the variance
accordingly. This is the default.
ii. "constant", in which each timestep is averaged over
the number of time_steps given by min_steps.
iii. None / False / any other false-like quantity. No
smoothing.
min_obs (int): Used with smoothed="max". Minimum number of
observations to have before including in the MSD vs dt
calculation. E.g. If a structure has 10 diffusing atoms,
and min_obs = 30, the MSD vs dt will be
calculated up to dt = total_run_time / 3, so that each
diffusing atom is measured at least 3 uncorrelated times.
Only applies in smoothed="max".
avg_nsteps (int): Used with smoothed="constant". Determines the
number of time steps to average over to get the msd for each
timestep. Default of 1000 is usually pretty good.
lattices (array): Numpy array of lattice matrix of every step. Used
for NPT-AIMD. For NVT-AIMD, the lattice at each time step is
set to the lattice in the "structure" argument.
"""
self.structure = structure
self.disp = displacements
self.specie = specie
self.temperature = temperature
self.time_step = time_step
self.step_skip = step_skip
self.min_obs = min_obs
self.smoothed = smoothed
self.avg_nsteps = avg_nsteps
self.lattices = lattices
if lattices is None:
self.lattices = np.array([structure.lattice.matrix.tolist()])
indices = []
framework_indices = []
for i, site in enumerate(structure):
if site.specie.symbol == specie:
indices.append(i)
else:
framework_indices.append(i)
if self.disp.shape[1] < 2:
self.diffusivity = 0.
self.conductivity = 0.
self.diffusivity_components = np.array([0., 0., 0.])
self.conductivity_components = np.array([0., 0., 0.])
self.max_framework_displacement = 0
else:
framework_disp = self.disp[framework_indices]
drift = np.average(framework_disp, axis=0)[None, :, :]
# drift corrected position
dc = self.disp - drift
nions, nsteps, dim = dc.shape
if not smoothed:
timesteps = np.arange(0, nsteps)
elif smoothed == "constant":
if nsteps <= avg_nsteps:
raise ValueError('Not enough data to calculate diffusivity')
timesteps = np.arange(0, nsteps - avg_nsteps)
else:
# limit the number of sampled timesteps to 200
min_dt = int(1000 / (self.step_skip * self.time_step))
max_dt = min(len(indices) * nsteps // self.min_obs, nsteps)
if min_dt >= max_dt:
raise ValueError('Not enough data to calculate diffusivity')
timesteps = np.arange(min_dt, max_dt,
max(int((max_dt - min_dt) / 200), 1))
dt = timesteps * self.time_step * self.step_skip
# calculate the smoothed msd values
msd = np.zeros_like(dt, dtype=np.double)
sq_disp_ions = np.zeros((len(dc), len(dt)), dtype=np.double)
msd_components = np.zeros(dt.shape + (3,))
for i, n in enumerate(timesteps):
if not smoothed:
dx = dc[:, i:i + 1, :]
dcomponents = dc[:, i:i + 1, :]
elif smoothed == "constant":
dx = dc[:, i:i + avg_nsteps, :] - dc[:, 0:avg_nsteps, :]
dcomponents = dc[:, i:i + avg_nsteps, :] \
- dc[:, 0:avg_nsteps, :]
else:
dx = dc[:, n:, :] - dc[:, :-n, :]
dcomponents = dc[:, n:, :] - dc[:, :-n, :]
sq_disp = dx ** 2
sq_disp_ions[:, i] = np.average(np.sum(sq_disp, axis=2), axis=1)
msd[i] = np.average(sq_disp_ions[:, i][indices])
msd_components[i] = np.average(dcomponents[indices] ** 2,
axis=(0, 1))
def weighted_lstsq(a, b):
if smoothed == "max":
# For max smoothing, we need to weight by variance.
w_root = (1 / dt) ** 0.5
return np.linalg.lstsq(a * w_root[:, None], b * w_root)
else:
return np.linalg.lstsq(a, b)
m_components = np.zeros(3)
m_components_res = np.zeros(3)
a = np.ones((len(dt), 2))
a[:, 0] = dt
for i in range(3):
(m, c), res, rank, s = weighted_lstsq(a, msd_components[:, i])
m_components[i] = max(m, 1e-15)
m_components_res[i] = res[0]
(m, c), res, rank, s = weighted_lstsq(a, msd)
# m shouldn't be negative
m = max(m, 1e-15)
# factor of 10 is to convert from A^2/fs to cm^2/s
# factor of 6 is for dimensionality
conv_factor = get_conversion_factor(self.structure, self.specie,
self.temperature)
self.diffusivity = m / 60
# Calculate the error in the diffusivity using the error in the
# slope from the lst sq.
# Variance in slope = n * Sum Squared Residuals / (n * Sxx - Sx
# ** 2) / (n-2).
n = len(dt)
# Pre-compute the denominator since we will use it later.
# We divide dt by 1000 to avoid overflow errors in some systems (
# e.g., win). This is subsequently corrected where denom is used.
denom = (n * np.sum((dt / 1000) ** 2) - np.sum(dt / 1000) ** 2) * (
n - 2)
self.diffusivity_std_dev = np.sqrt(n * res[0] / denom) / 60 / 1000
self.conductivity = self.diffusivity * conv_factor
self.conductivity_std_dev = self.diffusivity_std_dev * conv_factor
self.diffusivity_components = m_components / 20
self.diffusivity_components_std_dev = np.sqrt(
n * m_components_res / denom) / 20 / 1000
self.conductivity_components = self.diffusivity_components * \
conv_factor
self.conductivity_components_std_dev = \
self.diffusivity_components_std_dev * conv_factor
# Drift and displacement information.
self.drift = drift
self.corrected_displacements = dc
self.max_ion_displacements = np.max(np.sum(
dc ** 2, axis=-1) ** 0.5, axis=1)
self.max_framework_displacement = \
np.max(self.max_ion_displacements[framework_indices])
self.msd = msd
self.sq_disp_ions = sq_disp_ions
self.msd_components = msd_components
self.dt = dt
self.indices = indices
self.framework_indices = framework_indices
def get_drift_corrected_structures(self, start=None, stop=None, step=None):
"""
Returns an iterator for the drift-corrected structures. Use of
iterator is to reduce memory usage as # of structures in MD can be
huge. You don't often need all the structures all at once.
Args:
start, stop, step (int): applies a start/stop/step to the iterator.
Faster than applying it after generation, as it reduces the
number of structures created.
"""
coords = np.array(self.structure.cart_coords)
species = self.structure.species_and_occu
lattices = self.lattices
nsites, nsteps, dim = self.corrected_displacements.shape
for i in range(start or 0, stop or nsteps, step or 1):
latt = lattices[0] if len(lattices) == 1 else lattices[i]
yield Structure(
latt, species,
coords + self.corrected_displacements[:, i, :],
coords_are_cartesian=True)
def get_summary_dict(self, include_msd_t=False):
"""
Provides a summary of diffusion information.
Args:
include_msd_t (bool): Whether to include mean square displace and
time data with the data.
Returns:
(dict) of diffusion and conductivity data.
"""
d = {
"D": self.diffusivity,
"D_sigma": self.diffusivity_std_dev,
"S": self.conductivity,
"S_sigma": self.conductivity_std_dev,
"D_components": self.diffusivity_components.tolist(),
"S_components": self.conductivity_components.tolist(),
"D_components_sigma": self.diffusivity_components_std_dev.tolist(),
"S_components_sigma": self.conductivity_components_std_dev.tolist(),
"specie": str(self.specie),
"step_skip": self.step_skip,
"time_step": self.time_step,
"temperature": self.temperature,
"max_framework_displacement": self.max_framework_displacement
}
if include_msd_t:
d["msd"] = self.msd.tolist()
d["msd_components"] = self.msd_components.tolist()
d["dt"] = self.dt.tolist()
return d
def get_framework_rms_plot(self, plt=None, granularity=200,
matching_s=None):
"""
Get the plot of rms framework displacement vs time. Useful for checking
for melting, especially if framework atoms can move via paddle-wheel
or similar mechanism (which would show up in max framework displacement
but doesn't constitute melting).
Args:
plt (matplotlib.pyplot): If plt is supplied, changes will be made
to an existing plot. Otherwise, a new plot will be created.
granularity (int): Number of structures to match
matching_s (Structure): Optionally match to a disordered structure
instead of the first structure in the analyzer. Required when
a secondary mobile ion is present.
Notes:
The method doesn't apply to NPT-AIMD simulation analysis.
"""
from pymatgen.util.plotting import pretty_plot
if self.lattices is not None and len(self.lattices) > 1:
warnings.warn("Note the method doesn't apply to NPT-AIMD "
"simulation analysis!")
plt = pretty_plot(12, 8, plt=plt)
step = (self.corrected_displacements.shape[1] - 1) // (granularity - 1)
f = (matching_s or self.structure).copy()
f.remove_species([self.specie])
sm = StructureMatcher(primitive_cell=False, stol=0.6,
comparator=OrderDisorderElementComparator(),
allow_subset=True)
rms = []
for s in self.get_drift_corrected_structures(step=step):
s.remove_species([self.specie])
d = sm.get_rms_dist(f, s)
if d:
rms.append(d)
else:
rms.append((1, 1))
max_dt = (len(rms) - 1) * step * self.step_skip * self.time_step
if max_dt > 100000:
plot_dt = np.linspace(0, max_dt / 1000, len(rms))
unit = 'ps'
else:
plot_dt = np.linspace(0, max_dt, len(rms))
unit = 'fs'
rms = np.array(rms)
plt.plot(plot_dt, rms[:, 0], label='RMS')
plt.plot(plot_dt, rms[:, 1], label='max')
plt.legend(loc='best')
plt.xlabel("Timestep ({})".format(unit))
plt.ylabel("normalized distance")
plt.tight_layout()
return plt
def get_msd_plot(self, plt=None, mode="specie"):
"""
Get the plot of the smoothed msd vs time graph. Useful for
checking convergence. This can be written to an image file.
Args:
plt: A plot object. Defaults to None, which means one will be
generated.
mode (str): Determines type of msd plot. By "species", "sites",
or direction (default).
"""
from pymatgen.util.plotting import pretty_plot
plt = pretty_plot(12, 8, plt=plt)
if np.max(self.dt) > 100000:
plot_dt = self.dt / 1000
unit = 'ps'
else:
plot_dt = self.dt
unit = 'fs'
if mode == "species":
for sp in sorted(self.structure.composition.keys()):
indices = [i for i, site in enumerate(self.structure) if
site.specie == sp]
sd = np.average(self.sq_disp_ions[indices, :], axis=0)
plt.plot(plot_dt, sd, label=sp.__str__())
plt.legend(loc=2, prop={"size": 20})
elif mode == "sites":
for i, site in enumerate(self.structure):
sd = self.sq_disp_ions[i, :]
plt.plot(plot_dt, sd, label="%s - %d" % (
site.specie.__str__(), i))
plt.legend(loc=2, prop={"size": 20})
else:
# Handle default / invalid mode case
plt.plot(plot_dt, self.msd, 'k')
plt.plot(plot_dt, self.msd_components[:, 0], 'r')
plt.plot(plot_dt, self.msd_components[:, 1], 'g')
plt.plot(plot_dt, self.msd_components[:, 2], 'b')
plt.legend(["Overall", "a", "b", "c"], loc=2, prop={"size": 20})
plt.xlabel("Timestep ({})".format(unit))
plt.ylabel("MSD ($\\AA^2$)")
plt.tight_layout()
return plt
def plot_msd(self, mode="default"):
"""
Plot the smoothed msd vs time graph. Useful for checking convergence.
Args:
mode (str): Either "default" (the default, shows only the MSD for
the diffusing specie, and its components), "ions" (individual
square displacements of all ions), or "species" (mean square
displacement by specie).
"""
self.get_msd_plot(mode=mode).show()
def export_msdt(self, filename):
"""
Writes MSD data to a csv file that can be easily plotted in other
software.
Args:
filename (str): Filename. Supported formats are csv and dat. If
the extension is csv, a csv file is written. Otherwise,
a dat format is assumed.
"""
fmt = "csv" if filename.lower().endswith(".csv") else "dat"
delimiter = ", " if fmt == "csv" else " "
with open(filename, "wt") as f:
if fmt == "dat":
f.write("# ")
f.write(delimiter.join(["t", "MSD", "MSD_a", "MSD_b", "MSD_c"]))
f.write("\n")
for dt, msd, msdc in zip(self.dt, self.msd, self.msd_components):
f.write(delimiter.join(["%s" % v for v in [dt, msd] + list(
msdc)]))
f.write("\n")
@classmethod
def from_structures(cls, structures, specie, temperature,
time_step, step_skip, initial_disp=None,
initial_structure=None, **kwargs):
"""
Convenient constructor that takes in a list of Structure objects to
perform diffusion analysis.
Args:
structures ([Structure]): list of Structure objects (must be
ordered in sequence of run). E.g., you may have performed
sequential VASP runs to obtain sufficient statistics.
specie (Element/Specie): Specie to calculate diffusivity for as a
String. E.g., "Li".
temperature (float): Temperature of the diffusion run in Kelvin.
time_step (int): Time step between measurements.
step_skip (int): Sampling frequency of the displacements (
time_step is multiplied by this number to get the real time
between measurements)
initial_disp (np.ndarray): Sometimes, you need to iteratively
compute estimates of the diffusivity. This supplies an
initial displacement that will be added on to the initial
displacements. Note that this makes sense only when
smoothed=False.
initial_structure (Structure): Like initial_disp, this is used
for iterative computations of estimates of the diffusivity. You
typically need to supply both variables. This stipulates the
initial structure from which the current set of displacements
are computed.
\\*\\*kwargs: kwargs supported by the :class:`DiffusionAnalyzer`_.
Examples include smoothed, min_obs, avg_nsteps.
"""
p, l = [], []
for i, s in enumerate(structures):
if i == 0:
structure = s
p.append(np.array(s.frac_coords)[:, None])
l.append(s.lattice.matrix)
if initial_structure is not None:
p.insert(0, np.array(initial_structure.frac_coords)[:, None])
l.insert(0, initial_structure.lattice.matrix)
else:
p.insert(0, p[0])
l.insert(0, l[0])
p = np.concatenate(p, axis=1)
dp = p[:, 1:] - p[:, :-1]
dp = dp - np.round(dp)
f_disp = np.cumsum(dp, axis=1)
c_disp = [np.dot(d, m) for d, m in zip(f_disp, l)]
disp = np.array(c_disp)
# If is NVT-AIMD, clear lattice data.
if | np.array_equal(l[0], l[-1]) | numpy.array_equal |
import numpy as np
import pandas as pd
import scipy
import scipy.misc
from scipy.special import gammaln
from scipy.special import betaln
from scipy.special import digamma
import remixt.utils
class ProbabilityError(ValueError):
def __init__(self, message, **variables):
""" Error calculating a probability.
Args:
message (str): message detailing error
KwArgs:
**variables: variables to be printed
"""
for name, value in variables.items():
message += '\n{0}={1}'.format(name, value)
ValueError.__init__(self, message)
class OptimizeParameter(object):
def __init__(self, name, attr, bounds, is_scalar, log_likelihood_partial=None):
self.name = name
self._attr = attr
self._bounds = bounds
self._log_likelihood_partial = log_likelihood_partial
self.is_scalar = is_scalar
def get_value(self):
return getattr(*self._attr)
def set_value(self, value):
setattr(self._attr[0], self._attr[1], value)
value = property(get_value, set_value)
@property
def length(self):
if self.is_scalar:
return 1
return self.value.shape[0]
@property
def bounds(self):
if self.is_scalar:
return self._bounds
else:
return [self._bounds] * self.length
def log_likelihood_partial(self, s):
return self._log_likelihood_partial(self.cn_states[s][np.newaxis, :, :])
def __call__(self, cn_states):
self.cn_states = cn_states
return self
allele_measurement_matrix = np.array([[1, 0, 1], [0, 1, 1]])
def estimate_phi(x):
""" Estimate proportion of genotypable reads.
Args:
x (numpy.array): major, minor, and total read counts
Returns:
numpy.array: estimate of proportion of genotypable reads.
"""
phi = x[:,0:2].sum(axis=1).astype(float) / (x[:,2].astype(float) + 1.0)
return phi
def proportion_measureable_matrix(phi):
""" Proportion reads measureable matrix.
Args:
phi (numpy.array): estimate of proportion of genotypable reads.
Returns:
numpy.array: N * K dim array, segment to measurement transform
"""
return np.vstack([phi, phi, np.ones(phi.shape)]).T
def expected_read_count(l, cn, h, phi):
""" Calculate expected major, minor and total read counts.
Args:
l (numpy.array): segment lengths
cn (numpy.array): copy number state
h (numpy.array): haploid read depths
phi (numpy.array): estimate of proportion of genotypable reads
Returns:
numpy.array: expected read depths
"""
p = proportion_measureable_matrix(phi)
q = allele_measurement_matrix
gamma = np.sum(cn * np.vstack([h, h]).T, axis=-2)
x1 = np.dot(q.T, gamma.T).T
x2 = x1 * p
x3 = (x2.T * l.T).T
x3 += 1e-16
for n, ell in zip(*np.where(x3 <= 0)):
raise ProbabilityError('mu <= 0', n=n, cn=cn[n], l=l[n], h=h, p=p[n], mu=x3[n])
for n, ell in zip(*np.where(np.isnan(x3))):
raise ProbabilityError('mu is nan', n=n, cn=cn[n], l=l[n], h=h, p=p[n], mu=x3[n])
return x3
def calculate_mean_cn(h, x, l):
""" Calculate the mean raw copy number.
Args:
h (numpy.array): haploid read depths, h[0] for normal
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
Returns:
numpy.array: N * L dim array, per segment per allele mean copy number
"""
phi = remixt.likelihood.estimate_phi(x)
depth = x[:,0:2] / (phi * l)[:, np.newaxis]
mean_cn = (depth - h[0]) / h[1:].sum()
return mean_cn
def calculate_mean_total_cn(h, x, l):
""" Calculate the mean raw copy number.
Args:
h (numpy.array): haploid read depths, h[0] for normal
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
Returns:
numpy.array: N * L dim array, per segment per allele mean copy number
"""
depth = x[:, 2] / l
mean_cn = (depth - h[0]) / h[1:].sum()
return mean_cn
class ReadCountLikelihood(object):
def __init__(self, x, l, **kwargs):
""" Abstract read count likelihood model.
Args:
x (numpy.array): observed major, minor, and total read counts
l (numpy.array): observed lengths of segments
Attributes:
h (numpy.array): haploid read depths, h[0] for normal
phi (numpy.array): proportion genotypable reads
"""
self.x = x
self.l = l
self.param_partial_func = dict()
self.param_bounds = dict()
self.param_per_segment = dict()
self.mask = np.array([True] * len(self.l))
def add_amplification_mask(self, cn_max):
""" Add a mask for highly amplified regions.
Args:
cn_max (int): max unmasked dominant copy number
"""
dom_cn = calculate_mean_total_cn(self.h, self.x, self.l)
dom_cn[np.isnan(dom_cn)] = np.inf
dom_cn = np.clip(dom_cn.round().astype(int), 0, int(1e6))
self.mask &= (dom_cn <= cn_max)
def add_segment_length_mask(self, min_segment_length):
""" Add a mask for short segments.
Args:
min_segment_length (float): minimum length of modelled segments
"""
self.mask &= (self.l >= min_segment_length)
def add_proportion_genotyped_mask(self, min_proportion_genotyped):
""" Add a mask for segments with too few genotyped reads.
Args:
min_proportion_genotyped (float): minimum proportion genotyped reads
"""
p = self.x[:,:2].sum(axis=1).astype(float) / (self.x[:,2].astype(float) + 1e-16)
self.mask &= (p >= min_proportion_genotyped)
def _get_h(self):
return self._h
def _set_h(self, value):
self._h = value.copy()
self._h[self._h < 0.] = 0.
h = property(fget=_get_h, fset=_set_h)
def learn_parameters(self, x, l):
""" Offline parameter learning.
Args:
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
"""
self.phi = estimate_phi(x)
def expected_read_count(self, l, cn):
""" Calculate expected major, minor and total read counts.
Args:
l (numpy.array): segment lengths
cn (numpy.array): copy number state
Returns:
numpy.array: expected read depths
"""
h = self.h
phi = self.phi
return expected_read_count(l, cn, h, phi)
def expected_total_read_count(self, l, cn):
""" Calculate expected total read count.
Args:
l (numpy.array): segment lengths
cn (numpy.array): copy number state
Returns:
numpy.array: expected total read count
"""
h = self.h
mu = l * (h * cn.sum(axis=2)).sum(axis=1)
mu += 1e-16
for n in zip(*np.where(mu <= 0)):
raise ProbabilityError('mu <= 0', n=n, cn=cn[n], l=l[n], h=h, mu=mu[n])
for n in zip(*np.where(np.isnan(mu))):
raise ProbabilityError('mu is nan', n=n, cn=cn[n], l=l[n], h=h, mu=mu[n])
return mu
def expected_allele_ratio(self, cn):
""" Calculate expected minor allele read count ratio.
Args:
cn (numpy.array): copy number state
Returns:
numpy.array: expected minor allele read count ratio
"""
h = self.h
minor = (h * cn[:,:,1]).sum(axis=1)
total = (h * cn.sum(axis=2)).sum(axis=1)
p = minor / total
p = np.clip(p, 1e-16, 1.-1e-16)
for n in zip(*np.where((p <= 0) | (p >= 1))):
raise ProbabilityError('(p <= 0) | (p >= 1)', n=n, cn=cn[n], h=h, p=p[n])
return p
def _log_likelihood_post(self, ll, cn):
""" Post-process likelihood
Args:
ll (numpy.array): log likelihood per segment
cn (numpy.array): copy number state
Returns:
numpy.array: log likelihood per segment
"""
ll[np.where(np.any(cn < 0, axis=(-1, -2)))] = -np.inf
ll[~self.mask] = 0.0
for n in zip(*np.where(np.isnan(ll))):
raise ProbabilityError('ll is nan', n=n, x=self.x[n], l=self.l[n], cn=cn[n])
for n in zip(*np.where(np.isinf(ll))):
raise ProbabilityError('ll is infinite', n=n, x=self.x[n], l=self.l[n], cn=cn[n])
return ll
def _log_likelihood_partial_post(self, ll_partial, cn):
""" Post-process partial derivative of log likelihood with respect to a parameter
Args:
ll_partial (numpy.array): partial derivative of log likelihood per segment per param
cn (numpy.array): copy number state
Returns:
numpy.array: partial derivative of log likelihood per segment per param
"""
ll_partial[~self.mask, :] = 0.0
for n, idx in zip(*np.where(np.isnan(ll_partial))):
raise ProbabilityError('ll derivative is nan', n=n, x=self.x[n], l=self.l[n], cn=cn[n])
for n, idx in zip(*np.where(np.isinf(ll_partial))):
raise ProbabilityError('ll derivative is infinite', n=n, x=self.x[n], l=self.l[n], cn=cn[n])
return ll_partial
class IndepAlleleLikelihood(ReadCountLikelihood):
def __init__(self, **kwargs):
""" Abstract independent allele read count likelihood model.
"""
super(IndepAlleleLikelihood, self).__init__(**kwargs)
self.param_partial_func['h'] = self._log_likelihood_partial_h
self.param_partial_func['phi'] = self._log_likelihood_partial_phi
self.param_bounds['h'] = (1e-16, 10.)
self.param_bounds['phi'] = (0., 1.)
self.param_per_segment['h'] = False
self.param_per_segment['phi'] = True
def _log_likelihood_partial_h(self, x, l, cn):
""" Evaluate partial derivative of log likelihood with respect to h
Args:
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
cn (numpy.array): copy number state
Returns:
numpy.array: log likelihood derivative per segment per clone
The partial derivative of the log likelihood with respect to h[m] is:
sum_k a[n,k] * cn[n,m,ell] * q[ell,k] * p[n,k] * l[n]
where a[n,k] is the partial derivative of p(x[n,k]|.) with respect to mu[n,k]
"""
partial_mu = self._log_likelihood_partial_mu(x, l, cn)
p = proportion_measureable_matrix(self.phi)
q = allele_measurement_matrix
partial_h = np.einsum('...l,...jk,...kl,...l,...->...j', partial_mu, cn, q, p, l)
return partial_h
def _log_likelihood_partial_phi(self, x, l, cn):
""" Evaluate partial derivative of log likelihood with respect to phi
Args:
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
cn (numpy.array): copy number state
Returns:
numpy.array: log likelihood derivative per segment per clone
The partial derivative of the log likelihood with respect to phi[n] is:
sum_k a[n,k] * cn[n,m,ell] * l[n] * h[m] * I(k<>3) * I(k=ell)
where a[n,k] is the partial derivative of p(x[n,k]|.) with respect to mu[n,k]
"""
h = self.h
partial_mu = self._log_likelihood_partial_mu(x, l, cn)
partial_phi = (partial_mu[:,0] * l * np.dot(cn[:,:,0], h) +
partial_mu[:,1] * l * np.dot(cn[:,:,1], h))
return partial_phi[:,np.newaxis]
class PoissonDistribution(object):
""" Poisson distribution for read count data.
"""
def log_likelihood(self, x, mu):
""" Calculate the poisson read count log likelihood.
Args:
x (numpy.array): observed read counts
mu (numpy.array): expected read counts
Returns:
float: log likelihood
The pmf of the negative binomial is:
mu^x * e^-mu / x!
The log likelihood is thus:
x * log(mu) - mu - log(x!)
"""
mu[mu <= 0] = 1
ll = x * np.log(mu) - mu - gammaln(x + 1)
return ll
def log_likelihood_partial_mu(self, x, mu):
""" Calculate the partial derivative of the poisson read count log likelihood
with respect to mu
Args:
x (numpy.array): observed read counts
mu (numpy.array): expected read counts
Returns:
numpy.array: log likelihood derivative
The partial derivative of the log pmf of the poisson with
respect to mu is:
x / mu - 1
"""
partial_mu = x / mu - 1.
return partial_mu
class PoissonLikelihood(IndepAlleleLikelihood):
def __init__(self, **kwargs):
""" Poisson read count likelihood model.
"""
self.poisson = PoissonDistribution()
super(PoissonLikelihood, self).__init__(**kwargs)
def _log_likelihood(self, x, l, cn):
""" Calculate the poisson read count log likelihood.
Args:
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
cn (numpy.array): copy number state
Returns:
float: log likelihood per segment
"""
N = x.shape[0]
K = x.shape[1]
mu = self.expected_read_count(l, cn)
ll = np.zeros((N,))
for k in xrange(K):
ll = ll + self.poisson.log_likelihood(x[:,k], mu[:,k])
return ll
def _log_likelihood_partial_mu(self, x, l, cn):
""" Calculate the partial derivative of the poisson read count log likelihood
with respect to mu
Args:
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
cn (numpy.array): copy number state
Returns:
numpy.array: log likelihood derivative per segment per measurement
"""
N = x.shape[0]
K = x.shape[1]
mu = self.expected_read_count(l, cn)
partial_mu = np.zeros((N, K))
for k in xrange(K):
partial_mu[:,k] = self.poisson.log_likelihood_partial_mu(x[:,k], mu[:,k])
return partial_mu
class NegBinDistribution(object):
def __init__(self, **kwargs):
""" Negative binomial distribution for read count data.
Attributes:
r (numpy.array): negative binomial read count over-dispersion
"""
self.r = 500.
def log_likelihood(self, x, mu):
""" Calculate negative binomial read count log likelihood.
Args:
x (numpy.array): observed read counts
mu (numpy.array): expected read counts
Returns:
float: log likelihood per segment
The pmf of the negative binomial is:
C(x + r - 1, x) * p^x * (1-p)^r
where p = mu / (r + mu), with mu the mean of the distribution. The log
likelihood is thus:
log(G(x+r)) - log(G(x+1)) - log(G(r)) + x * log(p) + r * log(1 - p)
"""
nb_p = mu / (self.r + mu)
nb_p[nb_p < 0.] = 0.5
nb_p[nb_p > 1.] = 0.5
ll = (gammaln(x + self.r) - gammaln(x + 1) - gammaln(self.r)
+ x * np.log(nb_p) + self.r * np.log(1 - nb_p))
return ll
def log_likelihood_partial_mu(self, x, mu):
""" Calculate the partial derivative of the negative binomial read count
log likelihood with respect to mu
Args:
x (numpy.array): observed read counts
mu (numpy.array): expected read counts
Returns:
numpy.array: log likelihood derivative per segment
The partial derivative of the log pmf of the negative binomial with
respect to mu is:
x / mu - (r + x) / (r + mu)
"""
partial_mu = x / mu - (self.r + x) / (self.r + mu)
return partial_mu
def log_likelihood_partial_r(self, x, mu):
""" Calculate the partial derivative of the negative binomial read count
log likelihood with respect to r
Args:
x (numpy.array): observed read counts
mu (numpy.array): expected read counts
Returns:
numpy.array: log likelihood derivative per segment
The partial derivative of the log pmf of the negative binomial with
respect to r is:
digamma(r + x) - digamma(r) + log(r) + 1
- log(r + mu) - r / (r + mu)
- x / (r + mu)
"""
r = self.r
partial_r = (digamma(r + x) - digamma(r) + np.log(r) + 1.
- np.log(r + mu) - r / (r + mu)
- x / (r + mu))
return partial_r
class NegBinMixtureDistribution(object):
def __init__(self, **kwargs):
""" Negative binomial 2 component mixture distribution for read count data.
Attributes:
r (float): negative binomial read counts over-dispersion
r_noise (float): negative binomial read counts over-dispersion for noise component
z (float): mixture proportion for noise compoinent
"""
self.negbin = NegBinDistribution()
self.negbin_noise = NegBinDistribution()
self.negbin_noise.r = 10.
self.z = 0.01
@property
def r(self):
return self.negbin.r
@r.setter
def r(self, value):
self.negbin.r = value
@property
def r_noise(self):
return self.negbin_noise.r
@r_noise.setter
def r_noise(self, value):
self.negbin_noise.r = value
def log_likelihood(self, x, mu):
""" Calculate negative binomial mixture read count log likelihood.
Args:
x (numpy.array): observed read counts
mu (numpy.array): expected read counts
Returns:
float: log likelihood per segment
The pmf of the negative binomial mixture is:
(1 - z) * NBin(x, mu) + z * NBin(x, mu)
"""
ll = np.array([
np.log(1. - self.z) + self.negbin.log_likelihood(x, mu),
np.log(self.z) + self.negbin_noise.log_likelihood(x, mu),
])
ll = scipy.misc.logsumexp(ll, axis=0)
return ll
def log_likelihood_partial_mu(self, x, mu):
""" Calculate the partial derivative of the negative binomial mixture read count
log likelihood with respect to mu
Args:
x (numpy.array): observed read counts
mu (numpy.array): expected read counts
Returns:
numpy.array: log likelihood derivative per segment
The partial derivative of the log pmf of the negative binomial with
respect to mu is:
x / mu - (r + x) / (r + mu)
"""
coeff_base = (
np.log(1 - self.z) +
self.negbin.log_likelihood(x, mu) -
self.log_likelihood(x, mu)
)
coeff_noise = (
np.log(self.z) +
self.negbin_noise.log_likelihood(x, mu) -
self.log_likelihood(x, mu)
)
partial_mu = (
np.exp(coeff_base) * self.negbin.log_likelihood_partial_mu(x, mu) +
np.exp(coeff_noise) * self.negbin_noise.log_likelihood_partial_mu(x, mu))
return partial_mu
class NegBinLikelihood(IndepAlleleLikelihood):
def __init__(self, **kwargs):
""" Negative binomial read count likelihood model.
Attributes:
r (numpy.array): negative binomial read count over-dispersion
"""
super(NegBinLikelihood, self).__init__(**kwargs)
self.param_partial_func['r'] = self._log_likelihood_partial_r
self.param_bounds['r'] = (1e-16, np.inf)
self.param_per_segment['r'] = False
self.negbin = [NegBinDistribution(), NegBinDistribution(), NegBinDistribution()]
@property
def r(self):
return np.array([nb.r for nb in self.negbin])
@r.setter
def r(self, value):
for idx, val in enumerate(value):
self.negbin[idx].r = max(0., val)
def learn_parameters(self, x, l):
""" Offline parameter learning.
Args:
x (numpy.array): observed major, minor, and total read counts
l (numpy.array): observed lengths of segments
"""
super(NegBinLikelihood, self).learn_parameters(x, l)
for k, negbin in enumerate(self.negbin):
remixt.paramlearn.learn_negbin_r_adjacent(negbin, x[:,k], l)
def _log_likelihood(self, x, l, cn):
""" Calculate negative binomial read count log likelihood.
Args:
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
cn (numpy.array): copy number state
Returns:
float: log likelihood per segment
"""
N = x.shape[0]
K = x.shape[1]
mu = self.expected_read_count(l, cn)
ll = np.zeros((N,))
for k in xrange(K):
ll = ll + self.negbin[k].log_likelihood(x[:,k], mu[:,k])
return ll
def _log_likelihood_partial_mu(self, x, l, cn):
""" Calculate the partial derivative of the negative binomial read count
log likelihood with respect to mu
Args:
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
cn (numpy.array): copy number state
Returns:
numpy.array: log likelihood derivative per segment per measurement
"""
N = x.shape[0]
K = x.shape[1]
mu = self.expected_read_count(l, cn)
partial_mu = np.zeros((N, K))
for k in xrange(K):
partial_mu[:,k] = self.negbin[k].log_likelihood_partial_mu(x[:,k], mu[:,k])
return partial_mu
def _log_likelihood_partial_r(self, x, l, cn):
""" Calculate the partial derivative of the negative binomial read count
log likelihood with respect to r
Args:
x (numpy.array): major, minor, and total read counts
l (numpy.array): segment lengths
cn (numpy.array): copy number state
Returns:
numpy.array: log likelihood derivative per segment per measurement
"""
N = x.shape[0]
K = x.shape[1]
mu = self.expected_read_count(l, cn)
partial_r = np.zeros((N, K))
for k in xrange(K):
partial_r[:,k] = self.negbin[k].log_likelihood_partial_r(x[:,k], mu[:,k])
return partial_r
class BinomialDistribution(object):
def __init__(self, **kwargs):
""" Binomial distribution for allele count data.
"""
pass
def log_likelihood(self, k, n, p):
""" Calculate binomial allele count log likelihood.
Args:
k (numpy.array): observed minor allelic read counts
n (numpy.array): observed total allelic read counts
p (numpy.array): expected minor allele fraction
Returns:
float: log likelihood per segment
The pmf of the binomial is:
C(n, k) * p**k * (1-p)**(n-k)
The log likelihood is thus:
log(G(n+1)) - log(G(k+1)) - log(G(n-k+1))
+ k * log(p) + (n - k) * log(1 - p)
"""
ll = (gammaln(n+1) - gammaln(k+1) - gammaln(n-k+1)
+ k * np.log(p) + (n - k) * | np.log(1 - p) | numpy.log |
#!/usr/bin/env python
import collections
# import itertools
import numpy as np
# from sklearn import linear_model as linear # for VAR
# from .utils import sliding_window as window
# from .utils.distance import kmeans, dists_sq
# from .utils import distance as dist
# from python import compress
# ================================================================ shifts lut
SHIFT_PAIRS_16 = [
(7, 1), # ~0 - .5 = ~-.5
(3, 1), # .125 - .5 = -.375
(2, 1), # .25 - .5 = -.25
# (4, 2), # .0625 - .25 = -.1875
(3, 2), # .125 - .5 = -.125
(4, 3), # .0625 - .125 = -.0625
(0, 0), # 1 - 1 = 0
(3, 4), # .125 - .0625 = .0625
(2, 3), # .25 - .125 - .125
(2, 4), # .25 - .0625 = .1875
(1, 2), # .5 - .25 = .25
(1, 3), # .5 - .125 = .375
(0, 1), # 1 - .5 = .5
(0, 2), # 1 - .25 = .75
(0, 3), # 1 - .125 = .875
(0, 4), # 1 - .0625 = .9375
(0, 7), # 1 - ~0 = ~1
]
# should be equivalent to `all_shifts(max_shift=5, omit_duplicates=True)`
# EDIT: wait, no, not true because we have shifts of 7 at the ends
SHIFT_PAIRS_26 = [
(7, 1), # ~0 - .5 = ~-.5
(5, 1), # .0625 - .5 = -.46875 # added
(4, 1), # .0625 - .5 = -.4375 # added, max 4
(3, 1), # .125 - .5 = -.375
(2, 1), # .25 - .5 = -.25
(5, 2), # .03125- .25 = -.21875
(4, 2), # .0625 - .25 = -.1875 # added, max 4
(3, 2), # .125 - .25 = -.125
(5, 3), # .03125- .125 = -.09375 # added
(4, 3), # .0625 - .125 = -.0625
(5, 4), # .03125- .0625 = -.03125 # added
(0, 0), # 1 - 1 = 0
(4, 5), # .0625 - .03125= .03125
(3, 4), # .125 - .0625 = .0625
(3, 5), # .125 - .03125= .09375 # added
(2, 3), # .25 - .125 - .125
(2, 4), # .25 - .0625 = .1875
(2, 5), # .25 - .03125= .21875 # added
(1, 2), # .5 - .25 = .25
(1, 3), # .5 - .125 = .375
(1, 4), # .5 - .0625 = .4375 # added, max 4
(1, 5), # .5 - .03125= .46875 # added
(0, 1), # 1 - .5 = .5
(0, 2), # 1 - .25 = .75
(0, 3), # 1 - .125 = .875
(0, 4), # 1 - .0625 = .9375
(0, 5), # 1 - .03125= .96875 # added
(0, 7), # 1 - ~0 = ~1
]
def all_shifts(max_shift=-1, omit_duplicates=True):
vals = {}
nbits = 8
x = 1 << nbits # reference val; 256 for nbits
if max_shift < 0:
max_shift = nbits - 1
if omit_duplicates:
vals[(0, 0)] = 0
for a in range(max_shift + 1):
for b in range(max_shift + 1):
if omit_duplicates and a == b:
continue
vals[(a, b)] = (x >> a) - (x >> b)
keys, coeffs = list(zip(*list(vals.items())))
keys = np.array(keys)
coeffs = np.array(coeffs)
order = np.argsort(coeffs)
# print "shift results:"
# print keys[order]
# print coeffs[order]
return keys[order], coeffs[order]
# okay, looks like (according to test immediately below) these values are
# identical to what's in our existing LUT; this makes sense given that impls
# are basically identical
def _i16_for_shifts(pos_shift, neg_shift, nbits=8):
start_val = 1 << nbits # 256 for nbits = 8
return (start_val >> pos_shift) - (start_val >> neg_shift)
# TODO actual unit test
def _test_shift_coeffs(nbits=8):
shifts, shift_coeffs = all_shifts()
for (pos_shift, neg_shift), coeff in zip(shifts, shift_coeffs):
assert _i16_for_shifts(pos_shift, neg_shift) == coeff
for val in range(-128, 128):
two_shifts_val = (val >> pos_shift) - (val >> neg_shift)
# ya, this fails; multiply and rshift != using shifts directly
# assert (val * coeff) >> nbits == two_shifts_val
# this way works; requires two multiplies though...
pos_coef = 1 << (nbits - pos_shift)
neg_coef = 1 << (nbits - neg_shift)
pos = (val * pos_coef) >> nbits
neg = (val * neg_coef) >> nbits
assert pos - neg == two_shifts_val
# this way also fails
# pos = val * pos_coef
# neg = val * neg_coef
# assert (pos - neg) >> nbits == two_shifts_val
# def coeff_lut():
# """create lookup table `T` such that `T[coeff]` yields the two indices
# whose associated coefficients are immediately above and below `coeff`"""
# shifts, shift_coeffs = all_shifts()
SHIFTS, SHIFT_COEFFS = all_shifts()
# ================================================================ funcs
def binary_search(array, val):
M = len(array)
first = 0
middle = int(M / 2)
last = M - 1
while (first <= last):
middle_val = array[middle]
if middle_val < val:
first = middle + 1
elif middle_val == val:
return middle
else: # middle_val > val
last = middle - 1
middle = int((first + last) / 2)
return middle
class OnlineRegressor(object):
def __init__(self, block_sz=8, verbose=0, method='linreg',
shifts=SHIFTS, shift_coeffs=SHIFT_COEFFS, numbits=8, ntaps=1):
# self.prev0 = 0
# self.prev1 = 0
# self.mod = 1 << nbits
# self.shift0 = 0
# self.shift1 = 1
self.block_sz = block_sz
self.verbose = verbose
self.method = method
self.shifts = shifts
self.shift_coeffs = shift_coeffs
self.numbits = numbits
self.ntaps = ntaps
self.last_val = 0
self.last_delta = 0
self.coef = 0
self.coef = 256
self.counter = 0
# self.counter = 256 << (1 + self.numbits - 8) # TODO indirect to learning rate, not just 1 # noqa
# self.counter = 8 << 1 # equivalent to adding 8 to round to nearest?
# self.counter = self.coef
self.t = 0
self.grad_counter = 0
self.offset = 0
self.offset_counter = 0
shift_by = (1 + self.numbits - 8)
self.coeffs = np.zeros(self.ntaps, dtype=np.int32) + 256
self.counters = np.zeros(self.ntaps, dtype=np.int32) + (256 << shift_by)
# self.approx_256_over_x = 1
self.Sxy = 0
self.Sxx = 0
self.errs = []
# print "using shifts, coeffs:"
# print shifts
# print shift_coeffs
# for logging
# self.best_idx_offset_counts = np.zeros(3, dtype=np.int64)
self.best_idx_counts = np.zeros(len(self.shifts), dtype=np.int64)
# counts_len = len(self.shifts) if method == 'linreg' else 512
# self.best_idx_counts = np.zeros(counts_len, dtype=np.int64)
self.best_coef_counts = collections.Counter()
self.best_offset_counts = collections.Counter()
def feed_group(self, group):
pass # TODO determine optimal filter here
# errhat = a*x0 - b*x0 - a*x1 + b*x1
# = a(x0 - x1) + b(x1 - x0)
# = c(x0 - x1), where c = (a - b)
#
# we should compute c, and find shifts (which correspond to a, b) that
# approximate it well; also note that errhat is prediction of the delta
#
# this is just linear regression between (x0 - x1) and new val, with
# some extra logic at the end to get shifts based on regression coeff
# deltas; these are our target variable
deltas = np.zeros(group.size, dtype=group.dtype)
deltas[1:] = group[1:] - group[:-1]
deltas[0] = group[0] - self.last_val
self.last_val = group[-1]
# deltas from previous time step; these are our indep variable
diffs = np.zeros(group.size, dtype=group.dtype)
diffs[1:] = deltas[:-1]
diffs[0] = self.last_delta
self.last_delta = deltas[-1]
x = diffs
y = deltas
# linear regression
if self.method == 'linreg':
Sxy = np.sum(x * y)
Sxx = np.sum(x * x)
# print "x, y dtypes: ", x.dtype, y.dtype
# print "Sxx, Sxy dtypes: ", Sxx.dtype, Sxy.dtype
coeff = (Sxy << 8) / Sxx # shift to mirror what we'll need to do in C
idx = binary_search(self.shift_coeffs, coeff)
def compute_errs(x, y, shifts):
predictions = (x >> shifts[0]) - (x >> shifts[1])
return y - predictions
# These are commented out because, empirically, they're
# *never* chosen
#
# best_idx_offset = 0
#
# def compute_total_cost(errs, block_sz=self.block_sz):
# raw_costs = compress.nbits_cost(errs)
# block_costs_rows = raw_costs.reshape(-1, block_sz)
# block_costs = np.max(block_costs_rows, axis=1)
# return np.sum(block_costs)
#
# cost = compute_total_cost(errs)
# if idx > 0:
# errs2 = compute_errs(x, y, SHIFTS[idx - 1])
# cost2 = compute_total_cost(errs)
# if cost2 < cost:
# ret = errs2
# best_idx_offset = -1
# if idx < (len(SHIFTS) - 1):
# errs3 = compute_errs(x, y, SHIFTS[idx + 1])
# cost3 = compute_total_cost(errs)
# if cost3 < cost:
# ret = errs3
# best_idx_offset = 1
# self.best_idx_offset_counts[best_idx_offset] += 1
errs = compute_errs(x, y, self.shifts[idx])
self.best_idx_counts[idx] += 1 # for logging
elif self.method == 'gradient':
# update coeffs using last entry in each block
# learning_rate_shift = 7 # learning rate of 2^(-learning_rate_shift)
# learning_rate_shift = 8 # learning rate of 2^(-learning_rate_shift)
# learning_rate_shift = 12 # learning rate of 2^(-learning_rate_shift)
# learning_rate_shift = 4 # learning rate of 2^(-learning_rate_shift)
# learning_rate_shift = 2 # learning rate of 2^(-learning_rate_shift)
predictions = (x * self.coef) >> int(min(self.numbits, 8))
for tap_idx in range(1, self.ntaps):
predictions[tap_idx:] += (x[:-tap_idx] * self.coeffs[tap_idx])
predictions += self.offset
errs = y - predictions
for b in range(8): # for each block
# only update based on a few values for efficiency
which_idxs = 8 * b + np.array([3, 7]) # downsample by 4
# which_idxs = 8 * b + np.array([1, 3, 5, 7]) # downsample by 2
grads = 0
# grads = np.zeros(self.ntaps)
# offsets = 0
for idx in which_idxs:
xval = x[idx]
# xval = x[idx] >> (self.numbits - 8)
# grad = int(-errs[idx] * x[idx]) >> 8
# grad = int(-errs[idx] * x[idx]) // 256
# y0 = np.abs(self.approx_256_over_x) * np.sign(xval)
# y0 = 1 + (256 - xval) >> 8
# y0 = 3 - ((3 * xval) >> 8)
# grad = int(-(errs[idx] << 8) / xval) if xval != 0 else 0 # works great
# self.counter -= grad # equivalent to above two lines
# if self.t % 100 == 0:
# print "grad:", grad
# continue
# # xabs = self.t # TODO rm
# xabs = np.abs(xval)
# if xabs == 0:
# lzcnt = self.numbits
# else:
# lzcnt = self.numbits - 1 - int(np.log2(xabs))
# lzcnt = max(0, lzcnt - 1) # round up to nearest power of 2
# # lzcnt = min(15, lzcnt + 1) # round up to nearest power of 2
# # numerator = 1 << self.numbits
# # recip = 1 << (lzcnt - 8) if lzcnt >= 8 else
# # recip = np.sign(xval) << (8 + lzcnt)
# shift_amt = max(0, lzcnt - (self.numbits - 8)) # usually 0, maybe 1 sometimes
# recip = (1 << shift_amt) * np.sign(xval)
# grad = int(-errs[idx] * recip)
# # grad = int(grad / len(which_idxs))
# normal grad descent
# grad = int(-errs[idx] * np.sign(xval)) # div by sqrt(hessian)
# grad = int(-errs[idx] * xval) >> self.numbits # true gradient
# approx newton step for log(nbits)
err = errs[idx]
# if False: # TODO rm
# if self.numbits > 8:
# grad = int(-(1 + err)) if err > 0 else int(-(err - 1))
# else:
# grad = int(-err) # don't add 1
# self.grad_counter += (grad - (self.grad_counter >> 8))
# wtf this works so well for 16b, despite ignoring sign of x...
# (when also only shifting counter by learning rate, not
# an additional 8)
# grad = -err
# grad = -(err + np.sign(err)) * np.sign(xval)
# grad = -err * np.sign(xval)
# these both seem to work pretty well; prolly need to directly
# compare them
# grad = -err * np.sign(xval)
# grad = -np.sign(err) * xval # significantly better than prev line
grad = np.sign(err) * xval # significantly better than prev line
# ^ duh; above is minimizer for L1 loss
# grad = -np.sign(err) * np.sign(xval) << (self.numbits - 8)
# sub_from = ((1 << self.numbits) - 1) * np.sign(xval)
# approx_recip_x = sub_from - xval
# grad = -np.sign(err) * approx_recip_x
grads += int(grad)
# grads += grad >> 1 # does this help with overflow?
# simulate int8 overflow, adjusted for fact that we do 8 blocks
# per group (so 1024, 2048 instead of 128, 256)
mod = int(1 << self.numbits)
offset = mod // 2
grads = ((grads + offset) % mod) - offset
# grads = ((grads + 1024) % 2048) - 1024 # wrecks accuracy
# grads = ((grads + 8192) % 16384) - 8192 # no effect
self.errs.append(err)
# offsets += np.sign(err) # optimize bias for l1 loss
# this is the other one we should actually consider doing
#
# grad = int(-errs[idx] * np.sign(xval))
# # approximation of what we'd end up doing with a LUT
# shift_to_just_4b = self.numbits - 4
# # y0 = ((xval >> shift_to_just_4b) + 1) << shift_to_just_4b
# shifted_xval = xval >> shift_to_just_4b
# if shifted_xval != 0:
# y0 = int(256. / shifted_xval) << shift_to_just_4b
# else:
# y0 = 16*np.sign(xval) << shift_to_just_4b
# # y0 = y0 * int(2 - (xval * y0 / 256)) # diverges
# y0 = int(256. / xval) if xval else 0
# y0 = (1 << int(8 - np.floor(np.log2(xval)))) * np.sign(xval)
# y0 = 4 * np.sign(xval)
# self.approx_256_over_x = int( y0*(2 - (int(xval*y0) >> 8)) ) # noqa # doesn't work
# grad = int(-errs[idx] * self.approx_256_over_x)
# grad = int(-errs[idx] * y0)
# grad = int(-errs[idx] * xval) # works
# grad = int(-errs[idx] * 2*np.sign(xval))
# this_best_coef = self.coef - grad
# self.counter += this_best_coef - self.coef
# self.counter -= grad # equivalent to above two lines
# self.counter -= grad >> learning_rate_shift
# if self.t < 8:
# if self.t % 50 == 0:
# if (self.t < 5 == 0) and (b == 0):
# if (self.t % 50 == 0) and (b == 0):
# # print "errs: ", errs[-7], errs[-5], errs[-3], errs[-1]
# print "t, b = ", self.t, b
# print "errs: ", errs[-10:]
# print "xs: ", x[-10:]
# # print "sum(|xs|)", np.sum(np.abs(x))
# print "grads: ", grads
# print "counter:", self.counter
# # print "grad counter:", self.grad_counter
# # # print "recip, grad: ", recip, grad
# self.coef = self.counter >> min(self.t, learning_rate_shift)
# self.coef = self.counter >> learning_rate_shift
learning_rate_shift = 1
# learning_rate_shift = 4
# grad_learning_shift = 1
# grad_learning_shift = 4
# offset_learning_shift = 4
# compute average gradient for batch
# grad = int(4 * grads / len(which_idxs)) # div by 16
grad = int(grads / len(which_idxs)) # div by 64
# grad = grads
# self.grad_counter += grad - (self.grad_counter >> grad_learning_shift)
# self.grad_counter += grad
#
# this is the pair of lines that we know works well for UCR
#
# self.counter -= grad
self.counter += grad
self.coef = self.counter >> (learning_rate_shift + (self.numbits - 8))
# self.coef = self.counter >> learning_rate_shift
# self.coef -= (self.grad_counter >> grad_learning_shift) >> learning_rate_shift
# learn_shift = int(min(learning_rate_shift, np.log2(self.t + 1)))
# self.coef = self.counter >> (learn_shift + (self.numbits - 8))
# self.coef = self.counter >> learn_shift # for use with l1 loss
# self.coef -= (self.grad_counter >> grad_learning_shift) >> learn_shift
# self.coef -= (self.grad_counter >> grad_learning_shift) >> learning_rate_shift
# self.coef = 192 # global soln for olive oil
# quantize coeff by rounding to nearest 16; this seems to help
# quite a bit, at least for stuff that really should be double
# delta coded (starlight curves, presumably timestamps)
# self.coef = ((self.coef + 8) >> 4) << 4
self.coef = (self.coef >> 4) << 4 # just round towards 0
# self.coef = (self.coef >> 5) << 5 # just round towards 0
# like above, but use sign since shift and unshift round towards 0
# EDIT: no apparent difference, though perhaps cuz almost nothing
# actually wants a negative coef
# self.coef = ((self.coef + 8 * np.sign(self.coef)) >> 4) << 4
# offset = int(offsets / len(which_idxs)) # div by 64
# self.offset_counter += offset
# # self.offset = self.offset_counter >> offset_learning_shift
# self.offset = 0 # offset doesn't seem to help at all
# self.coef = 0 # why are estimates biased? TODO rm
# self.coef = 256
# self.coef = self.counter
# self.coef = np.clip(self.coef, -256, 256) # apparently important
# self.coef = np.clip(self.coef, -128, 256) # apparently important
# if self.t < 8:
# if self.t % 100 == 0:
# print "----- t = {}".format(self.t)
# print "offset, offset counter: ", self.offset, self.offset_counter
# # print "grad, grads sum: ", grad, grads
# # print "learn shift: ", learn_shift
# # print "errs[:10]: ", errs[:16]
# # print "-grads[:10]: ", errs[:16] * x[:16]
# # print "signed errs[:10]: ", errs[:16] * np.sign(x[:16])
# print "new coeff, grad_counter, counter = ", self.coef, self.grad_counter, self.counter
# # print "new coeff, grad counter = ", self.coef, self.grad_counter
# self.best_idx_counts[self.coef] += 1 # for logging
self.best_coef_counts[self.coef] += 1
self.best_offset_counts[self.offset] += 1
# errs -= self.offset # do this at the end to not mess up training
elif self.method == 'exact':
# print "using exact method"
if self.numbits <= 8:
predictions = (x * self.coef) >> self.numbits
else:
predictions = ((x >> 8) * self.coef)
errs = y - predictions
learn_shift = 6
# shift = learn_shift + 2*self.numbits - 8
shift = learn_shift
# only update based on a few values for efficiency
start_idx = 0 if self.t > 0 else 8
for idx in np.arange(start_idx, len(x), 8):
# xval = x[idx] # >> (self.numbits - 8)
# yval = y[idx] # >> (self.numbits - 8)
xval = x[idx] >> (self.numbits - 8)
yval = y[idx] >> (self.numbits - 8)
# # this way works just like global one, or maybe better
# self.Sxx += xval * xval
# self.Sxy += xval * yval
# moving average way; seemingly works just as well
# Exx = self.Sxx >> learn_shift
# Exy = self.Sxy >> learn_shift
Exy = self.Sxy >> shift
Exx = self.Sxx >> shift
# adjust_shift = 2 *
diff_xx = (xval * xval) - Exx
diff_xy = (xval * yval) - Exy
self.Sxx += diff_xx
self.Sxy += diff_xy
# if min(self.Sxy, self.Sxx) >= 1024:
# self.Sxx /= 2
# self.Sxy /= 2
Exy = self.Sxy >> shift
Exx = self.Sxx >> shift
self.coef = int((Exy << 8) / Exx) # works really well
# none of this really works
# # print "Exy, Exx = ", Exy, Exx
# print "xval, yval: ", xval, yval
# print "diff_xx, diff_xy, Exy, Exx = ", diff_xx, diff_xy, Exy, Exx
# # numerator = 1 << (2 * self.numbits)
# numerator = 256
# nbits = int(min(4, np.log2(Exx))) if Exx > 1 else 1
# assert numerator >= np.abs(Exx)
# # print "nbits: ", nbits
# recip = int((numerator >> nbits) / (Exx >> nbits)) << nbits
# # recip = recip >> (2 * self.numbits - 8)
# print "numerator, recip: ", numerator, recip
# self.coef = int(Exy * recip)
self.best_coef_counts[self.coef] += 1
self.t += 1
return errs
# while (first <= last) {
# if (array[middle] < search)
# first = middle + 1;
# else if (array[middle] == search) {
# printf("%d found at location %d.\n", search, middle+1);
# break;
# }
# else
# last = middle - 1;
# middle = (first + last)/2;
# }
def sub_online_regress(blocks, verbose=0, group_sz_blocks=8, max_shift=4,
only_16_shifts=True, method='linreg', numbits=8,
drop_first_half=False, **sink):
# drop_first_half=True, **sink):
blocks = blocks.astype(np.int32)
if only_16_shifts:
shifts = SHIFT_PAIRS_16
shift_coeffs = [_i16_for_shifts(*pair) for pair in shifts]
else:
shifts, shift_coeffs = all_shifts(max_shift=max_shift)
encoder = OnlineRegressor(block_sz=blocks.shape[1], verbose=verbose,
shifts=shifts, shift_coeffs=shift_coeffs,
method=method, numbits=numbits)
# print "using group_sz_blocks: ", group_sz_blocks
# print "using method: ", method
# print "using nbits: ", numbits
out = np.empty(blocks.shape, dtype=np.int32)
if group_sz_blocks < 1:
group_sz_blocks = len(blocks) # global model
ngroups = int(len(blocks) / group_sz_blocks)
for g in range(ngroups):
# if verbose and (g > 0) and (g % 100 == 0):
# print "running on block ", g
start_idx = g * group_sz_blocks
end_idx = start_idx + group_sz_blocks
group = blocks[start_idx:end_idx]
errs = encoder.feed_group(group.ravel())
out[start_idx:end_idx] = errs.reshape(group.shape)
out[end_idx:] = blocks[end_idx:]
if verbose > 1:
if method == 'linreg':
if group_sz_blocks != len(blocks):
import hipsterplot as hp # pip install hipsterplot
# hp.plot(x_vals=encoder.shift_coeffs, y_vals=encoder.best_idx_counts,
hp.plot(encoder.best_idx_counts,
num_x_chars=len(encoder.shift_coeffs), num_y_chars=12)
else:
coef_idx = | np.argmax(encoder.best_idx_counts) | numpy.argmax |
import numpy as np
test_data_1 = np.load("cobotta_ik_jnt1_min_max.npy", allow_pickle=True)
test_data_2 = np.load("cobotta_ik_jnt2_min_max.npy", allow_pickle=True)
test_data_3 = np.load("cobotta_ik_jnt3_min_max.npy", allow_pickle=True)
test_data_4 = np.load("cobotta_ik_jnt4_min_max.npy", allow_pickle=True)
test_data_5 = np.load("cobotta_ik_jnt5_min_max.npy", allow_pickle=True)
test_data_6 = np.load("cobotta_ik_jnt6_min_max.npy", allow_pickle=True)
test_data_7 = np.load("cobotta_ik_jnt7_min_max.npy", allow_pickle=True)
test_data_8 = np.load("cobotta_ik_jnt8_min_max.npy", allow_pickle=True)
res_min_max = np.concatenate((test_data_1, test_data_2), axis=0)
res_min_max = np.concatenate((res_min_max, test_data_3), axis=0)
res_min_max = np.concatenate((res_min_max, test_data_4), axis=0)
res_min_max = np.concatenate((res_min_max, test_data_5), axis=0)
res_min_max = np.concatenate((res_min_max, test_data_6), axis=0)
res_min_max = | np.concatenate((res_min_max, test_data_7), axis=0) | numpy.concatenate |
import numpy as np
from python_utils.mathu import quat_identity, quat_mult, vector_quat, matrix_from_quat, rodmat
from scipy.spatial.transform import Rotation as R
def exp_quat(v):
""" See "Practical Parameterization of Rotations Using the Exponential Map"
- F. <NAME>
Section 3
"""
ang = np.linalg.norm(v)
hang = 0.5 * ang
if ang < 1e-8: # Threshold probably too conservative (too low)
sc = 0.5 + ang ** 2 / 48
else:
sc = np.sin(hang) / ang
return np.array((np.cos(hang), sc * v[0], sc * v[1], sc * v[2]))
def euler_int(dt, vel, accel):
return vel * dt + 0.5 * accel * dt ** 2
def so3_quat_int(quat, dang, dang_in_body):
""" Uses exponential map for quaternions """
rotquat = exp_quat(dang)
if dang_in_body:
return quat_mult(quat, rotquat)
return quat_mult(rotquat, quat)
def so3_quat_naive_int(quat, dang, dang_in_body):
""" Uses quaternion derivative equation and normalizes """
if dang_in_body:
quat_deriv = quat_mult(quat, vector_quat(dang)) / 2.0
else:
quat_deriv = quat_mult(vector_quat(dang), quat) / 2.0
quat += quat_deriv
return quat / np.linalg.norm(quat)
def so3_rot_int(rot, dang, dang_in_body):
""" Uses exponential map for rotation matrices """
delta_rot = rodmat(dang)
if dang_in_body:
return rot.dot(delta_rot)
return delta_rot.dot(rot)
class AttitudeNoLie(object):
def __init__(self, quat=quat_identity(), ang=np.zeros(3), in_body=False):
self.quat = quat.copy()
self.ang = ang.copy()
self.in_body = in_body
def step(self, dt, accel=np.zeros(3), ang_accel=np.zeros(3)):
dang = euler_int(dt, self.ang, ang_accel)
self.quat = so3_quat_naive_int(self.quat, dang, self.in_body)
self.ang += ang_accel * dt
def get_quat(self):
return self.quat.copy()
def get_rot(self):
return matrix_from_quat(self.quat)
def get_ang(self):
return self.ang.copy()
def set_rot(self, rot):
quat = R.from_matrix(rot).as_quat()
self.quat = np.array((quat[3], quat[0], quat[1], quat[2]))
class Attitude(object):
def __init__(self, quat=quat_identity(), ang=np.zeros(3), in_body=False):
self.quat = quat.copy()
self.ang = ang.copy()
self.in_body = in_body
def step(self, dt, accel=np.zeros(3), ang_accel=np.zeros(3)):
dang = euler_int(dt, self.ang, ang_accel)
self.quat = so3_quat_int(self.quat, dang, self.in_body)
self.ang += ang_accel * dt
def get_quat(self):
return self.quat.copy()
def get_rot(self):
return matrix_from_quat(self.quat)
def get_ang(self):
return self.ang.copy()
def set_rot(self, rot):
quat = R.from_matrix(rot).as_quat()
self.quat = np.array((quat[3], quat[0], quat[1], quat[2]))
class AttitudeRot(object):
def __init__(self, quat=quat_identity(), ang=np.zeros(3), in_body=False):
self.rot = matrix_from_quat(quat)
self.ang = ang.copy()
self.in_body = in_body
def step(self, dt, accel=np.zeros(3), ang_accel= | np.zeros(3) | numpy.zeros |
import unittest
import qteasy as qt
import pandas as pd
from pandas import Timestamp
import numpy as np
import math
from numpy import int64
import itertools
import datetime
from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list
from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day
from qteasy.utilfuncs import next_market_trade_day, unify, mask_to_signal, list_or_slice, labels_to_dict
from qteasy.utilfuncs import weekday_name, prev_market_trade_day, is_number_like, list_truncate, input_to_list
from qteasy.space import Space, Axis, space_around_centre, ResultPool
from qteasy.core import apply_loop
from qteasy.built_in import SelectingFinanceIndicator, TimingDMA, TimingMACD, TimingCDL, TimingTRIX
from qteasy.tsfuncs import income, indicators, name_change, get_bar
from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index
from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite
from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily
from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic, stock_company
from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv
from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp
from qteasy.evaluate import eval_volatility
from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point
from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr
from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc
from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm
from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi
from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange
from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod
from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows
from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside
from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby
from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu
from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover
from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing
from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite
from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami
from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod
from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck
from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength
from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu
from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar
from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods
from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop
from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap
from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows
from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle
from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos
from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh
from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax
from qteasy.tafuncs import minmaxindex, mult, sub, sum
from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data
from qteasy.history import stack_dataframes, dataframe_to_hp, HistoryPanel
from qteasy.database import DataSource
from qteasy.strategy import Strategy, SimpleTiming, RollingTiming, SimpleSelecting, FactoralSelecting
from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs
from qteasy.blender import _exp_to_token, blender_parser, signal_blend
class TestCost(unittest.TestCase):
def setUp(self):
self.amounts = | np.array([10000., 20000., 10000.]) | numpy.array |
#!/usr/bin/env python
import sys
sys.path.append(r'C:\Program Files (x86)\Keysight\SD1\Libraries\Python')
from BaseDriver import LabberDriver, Error, IdError
import keysightSD1
import numpy as np
import os
import time
class Driver(LabberDriver):
""" This class implements the Keysight PXI digitizer"""
def performOpen(self, options={}):
"""Perform the operation of opening the instrument connection"""
# number of demod blocks in the FPGA
self.num_of_demods = 5
# self.demod_n_pts = self.num_of_demods * 15
self.demod_n_pts = 80
self.bit_stream_name = ''
# set time step and resolution
self.nBit = 16
self.bitRange = float(2**(self.nBit - 1) - 1)
# timeout
self.timeout_ms = int(1000 * self.dComCfg['Timeout'])
# get PXI chassis
self.chassis = int(self.dComCfg.get('PXI chassis', 1))
# create AWG instance
self.dig = keysightSD1.SD_AIN()
AWGPart = self.dig.getProductNameBySlot(
self.chassis, int(self.comCfg.address))
self.log('Serial:', self.dig.getSerialNumberBySlot(
self.chassis, int(self.comCfg.address)))
if not isinstance(AWGPart, str):
raise Error('Unit not available')
# check that model is supported
dOptionCfg = self.dInstrCfg['options']
for validId, validName in zip(
dOptionCfg['model_id'], dOptionCfg['model_str']):
if AWGPart.find(validId) >= 0:
# id found, stop searching
break
else:
# loop fell through, raise ID error
raise IdError(AWGPart, dOptionCfg['model_id'])
# set model
self.setModel(validName)
# sampling rate and number of channles is set by model
if validName in ('M3102', 'M3302'):
# 500 MHz models
self.dt = 2E-9
self.nCh = 4
else:
# assume 100 MHz for all other models
self.dt = 10E-9
self.nCh = 4
# create list of sampled data
self.lTrace = [np.array([])] * self.nCh
self.demod_output_ssb = np.zeros((0,), dtype='complex')
self.demod_buffer = np.zeros((0,), dtype=np.int16)
self.dig.openWithSlot(AWGPart, self.chassis, int(self.comCfg.address))
# get hardware version - changes numbering of channels
hw_version = self.dig.getHardwareVersion()
if hw_version >= 4:
# KEYSIGHT - channel numbers start with 1
self.ch_index_zero = 1
else:
# SIGNADYNE - channel numbers start with 0
self.ch_index_zero = 0
self.log('HW:', hw_version)
self.configure_FPGA()
def configure_FPGA(self, reset=False):
"""Load FPGA bitstream and setup triggers"""
self.fpga_config = self.getValue('FPGA Hardware')
if reset or self.fpga_config == 'Only signals':
bitstream = os.path.join(
os.path.dirname(__file__),
'firmware_FPGAFlow_Clean_2018-05-31T22_22_11.sbp')
elif self.fpga_config in ('FPGA I/Q and signals', 'Only FPGA I/Q'):
bitstream = os.path.join(
os.path.dirname(__file__),
'firmware_FPGAFlow_Demod_v4_IQx5_2018-09-02T19_14_50.sbp')
# don't reload if correct bitstream is already loaded
if bitstream == self.bit_stream_name:
return
if (self.dig.FPGAload(bitstream)) < 0:
if self.fpga_config != 'Only signals':
raise Error('FPGA not loaded, check FPGA version...')
self.bit_stream_name = bitstream
if self.fpga_config != 'Only signals':
for n in range(self.num_of_demods):
LO_freq = self.getValue('LO freq %d' % (n + 1))
self.setFPGALOfreq(n + 1, LO_freq)
self.setFPGATrigger()
def getHwCh(self, n):
"""Get hardware channel number for channel n. n starts at 0"""
return n + self.ch_index_zero
def performClose(self, bError=False, options={}):
"""Perform the close instrument connection operation"""
# do not check for error if close was called with an error
try:
# flush all memory
for n in range(self.nCh):
self.log('Close ch:', n, self.dig.DAQflush(self.getHwCh(n)))
# remove firmware
self.configure_FPGA(reset=True)
# close instrument
self.dig.close()
except Exception:
# never return error here
pass
def performSetValue(self, quant, value, sweepRate=0.0, options={}):
"""Perform the Set Value instrument operation. This function should
return the actual value set by the instrument"""
# start with setting local quant value
quant.setValue(value)
# if changing FPGA operation, reload firmware
if quant.name == 'FPGA Hardware':
new_value = self.getValue('FPGA Hardware')
# only reload if operation mode changed
if new_value != self.fpga_config:
self.configure_FPGA()
# check if channel-specific, if so get channel + name
if quant.name.startswith('Ch') and len(quant.name) > 6:
ch = int(quant.name[2]) - 1
name = quant.name[6:]
else:
ch, name = None, ''
if (quant.name.startswith('FPGA Voltage') or
quant.name.startswith('FPGA Single-shot')):
demod_num = int(quant.name[-1]) - 1
# proceed depending on command
if quant.name in ('External Trig Source', 'External Trig Config',
'Trig Sync Mode'):
extSource = int(self.getCmdStringFromValue('External Trig Source'))
trigBehavior = int(
self.getCmdStringFromValue('External Trig Config'))
sync = int(self.getCmdStringFromValue('Trig Sync Mode'))
self.dig.DAQtriggerExternalConfig(0, extSource, trigBehavior, sync)
elif quant.name in ('Trig I/O', ):
# get direction and sync from index of comboboxes
direction = int(self.getCmdStringFromValue('Trig I/O'))
self.dig.triggerIOconfig(direction)
elif quant.name in (
'Analog Trig Channel', 'Analog Trig Config', 'Trig Threshold'):
# get trig channel
trigCh = self.getValueIndex('Analog Trig Channel')
mod = int(self.getCmdStringFromValue('Analog Trig Config'))
threshold = self.getValue('Trig Threshold')
self.dig.channelTriggerConfig(self.getHwCh(trigCh), mod, threshold)
elif name in ('Range', 'Impedance', 'Coupling'):
# set range, impedance, coupling at once
rang = self.getRange(ch)
imp = int(self.getCmdStringFromValue('Ch%d - Impedance' % (ch + 1)))
coup = int(self.getCmdStringFromValue('Ch%d - Coupling' % (ch + 1)))
self.dig.channelInputConfig(self.getHwCh(ch), rang, imp, coup)
# FPGA configuration
if quant.name.startswith('LO freq'):
demod_num = int(quant.name[-1])
LO_freq = self.getValue('LO freq ' + str(demod_num))
value = self.setFPGALOfreq(demod_num, LO_freq)
elif quant.name in ('Skip time', 'Integration time'):
self.setFPGATrigger()
return value
def performGetValue(self, quant, options={}):
"""Perform the Set Value instrument operation. This function should
return the actual value set by the instrument"""
# check if channel-specific, if so get channel + name
if quant.name.startswith('Ch') and len(quant.name) > 6:
ch = int(quant.name[2]) - 1
name = quant.name[6:]
else:
ch, name = None, ''
if (quant.name.startswith('FPGA Voltage') or
quant.name.startswith('FPGA Single-shot')):
demod_num = int(quant.name[-1]) - 1
if (name == 'Signal' or quant.name.startswith('FPGA Voltage') or
quant.name.startswith('FPGA Single-shot')):
if self.isHardwareLoop(options):
"""Get data from round-robin type averaging"""
(seq_no, n_seq) = self.getHardwareLoopIndex(options)
# acquisition was started when arming, just read data
if name == 'Signal':
return quant.getTraceDict(
self.reshaped_traces[ch][seq_no], dt=self.dt)
elif quant.name.startswith('FPGA Voltage I,'):
return self.demod_output_I[demod_num]
elif quant.name.startswith('FPGA Single-shot I,'):
return quant.getTraceDict(
self.demod_output_vector_I[demod_num][seq_no], dt=1)
elif quant.name.startswith('FPGA Voltage Q,'):
return self.demod_output_Q[demod_num]
elif quant.name.startswith('FPGA Single-shot Q,'):
return quant.getTraceDict(
self.demod_output_vector_Q[demod_num][seq_no], dt=1)
elif quant.name.startswith('FPGA Single-shot REF,'):
return quant.getTraceDict(
self.demod_output_vector_ref[demod_num][seq_no], dt=1)
elif quant.name.startswith('FPGA Voltage NP,'):
return self.demod_output_NP[demod_num]
elif quant.name.startswith('FPGA Single-shot NP,'):
return quant.getTraceDict(
self.demod_output_vector_NP[demod_num][seq_no], dt=1)
elif quant.name.startswith('FPGA Voltage,'):
return self.demod_output_ssb[demod_num, :, seq_no].mean()
elif quant.name.startswith('FPGA Single-shot,'):
return quant.getTraceDict(
self.demod_output_ssb[demod_num, :, seq_no],
dt=1)
# get traces if first call
if self.isFirstCall(options):
# don't arm and measure if in arm/trig mode, was done at arm
if not self.isHardwareTrig(options):
self.getTraces()
# return correct data
if name == 'Signal':
value = quant.getTraceDict(self.lTrace[ch], dt=self.dt)
elif quant.name.startswith('FPGA Voltage I,'):
value = self.demod_output_I[demod_num]
elif quant.name.startswith('FPGA Single-shot I,'):
value = quant.getTraceDict(
self.demod_output_vector_I[demod_num], dt=1)
elif quant.name.startswith('FPGA Voltage Q,'):
value = self.demod_output_Q[demod_num]
elif quant.name.startswith('FPGA Single-shot Q,'):
value = quant.getTraceDict(
self.demod_output_vector_Q[demod_num], dt=1)
elif quant.name.startswith('FPGA Single-shot REF,'):
value = quant.getTraceDict(
self.demod_output_vector_ref[demod_num], dt=1)
elif quant.name.startswith('FPGA Voltage NP,'):
return self.demod_output_NP[demod_num]
elif quant.name.startswith('FPGA Single-shot NP,'):
return quant.getTraceDict(
self.demod_output_vector_NP[demod_num], dt=1)
elif quant.name.startswith('FPGA Voltage,'):
value = np.mean(self.demod_output_ssb[demod_num])
elif quant.name.startswith('FPGA Single-shot,'):
# if no records, don't average over number of averages
if self.demod_output_ssb.shape[2] <= 1:
value = quant.getTraceDict(
self.demod_output_ssb[demod_num, :, 0], dt=1)
else:
# records are being used, average over number of averages
value = quant.getTraceDict(
self.demod_output_ssb[demod_num].mean(0), dt=1)
else:
# for all others, return local value
value = quant.getValue()
return value
def performArm(self, quant_names, options={}):
"""Perform the instrument arm operation"""
# only arm digitizer if about to measure read-only values
for name in quant_names:
quant = self.getQuantity(name)
if quant.isPermissionRead():
break
else:
# loop fell through, no read-only quantity, don't arm
return
# arm by calling get traces
if self.isHardwareLoop(options):
# in hardware looping, number of records is set by the looping
(seq_no, n_seq) = self.getHardwareLoopIndex(options)
# show status before starting acquisition
self.reportStatus('Digitizer - Waiting for signal')
# get data
self.getTraces(bArm=True, bMeasure=False, n_seq=n_seq)
# report arm completed, to allow client to continue
self.report_arm_completed()
# directly start collecting data (digitizer buffer is limited)
self.getTraces(bArm=False, bMeasure=True, n_seq=n_seq)
# after measurement is done, re-shape data and place in buffer
self.reshaped_traces = []
for trace in self.lTrace:
if len(trace) > 0:
trace = trace.reshape((n_seq, trace.size // n_seq))
self.reshaped_traces.append(trace)
else:
self.getTraces(bArm=True, bMeasure=False)
# report arm completed, to allow client to continue
self.report_arm_completed()
self.getTraces(bArm=False, bMeasure=True)
def getTraces(self, bArm=True, bMeasure=True, n_seq=0):
"""Get all active traces"""
# # test timing
# import time
# t0 = time.clock()
# lT = []
# find out which traces to get
lCh = []
iChMask = 0
for n in range(self.nCh):
if self.fpga_config == 'Only signals':
# normal operation
if self.getValue('Ch%d - Enabled' % (n + 1)):
lCh.append(n)
iChMask += 2**n
elif self.fpga_config == 'FPGA I/Q and signals':
# mixed signal/demod, always enable ch 4 (used for demod)
if (n == 3) or self.getValue('Ch%d - Enabled' % (n + 1)):
lCh.append(n)
iChMask += 2**n
elif self.fpga_config == 'Only FPGA I/Q':
# if only fpga demod, don't read any AWGs but ch 4 (demod)
if n == 3:
lCh.append(n)
iChMask += 2**n
else:
continue
# get current settings
if self.fpga_config in ('Only signals', 'FPGA I/Q and signals'):
nPts = int(self.getValue('Number of samples'))
elif self.fpga_config == 'Only FPGA I/Q':
nPts = self.demod_n_pts
nCyclePerCall = int(self.getValue('Records per Buffer'))
# in hardware loop mode, ignore records and use number of sequences
if n_seq > 0:
nSeg = n_seq
else:
nSeg = int(self.getValue('Number of records'))
nAv = int(self.getValue('Number of averages'))
# trigger delay is in 1/sample rate
nTrigDelay = int(round(self.getValue('Trig Delay') / self.dt))
# special high-speed FPGA mode, don't convert, just transfer
if (self.fpga_config == 'Only FPGA I/Q' and
self.getValue('Hide I/Q') and
not self.getValue('Convert data while streaming')):
only_transfer_fgpa = True
else:
only_transfer_fgpa = False
if bArm:
# clear old data
self.dig.DAQflushMultiple(iChMask)
self.lTrace = [np.array([])] * self.nCh
self.smsb_info_str = []
self.demod_counter = 0
# only re-allocate large output matrix if necessary (slow)
if self.demod_output_ssb.size != (self.num_of_demods * nSeg * nAv):
self.demod_output_ssb = np.zeros(
(self.num_of_demods, nSeg * nAv), dtype='complex')
else:
# matrix has right size, just reshape
self.demod_output_ssb = self.demod_output_ssb.reshape(
(self.num_of_demods, nSeg * nAv))
# create new binary demod data buffer, if size changed
buf = (nPts * nSeg * nAv) if only_transfer_fgpa else (nPts * nSeg)
if self.demod_buffer.size != buf:
self.demod_buffer = np.zeros(buf, dtype=np.int16)
# only initiate diagnostic traces if in use
if not self.getValue('Hide I/Q'):
self.demod_output_vector_I = np.zeros(
[self.num_of_demods, nSeg], dtype='complex')
self.demod_output_I = np.zeros(
self.num_of_demods, dtype='complex')
self.demod_output_vector_Q = np.zeros(
[self.num_of_demods, nSeg], dtype='complex')
self.demod_output_Q = np.zeros(
self.num_of_demods, dtype='complex')
self.demod_output_vector_ref = np.zeros(
[self.num_of_demods, nSeg], dtype='complex')
self.demod_output_ref = np.zeros(
self.num_of_demods, dtype='complex')
self.demod_output_SSB = np.zeros(
self.num_of_demods, dtype='complex')
self.demod_output_vector_NP = np.zeros(
[self.num_of_demods, nSeg])
self.demod_output_NP = np.zeros(self.num_of_demods)
self.moment_I2 = np.zeros(
[self.num_of_demods, nSeg], dtype='complex')
self.moment_Q2 = np.zeros(
[self.num_of_demods, nSeg], dtype='complex')
# configure trigger for all active channels
for nCh in lCh:
self.lTrace[nCh] = np.zeros((nSeg * nPts))
# channel number depens on hardware version
ch = self.getHwCh(nCh)
# extra config for trig mode
if self.getValue('Trig Mode') == 'Digital trigger':
extSource = int(
self.getCmdStringFromValue('External Trig Source'))
trigBehavior = int(
self.getCmdStringFromValue('External Trig Config'))
sync = int(self.getCmdStringFromValue('Trig Sync Mode'))
self.dig.DAQtriggerExternalConfig(
ch, extSource, trigBehavior, sync)
self.dig.DAQdigitalTriggerConfig(
ch, extSource, trigBehavior)
elif self.getValue('Trig Mode') == 'Analog channel':
digitalTriggerMode = 0
digitalTriggerSource = 0
trigCh = self.getValueIndex('Analog Trig Channel')
analogTriggerMask = 2**trigCh
#analogTriggerMask = int('1111',2)
self.dig.DAQdigitalTriggerConfig(
ch, digitalTriggerSource, digitalTriggerMode)
self.dig.DAQanalogTriggerConfig(
ch, analogTriggerMask)
# config daq and trig mode
trigMode = int(self.getCmdStringFromValue('Trig Mode'))
self.dig.DAQconfig(ch, nPts, nSeg * nAv, nTrigDelay, trigMode) # TODO change nPts
# start acquiring data
self.dig.DAQstartMultiple(iChMask)
#self.wait(1)
# lT.append('Start %.1f ms' % (1000*(time.clock()-t0)))
#
# return if not measure
if not bMeasure:
return
# define number of cycles to read at a time
nCycleTotal = nSeg * nAv
nCall = int(np.ceil(nCycleTotal / nCyclePerCall))
lScale = [(self.getRange(ch) / self.bitRange) for ch in range(self.nCh)]
# keep track of progress in percent
old_percent = -1
# self.log('nCall:' + str(nCall), level = 30)
# proceed depending on segment or not segment
if only_transfer_fgpa:
# just transfer fpga data, do conversion after to allow fast stream
ch = self.getHwCh(3)
count = 0
for n in range(nCall):
# number of cycles for this call, could be fewer for last call
nCycle = min(nCyclePerCall, nCycleTotal - (n * nCyclePerCall))
# channel number depens on hardware version
data = self.DAQread(self.dig, ch, nPts * nCycle,
int(3000 + self.timeout_ms / nCall)) # TODO change nPts
# stop if no data
if data.size == 0:
return
# store data in long vector, convert later
self.demod_buffer[count:(count + data.size)] = data
count += data.size
# report progress, only report integer percent
if nCall >= 1:
new_percent = int(100 * n / nCall)
if new_percent > old_percent:
old_percent = new_percent
self.reportStatus(
'Acquiring traces ({}%)'.format(new_percent) +
', FPGA Demod buffer: ' +
', '.join(self.smsb_info_str))
# break if stopped from outside
if self.isStopped():
break
# finally, get demod values
self.getDemodValues(self.demod_buffer, nPts, nSeg, nSeg)
elif nSeg <= 1:
# non-segmented acquisiton
for n in range(nCall):
# number of cycles for this call, could be fewer for last call
nCycle = min(nCyclePerCall, nCycleTotal - (n * nCyclePerCall))
# self.log('nCycle:' + str(nCycle), level = 30)
# capture traces one by one
for nCh in lCh:
# channel number depens on hardware version
ch = self.getHwCh(nCh)
data = self.DAQread(self.dig, ch, nPts * nCycle,
int(3000 + self.timeout_ms / nCall))
# stop if no data
if data.size == 0:
return
# different operation for signals vs demod data
if self.fpga_config == 'Only signals' or nCh < 3:
# average
data = data.reshape((nCycle, nPts)).mean(0)
# adjust scaling to account for summing averages
scale = lScale[nCh] * (nCycle / nAv)
# convert to voltage, add to total average
self.lTrace[nCh] += data * scale
else:
# for demod, immediately get demodulated values
self.getDemodValues(data, nPts, nSeg, nCycle)
# report progress, only report integer percent
if nCall >= 1:
new_percent = int(100 * n / nCall)
if new_percent > old_percent:
old_percent = new_percent
self.reportStatus(
'Acquiring traces ({}%)'.format(new_percent) +
', FPGA Demod buffer: ' +
', '.join(self.smsb_info_str))
# break if stopped from outside
if self.isStopped():
break
# lT.append('N: %d, Tot %.1f ms' % (n, 1000 * (time.clock() - t0)))
else:
# segmented acquisition, get calls per segment
(nCallSeg, extra_call) = divmod(nSeg, nCyclePerCall)
# pre-calculate list of cycles/call, last call may have more cycles
if nCallSeg == 0:
nCallSeg = 1
lCyclesSeg = [nSeg]
else:
lCyclesSeg = [nCyclePerCall] * nCallSeg
lCyclesSeg[-1] = nCyclePerCall + extra_call
# pre-calculate scale, should include scaling for averaging
lScale = np.array(lScale, dtype=float) / nAv
for n in range(nAv):
count = 0
# loop over number of calls per segment
for m, nCycle in enumerate(lCyclesSeg):
# capture traces one by one
for nCh in lCh:
# channel number depens on hardware version
ch = self.getHwCh(nCh)
data = self.DAQread(self.dig, ch, nPts * nCycle,
int(3000 + self.timeout_ms / nCall))
# stop if no data
if data.size == 0:
return
# different operation for signals vs demod data
if self.fpga_config == 'Only signals' or nCh < 3:
# standard operation, store data in one long vector
self.lTrace[nCh][count:(count + data.size)] += \
data * lScale[nCh]
else:
# store raw demod data, will be extracted later
self.demod_buffer[count:(count + data.size)] = data
count += data.size
# after one full set of records, convert demod data
if self.fpga_config != 'Only signals':
self.getDemodValues(self.demod_buffer, nPts, nSeg, nSeg)
# report progress, only report integer percent
if nAv >= 1:
new_percent = int(100 * n / nAv)
if new_percent > old_percent:
old_percent = new_percent
self.reportStatus(
'Acquiring traces ({}%)'.format(new_percent) +
', FPGA Demod buffer: ' +
', '.join(self.smsb_info_str))
# break if stopped from outside
if self.isStopped():
break
# at the end, convert binary data to I/Q values
if self.fpga_config != 'Only signals':
self.demod_output_ssb = self.demod_output_ssb.reshape(
(self.num_of_demods, nAv, nSeg))
# lT.append('N: %d, Tot %.1f ms' % (n, 1000 * (time.clock() - t0)))
# # log timing info
# self.log(': '.join(lT))
def getRange(self, ch):
"""Get channel range, as voltage. Index start at 0"""
rang = float(self.getCmdStringFromValue('Ch%d - Range' % (ch + 1)))
# range depends on impedance
if self.getValue('Ch%d - Impedance' % (ch + 1)) == 'High':
rang = rang * 2
# special case if range is .25, 0.5, or 1, scale to 0.2, .4, .8
if rang < 1.1:
rang *= 0.8
return rang
def DAQread(self, dig, nDAQ, nPoints, timeOut):
"""Read data diretly to numpy array"""
if dig._SD_Object__handle > 0:
if nPoints > 0:
data = (keysightSD1.c_short * nPoints)()
nPointsOut = dig._SD_Object__core_dll.SD_AIN_DAQread(
dig._SD_Object__handle, nDAQ, data, nPoints, timeOut)
if nPointsOut > 0:
return np.frombuffer(data, dtype=np.int16, count=nPoints)
else:
return np.array([], dtype=np.int16)
else:
return keysightSD1.SD_Error.INVALID_VALUE
else:
return keysightSD1.SD_Error.MODULE_NOT_OPENED
def getDemodValues(self, demod_raw, nPts, nSeg, nCycle):
"""get Demod IQ data from Ch1/2/3 Trace"""
accum_length = self.getValue('Integration time')
lScale = [(self.getRange(ch) / self.bitRange) for ch in range(self.nCh)]
self.smsb_info_str = []
nDemods = self.num_of_demods
use_phase_ref = self.getValue('Use phase reference signal')
for n in range(nDemods):
y1_lsb = demod_raw[((n * 15) + 0)::nPts]
y1_msb = demod_raw[((n * 15) + 1)::nPts]
x1_lsb = demod_raw[((n * 15) + 2)::nPts]
x1_msb = demod_raw[((n * 15) + 3)::nPts]
y1x1_smsb = demod_raw[((n * 15) + 4)::nPts]
x1_smsb = y1x1_smsb.astype('int8')
y1_smsb = y1x1_smsb.astype('int16') >> 8
y2_lsb = demod_raw[((n * 15) + 5)::nPts]
y2_msb = demod_raw[((n * 15) + 6)::nPts]
x2_lsb = demod_raw[((n * 15) + 7)::nPts]
x2_msb = demod_raw[((n * 15) + 8)::nPts]
y2x2_smsb = demod_raw[((n * 15) + 9)::nPts]
x2_smsb = y2x2_smsb.astype('int8')
y2_smsb = y2x2_smsb.astype('int16') >> 8
y1_int64 = (
y1_lsb.astype('uint16') + y1_msb.astype('uint16') * (2 ** 16) +
y1_smsb.astype('int8') * (2**32))
x1_int64 = (
x1_lsb.astype('uint16') + x1_msb.astype('uint16') * (2 ** 16) +
x1_smsb.astype('int8') * (2**32))
y2_int64 = (
y2_lsb.astype('uint16') + y2_msb.astype('uint16') * (2 ** 16) +
y2_smsb.astype('int8') * (2**32))
x2_int64 = (
x2_lsb.astype('uint16') + x2_msb.astype('uint16') * (2 ** 16) +
x2_smsb.astype('int8') * (2**32))
smsb_info = [np.max(np.abs(x1_smsb)), np.max(np.abs(y1_smsb)),
np.max(np.abs(x2_smsb)), np.max(np.abs(y2_smsb))]
smsb_temp_info_str = str(int(max(smsb_info) / 1.24)) + '%'
self.smsb_info_str.append(smsb_temp_info_str)
warning_thr = 124 # warning indication that overflow can occur
if np.any(np.array(smsb_info)) > warning_thr:
warning_str = (
'Warning! overflow may occur in FPGA demod block: %d, %s' %
(n, str(smsb_info)))
self.log(warning_str, level=30)
demod_temp_I = (
(x1_int64.astype('int64') + 1j * y1_int64.astype('int64')) /
2**43 / accum_length * lScale[0])
demod_temp_Q = (
(x2_int64.astype('int64') + 1j * y2_int64.astype('int64')) /
2**43 / accum_length * lScale[1])
# store final values in large array, get indices for current call
k = self.demod_counter
n_values = demod_temp_I.size
if self.getValue('LO freq %d' % (n + 1)) <= 0:
self.demod_output_ssb[n, k:(k + n_values)] = 0.5 * (
np.real(demod_temp_I) + np.imag(demod_temp_Q) -
1j * (np.imag(demod_temp_I) - np.real(demod_temp_Q))
)
else:
self.demod_output_ssb[n, k:(k + n_values)] = 0.5 * (
np.real(demod_temp_I) - np.imag(demod_temp_Q) +
1j * (np.imag(demod_temp_I) + np.real(demod_temp_Q))
)
# self.demod_output_ssb[n] = np.real(self.demod_output_vector_I[n]) - np.imag(self.demod_output_vector_Q[n]) - 1j*(np.imag(self.demod_output_vector_I[n]) + np.real(self.demod_output_vector_Q[n]))
if use_phase_ref or (not self.getValue('Hide I/Q')):
# extract reference signal
y3_lsb = demod_raw[((n * 15) + 10)::nPts]
y3_msb = demod_raw[((n * 15) + 11)::nPts]
x3_lsb = demod_raw[((n * 15) + 12)::nPts]
x3_msb = demod_raw[((n * 15) + 13)::nPts]
y3x3_smsb = demod_raw[((n * 15) + 14)::nPts]
x3_smsb = y3x3_smsb.astype('int8')
y3_smsb = y3x3_smsb.astype('int16') >> 8
y3_int64 = (
y3_lsb.astype('uint16') +
y3_msb.astype('uint16') * (2 ** 16) +
y3_smsb.astype('int8') * (2**32))
x3_int64 = (
x3_lsb.astype('uint16') +
x3_msb.astype('uint16') * (2 ** 16) +
x3_smsb.astype('int8') * (2**32))
demod_temp_ref = (
(x3_int64.astype('int64') + 1j * y3_int64.astype('int64')) /
2**43 / accum_length * lScale[2])
# subtract the reference angle
if use_phase_ref:
ref = np.arctan2(demod_temp_ref.imag, demod_temp_ref.real)
self.demod_output_ssb[n, k:(k + n_values)] /= (
np.cos(ref) - 1j * np.sin(ref))
# if advanced values not in use, don't calculate to save time
if self.getValue('Hide I/Q'):
continue
nAv = self.getValue('Number of averages')
if nSeg <= 1:
demod_temp_I = demod_temp_I.reshape((nCycle, 1)).mean(0)
demod_temp_Q = demod_temp_Q.reshape((nCycle, 1)).mean(0)
demod_temp_ref = demod_temp_ref.reshape((nCycle, 1)).mean(0)
self.demod_output_vector_I[n] += demod_temp_I / nAv * nCycle
self.demod_output_vector_Q[n] += demod_temp_Q / nAv * nCycle
self.demod_output_vector_ref[n] += demod_temp_ref / nAv * nCycle
self.moment_I2[n] += np.power(
np.abs(demod_temp_I), 2) / nAv * nCycle
self.moment_Q2[n] += np.power(
np.abs(demod_temp_Q), 2) / nAv * nCycle
else:
self.moment_I2[n] += np.power(np.abs(demod_temp_I), 2) / nAv
self.moment_Q2[n] += np.power(np.abs(demod_temp_Q), 2) / nAv
self.demod_output_vector_I[n] += demod_temp_I / nAv
self.demod_output_vector_Q[n] += demod_temp_Q / nAv
self.demod_output_vector_ref[n] += demod_temp_ref / nAv
self.demod_output_I[n] = np.mean(self.demod_output_vector_I[n])
self.demod_output_Q[n] = np.mean(self.demod_output_vector_Q[n])
self.demod_output_ref[n] = np.mean(self.demod_output_vector_ref[n])
self.demod_output_vector_NP[n] = (
self.moment_I2[n] + self.moment_Q2[n])
self.demod_output_NP[n] = np.mean(self.demod_output_vector_NP[n])
self.demod_counter += n_values
def setFPGALOfreq(self, demod_num, demod_LO_freq):
FPGA_PcPort_channel = 0
tmp_0 = np.zeros(2, dtype=int)
tmp_1 = np.zeros(2, dtype=int)
tmp_2 = np.zeros(2, dtype=int)
tmp_3 = np.zeros(2, dtype=int)
tmp_4 = np.zeros(2, dtype=int)
tmp_5 = | np.zeros(2, dtype=int) | numpy.zeros |
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import os
import sys
import random
import gc
import pickle
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import seaborn as sns
sns.set_style("white")
get_ipython().run_line_magic('matplotlib', 'inline')
from sklearn.model_selection import train_test_split
from tqdm import tqdm_notebook #, tnrange
#from itertools import chain
from skimage.io import imread, imshow #, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
from keras.models import Model, load_model, save_model
from keras.layers import Input,Dropout,BatchNormalization,Activation,Add
from keras.layers.core import Lambda
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D
from keras.layers.merge import concatenate
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from keras import backend as K
from keras import optimizers
from keras.callbacks import Callback
import keras.backend as K
import numpy as np
import imgaug as ia
from imgaug import augmenters as iaa
import tensorflow as tf
from tta_wrapper import tta_segmentation
from keras.preprocessing.image import array_to_img, img_to_array, load_img#,save_img
import imgaug
import time
t_start = time.time()
# In[2]:
VERSION = 32
SEED = 42
FOLDS = 5
DEPTH = True
basic_name = f'Unet_resnet_v{VERSION}'
save_model_name = basic_name + '.model'
save_model_name_lov = basic_name + '_lov.model'
submission_file = basic_name + '.csv'
imgaug.seed(SEED)
print(save_model_name)
print(save_model_name_lov)
print(submission_file)
# In[3]:
img_size_ori = 101
img_size_target = 101
def upsample(img):
if img_size_ori == img_size_target:
return img
return resize(img, (img_size_target, img_size_target), mode='constant', preserve_range=True)
def downsample(img):
if img_size_ori == img_size_target:
return img
return resize(img, (img_size_ori, img_size_ori), mode='constant', preserve_range=True)
# In[4]:
# Loading of training/testing ids and depths
train_df = pd.read_csv("../data/raw/train.csv", index_col="id", usecols=[0])
depths_df = pd.read_csv("../data/raw/depths.csv", index_col="id")
train_df = train_df.join(depths_df)
test_df = depths_df[~depths_df.index.isin(train_df.index)]
len(train_df)
# In[5]:
train_df["images"] = [np.array(load_img("../data/raw/train/images/{}.png".format(idx),
color_mode = "grayscale",)) / 255 for idx in tqdm_notebook(train_df.index)]
# In[6]:
train_df["masks"] = [np.array(load_img("../data/raw/train/masks/{}.png".format(idx),
color_mode = "grayscale",)) / 255 for idx in tqdm_notebook(train_df.index)]
# In[7]:
train_df["coverage"] = train_df.masks.map(np.sum) / pow(img_size_ori, 2)
def cov_to_class(val):
for i in range(0, 11):
if val * 10 <= i :
return i
train_df["coverage_class"] = train_df.coverage.map(cov_to_class)
# In[8]:
SUBSET = len(train_df)
train_df = train_df.head(SUBSET)
len(train_df)
# In[9]:
def BatchActivate(x):
x = BatchNormalization()(x)
x = Activation('relu')(x)
return x
def convolution_block(x, filters, size, strides=(1,1), padding='same', activation=True):
x = Conv2D(filters, size, strides=strides, padding=padding)(x)
if activation == True:
x = BatchActivate(x)
return x
def residual_block(blockInput, num_filters=16, batch_activate = False):
x = BatchActivate(blockInput)
x = convolution_block(x, num_filters, (3,3) )
x = convolution_block(x, num_filters, (3,3), activation=False)
x = Add()([x, blockInput])
if batch_activate:
x = BatchActivate(x)
return x
# In[10]:
# Build model
def build_model(input_layer, start_neurons, DropoutRatio = 0.5):
# 101 -> 50
conv1 = Conv2D(start_neurons * 1, (3, 3), activation=None, padding="same")(input_layer)
conv1 = residual_block(conv1,start_neurons * 1)
conv1 = residual_block(conv1,start_neurons * 1, True)
pool1 = MaxPooling2D((2, 2))(conv1)
pool1 = Dropout(DropoutRatio/2)(pool1)
# 50 -> 25
conv2 = Conv2D(start_neurons * 2, (3, 3), activation=None, padding="same")(pool1)
conv2 = residual_block(conv2,start_neurons * 2)
conv2 = residual_block(conv2,start_neurons * 2, True)
pool2 = MaxPooling2D((2, 2))(conv2)
pool2 = Dropout(DropoutRatio)(pool2)
# 25 -> 12
conv3 = Conv2D(start_neurons * 4, (3, 3), activation=None, padding="same")(pool2)
conv3 = residual_block(conv3,start_neurons * 4)
conv3 = residual_block(conv3,start_neurons * 4, True)
pool3 = MaxPooling2D((2, 2))(conv3)
pool3 = Dropout(DropoutRatio)(pool3)
# 12 -> 6
conv4 = Conv2D(start_neurons * 8, (3, 3), activation=None, padding="same")(pool3)
conv4 = residual_block(conv4,start_neurons * 8)
conv4 = residual_block(conv4,start_neurons * 8, True)
pool4 = MaxPooling2D((2, 2))(conv4)
pool4 = Dropout(DropoutRatio)(pool4)
# Middle
convm = Conv2D(start_neurons * 16, (3, 3), activation=None, padding="same")(pool4)
convm = residual_block(convm,start_neurons * 16)
convm = residual_block(convm,start_neurons * 16, True)
# 6 -> 12
deconv4 = Conv2DTranspose(start_neurons * 8, (3, 3), strides=(2, 2), padding="same")(convm)
uconv4 = concatenate([deconv4, conv4])
uconv4 = Dropout(DropoutRatio)(uconv4)
uconv4 = Conv2D(start_neurons * 8, (3, 3), activation=None, padding="same")(uconv4)
uconv4 = residual_block(uconv4,start_neurons * 8)
uconv4 = residual_block(uconv4,start_neurons * 8, True)
# 12 -> 25
#deconv3 = Conv2DTranspose(start_neurons * 4, (3, 3), strides=(2, 2), padding="same")(uconv4)
deconv3 = Conv2DTranspose(start_neurons * 4, (3, 3), strides=(2, 2), padding="valid")(uconv4)
uconv3 = concatenate([deconv3, conv3])
uconv3 = Dropout(DropoutRatio)(uconv3)
uconv3 = Conv2D(start_neurons * 4, (3, 3), activation=None, padding="same")(uconv3)
uconv3 = residual_block(uconv3,start_neurons * 4)
uconv3 = residual_block(uconv3,start_neurons * 4, True)
# 25 -> 50
deconv2 = Conv2DTranspose(start_neurons * 2, (3, 3), strides=(2, 2), padding="same")(uconv3)
uconv2 = concatenate([deconv2, conv2])
uconv2 = Dropout(DropoutRatio)(uconv2)
uconv2 = Conv2D(start_neurons * 2, (3, 3), activation=None, padding="same")(uconv2)
uconv2 = residual_block(uconv2,start_neurons * 2)
uconv2 = residual_block(uconv2,start_neurons * 2, True)
# 50 -> 101
#deconv1 = Conv2DTranspose(start_neurons * 1, (3, 3), strides=(2, 2), padding="same")(uconv2)
deconv1 = Conv2DTranspose(start_neurons * 1, (3, 3), strides=(2, 2), padding="valid")(uconv2)
uconv1 = concatenate([deconv1, conv1])
uconv1 = Dropout(DropoutRatio)(uconv1)
uconv1 = Conv2D(start_neurons * 1, (3, 3), activation=None, padding="same")(uconv1)
uconv1 = residual_block(uconv1,start_neurons * 1)
uconv1 = residual_block(uconv1,start_neurons * 1, True)
#uconv1 = Dropout(DropoutRatio/2)(uconv1)
#output_layer = Conv2D(1, (1,1), padding="same", activation="sigmoid")(uconv1)
output_layer_noActi = Conv2D(1, (1,1), padding="same", activation=None)(uconv1)
output_layer = Activation('sigmoid')(output_layer_noActi)
return output_layer
# In[11]:
def get_iou_vector(A, B):
batch_size = A.shape[0]
metric = []
for batch in range(batch_size):
t, p = A[batch]>0, B[batch]>0
intersection = np.logical_and(t, p)
union = np.logical_or(t, p)
iou = (np.sum(intersection > 0) + 1e-10 )/ (np.sum(union > 0) + 1e-10)
thresholds = np.arange(0.5, 1, 0.05)
s = []
for thresh in thresholds:
s.append(iou > thresh)
metric.append(np.mean(s))
return np.mean(metric)
def my_iou_metric(label, pred):
return tf.py_func(get_iou_vector, [label, pred>0.5], tf.float64)
def my_iou_metric_2(label, pred):
return tf.py_func(get_iou_vector, [label, pred >0], tf.float64)
# In[12]:
# code download from: https://github.com/bermanmaxim/LovaszSoftmax
def lovasz_grad(gt_sorted):
"""
Computes gradient of the Lovasz extension w.r.t sorted errors
See Alg. 1 in paper
"""
gts = tf.reduce_sum(gt_sorted)
intersection = gts - tf.cumsum(gt_sorted)
union = gts + tf.cumsum(1. - gt_sorted)
jaccard = 1. - intersection / union
jaccard = tf.concat((jaccard[0:1], jaccard[1:] - jaccard[:-1]), 0)
return jaccard
# --------------------------- BINARY LOSSES ---------------------------
def lovasz_hinge(logits, labels, per_image=True, ignore=None):
"""
Binary Lovasz hinge loss
logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty)
labels: [B, H, W] Tensor, binary ground truth masks (0 or 1)
per_image: compute the loss per image instead of per batch
ignore: void class id
"""
if per_image:
def treat_image(log_lab):
log, lab = log_lab
log, lab = tf.expand_dims(log, 0), tf.expand_dims(lab, 0)
log, lab = flatten_binary_scores(log, lab, ignore)
return lovasz_hinge_flat(log, lab)
losses = tf.map_fn(treat_image, (logits, labels), dtype=tf.float32)
loss = tf.reduce_mean(losses)
else:
loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))
return loss
def lovasz_hinge_flat(logits, labels):
"""
Binary Lovasz hinge loss
logits: [P] Variable, logits at each prediction (between -\infty and +\infty)
labels: [P] Tensor, binary ground truth labels (0 or 1)
ignore: label to ignore
"""
def compute_loss():
labelsf = tf.cast(labels, logits.dtype)
signs = 2. * labelsf - 1.
errors = 1. - logits * tf.stop_gradient(signs)
errors_sorted, perm = tf.nn.top_k(errors, k=tf.shape(errors)[0], name="descending_sort")
gt_sorted = tf.gather(labelsf, perm)
grad = lovasz_grad(gt_sorted)
#loss = tf.tensordot(tf.nn.relu(errors_sorted), tf.stop_gradient(grad), 1, name="loss_non_void")
loss = tf.tensordot(tf.nn.elu(errors_sorted), tf.stop_gradient(grad), 1, name="loss_non_void")
return loss
# deal with the void prediction case (only void pixels)
loss = tf.cond(tf.equal(tf.shape(logits)[0], 0),
lambda: tf.reduce_sum(logits) * 0.,
compute_loss,
strict=True,
name="loss"
)
return loss
def flatten_binary_scores(scores, labels, ignore=None):
"""
Flattens predictions in the batch (binary case)
Remove labels equal to 'ignore'
"""
scores = tf.reshape(scores, (-1,))
labels = tf.reshape(labels, (-1,))
if ignore is None:
return scores, labels
valid = tf.not_equal(labels, ignore)
vscores = tf.boolean_mask(scores, valid, name='valid_scores')
vlabels = tf.boolean_mask(labels, valid, name='valid_labels')
return vscores, vlabels
def lovasz_loss(y_true, y_pred):
y_true, y_pred = K.cast(K.squeeze(y_true, -1), 'int32'), K.cast(K.squeeze(y_pred, -1), 'float32')
#logits = K.log(y_pred / (1. - y_pred))
logits = y_pred #Jiaxin
loss = lovasz_hinge(logits, y_true, per_image = True, ignore = None)
return loss
# In[13]:
def predict_result(model,x_test,img_size_target): # predict both orginal and reflect x
x_test_reflect = np.array([np.fliplr(x) for x in x_test])
preds_test = model.predict(x_test).reshape(-1, img_size_target, img_size_target)
preds_test2_refect = model.predict(x_test_reflect).reshape(-1, img_size_target, img_size_target)
preds_test += np.array([ np.fliplr(x) for x in preds_test2_refect] )
return preds_test/2
# In[14]:
def add_depth_coord(images):
""" Takes dataset (N, W, H, 1) returns (N, W, H, 3). """
if not DEPTH:
return images
assert(len(images.shape) == 4)
channel1 = np.zeros_like(images)
h = images.shape[1]
for row, const in enumerate(np.linspace(0, 1, h)):
channel1[:, row, ...] = const
channel2 = images * channel1
images = np.concatenate([images, channel1, channel2], axis=-1)
return images
class SGDRScheduler(Callback):
'''Cosine annealing learning rate scheduler with periodic restarts.
# Usage
```python
schedule = SGDRScheduler(min_lr=1e-5,
max_lr=1e-2,
steps_per_epoch=np.ceil(epoch_size/batch_size),
lr_decay=0.9,
cycle_length=5,
mult_factor=1.5)
model.fit(X_train, Y_train, epochs=100, callbacks=[schedule])
```
# Arguments
min_lr: The lower bound of the learning rate range for the experiment.
max_lr: The upper bound of the learning rate range for the experiment.
steps_per_epoch: Number of mini-batches in the dataset. Calculated as `np.ceil(epoch_size/batch_size)`.
lr_decay: Reduce the max_lr after the completion of each cycle.
Ex. To reduce the max_lr by 20% after each cycle, set this value to 0.8.
cycle_length: Initial number of epochs in a cycle.
mult_factor: Scale epochs_to_restart after each full cycle completion.
# References
Blog post: jeremyjordan.me/nn-learning-rate
Original paper: http://arxiv.org/abs/1608.03983
'''
def __init__(self,
min_lr,
max_lr,
steps_per_epoch,
lr_decay=1,
cycle_length=10,
mult_factor=2):
self.min_lr = min_lr
self.max_lr = max_lr
self.lr_decay = lr_decay
self.batch_since_restart = 0
self.next_restart = cycle_length
self.steps_per_epoch = steps_per_epoch
self.cycle_length = cycle_length
self.mult_factor = mult_factor
self.history = {}
def clr(self):
'''Calculate the learning rate.'''
fraction_to_restart = self.batch_since_restart / (self.steps_per_epoch * self.cycle_length)
lr = self.min_lr + 0.5 * (self.max_lr - self.min_lr) * (1 + np.cos(fraction_to_restart * np.pi))
return lr
def on_train_begin(self, logs={}):
'''Initialize the learning rate to the minimum value at the start of training.'''
logs = logs or {}
K.set_value(self.model.optimizer.lr, self.max_lr)
def on_batch_end(self, batch, logs={}):
'''Record previous batch statistics and update the learning rate.'''
logs = logs or {}
self.history.setdefault('lr', []).append(K.get_value(self.model.optimizer.lr))
for k, v in logs.items():
self.history.setdefault(k, []).append(v)
self.batch_since_restart += 1
K.set_value(self.model.optimizer.lr, self.clr())
def on_epoch_end(self, epoch, logs={}):
'''Check for end of current cycle, apply restarts when necessary.'''
if epoch + 1 == self.next_restart:
self.batch_since_restart = 0
self.cycle_length = np.ceil(self.cycle_length * self.mult_factor)
self.next_restart += self.cycle_length
self.max_lr *= self.lr_decay
self.best_weights = self.model.get_weights()
def on_train_end(self, logs={}):
'''Set weights to the values from the end of the most recent cycle for best performance.'''
self.model.set_weights(self.best_weights)
# In[15]:
#Data augmentation
import cv2
affine_seq = iaa.Sequential([
# General
iaa.SomeOf((1, 2),
[iaa.Fliplr(0.5),
iaa.Affine(rotate=(-10, 10),
translate_percent={"x": (-0.05, 0.05)},
mode='edge'),
# iaa.CropAndPad(percent=((0.0, 0.0), (0.05, 0.0), (0.0, 0.0), (0.05, 0.0)))
]),
# Deformations
iaa.Sometimes(0.3, iaa.PiecewiseAffine(scale=(0.04, 0.08))),
iaa.Sometimes(0.3, iaa.PerspectiveTransform(scale=(0.05, 0.1))),
], random_order=True)
intensity_seq = iaa.Sequential([
iaa.Invert(0.3),
iaa.Sometimes(0.3, iaa.ContrastNormalization((0.5, 1.5))),
iaa.OneOf([
iaa.Noop(),
iaa.Sequential([
iaa.OneOf([
iaa.Add((-10, 10)),
iaa.AddElementwise((-10, 10)),
iaa.Multiply((0.95, 1.05)),
iaa.MultiplyElementwise((0.95, 1.05)),
]),
]),
iaa.OneOf([
iaa.GaussianBlur(sigma=(0.0, 1.0)),
iaa.AverageBlur(k=(2, 5)),
iaa.MedianBlur(k=(3, 5))
])
])
], random_order=False)
def augment(x, y):
sometimes = lambda aug: iaa.Sometimes(0.3, aug)
seq = iaa.Sequential([
iaa.Fliplr(0.5), # horizontally flip
sometimes(iaa.Add((-10, 10))),
# iaa.OneOf([
# iaa.Noop(),
# iaa.PerspectiveTransform(scale=(0.04, 0.08)),
# iaa.Add((-10, 10)),
# iaa.ContrastNormalization((0.75, 1.5)),
# iaa.Emboss(alpha=(0, 1.0), strength=(0, 2.0)),
# iaa.EdgeDetect(alpha=(0, 0.7)),
# iaa.Noop(),
# sometimes(iaa.OneOf([
# iaa.EdgeDetect(alpha=(0, 0.7)),
# iaa.DirectedEdgeDetect(
# alpha=(0, 0.7), direction=(0.0, 1.0)
# ),
# ])),
# ]),
#sometimes(iaa.CropAndPad(
# percent=(-0.2, 0.2),
# pad_mode=["reflect"]
# )),
# sometimes(iaa.Sequential([
# iaa.Crop(percent=(0.2), keep_size=False),
# iaa.Scale({"height": img_size_target, "width": img_size_target}),
# iaa.Pad(percent=(0.2), pad_mode=["reflect"])
# ])),
])._to_deterministic()
images_aug_x = seq.augment_images(x)
images_aug_y = seq.augment_images(y)
return np.array(images_aug_x), np.array(images_aug_y)
# Return augmented images/masks arrays of batch size
def generator(features, labels, batch_size, repeat=1):
# create empty arrays to contain batch of features and labels
batch_features = np.zeros((batch_size, img_size_target, img_size_target, features.shape[3]))
batch_labels = np.zeros((batch_size, img_size_target, img_size_target, labels.shape[3]))
print(batch_features.shape)
while True:
# Fill arrays of batch size with augmented data taken randomly from full passed arrays
indexes = random.sample(range(len(features)), batch_size)*repeat
# Perform the exactly the same augmentation for X and y
random_augmented_images, random_augmented_labels = augment(np.apply_along_axis(np.squeeze, 1, features[indexes]*255).astype(np.uint8),
np.apply_along_axis(np.squeeze, 1, labels[indexes]*255).astype(np.uint8))
yield add_depth_coord(random_augmented_images/255), random_augmented_labels/255
#x_train = np.array(train_df.images.map(upsample).tolist()).reshape(-1, img_size_target, img_size_target, 3)
#y_train = np.array(train_df.masks.map(upsample).tolist()).reshape(-1, img_size_target, img_size_target, 3)
#x_test= np.array(test_df.images.map(upsample).tolist()).reshape(-1, img_size_target, img_size_target, 3)
x_train = np.array(train_df.images.tolist()).reshape(-1, img_size_target, img_size_target, 1)
y_train = np.array(train_df.masks.tolist()).reshape(-1, img_size_target, img_size_target, 1)
train_cls = np.array(train_df.coverage_class)
gc.collect()
#x_train, y_train, train_cls = augment(train_df)
# In[16]:
#Score the model and do a threshold optimization by the best IoU.
# src: https://www.kaggle.com/aglotero/another-iou-metric
def iou_metric(y_true_in, y_pred_in, print_table=False):
labels = y_true_in
y_pred = y_pred_in
true_objects = 2
pred_objects = 2
# if all zeros, original code generate wrong bins [-0.5 0 0.5],
temp1 = np.histogram2d(labels.flatten(), y_pred.flatten(), bins=([0,0.5,1], [0,0.5, 1]))
intersection = temp1[0]
area_true = np.histogram(labels,bins=[0,0.5,1])[0]
area_pred = np.histogram(y_pred, bins=[0,0.5,1])[0]
area_true = np.expand_dims(area_true, -1)
area_pred = np.expand_dims(area_pred, 0)
# Compute union
union = area_true + area_pred - intersection
# Exclude background from the analysis
intersection = intersection[1:,1:]
intersection[intersection == 0] = 1e-9
union = union[1:,1:]
union[union == 0] = 1e-9
# Compute the intersection over union
iou = intersection / union
# Precision helper function
def precision_at(threshold, iou):
matches = iou > threshold
true_positives = np.sum(matches, axis=1) == 1 # Correct objects
false_positives = np.sum(matches, axis=0) == 0 # Missed objects
false_negatives = np.sum(matches, axis=1) == 0 # Extra objects
tp, fp, fn = | np.sum(true_positives) | numpy.sum |
#!/usr/bin/env python3
import rospy
import rospkg
import actionlib
from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal
import pathlib
import onnxruntime as ort
import numpy as np
import cv2
from olfaction_msgs.msg import gas_sensor, anemometer
import matplotlib.pyplot as plt
# set initial position
initial_position = (2, 14)
source_position = (3, 2)
# initialize path
pkg_path = pathlib.Path(rospkg.RosPack().get_path('pydog_gsl'))
map_path = pkg_path / 'map/occupancy.png'
model_path = pkg_path / 'model/dqn.onnx'
output_path = pkg_path / 'result.csv'
# initialize map_grid
map_grid = cv2.imread(map_path.as_posix())
map_grid = cv2.cvtColor(map_grid, cv2.COLOR_BGR2GRAY)
_, map_grid = cv2.threshold(map_grid, 125, 255, cv2.THRESH_BINARY)
map_grid = map_grid.astype(np.float32)
map_grid /= 255.0
# onnxruntime Policy
class Policy:
def __init__(self, model_path: str) -> None:
self.ort_sess = ort.InferenceSession(model_path)
self.action_name = ['Up', 'Down', 'Left', 'Right']
def __call__(self, model_input):
output = self.ort_sess.run(['output'], {'input': model_input})[0]
return np.argmax(output, axis=1, keepdims=True)[0, 0]
def __len__(self):
return len(self.action_name)
def __getitem__(self, key):
return self.action_name[key]
# observation matrix
class ObservationMatrix:
def __init__(self, map_grid, initial_position, concentration_limit=200.0) -> None:
self.trajectory_matrix = np.zeros(map_grid.shape, dtype=np.float32)
self.obstacle_matrix = map_grid.copy()
self.concentration_matrix = np.zeros(map_grid.shape, dtype=np.float32)
self.airflow_x_matrix = np.zeros(map_grid.shape, dtype=np.float32)
self.airflow_y_matrix = np.zeros(map_grid.shape, dtype=np.float32)
self.agent_position = [initial_position[0], initial_position[1]]
self.concentration_limit = concentration_limit
def get_observation(self):
trajectory_matrix_pad = | np.pad(self.trajectory_matrix, (5, 5), 'constant', constant_values=0) | numpy.pad |
import pickle
import os
import matplotlib.pyplot as plt
import numpy as np
def running_max_stats(scores):
maxscores = np.maximum.accumulate(scores, axis=1)
mean = np.mean(maxscores, axis=0)
std = np.std(maxscores, axis=0)
return (maxscores, mean, std)
def plot_searcher_comparison():
folder_path = 'logs/searcher_comparison'
searchers = ['rand', 'mcts', 'mcts_bi', 'smbo']
# searchers = ['smbo']
search_space_type = 'deepconv'
num_repeats = 5
# loading the scores`
m_maxscores = []
std_maxscores = []
for searcher_type in searchers:
# load all the pickles
rs = []
for i in xrange(num_repeats):
file_name = '%s_%s_%d.pkl' % (search_space_type, searcher_type, i)
file_path = os.path.join(folder_path, file_name)
with open(file_path, 'rb') as f:
r = pickle.load(f)
rs.append(r)
srch_scores = [r['scores'] for r in rs]
# from pprint import pprint
# print searcher_type, len(srch_scores[0])
#pprint(srch_scores)
# print searcher_type, [len(scs) for scs in srch_scores]
_, mean, std = running_max_stats(srch_scores)
m_maxscores.append(mean)
std_maxscores.append(std)
def plot_comparison(k1, k2):
for searcher_type, mean, std in zip(searchers, m_maxscores, std_maxscores):
plt.errorbar(np.arange(k1, k2 + 1), mean[k1 - 1:k2],
yerr=std[k1 - 1:k2] / np.sqrt(num_repeats),
label=searcher_type)
plt.legend(loc='best')
plt.xlabel('Number of models evaluated')
plt.ylabel('Best validation performance')
# plot some different number of ranges
for k1, k2 in [(1, 64), (1, 16), (4, 16), (16, 64), (6, 64)]:
plot_comparison(k1, k2)
plt.savefig(figs_folderpath + 'searcher_comp_%d_to_%d.pdf' % (k1, k2),
bbox_inches='tight')
plt.close()
def compute_percentiles(scores, thresholds):
scores = np.array(scores)
n = float(len(scores))
percents = [(scores >= th).sum() / n for th in thresholds]
return percents
def plot_performance_quantiles():
folder_path = 'logs/searcher_comparison'
searchers = ['rand', 'mcts', 'mcts_bi', 'smbo']
search_space_type = 'deepconv'
num_repeats = 5
for searcher_type in searchers:
# load all the pickles
rs = []
for i in xrange(num_repeats):
file_name = '%s_%s_%d.pkl' % (search_space_type, searcher_type, i)
file_path = os.path.join(folder_path, file_name)
with open(file_path, 'rb') as f:
r = pickle.load(f)
rs.append(r)
percents = | np.linspace(0.0, 1.0, num=100) | numpy.linspace |
"""
Scripts reads in sea ice thickness data from CS-2 corrected/uncorrected
and plots a trend analysis over the 2011-2017 period (April)
Notes
-----
Author : <NAME>
Date : 16 January 2018
"""
### Import modules
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as c
import datetime
from mpl_toolkits.basemap import Basemap
import nclcmaps as ncm
import cmocean
import scipy.stats as sts
### Define directories
directorydata = '/home/zlabe/Documents/Projects/CAAthickness/Data/'
directoryfigure = '/home/zlabe/Desktop/CS2PIOMAS/Corrected/'
### Define time
now = datetime.datetime.now()
currentmn = str(now.month)
currentdy = str(now.day)
currentyr = str(now.year)
currenttime = currentmn + '_' + currentdy + '_' + currentyr
titletime = currentmn + '/' + currentdy + '/' + currentyr
print('\n' '----Calc sea ice thickness trends - %s----\n' % titletime)
### Alott time series
yearmin = 2011
yearmax = 2017
years = np.arange(yearmin,yearmax+1,1)
yearsq = np.append(years,years)
months = [r'April']
### Read in data
lonvals = []
latvals = []
sitp= []
situ = []
sitc = []
for i in range(years.shape[0]):
filename = 'PIOMAS_CS2UC_sit_04_%s.txt' % years[i]
data = np.genfromtxt(directorydata + filename,unpack=False,
usecols=[0,1,2,3,4],skip_header=2)
latq = data[:,0]
lonq = data[:,1]
sitpq = data[:,2]
situq = data[:,4]
sitcq = data[:,5]
lonvals.append(lonq)
latvals.append(latq)
sitp.append(sitpq)
situ.append(situq)
sitc.append(sitcq)
print('Completed: Read in %s data!' % years[i])
### Appends lat/lon
lonvalsn = np.append(lonvals,lonvals)
latvalsn = np.append(latvals,latvals)
### Conduct a weighted average
def calc_weightedAve(var,lats):
"""
Area weights sit array 5d [ens,year,month,lat,lon] into [ens,year,month]
Parameters
----------
var : 5d,4d,3d,1d array of a gridded variable
lats : 2d array of latitudes
Returns
-------
meanvar : weighted average for 3d,2d,1d array
Usage
-----
meanvar = calc_weightedAve(var,lats)
"""
print('\n>>> Using calc_weightedAve function!')
### Import modules
import numpy as np
### Calculate weighted average for various dimensional arrays
if var.ndim == 5:
meanvar = np.empty((var.shape[0],var.shape[1],var.shape[2]))
for ens in range(var.shape[0]):
for i in range(var.shape[1]):
for j in range(var.shape[2]):
varq = var[ens,i,j,:,:]
mask = np.isfinite(varq) & np.isfinite(lats)
varmask = varq[mask]
areamask = np.cos(np.deg2rad(lats[mask]))
meanvar[ens,i,j] = np.nansum(varmask*areamask) \
/np.sum(areamask)
elif var.ndim == 4:
meanvar = np.empty((var.shape[0],var.shape[1]))
for i in range(var.shape[0]):
for j in range(var.shape[1]):
varq = var[i,j,:,:]
mask = np.isfinite(varq) & np.isfinite(lats)
varmask = varq[mask]
areamask = np.cos(np.deg2rad(lats[mask]))
meanvar[i,j] = | np.nansum(varmask*areamask) | numpy.nansum |
from numpy.testing import (assert_allclose, assert_almost_equal,
assert_array_equal, assert_array_almost_equal_nulp)
import numpy as np
import pytest
import matplotlib.mlab as mlab
from matplotlib.cbook.deprecation import MatplotlibDeprecationWarning
def _stride_repeat(*args, **kwargs):
with pytest.warns(MatplotlibDeprecationWarning):
return mlab.stride_repeat(*args, **kwargs)
class TestStride:
def get_base(self, x):
y = x
while y.base is not None:
y = y.base
return y
def calc_window_target(self, x, NFFT, noverlap=0, axis=0):
"""
This is an adaptation of the original window extraction algorithm.
This is here to test to make sure the new implementation has the same
result.
"""
step = NFFT - noverlap
ind = np.arange(0, len(x) - NFFT + 1, step)
n = len(ind)
result = np.zeros((NFFT, n))
# do the ffts of the slices
for i in range(n):
result[:, i] = x[ind[i]:ind[i]+NFFT]
if axis == 1:
result = result.T
return result
@pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D'])
def test_stride_windows_invalid_input_shape(self, shape):
x = np.arange(np.prod(shape)).reshape(shape)
with pytest.raises(ValueError):
mlab.stride_windows(x, 5)
@pytest.mark.parametrize('n, noverlap',
[(0, None), (11, None), (2, 2), (2, 3)],
ids=['n less than 1', 'n greater than input',
'noverlap greater than n',
'noverlap equal to n'])
def test_stride_windows_invalid_params(self, n, noverlap):
x = np.arange(10)
with pytest.raises(ValueError):
mlab.stride_windows(x, n, noverlap)
@pytest.mark.parametrize('shape', [(), (10, 1)], ids=['0D', '2D'])
def test_stride_repeat_invalid_input_shape(self, shape):
x = np.arange(np.prod(shape)).reshape(shape)
with pytest.raises(ValueError):
_stride_repeat(x, 5)
@pytest.mark.parametrize('axis', [-1, 2],
ids=['axis less than 0',
'axis greater than input shape'])
def test_stride_repeat_invalid_axis(self, axis):
x = np.array(0)
with pytest.raises(ValueError):
_stride_repeat(x, 5, axis=axis)
def test_stride_repeat_n_lt_1_ValueError(self):
x = np.arange(10)
with pytest.raises(ValueError):
_stride_repeat(x, 0)
@pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1'])
@pytest.mark.parametrize('n', [1, 5], ids=['n1', 'n5'])
def test_stride_repeat(self, n, axis):
x = np.arange(10)
y = _stride_repeat(x, n, axis=axis)
expected_shape = [10, 10]
expected_shape[axis] = n
yr = np.repeat(np.expand_dims(x, axis), n, axis=axis)
assert yr.shape == y.shape
assert_array_equal(yr, y)
assert tuple(expected_shape) == y.shape
assert self.get_base(y) is x
@pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1'])
@pytest.mark.parametrize('n, noverlap',
[(1, 0), (5, 0), (15, 2), (13, -3)],
ids=['n1-noverlap0', 'n5-noverlap0',
'n15-noverlap2', 'n13-noverlapn3'])
def test_stride_windows(self, n, noverlap, axis):
x = np.arange(100)
y = mlab.stride_windows(x, n, noverlap=noverlap, axis=axis)
expected_shape = [0, 0]
expected_shape[axis] = n
expected_shape[1 - axis] = 100 // (n - noverlap)
yt = self.calc_window_target(x, n, noverlap=noverlap, axis=axis)
assert yt.shape == y.shape
assert_array_equal(yt, y)
assert tuple(expected_shape) == y.shape
assert self.get_base(y) is x
@pytest.mark.parametrize('axis', [0, 1], ids=['axis0', 'axis1'])
def test_stride_windows_n32_noverlap0_unflatten(self, axis):
n = 32
x = np.arange(n)[np.newaxis]
x1 = np.tile(x, (21, 1))
x2 = x1.flatten()
y = mlab.stride_windows(x2, n, axis=axis)
if axis == 0:
x1 = x1.T
assert y.shape == x1.shape
assert_array_equal(y, x1)
def test_stride_ensure_integer_type(self):
N = 100
x = np.full(N + 20, np.nan)
y = x[10:-10]
y[:] = 0.3
# previous to #3845 lead to corrupt access
y_strided = mlab.stride_windows(y, n=33, noverlap=0.6)
assert_array_equal(y_strided, 0.3)
# previous to #3845 lead to corrupt access
y_strided = mlab.stride_windows(y, n=33.3, noverlap=0)
assert_array_equal(y_strided, 0.3)
# even previous to #3845 could not find any problematic
# configuration however, let's be sure it's not accidentally
# introduced
y_strided = _stride_repeat(y, n=33.815)
assert_array_equal(y_strided, 0.3)
def _apply_window(*args, **kwargs):
with pytest.warns(MatplotlibDeprecationWarning):
return mlab.apply_window(*args, **kwargs)
class TestWindow:
def setup(self):
np.random.seed(0)
n = 1000
self.sig_rand = np.random.standard_normal(n) + 100.
self.sig_ones = np.ones(n)
def check_window_apply_repeat(self, x, window, NFFT, noverlap):
"""
This is an adaptation of the original window application algorithm.
This is here to test to make sure the new implementation has the same
result.
"""
step = NFFT - noverlap
ind = np.arange(0, len(x) - NFFT + 1, step)
n = len(ind)
result = np.zeros((NFFT, n))
if np.iterable(window):
windowVals = window
else:
windowVals = window(np.ones(NFFT, x.dtype))
# do the ffts of the slices
for i in range(n):
result[:, i] = windowVals * x[ind[i]:ind[i]+NFFT]
return result
def test_window_none_rand(self):
res = mlab.window_none(self.sig_ones)
assert_array_equal(res, self.sig_ones)
def test_window_none_ones(self):
res = mlab.window_none(self.sig_rand)
assert_array_equal(res, self.sig_rand)
def test_window_hanning_rand(self):
targ = np.hanning(len(self.sig_rand)) * self.sig_rand
res = mlab.window_hanning(self.sig_rand)
assert_allclose(targ, res, atol=1e-06)
def test_window_hanning_ones(self):
targ = np.hanning(len(self.sig_ones))
res = mlab.window_hanning(self.sig_ones)
assert_allclose(targ, res, atol=1e-06)
def test_apply_window_1D_axis1_ValueError(self):
x = self.sig_rand
window = mlab.window_hanning
with pytest.raises(ValueError):
_apply_window(x, window, axis=1, return_window=False)
def test_apply_window_1D_els_wrongsize_ValueError(self):
x = self.sig_rand
window = mlab.window_hanning(np.ones(x.shape[0]-1))
with pytest.raises(ValueError):
_apply_window(x, window)
def test_apply_window_0D_ValueError(self):
x = np.array(0)
window = mlab.window_hanning
with pytest.raises(ValueError):
_apply_window(x, window, axis=1, return_window=False)
def test_apply_window_3D_ValueError(self):
x = self.sig_rand[np.newaxis][np.newaxis]
window = mlab.window_hanning
with pytest.raises(ValueError):
_apply_window(x, window, axis=1, return_window=False)
def test_apply_window_hanning_1D(self):
x = self.sig_rand
window = mlab.window_hanning
window1 = mlab.window_hanning(np.ones(x.shape[0]))
y, window2 = _apply_window(x, window, return_window=True)
yt = window(x)
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
assert_array_equal(window1, window2)
def test_apply_window_hanning_1D_axis0(self):
x = self.sig_rand
window = mlab.window_hanning
y = _apply_window(x, window, axis=0, return_window=False)
yt = window(x)
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
def test_apply_window_hanning_els_1D_axis0(self):
x = self.sig_rand
window = mlab.window_hanning(np.ones(x.shape[0]))
window1 = mlab.window_hanning
y = _apply_window(x, window, axis=0, return_window=False)
yt = window1(x)
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
def test_apply_window_hanning_2D_axis0(self):
x = np.random.standard_normal([1000, 10]) + 100.
window = mlab.window_hanning
y = _apply_window(x, window, axis=0, return_window=False)
yt = np.zeros_like(x)
for i in range(x.shape[1]):
yt[:, i] = window(x[:, i])
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
def test_apply_window_hanning_els1_2D_axis0(self):
x = np.random.standard_normal([1000, 10]) + 100.
window = mlab.window_hanning(np.ones(x.shape[0]))
window1 = mlab.window_hanning
y = _apply_window(x, window, axis=0, return_window=False)
yt = np.zeros_like(x)
for i in range(x.shape[1]):
yt[:, i] = window1(x[:, i])
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
def test_apply_window_hanning_els2_2D_axis0(self):
x = np.random.standard_normal([1000, 10]) + 100.
window = mlab.window_hanning
window1 = mlab.window_hanning(np.ones(x.shape[0]))
y, window2 = _apply_window(x, window, axis=0, return_window=True)
yt = np.zeros_like(x)
for i in range(x.shape[1]):
yt[:, i] = window1*x[:, i]
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
assert_array_equal(window1, window2)
def test_apply_window_hanning_els3_2D_axis0(self):
x = np.random.standard_normal([1000, 10]) + 100.
window = mlab.window_hanning
window1 = mlab.window_hanning(np.ones(x.shape[0]))
y, window2 = _apply_window(x, window, axis=0, return_window=True)
yt = _apply_window(x, window1, axis=0, return_window=False)
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
assert_array_equal(window1, window2)
def test_apply_window_hanning_2D_axis1(self):
x = np.random.standard_normal([10, 1000]) + 100.
window = mlab.window_hanning
y = _apply_window(x, window, axis=1, return_window=False)
yt = np.zeros_like(x)
for i in range(x.shape[0]):
yt[i, :] = window(x[i, :])
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
def test_apply_window_hanning_2D_els1_axis1(self):
x = np.random.standard_normal([10, 1000]) + 100.
window = mlab.window_hanning(np.ones(x.shape[1]))
window1 = mlab.window_hanning
y = _apply_window(x, window, axis=1, return_window=False)
yt = np.zeros_like(x)
for i in range(x.shape[0]):
yt[i, :] = window1(x[i, :])
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
def test_apply_window_hanning_2D_els2_axis1(self):
x = np.random.standard_normal([10, 1000]) + 100.
window = mlab.window_hanning
window1 = mlab.window_hanning(np.ones(x.shape[1]))
y, window2 = _apply_window(x, window, axis=1, return_window=True)
yt = np.zeros_like(x)
for i in range(x.shape[0]):
yt[i, :] = window1 * x[i, :]
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
assert_array_equal(window1, window2)
def test_apply_window_hanning_2D_els3_axis1(self):
x = np.random.standard_normal([10, 1000]) + 100.
window = mlab.window_hanning
window1 = mlab.window_hanning(np.ones(x.shape[1]))
y = _apply_window(x, window, axis=1, return_window=False)
yt = _apply_window(x, window1, axis=1, return_window=False)
assert yt.shape == y.shape
assert x.shape == y.shape
assert_allclose(yt, y, atol=1e-06)
def test_apply_window_stride_windows_hanning_2D_n13_noverlapn3_axis0(self):
x = self.sig_rand
window = mlab.window_hanning
yi = mlab.stride_windows(x, n=13, noverlap=2, axis=0)
y = _apply_window(yi, window, axis=0, return_window=False)
yt = self.check_window_apply_repeat(x, window, 13, 2)
assert yt.shape == y.shape
assert x.shape != y.shape
assert_allclose(yt, y, atol=1e-06)
def test_apply_window_hanning_2D_stack_axis1(self):
ydata = np.arange(32)
ydata1 = ydata+5
ydata2 = ydata+3.3
ycontrol1 = _apply_window(ydata1, mlab.window_hanning)
ycontrol2 = mlab.window_hanning(ydata2)
ydata = np.vstack([ydata1, ydata2])
ycontrol = np.vstack([ycontrol1, ycontrol2])
ydata = np.tile(ydata, (20, 1))
ycontrol = np.tile(ycontrol, (20, 1))
result = _apply_window(ydata, mlab.window_hanning, axis=1,
return_window=False)
assert_allclose(ycontrol, result, atol=1e-08)
def test_apply_window_hanning_2D_stack_windows_axis1(self):
ydata = np.arange(32)
ydata1 = ydata+5
ydata2 = ydata+3.3
ycontrol1 = _apply_window(ydata1, mlab.window_hanning)
ycontrol2 = mlab.window_hanning(ydata2)
ydata = np.vstack([ydata1, ydata2])
ycontrol = np.vstack([ycontrol1, ycontrol2])
ydata = np.tile(ydata, (20, 1))
ycontrol = np.tile(ycontrol, (20, 1))
result = _apply_window(ydata, mlab.window_hanning, axis=1,
return_window=False)
assert_allclose(ycontrol, result, atol=1e-08)
def test_apply_window_hanning_2D_stack_windows_axis1_unflatten(self):
n = 32
ydata = np.arange(n)
ydata1 = ydata+5
ydata2 = ydata+3.3
ycontrol1 = _apply_window(ydata1, mlab.window_hanning)
ycontrol2 = mlab.window_hanning(ydata2)
ydata = np.vstack([ydata1, ydata2])
ycontrol = np.vstack([ycontrol1, ycontrol2])
ydata = np.tile(ydata, (20, 1))
ycontrol = np.tile(ycontrol, (20, 1))
ydata = ydata.flatten()
ydata1 = mlab.stride_windows(ydata, 32, noverlap=0, axis=0)
result = _apply_window(ydata1, mlab.window_hanning, axis=0,
return_window=False)
assert_allclose(ycontrol.T, result, atol=1e-08)
class TestDetrend:
def setup(self):
np.random.seed(0)
n = 1000
x = np.linspace(0., 100, n)
self.sig_zeros = np.zeros(n)
self.sig_off = self.sig_zeros + 100.
self.sig_slope = np.linspace(-10., 90., n)
self.sig_slope_mean = x - x.mean()
sig_rand = np.random.standard_normal(n)
sig_sin = np.sin(x*2*np.pi/(n/100))
sig_rand -= sig_rand.mean()
sig_sin -= sig_sin.mean()
self.sig_base = sig_rand + sig_sin
self.atol = 1e-08
def test_detrend_none_0D_zeros(self):
input = 0.
targ = input
mlab.detrend_none(input)
assert input == targ
def test_detrend_none_0D_zeros_axis1(self):
input = 0.
targ = input
mlab.detrend_none(input, axis=1)
assert input == targ
def test_detrend_str_none_0D_zeros(self):
input = 0.
targ = input
mlab.detrend(input, key='none')
assert input == targ
def test_detrend_detrend_none_0D_zeros(self):
input = 0.
targ = input
mlab.detrend(input, key=mlab.detrend_none)
assert input == targ
def test_detrend_none_0D_off(self):
input = 5.5
targ = input
mlab.detrend_none(input)
assert input == targ
def test_detrend_none_1D_off(self):
input = self.sig_off
targ = input
res = mlab.detrend_none(input)
assert_array_equal(res, targ)
def test_detrend_none_1D_slope(self):
input = self.sig_slope
targ = input
res = mlab.detrend_none(input)
assert_array_equal(res, targ)
def test_detrend_none_1D_base(self):
input = self.sig_base
targ = input
res = mlab.detrend_none(input)
assert_array_equal(res, targ)
def test_detrend_none_1D_base_slope_off_list(self):
input = self.sig_base + self.sig_slope + self.sig_off
targ = input.tolist()
res = mlab.detrend_none(input.tolist())
assert res == targ
def test_detrend_none_2D(self):
arri = [self.sig_base,
self.sig_base + self.sig_off,
self.sig_base + self.sig_slope,
self.sig_base + self.sig_off + self.sig_slope]
input = np.vstack(arri)
targ = input
res = mlab.detrend_none(input)
assert_array_equal(res, targ)
def test_detrend_none_2D_T(self):
arri = [self.sig_base,
self.sig_base + self.sig_off,
self.sig_base + self.sig_slope,
self.sig_base + self.sig_off + self.sig_slope]
input = np.vstack(arri)
targ = input
res = mlab.detrend_none(input.T)
assert_array_equal(res.T, targ)
def test_detrend_mean_0D_zeros(self):
input = 0.
targ = 0.
res = mlab.detrend_mean(input)
assert_almost_equal(res, targ)
def test_detrend_str_mean_0D_zeros(self):
input = 0.
targ = 0.
res = mlab.detrend(input, key='mean')
assert_almost_equal(res, targ)
def test_detrend_detrend_mean_0D_zeros(self):
input = 0.
targ = 0.
res = mlab.detrend(input, key=mlab.detrend_mean)
assert_almost_equal(res, targ)
def test_detrend_mean_0D_off(self):
input = 5.5
targ = 0.
res = mlab.detrend_mean(input)
assert_almost_equal(res, targ)
def test_detrend_str_mean_0D_off(self):
input = 5.5
targ = 0.
res = mlab.detrend(input, key='mean')
assert_almost_equal(res, targ)
def test_detrend_detrend_mean_0D_off(self):
input = 5.5
targ = 0.
res = mlab.detrend(input, key=mlab.detrend_mean)
assert_almost_equal(res, targ)
def test_detrend_mean_1D_zeros(self):
input = self.sig_zeros
targ = self.sig_zeros
res = mlab.detrend_mean(input)
| assert_allclose(res, targ, atol=self.atol) | numpy.testing.assert_allclose |
"""
File: encoders.py
Author: Team ohia.ai
Description: Generalized encoder classes with a consistent Sklearn-like API
"""
import time
import numpy as np
import pandas as pd
from statsmodels.distributions.empirical_distribution import ECDF
from sklearn.linear_model import Ridge
from scipy.stats import rankdata
def run_length_encoding(im):
pixels = im.flatten(order = 'F')
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + 1
runs[1::2] -= runs[::2]
return ' '.join(str(x) for x in runs)
class RunLengthEncoder(object):
"""Run length encoding of a binary array."""
def __init__(self, order='C', one_indexing=False):
"""
order: {'K', 'A', 'C', 'F'}, optional
Passed to the numpy.flatten function.
one_indexing: bool, optional
If True then start indexing at 1 (rather than 0). The default is False.
"""
self._one_indexing = one_indexing
self._order = order
def encode(self, x: np.ndarray) -> str:
"""Run length encoding of a binary array.
Args:
x: numpy.array
Binary input array.
Returns:
rle_str:
Run length encoded values. Indexs and lengths are space delimited.
"""
pixels = x.flatten(order = self._order)
pixels = np.concatenate([[0], pixels, [0]])
runs = np.where(pixels[1:] != pixels[:-1])[0] + self._one_indexing
runs[1::2] -= runs[::2]
return ' '.join(str(x) for x in runs)
def decode(self, rle_str: str, shape: tuple) -> np.ndarray:
"""Decoding of a run length encoded array.
Args:
rle_str: str
run-length string (space delimited)
shape: tuple
size (height,width) of array to return
Returns:
x:
binary array of size `shape`
"""
s = rle_str.split()
starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])]
starts -= self._one_indexing
ends = starts + lengths
img = np.zeros(shape[0]*shape[1], dtype=np.uint8)
for lo, hi in zip(starts, ends):
img[lo:hi] = 1
return img.reshape(shape, order=self._order)
class FastLabelEncoder():
"""Map categorical variable into {0, 1, ..., n_categories}.
Note: https://stackoverflow.com/questions/45321999/how-can-i-optimize-label-encoding-for-large-data-sets-sci-kit-learn?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
"""
def __init__(self):
self.lookup = None
def fit(self, x):
labels = np.unique(x, return_inverse=True)[1]
self.lookup = dict(zip(x, labels))
def transform(self, x):
return np.vectorize(self.lookup.get)(x)
def fit_transform(self, x):
self.fit(x)
return self.transform(x)
class MeanImputer():
"""Single column mean imputation
"""
def __inti__(self):
self.replace_value = None
def fit(self, x):
self.replace_value = np.mean(x[np.isfinite(x)])
def transform(self, x):
y = x.copy()
y[~np.isfinite(x)] = self.replace_value
return y
def fit_transform(self, x):
self.fit(x)
return self.transform(x)
class BinEncoder():
"""Bin a numeric variable into {0, 1, ...n_bins-1}.
"""
def __init__(self, n_bins=100):
self.n_bins = n_bins
self.ecdf = None
def fit(self, x):
"""Calculate empirical CDF
Args:
x (array): input array
"""
self.ecdf = ECDF(x)
def transform(self, x):
"""Transform using empirical CDF
Args:
x (array): array to transform
"""
return np.ceil(self.n_bins*self.ecdf(x)).astype(np.int)
def fit_transform(self, x):
"""Calculate and Transform using empirical CDF
Args:
x (array): array to transform
"""
self.fit(x)
return self.transform(x)
class RankEncoder():
"""Map an ordinal variable into {0, 1, ...n_unique} The order
of the variable is preserved.
"""
def __init__(self):
self.lookup = None
def fit(self, x):
x = np.unique(np.array(x))
r = rankdata(x).astype(np.int)
self.lookup = dict(zip(x, r))
def transform(self, x):
x = np.array(x)
return | np.vectorize(self.lookup.get) | numpy.vectorize |
"""Model Objects and ML algorithm serialisation."""
import os
import pickle
import warnings
import logging
from itertools import chain
from functools import partial
from os.path import join, isdir, abspath
import numpy as np
from revrand import StandardLinearModel, GeneralisedLinearModel
from revrand.basis_functions import LinearBasis, RandomRBF, \
RandomLaplace, RandomCauchy, RandomMatern32, RandomMatern52
from revrand.btypes import Parameter, Positive
from revrand.likelihoods import Gaussian
from revrand.optimize import Adam
from revrand.utils import atleast_list
from scipy.integrate import fixed_quad
from scipy.stats import norm
from sklearn.base import BaseEstimator, RegressorMixin
from sklearn.svm import SVR, SVC
from sklearn.ensemble import (RandomForestRegressor as RFR,
RandomForestClassifier as RFC,
GradientBoostingClassifier)
from sklearn.linear_model import ARDRegression, LogisticRegression
from sklearn.tree import DecisionTreeRegressor, ExtraTreeRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.preprocessing import LabelEncoder
from sklearn.kernel_approximation import RBFSampler
from xgboost import XGBRegressor
from uncoverml import mpiops
from uncoverml.interpolate import SKLearnNearestNDInterpolator, \
SKLearnLinearNDInterpolator, SKLearnRbf, SKLearnCT
from uncoverml.cubist import Cubist
from uncoverml.cubist import MultiCubist
from uncoverml.transforms import target as transforms
warnings.filterwarnings("ignore", category=DeprecationWarning)
#
# Module constants
#
log = logging.getLogger(__name__)
QUADORDER = 5 # Order of quadrature used for transforming probabilistic vals
#
# Mixin classes for providing pipeline compatibility to revrand
#
class BasisMakerMixin():
"""
Mixin class for easily creating approximate kernel functions for revrand.
This is primarily used for the approximate Gaussian process algorithms.
"""
def fit(self, X, y, *args, **kwargs):
self._make_basis(X)
return super().fit(X, y, *args, **kwargs) # args for GLMs
def _store_params(self, kernel, regulariser, nbases, lenscale, ard):
self.kernel = kernel
self.nbases = nbases
self.ard = ard
self.lenscale = lenscale if np.isscalar(lenscale) \
else np.asarray(lenscale)
self.regulariser = Parameter(regulariser, Positive())
def _make_basis(self, X):
D = X.shape[1]
lenscale = self.lenscale
if self.ard and D > 1:
lenscale = np.ones(D) * lenscale
lenscale_init = Parameter(lenscale, Positive())
gpbasis = basismap[self.kernel](Xdim=X.shape[1], nbases=self.nbases,
lenscale=lenscale_init,
regularizer=self.regulariser)
self.basis = gpbasis + LinearBasis()
class PredictDistMixin():
"""
Mixin class for providing a ``predict_dist`` method to the
StandardLinearModel class in revrand.
"""
def predict_dist(self, X, interval=0.95, *args, **kwargs):
"""
Predictive mean and variance for a probabilistic regressor.
Parameters
----------
X: ndarray
(Ns, d) array query dataset (Ns samples, d dimensions).
interval: float, optional
The percentile confidence interval (e.g. 95%) to return.
fields: dict, optional
dictionary of fields parsed from the shape file.
``indicator_field`` should be a key in this dictionary. If this is
not present, then a Gaussian likelihood will be used for all
predictions. The only time this may be input if for cross
validation.
Returns
-------
Ey: ndarray
The expected value of ys for the query inputs, X of shape (Ns,).
Vy: ndarray
The expected variance of ys (excluding likelihood noise terms) for
the query inputs, X of shape (Ns,).
ql: ndarray
The lower end point of the interval with shape (Ns,)
qu: ndarray
The upper end point of the interval with shape (Ns,)
"""
Ey, Vy = self.predict_moments(X, *args, **kwargs)
ql, qu = norm.interval(interval, loc=Ey, scale=np.sqrt(Vy))
return Ey, Vy, ql, qu
class GLMPredictDistMixin():
"""
Mixin class for providing a ``predict_dist`` method to the
GeneralisedLinearModel class in revrand.
This is especially for use with Gaussian likelihood models.
"""
def predict_dist(self, X, interval=0.95, *args, **kwargs):
"""
Predictive mean and variance for a probabilistic regressor.
Parameters
----------
X: ndarray
(Ns, d) array query dataset (Ns samples, d dimensions).
interval: float, optional
The percentile confidence interval (e.g. 95%) to return.
fields: dict, optional
dictionary of fields parsed from the shape file.
``indicator_field`` should be a key in this dictionary. If this is
not present, then a Gaussian likelihood will be used for all
predictions. The only time this may be input if for cross
validation.
Returns
-------
Ey: ndarray
The expected value of ys for the query inputs, X of shape (Ns,).
Vy: ndarray
The expected variance of ys (excluding likelihood noise terms) for
the query inputs, X of shape (Ns,).
ql: ndarray
The lower end point of the interval with shape (Ns,)
qu: ndarray
The upper end point of the interval with shape (Ns,)
"""
Ey, Vy = self.predict_moments(X, *args, **kwargs)
Vy += self.like_hypers_
ql, qu = norm.interval(interval, loc=Ey, scale=np.sqrt(Vy))
return Ey, Vy, ql, qu
class MutualInfoMixin():
"""
Mixin class for providing predictive entropy reduction functionality to the
StandardLinearModel class (only).
"""
def entropy_reduction(self, X):
"""
Predictice entropy reduction (a.k.a mutual information).
Estimate the reduction in the posterior distribution's entropy (i.e.
model uncertainty reduction) as a result of including a particular
observation.
Parameters
----------
X: ndarray
(Ns, d) array query dataset (Ns samples, d dimensions).
Returns
-------
MI: ndarray
Prediction of mutual information (expected reduiction in posterior
entrpy) assocated with each query input. The units are 'nats', and
the shape of the returned array is (Ns,).
"""
Phi = self.basis.transform(X, *atleast_list(self.hypers_))
pCp = [p.dot(self.covariance_).dot(p.T) for p in Phi]
MI = 0.5 * (np.log(self.var_ + | np.array(pCp) | numpy.array |
from sysu_dataset import SYSU
import numpy as np
import scipy
import itertools
import cv2
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
from config import *
vox_size=54
all_tups = np.array(list(itertools.product(range(vox_size), repeat=2)))
rot_array = | np.arange(vox_size*vox_size) | numpy.arange |
#!/usr/bin/env python
# stdlib imports
import os.path
import sys
# third party imports
from openquake.hazardlib.geo.utils import OrthographicProjection
from openquake.hazardlib.gsim.abrahamson_2014 import AbrahamsonEtAl2014
from openquake.hazardlib.gsim.berge_thierry_2003 \
import BergeThierryEtAl2003SIGMA
import numpy as np
import pandas as pd
import pytest
import time
# local imports
from shakelib.distance import Distance
from shakelib.distance import get_distance
from shakelib.rupture.gc2 import _computeGC2
from shakelib.rupture.origin import Origin
from shakelib.rupture.point_rupture import PointRupture
from shakelib.rupture.quad_rupture import QuadRupture
from shakelib.sites import Sites
from impactutils.time.ancient_time import HistoricTime
do_tests = True
homedir = os.path.dirname(os.path.abspath(__file__)) # where is this script?
shakedir = os.path.abspath(os.path.join(homedir, '..', '..'))
sys.path.insert(0, shakedir)
def test_san_fernando():
# This is a challenging rupture due to overlapping and discordant
# segments, as brought up by <NAME>. Our initial
# implementation put the origin on the wrong side of the rupture.
x0 = np.array([7.1845, 7.8693])
y0 = np.array([-10.3793, -16.2096])
z0 = np.array([3.0000, 0.0000])
x1 = | np.array([-7.8506, -7.5856]) | numpy.array |
import itertools
import os, random
import statistics
import matplotlib
import matplotlib.pyplot as plt
from analyze_entropy import comp_entropy
from analyze_prob_attn import compute_idf, get_ban_positions
# from data_collection import CUR_DIR, PROB_META_DIR, spec_name, MODEL_NAME, DATA_NAME
from util import convert_enc_attn, parse_arg
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,
AutoMinorLocator)
font_size = 14
matplotlib.font_manager._rebuild()
GLOBAL_FIGURE_WIDTH = 8
dpi = 800
# plt.rcParams["font.weight"] = "light"
plt.rcParams.update({'font.size': 14})
plt.rcParams['font.family'] = 'DejaVu Sans'
dir_datadrive = '/mnt/data0/jcxu/data/prob_gpt'
# Density: x: entropy, two plots: is bigram or not
FIG_SIZE_x = GLOBAL_FIGURE_WIDTH
def get_ys(t, logits, BOS_token=0):
# for one time step, get the tokens last_inp, cur_inp, cur_pred, and next_pred
cur_pred = logits[t]
try:
next_pred = logits[t + 1]
except IndexError:
next_pred = None
if t - 2 >= 0:
last_inp = logits[t - 2]
elif t - 2 == -1:
last_inp = BOS_token
else:
last_inp = None
if t - 1 >= 0:
cur_inp = logits[t - 1]
elif t - 1 == -1:
cur_inp = BOS_token
else:
cur_inp = None
return last_inp, cur_inp, cur_pred, next_pred
from collections import Counter
def truncate_attention_cell(attn_distb, input_doc, idf_ban_pos, tgt_prob_mass=0.9) -> Counter:
# for each attention distribution, remove the idf ban tokens (positions), get the accumulated prob up to prob_mass.
# return
sorts = np.argsort(attn_distb, axis=-1, kind=None, order=None)[::-1]
cum_prob_mass = 0
cnt = Counter()
for topk in sorts:
prob_mass = attn_distb[topk]
cum_prob_mass += prob_mass
if topk not in idf_ban_pos:
cnt[input_doc[topk]] = prob_mass
if cum_prob_mass > tgt_prob_mass or prob_mass < 0.01:
break
return cnt
def _y_entropy_step(attn_lle, input_doc, idf_ban_pos):
num_layer, num_head, src_len = attn_lle.shape
all_attns = Counter()
for l in range(num_layer):
for h in range(num_head):
cell_attn = truncate_attention_cell(attn_lle[l][h], input_doc, idf_ban_pos=idf_ban_pos)
all_attns = all_attns + cell_attn
return all_attns
def retrieve_tok_val(cnter, token):
try:
v = cnter[token]
except:
v = 0
return v
import matplotlib
import matplotlib.pyplot as plt
def plot_hist(val_ent_pairs, title):
weights = [p[0] for p in val_ent_pairs]
xs = [p[1] for p in val_ent_pairs]
plt.hist(xs, bins=20, weights=weights, density=True)
plt.xlabel('Pred Ent')
plt.ylabel('Cum Attn')
plt.title(title)
plt.grid(True)
plt.show()
import seaborn as sns
def get_statistics(matrix):
result = [0 for _ in range(len(matrix))]
for idx, row in enumerate(matrix):
try:
m = statistics.mean(row)
except:
m = 0
print("NO DATA!")
result[idx] = m
return result
def proceed_data(segs, val_ent_pairs, step_size=0.5):
cat_bins = [[[] for _ in range(segs)] for _ in range(5)]
for p in val_ent_pairs:
last_inp, cur_inp, cur_pred, next_pred, pred_ent, atte_ent = p
# attn_val, ent, attn_e = p[0], p[1], p[2]
cat = int(pred_ent // step_size)
try:
cat_bins[0][cat].append(last_inp)
cat_bins[1][cat].append(cur_inp)
cat_bins[2][cat].append(cur_pred)
cat_bins[3][cat].append(next_pred)
cat_bins[4][cat].append(atte_ent)
except:
pass
last_inp_mean = get_statistics(cat_bins[0])
cur_inp_mean = get_statistics(cat_bins[1])
cur_pred_mean = get_statistics(cat_bins[2])
next_pred_mean = get_statistics(cat_bins[3])
atte_ent_mean = get_statistics(cat_bins[4])
return last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean, atte_ent_mean
def read_stack_data(last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean, seps=10):
bar0 = last_inp_mean
bar1 = cur_inp_mean
bar2 = cur_pred_mean
bar3 = next_pred_mean
from operator import add
bar01 = np.add(bar0, bar1).tolist()
bar012 = np.add(bar01, bar2).tolist()
# x = list(range(10))
return bar0, bar1, bar2, bar3, bar01, bar012
def plot_single_line(this_fig, spec_config, input_data, step_size=0.5, ent_max=5,
show_x_ticks=False, show_y_ticks=True, data_name="", model_name="", ymin=2, ymax=5):
segs = np.arange(0, ent_max, step_size).tolist()
# colorblind = sns.color_palette("coolwarm", 10)[::-1]
last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean, atte_ent_mean = input_data
axes = this_fig.add_subplot(spec_config)
sns.lineplot(x=list(np.arange(0, 5, step_size)), y=atte_ent_mean, markers=True, dashes=False)
# axes = sns.boxplot(x=x, y=y, palette=colorblind, showfliers=False)
axes.xaxis.set_major_locator(MultipleLocator(1))
axes.xaxis.set_major_formatter(FormatStrFormatter('%d'))
# For the minor ticks, use no labels; default NullFormatter.
axes.xaxis.set_minor_locator(MultipleLocator(0.5))
# axes.get_ylim()
# axes.set_ylim(ymin, ymax)
if show_x_ticks:
# x_vals = [m * step_size for m in xticks]
# axes.set_xticklabels(x_vals, rotation='vertical')center
pass
else:
plt.setp(axes.get_xticklabels(), visible=False)
# if not show_y_ticks:
# plt.setp(axes.get_yticklabels(), visible=False)
if data_name != "":
axes.set_ylabel(data_name)
else:
axes.set_ylabel("")
if model_name != "":
axes.set_title(model_name)
return axes
def plot_single_box(this_fig, spec_config, input_data, step_size=0.5, ent_max=5,
show_x_ticks=False, show_y_ticks=True, ylim=0.8, data_name="", model_name="", show_legend=False):
segs = np.arange(0, ent_max, step_size).tolist()
# colorblind = sns.color_palette("coolwarm", 10)[::-1]
last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean, atte_ent_mean = input_data
bar0, bar1, bar2, bar3, bar01, bar012 = read_stack_data(last_inp_mean, cur_inp_mean, cur_pred_mean, next_pred_mean)
colorblind = sns.color_palette("coolwarm", 4)
# colorblind = sns.color_palette("Set2")
# colorblind = sns.color_palette()
catnames = ['$y_{t-2}$', '$y_{t-1}$',
'$y_{t}$', '$y_{t+1}$']
linewidth = 1.5
axes = this_fig.add_subplot(spec_config)
x = list(np.arange(0, 5, 0.5))
axes.bar(x, bar0, color=colorblind[0],
# edgecolor=colorblind[0],linewidth=linewidth,
label=catnames[0], width=step_size,
# hatch='/'
)
axes.bar(x, bar1, bottom=bar0,
# edgecolor='white', linewidth=1,
label=catnames[1], width=step_size,
# hatch='-',
facecolor=colorblind[1],
# histtype='step', facecolor='g',
# alpha=0.75
# ,hatch='-'
)
axes.bar(x, bar2, bottom=bar01,
# edgecolor=colorblind[3], linewidth=0,
label=catnames[2], width=step_size, facecolor=colorblind[3],
# histtype='step',
# hatch='|'
# ,hatch='|'
)
axes.bar(x, bar3, bottom=bar012, color=colorblind[2], label=catnames[3], width=step_size,
# edgecolor=colorblind[2], linewidth=linewidth,
# hatch='\\'
)
# axes = sns.boxplot(x=x, y=y, palette=colorblind, showfliers=False)
axes.xaxis.set_major_locator(MultipleLocator(1))
axes.xaxis.set_major_formatter(FormatStrFormatter('%d'))
if show_legend:
axes.legend(ncol=2, frameon=False)
# For the minor ticks, use no labels; default NullFormatter.
axes.xaxis.set_minor_locator(MultipleLocator(0.5))
axes.set_ylim(0, ylim)
if show_x_ticks:
# x_vals = [m * step_size for m in xticks]
# axes.set_xticklabels(x_vals, rotation='vertical')center
pass
else:
plt.setp(axes.get_xticklabels(), visible=False)
if not show_y_ticks:
plt.setp(axes.get_yticklabels(), visible=False)
if data_name != "":
axes.set_ylabel(data_name)
else:
axes.set_ylabel("")
if model_name != "":
axes.set_title(model_name)
return axes
def plot_box(val_ent_pairs, title=None, step_size=.25):
# max_pred_ent = max([p[1] for p in val_ent_pairs])
# segs = np.linspace(0, max_pred_ent + 0.1, num=20).tolist()
segs = np.arange(0, 8, step_size).tolist()
colorblind = sns.color_palette("coolwarm", 10)[::-1]
bins = [[] for _ in range(len(segs))]
x, y = [], []
for p in val_ent_pairs:
v, ent = p[0], p[1]
cat = int(ent // step_size)
try:
bins[cat].append(v)
x.append(cat)
y.append(v)
except:
pass
fig1, ax1 = plt.subplots()
ax1.set_title(title)
ax1 = sns.violinplot(x=x, y=y, cut=0, palette=colorblind, inner='quartile')
# ax1.set_xticks( np.arange(0, 8, step_size).tolist())
# ax1.set_xticklabels(np.arange(0, 8, step_size).tolist())
return ax1
def plot_single_scatter(val_ent_pairs, title):
y_attn_frac = [m[0] for m in val_ent_pairs]
x_pred_ent = [m[1] for m in val_ent_pairs]
ax = sns.jointplot(x=x_pred_ent, y=y_attn_frac, kind="hex", color="#4CB391")
# ax = sns.scatterplot(x=x_pred_ent,y=y_attn_frac)
#
# sns.histplot(x=x_pred_ent, y=y_attn_frac, bins=50, pthresh=.1, cmap="mako")
# sns.kdeplot(x=x_pred_ent, y=y_attn_frac, levels=5,linewidths=1)
# ax.set_title(title)
plt.show()
return ax
def analyze_attention_y_entropy(max_time_step, attn_tlle, pred_distribution, input_doc, ban_positions, logits, nuc,
top_p):
# T = attn_tlle.shape[0]
# data_pairs = [[], [], [], []]
data = []
for t in range(max_time_step):
try:
t_pred_ent = comp_entropy(pred_distribution[t], nuc, top_p)
last_inp, cur_inp, cur_pred, next_pred = get_ys(t, logits)
all_attns_counter = _y_entropy_step(attn_tlle[t], input_doc, ban_positions)
total_attn_val = sum(all_attns_counter.values())
all_attention = list(all_attns_counter.values())
np_attn = np.asarray(all_attention) / total_attn_val
attn_ent = comp_entropy(np_attn)
last_inp_val = retrieve_tok_val(all_attns_counter, last_inp)
cur_inp_val = retrieve_tok_val(all_attns_counter, cur_inp)
cur_pred_val = retrieve_tok_val(all_attns_counter, cur_pred)
next_pred_val = retrieve_tok_val(all_attns_counter, next_pred)
# data_pairs[0].append((last_inp_val / total_attn_val, t_pred_ent))
# data_pairs[1].append((cur_inp_val / total_attn_val, t_pred_ent))
# data_pairs[2].append((cur_pred_val / total_attn_val, t_pred_ent))
data.append((last_inp_val / total_attn_val, cur_inp_val / total_attn_val,
cur_pred_val / total_attn_val, next_pred_val / total_attn_val,
t_pred_ent, attn_ent))
except:
pass
# data_pairs[3].append((next_pred_val / total_attn_val, t_pred_ent))
return data
import pickle
import numpy as np
from scipy.stats import entropy
import matplotlib.gridspec as gridspec
import multiprocessing
def detect_useless_ids(indices):
last = -100
good_indices = []
for x in indices:
if x - 5 > last:
last = x
good_indices.append(x)
else:
break
return good_indices
def process_data_single(args, f, eos_token_ids):
print("running")
BOS_TOKEN = 0
with open(os.path.join(args.cur_dir, f), 'rb') as fd:
data = pickle.load(fd)
attentions, pred_distb, logits, input_doc = data['attentions'], data['pred_distributions'], data['logits'], \
data['input_doc']
timesteps = len(attentions)
attentions_tlle = convert_enc_attn(attentions, merge_layer_head=False) # T,L,L,E
attention_tle = convert_enc_attn(attentions, merge_layer_head=True) # T,L,E
document_len = input_doc.shape[0]
input_doc = input_doc.astype(np.int).tolist()
logits = logits.tolist()
indices = [i for i, x in enumerate(logits) if x in eos_token_ids]
good_indices = detect_useless_ids(indices)
if good_indices:
max_t = good_indices[-1]
else:
max_t = attentions_tlle.shape[0]
# dec_inp_logits = [BOS_TOKEN] + logits[:-1]
pred_distb = np.exp(pred_distb) # time step, vocab size
# pred_ent = entropy(pred_distb, axis=-1)
idf_flag = compute_idf(attention_tle[:max_t]) # E
ban_positions = get_ban_positions(idf_flag)
# ban_positions = []
data_pairs = analyze_attention_y_entropy(max_t, attentions_tlle, pred_distb, input_doc, ban_positions, logits,
args.nucleus, args.nuc_prob)
return data_pairs
from itertools import product
def plot_stack_vocab(cnndm_peg, xsum_peg, cnndm_bart, xsum_bart):
fig = plt.figure(figsize=(FIG_SIZE_x, FIG_SIZE_x - 4))
spec2 = gridspec.GridSpec(ncols=2, nrows=2, figure=fig)
plot_single_box(this_fig=fig, spec_config=spec2[0, 0], input_data=cnndm_peg, show_x_ticks=False,
show_y_ticks=True, data_name="CNN/DM", model_name="PEGASUS", ylim=0.7)
plot_single_box(this_fig=fig, spec_config=spec2[0, 1], input_data=cnndm_bart, show_x_ticks=False,
show_y_ticks=False, model_name="BART", ylim=0.7)
plot_single_box(this_fig=fig, spec_config=spec2[1, 0], input_data=xsum_peg, show_x_ticks=True, show_y_ticks=True,
data_name='XSum', ylim=0.4)
plot_single_box(this_fig=fig, spec_config=spec2[1, 1], input_data=xsum_bart, show_x_ticks=True,
show_y_ticks=False, ylim=0.4, show_legend=True)
fig.text(0.5, 0.01, 'Prediction Entropy', ha='center', fontsize=font_size)
fig.text(0.0, 0.5, 'Vocab Projected Attention', va='center', rotation='vertical', fontsize=font_size)
fig.tight_layout()
plt.savefig(f"x_pred_ent_y_attn_frac.pdf", dpi=dpi, bbox_inches='tight')
plt.show()
plt.close()
def run_one_fig(spec, args, num_samples=300):
print(f"--{spec}--")
CUR_DIR = os.path.join(args.prob_meta_dir, spec)
args.cur_dir = CUR_DIR
files = os.listdir(CUR_DIR)
random.shuffle(files)
files = files[:num_samples]
BOS_TOKEN = 0
print(args.spec_name)
if 'pegasus' in args.model_name:
from transformers import PegasusTokenizer
bpe_tokenizer = PegasusTokenizer.from_pretrained(args.model_name)
EOS_TOK_IDs = [106, bpe_tokenizer.eos_token_id, 2] # <n>
elif 'gpt' in args.model_name:
from transformers import GPT2Tokenizer
bpe_tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
EOS_TOK_IDs = [bpe_tokenizer.eos_token_id]
elif 'bart' in args.model_name:
from transformers import BartTokenizer
bpe_tokenizer = BartTokenizer.from_pretrained(args.model_name)
EOS_TOK_IDs = [bpe_tokenizer.eos_token_id]
else:
raise NotImplementedError
# process_data_single(args, files[0], eos_token_ids=EOS_TOK_IDs)
len_samples = len(files)
cpu_cnt = multiprocessing.cpu_count()
with multiprocessing.Pool(processes=cpu_cnt) as pool:
results = pool.starmap(process_data_single, zip([args] * len_samples, files, [EOS_TOK_IDs] * len_samples))
output = list(itertools.chain.from_iterable(results))
print(f"Samples: {len(output)}")
output = proceed_data(10, output)
return output
def plot_ant_entropy(cnndm_peg, xsum_peg, cnndm_bart, xsum_bart):
fig = plt.figure(figsize=(FIG_SIZE_x, FIG_SIZE_x - 5))
step_size = 0.5
d = {'PEG$_{C}$': cnndm_peg[-1],
'PEG-X': xsum_peg[-1],
'BART-C': cnndm_bart[-1],
'BART-X': xsum_bart[-1],
}
# df = pd.DataFrame(data=d)
ax = fig.add_subplot(1, 1, 1)
# line1 = sns.lineplot(x=list(np.arange(0, 5, step_size)), y=cnndm_peg[-1], label='PEG$_{C}$', markers='x')
plt.plot(list(np.arange(0, 5, step_size)), cnndm_peg[-1], label='PEG$_{C}$', marker='+',
# color='k'
)
plt.plot(list(np.arange(0, 5, step_size)), xsum_peg[-1], label='PEG$_{X}$', marker='x',
# color='k'
)
plt.plot(list( | np.arange(0, 5, step_size) | numpy.arange |
import numpy as np
from tqdm import tqdm
def new_process(raw_data):
transform_data = []
for i, data in enumerate(tqdm(raw_data)):
# if i < 5494:
# continue
trans_data = ntu_tranform_skeleton(data['input'])
transform_data.append({'label': data['label'], 'input': trans_data})
return transform_data
def ntu_tranform_skeleton(test):
"""
:param test: frames of skeleton within a video sample
"""
remove_frame = False
test = np.asarray(test)
transform_test = []
d = test[0, 0:3]
v1 = test[0, 1 * 3:1 * 3 + 3] - test[0, 0 * 3:0 * 3 + 3]
v1 = v1 / np.linalg.norm(v1)
v2_ = test[0, 12 * 3:12 * 3 + 3] - test[0, 16 * 3:16 * 3 + 3]
if np.equal(np.sum(v2_), 0):
v2_ += 1e-6
proj_v2_v1 = np.dot(v1.T, v2_) * v1 / np.linalg.norm(v1)
v2 = v2_ - np.squeeze(proj_v2_v1)
v2 = v2 / np.linalg.norm(v2)
v3 = np.cross(v2, v1) / np.linalg.norm(np.cross(v2, v1))
v1 = np.reshape(v1, (3, 1))
v2 = np.reshape(v2, (3, 1))
v3 = | np.reshape(v3, (3, 1)) | numpy.reshape |
import time
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
import tensorflow as tf
from models import (
YoloV3, YoloV3Tiny
)
from dataset import transform_images
from utils import draw_outputs
from iou_tracker import track_iou
import numpy as np
flags.DEFINE_string('classes', './coco.names', 'path to classes file')
flags.DEFINE_string('weights', './yolov3.tf',
'path to weights file')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_string('video', './video.mp4',
'path to video file or number for webcam)')
flags.DEFINE_string('output', 'output.mp4', 'path to output video')
flags.DEFINE_string('output_format', 'MP4V',
'codec used in VideoWriter when saving video to file')
flags.DEFINE_integer('num_classes', 80, 'number of classes in the model')
# track_iou parameters
flags.DEFINE_float('sigma_l', 0.2, 'sigma_l for low iou')
flags.DEFINE_float('sigma_h', 0.9, 'sigma high')
flags.DEFINE_float('sigma_iou', 0.8, 'IOU for tracking')
flags.DEFINE_integer('t_min', 4, 'min number of frames to track')
def proj3DWorld(p, n, delta):
# remember to import numpy
delta = np.array([delta])
rho = np.array(np.concatenate([n, delta], axis=0))
P = -(delta*p)/np.dot((np.array(np.concatenate([p, [0]], axis=-1))), rho)
return P
def main(_argv):
physical_devices = tf.config.experimental.list_physical_devices('GPU')
for physical_device in physical_devices:
tf.config.experimental.set_memory_growth(physical_device, True)
if FLAGS.tiny:
yolo = YoloV3Tiny(classes=FLAGS.num_classes)
else:
yolo = YoloV3(classes=FLAGS.num_classes)
yolo.load_weights(FLAGS.weights)
logging.info('weights loaded')
class_names = [c.strip() for c in open(FLAGS.classes).readlines()]
logging.info('classes loaded')
times = []
try:
vid = cv2.VideoCapture(int(FLAGS.video))
except:
vid = cv2.VideoCapture(FLAGS.video)
if FLAGS.output:
# by default VideoCapture returns float instead of int
width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(vid.get(cv2.CAP_PROP_FPS))
codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
output = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height))
info_moving = 1
frame_num = 1
det_frames_stack = []
W = width
H = height
u = np.array([(444-W/2), (-(26-H/2)), 1])
v = np.array([(530-W/2), (-(22-H/2)), 1])
f = np.sqrt( | np.dot(u, v) | numpy.dot |
"""
Detect Cube Sat and Processing Plant artifacts
"""
from datetime import timedelta
import os
from io import StringIO
import cv2
import numpy as np
from osgar.node import Node
from osgar.bus import BusShutdownException
g_mask = None
MIN_CYAN_COUNT = 300
def count_mask(mask):
"""Count statistics and bounding box for given image mask"""
count = int(mask.sum())
if count == 0:
return count, None, None, None, None
# argmax for mask finds the first True value
x_min = (mask.argmax(axis=0) != 0).argmax()
x_max = mask.shape[1] - np.flip((mask.argmax(axis=0) != 0), axis=0).argmax() - 1
w = (mask.shape[1] - np.flip((mask.argmax(axis=0) != 0), axis=0).argmax()
- (mask.argmax(axis=0) != 0).argmax())
h = (mask.shape[0] - np.flip((mask.argmax(axis=1) != 0), axis=0).argmax()
- (mask.argmax(axis=1) != 0).argmax())
return count, w, h, x_min, x_max
def count_cyan(img, filtered=False, stdout=None):
# NASA SRC logo color is #007DBD or (0,125,189)
# assume valid colors are between that and lighter #E5F2F8 (229, 242, 248) (given the illumination)
# valid rgb: ratios for r,g,b must be similar, ie for any given pixel, each r,g,b must in the same place between both end rgb values
# r ratio = (r - 0) / (229 - 0)
# g ratio = (g - 125) / (242 - 125)
# b ratio = (b - 189) / (248 - 189)
b = img[:,:,0]
g = img[:,:,1]
r = img[:,:,2]
mask = np.logical_and((r - 0) / (229 - 0) < 1, np.logical_and(abs(((r - 0) / (229 - 0)) - ((g - 125) / (242 - 125))) < 0.2 , abs(((b - 189) / (248 - 189)) - ((g - 125) / (242 - 125))) < 0.2))
not_mask = | np.logical_not(mask) | numpy.logical_not |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import math
import onnx
from onnx import helper, TensorProto, mapping
import torch
import torchvision
import topi
import topi.testing
import tvm
from tvm import te
from tvm import relay
from tvm.contrib import graph_runtime
from tvm.relay.testing.config import ctx_list
import scipy
def get_input_data_shape_dict(graph_def, input_data):
if isinstance(input_data, list):
input_names = {}
shape_dict = {}
for i, _ in enumerate(input_data):
input_names[i] = graph_def.graph.input[i].name
shape_dict[input_names[i]] = input_data[i].shape
else:
input_names = graph_def.graph.input[0].name
shape_dict = {input_names: input_data.shape}
return input_names, shape_dict
def get_tvm_output_with_vm(graph_def, input_data, target, ctx, opset=None):
""" Generic function to execute and get tvm output with vm executor"""
_, shape_dict = get_input_data_shape_dict(graph_def, input_data)
mod, params = relay.frontend.from_onnx(graph_def, shape_dict, opset=opset)
ex = relay.create_executor('vm', mod=mod, ctx=ctx, target=target)
indata = tvm.nd.array(input_data)
result = ex.evaluate()(indata)
return result.asnumpy()
def get_tvm_output(graph_def, input_data, target, ctx, output_shape=None, output_dtype='float32', opset=None):
""" Generic function to execute and get tvm output"""
target = 'llvm'
input_names, shape_dict = get_input_data_shape_dict(graph_def, input_data)
mod, params = relay.frontend.from_onnx(graph_def, shape_dict, opset=opset)
with tvm.transform.PassContext(opt_level=1):
graph, lib, params = relay.build(mod,
target,
params=params)
ctx = tvm.cpu(0)
m = graph_runtime.create(graph, lib, ctx)
# set inputs
if isinstance(input_data, list):
for i, e in enumerate(input_names):
# Its possible for some onnx inputs to not be needed in the tvm
# module, confirm its present before setting.
try:
m.set_input(input_names[i], tvm.nd.array(
input_data[i].astype(input_data[i].dtype)))
except:
continue
else:
m.set_input(input_names, tvm.nd.array(
input_data.astype(input_data.dtype)))
m.set_input(**params)
# execute
m.run()
# get outputs
if isinstance(output_shape, list) and isinstance(output_dtype, list):
tvm_output_list = []
for i, _ in enumerate(output_shape):
tvm_output = m.get_output(i)
tvm_output_list.append(tvm_output.asnumpy())
return tvm_output_list
else:
tvm_output = m.get_output(0)
return tvm_output.asnumpy()
def get_onnxruntime_output(model, inputs, dtype='float32'):
import onnxruntime.backend
rep = onnxruntime.backend.prepare(model, 'CPU')
if isinstance(inputs, list) and len(inputs) > 1:
ort_out = rep.run(inputs)
else:
x = inputs.astype(dtype)
ort_out = rep.run(x)[0]
return ort_out
def verify_onnx_forward_impl(graph_file, data_shape, out_shape):
dtype = 'float32'
x = np.random.uniform(size=data_shape)
model = onnx.load_model(graph_file)
c2_out = get_onnxruntime_output(model, x, dtype)
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, dtype)
tvm.testing.assert_allclose(c2_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_reshape():
in_shape = (4, 3, 3, 4)
ref_shape = (6, 2, 4, 3)
ref_array = np.array(ref_shape)
ref_node = onnx.helper.make_node('Constant',
inputs=[],
outputs=['ref_in'],
value=onnx.helper.make_tensor(name='const_tensor',
data_type=onnx.TensorProto.INT32,
dims=ref_array.shape,
vals=ref_array.flatten().astype(int)))
reshape_node = helper.make_node("Reshape", ["in", "ref_in"], ["out"])
graph = helper.make_graph([ref_node, reshape_node],
"reshape_test",
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(ref_shape))])
model = helper.make_model(graph, producer_name='reshape_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('int32')
tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'float32')
tvm.testing.assert_allclose(ref_shape, tvm_out.shape)
def test_expand():
def _test_expand(name, data, shape, ref_data):
shape_array = np.array(shape)
shape_node = onnx.helper.make_node('Constant',
inputs=[],
outputs=['shape'],
value=onnx.helper.make_tensor(name = 'const_tensor',
data_type = onnx.TensorProto.INT32,
dims = shape_array.shape,
vals = shape_array.flatten().astype('int32')))
expand_node = helper.make_node("Expand", ["in", "shape"], ["out"])
graph = helper.make_graph([shape_node, expand_node],
"expand_test",
inputs = [helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(data.shape))],
outputs = [helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(ref_data.shape))])
model = helper.make_model(graph, producer_name=name)
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, data, target, ctx, ref_data.shape, 'float32')
tvm.testing.assert_allclose(ref_data, tvm_out)
in_shape = (3, 1)
shape = (3, 4)
data = np.random.uniform(size=in_shape).astype(np.float32)
ref_data = np.tile(data, 4)
_test_expand('expand_with_dim_unchanged_test', data, shape, ref_data)
in_shape = (3, 1)
shape = (2, 1, 6)
data = np.random.uniform(size=in_shape).astype(np.float32)
ref_data = data * np.ones(shape, dtype=np.float32)
_test_expand('expand_with_dim_changed_test', data, shape, ref_data)
def verify_depth_to_space(inshape, outshape, mode, blockSize):
node = onnx.helper.make_node('DepthToSpace',
inputs=['x'],
outputs=['y'],
blocksize=blockSize)
graph = helper.make_graph([node],
"depth_to_space_test",
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))])
model = helper.make_model(graph, producer_name='depth_to_space_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=inshape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, outshape, 'float32')
onnx_out = get_onnxruntime_output(model, x, 'float32')
tvm.testing.assert_allclose(onnx_out, tvm_out)
def test_depth_to_space():
# current onnx.checker use OpSet-1 version of DepthToSpace, which doesn't have a mode argument.
# TO-DO, we can add mode arguement to test CRD mode and DCR mode
# in the future when we update to a newer onnx version.
verify_depth_to_space((1, 8, 2, 3), (1, 2, 4, 6), mode="CRD", blockSize=2)
def verify_space_to_depth(inshape, outshape, blockSize):
node = onnx.helper.make_node('SpaceToDepth',
inputs=['x'],
outputs=['y'],
blocksize=blockSize)
graph = helper.make_graph([node],
"space_to_depth_test",
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))])
model = helper.make_model(graph, producer_name='space_to_depth_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=inshape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, outshape, 'float32')
onnx_out = get_onnxruntime_output(model, x, 'float32')
tvm.testing.assert_allclose(onnx_out, tvm_out)
def test_space_to_depth():
verify_space_to_depth((1, 1, 4, 6), (1, 4, 2, 3), 2)
def test_shape():
in_shape = (4, 3, 3, 4)
ref_shape = (6, 2, 4, 3)
ref_array = np.array(ref_shape)
ref_node = onnx.helper.make_node('Constant',
inputs=[],
outputs=['ref_in'],
value=onnx.helper.make_tensor(name='const_tensor',
data_type=onnx.TensorProto.INT32,
dims=ref_array.shape,
vals=ref_array.flatten().astype(int)))
reshape_node = helper.make_node("Reshape", ["in", "ref_in"], ["out"])
shape_node = helper.make_node("Shape", ['out'], ['final_out'])
graph = helper.make_graph([ref_node, reshape_node, shape_node],
"shape_test",
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("final_out",
TensorProto.FLOAT, list(ref_shape))])
model = helper.make_model(graph, producer_name='shape_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('int32')
tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'int32')
tvm.testing.assert_allclose(ref_shape, tvm_out)
def _test_power_iteration(x_shape, y_shape):
if isinstance(y_shape, int):
y_shape = [y_shape]
x = np.random.uniform(size=x_shape).astype(np.float32)
y = np.random.uniform(size=y_shape).astype(np.float32)
np_res = np.power(x, y).astype(np.float32)
res = helper.make_node("Pow", ['x', 'y'], ['out'])
graph = helper.make_graph([res],
'power_test',
inputs=[helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("y",
TensorProto.FLOAT, list(y_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(np_res.shape))])
model = helper.make_model(graph, producer_name='power_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x, y], target, ctx, np_res.shape)
tvm.testing.assert_allclose(np_res, tvm_out, rtol=1e-5, atol=1e-5)
def test_power():
_test_power_iteration((1, 3), (1))
_test_power_iteration((2, 3), (2, 3))
_test_power_iteration((2, 3), (1, 3))
def test_squeeze():
in_shape = (1, 3, 1, 3, 1, 1)
out_shape = (3, 3)
y = helper.make_node("Squeeze", ['in'], ['out'], axes=[0, 2, 4, 5])
graph = helper.make_graph([y],
'squeeze_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='squeeze_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_shape, tvm_out.shape)
def test_flatten():
in_shape = (1, 3, 4, 4)
axis = 1
ref_shape = (1, 48)
flatten_node = helper.make_node("Flatten", ["in"], ["out"], axis=axis)
graph = helper.make_graph([flatten_node],
"flatten_test",
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(ref_shape))])
model = helper.make_model(graph, producer_name='flatten_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('int32')
tvm_out = get_tvm_output(model, x, target, ctx, ref_shape, 'float32')
tvm.testing.assert_allclose(ref_shape, tvm_out.shape)
def test_unsqueeze():
in_shape = (3, 3)
axis = (0, 3, 4)
out_shape = (1, 3, 3, 1, 1)
y = helper.make_node("Unsqueeze", ['in'], ['out'], axes=list(axis))
graph = helper.make_graph([y],
'squeeze_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='squeeze_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_shape, tvm_out.shape)
def verify_gather(in_shape, indices, axis, dtype):
x = np.random.uniform(size=in_shape).astype(dtype)
indices = np.array(indices, dtype="int32")
out_np = np.take(x, indices, axis=axis)
y = helper.make_node("Gather", ['in', 'indices'], ['out'], axis=axis)
graph = helper.make_graph([y],
'gather_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info("indices",
TensorProto.INT32, list(indices.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_np.shape))])
model = helper.make_model(graph, producer_name='gather_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x, indices], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out)
def test_gather():
verify_gather((4,), [1], 0, 'int32')
verify_gather((1, 4), [0], 0, 'int32')
verify_gather((4,), [[[1, 0], [0, 1]]], 0, 'float32')
verify_gather((2, 2), [[[1, 0], [0, 1]]], 1, 'int32')
verify_gather((3, 3, 3), [[[1, 0]]], -1, 'int32')
verify_gather((4, 3, 5, 6), [[2, 1, 0, 0]], 0, 'float32')
def verify_scatter(in_shape, indices, axis):
x = np.random.uniform(size=in_shape).astype("float32")
indices = np.array(indices, dtype="int32")
updates = np.random.uniform(size=indices.shape).astype("float32")
y = helper.make_node("ScatterElements", ['data', 'indices', 'updates'], ['output'], axis=axis)
graph = helper.make_graph([y],
'scatter_test',
inputs=[helper.make_tensor_value_info("data",
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info("indices",
TensorProto.INT32, list(indices.shape)),
helper.make_tensor_value_info("updates",
TensorProto.FLOAT, list(indices.shape))],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(in_shape))])
model = helper.make_model(graph, producer_name='scatter_test')
onnx_out = get_onnxruntime_output(model, [x, indices, updates])
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x, indices, updates], target, ctx, onnx_out[0].shape)
tvm.testing.assert_allclose(onnx_out[0], tvm_out)
def test_scatter():
verify_scatter((4,), [1], 0)
verify_scatter((1, 4), [[0]], 0)
verify_scatter((4,), [2, 3], 0)
verify_scatter((2, 2), [[1, 0], [0, 1]], 1)
verify_scatter((3, 3, 3), [[[-1, -3]]], -1)
verify_scatter((4, 3, 5, 6), [[[[2, 1, 0, 0]]]], 0)
def _test_slice_iteration_v1(indata, outdata, starts, ends, axes=None):
if axes:
y = helper.make_node(
"Slice", ['in'], ['out'], axes=axes, starts=starts, ends=ends)
else:
y = helper.make_node(
"Slice", ['in'], ['out'], starts=starts, ends=ends)
graph = helper.make_graph([y],
'slice_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='slice_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outdata.shape, 'float32', opset=1)
tvm.testing.assert_allclose(outdata, tvm_out)
def _test_slice_iteration_v10(indata, outdata, starts, ends, axes=None):
if isinstance(starts, int):
starts = (starts, )
if isinstance(ends, int):
ends = (ends, )
if isinstance(axes, int):
axes = (axes, )
starts = np.asarray(starts)
ends = np.asarray(ends)
inputs = [
helper.make_tensor_value_info("data", TensorProto.FLOAT,
list(indata.shape)),
helper.make_tensor_value_info("starts", TensorProto.INT32,
list(starts.shape)),
helper.make_tensor_value_info("ends", TensorProto.INT32,
list(ends.shape))
]
initializer = [
helper.make_tensor("starts", TensorProto.INT32, list(starts.shape),
starts),
helper.make_tensor("ends", TensorProto.INT32, list(ends.shape), ends)
]
if axes:
axes = np.asarray(axes)
y = helper.make_node("Slice", ["data", "starts", "ends", "axes"],
["out"])
inputs.append(
helper.make_tensor_value_info("axes", TensorProto.INT32,
list(axes.shape)))
initializer.append(
helper.make_tensor("axes", TensorProto.INT32, list(axes.shape),
axes))
else:
y = helper.make_node("Slice", ["data", "starts", "ends"], ["out"])
graph = helper.make_graph([y],
'slice_test',
inputs=inputs,
outputs=[
helper.make_tensor_value_info(
"out", TensorProto.FLOAT,
list(outdata.shape))
],
initializer=initializer)
model = helper.make_model(graph, producer_name='slice_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model,
indata,
target,
ctx,
outdata.shape,
'float32',
opset=10)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_slice():
x = np.random.randn(20, 10, 5).astype(np.float32)
_test_slice_iteration_v1(x, x[0:3, 0:10], (0, 0), (3, 10), (0, 1))
_test_slice_iteration_v1(x, x[:, :, 3:4], (0, 0, 3), (20, 10, 4))
_test_slice_iteration_v1(x, x[:, 1:1000], (1), (1000), (1))
_test_slice_iteration_v1(x, x[:, 0:-1], (0), (-1), (1))
_test_slice_iteration_v10(x, x[0:3, 0:10], (0, 0), (3, 10), (0, 1))
_test_slice_iteration_v10(x, x[:, :, 3:4], (0, 0, 3), (20, 10, 4))
_test_slice_iteration_v10(x, x[:, 1:1000], (1), (1000), (1))
_test_slice_iteration_v10(x, x[:, 0:-1], (0), (-1), (1))
def _test_onnx_op_elementwise(inshape, outfunc, npargs, dtype, opname, kwargs):
indata = np.random.uniform(-1, 1, size=inshape).astype(dtype)
outdata = outfunc(indata, **npargs)
y = helper.make_node(opname, ['in'], ['out'], **kwargs)
graph = helper.make_graph([y],
opname+'_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name=opname+'_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outdata.shape, dtype)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_floor():
_test_onnx_op_elementwise((2, 4, 5, 6), np.floor,
{}, 'float32', 'Floor', {})
def test_ceil():
_test_onnx_op_elementwise((2, 4, 5, 6), np.ceil, {}, 'float32', 'Ceil', {})
def test_clip():
_test_onnx_op_elementwise((2, 4, 5, 6),
np.clip,
{'a_min': -1.0, 'a_max': 1.0},
'float32',
'Clip',
{'min': -1.0, 'max': 1.0})
def test_round():
_test_onnx_op_elementwise((2, 4, 5, 6), np.round, {}, 'float32', 'Round', {})
def _test_finite_ops(inshape, outfunc, npargs, dtype, opname, kwargs):
indata = np.random.choice(a=[np.nan, np.inf, -np.inf, 0.5, 1.0, 0], size=inshape).astype(dtype)
outdata = outfunc(indata, **npargs)
y = helper.make_node(opname, ['in'], ['out'], **kwargs)
graph = helper.make_graph([y],
opname+'_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.BOOL, list(outdata.shape))])
model = helper.make_model(graph, producer_name=opname+'_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outdata.shape, dtype)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_isinf():
_test_finite_ops((2, 4, 5, 6), np.isinf, {}, 'float32', 'IsInf', {})
def test_isnan():
_test_finite_ops((2, 4, 5, 6), np.isnan, {}, 'float32', 'IsNaN', {})
def verify_gather_nd(in_shape, indices, dtype):
x = np.random.uniform(size=in_shape).astype(dtype)
indices = np.array(indices, dtype="int32")
out_np = topi.testing.gather_nd_python(x, indices)
y = helper.make_node("GatherND", ['in', 'indices'], ['out'])
graph = helper.make_graph([y],
'gather_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info("indices",
TensorProto.INT32, list(indices.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_np.shape))])
model = helper.make_model(graph, producer_name='gather_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x, indices], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out)
def test_gather_nd():
verify_gather_nd((2, 2), [[0,0],[1,1]], 'int32')
verify_gather_nd((3, 3, 3), [[0,1],[1,0]] , 'float32')
verify_gather_nd((4, 3, 5, 6), [[2, 1, 0, 0]], 'float32')
def test_onehot():
indices_shape = [10]
indices_array = np.random.randint(
low=0, high=9, size=indices_shape, dtype='int32')
depth = 10
values = np.asarray([0, 1])
out_np = np.eye(depth)[indices_array.reshape(-1)]
onehot_node = helper.make_node(
"OneHot", ["indices", "depth", "values"], ["out"])
graph = helper.make_graph([onehot_node],
"onehot_test",
inputs=[helper.make_tensor_value_info("indices",
TensorProto.INT32, indices_shape),
helper.make_tensor_value_info("depth",
TensorProto.INT32, [1]),
helper.make_tensor_value_info("values",
TensorProto.INT32, values.shape)],
initializer=[helper.make_tensor("depth", TensorProto.INT32, [1], [depth]),
helper.make_tensor("values", TensorProto.INT32, values.shape, values)],
outputs=[helper.make_tensor_value_info("out", TensorProto.INT32, out_np.shape)])
model = helper.make_model(graph, producer_name="onehot_test")
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [indices_array], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_matmul():
a_shape = (4, 3)
b_shape = (3, 4)
a_array = np.random.uniform(size=a_shape).astype('float32')
b_array = np.random.uniform(size=b_shape).astype('float32')
out_np = np.matmul(a_array, b_array)
mul_node = helper.make_node("MatMul", ["a", "b"], ["out"])
graph = helper.make_graph([mul_node],
"matmul_test",
inputs=[helper.make_tensor_value_info("a",
TensorProto.FLOAT, list(a_shape)),
helper.make_tensor_value_info("b",
TensorProto.FLOAT, list(b_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_np.shape))])
model = helper.make_model(graph, producer_name='matmul_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_array, b_array], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
def verify_batch_matmul(a_shape, b_shape):
a_array = np.random.uniform(size=a_shape).astype('float32')
b_array = np.random.uniform(size=b_shape).astype('float32')
out_np = np.matmul(a_array, b_array)
mul_node = helper.make_node("MatMul", ["a", "b"], ["out"])
graph = helper.make_graph([mul_node],
"matmul_test",
inputs=[helper.make_tensor_value_info("a",
TensorProto.FLOAT, list(a_shape)),
helper.make_tensor_value_info("b",
TensorProto.FLOAT, list(b_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_np.shape))])
model = helper.make_model(graph, producer_name='matmul_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_array, b_array], target, ctx, out_np.shape)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_batch_matmul():
verify_batch_matmul((2, 3, 4, 3), (2, 3, 3, 4))
verify_batch_matmul((2, 4, 3), (3, 4))
verify_batch_matmul((2, 3, 4, 3), (3, 4))
def verify_lrn(shape, nsize, dtype, alpha=None, beta=None, bias=None):
in_array = np.random.uniform(size=shape).astype(dtype)
if alpha == None and beta == None and bias == None:
alpha = 0.0001
beta = 0.75
bias = 1.0
node = onnx.helper.make_node(
'LRN', inputs=['in'], outputs=['out'], size=nsize)
else:
node = onnx.helper.make_node('LRN', inputs=['in'], outputs=['out'], alpha=alpha,
beta=beta, bias=bias, size=nsize)
graph = helper.make_graph([node],
"lrn_test",
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(shape))])
model = helper.make_model(graph, producer_name='lrn_test')
def _get_python_lrn():
square_sum = np.zeros(shape).astype(dtype)
for n, c, h, w in np.ndindex(in_array.shape):
square_sum[n, c, h, w] = sum(in_array[n,
max(0, c - int(math.floor((nsize - 1) / 2))):
min(5, c + int(math.ceil((nsize - 1) / 2)) + 1),
h,
w] ** 2)
py_out = in_array / ((bias + (alpha / nsize) * square_sum) ** beta)
return py_out
for target, ctx in ctx_list():
input_name = model.graph.input[0].name
py_out = _get_python_lrn()
tvm_out = get_tvm_output(
model, in_array, target, ctx, py_out.shape, 'float32')
tvm.testing.assert_allclose(py_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_lrn():
verify_lrn((5, 5, 5, 5), 3, 'float32')
verify_lrn((5, 5, 5, 5), 3, 'float32', alpha=0.0002, beta=0.5, bias=2.0)
def verify_instance_norm(shape, axis=1):
def _get_python_instance_norm(x, gamma, beta, epsilon=1e-5):
dims_x = len(x.shape)
axis = tuple(range(2, dims_x))
mean = np.mean(x, axis=axis, keepdims=True)
var = np.var(x, axis=axis, keepdims=True)
dim_ones = (1,) * (dims_x - 2)
gamma = gamma.reshape(-1, *dim_ones)
beta = beta.reshape(-1, *dim_ones)
return gamma * (x - mean) / np.sqrt(var + epsilon) + beta
x = np.random.randn(*shape).astype(np.float32)
gamma = np.random.randn(shape[1]).astype(np.float32)
beta = np.random.randn(shape[1]).astype(np.float32)
epsilon = 1e-5
y = _get_python_instance_norm(x, gamma, beta, epsilon).astype(np.float32)
node = onnx.helper.make_node(
'InstanceNormalization',
inputs=['x', 'gamma', 'beta'],
outputs=['y'],
epsilon=epsilon,
)
graph = helper.make_graph([node],
"instance_norm_test",
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(shape)),
helper.make_tensor_value_info(
"gamma", TensorProto.FLOAT, (shape[1],)),
helper.make_tensor_value_info("beta", TensorProto.FLOAT, (shape[1],))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(shape))])
model = helper.make_model(graph, producer_name='instance_norm_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x, gamma, beta], target, ctx, shape, 'float32')
tvm.testing.assert_allclose(y, tvm_out, rtol=1e-5, atol=1e-5)
def test_instance_norm():
verify_instance_norm((2, 3, 4, 5))
verify_instance_norm((32, 64, 80, 64))
verify_instance_norm((8, 6, 5))
verify_instance_norm((8, 7, 6, 5, 4))
def _test_upsample_nearest():
scale = 2
in_shape = (1, 1, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in'], [
'out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0])
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.upsampling_python(
in_array, (scale, scale), "NCHW")
graph = helper.make_graph([y],
'upsample_nearest_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='upsample_nearest_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out)
def _test_upsample3d_nearest():
scale = 2
in_shape = (1, 1, 3, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in'], [
'out'], mode='nearest', scales=[1.0, 1.0, 2.0, 2.0, 2.0])
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.upsampling3d_python(
in_array, (scale, scale, scale), "NCDHW")
graph = helper.make_graph([y],
'upsample_nearest_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='upsample_nearest_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out)
def _test_upsample_bilinear():
scale = 2
in_shape = (1, 1, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in'], [
'out'], mode='linear', scales=[1.0, 1.0, 2.0, 2.0])
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.bilinear_resize_python(
in_array, (3*scale, 3*scale), "NCHW")
graph = helper.make_graph([y],
'upsample_bilinear_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='upsample_bilinear_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)
def _test_upsample_bilinear_opset9():
scale = 2
in_shape = (1, 1, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in', 'scales'], ['out'], mode='linear')
scales = [1, 1, 2, 2]
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.bilinear_resize_python(
in_array, (3*scale, 3*scale), "NCHW")
ref_node = helper.make_node('Constant',
inputs=[],
outputs=['const'],
value=onnx.helper.make_tensor(name='const_tensor',
data_type=TensorProto.FLOAT,
dims=scales,
vals=np.random.random(scales).flatten().astype(float)))
shape_node = helper.make_node("Shape", ['const'], ['scales'])
graph = helper.make_graph([ref_node, shape_node, y],
'upsample_bilinear_opset9_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(
graph, producer_name='upsample_bilinear_opset9_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)
def _test_upsample3d_trilinear():
scale = 2
in_shape = (1, 1, 3, 3, 3)
out_shape = (1, 1, 3*scale, 3*scale, 3*scale)
y = helper.make_node("Upsample", ['in', 'scales'], ['out'], mode='linear')
scales = [1.0, 1.0, 2.0, 2.0, 2.0]
in_array = np.random.uniform(size=in_shape).astype(np.float32)
out_array = topi.testing.trilinear_resize3d_python(
in_array, (3*scale, 3*scale, 3*scale), "NCDHW", coordinate_transformation_mode="half_pixel")
ref_array = np.array(scales)
ref_node = helper.make_node('Constant',
inputs=[],
outputs=['scales'],
value=onnx.helper.make_tensor(name='const_tensor',
data_type=TensorProto.FLOAT,
dims=ref_array.shape,
vals=ref_array.flatten().astype(float)))
graph = helper.make_graph([ref_node, y],
'upsample_trilinear_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(
graph, producer_name='upsample_trilinear_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, in_array, target, ctx, out_shape, 'float32')
tvm.testing.assert_allclose(out_array, tvm_out, rtol=1e-5, atol=1e-5)
def test_upsample():
_test_upsample_nearest()
_test_upsample_bilinear()
_test_upsample_bilinear_opset9()
_test_upsample3d_nearest()
_test_upsample3d_trilinear()
def _test_softmax(inshape, axis):
opname = 'Softmax'
indata = np.random.uniform(size=inshape).astype(np.float32)
outshape = inshape
outdata = topi.testing.softmax_python(indata)
if isinstance(axis, int):
y = helper.make_node(opname, ['in'], ['out'], axis=axis)
elif axis is None:
y = helper.make_node(opname, ['in'], ['out'])
graph = helper.make_graph([y],
opname+'_test',
inputs=[helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name=opname+'_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outshape, 'float32')
tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)
def test_softmax():
_test_softmax((1, 10), None)
_test_softmax((1, 10), 1)
def verify_min(input_dim):
dtype = 'float32'
a_np1 = np.random.uniform(size=input_dim).astype(dtype)
a_np2 = np.random.uniform(size=input_dim).astype(dtype)
a_np3 = np.random.uniform(size=input_dim).astype(dtype)
b_np = np.min((a_np1, a_np2, a_np3), axis=0)
min_node = helper.make_node("Min", ["a_np1", "a_np2", "a_np3"], ["out"])
graph = helper.make_graph([min_node],
"Min_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np2",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np3",
TensorProto.FLOAT, list(input_dim))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(b_np.shape))])
model = helper.make_model(graph, producer_name='Min_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_min():
verify_min((1, 3, 20, 20))
verify_min((20, 20))
def verify_max(input_dim):
dtype = 'float32'
a_np1 = np.random.uniform(size=input_dim).astype(dtype)
a_np2 = np.random.uniform(size=input_dim).astype(dtype)
a_np3 = np.random.uniform(size=input_dim).astype(dtype)
b_np = np.max((a_np1, a_np2, a_np3), axis=0)
max_node = helper.make_node("Max", ["a_np1", "a_np2", "a_np3"], ["out"])
graph = helper.make_graph([max_node],
"Max_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np2",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np3",
TensorProto.FLOAT, list(input_dim))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(b_np.shape))])
model = helper.make_model(graph, producer_name='Max_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_max():
verify_max((1, 3, 20, 20))
verify_max((20, 20))
def verify_mean(input_dim):
dtype = 'float32'
a_np1 = np.random.uniform(size=input_dim).astype(dtype)
a_np2 = np.random.uniform(size=input_dim).astype(dtype)
a_np3 = np.random.uniform(size=input_dim).astype(dtype)
b_np = np.mean((a_np1, a_np2, a_np3), axis=0)
mean_node = helper.make_node("Mean", ["a_np1", "a_np2", "a_np3"], ["out"])
graph = helper.make_graph([mean_node],
"Mean_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np2",
TensorProto.FLOAT, list(input_dim)),
helper.make_tensor_value_info("a_np3",
TensorProto.FLOAT, list(input_dim))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(b_np.shape))])
model = helper.make_model(graph, producer_name='Mean_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1, a_np2, a_np3], target, ctx, b_np.shape)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_mean():
verify_mean((1, 3, 20, 20))
verify_mean((20, 20))
def verify_hardsigmoid(input_dim, alpha, beta):
dtype = 'float32'
a_np1 = np.random.uniform(size=input_dim).astype(dtype)
b_np = np.clip(a_np1 * alpha + beta, 0, 1)
hardsigmoid_node = helper.make_node("HardSigmoid", ["a_np1"], [
"out"], alpha=alpha, beta=beta)
graph = helper.make_graph([hardsigmoid_node],
"HardSigmoid_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.FLOAT, list(input_dim))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(b_np.shape))])
model = helper.make_model(graph, producer_name='HardSigmoid_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [a_np1], target, ctx, b_np.shape)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_hardsigmoid():
verify_hardsigmoid((1, 3, 20, 20), 0.5, 0.6)
verify_hardsigmoid((20, 20), 0.3, 0.4)
def verify_argmin(input_dim, axis=None, keepdims=None):
def _argmin_numpy(data, axis=0, keepdims=True):
result = np.argmin(data, axis=axis)
if (keepdims == 1):
result = np.expand_dims(result, axis)
return result.astype(data.dtype)
a_np1 = np.random.uniform(-10, 10, input_dim).astype(np.int32)
if keepdims is None and axis is None:
b_np = _argmin_numpy(a_np1)
node = onnx.helper.make_node('ArgMin',
inputs=['a_np1'],
outputs=['out'])
elif axis is None:
b_np = _argmin_numpy(a_np1, keepdims=keepdims)
node = onnx.helper.make_node('ArgMin',
inputs=['a_np1'],
outputs=['out'],
keepdims=keepdims)
elif keepdims is None:
b_np = _argmin_numpy(a_np1, axis=axis)
node = onnx.helper.make_node('ArgMin',
inputs=['a_np1'],
outputs=['out'],
axis=axis)
else:
b_np = _argmin_numpy(a_np1, axis=axis, keepdims=keepdims)
node = onnx.helper.make_node('ArgMin',
inputs=['a_np1'],
outputs=['out'],
axis=axis,
keepdims=keepdims)
graph = helper.make_graph([node],
"argmin_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.INT32, list(a_np1.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.INT32, list(b_np.shape))])
model = helper.make_model(graph, producer_name='argmin_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1], target, ctx, b_np.shape, b_np.dtype)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def verify_argmax(input_dim, axis=None, keepdims=None):
def _argmax_numpy(data, axis=0, keepdims=True):
result = np.argmax(data, axis=axis)
if (keepdims == 1):
result = np.expand_dims(result, axis)
return result.astype(data.dtype)
a_np1 = np.random.uniform(-10, 10, input_dim).astype(np.int32)
if keepdims is None and axis is None:
b_np = _argmax_numpy(a_np1)
node = onnx.helper.make_node('ArgMax',
inputs=['a_np1'],
outputs=['out'])
elif axis is None:
b_np = _argmax_numpy(a_np1, keepdims=keepdims)
node = onnx.helper.make_node('ArgMax',
inputs=['a_np1'],
outputs=['out'],
keepdims=keepdims)
elif keepdims is None:
b_np = _argmax_numpy(a_np1, axis=axis)
node = onnx.helper.make_node('ArgMax',
inputs=['a_np1'],
outputs=['out'],
axis=axis)
else:
b_np = _argmax_numpy(a_np1, axis=axis, keepdims=keepdims)
node = onnx.helper.make_node('ArgMax',
inputs=['a_np1'],
outputs=['out'],
axis=axis,
keepdims=keepdims)
graph = helper.make_graph([node],
"argmax_test",
inputs=[helper.make_tensor_value_info("a_np1",
TensorProto.INT32, list(a_np1.shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.INT32, list(b_np.shape))])
model = helper.make_model(graph, producer_name='argmax_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [a_np1], target, ctx, b_np.shape, b_np.dtype)
tvm.testing.assert_allclose(b_np, tvm_out, rtol=1e-5, atol=1e-5)
def test_forward_arg_min_max():
'''Verify argmin and argmax'''
verify_argmin([3, 4, 4])
verify_argmax([3, 4, 4])
verify_argmin([3, 4, 4], axis=1)
verify_argmax([3, 4, 4], axis=0)
verify_argmin([3, 4, 4], keepdims=0)
verify_argmax([3, 4, 4], keepdims=1)
for axis in [None, 0, 1, 2]:
for keepdims in [None, True, False]:
verify_argmin([3, 4, 4], axis, keepdims)
verify_argmax([3, 4, 4], axis, keepdims)
def verify_constantofshape(input_dim, value, dtype):
out = np.empty(shape=input_dim, dtype=dtype)
out.fill(value)
fill_node = helper.make_node("ConstantOfShape", ["input"], ["output"],
value=helper.make_tensor(
'value',
mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(dtype)],
(1, ), (value, )))
inputs = [
helper.make_tensor_value_info("input", TensorProto.FLOAT, input_dim)
]
graph = helper.make_graph(
[fill_node],
"fill_test",
inputs,
outputs=[
helper.make_tensor_value_info("output", TensorProto.FLOAT,
list(out.shape))
],
initializer=[
helper.make_tensor("input", TensorProto.INT32, (len(input_dim), ),
input_dim)
])
model = helper.make_model(graph, producer_name='fill_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [], target, ctx, out.shape)
tvm.testing.assert_allclose(out, tvm_out, rtol=1e-5, atol=1e-5)
def test_constantofshape():
verify_constantofshape((2, 3, 4, 5), 10, 'float32')
verify_constantofshape((3, 3), 0, 'int32')
verify_constantofshape((1, 2, 3), -1, 'float32')
def verify_pad(indata, pads, mode='constant', value=0.0):
indata = np.array(indata).astype(np.float32)
# numpy expect result
len_dim = len(pads) // 2
np_pads = [(pads[i], pads[i+len_dim]) for i in range(len_dim)]
# onnx graph
if mode in ['edge', 'reflect']:
outdata = np.pad(indata, pad_width=np_pads, mode=mode)
node = helper.make_node(
'Pad',
inputs=['input'],
outputs=['output'],
mode=mode,
pads=pads,
)
else:
outdata = np.pad(indata, pad_width=np_pads,
mode='constant', constant_values=value)
node = helper.make_node(
'Pad',
inputs=['input'],
outputs=['output'],
mode='constant',
pads=pads,
value=value
)
graph = helper.make_graph([node],
'pad_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='pad_test')
# tvm result
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, indata, target, ctx, outdata.shape, 'float32', opset=2)
tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)
def verify_pad_v11(indata, pads, mode='constant', value=0.0):
indata = np.array(indata).astype(np.float32)
# numpy expect result
len_dim = len(pads) // 2
np_pads = [(pads[i], pads[i+len_dim]) for i in range(len_dim)]
pads = np.array(pads)
# onnx graph
if mode in ['edge', 'reflect']:
inputs = [indata, pads]
outdata = np.pad(indata, pad_width=np_pads, mode=mode)
node = helper.make_node(
'Pad',
inputs=['input', 'pads'],
outputs=['output'],
mode=mode
)
graph = helper.make_graph([node],
'pad_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape)),
helper.make_tensor_value_info("pads",
TensorProto.INT64,(len(pads),))],
initializer=[helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads)],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(outdata.shape))])
else:
inputs = [indata, pads, np.array([value])]
outdata = np.pad(indata, pad_width=np_pads,
mode='constant', constant_values=value)
node = helper.make_node(
'Pad',
inputs=['input', 'pads', 'constant_value'],
outputs=['output'],
mode='constant'
)
graph = helper.make_graph([node],
'pad_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape)),
helper.make_tensor_value_info("pads",
TensorProto.INT64,(len(pads),)),
helper.make_tensor_value_info("constant_value",
TensorProto.INT64,(1,)),
],
initializer=[helper.make_tensor("pads", TensorProto.INT64, (len(pads),), pads),
helper.make_tensor("constant_value", TensorProto.FLOAT, (1,), [value])],
outputs=[helper.make_tensor_value_info("output",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='pad_test')
# tvm result
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, inputs, target, ctx, outdata.shape, 'float32', opset=11)
tvm.testing.assert_allclose(outdata, tvm_out, rtol=1e-5, atol=1e-5)
def test_pad():
verify_pad(np.random.randn(2, 2).astype(
np.float32), [0, 1, 0, 0], 'constant', 0.0)
verify_pad(np.random.randn(2, 3).astype(
np.float32), [1, 0, 0, 1], 'constant', 0.0)
verify_pad(np.random.randn(3, 2).astype(
np.float32), [0, 0, 1, 0], 'constant', 5.0)
verify_pad(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'edge')
verify_pad(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'reflect')
verify_pad_v11(np.random.randn(2, 2).astype(
np.float32), [0, 1, 0, 0], 'constant', 0.0)
verify_pad_v11(np.random.randn(2, 3).astype(
np.float32), [1, 0, 0, 1], 'constant', 0.0)
verify_pad_v11(np.random.randn(3, 2).astype(
np.float32), [0, 0, 1, 0], 'constant', 5.0)
verify_pad_v11(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'edge')
verify_pad_v11(np.random.randn(1, 3, 4, 5).astype(
np.float32), [0, 0, 1, 1, 0, 0, 1, 1], 'reflect')
def verify_reduce_func(func, data, axis, keepdims):
inshape = data.shape
outshape = np.sum(data, axis=axis, keepdims=keepdims == 1).shape
if axis:
node = onnx.helper.make_node(func,
inputs=['x'],
outputs=['y'],
axes=axis,
keepdims=keepdims)
else:
node = onnx.helper.make_node(func,
inputs=['x'],
outputs=['y'],
keepdims=keepdims)
graph = helper.make_graph([node],
"reduce_test",
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(inshape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(outshape))])
model = helper.make_model(graph, producer_name='reduce_test')
onnx_out = get_onnxruntime_output(model, data, 'float32')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, data, target, ctx, outshape, 'float32')
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_all_reduce_funcs():
funcs = ["ReduceMax",
"ReduceMean",
"ReduceMin",
"ReduceProd",
"ReduceSum",
'ReduceSumSquare',
"ReduceLogSum",
"ReduceLogSumExp",
"ReduceL1",
"ReduceL2"]
for func in funcs:
for keepdims in [True, False]:
verify_reduce_func(func,
np.random.randn(3, 2, 2).astype(np.float32),
axis=None, keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(3, 2, 3).astype(np.float32),
axis=None, keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(3, 3, 3).astype(np.float32),
axis=(1,), keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(3, 3, 3, 1).astype(np.float32),
axis=(1, 2), keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(3, 3, 3, 1).astype(np.float32),
axis=(1,), keepdims=keepdims)
verify_reduce_func(func,
np.random.randn(1, 3, 4, 1).astype(np.float32),
axis=(1,), keepdims=keepdims)
def verify_split(indata, outdatas, split, axis=0):
indata = np.array(indata).astype(np.float32)
outdatas = [np.array(o).astype(np.float32) for o in outdatas]
if split:
split_index = range(len(split))
else:
split_index = range(len(outdatas))
node = helper.make_node(
'Split',
inputs=['input'],
outputs=['output_{}'.format(i) for i in range(len(split_index))],
axis=axis,
split=split
)
graph = helper.make_graph([node],
'split_test',
inputs=[helper.make_tensor_value_info("input",
TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("output_{}".format(i),
TensorProto.FLOAT, list(outdatas[i].shape))
for i in range(len(split_index))
])
model = helper.make_model(graph, producer_name='split_test')
for target, ctx in ctx_list():
output_shape = [o.shape for o in outdatas]
output_type = ['float32', 'float32', 'float32']
tvm_out = get_tvm_output(
model, indata, target, ctx, output_shape, output_type)
for o, t in zip(outdatas, tvm_out):
tvm.testing.assert_allclose(o, t)
def test_split():
# 1D
verify_split([1., 2., 3., 4., 5., 6.], [
[1., 2.], [3., 4.], [5., 6.]], [2, 2, 2], 0)
verify_split([1., 2., 3., 4., 5., 6.], [
[1., 2.], [3.], [4., 5., 6.]], [2, 1, 3], 0)
# 2D
verify_split([[1., 2., 3., 4.], [7., 8., 9., 10.]],
[[[1., 2.], [7., 8.]], [[3., 4.], [9., 10.]]], [2, 2], 1)
# Split evenly (unstack)
verify_split([1, 2, 3], [[1], [2], [3]], False)
def test_binary_ops():
in_shape = (1, 2, 3, 3)
dtype = "float32"
out_shape = in_shape
def verify_binary_ops(op, x, y, out_np, x_name='in1', y_name='in2', broadcast=None):
if broadcast is None:
z = helper.make_node(op, [x_name, y_name], ['out'])
else:
z = helper.make_node(op, [x_name, y_name], ['out'], broadcast=1)
graph = helper.make_graph([z],
'_test',
inputs=[helper.make_tensor_value_info(x_name,
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info(y_name,
TensorProto.FLOAT, list(in_shape))],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x, y], target, ctx)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=1e-5, atol=1e-5)
x = np.random.uniform(size=in_shape).astype(dtype)
y = np.random.uniform(size=in_shape).astype(dtype)
z = np.random.uniform(size=(3,)).astype(dtype)
verify_binary_ops("Add", x, y, x + y, broadcast=None)
verify_binary_ops("Add", x, z, x + z, broadcast=True)
verify_binary_ops("Sub", x, y, x - y, broadcast=None)
verify_binary_ops("Sub", x, z, x - z, broadcast=True)
verify_binary_ops("Mul", x, y, x * y, broadcast=None)
verify_binary_ops("Mul", x, z, x * z, broadcast=True)
verify_binary_ops("Mul", x, x, x * x, x_name='in1', y_name='in1', broadcast=None)
verify_binary_ops("Div", x, y, x / y, broadcast=None)
verify_binary_ops("Div", x, z, x / z, broadcast=True)
verify_binary_ops("Sum", x, y, x + y, broadcast=None)
verify_binary_ops("Greater", x, y, x > y, broadcast=True)
verify_binary_ops("Less", x, y, x < y, broadcast=True)
verify_binary_ops("Equal", x, y, x == y, broadcast=True)
def test_single_ops():
in_shape = (1, 2, 3, 3)
dtype = "float32"
out_shape = in_shape
def verify_single_ops(op, x, out_np, rtol=1e-5, atol=1e-5):
z = helper.make_node(op, ['in1'], ['out'])
graph = helper.make_graph([z],
'_test',
inputs=[helper.make_tensor_value_info("in1",
TensorProto.FLOAT, list(in_shape)), ],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x], target, ctx)
tvm.testing.assert_allclose(out_np, tvm_out, rtol=rtol, atol=atol)
x = np.random.uniform(size=in_shape).astype(dtype)
verify_single_ops("Neg", x, -x)
verify_single_ops("Abs", x, np.abs(x))
verify_single_ops("Reciprocal", x, 1/x)
verify_single_ops("Sqrt", x, np.sqrt(x))
verify_single_ops("Relu", x, np.maximum(x, 0))
verify_single_ops("Exp", x, np.exp(x))
verify_single_ops("Log", x, np.log(x))
verify_single_ops("Log", x, np.log(x))
verify_single_ops("ACos", x, np.arccos(x))
verify_single_ops("ACosh", x, np.arccosh(x))
verify_single_ops("ASin", x, np.arcsin(x))
verify_single_ops("ASinh", x, np.arcsinh(x))
verify_single_ops("ATan", x, np.arctan(x))
verify_single_ops("ATanh", x, np.arctanh(x))
verify_single_ops("Cos", x, np.cos(x))
verify_single_ops("Cosh", x, np.cosh(x))
verify_single_ops("Sin", x, np.sin(x))
verify_single_ops("Sinh", x, np.sinh(x))
verify_single_ops("Tan", x, np.tan(x))
verify_single_ops("Tanh", x, np.tanh(x))
verify_single_ops("Sigmoid", x, 1 / (1 + np.exp(-x)))
verify_single_ops("Softsign", x, x / (1 + np.abs(x)))
verify_single_ops("SoftPlus", x, np.log(1 + np.exp(x)))
def test_leaky_relu():
def leaky_relu_x(x, alpha):
return np.where(x >= 0, x, x * alpha)
_test_onnx_op_elementwise((2, 4, 5, 6),
leaky_relu_x,
{'alpha': 0.25},
'float32',
'LeakyRelu',
{'alpha': 0.25})
def test_elu():
def elu_x(x, alpha):
return np.where(x > 0, x, alpha * (np.exp(x) - 1.0))
_test_onnx_op_elementwise((2, 4, 5, 6),
elu_x,
{'alpha': 0.25},
'float32',
'Elu',
{'alpha': 0.25})
def test_selu():
def selu_x(x, alpha, gamma):
return gamma * np.where(x > 0, x, alpha * (np.exp(x) - 1.0))
_test_onnx_op_elementwise((2, 4, 5, 6),
selu_x,
{'alpha': 0.25, 'gamma': 0.3},
'float32',
'Selu',
{'alpha': 0.25, 'gamma': 0.3})
def test_prelu():
def verify_prelu(x_shape, a_shape):
node = helper.make_node('PRelu',
inputs=['X', 'slope'],
outputs=['Y'])
graph = helper.make_graph([node],
"prelu_test",
inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("slope", TensorProto.FLOAT, list(a_shape))],
outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, list(x_shape))])
model = helper.make_model(graph, producer_name='prelu_test')
indata = np.random.uniform(-10, 10, x_shape).astype(np.float32)
slopedata = np.random.uniform(-10, 10, a_shape).astype(np.float32)
onnx_out = get_onnxruntime_output(model, [indata, slopedata])
for target, ctx in [('llvm', tvm.cpu())]:
tvm_out = get_tvm_output(model, [indata, slopedata], target, ctx, list(x_shape),
output_dtype='float32')
tvm.testing.assert_allclose(onnx_out[0], tvm_out, rtol=1e-05, atol=1e-05)
verify_prelu([3,4,5,6], [1, 4, 1, 1])
verify_prelu([1,8,5,6], [1, 8, 1, 1])
verify_prelu([2,12,16,16], [1, 12, 1, 1])
def test_ThresholdedRelu():
def ThresholdedRelu_x(x, alpha):
out_np = np.clip(x, alpha, np.inf)
out_np[out_np == alpha] = 0
return out_np
_test_onnx_op_elementwise((2, 4, 5, 6),
ThresholdedRelu_x,
{'alpha': 0.25},
'float32',
'ThresholdedRelu',
{'alpha': 0.25})
def test_ScaledTanh():
def ScaledTanh_x(x, alpha, beta):
return alpha * np.tanh(beta * x)
_test_onnx_op_elementwise((2, 4, 5, 6),
ScaledTanh_x,
{'alpha': 0.25, 'beta': 0.3},
'float32',
'ScaledTanh',
{'alpha': 0.25, 'beta': 0.3})
def test_ParametricSoftplus():
def ParametricSoftplus_x(x, alpha, beta):
return alpha * np.log(np.exp(beta * x) + 1)
_test_onnx_op_elementwise((2, 4, 5, 6),
ParametricSoftplus_x,
{'alpha': 0.25, 'beta': 0.3},
'float32',
'ParametricSoftplus',
{'alpha': 0.25, 'beta': 0.3})
def test_Scale():
def Scale_x(x, scale):
return scale * x
_test_onnx_op_elementwise((2, 4, 5, 6),
Scale_x,
{'scale': 0.25},
'float32',
'Scale',
{'scale': 0.25})
def test_LogSoftmax():
_test_onnx_op_elementwise((1, 4),
topi.testing.log_softmax_python,
{},
'float32',
'LogSoftmax',
{'axis': 1})
def check_torch_conversion(model, input_size):
dummy_input = torch.randn(*input_size)
file_name = '{}.onnx'.format(model.__name__)
# Set verbose=True for more output
torch.onnx.export(model(), dummy_input, file_name,
export_params=True, verbose=False)
onnx_model = onnx.load(file_name)
for target, ctx in ctx_list():
input_data = np.random.uniform(size=input_size).astype('int32')
c2_out = get_onnxruntime_output(onnx_model, input_data)
tvm_out = get_tvm_output(onnx_model, input_data, target, ctx)
tvm.testing.assert_allclose(c2_out, tvm_out)
def test_resnet():
check_torch_conversion(torchvision.models.resnet18, (1, 3, 224, 224))
# check_torch_conversion(torchvision.models.resnet101, (1,3,224,224))
# def test_alexnet():
# Torch's ONNX export does not support the adaptive pooling used by AlexNet?
# check_torch_conversion(torchvision.models.alexnet, (1,3,224,224))
# Torch's ONNX export does not support the adaptive pooling used by vgg16?
# def test_vgg16():
# check_torch_conversion(torchvision.models.vgg16, (1,3,224,224))
# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_squeezenet():
# # Torch's ONNX export does not support the max pooling used by Squezenet
# check_torch_conversion(torchvision.models.squeezenet1_0, (1,3,224,224))
def test_densenet():
check_torch_conversion(torchvision.models.densenet161, (1, 3, 224, 224))
def test_inception():
check_torch_conversion(torchvision.models.inception_v3, (1, 3, 224, 224))
# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_googlenet():
# check_torch_conversion(torchvision.models.googlenet, (1,3,224,224))
# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_shufflenetv2():
# check_torch_conversion(torchvision.models.shufflenetv2, (1,3,224,224))
def test_sign():
def Sign_x(x):
return np.sign(x)
_test_onnx_op_elementwise((3, 4, 5, 6),
Sign_x,
{},
'float32',
'Sign',
{})
def verify_not(indata, dtype):
x = indata.astype(dtype)
outdata = np.logical_not(x)
node = helper.make_node('Not', inputs=['in'], outputs=['out'],)
graph = helper.make_graph([node],
'not_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.BOOL, list(x.shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))])
model = helper.make_model(graph, producer_name='not_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_not():
# 2d
verify_not(indata=(np.random.randn(3, 4) > 0), dtype=bool)
# 3d
verify_not(indata=(np.random.randn(3, 4, 5) > 0), dtype=bool)
# 4d
verify_not(indata=(np.random.randn(3, 4, 5, 6) > 0), dtype=bool)
def verify_and(indata, dtype):
x = indata[0].astype(dtype)
y = indata[1].astype(dtype)
outdata = np.logical_and(x, y)
node = helper.make_node('And', inputs=['in1', 'in2'], outputs=['out'], )
graph = helper.make_graph([node],
'and_test',
inputs=[helper.make_tensor_value_info("in1", TensorProto.BOOL, list(x.shape)),
helper.make_tensor_value_info("in2", TensorProto.BOOL, list(y.shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))])
model = helper.make_model(graph, producer_name='and_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x, y], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_and():
# 2d
x = (np.random.randn(3, 4) > 0)
y = (np.random.randn(3, 4) > 0)
verify_and(indata=[x, y], dtype=bool)
# 3d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(3, 4, 5) > 0)
verify_and(indata=[x, y], dtype=bool)
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0)
y = (np.random.randn(3, 4, 5, 6) > 0)
verify_and(indata=[x, y], dtype=bool)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(5) > 0)
verify_and(indata=[x, y], dtype=bool)
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(4, 5) > 0)
verify_and(indata=[x, y], dtype=bool)
def verify_tile_v1(indata, outdata, **kwargs):
node = helper.make_node('Tile', inputs=['in'], outputs=['out'], **kwargs)
graph = helper.make_graph([node],
'tile_test',
inputs=[helper.make_tensor_value_info(
"in", TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='tile_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [indata], target, ctx, outdata.shape, opset=1)
tvm.testing.assert_allclose(outdata, tvm_out)
def verify_tile_v6(indata, repeats, outdata):
node = helper.make_node('Tile',
inputs=['input', 'repeats'],
outputs=['out'])
graph = helper.make_graph(
[node],
'tile_test',
inputs=[
helper.make_tensor_value_info("input", TensorProto.FLOAT,
list(indata.shape)),
helper.make_tensor_value_info("repeats", TensorProto.INT64,
list(repeats.shape))
],
outputs=[
helper.make_tensor_value_info("out", TensorProto.FLOAT,
list(outdata.shape))
],
initializer=[
helper.make_tensor("repeats", TensorProto.INT64,
list(repeats.shape), repeats)
])
model = helper.make_model(graph, producer_name='tile_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [indata],
target,
ctx,
outdata.shape,
opset=6)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_tile():
x = np.random.rand(2, 3, 4, 5).astype(np.float32)
repeats = np.random.randint(
low=1, high=10, size=(np.ndim(x),)).astype(np.int64)
z = np.tile(x, repeats)
verify_tile_v1(x, z, repeats=repeats)
verify_tile_v6(x, repeats, z)
def verify_erf(indata, outdata):
node = helper.make_node('Erf', inputs=['in'], outputs=['out'])
graph = helper.make_graph([node],
'erf_test',
inputs=[helper.make_tensor_value_info(
'in', TensorProto.FLOAT, list(indata.shape))],
outputs=[helper.make_tensor_value_info('out', TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='erf_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [indata], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_erf():
x = np.random.rand(2, 3, 4, 6).astype(np.float32)
z = scipy.special.erf(x)
verify_erf(x, z)
def verify_where(condition, x, y, dtype, outdata):
node = helper.make_node('Where', inputs=['condition', 'x', 'y'], outputs=['out'])
graph = helper.make_graph([node],
'where_test',
inputs=[helper.make_tensor_value_info('condition', TensorProto.BOOL, list(condition.shape)),
helper.make_tensor_value_info('x', dtype, list(x.shape)),
helper.make_tensor_value_info('y', dtype, list(y.shape))],
outputs=[helper.make_tensor_value_info('out', dtype, list(outdata.shape))])
model = helper.make_model(graph, producer_name='where_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [condition, x, y], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_where():
condition = np.array([[1, 0], [1, 1]], dtype=np.bool)
x = np.array([[1, 2], [3, 4]], dtype=np.int64)
y = np.array([[9, 8], [7, 6]], dtype=np.int64)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.INT64, outdata)
x = np.array([[1, 2], [3, 4]], dtype=np.float32)
y = np.array([[9, 8], [7, 6]], dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
x = np.array(1, dtype=np.float32)
y = np.array([2], dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
x = np.array([2], dtype=np.float32)
y = np.array(1, dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
condition = np.array(1, dtype=np.bool)
x = np.array([[1, 2], [3, 4]], dtype=np.float32)
y = np.array([[5, 6], [7, 8]], dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
x = np.array([[1, 2], [3, 4]], dtype=np.float32)
y = np.array([[1], [7]], dtype=np.float32)
outdata = np.where(condition, x, y)
verify_where(condition, x, y, TensorProto.FLOAT, outdata)
def verify_or(indata, dtype):
x = indata[0].astype(dtype)
y = indata[1].astype(dtype)
outdata = np.logical_or(x, y)
node = helper.make_node('Or', inputs=['in1', 'in2'], outputs=['out'], )
graph = helper.make_graph([node],
'or_test',
inputs=[helper.make_tensor_value_info("in1", TensorProto.BOOL, list(x.shape)),
helper.make_tensor_value_info("in2", TensorProto.BOOL, list(y.shape))],
outputs=[helper.make_tensor_value_info("out", TensorProto.BOOL, list(outdata.shape))])
model = helper.make_model(graph, producer_name='or_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x, y], target, ctx, outdata.shape)
tvm.testing.assert_allclose(outdata, tvm_out)
def test_or():
# 2d
x = (np.random.randn(3, 4) > 0)
y = (np.random.randn(3, 4) > 0)
verify_or(indata=[x, y], dtype=bool)
# 3d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(3, 4, 5) > 0)
verify_or(indata=[x, y], dtype=bool)
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0)
y = (np.random.randn(3, 4, 5, 6) > 0)
verify_or(indata=[x, y], dtype=bool)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(5) > 0)
verify_or(indata=[x, y], dtype=bool)
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0)
y = (np.random.randn(4, 5) > 0)
verify_or(indata=[x, y], dtype=bool)
def test_batch_norm():
def verify_batch_norm(in_shape):
batchnorm = onnx.helper.make_node('BatchNormalization',
inputs=["x", "scale", "B", "mean", "var"],
outputs=['Y'])
graph = helper.make_graph([batchnorm],
"batchnorm_test",
inputs=[helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info("scale",
TensorProto.FLOAT, [in_shape[1]]),
helper.make_tensor_value_info("B",
TensorProto.FLOAT, [in_shape[1]]),
helper.make_tensor_value_info("mean",
TensorProto.FLOAT, [in_shape[1]]),
helper.make_tensor_value_info("var",
TensorProto.FLOAT, [in_shape[1]]),
],
outputs=[helper.make_tensor_value_info("Y",
TensorProto.FLOAT, list(in_shape))])
model = helper.make_model(graph, producer_name='batchnorm_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('float32')
scale = np.random.uniform(size=in_shape[1]).astype('float32')
b = np.random.uniform(size=in_shape[1]).astype('float32')
mean = np.random.uniform(size=in_shape[1]).astype('float32')
var = np.random.uniform(size=in_shape[1]).astype('float32')
onnx_out = get_onnxruntime_output(model, [x, scale, b, mean, var], 'float32')[0]
tvm_out = get_tvm_output(model, [x, scale, b, mean, var], target, ctx, in_shape, 'float32')
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)
verify_batch_norm([1, 3, 224, 224])
verify_batch_norm([1, 3, 24, 24])
verify_batch_norm([16, 3, 24, 24])
verify_batch_norm([16, 16, 24, 24])
verify_batch_norm([16, 16, 10, 10])
def test_batch_norm_dynamic_subgraph():
def verify_batch_norm_dynamic_subgraph(in_shape, o_shape):
batchnorm = onnx.helper.make_node('BatchNormalization',
inputs=["x", "scale", "B", "mean", "var"],
outputs=['Y'])
shape_node = helper.make_node("Shape", ['Y'], ['shape'])
reshape_node = helper.make_node("Reshape", ["in", "shape"], ["out"])
graph = helper.make_graph([batchnorm, shape_node, reshape_node],
"batchnorm_test",
inputs=[helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(in_shape)),
helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(o_shape)),
helper.make_tensor_value_info("scale",
TensorProto.FLOAT, [in_shape[1]]),
helper.make_tensor_value_info("B",
TensorProto.FLOAT, [in_shape[1]]),
helper.make_tensor_value_info("mean",
TensorProto.FLOAT, [in_shape[1]]),
helper.make_tensor_value_info("var",
TensorProto.FLOAT, [in_shape[1]]),
],
outputs=[helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(in_shape))])
model = helper.make_model(graph, producer_name='batchnorm_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('float32')
inp = np.random.uniform(size=o_shape).astype('float32')
scale = np.random.uniform(size=in_shape[1]).astype('float32')
b = np.random.uniform(size=in_shape[1]).astype('float32')
mean = np.random.uniform(size=in_shape[1]).astype('float32')
var = np.random.uniform(size=in_shape[1]).astype('float32')
onnx_out = get_onnxruntime_output(model, [x, inp, scale, b, mean, var], 'float32')[0]
tvm_out = get_tvm_output(model, [x, inp, scale, b, mean, var], target, ctx, in_shape, 'float32')
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)
verify_batch_norm_dynamic_subgraph([16, 16, 10, 10], [160, 160])
def verify_conv(x_shape, w_shape, y_shape, padding, kernel_shape, strides, dilations, auto_pad="NOTSET", unset_pad=False):
if unset_pad:
node = helper.make_node('Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=kernel_shape,
# Default values for other attributes:
strides=strides,
dilations=dilations,
# groups=1
)
elif padding is None:
node = helper.make_node('Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=kernel_shape,
# Default values for other attributes:
strides=strides,
dilations=dilations,
# groups=1
auto_pad=auto_pad)
else:
node = helper.make_node('Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=kernel_shape,
# Default values for other attributes:
strides=strides,
dilations=dilations,
# groups=1
pads=padding)
graph = helper.make_graph([node],
'conv_test',
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_shape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))])
model = helper.make_model(graph, producer_name='conv_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=x_shape).astype('float32')
W = np.random.uniform(size=w_shape).astype('float32')
tvm_out = get_tvm_output(model, [x, W], target, ctx, y_shape)
onnx_out = get_onnxruntime_output(model, [x, W], 'float32')[0]
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_conv():
def repeat(N, D):
return tuple([N for _ in range(D)])
for D in [1, 2, 3]:
# Convolution with padding
verify_conv((1, 1) + repeat(5, D),
(1, 1) + repeat(3, D),
(1, 1) + repeat(5, D),
2 * repeat(1, D),
repeat(3, D),
repeat(1, D),
repeat(1, D))
# Convolution without padding
verify_conv((1, 1) + repeat(5, D),
(1, 1) + repeat(3, D),
(1, 1) + repeat(3, D),
2 * repeat(0, D),
repeat(3, D),
repeat(1, D),
repeat(1, D))
# Convolution with autopadding
verify_conv((1, 1) + repeat(5, D),
(1, 1) + repeat(3, D),
(1, 1) + repeat(5, D),
None,
repeat(3, D),
repeat(1, D),
repeat(1, D),
auto_pad="SAME_UPPER")
# Convolution with unset padding
verify_conv((1, 1) + repeat(5, D),
(1, 1) + repeat(3, D),
(1, 1) + repeat(3, D),
2 * repeat(0, D),
repeat(3, D),
repeat(1, D),
repeat(1, D),
True)
# Convolution with non uniform stride
verify_conv((1, 1) + repeat(5, D),
(1, 1) + repeat(3, D),
(1, 1) + repeat(3, D),
None,
repeat(3, D),
repeat(2, D),
repeat(1, D),
auto_pad="SAME_UPPER")
# Convolution with dilation
verify_conv((1, 1) + repeat(5, D),
(1, 1) + repeat(3, D),
(1, 1) + repeat(5, D),
2 * repeat(2, D),
repeat(3, D),
repeat(1, D),
repeat(2, D))
def verify_convtranspose(x_shape, w_shape, y_shape, p):
node = onnx.helper.make_node("ConvTranspose",
inputs=["x", "W"],
outputs=['y'],
strides=[3, 2],
group=1,
kernel_shape=[3, 3],
pads=p)
graph = helper.make_graph([node],
'verify_convtranspose_test',
inputs=[helper.make_tensor_value_info("x", TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_shape))],
outputs=[helper.make_tensor_value_info("y", TensorProto.FLOAT, list(y_shape))])
model = helper.make_model(graph, producer_name='convtranspose_trest')
for target, ctx in ctx_list():
x = np.random.uniform(size=x_shape).astype('float32')
W = np.random.uniform(size=w_shape).astype('float32')
tvm_out = get_tvm_output(model, [x, W], target, ctx, y_shape)
onnx_out = get_onnxruntime_output(model, [x, W], 'float32')[0]
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_convtranspose():
# Convolution Transpose with padding
# (1, 1, 3, 3) input tensor
# (1, 2, 3, 3) tensor for convolution weights
# (1, 2, 7, 3) output tensor
# [1, 2, 1, 2] list for pads
verify_convtranspose((1, 1, 3, 3), (1, 2, 3, 3), (1, 2, 7, 3), [1, 2, 1, 2])
def test_unsqueeze_constant():
from torch.nn import Linear, Sequential, Module
class Flatten(Module):
def forward(self, input):
return input.view(input.size(0), -1)
import tempfile
with tempfile.NamedTemporaryFile() as fp:
file_name = fp.name
input_size = (1, 16, 32, 32)
dummy_input = torch.randn(*input_size)
layer = Sequential(Flatten(), Linear(16 * 32 * 32, 64))
torch.onnx.export(layer, dummy_input, file_name, export_params=True)
onnx_model = onnx.load(file_name)
relay.frontend.from_onnx(onnx_model, {'0': input_size})
def verify_pooling(x_shape, kernel_shape, strides, pads, out_shape, mode, auto_pad="NOTSET"):
x_np = np.random.uniform(size=x_shape).astype('float32')
if mode == 'max':
node_type = "MaxPool"
elif mode == 'average':
node_type = "AveragePool"
else:
raise ValueError("Pool method {} is not supported.".format(mode))
pool_node = helper.make_node(
node_type, inputs=["x"], outputs=["y"], kernel_shape=kernel_shape, strides=strides)
if pads is None:
pad_attr = helper.make_attribute('auto_pad', auto_pad)
else:
pad_attr = helper.make_attribute('pads', pads)
pool_node.attribute.append(pad_attr)
if mode == 'max':
storage_attr = helper.make_attribute('storage_order', 0)
pool_node.attribute.append(storage_attr)
graph = helper.make_graph([pool_node],
"pooling_test",
inputs=[helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(x_shape))],
outputs=[helper.make_tensor_value_info("y",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='pooling_test')
for target, ctx in ctx_list():
onnx_out = get_onnxruntime_output(model, x_np, 'float32')
tvm_out = get_tvm_output(
model, [x_np], target, ctx, out_shape)
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_pooling():
for mode in ['max', 'average']:
# Pool1D
verify_pooling(x_shape=[1, 1, 32],
kernel_shape=[3],
strides=[1],
pads=[1, 1],
out_shape=[1, 1, 32],
mode=mode)
# Pool2D
verify_pooling(x_shape=[1, 1, 32, 32],
kernel_shape=[3, 3],
strides=[1, 1],
pads=[1, 1, 1, 1],
out_shape=[1, 1, 32, 32],
mode=mode)
# Pool1D with stride
verify_pooling(x_shape=[1, 1, 32],
kernel_shape=[3],
strides=[2],
pads=[1, 1],
out_shape=[1, 1, 16],
mode=mode)
# Pool2D with stride
verify_pooling(x_shape=[1, 1, 32, 32],
kernel_shape=[3, 3],
strides=[2, 2],
pads=[1, 1, 1, 1],
out_shape=[1, 1, 16, 16],
mode=mode)
# Pool1D with stride and autopadding
verify_pooling(x_shape=[1, 1, 32],
kernel_shape=[3],
strides=[2],
pads=None,
out_shape=[1, 1, 16],
mode=mode,
auto_pad='SAME_UPPER')
# Pool2D with stride and autopadding
verify_pooling(x_shape=[1, 1, 32, 32],
kernel_shape=[3, 3],
strides=[2, 2],
pads=None,
out_shape=[1, 1, 16, 16],
mode=mode,
auto_pad='SAME_UPPER')
# Pool3D with stride
verify_pooling(x_shape=[1, 1, 32, 32, 32],
kernel_shape=[3, 3, 3],
strides=[2, 2, 2],
pads=[1, 1, 1, 1, 1, 1],
out_shape=[1, 1, 16, 16, 16],
mode=mode)
# Pool3D with stride and autopadding
verify_pooling(x_shape=[1, 1, 32, 32, 32],
kernel_shape=[3, 3, 3],
strides=[2, 2, 2],
pads=None,
out_shape=[1, 1, 16, 16, 16],
mode=mode,
auto_pad='SAME_UPPER')
def verify_mod(x_shape, y_shape, fmod, dtype='float32'):
x_np = np.random.uniform(size=x_shape).astype(dtype)
y_np = np.random.uniform(size=y_shape).astype(dtype)
y_np = np.where(y_np==0, 1, y_np) #remove 0's to avoid division by zero error
if fmod:
np_out = np.fmod(x_np, y_np)
else:
np_out = np.mod(x_np, y_np)
out_shape = np_out.shape
mod_node = helper.make_node("Mod",
inputs=["x", "y"],
outputs=["z"],
fmod=fmod)
onnx_dtype = TensorProto.FLOAT if dtype == "float32" else TensorProto.INT32
graph = helper.make_graph([mod_node],
"mod_test",
inputs=[helper.make_tensor_value_info("x",
onnx_dtype, list(x_shape)),
helper.make_tensor_value_info("y",
onnx_dtype, list(y_shape))],
outputs=[helper.make_tensor_value_info("z",
onnx_dtype, list(out_shape))])
model = helper.make_model(graph, producer_name='mod_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x_np, y_np], target, ctx, out_shape)
tvm.testing.assert_allclose(np_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_mod():
# Mod
verify_mod(x_shape=[1, 32, 32], y_shape=[1, 32, 32], fmod=0)
verify_mod(x_shape=[1, 32, 32], y_shape=[1, 1, 32], fmod=0, dtype="int32")
# fmod
verify_mod(x_shape=[1, 1, 32], y_shape=[1, 32, 32], fmod=1)
verify_mod(x_shape=[1, 32, 32], y_shape=[1, 32, 32], fmod=1, dtype="int32")
def verify_xor(x_shape, y_shape):
x_np = np.random.choice(a=[False, True], size=x_shape).astype("bool")
y_np = np.random.choice(a=[False, True], size=y_shape).astype("bool")
np_out = np.logical_xor(x_np, y_np)
out_shape = np_out.shape
xor_node = helper.make_node("Xor",
inputs=["x", "y"],
outputs=["z"])
onnx_dtype = TensorProto.BOOL
graph = helper.make_graph([xor_node],
"xor_test",
inputs=[helper.make_tensor_value_info("x",
onnx_dtype, list(x_shape)),
helper.make_tensor_value_info("y",
onnx_dtype, list(y_shape))],
outputs=[helper.make_tensor_value_info("z",
onnx_dtype, list(out_shape))])
model = helper.make_model(graph, producer_name='xor_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x_np, y_np], target, ctx, out_shape)
tvm.testing.assert_allclose(np_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_xor():
# XOR
verify_xor(x_shape=[1, 32, 32], y_shape=[1, 32, 32])
# Xor broadcast
verify_xor(x_shape=[1, 32, 32], y_shape=[1, 1, 32])
def verify_max_roi_pool(x_shape, rois_shape, pooled_shape, spatial_scale, out_shape):
x_np = np.random.uniform(size=x_shape).astype('float32')
rois_np = np.random.uniform(size=rois_shape).astype('float32')
if spatial_scale is None:
pool_node = helper.make_node("MaxRoiPool",
inputs=["x", "rois"],
outputs=["y"],
pooled_shape=pooled_shape)
else:
pool_node = helper.make_node("MaxRoiPool",
inputs=["x", "rois"],
outputs=["y"],
pooled_shape=pooled_shape,
spatial_scale=spatial_scale)
graph = helper.make_graph([pool_node],
"pool_test",
inputs=[helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("rois",
TensorProto.FLOAT, list(rois_shape))],
outputs=[helper.make_tensor_value_info("y",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='pool_test')
onnx_out = get_onnxruntime_output(model, [x_np, rois_np], 'float32')[0]
for target, ctx in ctx_list():
tvm_out = get_tvm_output(
model, [x_np, rois_np], target, ctx, out_shape)
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_max_roi_pool():
verify_max_roi_pool(x_shape=[1, 3, 6, 6],
rois_shape=[3, 5],
pooled_shape=[1, 1],
spatial_scale=None,
out_shape=[3, 3, 1, 1])
verify_max_roi_pool(x_shape=[1, 3, 10, 10],
rois_shape=[4, 5],
pooled_shape=[2, 2],
spatial_scale=2.0,
out_shape=[4, 3, 2, 2])
def verify_lppool(x_shape, kernel_shape, p, strides, pads, out_shape, auto_pad="NOTSET"):
x_np = np.random.uniform(size=x_shape).astype('float32')
if pads is None:
pool_node = helper.make_node("LpPool",
inputs=["x"],
outputs=["y"],
kernel_shape=kernel_shape,
p = p,
auto_pad=auto_pad,
strides=strides)
else:
pool_node = helper.make_node("LpPool",
inputs=["x"],
outputs=["y"],
kernel_shape=kernel_shape,
p = p,
pads=pads,
strides=strides)
graph = helper.make_graph([pool_node],
"lppool_test",
inputs=[helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(x_shape))],
outputs=[helper.make_tensor_value_info("y",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='lppool_test')
for target, ctx in ctx_list():
onnx_out = get_onnxruntime_output(model, x_np, 'float32')
tvm_out = get_tvm_output(
model, [x_np], target, ctx, out_shape)
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-5, atol=1e-5)
def test_lppool():
# Pool1D
verify_lppool(x_shape=[1, 1, 32], kernel_shape=[3], p=2, strides=[1], pads=[1, 1],
out_shape=[1, 1, 32])
# Pool2D
verify_lppool(x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=2, strides=[1, 1],
pads=[1, 1, 1, 1], out_shape=[1, 1, 32, 32])
# Pool1D with stride
verify_lppool(x_shape=[1, 1, 32], kernel_shape=[3], p=2, strides=[2], pads=[1, 1],
out_shape=[1, 1, 16])
# Pool2D with stride
verify_lppool(x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=2, strides=[2, 2],
pads=[1, 1, 1, 1], out_shape=[1, 1, 16, 16])
# Pool1D with stride and autopadding
verify_lppool(x_shape=[1, 1, 32], kernel_shape=[3], p=2, strides=[2], pads=None,
out_shape=[1, 1, 16], auto_pad='SAME_UPPER')
# Pool2D with stride and autopadding
verify_lppool(x_shape=[1, 1, 32, 32], kernel_shape=[3, 3], p=2, strides=[2, 2],
pads=None, out_shape=[1, 1, 16, 16], auto_pad='SAME_UPPER')
# Pool3D with stride
verify_lppool(x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], p=2, strides=[2, 2, 2],
pads=[1, 1, 1, 1, 1, 1], out_shape=[1, 1, 16, 16, 16])
# Pool3D with stride and autopadding
verify_lppool(x_shape=[1, 1, 32, 32, 32], kernel_shape=[3, 3, 3], p=2, strides=[2, 2, 2],
pads=None, out_shape=[1, 1, 16, 16, 16], auto_pad='SAME_UPPER')
def verify_lstm(seq_length,
batch_size,
input_size,
hidden_size,
use_bias=False,
activations=None,
alphas=None,
betas=None,
use_initial_state=False,
use_peep=False):
x_np = np.random.uniform(size=(seq_length, batch_size, input_size)).astype('float32')
w_np = np.random.uniform(size=(1, 4 * hidden_size, input_size)).astype('float32')
r_np = np.random.uniform(size=(1, 4 * hidden_size, hidden_size)).astype('float32')
input_names = ["X", "W", "R"]
input_tensors = [
helper.make_tensor_value_info("X", TensorProto.FLOAT, list(x_np.shape)),
helper.make_tensor_value_info("W", TensorProto.FLOAT, list(w_np.shape)),
helper.make_tensor_value_info("R", TensorProto.FLOAT, list(r_np.shape))
]
input_values = [x_np, w_np, r_np]
if use_bias:
b_np = np.random.uniform(size=(1, 8 * hidden_size)).astype('float32')
input_names.append("B")
input_tensors.append(
helper.make_tensor_value_info("B", TensorProto.FLOAT, [1, 8 * hidden_size]))
input_values.append(b_np)
if use_initial_state:
assert use_bias == True, "Initial states must have bias specified."
sequence_np = np.repeat(seq_length, batch_size).astype('int32')
input_names.append("sequence_lens")
input_tensors.append(helper.make_tensor_value_info("sequence_lens", TensorProto.INT32, [batch_size]))
input_values.append(sequence_np)
initial_h_np = np.random.uniform(size=(1, batch_size, hidden_size)).astype('float32')
input_names.append("initial_h")
input_tensors.append(
helper.make_tensor_value_info("initial_h", TensorProto.FLOAT,
[1, batch_size, hidden_size]))
input_values.append(initial_h_np)
initial_c_np = np.random.uniform(size=(1, batch_size, hidden_size)).astype('float32')
input_names.append("initial_c")
input_tensors.append(
helper.make_tensor_value_info("initial_c", TensorProto.FLOAT,
[1, batch_size, hidden_size]))
input_values.append(initial_c_np)
if use_peep:
assert use_initial_state == True, "Peepholes require initial state to be specified."
p_np = np.random.uniform(size=(1, 3 * hidden_size)).astype('float32')
input_names.append("P")
input_tensors.append(
helper.make_tensor_value_info("P", TensorProto.FLOAT, [1, 3 * hidden_size]))
input_values.append(p_np)
Y_shape = [seq_length, 1, batch_size, hidden_size]
Y_h_shape = [1, batch_size, hidden_size]
Y_c_shape = [1, batch_size, hidden_size]
if activations is None:
lstm_node = helper.make_node(
'LSTM', inputs=input_names, outputs=["Y", "Y_h", "Y_c"], hidden_size=hidden_size)
elif alphas is None:
lstm_node = helper.make_node(
'LSTM',
inputs=input_names,
outputs=["Y", "Y_h", "Y_c"],
hidden_size=hidden_size,
activations=activations)
else:
lstm_node = helper.make_node(
'LSTM',
inputs=input_names,
outputs=["Y", "Y_h", "Y_c"],
hidden_size=hidden_size,
activations=activations,
activation_alpha=alphas,
activation_beta=betas)
graph = helper.make_graph([lstm_node],
"lstm_test",
inputs=input_tensors,
outputs=[
helper.make_tensor_value_info("Y", TensorProto.FLOAT,
list(Y_shape)),
helper.make_tensor_value_info("Y_h", TensorProto.FLOAT,
list(Y_h_shape)),
helper.make_tensor_value_info("Y_c", TensorProto.FLOAT,
list(Y_c_shape))
])
model = helper.make_model(graph, producer_name='lstm_test')
for target, ctx in ctx_list():
onnx_out = get_onnxruntime_output(model, input_values, 'float32')
tvm_out = get_tvm_output(
model,
input_values,
target,
ctx, [Y_shape, Y_h_shape, Y_c_shape],
output_dtype=['float32', 'float32', 'float32'])
for o_out, t_out in zip(onnx_out, tvm_out):
tvm.testing.assert_allclose(o_out, t_out, rtol=5e-3, atol=5e-3)
def test_lstm():
# No bias.
verify_lstm(seq_length=2, batch_size=1, input_size=16, hidden_size=32, use_bias=False)
# large batch.
verify_lstm(seq_length=4, batch_size=8, input_size=16, hidden_size=32, use_bias=True)
# Non power of two.
verify_lstm(seq_length=3, batch_size=3, input_size=16, hidden_size=40, use_bias=True)
# Long sequence.
verify_lstm(seq_length=8, batch_size=1, input_size=16, hidden_size=32, use_bias=True)
# Large hidden.
verify_lstm(seq_length=2, batch_size=1, input_size=16, hidden_size=128, use_bias=True)
# Large input.
verify_lstm(seq_length=2, batch_size=1, input_size=64, hidden_size=32, use_bias=True)
# Different activation testing.
# Default value hardsigmoid.
verify_lstm(
seq_length=2,
batch_size=1,
input_size=16,
hidden_size=32,
use_bias=False,
activations=['HardSigmoid', 'Tanh', 'Tanh'])
# Multiple parameterized activations.
verify_lstm(
seq_length=2,
batch_size=1,
input_size=16,
hidden_size=32,
use_bias=False,
activations=['HardSigmoid', 'LeakyRelu', 'Tanh'],
alphas=[2.0, 0.5],
betas=[.3])
# All parameterized with new Affine activation.
verify_lstm(
seq_length=2,
batch_size=1,
input_size=16,
hidden_size=32,
use_bias=False,
activations=['HardSigmoid', 'LeakyRelu', 'Affine'],
alphas=[2.0, 0.5, 0.8],
betas=[.3, 0.1])
# Testing with initial state and peepholes
verify_lstm(
seq_length=2,
batch_size=1,
input_size=16,
hidden_size=32,
use_bias=True,
use_initial_state=True)
verify_lstm(
seq_length=2,
batch_size=1,
input_size=16,
hidden_size=32,
use_bias=True,
use_initial_state=True,
use_peep=True)
def test_resize():
def make_constant_node(name, data_type, dims, vals):
return helper.make_node('Constant',
inputs=[],
outputs=[name],
value=helper.make_tensor(name=name,
data_type=data_type,
dims=dims,
vals=vals))
def verify(ishape, oshape, scales, mode, coord_trans):
nodes = [
make_constant_node('roi', onnx.TensorProto.FLOAT, (0,), []),
make_constant_node('scales', onnx.TensorProto.FLOAT, (len(scales),), scales)
]
input_names = ['X', 'roi', 'scales']
if oshape != []:
nodes.append(make_constant_node('sizes', onnx.TensorProto.INT64, (len(oshape),), oshape))
input_names.append('sizes')
nodes.append(helper.make_node(
'Resize',
inputs=input_names,
outputs=['Y'],
mode=mode,
coordinate_transformation_mode=coord_trans
))
if oshape == []:
oshape = [round(dim * scale) for (dim, scale) in zip(ishape, scales)]
graph = helper.make_graph(nodes,
"resize_test",
inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, ishape)],
outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, oshape)])
model = helper.make_model(graph, producer_name='resize_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=ishape).astype('float32')
onnx_out = get_onnxruntime_output(model, x, 'float32')
tvm_out = get_tvm_output(model, x, target, ctx, oshape, 'float32', opset=11)
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-05, atol=1e-05)
# upsampling
verify([1, 16, 32, 32], [1, 16, 64, 64], [], "nearest", "asymmetric")
verify([1, 16, 32, 32], [1, 16, 64, 64], [], "linear", "align_corners")
verify([1, 16, 32, 32], [1, 16, 64, 64], [], "linear", "half_pixel")
# downsampling
verify([1, 16, 32, 32], [1, 16, 16, 16], [], "nearest", "asymmetric")
verify([1, 16, 32, 32], [1, 16, 16, 16], [], "linear", "align_corners")
verify([1, 16, 32, 32], [1, 16, 16, 16], [], "linear", "half_pixel")
# scales are specified instead of sizes
verify([1, 16, 32, 32], [], [1, 1, 2, 2], "nearest", "asymmetric")
verify([1, 16, 32, 32], [], [1, 1, 0.5, 0.5], "linear", "half_pixel")
def test_nonzero():
def verify_nonzero(indata, outdata, dtype):
node = helper.make_node('NonZero',
inputs=['X'],
outputs=['Y'],)
graph = helper.make_graph([node],
"nonzero_test",
inputs=[helper.make_tensor_value_info("X", TensorProto.INT64, list(indata.shape))],
outputs=[helper.make_tensor_value_info("Y", TensorProto.INT64, list(outdata.shape))])
model = helper.make_model(graph, producer_name='nonzero_test')
onnx_out = get_onnxruntime_output(model, indata, dtype)
for target, ctx in [('llvm', tvm.cpu())]:
tvm_out = get_tvm_output_with_vm(model, indata, target, ctx, opset=9)
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-05, atol=1e-05)
input_data = np.array([[1, 0], [1, 1]], dtype=np.int64)
result = np.array((np.nonzero(input_data))) # expected output [[0, 1, 1], [0, 0, 1]]
verify_nonzero(input_data, result, dtype=np.int64)
input_data = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]], dtype=np.int64)
result = np.array((np.nonzero(input_data))) # expected output [[0, 1, 2, 2], [0, 1, 0, 1]]
verify_nonzero(input_data, result, dtype=np.int64)
def test_topk():
def verify_topk(input_dims, K, axis=-1):
output_dims = list(input_dims)
output_dims[axis] = K
node = helper.make_node('TopK',
inputs=['X', 'K'],
outputs=['Values', 'Indicies'],
axis=axis)
graph = helper.make_graph([node],
"topk_test",
inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, list(input_dims)),
helper.make_tensor_value_info("K", TensorProto.INT64, [1,])],
initializer=[helper.make_tensor("K", TensorProto.INT64, [1], [K])],
outputs=[helper.make_tensor_value_info("Values", TensorProto.FLOAT, output_dims),
helper.make_tensor_value_info("Indicies", TensorProto.INT64, output_dims)])
model = helper.make_model(graph, producer_name='topk_test')
indata = np.random.uniform(-10, 10, input_dims).astype(np.float32)
onnx_out = get_onnxruntime_output(model, [indata, k])
for target, ctx in [('llvm', tvm.cpu())]:
tvm_out = get_tvm_output(model, indata, target, ctx, [output_dims, output_dims],
output_dtype=['float32', 'int64'])
tvm.testing.assert_allclose(onnx_out, tvm_out, rtol=1e-05, atol=1e-05)
for n in [12, 32]:
for shape in [[n], [n, n], [n, n, n]]:
for k in [1, 5, 10]:
verify_topk(shape, k)
verify_topk([n, n, n], 5, 0)
verify_topk([n, n, n], 5, 1)
verify_topk([n, n, n], 5, 2)
def test_roi_align():
def verify_roi_align(input_dims, num_roi, output_height, output_width, sampling_ratio=0, spatial_scale=1.0):
output_dims = [num_roi, input_dims[1], output_height, output_width]
node = helper.make_node('RoiAlign',
inputs=['X', 'rois', 'batch_indicies'],
outputs=['Y'],
mode="avg",
output_height=output_height,
output_width=output_width,
sampling_ratio=sampling_ratio,
spatial_scale=spatial_scale,
)
graph = helper.make_graph([node],
"roialign_test",
inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, list(input_dims)),
helper.make_tensor_value_info(
"rois", TensorProto.FLOAT, [num_roi, 4]),
helper.make_tensor_value_info(
"batch_indicies", TensorProto.INT64, [num_roi, ]),
],
outputs=[helper.make_tensor_value_info("Y", TensorProto.FLOAT, output_dims)])
model = helper.make_model(graph, producer_name='roialign_test')
np_data = | np.random.uniform(size=input_dims) | numpy.random.uniform |
# -*- coding: utf-8 -*-
"""Symbolic Fourier Approximation (SFA) Transformer.
Configurable SFA transform for discretising time series into words.
"""
__author__ = ["<NAME>", "<NAME>"]
__all__ = ["SFA"]
import math
import sys
import warnings
import numpy as np
import pandas as pd
from joblib import Parallel, delayed
from numba import NumbaTypeSafetyWarning, njit, types
from numba.typed import Dict
from sklearn.feature_selection import f_classif
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.tree import DecisionTreeClassifier
from sktime.transformations.base import _PanelToPanelTransformer
from sktime.utils.validation.panel import check_X
# The binning methods to use: equi-depth, equi-width, information gain or kmeans
binning_methods = {"equi-depth", "equi-width", "information-gain", "kmeans"}
# TODO remove imag-part from dc-component component
class SFA(_PanelToPanelTransformer):
"""Symbolic Fourier Approximation (SFA) Transformer.
Overview: for each series:
run a sliding window across the series
for each window
shorten the series with DFT
discretise the shortened series into bins set by MFC
form a word from these discrete values
by default SFA produces a single word per series (window_size=0)
if a window is used, it forms a histogram of counts of words.
Parameters
----------
word_length: int, default = 8
length of word to shorten window to (using PAA)
alphabet_size: int, default = 4
number of values to discretise each value to
window_size: int, default = 12
size of window for sliding. Input series
length for whole series transform
norm: boolean, default = False
mean normalise words by dropping first fourier coefficient
binning_method: {"equi-depth", "equi-width", "information-gain", "kmeans"},
default="equi-depth"
the binning method used to derive the breakpoints.
anova: boolean, default = False
If True, the Fourier coefficient selection is done via a one-way
ANOVA test. If False, the first Fourier coefficients are selected.
Only applicable if labels are given
bigrams: boolean, default = False
whether to create bigrams of SFA words
skip_grams: boolean, default = False
whether to create skip-grams of SFA words
remove_repeat_words: boolean, default = False
whether to use numerosity reduction (default False)
levels: int, default = 1
Number of spatial pyramid levels
save_words: boolean, default = False
whether to save the words generated for each series (default False)
return_pandas_data_series: boolean, default = False
set to true to return Pandas Series as a result of transform.
setting to true reduces speed significantly but is required for
automatic test.
n_jobs: int, optional, default = 1
The number of jobs to run in parallel for both `transform`.
``-1`` means using all processors.
Attributes
----------
words: []
breakpoints: = []
num_insts = 0
num_atts = 0
References
----------
.. [1] Schäfer, Patrick, and <NAME>. "SFA: a symbolic fourier approximation
and index for similarity search in high dimensional datasets." Proceedings of the
15th international conference on extending database technology. 2012.
"""
_tags = {"univariate-only": True}
def __init__(
self,
word_length=8,
alphabet_size=4,
window_size=12,
norm=False,
binning_method="equi-depth",
anova=False,
bigrams=False,
skip_grams=False,
remove_repeat_words=False,
levels=1,
lower_bounding=True,
save_words=False,
keep_binning_dft=False,
return_pandas_data_series=False,
use_fallback_dft=False,
typed_dict=False,
n_jobs=1,
):
self.words = []
self.breakpoints = []
# we cannot select more than window_size many letters in a word
offset = 2 if norm else 0
self.dft_length = window_size - offset if anova is True else word_length
# make dft_length an even number (same number of reals and imags)
self.dft_length = self.dft_length + self.dft_length % 2
self.support = np.array(list(range(word_length)))
self.word_length = word_length
self.alphabet_size = alphabet_size
self.window_size = window_size
self.lower_bounding = lower_bounding
self.inverse_sqrt_win_size = (
1.0 / math.sqrt(window_size) if not lower_bounding else 1.0
)
self.norm = norm
self.remove_repeat_words = remove_repeat_words
self.save_words = save_words
self.keep_binning_dft = keep_binning_dft
self.binning_dft = None
self.levels = levels
self.binning_method = binning_method
self.anova = anova
self.bigrams = bigrams
self.skip_grams = skip_grams
self.return_pandas_data_series = return_pandas_data_series
self.use_fallback_dft = (
use_fallback_dft if word_length < window_size - offset else True
)
self.typed_dict = typed_dict
self.n_jobs = n_jobs
self.n_instances = 0
self.series_length = 0
self.letter_bits = 0
self.letter_max = 0
self.word_bits = 0
self.max_bits = 0
self.level_bits = 0
self.level_max = 0
super(SFA, self).__init__()
def fit(self, X, y=None):
"""Calculate word breakpoints using MCB or IGB.
Parameters
----------
X : pandas DataFrame or 3d numpy array, input time series.
y : array_like, target values (optional, ignored).
Returns
-------
self: object
"""
if self.alphabet_size < 2:
raise ValueError("Alphabet size must be an integer greater than 2")
if self.word_length < 1:
raise ValueError("Word length must be an integer greater than 1")
if self.binning_method == "information-gain" and y is None:
raise ValueError(
"Class values must be provided for information gain binning"
)
if self.binning_method not in binning_methods:
raise TypeError("binning_method must be one of: ", binning_methods)
self.letter_bits = math.ceil(math.log2(self.alphabet_size))
self.letter_max = pow(2, self.letter_bits) - 1
self.word_bits = self.word_length * self.letter_bits
self.max_bits = (
self.word_bits * 2 if self.bigrams or self.skip_grams else self.word_bits
)
if self.typed_dict and self.max_bits > 64:
raise ValueError(
"Typed Dictionaries can only handle 64 bit words. "
"ceil(log2(alphabet_size)) * word_length must be less than or equal "
"to 64."
"With bi-grams or skip-grams enabled, this bit limit is 32."
)
if self.typed_dict and self.levels > 15:
raise ValueError(
"Typed Dictionaries can only handle 15 levels "
"(this is way to many anyway)."
)
X = check_X(X, enforce_univariate=True, coerce_to_numpy=True)
X = X.squeeze(1)
if self.levels > 1:
quadrants = 0
for i in range(self.levels):
quadrants += pow(2, i)
self.level_bits = math.ceil(math.log2(quadrants))
self.level_max = pow(2, self.level_bits) - 1
self.n_instances, self.series_length = X.shape
self.breakpoints = self._binning(X, y)
self._is_fitted = True
return self
def transform(self, X, y=None):
"""Transform data into SFA words.
Parameters
----------
X : pandas DataFrame or 3d numpy array, input time series.
y : array_like, target values (optional, ignored).
Returns
-------
List of dictionaries containing SFA words
"""
self.check_is_fitted()
X = check_X(X, enforce_univariate=True, coerce_to_numpy=True)
X = X.squeeze(1)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=NumbaTypeSafetyWarning)
transform = Parallel(n_jobs=self.n_jobs)(
delayed(self._transform_case)(
X[i, :],
supplied_dft=self.binning_dft[i] if self.keep_binning_dft else None,
)
for i in range(X.shape[0])
)
dim, words = zip(*transform)
if self.save_words:
self.words = list(words)
# cant pickle typed dict
if self.typed_dict and self.n_jobs != 1:
nl = [None] * len(dim)
for i, pdict in enumerate(dim):
ndict = (
Dict.empty(
key_type=types.UniTuple(types.int64, 2), value_type=types.uint32
)
if self.levels > 1
else Dict.empty(key_type=types.int64, value_type=types.uint32)
)
for key, val in pdict.items():
ndict[key] = val
nl[i] = pdict
dim = nl
bags = pd.DataFrame() if self.return_pandas_data_series else [None]
bags[0] = list(dim)
return bags
def _transform_case(self, X, supplied_dft=None):
if supplied_dft is None:
dfts = self._mft(X)
else:
dfts = supplied_dft
if self.typed_dict:
bag = (
Dict.empty(
key_type=types.UniTuple(types.int64, 2), value_type=types.uint32
)
if self.levels > 1
else Dict.empty(key_type=types.int64, value_type=types.uint32)
)
else:
bag = {}
last_word = -1
repeat_words = 0
words = (
np.zeros(dfts.shape[0], dtype=np.int64)
if self.word_bits <= 64
else [0 for _ in range(dfts.shape[0])]
)
for window in range(dfts.shape[0]):
word_raw = (
SFA._create_word(
dfts[window],
self.word_length,
self.alphabet_size,
self.breakpoints,
self.letter_bits,
)
if self.word_bits <= 64
else self._create_word_large(
dfts[window],
)
)
words[window] = word_raw
repeat_word = (
self._add_to_pyramid(
bag, word_raw, last_word, window - int(repeat_words / 2)
)
if self.levels > 1
else self._add_to_bag(bag, word_raw, last_word)
)
if repeat_word:
repeat_words += 1
else:
last_word = word_raw
repeat_words = 0
if self.bigrams:
if window - self.window_size >= 0:
bigram = self._create_bigram_words(
word_raw, words[window - self.window_size]
)
if self.levels > 1:
if self.typed_dict:
bigram = (bigram, -1)
else:
bigram = (bigram << self.level_bits) | 0
bag[bigram] = bag.get(bigram, 0) + 1
if self.skip_grams:
# creates skip-grams, skipping every (s-1)-th word in-between
for s in range(2, 4):
if window - s * self.window_size >= 0:
skip_gram = self._create_bigram_words(
word_raw, words[window - s * self.window_size]
)
if self.levels > 1:
if self.typed_dict:
skip_gram = (skip_gram, -1)
else:
skip_gram = (skip_gram << self.level_bits) | 0
bag[skip_gram] = bag.get(skip_gram, 0) + 1
# cant pickle typed dict
if self.typed_dict and self.n_jobs != 1:
pdict = dict()
for key, val in bag.items():
pdict[key] = val
bag = pdict
return [
pd.Series(bag) if self.return_pandas_data_series else bag,
words if self.save_words else [],
]
def _binning(self, X, y=None):
num_windows_per_inst = math.ceil(self.series_length / self.window_size)
dft = np.array(
[
self._binning_dft(X[i, :], num_windows_per_inst)
for i in range(self.n_instances)
]
)
if self.keep_binning_dft:
self.binning_dft = dft
dft = dft.reshape(len(X) * num_windows_per_inst, self.dft_length)
if y is not None:
y = np.repeat(y, num_windows_per_inst)
if self.anova and y is not None:
non_constant = np.where(
~np.isclose(dft.var(axis=0), np.zeros_like(dft.shape[1]))
)[0]
# select word-length many indices with best f-score
if self.word_length <= non_constant.size:
f, _ = f_classif(dft[:, non_constant], y)
self.support = non_constant[ | np.argsort(-f) | numpy.argsort |
"""General ROM utilities
<NAME>, 14 Feb 2018
"""
import warnings
import numpy as np
import scipy.linalg as scalg
# from IPython import embed
import sharpy.linear.src.libsparse as libsp
import sharpy.linear.src.libss as libss
def balreal_direct_py(A, B, C, DLTI=True, Schur=False, full_outputs=False):
r"""
Find balanced realisation of continuous (``DLTI = False``) and discrete (``DLTI = True``)
time of LTI systems using scipy libraries.
The function proceeds to achieve balanced realisation of the state-space system by first solving
the Lyapunov equations. They are solved using Barlets-Stewart algorithm for
Sylvester equation, which is based on A matrix Schur decomposition.
.. math::
\mathbf{A\,W_c + W_c\,A^T + B\,B^T} &= 0 \\
\mathbf{A^T\,W_o + W_o\,A + C^T\,C} &= 0
to obtain the reachability and observability gramians, which are positive definite matrices.
Then, the gramians are decomposed into their Cholesky factors such that:
.. math::
\mathbf{W_c} &= \mathbf{Q_c\,Q_c^T} \\
\mathbf{W_o} &= \mathbf{Q_o\,Q_o^T}
A singular value decomposition (SVD) of the product of the Cholesky factors is performed
.. math:: (\mathbf{Q_o^T\,Q_c}) = \mathbf{U\,\Sigma\,V^*}
The singular values are then used to build the transformation matrix :math:`\mathbf{T}`
.. math::
\mathbf{T} &= \mathbf{Q_c\,V\,\Sigma}^{-1/2} \\
\mathbf{T}^{-1} &= \mathbf{\Sigma}^{-1/2}\,\mathbf{U^T\,Q_o^T}
The balanced system is therefore of the form:
.. math::
\mathbf{A_b} &= \mathbf{T\,A\,T^{-1}} \\
\mathbf{B_b} &= \mathbf{T\,B} \\
\mathbf{C_b} &= \mathbf{C\,T^{-1}} \\
\mathbf{D_b} &= \mathbf{D}
Warnings:
This function may be less computationally efficient than the ``balreal``
Matlab implementation and does not offer the option to bound the realisation
in frequency and time.
Notes:
Lyapunov equations are solved using Barlets-Stewart algorithm for
Sylvester equation, which is based on A matrix Schur decomposition.
Args:
A (np.ndarray): Plant Matrix
B (np.ndarray): Input Matrix
C (np.ndarray): Output Matrix
DLTI (bool): Discrete time state-space flag
Schur (bool): Use Schur decomposition to solve the Lyapunov equations
Returns:
tuple of np.ndarrays: Tuple of the form ``(S, T, Tinv)`` containing:
- Singular values in diagonal matrix (``S``)
- Transformation matrix (``T``).
- Inverse transformation matrix(``Tinv``).
References:
Anthoulas, A.C.. Approximation of Large Scale Dynamical Systems. Chapter 7. Advances in Design and Control.
SIAM. 2005.
"""
### select solver for Lyapunov equation
# Notation reminder:
# scipy: A X A.T - X = -Q
# contr: A W A.T - W = - B B.T
# obser: A.T W A - W = - C.T C
if DLTI:
sollyap = scalg.solve_discrete_lyapunov
else:
sollyap = scalg.solve_lyapunov
# solve Lyapunov
if Schur:
# decompose A
Atri, U = scalg.schur(A)
# solve Lyapunov
BBtri = np.dot(U.T, np.dot(B, np.dot(B.T, U)))
CCtri = np.dot(U.T, np.dot(C.T, np.dot(C, U)))
Wctri = sollyap(Atri, BBtri)
Wotri = sollyap(Atri.T, CCtri)
# reconstruct Wo,Wc
Wc = np.dot(U, np.dot(Wctri, U.T))
Wo = np.dot(U, np.dot(Wotri, U.T))
else:
Wc = sollyap(A, np.dot(B, B.T))
Wo = sollyap(A.T, np.dot(C.T, C))
# Choleski factorisation: W=Q Q.T
# Qc = scalg.cholesky(Wc).T
# Qo = scalg.cholesky(Wo).T
# build M matrix and SVD
# M = np.dot(Qo.T, Qc)
# U, s, Vh = scalg.svd(M)
# S = np.diag(s)
# Sinv = np.diag(1. / s)
# V = Vh.T
# Build transformation matrices
# T = np.dot(Qc, np.dot(V, np.sqrt(Sinv)))
# Tinv = np.dot(np.sqrt(Sinv), np.dot(U.T, Qo.T))
# return S, T, Tinv
### Find transformation matrices
# avoid Cholevski - unstable
hsv_sq, Tinv = np.linalg.eig(np.dot(Wc, Wo))
T = np.linalg.inv(Tinv)
# sort
iisort = np.argsort(hsv_sq)[::-1]
hsv = np.sqrt(hsv_sq[iisort])
T = T[:, iisort]
Tinv = Tinv[iisort, :]
if full_outputs is False:
return hsv, T, Tinv
else:
# get square-root factors
UT, QoT = scalg.qr(np.dot(np.diag(np.sqrt(hsv)), Tinv), pivoting=False)
Vh, QcT = scalg.qr(np.dot(T, np.diag(np.sqrt(hsv))).T, pivoting=False)
return hsv, UT.T, Vh, QcT.T, QoT.T
def balreal_iter(A, B, C, lowrank=True, tolSmith=1e-10, tolSVD=1e-6, kmin=None,
tolAbs=False, Print=False, outFacts=False):
"""
Find balanced realisation of DLTI system.
Notes:
Lyapunov equations are solved using iterative squared Smith
algorithm, in its low or full rank version. These implementations are
as per the low_rank_smith and smith_iter functions respectively but,
for computational efficiency, the iterations are rewritten here so as to
solve for the observability and controllability Gramians contemporary.
- Exploiting sparsity:
This algorithm is not ideal to exploit sparsity. However, the following
strategies are implemented:
- if the A matrix is provided in sparse format, the powers of A will be
calculated exploiting sparsity UNTIL the number of non-zero elements
is below 15% the size of A. Upon this threshold, the cost of the matrix
multiplication rises dramatically, and A is hence converted to a dense
numpy array.
"""
### Solve Lyapunov equations
# Notation reminder:
# scipy: A X A.T - X = -Q
# contr: A W A.T - W = - B B.T
# obser: A.T W A - W = - C.T C
# low-rank smith: A.T X A - X = -Q Q.T
# matrices size
N = A.shape[0]
rC = B.shape[1]
rO = C.shape[0]
if lowrank: # low-rank square-Smith iteration (with SVD)
# initialise smith iteration
DeltaNorm = 1e6 # error
DeltaNormNext = DeltaNorm ** 2 # error expected at next iter
kk = 0
Qck = B
Qok = C.T
if Print:
print('Iter\tMaxZ\t|\trank_c\trank_o\tA size')
while DeltaNorm > tolSmith and DeltaNormNext > 1e-3 * tolSmith:
###### controllability
### compute Ak^2 * Qck
# (future: use block Arnoldi)
Qcright = libsp.dot(A, Qck)
MaxZhere = np.max(np.abs(Qcright))
### enlarge Z matrices
Qck = np.concatenate((Qck, Qcright), axis=1)
Qcright = None
rC = Qck.shape[1]
if kmin == None or kmin < rC:
### "cheap" SVD truncation
Uc, svc = scalg.svd(Qck, full_matrices=False, overwrite_a=True,
lapack_driver='gesdd')[:2]
# import scipy.linalg.interpolative as sli
# Ucnew,svcnew,temp=sli.svd(Qck,tolSVD)
if tolAbs:
rcmax = np.sum(svc > tolSVD)
else:
rcmax = np.sum(svc > tolSVD * svc[0])
if kmin != None:
rC = max(rcmax, kmin)
else:
rC = rcmax
Qck = Uc[:, :rC] * svc[:rC]
# free memory
Uc = None
Qcright = None
###### observability
### compute Ak^2 * Qok
# (future: use block Arnoldi)
Qoright = np.transpose(libsp.dot(Qok.T, A))
DeltaNorm = max(MaxZhere, np.max(np.abs(Qoright)))
### enlarge Z matrices
Qok = np.concatenate((Qok, Qoright), axis=1)
Qoright = None
rO = Qok.shape[1]
if kmin == None or kmin < rO:
### "cheap" SVD truncation
Uo, svo = scalg.svd(Qok, full_matrices=False)[:2]
if tolAbs:
romax = np.sum(svo > tolSVD)
else:
romax = np.sum(svo > tolSVD * svo[0])
if kmin != None:
rO = max(romax, kmin)
else:
rO = romax
Qok = Uo[:, :rO] * svo[:rO]
Uo = None
##### Prepare next time step
if Print:
print('%.3d\t%.2e\t%.5d\t%.5d\t%.5d' % (kk, DeltaNorm, rC, rO, N))
DeltaNormNext = DeltaNorm ** 2
if DeltaNorm > tolSmith and DeltaNormNext > 1e-3 * tolSmith:
# compute power
if type(A) is libsp.csc_matrix:
A = A.dot(A)
# check sparsity
if A.size > 0.15 * N ** 2:
A = A.toarray()
elif type(A) is np.ndarray:
A = np.linalg.matrix_power(A, 2)
else:
raise NameError('Type of A not supported')
### update
kk = kk + 1
A = None
else: # full-rank squared smith iteration (with Cholevsky)
raise NameError('Use balreal_iter_old instead!')
# find min size (only if iter used)
cc, co = Qck.shape[1], Qok.shape[1]
if Print:
print('cc=%.2d, co=%.2d' % (cc, co))
print('rank(Zc)=%.4d\trank(Zo)=%.4d' % (rcmax, romax))
# build M matrix and SVD
M = libsp.dot(Qok.T, Qck)
U, s, Vh = scalg.svd(M, full_matrices=False)
if outFacts:
return s, Qck, Qok
else:
sinv = s ** (-0.5)
T = libsp.dot(Qck, Vh.T * sinv)
Tinv = np.dot((U * sinv).T, Qok.T)
if Print:
print('rank(Zc)=%.4d\trank(Zo)=%.4d' % (rcmax, romax))
return s, T, Tinv, rcmax, romax
def balreal_iter_old(A, B, C, lowrank=True, tolSmith=1e-10, tolSVD=1e-6, kmax=None,
tolAbs=False):
"""
Find balanced realisation of DLTI system.
Notes: Lyapunov equations are solved using iterative squared Smith
algorithm, in its low or full rank version. These implementations are
as per the low_rank_smith and smith_iter functions respectively but,
for computational efficiency,, the iterations are rewritten here so as to
solve for the observability and controllability Gramians contemporary.
"""
### Solve Lyapunov equations
# Notation reminder:
# scipy: A X A.T - X = -Q
# contr: A W A.T - W = - B B.T
# obser: A.T W A - W = - C.T C
# low-rank smith: A.T X A - X = -Q Q.T
if lowrank: # low-rank square-Smith iteration (with SVD)
# matrices size
N = A.shape[0]
rB = B.shape[1]
rC = C.shape[0]
# initialise smith iteration
DeltaNorm = 1e6
print('Iter\tMaxZhere')
kk = 0
Apow = A
Qck = B
Qok = C.T
while DeltaNorm > tolSmith:
### compute products Ak^2 * Zk
### (use block Arnoldi)
Qcright = np.dot(Apow, Qck)
Qoright = np.dot(Apow.T, Qok)
Apow = np.dot(Apow, Apow)
### enlarge Z matrices
Qck = np.concatenate((Qck, Qcright), axis=1)
Qok = np.concatenate((Qok, Qoright), axis=1)
### check convergence without reconstructing the added term
MaxZhere = max(np.max(np.abs(Qoright)), np.max(np.abs(Qcright)))
print('%.4d\t%.3e' % (kk, MaxZhere))
DeltaNorm = MaxZhere
# fixed columns chopping
if kmax is None:
# cheap SVD truncation
if Qck.shape[1] > .4 * N or Qok.shape[1] > .4 * N:
Uc, svc = scalg.svd(Qck, full_matrices=False)[:2]
Uo, svo = scalg.svd(Qok, full_matrices=False)[:2]
if tolAbs:
rcmax = np.sum(svc > tolSVD)
romax = np.sum(svo > tolSVD)
else:
rcmax = np.sum(svc > tolSVD * svc[0])
romax = np.sum(svo > tolSVD * svo[0])
pmax = max(rcmax, romax)
Qck = Uc[:, :pmax] * svc[:pmax]
Qok = Uo[:, :pmax] * svo[:pmax]
# Qck_old=np.dot(Uc[:,:pmax],np.diag(svc[:pmax]))
# Qok_old=np.dot(Uo[:,:pmax],np.diag(svo[:pmax]))
# Qck=np.dot(Uc[:,:rcmax],np.diag(svc[:rcmax]))
# Qok=np.dot(Uo[:,:romax],np.diag(svo[:romax]))
else:
if Qck.shape[1] > kmax:
Uc, svc = scalg.svd(Qck, full_matrices=False)[:2]
Qck = Uc[:, :kmax] * svc[:kmax]
if Qok.shape[1] > kmax:
Uo, svo = scalg.svd(Qok, full_matrices=False)[:2]
Qok = Uo[:, :kmax] * svo[:kmax]
### update
kk = kk + 1
del Apow
Qc, Qo = Qck, Qok
else: # full-rank squared smith iteration (with Cholevsky)
# first iteration
Wc = np.dot(B, B.T)
Wo = np.dot(C.T, C)
Apow = A
AXAobs = np.dot(np.dot(A.T, Wo), A)
AXActrl = np.dot(np.dot(A, Wc), A.T)
DeltaNorm = max(np.max(np.abs(AXAobs)), np.max(np.abs(AXActrl)))
kk = 1
print('Iter\tRes')
while DeltaNorm > tolSmith:
kk = kk + 1
# update
Wo = Wo + AXAobs
Wc = Wc + AXActrl
# incremental
Apow = np.dot(Apow, Apow)
AXAobs = np.dot(np.dot(Apow.T, Wo), Apow)
AXActrl = np.dot(np.dot(Apow, Wc), Apow.T)
DeltaNorm = max(np.max(np.abs(AXAobs)), np.max(np.abs(AXActrl)))
print('%.4d\t%.3e' % (kk, DeltaNorm))
# final update (useless in very low tolerance)
Wo = Wo + AXAobs
Wc = Wc + AXActrl
# Choleski factorisation: W=Q Q.T. If unsuccessful, directly solve
# eigenvalue problem
Qc = scalg.cholesky(Wc).T
Qo = scalg.cholesky(Wo).T
# # eigenvalues are normalised by one, hence Tinv and T matrices
# # here are not scaled
# ssq,Tinv,T=scalg.eig(np.dot(Wc,Wo),left=True,right=True)
# Tinv=Tinv.T
# #Tinv02=Tinv02.T
# S=np.diag(np.sqrt(ssq))
# return S,T,Tinv
# find min size (only if iter used)
cc, co = Qc.shape[1], Qo.shape[1]
cmin = min(cc, co)
print('cc=%.2d, co=%.2d' % (cc, co))
# build M matrix and SVD
M = np.dot(Qo.T, Qc)
# ### not optimised
# U,s,Vh=scalg.svd(M,full_matrices=True)
# U,Vh,s=U[:,:cmin],Vh[:cmin,:],s[:cmin]
# S=np.diag(s)
# Sinv=np.diag(1./s)
# V=Vh.T
# # Build transformation matrices
# T=np.dot(Qc,np.dot(V,np.sqrt(Sinv)))
# Tinv=np.dot(np.sqrt(Sinv),np.dot(U.T,Qo.T))
### optimised
U, s, Vh = scalg.svd(M, full_matrices=True) # as M is square, full_matrices has no effect
sinv = s ** (-0.5)
T = np.dot(Qc, Vh.T * sinv)
Tinv = np.dot((U * sinv).T, Qo.T)
return s, T, Tinv
def smith_iter(S, T, tol=1e-8, Square=True):
"""
Solves the Stein equation
S.T X S - X = -T
by mean of Smith or squared-Smith algorithm. Note that a solution X exists
only if the eigenvalues of S are stricktly smaller than one, and the
algorithm will not converge otherwise. The algorithm can not exploit
sparsity, hence, while convergence can be improved for very large matrices,
it can not be employed if matrices are too large to be stored in memory.
Ref. Penzt, "A cyclic low-rank Smith method for large sparse Lyapunov
equations", 2000.
"""
N = S.shape[0]
if Square:
# first iteration
X = T
Spow = S
STXS = np.dot(np.dot(S.T, X), S)
DeltaNorm = np.max(np.abs(STXS))
# # second iteration:
# # can be removed using Spow=np.dot(Spow,Spow)
# X=X+STXS
# S=np.dot(S,S)
# Spow=S
# STXS=np.dot(np.dot(Spow.T,X),Spow)
# DeltaNorm=np.max(np.abs(STXS))
counter = 1
print('Iter\tRes')
while DeltaNorm > tol:
counter = counter + 1
# update
X = X + STXS
# incremental
# Spow=np.dot(Spow,S) # use this if uncomment second iter
Spow = np.dot(Spow, Spow)
STXS = np.dot(np.dot(Spow.T, X), Spow)
DeltaNorm = np.max(np.abs(STXS))
print('%.4d\t%.3e' % (counter, DeltaNorm))
else:
# first iteration
X = T
Spow = S
STTS = np.dot(np.dot(Spow.T, T), Spow)
DeltaNorm = np.max(np.abs(STTS))
counter = 1
print('Iter\tRes')
while DeltaNorm > tol:
counter = counter + 1
# update
X = X + STTS
# incremental
Spow = np.dot(Spow, S)
STTS = np.dot(np.dot(Spow.T, T), Spow)
DeltaNorm = np.max(np.abs(STTS))
print('%.4d\t%.3e' % (counter, DeltaNorm))
print('Error %.2e achieved after %.4d iteration!' % (DeltaNorm, counter))
return X
def res_discrete_lyap(A, Q, Z, Factorised=True):
"""
Provides residual of discrete Lyapunov equation:
A.T X A - X = -Q Q.T
If Factorised option is true,
X=Z*Z.T
otherwise X=Z is chosen.
Reminder:
contr: A W A.T - W = - B B.T
obser: A.T W A - W = - C.T C
"""
if Factorised:
X = np.dot(Z, Z.T)
else:
X = Z
R = np.dot(A.T, np.dot(X, A)) - X + np.dot(Q, Q.T)
resinf = np.max(np.abs(R))
return resinf
def low_rank_smith(A, Q, tol=1e-10, Square=True, tolSVD=1e-12, tolAbs=False,
kmax=None, fullOut=True, Convergence='Zk'):
"""
Low-rank smith algorithm for Stein equation
A.T X A - X = -Q Q.T
The algorithm can only be used if T is symmetric positive-definite, but this
is not checked in this routine for computational performance. The solution X
is provided in its factorised form:
X=Z Z.T
As in the most general case, a solution X exists only if the eigenvalues of
S are stricktly smaller than one, and the algorithm will not converge
otherwise. The algorithm can not exploits parsity, hence, while convergence
can be improved for very large matrices, it can not be employed if matrices
are too large to be stored in memory.
Parameters:
- tol: tolerance for stopping convergence of Smith algorithm
- Square: if true the squared-Smith algorithm is used
- tolSVD: tolerance for reduce Z matrix based on singular values
- kmax: if given, the Z matrix is forced to have size kmax
- tolAbs: if True, the tolerance
- fullOut: not implemented
- Convergence: 'Zk','res'.
- If 'Zk' the iteration is stopped when the inf norm of the incremental
matrix goes below tol.
- If 'res' the residual of the Lyapunov equation is computed. This
strategy may fail to converge if kmax is too low or tolSVD too large!
Ref. <NAME>, <NAME> and <NAME>, "On the squared Smith method for
large-scale Stein equations", 2014.
"""
N = A.shape[0]
ncol = Q.shape[1]
AT = A.T
DeltaNorm = 1e6
print('Iter\tMaxZhere')
kk = 0
SvList = []
ZcColList = []
if Square: # ------------------------------------------------- squared iter
Zk = Q
while DeltaNorm > tol:
### compute product Ak^2 * Zk
### use block Arnoldi
## too expensive!!
# Zright=Zk
# for ii in range(2**kk):
# Zright=np.dot(AT,Zright)
Zright = np.dot(AT, Zk)
AT = np.dot(AT, AT)
### enlarge Z matrix
Zk = np.concatenate((Zk, Zright), axis=1)
### check convergence
if Convergence == 'Zk':
### check convergence without reconstructing the added term
MaxZhere = np.max(np.abs(Zright))
print('%.4d\t%.3e' % (kk, MaxZhere))
DeltaNorm = MaxZhere
elif Convergence == 'res':
### check convergence through residual
resinf = res_discrete_lyap(A, Q, Zk, Factorised=True)
print('%.4d\t%.3e\t%.3e' % (kk, MaxZhere, resinf))
DeltaNorm = resinf
# cheap SVD truncation
U, sv, Vh = scalg.svd(Zk, full_matrices=False)
# embed()
if kmax == None:
if tolAbs:
pmax = np.sum(sv > tolSVD)
else:
pmax = np.sum(sv > tolSVD * sv[0])
else:
pmax = kmax
Ut = U[:, :pmax]
svt = sv[:pmax]
# Vht=Vh[:pmax,:]
# Zkrec=np.dot(Ut,np.dot(np.diag(svt),Vht))
Zk = np.dot(Ut, np.diag(svt))
### update
kk = kk + 1
else: # -------------------------------------------------------- smith iter
raise NameError(
'Smith method without SVD will lead to extremely large matrices')
Zk = []
Zk.append(Q)
while DeltaNorm > tol:
Zk.append(np.dot(AT, Zk[-1]))
kk = kk + 1
# check convergence without reconstructing Z*Z.T
MaxZhere = np.max(np.abs(Zk[-1]))
print('%.4d\t%.3e' % (kk, MaxZhere))
DeltaNorm = MaxZhere
Zk = np.concatenate(tuple(Zk), axis=1)
return Zk
### utilities for balfreq
def get_trapz_weights(k0, kend, Nk, knyq=False):
"""
Returns uniform frequency grid (kv of length Nk) and weights (wv) for
Gramians integration using trapezoidal rule. If knyq is True, it is assumed
that kend is also the Nyquist frequency.
"""
assert k0 >= 0. and kend >= 0., 'Frequencies must be positive!'
dk = (kend - k0) / (Nk - 1.)
kv = np.linspace(k0, kend, Nk)
wv = np.ones((Nk,)) * dk * np.sqrt(2)
if k0 / (kend - k0) < 1e-10:
wv[0] = .5 * dk
else:
wv[0] = dk / np.sqrt(2)
if knyq:
wv[-1] = .5 * dk
else:
wv[-1] = dk / np.sqrt(2)
return kv, wv
def get_gauss_weights(k0, kend, Npart, order):
"""
Returns gauss-legendre frequency grid (kv of length Npart*order) and
weights (wv) for Gramians integration.
The integration grid is divided into Npart partitions, and in each of
them integration is performed using a Gauss-Legendre quadrature of
order order.
Note: integration points are never located at k0 or kend, hence there
is no need for special treatment as in (for e.g.) a uniform grid case
(see get_unif_weights)
"""
if Npart == 1:
# get gauss normalised coords and weights
xad, wad = np.polynomial.legendre.leggauss(order)
krange = kend - k0
kv = .5 * (k0 + kend) + .5 * krange * xad
wv = wad * (.5 * krange) * np.sqrt(2)
print('partitioning: %.3f to %.3f' % (k0, kend))
else:
kv = np.zeros((Npart * order,))
wv = np.zeros((Npart * order,))
dk_part = (kend - k0) / Npart
for ii in range(Npart):
k0_part = k0 + ii * dk_part
kend_part = k0_part + dk_part
iivec = range(order * ii, order * (ii + 1))
kv[iivec], wv[iivec] = get_gauss_weights(k0_part, kend_part, Npart=1, order=order)
return kv, wv
def balfreq(SS, DictBalFreq):
"""
Method for frequency limited balancing.
The Observability and controllability Gramians over the frequencies kv
are solved in factorised form. Balanced modes are then obtained with a
square-root method.
Details:
* Observability and controllability Gramians are solved in factorised form
through explicit integration. The number of integration points determines
both the accuracy and the maximum size of the balanced model.
* Stability over all (Nb) balanced states is achieved if:
a. one of the Gramian is integrated through the full Nyquist range
b. the integration points are enough.
Input:
- DictBalFreq: dictionary specifying integration method with keys:
- ``frequency``: defines limit frequencies for balancing. The balanced
model will be accurate in the range ``[0,F]``, where ``F`` is the value of
this key. Note that ``F`` units must be consistent with the units specified
in the ``self.ScalingFacts`` dictionary.
- ``method_low``: ``['gauss','trapz']`` specifies whether to use gauss
quadrature or trapezoidal rule in the low-frequency range ``[0,F]``.
- ``options_low``: options to use for integration in the low-frequencies.
These depend on the integration scheme (See below).
- ``method_high``: method to use for integration in the range [F,F_N],
where F_N is the Nyquist frequency. See 'method_low'.
- ``options_high``: options to use for integration in the high-frequencies.
- ``check_stability``: if True, the balanced model is truncated to
eliminate unstable modes - if any is found. Note that very accurate
balanced model can still be obtained, even if high order modes are
unstable. Note that this option is overridden if ""
- ``get_frequency_response``: if True, the function also returns the
frequency response evaluated at the low-frequency range integration
points. If True, this option also allows to automatically tune the
balanced model.
Future options:
- Ncpu: for parallel run
The following integration schemes are available:
- ``trapz``: performs integration over equally spaced points using
trapezoidal rule. It accepts options dictionaries with keys:
- ``points``: number of integration points to use (including
domain boundary)
- ``gauss`` performs gauss-lobotto quadrature. The domain can be
partitioned in Npart sub-domain in which the gauss-lobotto quadrature
of order Ord can be applied. A total number of Npart*Ord points is
required. It accepts options dictionaries of the form:
- ``partitions``: number of partitions
- ``order``: quadrature order.
Examples:
The following dictionary
>>> DictBalFreq={'frequency': 1.2,
>>> 'method_low': 'trapz',
>>> 'options_low': {'points': 12},
>>> 'method_high': 'gauss',
>>> 'options_high': {'partitions': 2, 'order': 8},
>>> 'check_stability': True }
balances the state-space model in the frequency range [0, 1.2]
using:
a. 12 equally-spaced points integration of the Gramians in
the low-frequency range [0,1.2] and
b. A 2 Gauss-Lobotto 8-th order quadratures of the controllability
Gramian in the high-frequency range.
A total number of 28 integration points will be required, which will
result into a balanced model with number of states
>>> min{ 2*28* number_inputs, 2*28* number_outputs }
The model is finally truncated so as to retain only the first Ns stable
modes.
"""
### check input dictionary
if 'frequency' not in DictBalFreq:
raise NameError('Solution dictionary must include the "frequency" key')
if 'method_low' not in DictBalFreq:
warnings.warn('Setting default options for low-frequency integration')
DictBalFreq['method_low'] = 'trapz'
DictBalFreq['options_low'] = {'points': 12}
if 'method_high' not in DictBalFreq:
warnings.warn('Setting default options for high-frequency integration')
DictBalFreq['method_high'] = 'gauss'
DictBalFreq['options_high'] = {'partitions': 2, 'order': 8}
if 'check_stability' not in DictBalFreq:
DictBalFreq['check_stability'] = True
if 'output_modes' not in DictBalFreq:
DictBalFreq['output_modes'] = True
if 'get_frequency_response' not in DictBalFreq:
DictBalFreq['get_frequency_response'] = False
### get integration points and weights
# Nyquist frequency
kn = np.pi / SS.dt
Opt = DictBalFreq['options_low']
if DictBalFreq['method_low'] == 'trapz':
kv_low, wv_low = get_trapz_weights(0., DictBalFreq['frequency'],
Opt['points'], False)
elif DictBalFreq['method_low'] == 'gauss':
kv_low, wv_low = get_gauss_weights(0., DictBalFreq['frequency'],
Opt['partitions'], Opt['order'])
else:
raise NameError(
'Invalid value %s for key "method_low"' % DictBalFreq['method_low'])
Opt = DictBalFreq['options_high']
if DictBalFreq['method_high'] == 'trapz':
if Opt['points'] == 0:
warnings.warn('You have chosen no points in high frequency range!')
kv_high, wv_high = [], []
else:
kv_high, wv_high = get_trapz_weights(DictBalFreq['frequency'], kn,
Opt['points'], True)
elif DictBalFreq['method_high'] == 'gauss':
if Opt['order'] * Opt['partitions'] == 0:
warnings.warn('You have chosen no points in high frequency range!')
kv_high, wv_high = [], []
else:
kv_high, wv_high = get_gauss_weights(DictBalFreq['frequency'], kn,
Opt['partitions'], Opt['order'])
else:
raise NameError(
'Invalid value %s for key "method_high"' % DictBalFreq['method_high'])
### -------------------------------------------------- loop frequencies
### merge vectors
Nk_low = len(kv_low)
kvdt = np.concatenate((kv_low, kv_high)) * SS.dt
wv = np.concatenate((wv_low, wv_high)) * SS.dt
zv = np.cos(kvdt) + 1.j * np.sin(kvdt)
Eye = libsp.eye_as(SS.A)
Zc = np.zeros((SS.states, 2 * SS.inputs * len(kvdt)), )
Zo = np.zeros((SS.states, 2 * SS.outputs * Nk_low), )
if DictBalFreq['get_frequency_response']:
Yfreq = np.empty((SS.outputs, SS.inputs, Nk_low,), dtype=np.complex_)
kv = kv_low
for kk in range(len(kvdt)):
zval = zv[kk]
Intfact = wv[kk] # integration factor
Qctrl = Intfact * libsp.solve(zval * Eye - SS.A, SS.B)
kkvec = range(2 * kk * SS.inputs, 2 * (kk + 1) * SS.inputs)
Zc[:, kkvec[:SS.inputs]] = Qctrl.real
Zc[:, kkvec[SS.inputs:]] = Qctrl.imag
### ----- frequency response
if DictBalFreq['get_frequency_response'] and kk < Nk_low:
Yfreq[:, :, kk] = (1. / Intfact) * \
libsp.dot(SS.C, Qctrl, type_out=np.ndarray) + SS.D
### ----- observability
if kk >= Nk_low:
continue
Qobs = Intfact * libsp.solve(np.conj(zval) * Eye - SS.A.T, SS.C.T)
kkvec = range(2 * kk * SS.outputs, 2 * (kk + 1) * SS.outputs)
Zo[:, kkvec[:SS.outputs]] = Intfact * Qobs.real
Zo[:, kkvec[SS.outputs:]] = Intfact * Qobs.imag
# delete full matrices
Kernel = None
Qctrl = None
Qobs = None
# LRSQM (optimised)
U, hsv, Vh = scalg.svd(np.dot(Zo.T, Zc), full_matrices=False)
sinv = hsv ** (-0.5)
T = np.dot(Zc, Vh.T * sinv)
Ti = np.dot((U * sinv).T, Zo.T)
# Zc,Zo=None,None
### build frequency balanced model
Ab = libsp.dot(Ti, libsp.dot(SS.A, T))
Bb = libsp.dot(Ti, SS.B)
Cb = libsp.dot(SS.C, T)
SSb = libss.ss(Ab, Bb, Cb, SS.D, dt=SS.dt)
### Eliminate unstable modes - if any:
if DictBalFreq['check_stability']:
for nn in range(1, len(hsv) + 1):
eigs_trunc = scalg.eigvals(SSb.A[:nn, :nn])
eigs_trunc_max = np.max(np.abs(eigs_trunc))
if eigs_trunc_max > 1. - 1e-16:
SSb.truncate(nn - 1)
hsv = hsv[:nn - 1]
T = T[:, :nn - 1]
Ti = Ti[:nn - 1, :]
break
outs = (SSb, hsv)
if DictBalFreq['output_modes']:
outs += (T, Ti, Zc, Zo, U, Vh)
return outs
def modred(SSb, N, method='residualisation'):
"""
Produces a reduced order model with N states from balanced or modal system
SSb.
Both "truncation" and "residualisation" methods are employed.
Note:
- this method is designed for small size systems, i.e. a deep copy of SSb is
produced by default.
"""
assert method in ['residualisation', 'realisation', 'truncation'], \
"method must be equal to 'residualisation' or 'truncation'!"
assert SSb.dt is not None, 'SSb is not a DLTI!'
Nb = SSb.A.shape[0]
if Nb == N:
SSrom = libss.ss(SSb.A, SSb.B, SSb.C, SSb.D, dt=SSb.dt)
return SSrom
A11 = SSb.A[:N, :N]
B11 = SSb.B[:N, :]
C11 = SSb.C[:, :N]
D = SSb.D
if method is 'truncation':
SSrom = libss.ss(A11, B11, C11, D, dt=SSb.dt)
else:
Nb = SSb.A.shape[0]
IA22inv = -SSb.A[N:, N:].copy()
eevec = range(Nb - N)
IA22inv[eevec, eevec] += 1.
IA22inv = scalg.inv(IA22inv, overwrite_a=True)
SSrom = libss.ss(
A11 + np.dot(SSb.A[:N, N:], | np.dot(IA22inv, SSb.A[N:, :N]) | numpy.dot |
import os
import cv2
import random
import numpy as np
from SOLO.visualize import visualize
from SOLO.preprocess.flag import flag
from preprocess.find_folder import find_folder
from SOLO.preprocess.augmentation import augment, augment_flip
from SOLO.preprocess.solo_labelgen import file_reader, label_generator, grid_generator
f = flag()
target_size = f.target_size
dataset_directory = '../../EgoGesture Dataset/'
label_directory = '../../EgoGesture Dataset/label/'
folders = ['SingleOne', 'SingleTwo', 'SingleThree', 'SingleFour', 'SingleFive', 'SingleSix',
'SingleSeven', 'SingleEight', 'SingleNine', 'SingleGood', 'SingleBad']
label = {}
for folder in folders:
label[folder] = file_reader(folder)
def train_generator(steps_per_epoch, sample_per_batch):
train_image_files = []
for folder in folders:
train_image_files = train_image_files + os.listdir(dataset_directory + folder)
for i in range(0, 15):
random.shuffle(train_image_files)
print('Training Dataset Size: ', len(train_image_files))
while True:
for i in range(0, steps_per_epoch):
x_batch = []
y_batch = []
start = i * sample_per_batch
for n in range(start, start + sample_per_batch):
image_name = train_image_files[n]
folder_name = find_folder(image_name)
image = cv2.imread(dataset_directory + folder_name + '/' + image_name)
image = cv2.resize(image, (target_size, target_size))
obj_box = label_generator(image_name=image_name, file=label.get(folder_name))
# 01: original image
x_batch.append(image)
output = grid_generator(obj_box=obj_box)
y_batch.append(output)
# visualize(image=image, output=output)
# 02: original image + augment
image_aug, bbox_aug = augment(image=image, bbox=obj_box)
x_batch.append(image_aug)
output = grid_generator(obj_box=bbox_aug)
y_batch.append(output)
# visualize(image=image_aug, output=output)
x_batch = np.asarray(x_batch)
x_batch = x_batch.astype('float32')
x_batch = x_batch / 255.0
y_batch = np.asarray(y_batch)
yield (x_batch, y_batch)
def valid_generator(steps_per_epoch, sample_per_batch):
dataset_directory = '../EgoGesture Dataset/Valid/'
train_image_files = os.listdir(dataset_directory)
for i in range(0, 10):
random.shuffle(train_image_files)
while True:
for i in range(0, steps_per_epoch):
x_batch = []
y_batch = []
start = i * sample_per_batch
for n in range(start, start + sample_per_batch):
image_name = train_image_files[n]
folder_name = find_folder(image_name)
image = cv2.imread(dataset_directory + folder_name + '/' + image_name)
image = cv2.resize(image, (416, 416))
obj_box = label_generator(image_name=image_name, file=label.get(folder_name))
# 01: original image
x_batch.append(image)
output = grid_generator(obj_box=obj_box)
y_batch.append(output)
# visualize(image=image, output=output)
# 02: flip image
image_flip, bbox_flip = augment_flip(image=image, bbox=obj_box)
x_batch.append(image_flip)
y_batch.append(grid_generator(obj_box=bbox_flip))
x_batch = np.asarray(x_batch)
x_batch = x_batch.astype('float32')
x_batch = x_batch / 255.0
y_batch = | np.asarray(y_batch) | numpy.asarray |
import numpy as np
import os
import re
import requests
import sys
import time
from netCDF4 import Dataset
import pandas as pd
from bs4 import BeautifulSoup
from tqdm import tqdm
# setup constants used to access the data from the different M2M interfaces
BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL
SENSOR_URL = '12576/sensor/inv/' # Sensor Information
# setup access credentials
AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>']
def M2M_Call(uframe_dataset_name, start_date, end_date):
options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf'
r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1]))
if r.status_code == requests.codes.ok:
data = r.json()
else:
return None
# wait until the request is completed
print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes')
url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0]
check_complete = url + '/status.txt'
with tqdm(total=400, desc='Waiting') as bar:
for i in range(400):
r = requests.get(check_complete)
bar.update(1)
if r.status_code == requests.codes.ok:
bar.n = 400
bar.last_print_n = 400
bar.refresh()
print('\nrequest completed in %f minutes.' % elapsed)
break
else:
time.sleep(3)
elapsed = (i * 3) / 60
return data
def M2M_Files(data, tag=''):
"""
Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog.
Collected data is gathered into an xarray dataset for further processing.
:param data: JSON object returned from M2M data request with details on where the data is to be found for download
:param tag: regex tag to use in discriminating the data files, so we only collect the correct ones
:return: the collected data as an xarray dataset
"""
# Create a list of the files from the request above using a simple regex as a tag to discriminate the files
url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0]
files = list_files(url, tag)
return files
def list_files(url, tag=''):
"""
Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system.
:param url: URL to user's THREDDS catalog specific to a data request
:param tag: regex pattern used to distinguish files of interest
:return: list of files in the catalog with the URL path set relative to the catalog
"""
page = requests.get(url).text
soup = BeautifulSoup(page, 'html.parser')
pattern = re.compile(tag)
return [node.get('href') for node in soup.find_all('a', text=pattern)]
def M2M_Data(nclist,variables):
thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/'
#nclist is going to contain more than one url eventually
for jj in range(len(nclist)):
url=nclist[jj]
url=url[25:]
dap_url = thredds + url + '#fillmismatch'
openFile = Dataset(dap_url,'r')
for ii in range(len(variables)):
dum = openFile.variables[variables[ii].name]
variables[ii].data = np.append(variables[ii].data, dum[:].data)
tmp = variables[0].data/60/60/24
time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01'))
return variables, time_converted
class var(object):
def __init__(self):
"""A Class that generically holds data with a variable name
and the units as attributes"""
self.name = ''
self.data = np.array([])
self.units = ''
def __repr__(self):
return_str = "name: " + self.name + '\n'
return_str += "units: " + self.units + '\n'
return_str += "data: size: " + str(self.data.shape)
return return_str
class structtype(object):
def __init__(self):
""" A class that imitates a Matlab structure type
"""
self._data = []
def __getitem__(self, index):
"""implement index behavior in the struct"""
if index == len(self._data):
self._data.append(var())
return self._data[index]
def __len__(self):
return len(self._data)
def M2M_URLs(platform_name,node,instrument_class,method):
var_list = structtype()
#MOPAK
if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#METBK
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
#FLORT
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
#FDCHP
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#DOSTA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
#ADCP
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
#ZPLSC
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#WAVSS
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
#VELPT
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
#PCO2W
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
#PHSEN
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
#SPKIR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
#PRESF
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
#CTDBP
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
#VEL3D
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
#VEL3DK
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
#PCO2A
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
#PARAD
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
#OPTAA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#NUTNR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
##
#MOPAK
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#METBK
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
#FLORT
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
#FDCHP
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#DOSTA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
#ADCP
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
#WAVSS
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
#VELPT
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
#uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
#PCO2W
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
#PHSEN
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
#SPKIR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
#PRESF
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
#CTDBP
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
#VEL3D
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
#PCO2A
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
#OPTAA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#NUTNR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = | np.array([]) | numpy.array |
# Copyright 2014-2019 The PySCF Developers. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: <NAME> <<EMAIL>>
# <NAME> <<EMAIL>>
#
'''
Restricted algebraic diagrammatic construction
'''
import time
import numpy as np
import pyscf.ao2mo as ao2mo
from pyscf import lib
from pyscf.lib import logger
from pyscf.adc import radc_ao2mo
from pyscf.adc import dfadc
from pyscf import __config__
from pyscf import df
from pyscf import symm
def kernel(adc, nroots=1, guess=None, eris=None, verbose=None):
adc.method = adc.method.lower()
if adc.method not in ("adc(2)", "adc(2)-x", "adc(3)"):
raise NotImplementedError(adc.method)
cput0 = (time.clock(), time.time())
log = logger.Logger(adc.stdout, adc.verbose)
if adc.verbose >= logger.WARN:
adc.check_sanity()
adc.dump_flags()
if eris is None:
eris = adc.transform_integrals()
imds = adc.get_imds(eris)
matvec, diag = adc.gen_matvec(imds, eris)
guess = adc.get_init_guess(nroots, diag, ascending = True)
conv, adc.E, U = lib.linalg_helper.davidson_nosym1(lambda xs : [matvec(x) for x in xs], guess, diag, nroots=nroots, verbose=log, tol=adc.conv_tol, max_cycle=adc.max_cycle, max_space=adc.max_space,tol_residual=adc.tol_residual)
adc.U = | np.array(U) | numpy.array |
# -*- coding: utf-8 -*-
'''
Copyright (c) 2021, MIT Interactive Robotics Group, PI <NAME>.
Authors: <NAME>, <NAME>, <NAME>, <NAME>
All rights reserved.
https://github.com/befelix/safe-exploration/blob/master/safe_exploration/visualization/utils_visualization.py
'''
import numpy as np
import numpy.linalg as nLa
from IPython import embed
from matplotlib.patches import Ellipse
import matplotlib.pyplot as plt
# https://stackoverflow.com/questions/287871/how-to-print-colored-text-to-the-terminal
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKCYAN = '\033[96m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
def print_FAIL(m):
print(bcolors.FAIL + m + bcolors.ENDC)
def print_OK(m):
print(bcolors.WARNING + m + bcolors.ENDC)
def plot_ellipsoid_2D(centroid, Q, ax, color="r", alpha=1.0):
A = nLa.inv(Q)
# -------------
# https://gist.github.com/Gabriel-p/4ddd31422a88e7cdf953
# A : (d x d) matrix of the ellipse equation in the 'center form':
# (x-c)' * A * (x-c) = 1
# 'centroid' is the center coordinates of the ellipse.
# V is the rotation matrix that gives the orientation of the ellipsoid.
# https://en.wikipedia.org/wiki/Rotation_matrix
# http://mathworld.wolfram.com/RotationMatrix.html
U, D, V = nLa.svd(A)
# x, y radii.
rx, ry = 1./np.sqrt(D)
# Major and minor semi-axis of the ellipse.
dx, dy = 2 * rx, 2 * ry
a, b = max(dx, dy), min(dx, dy)
# Eccentricity
# e = np.sqrt(a ** 2 - b ** 2) / a
arcsin = -1. * np.rad2deg(np.arcsin(V[0][0]))
arccos = np.rad2deg( | np.arccos(V[0][1]) | numpy.arccos |
import numpy as np
import pandas as pd
import json
import os
from tqdm import tqdm
import cv2
from math import sin, cos
from mmcv.image import imread, imwrite
import mmcv
from pycocotools import mask as maskUtils
import multiprocessing
import copy
from .custom import CustomDataset
from .registry import DATASETS
from .car_models import car_id2name
from .kaggle_pku_utils import euler_to_Rot, euler_angles_to_quaternions, \
quaternion_upper_hemispher, quaternion_to_euler_angle, draw_line, draw_points, non_max_suppression_fast
from .visualisation_utils import draw_result_kaggle_pku, draw_box_mesh_kaggle_pku, refine_yaw_and_roll, \
restore_x_y_from_z_withIOU, get_IOU, nms_with_IOU, nms_with_IOU_and_vote, nms_with_IOU_and_vote_return_index
from albumentations.augmentations import transforms
from math import acos, pi
from scipy.spatial.transform import Rotation as R
class NumpyEncoder(json.JSONEncoder):
""" Special json encoder for numpy types """
def default(self, obj):
if isinstance(obj, (np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj, (np.float_, np.float16, np.float32,
np.float64)):
return float(obj)
elif isinstance(obj, (np.ndarray,)): #### This is the fix
return obj.tolist()
elif isinstance(obj, (bytes)):
return obj.decode("ascii")
return json.JSONEncoder.default(self, obj)
@DATASETS.register_module
class KagglePKUDataset(CustomDataset):
CLASSES = ('car',)
def load_annotations(self, ann_file, outdir='/data/Kaggle/pku-autonomous-driving'):
# some hard coded parameters
self.outdir = outdir
self.image_shape = (2710, 3384) # this is generally the case
self.bottom_half = 1480 # this
self.unique_car_mode = [2, 6, 7, 8, 9, 12, 14, 16, 18,
19, 20, 23, 25, 27, 28, 31, 32,
35, 37, 40, 43, 46, 47, 48, 50,
51, 54, 56, 60, 61, 66, 70, 71, 76]
self.cat2label = {car_model: i for i, car_model in enumerate(self.unique_car_mode)}
# From camera.zip
self.camera_matrix = np.array([[2304.5479, 0, 1686.2379],
[0, 2305.8757, 1354.9849],
[0, 0, 1]], dtype=np.float32)
print("Loading Car model files...")
self.car_model_dict = self.load_car_models()
self.car_id2name = car_id2name
annotations = []
if not self.test_mode:
outfile = ann_file
if os.path.isfile(outfile):
annotations = json.load(open(outfile, 'r'))
else:
PATH = '/data/Kaggle/ApolloScape_3D_car/train/split/'
ImageId = [i.strip() for i in open(PATH + 'train-list.txt').readlines()]
train = pd.read_csv(ann_file)
for idx in tqdm(range(len(train))):
filename = train['ImageId'].iloc[idx] + '.jpg'
if filename not in ImageId:
continue
annotation = self.load_anno_idx(idx, train)
annotations.append(annotation)
with open(outfile, 'w') as f:
json.dump(annotations, f, indent=4, cls=NumpyEncoder)
annotations = self.clean_corrupted_images(annotations)
annotations = self.clean_outliers(annotations)
self.print_statistics_annotations(annotations)
else:
if os.path.isfile(ann_file): # This for evulating ApolloScape
# Using readlines()
file = open(ann_file, 'r')
lines = file.readlines()
for fn in lines:
filename = os.path.join(self.img_prefix, fn.replace('\n', ''))
info = {'filename': filename}
annotations.append(info)
else:
for fn in os.listdir(self.img_prefix):
filename = os.path.join(self.img_prefix, fn)
info = {'filename': filename}
annotations.append(info)
# We also generate the albumentation enhances valid images
# below is a hard coded list....
if False:
self.generate_albu_valid(annotations)
# We also will generate a pickle file if the translation, SSD like offset regression
# this will need to be done only once
if False:
self.group_rectangles(annotations)
self.annotations = annotations
return annotations
def load(self, t):
return self.load_anno_idx(*t)
def generate_albu_valid(self, annotations):
num_albu = len(self.pipeline_dict[-1].transforms[-3].transforms)
for i_albu in range(num_albu):
params = self.pipeline_dict[-1].transforms[-3].transforms[i_albu]
# always set p=1 so that we will always tranform the image
params['p'] = 1
operation = getattr(transforms, params['type'])
# delete the 'type'
params_input = params.copy()
del params_input['type']
im_out_dir = self.img_prefix + '_' + params['type']
if not os.path.exists(im_out_dir):
os.mkdir(im_out_dir)
print('Generating: %s' % params['type'])
for im_idx in tqdm(range(len(annotations))):
image = imread(annotations[im_idx]['filename'])
img_aug = operation(**params_input)(image=image)['image']
im_out_file = annotations[im_idx]['filename'].split('/')[-1]
imwrite(img_aug, os.path.join(im_out_dir, im_out_file))
def load_car_models(self):
car_model_dir = os.path.join(self.outdir, 'car_models_json')
car_model_dict = {}
for car_name in tqdm(os.listdir(car_model_dir)):
with open(os.path.join(self.outdir, 'car_models_json', car_name)) as json_file:
car_model_dict[car_name[:-5]] = json.load(json_file)
return car_model_dict
def RotationDistance(self, p, g):
true = [g[1], g[0], g[2]]
pred = [p[1], p[0], p[2]]
q1 = R.from_euler('xyz', true)
q2 = R.from_euler('xyz', pred)
diff = R.inv(q2) * q1
W = np.clip(diff.as_quat()[-1], -1., 1.)
# in the official metrics code:
# Peking University/Baidu - Autonomous Driving
# return Object3D.RadianToDegree( Math.Acos(diff.W) )
# this code treat θ and θ+2π differntly.
# So this should be fixed as follows.
W = (acos(W) * 360) / pi
if W > 180:
W = 360 - W
return W
def load_anno_idx(self, idx, train, draw=False, draw_dir='/data/cyh/kaggle/train_image_gt_vis'):
labels = []
bboxes = []
rles = []
eular_angles = []
quaternion_semispheres = []
translations = []
img_name = self.img_prefix + train['ImageId'].iloc[idx] + '.jpg'
if not os.path.isfile(img_name):
assert "Image file does not exist!"
else:
if draw:
image = imread(img_name)
mask_all = np.zeros(image.shape)
merged_image = image.copy()
alpha = 0.8 # transparency
gt = self._str2coords(train['PredictionString'].iloc[idx])
for gt_pred in gt:
eular_angle = np.array([gt_pred['yaw'], gt_pred['pitch'], gt_pred['roll']])
translation = np.array([gt_pred['x'], gt_pred['y'], gt_pred['z']])
quaternion = euler_angles_to_quaternions(eular_angle)
quaternion_semisphere = quaternion_upper_hemispher(quaternion)
new_eular_angle = quaternion_to_euler_angle(quaternion_semisphere)
distance = self.RotationDistance(new_eular_angle, eular_angle)
# distance = np.sum(np.abs(new_eular_angle - eular_angle))
if distance > 0.001:
print("Wrong !!!", img_name)
labels.append(gt_pred['id'])
eular_angles.append(eular_angle)
quaternion_semispheres.append(quaternion_semisphere)
translations.append(translation)
# rendering the car according to:
# Augmented Reality | Kaggle
# car_id2name is from:
# https://github.com/ApolloScapeAuto/dataset-api/blob/master/car_instance/car_models.py
car_name = car_id2name[gt_pred['id']].name
vertices = np.array(self.car_model_dict[car_name]['vertices'])
vertices[:, 1] = -vertices[:, 1]
triangles = np.array(self.car_model_dict[car_name]['faces']) - 1
# project 3D points to 2d image plane
yaw, pitch, roll = gt_pred['yaw'], gt_pred['pitch'], gt_pred['roll']
# I think the pitch and yaw should be exchanged
yaw, pitch, roll = -pitch, -yaw, -roll
Rt = np.eye(4)
t = np.array([gt_pred['x'], gt_pred['y'], gt_pred['z']])
Rt[:3, 3] = t
Rt[:3, :3] = euler_to_Rot(yaw, pitch, roll).T
Rt = Rt[:3, :]
P = np.ones((vertices.shape[0], vertices.shape[1] + 1))
P[:, :-1] = vertices
P = P.T
img_cor_points = np.dot(self.camera_matrix, np.dot(Rt, P))
img_cor_points = img_cor_points.T
img_cor_points[:, 0] /= img_cor_points[:, 2]
img_cor_points[:, 1] /= img_cor_points[:, 2]
# project 3D points to 2d image plane
x1, y1, x2, y2 = img_cor_points[:, 0].min(), img_cor_points[:, 1].min(), img_cor_points[:,
0].max(), img_cor_points[:,
1].max()
bboxes.append([x1, y1, x2, y2])
# project 3D points to 2d image plane
if draw:
# project 3D points to 2d image plane
mask_seg = np.zeros(image.shape, dtype=np.uint8)
mask_seg_mesh = np.zeros(image.shape, dtype=np.uint8)
for t in triangles:
coord = np.array([img_cor_points[t[0]][:2], img_cor_points[t[1]][:2], img_cor_points[t[2]][:2]],
dtype=np.int32)
# This will draw the mask for segmenation
cv2.drawContours(mask_seg, np.int32([coord]), 0, (255, 255, 255), -1)
cv2.polylines(mask_seg_mesh, np.int32([coord]), 1, (0, 255, 0))
mask_all += mask_seg_mesh
ground_truth_binary_mask = np.zeros(mask_seg.shape, dtype=np.uint8)
ground_truth_binary_mask[mask_seg == 255] = 1
if self.bottom_half > 0: # this indicate w
ground_truth_binary_mask = ground_truth_binary_mask[int(self.bottom_half):, :]
# x1, x2, y1, y2 = mesh_point_to_bbox(ground_truth_binary_mask)
# TODO: problem of masking
# Taking a kernel for dilation and erosion,
# the kernel size is set at 1/10th of the average width and heigh of the car
kernel_size = int(((y2 - y1) / 2 + (x2 - x1) / 2) / 10)
kernel = np.ones((kernel_size, kernel_size), np.uint8)
# Following is the code to find mask
ground_truth_binary_mask_img = ground_truth_binary_mask.sum(axis=2).astype(np.uint8)
ground_truth_binary_mask_img[ground_truth_binary_mask_img > 1] = 1
ground_truth_binary_mask_img = cv2.dilate(ground_truth_binary_mask_img, kernel, iterations=1)
ground_truth_binary_mask_img = cv2.erode(ground_truth_binary_mask_img, kernel, iterations=1)
fortran_ground_truth_binary_mask = np.asfortranarray(ground_truth_binary_mask_img)
encoded_ground_truth = maskUtils.encode(fortran_ground_truth_binary_mask)
rles.append(encoded_ground_truth)
# bm = maskUtils.decode(encoded_ground_truth)
if draw:
# if False:
mask_all = mask_all * 255 / mask_all.max()
cv2.addWeighted(image.astype(np.uint8), 1.0, mask_all.astype(np.uint8), alpha, 0, merged_image)
for box in bboxes:
cv2.rectangle(merged_image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 0, 255),
thickness=5)
imwrite(merged_image, os.path.join(draw_dir, train['ImageId'].iloc[idx] + '.jpg'))
if len(bboxes):
bboxes = np.array(bboxes, dtype=np.float32)
labels = np.array(labels, dtype=np.int64)
eular_angles = np.array(eular_angles, dtype=np.float32)
quaternion_semispheres = np.array(quaternion_semispheres, dtype=np.float32)
translations = np.array(translations, dtype=np.float32)
assert len(gt) == len(bboxes) == len(labels) == len(eular_angles) == len(quaternion_semispheres) == len(
translations)
annotation = {
'filename': img_name,
'width': self.image_shape[1],
'height': self.image_shape[0],
'bboxes': bboxes,
'labels': labels,
'eular_angles': eular_angles,
'quaternion_semispheres': quaternion_semispheres,
'translations': translations,
'rles': rles
}
return annotation
def eular_angle_classification(self, annotations, draw_dir=""):
# for ann in tqdm(annotations):
for ann in tqdm(annotations[5000: 5010]):
# for ann in tqdm(annotations[0: 50]):
img_name = ann['filename']
image = imread(img_name)
mask_all = np.zeros(image.shape)
merged_image = image.copy()
alpha = 0.9 # transparency
bboxes = ann['bboxes']
labels = ann['labels']
eular_angles = ann['eular_angles']
quaternion_semispheres = ann['quaternion_semispheres']
translations = ann['translations']
assert len(bboxes) == len(labels) == len(eular_angles) == len(quaternion_semispheres) == len(translations)
for gt_car_idx in range(len(ann['quaternion_semispheres'])):
eular_angle = np.array(eular_angles[gt_car_idx])
# if 'Camera' in img_name: # this is an apolloscape dataset
# eular_angle_kaggle = np.array([eular_angle[1], eular_angle[0], eular_angle[2]])
# elif 'ID' in img_name:
# eular_angle_kaggle = eular_angle
# else:
# print("Unidentified class")
quaternion = euler_angles_to_quaternions(eular_angle)
quaternion_semisphere = quaternion_upper_hemispher(quaternion)
ea_make = quaternion_to_euler_angle(quaternion_semisphere)
json_q = quaternion_semispheres[gt_car_idx]
ea_json = quaternion_to_euler_angle(json_q)
ea_json = np.array(ea_json)
# q1 = R.from_euler('xyz', eular_angle)
# q2 = R.from_euler('xyz', q)
# print('GT eular angle: ', eular_angle)
# print('Generate eular angle:', ea_make)
# print('Json generated eular angle', ea_json)
# print('Generate q:', quaternion_semisphere)
# print('Json q:', json_q)
# print("diff is: %f" % np.sum(np.abs(ea_json-ea_make)))
if self.RotationDistance(ea_make, ea_json) > 0.01:
print('Wrong!!!!!!!!!!!!!')
# rendering the car according to:
# Augmented Reality | Kaggle
# car_id2name is from:
# https://github.com/ApolloScapeAuto/dataset-api/blob/master/car_instance/car_models.py
car_name = car_id2name[labels[gt_car_idx]].name
vertices = np.array(self.car_model_dict[car_name]['vertices'])
vertices[:, 1] = -vertices[:, 1]
triangles = np.array(self.car_model_dict[car_name]['faces']) - 1
translation = np.array(translations[gt_car_idx])
Rt = np.eye(4)
Rt[:3, 3] = translation
# project 3D points to 2d image plane
# Apollo below is correct
# https://en.wikipedia.org/wiki/Euler_angles
# Y, P, R = euler_to_Rot_YPR(eular_angle[1], eular_angle[0], eular_angle[2])
rot_mat = euler_to_Rot(eular_angle[0], eular_angle[1], eular_angle[2]).T
# check eular from rot mat
Rt[:3, :3] = rot_mat
Rt = Rt[:3, :]
P = np.ones((vertices.shape[0], vertices.shape[1] + 1))
P[:, :-1] = vertices
P = P.T
img_cor_points = np.dot(self.camera_matrix, np.dot(Rt, P))
img_cor_points = img_cor_points.T
img_cor_points[:, 0] /= img_cor_points[:, 2]
img_cor_points[:, 1] /= img_cor_points[:, 2]
x1, y1, x2, y2 = img_cor_points[:, 0].min(), img_cor_points[:, 1].min(), img_cor_points[:,
0].max(), img_cor_points[:,
1].max()
bboxes.append([x1, y1, x2, y2])
# project 3D points to 2d image plane
mask_seg = np.zeros(image.shape, dtype=np.uint8)
for t in triangles:
coord = np.array([img_cor_points[t[0]][:2], img_cor_points[t[1]][:2], img_cor_points[t[2]][:2]],
dtype=np.int32)
# This will draw the mask for segmenation
# cv2.drawContours(mask_seg, np.int32([coord]), 0, (255, 255, 255), -1)
cv2.polylines(mask_seg, np.int32([coord]), 1, (0, 255, 0))
mask_all += mask_seg
mask_all = mask_all * 255 / mask_all.max()
cv2.addWeighted(image.astype(np.uint8), 1.0, mask_all.astype(np.uint8), alpha, 0, merged_image)
im_write_file = os.path.join(draw_dir, img_name.split('/')[-1])
print("Writing image to: %s" % os.path.join(draw_dir, img_name.split('/')[-1]))
imwrite(merged_image, im_write_file)
return True
def plot_and_examine(self, annotations, draw_dir='/data/Kaggle/wudi_data/train_image_gt_vis'):
# for ann in tqdm(annotations):
# for ann in tqdm(annotations[5000: 5010]):
for ann in tqdm(annotations):
img_name = ann['filename']
image = imread(img_name)
mask_all = np.zeros(image.shape)
merged_image = image.copy()
alpha = 0.9 # transparency
bboxes = ann['bboxes']
labels = ann['labels']
eular_angles = ann['eular_angles']
quaternion_semispheres = ann['quaternion_semispheres']
translations = ann['translations']
assert len(bboxes) == len(labels) == len(eular_angles) == len(quaternion_semispheres) == len(translations)
for gt_car_idx in range(len(ann['quaternion_semispheres'])):
eular_angle = np.array(eular_angles[gt_car_idx])
# if 'Camera' in img_name: # this is an apolloscape dataset
# eular_angle_kaggle = np.array([eular_angle[1], eular_angle[0], eular_angle[2]])
# elif 'ID' in img_name:
# eular_angle_kaggle = eular_angle
# else:
# print("Unidentified class")
quaternion = euler_angles_to_quaternions(eular_angle)
quaternion_semisphere = quaternion_upper_hemispher(quaternion)
ea_make = quaternion_to_euler_angle(quaternion_semisphere)
json_q = quaternion_semispheres[gt_car_idx]
ea_json = quaternion_to_euler_angle(json_q)
ea_json = np.array(ea_json)
# q1 = R.from_euler('xyz', eular_angle)
# q2 = R.from_euler('xyz', q)
# print('GT eular angle: ', eular_angle)
# print('Generate eular angle:', ea_make)
# print('Json generated eular angle', ea_json)
# print('Generate q:', quaternion_semisphere)
# print('Json q:', json_q)
# print("diff is: %f" % np.sum(np.abs(ea_json-ea_make)))
if self.RotationDistance(ea_make, ea_json) > 0.01:
print('Wrong!!!!!!!!!!!!!')
# rendering the car according to:
# Augmented Reality | Kaggle
# car_id2name is from:
# https://github.com/ApolloScapeAuto/dataset-api/blob/master/car_instance/car_models.py
car_name = car_id2name[labels[gt_car_idx]].name
vertices = np.array(self.car_model_dict[car_name]['vertices'])
vertices[:, 1] = -vertices[:, 1]
triangles = np.array(self.car_model_dict[car_name]['faces']) - 1
translation = np.array(translations[gt_car_idx])
Rt = np.eye(4)
Rt[:3, 3] = translation
# project 3D points to 2d image plane
# Apollo below is correct
# https://en.wikipedia.org/wiki/Euler_angles
# Y, P, R = euler_to_Rot_YPR(eular_angle[1], eular_angle[0], eular_angle[2])
rot_mat = euler_to_Rot(-eular_angle[1], -eular_angle[0], -eular_angle[2]).T
# check eular from rot mat
Rt[:3, :3] = rot_mat
Rt = Rt[:3, :]
P = np.ones((vertices.shape[0], vertices.shape[1] + 1))
P[:, :-1] = vertices
P = P.T
img_cor_points = np.dot(self.camera_matrix, np.dot(Rt, P))
img_cor_points = img_cor_points.T
img_cor_points[:, 0] /= img_cor_points[:, 2]
img_cor_points[:, 1] /= img_cor_points[:, 2]
x1, y1, x2, y2 = img_cor_points[:, 0].min(), img_cor_points[:, 1].min(), img_cor_points[:,
0].max(), img_cor_points[:,
1].max()
bboxes.append([x1, y1, x2, y2])
# project 3D points to 2d image plane
mask_seg = np.zeros(image.shape, dtype=np.uint8)
for t in triangles:
coord = np.array([img_cor_points[t[0]][:2], img_cor_points[t[1]][:2], img_cor_points[t[2]][:2]],
dtype=np.int32)
# This will draw the mask for segmenation
# cv2.drawContours(mask_seg, np.int32([coord]), 0, (255, 255, 255), -1)
cv2.polylines(mask_seg, np.int32([coord]), 1, (0, 255, 0))
mask_all += mask_seg
mask_all = mask_all * 255 / mask_all.max()
cv2.addWeighted(image.astype(np.uint8), 1.0, mask_all.astype(np.uint8), alpha, 0, merged_image)
im_write_file = os.path.join(draw_dir, img_name.split('/')[-1])
print("Writing image to: %s" % os.path.join(draw_dir, img_name.split('/')[-1]))
imwrite(merged_image, im_write_file)
return True
def visualise_pred_postprocessing(self, outputs, args):
car_cls_coco = 2
for idx in tqdm(range(len(outputs))):
# ann = self.annotations[idx]
test_folder = '/data/home/yyj/code/kaggle/new_code/Kaggle_PKU_Baidu/data/pku_data/test_images/'
img_name = os.path.join(test_folder, os.path.basename(outputs[idx][2]['file_name']))
if not os.path.isfile(img_name):
assert "Image file does not exist!"
else:
image = imread(img_name)
output = outputs[idx]
# output is a tuple of three elements
bboxes, segms, six_dof = output[0], output[1], output[2]
car_cls_score_pred = six_dof['car_cls_score_pred']
quaternion_pred = six_dof['quaternion_pred']
trans_pred_world = six_dof['trans_pred_world'].copy()
euler_angle = np.array([quaternion_to_euler_angle(x) for x in quaternion_pred])
car_labels = np.argmax(car_cls_score_pred, axis=1)
kaggle_car_labels = [self.unique_car_mode[x] for x in car_labels]
car_names = np.array([car_id2name[x].name for x in kaggle_car_labels])
assert len(bboxes[car_cls_coco]) == len(segms[car_cls_coco]) == len(kaggle_car_labels) \
== len(trans_pred_world) == len(euler_angle) == len(car_names)
# print('change ',trans_pred_world,trans_pred_world_refined)
quaternion_semisphere_refined, flag = refine_yaw_and_roll(image, bboxes[car_cls_coco],
segms[car_cls_coco], car_names, euler_angle,
quaternion_pred, trans_pred_world,
self.car_model_dict,
self.camera_matrix)
if flag:
output[2]['quaternion_pred'] = quaternion_semisphere_refined
euler_angle = np.array([quaternion_to_euler_angle(x) for x in output[2]['quaternion_pred']])
trans_pred_world_refined = restore_x_y_from_z_withIOU(image, bboxes[car_cls_coco], segms[car_cls_coco],
car_names, euler_angle, trans_pred_world,
self.car_model_dict,
self.camera_matrix)
output[2]['trans_pred_world'] = trans_pred_world_refined
# img_box_mesh_refined = self.visualise_box_mesh(image,bboxes[car_cls_coco], segms[car_cls_coco],car_names, euler_angle,trans_pred_world_refined)
# img_box_mesh_refined, iou_flag = self.visualise_box_mesh(image,bboxes[car_cls_coco], segms[car_cls_coco],car_names, euler_angle,trans_pred_world)
# if iou_flag:
# print('iou problem',os.path.basename(img_name))
# img_kaggle = self.visualise_kaggle(image, coords)
# img_mesh = self.visualise_mesh(image, bboxes[car_cls_coco], segms[car_cls_coco], car_names, euler_angle,
# trans_pred_world)
# imwrite(img_kaggle, os.path.join(args.out[:-4] + '_kaggle_vis/' + img_name.split('/')[-1]))
# imwrite(img_mesh, os.path.join(args.out[:-4] + '_mes_vis/' + img_name.split('/')[-1]))
# img_box_mesh_half = cv2.resize(img_box_mesh,None,fx=0.5,fy=0.5)
# img_kaggle_half = cv2.resize(img_kaggle,None,fx=0.5,fy=0.5)
# img_concat = np.concatenate([img_kaggle_half,img_box_mesh_half],axis=1)
# imwrite(img_concat, os.path.join(args.out[:-4] + '_mes_box_vis/' + img_name.split('/')[-1]))
# imwrite(img_box_mesh, os.path.join(args.out[:-4] + '_mes_box_vis_10_0.7/' + img_name.split('/')[-1]))
# imwrite(img_box_mesh_refined, os.path.join(args.out[:-4] + '_mes_box_vis_10_0.7_IOU=0/' + img_name.split('/')[-1])[:-4]+'_refined.jpg')
return outputs
def distributed_visualise_pred_merge_postprocessing(self, img_id, outputs, args, vote=2, tmp_dir="./results/",
draw_flag=False):
car_cls_coco = 2
bboxes_list = []
segms_list = []
six_dof_list = []
bboxes_with_IOU_list = []
bboxes_merge = outputs[0][img_id][0].copy()
segms_merge = outputs[0][img_id][1].copy()
six_dof_merge = outputs[0][img_id][2].copy()
last_name = ""
for i, output in enumerate(outputs):
a = output[img_id]
file_name = os.path.basename(a[2]['file_name'])
if last_name != "" and file_name != last_name:
assert "Image error!"
last_name = file_name
img_name = os.path.join(self.img_prefix, file_name)
if not os.path.isfile(img_name):
assert "Image file does not exist!"
image = imread(img_name)
bboxes, segms, six_dof = a[0], a[1], a[2]
bboxes_list.append(bboxes)
segms_list.append(segms)
six_dof_list.append(six_dof)
bboxes_with_IOU = get_IOU(image, bboxes[car_cls_coco], segms[car_cls_coco], six_dof,
car_id2name, self.car_model_dict, self.unique_car_mode, self.camera_matrix)
new_bboxes_with_IOU = np.zeros((bboxes_with_IOU.shape[0], bboxes_with_IOU.shape[1] + 1))
for bbox_idx in range(bboxes_with_IOU.shape[0]):
new_bboxes_with_IOU[bbox_idx] = np.append(bboxes_with_IOU[bbox_idx], float(i))
bboxes_with_IOU_list.append(new_bboxes_with_IOU)
bboxes_with_IOU = np.concatenate(bboxes_with_IOU_list, axis=0)
inds = nms_with_IOU_and_vote(bboxes_with_IOU, vote=vote) ## IOU nms filter out processing return output indices
inds = np.array(inds)
inds_list = []
start = 0
for bboxes_iou in bboxes_with_IOU_list:
end = bboxes_iou.shape[0] + start
i = np.where((inds >= start) & (inds < end))
if i:
inds_current = inds[i] - start
else:
inds_current = []
inds_list.append(inds_current)
start = end
bboxes_merge_concat = []
segms_merge_concat = []
car_cls_score_pred_concat = []
quaternion_pred_concat = []
trans_pred_world_concat = []
for ids, bboxes, segms, six_dof in zip(inds_list, bboxes_list, segms_list, six_dof_list):
bboxes_merge_concat.append(bboxes[car_cls_coco][ids])
segms_merge_concat.append(np.array(segms[car_cls_coco])[ids])
car_cls_score_pred_concat.append(six_dof['car_cls_score_pred'][ids])
quaternion_pred_concat.append(six_dof['quaternion_pred'][ids])
trans_pred_world_concat.append(six_dof['trans_pred_world'][ids])
bboxes_merge[car_cls_coco] = np.concatenate(bboxes_merge_concat, axis=0)
segms_merge[car_cls_coco] = np.concatenate(segms_merge_concat, axis=0)
six_dof_merge['car_cls_score_pred'] = np.concatenate(car_cls_score_pred_concat, axis=0)
six_dof_merge['quaternion_pred'] = np.concatenate(quaternion_pred_concat, axis=0)
six_dof_merge['trans_pred_world'] = np.concatenate(trans_pred_world_concat, axis=0)
output_model_merge = (bboxes_merge, segms_merge, six_dof_merge)
if draw_flag:
car_cls_score_pred = six_dof_merge['car_cls_score_pred']
quaternion_pred = six_dof_merge['quaternion_pred']
trans_pred_world = six_dof_merge['trans_pred_world'].copy()
euler_angle = np.array([quaternion_to_euler_angle(x) for x in quaternion_pred])
car_labels = np.argmax(car_cls_score_pred, axis=1)
kaggle_car_labels = [self.unique_car_mode[x] for x in car_labels]
car_names = np.array([car_id2name[x].name for x in kaggle_car_labels])
# img_box_mesh_refined = self.visualise_box_mesh(image,bboxes[car_cls_coco], segms[car_cls_coco],car_names, euler_angle,trans_pred_world_refined)
img_box_mesh_refined, iou_flag = self.visualise_box_mesh(image, bboxes_merge[car_cls_coco],
segms_merge[car_cls_coco], car_names,
euler_angle, trans_pred_world)
imwrite(img_box_mesh_refined,
os.path.join(args.out[:-4] + '_mes_box_vis_merged/' + img_name.split('/')[-1])[
:-4] + '_merged.jpg')
tmp_file = os.path.join(tmp_dir, "{}.pkl".format(last_name[:-4]))
mmcv.dump(output_model_merge, tmp_file)
return output_model_merge
def distributed_visualise_pred_merge_postprocessing_weight_merge(self, img_id, outputs, args, vote=0,
tmp_dir="./results/", draw_flag=False):
car_cls_coco = 2
bboxes_list = []
segms_list = []
six_dof_list = []
bboxes_with_IOU_list = []
bboxes_merge = outputs[0][img_id][0].copy()
segms_merge = outputs[0][img_id][1].copy()
six_dof_merge = outputs[0][img_id][2].copy()
last_name = ""
if vote == 0:
vote = len(outputs)
for i, output in enumerate(outputs):
a = output[img_id]
file_name = os.path.basename(a[2]['file_name'])
if last_name != "" and file_name != last_name:
assert "Image error!"
last_name = file_name
img_name = os.path.join(self.img_prefix, file_name)
if not os.path.isfile(img_name):
assert "Image file does not exist!"
image = imread(img_name)
bboxes, segms, six_dof = a[0], a[1], a[2]
bboxes_list.append(bboxes)
segms_list.append(segms)
six_dof_list.append(six_dof)
bboxes_with_IOU = get_IOU(image, bboxes[car_cls_coco], segms[car_cls_coco], six_dof,
car_id2name, self.car_model_dict, self.unique_car_mode, self.camera_matrix)
new_bboxes_with_IOU = np.zeros((bboxes_with_IOU.shape[0], bboxes_with_IOU.shape[1] + 1))
for bbox_idx in range(bboxes_with_IOU.shape[0]):
new_bboxes_with_IOU[bbox_idx] = np.append(bboxes_with_IOU[bbox_idx], float(i))
bboxes_with_IOU_list.append(new_bboxes_with_IOU)
bboxes_with_IOU = np.concatenate(bboxes_with_IOU_list, axis=0)
inds_index = nms_with_IOU_and_vote_return_index(bboxes_with_IOU, vote=vote) ## IOU nms filter out processing return output indices
inds = np.array(list(inds_index.keys()))
trans_pred_world = np.concatenate([sd['trans_pred_world'] for sd in six_dof_list], axis=0)
# Now we weighted average of the translation
for ii in inds_index:
weight = bboxes_with_IOU[:, 5][inds_index[ii]] / np.sum(bboxes_with_IOU[:, 5][inds_index[ii]])
trans_pred_world[ii] = np.sum(trans_pred_world[inds_index[ii]] * np.expand_dims(weight, axis=1), axis=0)
inds_list = []
start = 0
for bi in range(len(bboxes_with_IOU_list)):
bboxes_iou = bboxes_with_IOU_list[bi]
end = bboxes_iou.shape[0] + start
i = np.where((inds >= start) & (inds < end))
if i:
inds_i = inds[i] - start
else:
inds_i = []
six_dof_list[bi]['trans_pred_world'] = trans_pred_world[start:end]
inds_list.append(inds_i)
start = end
bboxes_merge_concat = []
segms_merge_concat = []
car_cls_score_pred_concat = []
quaternion_pred_concat = []
trans_pred_world_concat = []
for ids, bboxes, segms, six_dof in zip(inds_list, bboxes_list, segms_list, six_dof_list):
bboxes_merge_concat.append(bboxes[car_cls_coco][ids])
segms_merge_concat.append(np.array(segms[car_cls_coco])[ids])
car_cls_score_pred_concat.append(six_dof['car_cls_score_pred'][ids])
quaternion_pred_concat.append(six_dof['quaternion_pred'][ids])
trans_pred_world_concat.append(six_dof['trans_pred_world'][ids])
bboxes_merge[car_cls_coco] = np.concatenate(bboxes_merge_concat, axis=0)
segms_merge[car_cls_coco] = np.concatenate(segms_merge_concat, axis=0)
six_dof_merge['car_cls_score_pred'] = np.concatenate(car_cls_score_pred_concat, axis=0)
six_dof_merge['quaternion_pred'] = np.concatenate(quaternion_pred_concat, axis=0)
six_dof_merge['trans_pred_world'] = np.concatenate(trans_pred_world_concat, axis=0)
output_model_merge = (bboxes_merge, segms_merge, six_dof_merge)
if draw_flag:
car_cls_score_pred = six_dof_merge['car_cls_score_pred']
quaternion_pred = six_dof_merge['quaternion_pred']
trans_pred_world = six_dof_merge['trans_pred_world'].copy()
euler_angle = np.array([quaternion_to_euler_angle(x) for x in quaternion_pred])
car_labels = np.argmax(car_cls_score_pred, axis=1)
kaggle_car_labels = [self.unique_car_mode[x] for x in car_labels]
car_names = np.array([car_id2name[x].name for x in kaggle_car_labels])
# img_box_mesh_refined = self.visualise_box_mesh(image,bboxes[car_cls_coco], segms[car_cls_coco],car_names, euler_angle,trans_pred_world_refined)
img_box_mesh_refined, iou_flag = self.visualise_box_mesh(image, bboxes_merge[car_cls_coco],
segms_merge[car_cls_coco], car_names,
euler_angle, trans_pred_world)
imwrite(img_box_mesh_refined,
os.path.join(args.out[:-4] + '_mes_box_vis_merged/' + img_name.split('/')[-1])[
:-4] + '_merged.jpg')
tmp_file = os.path.join(tmp_dir, "{}.pkl".format(last_name[:-4]))
mmcv.dump(output_model_merge, tmp_file)
return output_model_merge
def visualise_pred_merge_postprocessing(self, outputs, args, conf_thred=0.8):
car_cls_coco = 2
test_folder = '/data/home/yyj/code/kaggle/new_code/Kaggle_PKU_Baidu/data/pku_data/test_images/'
## first we have to guarantee the outputs image names keep sequence consistence
output_model_merge = []
for idx, (a, b) in enumerate(zip(outputs[0], outputs[1])):
print(idx)
img_name_a = os.path.basename(a[2]['file_name'])
img_name_b = os.path.basename(b[2]['file_name'])
assert img_name_a == img_name_b
img_name = os.path.join(test_folder, img_name_a)
if not os.path.isfile(img_name):
assert "Image file does not exist!"
else:
image = imread(img_name)
bboxes_a, segms_a, six_dof_a = a[0], a[1], a[2]
bboxes_b, segms_b, six_dof_b = b[0], b[1], b[2]
bboxes_merge = bboxes_a.copy()
segms_merge = segms_a.copy()
six_dof_merge = six_dof_a.copy()
bboxes_a_with_IOU = get_IOU(image, bboxes_a[car_cls_coco], segms_a[car_cls_coco], six_dof_a,
car_id2name, self.car_model_dict, self.unique_car_mode, self.camera_matrix)
bboxes_b_with_IOU = get_IOU(image, bboxes_b[car_cls_coco], segms_b[car_cls_coco], six_dof_b,
car_id2name, self.car_model_dict, self.unique_car_mode, self.camera_matrix)
bboxes_with_IOU = np.concatenate([bboxes_a_with_IOU, bboxes_b_with_IOU], axis=0)
inds = nms_with_IOU(bboxes_with_IOU) ## IOU nms filter out processing return output indices
inds = np.array(inds)
inds_a = inds[np.where(inds < bboxes_a_with_IOU.shape[0])]
inds_b = inds[np.where(inds >= bboxes_a_with_IOU.shape[0])] - bboxes_a_with_IOU.shape[0]
bboxes_merge[car_cls_coco] = np.concatenate(
[bboxes_a[car_cls_coco][inds_a], bboxes_b[car_cls_coco][inds_b]], axis=0)
segms_merge[car_cls_coco] = np.concatenate(
[np.array(segms_a[car_cls_coco])[inds_a], np.array(segms_b[car_cls_coco])[inds_b]], axis=0)
six_dof_merge['car_cls_score_pred'] = np.concatenate(
[six_dof_a['car_cls_score_pred'][inds_a], six_dof_b['car_cls_score_pred'][inds_b]], axis=0)
six_dof_merge['quaternion_pred'] = np.concatenate(
[six_dof_a['quaternion_pred'][inds_a], six_dof_b['quaternion_pred'][inds_b]], axis=0)
six_dof_merge['trans_pred_world'] = np.concatenate(
[six_dof_a['trans_pred_world'][inds_a], six_dof_b['trans_pred_world'][inds_b]], axis=0)
output_model_merge.append((bboxes_merge, segms_merge, six_dof_merge))
car_cls_score_pred = six_dof_merge['car_cls_score_pred']
quaternion_pred = six_dof_merge['quaternion_pred']
trans_pred_world = six_dof_merge['trans_pred_world'].copy()
euler_angle = np.array([quaternion_to_euler_angle(x) for x in quaternion_pred])
car_labels = np.argmax(car_cls_score_pred, axis=1)
kaggle_car_labels = [self.unique_car_mode[x] for x in car_labels]
car_names = np.array([car_id2name[x].name for x in kaggle_car_labels])
# img_box_mesh_refined = self.visualise_box_mesh(image,bboxes[car_cls_coco], segms[car_cls_coco],car_names, euler_angle,trans_pred_world_refined)
img_box_mesh_refined, iou_flag = self.visualise_box_mesh(image, bboxes_merge[car_cls_coco],
segms_merge[car_cls_coco], car_names,
euler_angle, trans_pred_world)
imwrite(img_box_mesh_refined,
os.path.join(args.out[:-4] + '_mes_box_vis_merged/' + img_name.split('/')[-1])[
:-4] + '_merged.jpg')
return output_model_merge
def visualise_box_mesh(self, image, bboxes, segms, car_names, euler_angle, trans_pred_world):
im_combime, iou_flag = draw_box_mesh_kaggle_pku(image,
bboxes,
segms,
car_names,
self.car_model_dict,
self.camera_matrix,
trans_pred_world,
euler_angle)
return im_combime, iou_flag
def visualise_mesh(self, image, bboxes, segms, car_names, euler_angle, trans_pred_world):
im_combime = draw_result_kaggle_pku(image,
bboxes,
segms,
car_names,
self.car_model_dict,
self.camera_matrix,
trans_pred_world,
euler_angle)
return im_combime
def visualise_kaggle(self, img, coords):
# You will also need functions from the previous cells
x_l = 1.02
y_l = 0.80
z_l = 2.31
img = img.copy()
for point in coords:
# Get values
x, y, z = point[3], point[4], point[5]
# yaw, pitch, roll = -pitch, -yaw, -roll
yaw, pitch, roll = point[0], point[1], point[2]
yaw, pitch, roll = -pitch, -yaw, -roll
# Math
Rt = np.eye(4)
t = np.array([x, y, z])
Rt[:3, 3] = t
Rt[:3, :3] = euler_to_Rot(yaw, pitch, roll).T
Rt = Rt[:3, :]
P = np.array([[x_l, -y_l, -z_l, 1],
[x_l, -y_l, z_l, 1],
[-x_l, -y_l, z_l, 1],
[-x_l, -y_l, -z_l, 1],
[0, 0, 0, 1]]).T
img_cor_points = np.dot(self.camera_matrix, np.dot(Rt, P))
img_cor_points = img_cor_points.T
img_cor_points[:, 0] /= img_cor_points[:, 2]
img_cor_points[:, 1] /= img_cor_points[:, 2]
img_cor_points = img_cor_points.astype(int)
# Drawing
img = draw_line(img, img_cor_points)
img = draw_points(img, img_cor_points[-1:])
return img
def clean_corrupted_images(self, annotations):
# For training images, there are 5 corrupted images:
corrupted_images = ['ID_1a5a10365', 'ID_4d238ae90', 'ID_408f58e9f', 'ID_bb1d991f6', 'ID_c44983aeb']
annotations_clean = [ann for ann in annotations if ann['filename'].split('/')[-1][:-4] not in corrupted_images]
return annotations_clean
def clean_outliers(self, annotations):
"""
We get rid of the outliers in this dataset
:
if translation[0] < -80 or translation[0] > 80
or translation[1] < 1 or translation[1] > 50 or
translation[2] < 3 or translation[2] > 150
:param train:
:return:
"""
corrupted_count = 0
clean_count = 0
annotations_clean = []
for idx in range(len(annotations)):
ann = annotations[idx]
bboxes = []
labels = []
eular_angles = []
quaternion_semispheres = []
translations = []
rles = []
for box_idx in range(len(ann['bboxes'])):
translation = ann['translations'][box_idx]
if translation[0] < -80 or translation[0] > 80 or \
translation[1] < 1 or translation[1] > 50 \
or translation[2] < 3 or translation[2] > 150:
corrupted_count += 1
continue
else:
bboxes.append(ann['bboxes'][box_idx])
labels.append(ann['labels'][box_idx])
eular_angles.append(ann['eular_angles'][box_idx])
quaternion_semispheres.append(ann['quaternion_semispheres'][box_idx])
translations.append(ann['translations'][box_idx])
rles.append(ann['rles'][box_idx])
bboxes = np.array(bboxes, dtype=np.float32)
labels = np.array(labels, dtype=np.int64)
eular_angles = np.array(eular_angles, dtype=np.float32)
quaternion_semispheres = np.array(quaternion_semispheres, dtype=np.float32)
translations = np.array(translations, dtype=np.float32)
assert len(bboxes) == len(labels) == len(eular_angles) == len(quaternion_semispheres) == len(translations)
clean_count += len(bboxes)
annotation = {
'filename': ann['filename'],
'width': ann['width'],
'height': ann['height'],
'bboxes': bboxes,
'labels': labels,
'eular_angles': eular_angles,
'quaternion_semispheres': quaternion_semispheres,
'translations': translations,
'rles': rles
}
annotations_clean.append(annotation)
print("Totaly corrupted count is: %d, clean count: %d" % (corrupted_count, clean_count))
return annotations_clean
def group_rectangles(self, annotations,
outfile='/data/Kaggle/bboxes_with_translation_pick.pkl',
draw_flag=True):
"""
This will generate the referenced bboxes for translation regression. Only done onces
:param annotations:
:param outfile:
:param draw_flag:
:return:
"""
bboxes_with_translation = []
for idx in range(len(annotations)):
ann = annotations[idx]
bboxes_with_translation.append(np.concatenate((ann['bboxes'], ann['translations']), axis=1))
bboxes_with_translation = np.vstack(bboxes_with_translation)
print('Total number of cars: %d.' % bboxes_with_translation.shape[0])
# We read an image first
bboxes_with_translation_pick = non_max_suppression_fast(bboxes_with_translation, overlapThresh=0.99)
# Some boxes are outside the boundary, we need to get rid of them:
idx_valid = np.array(bboxes_with_translation_pick[:, 0] <= self.image_shape[1]) & \
np.array(bboxes_with_translation_pick[:, 1] <= self.image_shape[0]) & \
np.array(bboxes_with_translation_pick[:, 0] >= 0) & np.array(
bboxes_with_translation_pick[:, 1] >= 1480)
bboxes_with_translation_pick = bboxes_with_translation_pick[idx_valid]
print('Final number of selected boxed: %d.' % bboxes_with_translation_pick.shape[0])
mmcv.dump(bboxes_with_translation_pick, outfile)
if draw_flag:
img = imread(annotations[0]['filename'])
img_2 = img.copy()
for bb in bboxes_with_translation:
img = cv2.rectangle(img, (bb[0], bb[1]), (bb[2], bb[3]), color=(0, 255, 0), thickness=1)
imwrite(img, '/data/Kaggle/wudi_data/rect_all.jpg')
for bb in bboxes_with_translation_pick:
img_2 = cv2.rectangle(img_2, (bb[0], bb[1]), (bb[2], bb[3]), color=(0, 255, 0), thickness=1)
imwrite(img_2, '/data/Kaggle/wudi_data/rect_selected.jpg')
def print_statistics_annotations(self, annotations):
"""
Print some statistics from annotations
:param annotations:
:return:
"""
car_per_image = []
xp, yp = [], []
xw, yw, zw = [], [], []
car_models = []
for idx in range(len(annotations)):
ann = annotations[idx]
car_per_image.append(len(ann['bboxes']))
for box_idx in range(len(ann['bboxes'])):
car_models.append(ann['labels'][box_idx])
translation = ann['translations'][box_idx]
xpt, ypt, xwt, ywt, zwt = self._get_img_coords(translation=translation)
xp.append(xpt)
yp.append(ypt)
xw.append(xwt)
yw.append(ywt)
zw.append(zwt)
car_per_image = np.array(car_per_image)
print('Total images: %d, car num sum: %d, minmin: %d, max: %d, mean: %d' %
(len(annotations), car_per_image.sum(), car_per_image.min(), car_per_image.max(), car_per_image.mean()))
"""
Total images: 6691, car num sum: 74029, minmin: 1, max: 43, mean: 11
"""
xp, yp = np.array(xp), np.array(yp)
print("x min: %d, max: %d, mean: %d" % (int(min(xp)), int(max(xp)), int(xp.mean())))
print("y min: %d, max: %d, mean: %d" % (int(min(yp)), int(max(yp)), int(yp.mean())))
"""
x min: -851, max: 4116, mean: 1551
y min: 1482, max: 3427, mean: 1820
"""
xw, yw, zw = np.array(xw), np.array(yw), np.array(zw)
print("x min: %d, max: %d, mean: %d, std: %.3f" % (int(min(xw)), int(max(xw)), int(xw.mean()), xw.std()))
print("y min: %d, max: %d, mean: %d, std: %.3f" % (int(min(yw)), int(max(yw)), int(yw.mean()), yw.std()))
print("z min: %d, max: %d, mean: %d, std: %.3f" % (int(min(zw)), int(max(zw)), int(zw.mean()), zw.std()))
"""
x min: -90, max: 519, mean: -3, std: 14.560
y min: 1, max: 689, mean: 9, std: 6.826
z min: 3, max: 3502, mean: 52, std: 40.046
"""
car_models = np.array(car_models)
print("Car model: max: %d, min: %d, total: %d" % (car_models.max(), car_models.min(), len(car_models)))
# Car model: max: 76, min: 2, total: 49684
print('Unique car models:')
print(np.unique(car_models))
# array([2, 6, 7, 8, 9, 12, 14, 16, 18, 19, 20, 23, 25, 27, 28, 31, 32,
# 35, 37, 40, 43, 46, 47, 48, 50, 51, 54, 56, 60, 61, 66, 70, 71, 76])
print("Number of unique car models: %d" % len(np.unique(car_models)))
# 34
def print_statistics(self, train):
car_per_image = np.array([len(self._str2coords(s)) for s in train['PredictionString']])
print('Total images: %d, car num sum: %d, minmin: %d, max: %d, mean: %d' %
(len(car_per_image), car_per_image.sum(), car_per_image.min(), car_per_image.max(), car_per_image.mean()))
"""
Total images: 4262, car num sum: 49684, minmin: 1, max: 44, mean: 11
"""
xs, ys = [], []
for ps in train['PredictionString']:
x, y = self._get_img_coords(ps)
xs += list(x)
ys += list(y)
xs, ys = np.array(xs), np.array(ys)
print("x min: %d, max: %d, mean: %d" % (int(min(xs)), int(max(xs)), int(xs.mean())))
print("y min: %d, max: %d, mean: %d" % (int(min(ys)), int(max(ys)), int(ys.mean())))
"""
x min: -851, max: 4116, mean: 1551
y min: 1482, max: 3427, mean: 1820
"""
# car points looking from the sky
xs, ys, zs = [], [], []
for ps in train['PredictionString']:
coords = self._str2coords(ps)
xs += [c['x'] for c in coords]
ys += [c['y'] for c in coords]
zs += [c['z'] for c in coords]
xs, ys, zs = np.array(xs), np.array(ys), np.array(zs)
print("x min: %d, max: %d, mean: %d, std: %.3f" % (int(min(xs)), int(max(xs)), int(xs.mean()), xs.std()))
print("y min: %d, max: %d, mean: %d, std: %.3f" % (int(min(ys)), int(max(ys)), int(ys.mean()), ys.std()))
print("z min: %d, max: %d, mean: %d, std: %.3f" % (int(min(zs)), int(max(zs)), int(zs.mean()), zs.std()))
"""
x min: -90, max: 519, mean: -3, std: 14.560
y min: 1, max: 689, mean: 9, std: 6.826
z min: 3, max: 3502, mean: 52, std: 40.046
# Clean
x min: -79, max: 79, mean: -3, std: 14.015
y min: 1, max: 42, mean: 9, std: 4.695
z min: 3, max: 150, mean: 50, std: 29.596
"""
# Next we filter our 99.9% data distribution
xmin, xmax = -80, 80
ymin, ymax = 1, 50
xs_cdf = sum((xs > xmin) * (xs < xmax))
ys_cdf = sum((ys > ymin) * (ys < ymax))
xs_ys_cdf = sum((xs > xmin) * (xs < xmax) * (ys > ymin) * (ys < ymax))
print('X within range (%d, %d) will have cdf of: %.6f, outlier number: %d' % (
xmin, xmax, xs_cdf / len(xs), len(xs) - xs_cdf))
print('Y within range (%d, %d) will have cdf of: %.6f, outlier number: %d' % (
ymin, ymax, ys_cdf / len(ys), len(ys) - ys_cdf))
print('Both will have cdf of: %.6f, outlier number: %d' % (xs_ys_cdf / len(ys), len(ys) - xs_ys_cdf))
car_models = []
for ps in train['PredictionString']:
coords = self._str2coords(ps)
for car in coords:
car_models.append(car['id'])
car_models = np.array(np.hstack(car_models))
print("Car model: max: %d, min: %d, total: %d" % (car_models.max(), car_models.min(), len(car_models)))
# Car model: max: 76, min: 2, total: 49684
print('Unique car models:')
print(np.unique(car_models))
# array([2, 6, 7, 8, 9, 12, 14, 16, 18, 19, 20, 23, 25, 27, 28, 31, 32,
# 35, 37, 40, 43, 46, 47, 48, 50, 51, 54, 56, 60, 61, 66, 70, 71, 76])
print("Number of unique car models: %d" % len(np.unique(car_models)))
# 34
def _str2coords(self, s, names=('id', 'yaw', 'pitch', 'roll', 'x', 'y', 'z')):
"""
Input:
s: PredictionString (e.g. from train dataframe)
names: array of what to extract from the string
Output:
list of dicts with keys from `names`
"""
coords = []
for l in np.array(s.split()).reshape([-1, 7]):
coords.append(dict(zip(names, l.astype('float'))))
if 'id' in coords[-1]:
coords[-1]['id'] = int(coords[-1]['id'])
return coords
def _get_img_coords(self, s=None, translation=None):
'''
Input is a PredictionString (e.g. from train dataframe)
Output is two arrays:
xs: x coordinates in the image
ys: y coordinates in the image
'''
if translation is not None:
xs, ys, zs = translation
P = np.array([xs, ys, zs]).T
img_p = np.dot(self.camera_matrix, P).T
img_p[0] /= img_p[2]
img_p[1] /= img_p[2]
return img_p[0], img_p[1], xs, ys, zs
else:
coords = self._str2coords(s)
xs = [c['x'] for c in coords]
ys = [c['y'] for c in coords]
zs = [c['z'] for c in coords]
P = np.array(list(zip(xs, ys, zs))).T
img_p = np.dot(self.camera_matrix, P).T
img_p[:, 0] /= img_p[:, 2]
img_p[:, 1] /= img_p[:, 2]
img_xs = img_p[:, 0]
img_ys = img_p[:, 1]
img_zs = img_p[:, 2] # z = Distance from the camera
return img_xs, img_ys
def get_ann_info(self, idx):
ann_info = self.img_infos[idx]
return self._parse_ann_info(ann_info)
def _filter_imgs(self, min_size=32):
"""Filter images too small or without ground truths."""
valid_inds = []
for i, img_info in enumerate(self.img_infos):
if min(img_info['width'], img_info['height']) >= min_size:
valid_inds.append(i)
return valid_inds
def _parse_ann_info(self, ann_info):
"""Parse bbox and mask annotation.
Args:
ann_info (list[dict]): Annotation info of an image.
with_mask (bool): Whether to parse mask annotations.
Returns:
dict: A dict containing the following keys: bboxes, bboxes_ignore,
labels, masks, seg_map. "masks" are raw annotations and not
decoded into binary masks.
"""
gt_bboxes = []
gt_class_labels = [] # this will always be fixed as car class
gt_labels = []
gt_bboxes_ignore = []
gt_masks_ann = []
eular_angles = []
quaternion_semispheres = []
translations = []
if self.rotation_augmenation:
# We follow the camera rotation augmentation as in
# https://www.kaggle.com/outrunner/rotation-augmentation
# It's put in here (instead of dataset.pipeline.transform is because
# we need car model json
alpha = ((np.random.random() ** 0.5) * 8 - 5.65) * np.pi / 180.
beta = (np.random.random() * 50 - 25) * np.pi / 180.
gamma = (np.random.random() * 6 - 3) * np.pi / 180. + beta / 3
Mat, Rot = self.rotateImage(alpha, beta, gamma)
else:
Mat, Rot = self.rotateImage(0, 0, 0)
for i in range(len(ann_info['bboxes'])):
x1, y1, x2, y2 = ann_info['bboxes'][i]
w, h = x2 - x1, y2 - y1
if w < 1 or h < 1:
continue
translation = ann_info['translations'][i]
# X within range (-80, 80) will have cdf of: 0.999738, outlier number: 13
# Y within range (1, 50) will have cdf of: 0.999819, outlier number: 9
if translation[0] < -80 or translation[0] > 80 or translation[1] < 1 or translation[1] > 50:
continue
if self.bottom_half:
# we only take bottom half image
bbox = [x1, y1 - self.bottom_half, x2, y2 - self.bottom_half]
else:
bbox = [x1, y1, x2, y2]
if ann_info.get('iscrowd', False): # TODO: train mask need to include
gt_bboxes_ignore.append(bbox)
else:
if not self.rotation_augmenation:
gt_bboxes.append(bbox)
gt_label = self.cat2label[ann_info['labels'][i]]
gt_labels.append(gt_label)
gt_class_labels.append(3) # coco 3 is "car" class
mask = maskUtils.decode(ann_info['rles'][i])
gt_masks_ann.append(mask)
eular_angles.append(ann_info['eular_angles'][i])
quaternion_semispheres.append(ann_info['quaternion_semispheres'][i])
translations.append(translation)
else:
yaw, pitch, roll = ann_info['eular_angles'][i]
r1 = R.from_euler('xyz', [-pitch, -yaw, -roll], degrees=False)
r2 = R.from_euler('xyz', [beta, -alpha, -gamma], degrees=False)
pitch_rot, yaw_rot, roll_rot = (r2 * r1).as_euler('xyz') * (-1)
eular_angle_rot = np.array([yaw_rot, pitch_rot, roll_rot])
quaternion_rot = euler_angles_to_quaternions(eular_angle_rot)
quaternion_semisphere_rot = quaternion_upper_hemispher(quaternion_rot)
quaternion_semisphere_rot = np.array(quaternion_semisphere_rot, dtype=np.float32)
x, y, z = translation
x_rot, y_rot, z_rot, _ = np.dot(Rot, [x, y, z, 1])
translation_rot = np.array([x_rot, y_rot, z_rot])
car_name = car_id2name[ann_info['labels'][i]].name
vertices = np.array(self.car_model_dict[car_name]['vertices'])
vertices[:, 1] = -vertices[:, 1]
triangles = np.array(self.car_model_dict[car_name]['faces']) - 1
bbox_rot, mask_rot = self.get_box_and_mask(eular_angle_rot, translation_rot, vertices, triangles)
# Some rotated bbox might be out of the image
if bbox_rot[2] < 0 or bbox_rot[3] < 0 or \
bbox_rot[0] > self.image_shape[0] or bbox_rot[1] > self.image_shape[1] - self.bottom_half:
continue
gt_label = self.cat2label[ann_info['labels'][i]]
gt_bboxes.append(bbox_rot)
gt_labels.append(gt_label)
gt_class_labels.append(3) # coco 3 is "car" class
gt_masks_ann.append(mask_rot)
eular_angles.append(eular_angle_rot)
quaternion_semispheres.append(quaternion_semisphere_rot)
translations.append(translation_rot)
if gt_bboxes:
gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
quaternion_semispheres = np.array(quaternion_semispheres, dtype=np.float32)
translations = np.array(translations, dtype=np.float32)
gt_labels = np.array(gt_labels, dtype=np.int64)
else:
gt_bboxes = np.zeros((0, 4), dtype=np.float32)
gt_labels = np.array([], dtype=np.int64)
if gt_bboxes_ignore:
gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
else:
gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)
ann = dict(
bboxes=gt_bboxes,
labels=gt_class_labels,
carlabels=gt_labels,
bboxes_ignore=gt_bboxes_ignore,
masks=gt_masks_ann,
eular_angles=eular_angles,
quaternion_semispheres=quaternion_semispheres,
translations=translations,
Mat=Mat)
return ann
def rotateImage(self, alpha=0, beta=0, gamma=0):
fx, dx = self.camera_matrix[0, 0], self.camera_matrix[0, 2]
fy, dy = self.camera_matrix[1, 1], self.camera_matrix[1, 2]
# Projection 2D -> 3D matrix
A1 = np.array([[1 / fx, 0, -dx / fx],
[0, 1 / fx, -dy / fx],
[0, 0, 1],
[0, 0, 1]])
# Rotation matrices around the X, Y, and Z axis
RX = np.array([[1, 0, 0, 0],
[0, cos(alpha), -sin(alpha), 0],
[0, sin(alpha), cos(alpha), 0],
[0, 0, 0, 1]])
RY = np.array([[cos(beta), 0, -sin(beta), 0],
[0, 1, 0, 0],
[sin(beta), 0, cos(beta), 0],
[0, 0, 0, 1]])
RZ = np.array([[cos(gamma), -sin(gamma), 0, 0],
[sin(gamma), cos(gamma), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
# Composed rotation matrix with (RX, RY, RZ)
R = np.dot(RZ, np.dot(RX, RY))
# 3D -> 2D matrix
A2 = np.array([[fx, 0, dx, 0],
[0, fy, dy, 0],
[0, 0, 1, 0]])
# Final transformation matrix
trans = np.dot(A2, np.dot(R, A1))
# Apply matrix transformation
return trans, R
def get_box_and_mask(self, eular_angle, translation, vertices, triangles):
# project 3D points to 2d image plane
yaw, pitch, roll = eular_angle
# I think the pitch and yaw should be exchanged
yaw, pitch, roll = -pitch, -yaw, -roll
Rt = np.eye(4)
t = translation
Rt[:3, 3] = t
Rt[:3, :3] = euler_to_Rot(yaw, pitch, roll).T
Rt = Rt[:3, :]
P = np.ones((vertices.shape[0], vertices.shape[1] + 1))
P[:, :-1] = vertices
P = P.T
img_cor_points = np.dot(self.camera_matrix, np.dot(Rt, P))
img_cor_points = img_cor_points.T
img_cor_points[:, 0] /= img_cor_points[:, 2]
img_cor_points[:, 1] /= img_cor_points[:, 2]
# project 3D points to 2d image plane
x1, y1, x2, y2 = img_cor_points[:, 0].min(), img_cor_points[:, 1].min(), \
img_cor_points[:, 0].max(), img_cor_points[:, 1].max()
bbox = np.array([x1, y1, x2, y2])
if self.bottom_half:
# we only take bottom half image
bbox = [x1, y1 - self.bottom_half, x2, y2 - self.bottom_half]
#### Now draw the mask
# project 3D points to 2d image plane
mask_seg = np.zeros(self.image_shape, dtype=np.uint8)
mask_seg_mesh = np.zeros(self.image_shape, dtype=np.uint8)
for t in triangles:
coord = np.array([img_cor_points[t[0]][:2], img_cor_points[t[1]][:2], img_cor_points[t[2]][:2]],
dtype=np.int32)
# This will draw the mask for segmenation
cv2.drawContours(mask_seg, np.int32([coord]), 0, (255, 255, 255), -1)
cv2.polylines(mask_seg_mesh, np.int32([coord]), 1, (0, 255, 0))
ground_truth_binary_mask = | np.zeros(mask_seg.shape, dtype=np.uint8) | numpy.zeros |
import datacube
import xarray as xr
import datetime
import warnings; warnings.simplefilter('ignore')
import numpy as np
from datetime import datetime
from time import time
from sklearn import svm
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import scipy.ndimage
from sklearn.externals import joblib
from .dc_water_classifier import wofs_classify
import random
import itertools
from sklearn.metrics import f1_score, recall_score, precision_score
dc = datacube.Datacube(app = 'wasard_test', config = '/home/localuser/.datacube.conf')
class wasard_classifier:
"""Classifier object used for classifying water bodies in a SAR dataset
:attribute classifier: LinearSVC object used in classifying datapoints as water or not water
:attribute coefficient: coefficient of the LinearSVC classifier, used to determine what data will classified as water and not water
:attribute precision: classifier's precision score, using the Landsat scene it was trained on as truth labels
:attribute recall: classifier's recall score, using the Landsat scene it was trained on as truth labels
:attribute f1: classifier's precision score, created by taking the harmonic mean of the recall and precision scores
:return: wasard_classifier object
"""
def __init__(self,
classifier = None,
sar_dataset = None,
landsat_dataset = None,
pct = .1,
bands = 2,
sar_time_index = -1,
landsat_time_index = -1):
"""Defines the classifier as the loaded filestring passed in by the user, if a filestring passed in, otherwise trains a new classifier
:param filestring: .pkl filestring of a previously trained classifier
:param sar_dataset: xarray dataset containing sar data, loaded form datacube
:param landsat_dataset: xarray dataset containing sar data, loaded form datacube
:param pct: ratio of total training data to be used to train the classifier, lower numbers yield faster runtimes
:param bands: indicates whether the classifier will be trained using 1 or 2 features
:param sar_time_index: specific time index of sar scene to be used to train classifier, if the user wishes to specify
:param sar_time_index: specific time index of landsat scene to be used to train classifier, if the user wishes to specify
"""
if classifier:
self.classifier = joblib.load(classifier) if type(classifier) == str else classifier
self.coefficient = self.classifier.coef_
else:
assert sar_dataset and landsat_dataset, "User must pass in either a .pkl filestring or both a SAR and Landsat dataset"
self.train_classifier(
sar_dataset = sar_dataset,
landsat_dataset = landsat_dataset,
pct = pct,
bands = bands,
sar_time_index = sar_time_index,
landsat_time_index = landsat_time_index)
def train_classifier(self,
sar_dataset = None,
landsat_dataset = None,
pct = .1,
bands = 2,
sar_time_index = -1,
landsat_time_index = -1):
"""generates a classifier for a sar dataset using a support vector machine
:param sar_dataset: xarray dataset containing sar data, loaded form datacube
:param landsat_dataset: xarray dataset containing sar data, loaded form datacube
:param pct: ratio of total training data to be used to train the classifier, lower numbers yield faster runtimes
:param bands: indicates whether the classifier will be trained using 1 or 2 features
:param sar_time_index: specific time index of sar scene to be used to train classifier, if the user wishes to specify
:param sar_time_index: specific time index of landsat scene to be used to train classifier, if the user wishes to specify
:return: LinearSVC object, which can be used to classify other sar scenes
"""
train_data, test_data = _get_train_data(sar_dataset,
landsat_dataset,
pct = pct,
bands = bands,
sar_time_index = sar_time_index,
landsat_time_index = landsat_time_index)
# separate data attributes from target/truth value in order to train classifier with correct labels
training_attributes = train_data[:,0:-1]
training_truth = train_data[:,-1]
testing_attributes = test_data[:,0:-1]
testing_truth = test_data[:,-1]
# train SVM using training data
classifier = svm.LinearSVC()
classifier.fit(training_attributes, training_truth)
# classify test dataset in order to verify its effectiveness
total_tests = testing_truth.size
testing_attributes = np.stack(testing_attributes)
wasard_predictions = classifier.predict(testing_attributes)
# print(wasard_predictions.shape)
# wasard_predictions = _filter_isolated_cells(wasard_predictions, struct=np.ones((3,3)), max_size = 200)
# 3 metrics used to measure the effectiveness of the classifier
f1 = f1_score(testing_truth, wasard_predictions)
recall = recall_score(testing_truth, wasard_predictions)
precision = precision_score(testing_truth, wasard_predictions)
sar_index, lsat_index = _find_training_indices(sar_dataset, landsat_dataset)
sar_scene = sar_dataset.isel(time=sar_index).expand_dims('time')
clf = wasard_classifier(classifier=classifier)
temp = clf.wasard_classify(sar_scene)
f1, precision, recall = _get_scores(temp, landsat_dataset, lsat_index)
self.f1 = f1
self.recall = recall
self.precision = precision
self.classifier = classifier
self.coefficient = self.classifier.coef_
def wasard_classify (self, sar_dataset):
"""Return new xarray Dataset identical to sar_dataset but with predicted water values added, using a provided classifier
:param sar_dataset: xarray Dataset containing sar data, loaded from datacube
:return: new xarray Dataset identical to sar_dataset with new array "wasard" added, containing predicted water values
"""
satellite_type = 'sentinel' if hasattr(sar_dataset, 'vv') else 'alos'
dataset_dims = (sar_dataset.coords.dims['time'], sar_dataset.coords.dims['latitude'], sar_dataset.coords.dims['longitude'])
bands = self.coefficient.size
band2 = None
if satellite_type == 'sentinel':
band1 = sar_dataset.vh.values.ravel()
if bands == 2:
band2 = sar_dataset.vv.values.ravel()
elif satellite_type == 'alos':
band1 = sar_dataset.hv.values.ravel()
# band2 = sar_dataset.incidence_angle.values.ravel()
# assemble features into array and predict water using the classifier
if bands == 1:
dinput = np.dstack([band1])
predictions = self.classifier.predict(dinput[0])
elif bands == 2:
dinput = np.dstack([band1, band2])
predictions = self.classifier.predict(dinput[0])
else:
raise ValueError("Bands must be 1 or 2")
predictions = predictions.reshape(dataset_dims)
sar_dataset_copy = sar_dataset.copy(deep=True)
sar_dataset_copy['wasard'] = (('time', 'latitude', 'longitude'),predictions)
# reduce noise from speckle and other isolated fals positives
sar_dataset_copy = _filter_all(sar_dataset_copy, max_size=100)
return sar_dataset_copy
def save(self, filestring):
"""saves a classfier to the disk
:param filestring: name of the file which will contain the classifier
"""
joblib.dump(self.classifier, "{}.pkl".format(filestring))
def get_best_classifier( n_classifiers,
sar_dataset = None,
landsat_dataset = None,
pct = .1,
bands = 2,
sar_time_index = -1,
landsat_time_index = -1):
"""generates a list of classifiers for a sar dataset using a support vector machine
:param n: int indicating the number of classifiers that should be included in the returned list
:param sar_dataset: xarray dataset containing sar data, loaded form datacube
:param landsat_dataset: xarray dataset containing sar data, loaded form datacube
:param pct: ratio of total training data to be used to train the classifier, lower numbers yield faster runtimes
:param bands: indicates whether the classifier will be trained using 1 or 2 features
:param sar_time_index: specific time index of sar scene to be used to train classifier, if the user wishes to specify
:param sar_time_index: specific time index of landsat scene to be used to train classifier, if the user wishes to specify
:return: list containing n classifiers, which the user can then sort to find the most effective one
"""
clf_ls = [wasard_classifier( sar_dataset = sar_dataset,
landsat_dataset = landsat_dataset,
pct = pct,
bands = bands,
sar_time_index = sar_time_index,
landsat_time_index = landsat_time_index) for x in range(n_classifiers)]
clf_ls_precision_sorted = sorted(clf_ls, key = lambda clf: clf.precision, reverse=True)
return clf_ls_precision_sorted
def wasard_plot(sar_dataset,
sar_time_index,
landsat_dataset=None,
landsat_time_index=None,
size=(10,10),
plot_over_image = False):
"""Plots water values predicted from SAR data
:param sar_dataset: xarray Dataset of sar data, with wasard values added from wasard_classify
:param sar_time_index: int indicating the time slice to pull the wasard values from
:param landsat_dataset: xarray containing data from landsat_dataset, with latitudinal and longitudinal bounds identical to the Sentinel scene_index, used for identifying watervalues detected by WASAR that do not correspond with those detected by WOFS
:param landsat_time_index: time slice from the landsat_dataset array to be compared to the SAR scene_index
:param size: tuple indicating the size of the output plot
:param plot_over_image: boolean indicating whether the wasard values will be plot on top of a landsat_dataset image, preventing a new figure from being drawn
:return: None
"""
sar_dataset_at_time = sar_dataset.isel(time=sar_time_index).copy(deep=True)
# prevents function from setting up a new plot, if the data are to be plotted over an image
if not plot_over_image: fig = plt.figure(figsize=size)
# plot wasard values over proper coordinates using xarray.dataarray.plot
try:
water = sar_dataset_at_time.wasard.where(sar_dataset_at_time.wasard==1)
water.plot.imshow(levels = 5, colors = 'blue', add_colorbar = 0, add_labels=0)
# throws ValueError if wasard detected no water
except ValueError:
pass
if landsat_dataset:
landsat_dataset_at_time = landsat_dataset.isel(time=landsat_time_index)
landsat_dataset_wofs = get_wofs_values(landsat_dataset_at_time)
wofs_resolution_adjusted = _fit_landsat_dataset_resolution(landsat_dataset_wofs, sar_dataset)
diff_array = (wofs_resolution_adjusted - sar_dataset_at_time.wasard).values
sar_dataset_at_time['diff'] = (('latitude','longitude'),diff_array)
sar_dataset_at_time['FalseN'] = sar_dataset_at_time['diff'].where(sar_dataset_at_time['diff'] == 1)
false_neg_bool_array = np.logical_and(sar_dataset_at_time.wasard==1,sar_dataset_at_time['diff'] != 1)
sar_dataset_at_time['FalseP'] = sar_dataset_at_time['diff'].where(false_neg_bool_array)
try:
false_positives = sar_dataset_at_time.FalseP
false_negatives = sar_dataset_at_time.FalseN
false_positives.plot.imshow(levels = 5, colors = 'red', add_colorbar = 0, add_labels=0)
false_negatives.plot.imshow(levels = 5, colors = 'yellow', add_colorbar = 0, add_labels=0)
except ValueError:
pass
def wasard_time_plot(sar_dataset, size=(15,15), plot_over_image = False):
"""creates a plot showing the presence of water over time in a given area
:param sar_dataset: xarray Dataset of sar data, with wasard values added from wasard_classify
:param size: tuple indicating the size of the output plot
:param plot_over_image: boolean indicating whether the wasard values will be plot on top of a landsat_dataset image, preventing a new figure from being drawn
:return: None
"""
# create an array containing the percent of time slices in which each pixel is predicted to hold water
sar_dataset_copy = sar_dataset.copy(deep=True)
valid_time_indices = _find_nodatas(sar_dataset_copy)
aggregate_predictions = np.zeros((sar_dataset_copy.latitude.size, sar_dataset_copy.longitude.size))
divisor = len(valid_time_indices)
for x in valid_time_indices:
aggregate_predictions += np.nan_to_num(sar_dataset_copy.wasard[x])
# divide total by number of valid datases in order to get the percent of the time each pixel holds water
aggregate_predictions = aggregate_predictions / divisor
sar_dataset_copy['aggregate_predictions'] = (('latitude', 'longitude'), aggregate_predictions)
start_color_index = 1
if not plot_over_image:
# set up figure to plot over
start_time_string = str(sar_dataset.time.values[min(valid_time_indices)])[0:10]
end_time_string = str(sar_dataset.time.values[max(valid_time_indices)])[0:10]
fig = plt.figure(figsize=size)
start_color_index = 0
fig.suptitle('Water Frequency, {} to {}'.format(start_time_string, end_time_string, fontsize=20))
# construct a plot using different colors to correspond to different flooding percentages
color_pct = {0: 'black', 1: 'red', 2: 'orange', 3: 'yellow', 4: 'green', 5: 'blue'}
for x in range(start_color_index,6):
cond = np.logical_and((1.0 * x-1)/5 < sar_dataset_copy.aggregate_predictions, sar_dataset_copy.aggregate_predictions <= (1.0*x)/5)
water = sar_dataset_copy.aggregate_predictions.where(cond)
try:
water.plot.imshow(levels = 5, colors = color_pct[x], add_colorbar = 0, add_labels=0)
# throws ValueError when no values are plotted
except ValueError:
pass
# previous loop missed some values where pixels always contained water(why?), so they're replotted here
permanent_water = sar_dataset_copy.aggregate_predictions.where(sar_dataset_copy.aggregate_predictions == 1)
try:
permanent_water.plot.imshow(levels = 5, colors = 'blue', add_colorbar = 0, add_labels=0)
except ValueError:
pass
print("% of time containing water:\nblack: 0%\nred: 0-20%\norange: 20-40%\nyellow: 40-60%\ngreen: 60-80%\nblue: 80-100%")
#specific names for sar_dataset
def get_correlation(sar_wasard_dataset, landsat_dataset, sar_time_index, landsat_time_index):
"""returns the percent of pixels from the sar_dataset scene_index that have the same predicted water value as the landsat_dataset scene_index
:param landsat_dataset: xarray Dataset containing landsat data, loaded from datacube. If none, program predicts water values from the most recently trained classifier
:param sar_dataset: xarray Dataset of sar data, with wasard values added from wasard_classify
:param landsat_time_index: int indicating which time index from the landat Dataset will be used
:param sar_time_index: int indicating which time index from the SAR dataset will be used
:return: Ratio of pixels with the same predicted water value between the two scene_indexs to the total number of pixels
"""
# assert 'wasard' in sar_dataset.variable_names.keys()
assert 'wasard' in sar_wasard_dataset.data_vars, "sar_dataset must include ""wasard"" datavar"
landsat_dataset_at_time = landsat_dataset.isel(time=landsat_time_index)
landsat_dataset_wofs = get_wofs_values(landsat_dataset_at_time)
wofs_with_adjusted_resolution = _fit_landsat_dataset_resolution(landsat_dataset_wofs, sar_wasard_dataset)
sar_dataset_at_time = sar_wasard_dataset.isel(time=sar_time_index)
# subtract wasard arrays of one dataset from the other, resulting array has value 0 when the wasard values were the same, and 1 when they were different
differences_array = wofs_with_adjusted_resolution - sar_dataset_at_time.wasard
total = differences_array.size
# generate dict containing the number of false positives, false negatives, and correlating values between each acquisition
unique, counts = np.unique(differences_array, return_counts=True)
difference_counts = dict(zip(unique, counts))
result = {'False Positives':0, 'False Negatives':0, 'Correlating':0}
result['False Positives'] = difference_counts[-1] / total
result['False Negatives'] = difference_counts[1] / total
result['Correlating'] = difference_counts[0] / total
return result
def _find_training_indices(sar_dataset, landsat_dataset):
"""returns the optimal landsat and sentinel scene to train a new classifier on
:param sar_datset: xarray Dataset containing landsat data, loaded from datacube
:param landsat_dataset: xarray dataset containing landsat data, loaded from datacube
"""
cloud_cover_percentages = _get_cloud_avg(landsat_dataset)
# Lambdas for filtering
is_clear_enough = lambda time_index: cloud_cover_percentages[time_index] < 20
if hasattr(sar_dataset, 'vv'):
filter_nodata_sar = lambda time_index: abs(np.sum(sar_dataset.vv[time_index])) > 10000
filter_nodata_landsat = lambda time_index: np.sum(landsat_dataset.red[time_index]) > 0
# indices for selecting from datasets
sar_time_indices = range(sar_dataset.dims['time'])
if hasattr(sar_dataset, 'vv'):
sar_time_indices = filter(filter_nodata_sar, sar_time_indices)
landsat_dataset_time_indices = range(landsat_dataset.dims['time'])
# filtering datasets
landsat_dataset_time_indices = filter(is_clear_enough, landsat_dataset_time_indices)
landsat_dataset_time_indices = filter(filter_nodata_landsat, landsat_dataset_time_indices)
distance_in_time = lambda time_pair: abs(sar_dataset.time.values[time_pair[0]]
- landsat_dataset.time.values[time_pair[1]])
cloud_cover = lambda time_pair: (cloud_cover_percentages[time_pair[1]], distance_in_time(time_pair))
time_combinations = itertools.product(sar_time_indices, landsat_dataset_time_indices)
time_combinations_distance_sorted = sorted(time_combinations, key = distance_in_time)[0:5]
for time_pair in time_combinations_distance_sorted:
if cloud_cover(time_pair)[0] < 5:
sar_index, landsat_dataset_index = time_pair
# one of the top 5 pairs in terms of distance is below 5% cloud, no need to sort by cloud cover, so return indices now
return (sar_index, landsat_dataset_index)
time_combinations_cloud_cover_sorted = sorted(time_combinations_distance_sorted, key = cloud_cover)
sar_index, landsat_dataset_index = time_combinations_cloud_cover_sorted[0]
return (sar_index, landsat_dataset_index)
def _get_cloud_avg(dataset):
"""generates a dict of cloud cover percentages over a given landsat dataset along with the average cloud cover over time
:param dataset: xarray Dataset containing landsat data, loaded from datacube
:return: dict of cloud cover percentage at each time slice
"""
tot = dataset.red[0].size
time_indices = range(dataset.time.size)
# use cf mask or pixel qa values to determine which pixels contain clouds
if hasattr(dataset, 'cf_mask'):
cloudy_pixels = np.logical_or(dataset.cf_mask == 3, dataset.cf_mask == 4)
else:
acceptable_values = [322, 386, 834, 898, 1346 , 324, 388, 836, 900, 1348]
avgs = {}
global_mask = acceptable_values[0] == dataset.pixel_qa.values
for bitmask in acceptable_values:
global_mask = np.logical_or(global_mask, bitmask == dataset.pixel_qa.values)
for time in range(global_mask.shape[0]):
avg = np.count_nonzero(global_mask[time]) / global_mask[time].size
avgs[time] = (1-avg) * 100
return avgs
# determine cloud cover for each time slice
cloud_pct = lambda time_index: np.count_nonzero(cloudy_pixels[time_index]) / tot * 100
cloud_avgs = {time_index: cloud_pct(time_index) for time_index in time_indices}
return (cloud_avgs)
def get_clean_mask(landsat_dataset):
acceptable_values = [322, 386, 834, 898, 1346 , 324, 388, 836, 900, 1348]
global_mask = acceptable_values[0] == landsat_dataset.pixel_qa.values
for bitmask in acceptable_values:
global_mask = np.logical_or(global_mask, bitmask == landsat_dataset.pixel_qa.values)
return global_mask
def get_wofs_values(landsat_dataset):
"""classifies a landsat scene using the wofs algorithm
:param landsat_dataset: xarray with dims 'latitude','longitude' containing data from a landsat scene
:return: xarray dataset containing wofs classification values
"""
# landsat dataset needs dim 'time' for wofs_classify to work, re-add it here since using isel took it away
landsat_dataset = landsat_dataset.expand_dims('time')
clean_mask = None if hasattr(landsat_dataset, 'cf_mask') else get_clean_mask(landsat_dataset)
landsat_dataset_wofs = wofs_classify(landsat_dataset, clean_mask = clean_mask)
landsat_dataset_wofs = landsat_dataset_wofs.isel(time=0)
return landsat_dataset_wofs
def _fit_landsat_dataset_resolution(landsat_dataset_wofs, sar_dataset):
"""adjusts the resolution of the landsat_dataset scene to fit that of the SAR scene
:param landsat_dataset: xarray Dataset containing landsat data, loaded from datacube. If none, program predicts water values from the most recently trained classifier
:param sar_dataset: xarray Dataset of sar data, with WASARD values added
:return: xarray dataset of the input landsat_dataset scene, stretched to match the resolution of the SAR scene
"""
satellite_type = 'sentinel' if hasattr(sar_dataset, 'vv') else 'alos'
wofs_values = landsat_dataset_wofs.wofs.values
sar_dataset_rows = sar_dataset.latitude.size
sar_dataset_columns = sar_dataset.longitude.size
landsat_dataset_rows = landsat_dataset_wofs.latitude.size
landsat_dataset_columns = landsat_dataset_wofs.longitude.size
resolution_multiplier = round(max(sar_dataset_rows, landsat_dataset_rows) /
min(sar_dataset_rows, landsat_dataset_rows))
wofs_values_columns_repeated = np.repeat(wofs_values, resolution_multiplier, axis = 1)
wofs_values_rows_columns_repeated = np.repeat(wofs_values_columns_repeated, resolution_multiplier, axis = 0)
wofs_values = wofs_values_rows_columns_repeated
wofs_rows = wofs_values.shape[0]
wofs_columns = wofs_values.shape[1]
# truncate or lengthen landsat_dataset to fit sar_dataset values
while wofs_rows > sar_dataset_rows:
random_row = np.random.randint(0,wofs_rows)
wofs_values = np.delete(wofs_values, random_row, 0)
wofs_rows = wofs_values.shape[0]
while wofs_columns > sar_dataset_columns:
random_column = | np.random.randint(0,wofs_columns) | numpy.random.randint |
# imports framework
import sys
sys.path.insert(0, 'evoman')
from environment import Environment
from our_controller import player_controller
# imports other libs
import time
import numpy as np
import pandas as pd
from scipy.stats import hmean
import matplotlib.pyplot as plt
import pickle
import glob, os
import math
mode = 'test'
parameters = {
'enemies' : (1,4,6,7),
'timeexpire' : 600,
'number_of_iterations' : 150,
'population_size' : 10,
'generated_on_mutation' : 5,
'mutation_alpha' : 0.5, # using after doomsday and crossover
'doomsday_interval' : 20,
'doomsday_survivals' : 5,
'neuronet_inicialization' : (-1,1),
'gamma' : 0.7,
'layers' : [
{'units':32, 'activation':'sigmoid', 'input_dim':14},
{'units':12, 'activation':'sigmoid'},
{'units':5, 'activation':'sigmoid'} #output
],
'number_of_projectiles' : 5
}
best_agents = {
'first' : [],
'second' : [],
'third' : [],
'agent' : []
}
experiment_name = 'our_tests'
if not os.path.exists(experiment_name):
os.makedirs(experiment_name)
player_controller = player_controller(parameters)
if mode.lower() != 'test':
os.environ['SDL_VIDEODRIVER'] = 'dummy'
# initializes simulation in individual evolution mode, for single static enemy.
env = Environment(
experiment_name=experiment_name,
enemies=[1],
playermode="ai",
player_controller=player_controller,
enemymode="static",
level=2,
speed="fastest",
timeexpire=parameters["timeexpire"]
)
enemies = parameters['enemies']
class NeuroNet:
def __init__(self, weights=None):
self.weights = []
self.results = None
if (weights is not None):
self.weights = weights
else:
for shape in player_controller.get_shapes():
self.weights.append(np.random.uniform(*parameters['neuronet_inicialization'], shape))
self.fitness = -math.inf
def get_weights(self):
return self.weights
def GA(n_iter, n_pop):
f_num = n_pop
start, P = start_or_load(n_iter, n_pop)
alpha_muta = 1/n_iter
if start == 0:
evaluate(P)
if mode.lower() != 'test':
for it in range(start, n_iter):
log_str = f'GENERATION: {it} | BEST FITNESS: {P[0].fitness}'
print(log_str)
log_to_file(log_str)
F = [muta(nn, 1-(alpha_muta*it)) for nn in P]
G = [muta(nn, parameters['mutation_alpha']) for nn in crossover(P, f_num)]
P = F + G
P = select(P, n_pop)
best_agents['first'].append(test_agent(P[0]))
best_agents['agent'].append(P[0])
best_agents['second'].append(test_agent(P[1]))
best_agents['third'].append(test_agent(P[2]))
if it%parameters['doomsday_interval'] == 0 and it != 0:
P = P[:parameters['doomsday_survivals']]
N = [NeuroNet() for _ in range(f_num-parameters['doomsday_survivals'])]
evaluate(N)
F = [muta(nn, parameters['mutation_alpha']) for nn in N]
P += F
pickle.dump([it+1, P, best_agents], open(experiment_name+'/Evoman.pkl', 'wb'))
# os.remove('Evoman.pkl')
env.update_parameter('speed', "normal")
env.update_parameter('timeexpire', 3000)
df = pd.DataFrame(best_agents['first'])
plt.plot(df['result'], label='mean')
plt.plot(df['fitness'], label='fitness')
plt.legend()
plt.savefig(experiment_name+'/results.png')
plt.close('all')
best = best_agents['agent'][df['result'].idxmax()]
df.to_csv(experiment_name+'/results.csv')
for en in enemies:
env.update_parameter('enemies', [en])
simulation(env, best)
others = [en for en in range(1, 9) if en not in enemies]
for en in others:
env.update_parameter('enemies', [en])
simulation(env, best)
return P
def test_agent(agent): # use after select function only
if agent.results is not None:
return agent.results
results = {}
avarage_helper = []
gains = []
env.update_parameter('timeexpire', 3000)
for en in enemies:
env.update_parameter('enemies', [en])
f, p, e, t = simulation(env, agent)
avarage_helper.append([p, e])
results[en] = [p, e]
gains.append(100.01 + p - e)
results['avarage_train'] = np.mean(avarage_helper, axis=0)
avarage_helper = []
others = [en for en in range(1, 9) if en not in enemies]
for en in others:
env.update_parameter('enemies', [en])
f, p, e, t = simulation(env, agent)
avarage_helper.append([p, e])
results[en] = [p, e]
gains.append(100.01 + p - e)
results['avarage_test'] = np.mean(avarage_helper, axis=0)
results['avarage'] = np.mean((results['avarage_train'], results['avarage_test']), axis=0)
results['result'] = hmean(gains)
results['fitness'] = agent.fitness
agent.results = results
env.update_parameter('timeexpire', parameters['timeexpire'])
return results
def start_or_load(n_iter, n_pop):
if os.path.exists(experiment_name+'/Evoman.pkl'):
a = pickle.load(open(experiment_name+'/Evoman.pkl', 'rb'))
if a[0] < n_iter or mode.lower() == 'test':
global best_agents
best_agents = a[2]
return a[0], a[1]
return 0, [NeuroNet() for _ in range(n_pop)]
def calc_weights(nn, alpha):
weights = nn.get_weights()
new_weights = [(weight * alpha) for weight in weights]
return new_weights
def crossover(P, n):
F = []
pairs = np.random.choice(P, (n//2, 2), False)
for pair in pairs:
a = np.random.random()
w1 = calc_weights(pair[0], a)
w2 = calc_weights(pair[1], 1 - a)
w = [(w1[j] + w2[j]) for j in range(len(w1))]
F.append( NeuroNet(w) )
evaluate(F)
return F
def muta(nn, alpha):
weights = nn.get_weights()
F = []
for _ in range(parameters['generated_on_mutation']):
f = []
for layer in weights:
l=[]
shape = layer.shape
for gene in np.nditer(layer):
l.append(gene + np.random.normal(0, alpha))
l = np.array(l).reshape(shape)
f.append(l)
F.append( NeuroNet(f) )
evaluate(F)
F.insert(0, nn)
return select(F, 1)[0]
def select(P, n):
P.sort(key=lambda nn: nn.fitness, reverse=True) # sort from bigger to lower
return P[:n]
ini = time.time() # sets time marker
# runs simulation
def simulation(env,y):
player_controller.set_weights(y.get_weights())
_ ,p,e,t = env.play(pcont=y) #fitness, playerlife, enemylife, gametime
f = parameters['gamma'] * (100-e) + (1-parameters['gamma']) * p - math.log(t)
return f, p, e, t
# evaluation
def evaluate(x):
fitness=[]
for en in enemies:
env.update_parameter('enemies', [en])
fitness.append((list(map(lambda y: simulation(env,y)[0], x))))
arrray = | np.array(fitness) | numpy.array |
"""Rotations in three dimensions - SO(3).
See :doc:`rotations` for more information.
"""
import warnings
import math
import numpy as np
from numpy.testing import assert_array_almost_equal
unitx = np.array([1.0, 0.0, 0.0])
unity = np.array([0.0, 1.0, 0.0])
unitz = np.array([0.0, 0.0, 1.0])
R_id = np.eye(3)
a_id = np.array([1.0, 0.0, 0.0, 0.0])
q_id = np.array([1.0, 0.0, 0.0, 0.0])
q_i = np.array([0.0, 1.0, 0.0, 0.0])
q_j = np.array([0.0, 0.0, 1.0, 0.0])
q_k = np.array([0.0, 0.0, 0.0, 1.0])
e_xyz_id = np.array([0.0, 0.0, 0.0])
e_zyx_id = np.array([0.0, 0.0, 0.0])
p0 = np.array([0.0, 0.0, 0.0])
eps = 1e-7
def norm_vector(v):
"""Normalize vector.
Parameters
----------
v : array-like, shape (n,)
nd vector
Returns
-------
u : array, shape (n,)
nd unit vector with norm 1 or the zero vector
"""
norm = np.linalg.norm(v)
if norm == 0.0:
return v
else:
return np.asarray(v) / norm
def norm_matrix(R):
"""Normalize rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix with small numerical errors
Returns
-------
R : array, shape (3, 3)
Normalized rotation matrix
"""
R = np.asarray(R)
c2 = R[:, 1]
c3 = norm_vector(R[:, 2])
c1 = norm_vector(np.cross(c2, c3))
c2 = norm_vector(np.cross(c3, c1))
return np.column_stack((c1, c2, c3))
def norm_angle(a):
"""Normalize angle to (-pi, pi].
Parameters
----------
a : float or array-like, shape (n,)
Angle(s) in radians
Returns
-------
a_norm : float or array-like, shape (n,)
Normalized angle(s) in radians
"""
# Source of the solution: http://stackoverflow.com/a/32266181
return -((np.pi - np.asarray(a)) % (2.0 * np.pi) - np.pi)
def norm_axis_angle(a):
"""Normalize axis-angle representation.
Parameters
----------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle)
Returns
-------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle). The length
of the axis vector is 1 and the angle is in [0, pi). No rotation
is represented by [1, 0, 0, 0].
"""
angle = a[3]
norm = np.linalg.norm(a[:3])
if angle == 0.0 or norm == 0.0:
return np.array([1.0, 0.0, 0.0, 0.0])
res = np.empty(4)
res[:3] = a[:3] / norm
angle = norm_angle(angle)
if angle < 0.0:
angle *= -1.0
res[:3] *= -1.0
res[3] = angle
return res
def norm_compact_axis_angle(a):
"""Normalize compact axis-angle representation.
Parameters
----------
a : array-like, shape (3,)
Axis of rotation and rotation angle: angle * (x, y, z)
Returns
-------
a : array-like, shape (3,)
Axis of rotation and rotation angle: angle * (x, y, z).
The angle is in [0, pi). No rotation is represented by [0, 0, 0].
"""
angle = np.linalg.norm(a)
if angle == 0.0:
return np.zeros(3)
axis = a / angle
return axis * norm_angle(angle)
def perpendicular_to_vectors(a, b):
"""Compute perpendicular vector to two other vectors.
Parameters
----------
a : array-like, shape (3,)
3d vector
b : array-like, shape (3,)
3d vector
Returns
-------
c : array-like, shape (3,)
3d vector that is orthogonal to a and b
"""
return np.cross(a, b)
def perpendicular_to_vector(a):
"""Compute perpendicular vector to one other vector.
There is an infinite number of solutions to this problem. Thus, we
restrict the solutions to [1, 0, z] and return [0, 0, 1] if the
z component of a is 0.
Parameters
----------
a : array-like, shape (3,)
3d vector
Returns
-------
b : array-like, shape (3,)
A 3d vector that is orthogonal to a. It does not necessarily have
unit length.
"""
if abs(a[2]) < eps:
return np.copy(unitz)
# Now that we solved the problem for [x, y, 0], we can solve it for all
# other vectors by restricting solutions to [1, 0, z] and find z.
# The dot product of orthogonal vectors is 0, thus
# a[0] * 1 + a[1] * 0 + a[2] * z == 0 or -a[0] / a[2] = z
return np.array([1.0, 0.0, -a[0] / a[2]])
def angle_between_vectors(a, b, fast=False):
"""Compute angle between two vectors.
Parameters
----------
a : array-like, shape (n,)
nd vector
b : array-like, shape (n,)
nd vector
fast : bool, optional (default: False)
Use fast implementation instead of numerically stable solution
Returns
-------
angle : float
Angle between a and b
"""
if len(a) != 3 or fast:
return np.arccos(
np.clip(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)),
-1.0, 1.0))
else:
return np.arctan2(np.linalg.norm(np.cross(a, b)), np.dot(a, b))
def vector_projection(a, b):
"""Orthogonal projection of vector a on vector b.
Parameters
----------
a : array-like, shape (3,)
Vector a that will be projected on vector b
b : array-like, shape (3,)
Vector b on which vector a will be projected
Returns
-------
a_on_b : array, shape (3,)
Vector a
"""
b_norm_squared = np.dot(b, b)
if b_norm_squared == 0.0:
return np.zeros(3)
return np.dot(a, b) * b / b_norm_squared
def random_vector(random_state=np.random.RandomState(0), n=3):
"""Generate an nd vector with normally distributed components.
Each component will be sampled from :math:`\mathcal{N}(\mu=0, \sigma=1)`.
Parameters
----------
random_state : np.random.RandomState, optional (default: random seed 0)
Random number generator
n : int, optional (default: 3)
Number of vector components
Returns
-------
v : array-like, shape (n,)
Random vector
"""
return random_state.randn(n)
def random_axis_angle(random_state=np.random.RandomState(0)):
"""Generate random axis-angle.
The angle will be sampled uniformly from the interval :math:`[0, \pi)`
and each component of the rotation axis will be sampled from
:math:`\mathcal{N}(\mu=0, \sigma=1)` and than the axis will be normalized
to length 1.
Parameters
----------
random_state : np.random.RandomState, optional (default: random seed 0)
Random number generator
Returns
-------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle)
"""
angle = np.pi * random_state.rand()
a = np.array([0, 0, 0, angle])
a[:3] = norm_vector(random_state.randn(3))
return a
def random_compact_axis_angle(random_state=np.random.RandomState(0)):
"""Generate random compact axis-angle.
The angle will be sampled uniformly from the interval :math:`[0, \pi)`
and each component of the rotation axis will be sampled from
:math:`\mathcal{N}(\mu=0, \sigma=1)` and than the axis will be normalized
to length 1.
Parameters
----------
random_state : np.random.RandomState, optional (default: random seed 0)
Random number generator
Returns
-------
a : array-like, shape (3,)
Axis of rotation and rotation angle: angle * (x, y, z)
"""
a = random_axis_angle(random_state)
return a[:3] * a[3]
def random_quaternion(random_state=np.random.RandomState(0)):
"""Generate random quaternion.
Parameters
----------
random_state : np.random.RandomState, optional (default: random seed 0)
Random number generator
Returns
-------
q : array-like, shape (4,)
Unit quaternion to represent rotation: (w, x, y, z)
"""
return norm_vector(random_state.randn(4))
def cross_product_matrix(v):
"""Generate the cross-product matrix of a vector.
The cross-product matrix :math:`\\boldsymbol{V}` satisfies the equation
.. math::
\\boldsymbol{V} \\boldsymbol{w} = \\boldsymbol{v} \\times
\\boldsymbol{w}
It is a skew-symmetric (antisymmetric) matrix, i.e.
:math:`-\\boldsymbol{V} = \\boldsymbol{V}^T`.
Parameters
----------
v : array-like, shape (3,)
3d vector
Returns
-------
V : array-like, shape (3, 3)
Cross-product matrix
"""
return np.array([[0.0, -v[2], v[1]],
[v[2], 0.0, -v[0]],
[-v[1], v[0], 0.0]])
def check_skew_symmetric_matrix(V, tolerance=1e-6, strict_check=True):
"""Input validation of a skew-symmetric matrix.
Check whether the transpose of the matrix is its negative:
.. math::
V^T = -V
Parameters
----------
V : array-like, shape (3, 3)
Cross-product matrix
tolerance : float, optional (default: 1e-6)
Tolerance threshold for checks.
strict_check : bool, optional (default: True)
Raise a ValueError if V.T is not numerically close enough to -V.
Otherwise we print a warning.
Returns
-------
V : array-like, shape (3, 3)
Validated cross-product matrix
"""
V = np.asarray(V, dtype=np.float)
if V.ndim != 2 or V.shape[0] != 3 or V.shape[1] != 3:
raise ValueError("Expected skew-symmetric matrix with shape (3, 3), "
"got array-like object with shape %s" % (V.shape,))
if not np.allclose(V.T, -V, atol=tolerance):
error_msg = ("Expected skew-symmetric matrix, but it failed the test "
"V.T = %r\n-V = %r" % (V.T, -V))
if strict_check:
raise ValueError(error_msg)
else:
warnings.warn(error_msg)
return V
def check_matrix(R, tolerance=1e-6, strict_check=True):
"""Input validation of a rotation matrix.
We check whether R multiplied by its inverse is approximately the identity
matrix and the determinant is approximately 1.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
tolerance : float, optional (default: 1e-6)
Tolerance threshold for checks. Default tolerance is the same as in
assert_rotation_matrix(R).
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
R : array, shape (3, 3)
Validated rotation matrix
"""
R = np.asarray(R, dtype=np.float)
if R.ndim != 2 or R.shape[0] != 3 or R.shape[1] != 3:
raise ValueError("Expected rotation matrix with shape (3, 3), got "
"array-like object with shape %s" % (R.shape,))
RRT = np.dot(R, R.T)
if not np.allclose(RRT, np.eye(3), atol=tolerance):
error_msg = ("Expected rotation matrix, but it failed the test "
"for inversion by transposition. np.dot(R, R.T) "
"gives %r" % RRT)
if strict_check:
raise ValueError(error_msg)
else:
warnings.warn(error_msg)
R_det = np.linalg.det(R)
if abs(R_det - 1) > tolerance:
error_msg = ("Expected rotation matrix, but it failed the test "
"for the determinant, which should be 1 but is %g; "
"that is, it probably represents a rotoreflection"
% R_det)
if strict_check:
raise ValueError(error_msg)
else:
warnings.warn(error_msg)
return R
def check_axis_angle(a):
"""Input validation of axis-angle representation.
Parameters
----------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle)
Returns
-------
a : array, shape (4,)
Validated axis of rotation and rotation angle: (x, y, z, angle)
"""
a = np.asarray(a, dtype=np.float)
if a.ndim != 1 or a.shape[0] != 4:
raise ValueError("Expected axis and angle in array with shape (4,), "
"got array-like object with shape %s" % (a.shape,))
return norm_axis_angle(a)
def check_compact_axis_angle(a):
"""Input validation of compact axis-angle representation.
Parameters
----------
a : array-like, shape (3,)
Axis of rotation and rotation angle: angle * (x, y, z)
Returns
-------
a : array, shape (3,)
Validated axis of rotation and rotation angle: angle * (x, y, z)
"""
a = np.asarray(a, dtype=np.float)
if a.ndim != 1 or a.shape[0] != 3:
raise ValueError("Expected axis and angle in array with shape (3,), "
"got array-like object with shape %s" % (a.shape,))
return norm_compact_axis_angle(a)
def check_quaternion(q, unit=True):
"""Input validation of quaternion representation.
Parameters
----------
q : array-like, shape (4,)
Quaternion to represent rotation: (w, x, y, z)
unit : bool, optional (default: True)
Normalize the quaternion so that it is a unit quaternion
Returns
-------
q : array-like, shape (4,)
Validated quaternion to represent rotation: (w, x, y, z)
"""
q = np.asarray(q, dtype=np.float)
if q.ndim != 1 or q.shape[0] != 4:
raise ValueError("Expected quaternion with shape (4,), got "
"array-like object with shape %s" % (q.shape,))
if unit:
return norm_vector(q)
else:
return q
def check_quaternions(Q, unit=True):
"""Input validation of quaternion representation.
Parameters
----------
Q : array-like, shape (n_steps, 4)
Quaternions to represent rotations: (w, x, y, z)
unit : bool, optional (default: True)
Normalize the quaternions so that they are unit quaternions
Returns
-------
Q : array-like, shape (n_steps, 4)
Validated quaternions to represent rotations: (w, x, y, z)
"""
Q_checked = np.asarray(Q, dtype=np.float)
if Q_checked.ndim != 2 or Q_checked.shape[1] != 4:
raise ValueError(
"Expected quaternion array with shape (n_steps, 4), got "
"array-like object with shape %s" % (Q_checked.shape,))
if unit:
for i in range(len(Q)):
Q_checked[i] = norm_vector(Q_checked[i])
return Q_checked
def matrix_from_two_vectors(a, b):
"""Compute rotation matrix from two vectors.
We assume that the two given vectors form a plane so that we can compute
a third, orthogonal vector with the cross product.
The x-axis will point in the same direction as a, the y-axis corresponds
to the normalized vector rejection of b on a, and the z-axis is the
cross product of the other basis vectors.
Parameters
----------
a : array-like, shape (3,)
First vector, must not be 0
b : array-like, shape (3,)
Second vector, must not be 0 or parallel to v1
Returns
-------
R : array, shape (3, 3)
Rotation matrix
"""
if np.linalg.norm(a) == 0:
raise ValueError("a must not be the zero vector.")
if np.linalg.norm(b) == 0:
raise ValueError("b must not be the zero vector.")
c = perpendicular_to_vectors(a, b)
if np.linalg.norm(c) == 0:
raise ValueError("a and b must not be parallel.")
a = norm_vector(a)
b_on_a_projection = vector_projection(b, a)
b_on_a_rejection = b - b_on_a_projection
b = norm_vector(b_on_a_rejection)
c = norm_vector(c)
return np.column_stack((a, b, c))
def matrix_from_axis_angle(a):
"""Compute rotation matrix from axis-angle.
This is called exponential map or Rodrigues' formula.
This typically results in an active rotation matrix.
Parameters
----------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
a = check_axis_angle(a)
ux, uy, uz, theta = a
c = math.cos(theta)
s = math.sin(theta)
ci = 1.0 - c
R = np.array([[ci * ux * ux + c,
ci * ux * uy - uz * s,
ci * ux * uz + uy * s],
[ci * uy * ux + uz * s,
ci * uy * uy + c,
ci * uy * uz - ux * s],
[ci * uz * ux - uy * s,
ci * uz * uy + ux * s,
ci * uz * uz + c],
])
# This is equivalent to
# R = (np.eye(3) * np.cos(a[3]) +
# (1.0 - np.cos(a[3])) * a[:3, np.newaxis].dot(a[np.newaxis, :3]) +
# cross_product_matrix(a[:3]) * np.sin(a[3]))
return R
def matrix_from_compact_axis_angle(a):
"""Compute rotation matrix from compact axis-angle.
This is called exponential map or Rodrigues' formula.
This typically results in an active rotation matrix.
Parameters
----------
a : array-like, shape (3,)
Axis of rotation and rotation angle: angle * (x, y, z)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
a = axis_angle_from_compact_axis_angle(a)
return matrix_from_axis_angle(a)
def matrix_from_quaternion(q):
"""Compute rotation matrix from quaternion.
This typically results in an active rotation matrix.
Parameters
----------
q : array-like, shape (4,)
Unit quaternion to represent rotation: (w, x, y, z)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
q = check_quaternion(q)
uq = norm_vector(q)
w, x, y, z = uq
x2 = 2.0 * x * x
y2 = 2.0 * y * y
z2 = 2.0 * z * z
xy = 2.0 * x * y
xz = 2.0 * x * z
yz = 2.0 * y * z
xw = 2.0 * x * w
yw = 2.0 * y * w
zw = 2.0 * z * w
R = np.array([[1.0 - y2 - z2, xy - zw, xz + yw],
[xy + zw, 1.0 - x2 - z2, yz - xw],
[xz - yw, yz + xw, 1.0 - x2 - y2]])
return R
def matrix_from_angle(basis, angle):
"""Compute passive rotation matrix from rotation about basis vector.
Parameters
----------
basis : int from [0, 1, 2]
The rotation axis (0: x, 1: y, 2: z)
angle : float
Rotation angle
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
c = np.cos(angle)
s = np.sin(angle)
if basis == 0:
R = np.array([[1.0, 0.0, 0.0],
[0.0, c, s],
[0.0, -s, c]])
elif basis == 1:
R = np.array([[c, 0.0, -s],
[0.0, 1.0, 0.0],
[s, 0.0, c]])
elif basis == 2:
R = np.array([[c, s, 0.0],
[-s, c, 0.0],
[0.0, 0.0, 1.0]])
else:
raise ValueError("Basis must be in [0, 1, 2]")
return R
passive_matrix_from_angle = matrix_from_angle
def active_matrix_from_angle(basis, angle):
"""Compute active rotation matrix from rotation about basis vector.
Parameters
----------
basis : int from [0, 1, 2]
The rotation axis (0: x, 1: y, 2: z)
angle : float
Rotation angle
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
c = np.cos(angle)
s = np.sin(angle)
if basis == 0:
R = np.array([[1.0, 0.0, 0.0],
[0.0, c, -s],
[0.0, s, c]])
elif basis == 1:
R = np.array([[c, 0.0, s],
[0.0, 1.0, 0.0],
[-s, 0.0, c]])
elif basis == 2:
R = np.array([[c, -s, 0.0],
[s, c, 0.0],
[0.0, 0.0, 1.0]])
else:
raise ValueError("Basis must be in [0, 1, 2]")
return R
def matrix_from_euler_xyz(e):
"""Compute passive rotation matrix from intrinsic xyz Tait-Bryan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = passive_matrix_from_angle(0, alpha).dot(
passive_matrix_from_angle(1, beta)).dot(
passive_matrix_from_angle(2, gamma))
return R
def matrix_from_euler_zyx(e):
"""Compute passive rotation matrix from intrinsic zyx Tait-Bryan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
gamma, beta, alpha = e
R = passive_matrix_from_angle(2, gamma).dot(
passive_matrix_from_angle(1, beta)).dot(
passive_matrix_from_angle(0, alpha))
return R
def active_matrix_from_intrinsic_euler_xzx(e):
"""Compute active rotation matrix from intrinsic xzx Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around x-, z'-, and x''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(0, alpha).dot(
active_matrix_from_angle(2, beta)).dot(
active_matrix_from_angle(0, gamma))
return R
def active_matrix_from_extrinsic_euler_xzx(e):
"""Compute active rotation matrix from extrinsic xzx Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around x-, z-, and x-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(0, gamma).dot(
active_matrix_from_angle(2, beta)).dot(
active_matrix_from_angle(0, alpha))
return R
def active_matrix_from_intrinsic_euler_xyx(e):
"""Compute active rotation matrix from intrinsic xyx Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around x-, y'-, and x''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(0, alpha).dot(
active_matrix_from_angle(1, beta)).dot(
active_matrix_from_angle(0, gamma))
return R
def active_matrix_from_extrinsic_euler_xyx(e):
"""Compute active rotation matrix from extrinsic xyx Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around x-, y-, and x-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(0, gamma).dot(
active_matrix_from_angle(1, beta)).dot(
active_matrix_from_angle(0, alpha))
return R
def active_matrix_from_intrinsic_euler_yxy(e):
"""Compute active rotation matrix from intrinsic yxy Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around y-, x'-, and y''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(1, alpha).dot(
active_matrix_from_angle(0, beta)).dot(
active_matrix_from_angle(1, gamma))
return R
def active_matrix_from_extrinsic_euler_yxy(e):
"""Compute active rotation matrix from extrinsic yxy Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around y-, x-, and y-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(1, gamma).dot(
active_matrix_from_angle(0, beta)).dot(
active_matrix_from_angle(1, alpha))
return R
def active_matrix_from_intrinsic_euler_yzy(e):
"""Compute active rotation matrix from intrinsic yzy Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around y-, z'-, and y''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(1, alpha).dot(
active_matrix_from_angle(2, beta)).dot(
active_matrix_from_angle(1, gamma))
return R
def active_matrix_from_extrinsic_euler_yzy(e):
"""Compute active rotation matrix from extrinsic yzy Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around y-, z-, and y-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(1, gamma).dot(
active_matrix_from_angle(2, beta)).dot(
active_matrix_from_angle(1, alpha))
return R
def active_matrix_from_intrinsic_euler_zyz(e):
"""Compute active rotation matrix from intrinsic zyz Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around z-, y'-, and z''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(2, alpha).dot(
active_matrix_from_angle(1, beta)).dot(
active_matrix_from_angle(2, gamma))
return R
def active_matrix_from_extrinsic_euler_zyz(e):
"""Compute active rotation matrix from extrinsic zyz Euler angles.
.. warning::
This function was not implemented correctly in versions 1.3 and 1.4
as the order of the angles was reversed, which actually corresponds
to intrinsic rotations. This has been fixed in version 1.5.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around z-, y-, and z-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(2, gamma).dot(
active_matrix_from_angle(1, beta)).dot(
active_matrix_from_angle(2, alpha))
return R
def active_matrix_from_intrinsic_euler_zxz(e):
"""Compute active rotation matrix from intrinsic zxz Euler angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around z-, x'-, and z''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(2, alpha).dot(
active_matrix_from_angle(0, beta)).dot(
active_matrix_from_angle(2, gamma))
return R
def active_matrix_from_extrinsic_euler_zxz(e):
"""Compute active rotation matrix from extrinsic zxz Euler angles.
.. warning::
This function was not implemented correctly in versions 1.3 and 1.4
as the order of the angles was reversed, which actually corresponds
to intrinsic rotations. This has been fixed in version 1.5.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around z-, x-, and z-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(2, gamma).dot(
active_matrix_from_angle(0, beta)).dot(
active_matrix_from_angle(2, alpha))
return R
def active_matrix_from_intrinsic_euler_xzy(e):
"""Compute active rotation matrix from intrinsic xzy Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around x-, z'-, and y''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(0, alpha).dot(
active_matrix_from_angle(2, beta)).dot(
active_matrix_from_angle(1, gamma))
return R
def active_matrix_from_extrinsic_euler_xzy(e):
"""Compute active rotation matrix from extrinsic xzy Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around x-, z-, and y-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(1, gamma).dot(
active_matrix_from_angle(2, beta)).dot(
active_matrix_from_angle(0, alpha))
return R
def active_matrix_from_intrinsic_euler_xyz(e):
"""Compute active rotation matrix from intrinsic xyz Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(0, alpha).dot(
active_matrix_from_angle(1, beta)).dot(
active_matrix_from_angle(2, gamma))
return R
def active_matrix_from_extrinsic_euler_xyz(e):
"""Compute active rotation matrix from extrinsic xyz Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around x-, y-, and z-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(2, gamma).dot(
active_matrix_from_angle(1, beta)).dot(
active_matrix_from_angle(0, alpha))
return R
def active_matrix_from_intrinsic_euler_yxz(e):
"""Compute active rotation matrix from intrinsic yxz Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around y-, x'-, and z''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(1, alpha).dot(
active_matrix_from_angle(0, beta)).dot(
active_matrix_from_angle(2, gamma))
return R
def active_matrix_from_extrinsic_euler_yxz(e):
"""Compute active rotation matrix from extrinsic yxz Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around y-, x-, and z-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(2, gamma).dot(
active_matrix_from_angle(0, beta)).dot(
active_matrix_from_angle(1, alpha))
return R
def active_matrix_from_intrinsic_euler_yzx(e):
"""Compute active rotation matrix from intrinsic yzx Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around y-, z'-, and x''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(1, alpha).dot(
active_matrix_from_angle(2, beta)).dot(
active_matrix_from_angle(0, gamma))
return R
def active_matrix_from_extrinsic_euler_yzx(e):
"""Compute active rotation matrix from extrinsic yzx Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around y-, z-, and x-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(0, gamma).dot(
active_matrix_from_angle(2, beta)).dot(
active_matrix_from_angle(1, alpha))
return R
def active_matrix_from_intrinsic_euler_zyx(e):
"""Compute active rotation matrix from intrinsic zyx Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(2, alpha).dot(
active_matrix_from_angle(1, beta)).dot(
active_matrix_from_angle(0, gamma))
return R
def active_matrix_from_extrinsic_euler_zyx(e):
"""Compute active rotation matrix from extrinsic zyx Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around z-, y-, and x-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(0, gamma).dot(
active_matrix_from_angle(1, beta)).dot(
active_matrix_from_angle(2, alpha))
return R
def active_matrix_from_intrinsic_euler_zxy(e):
"""Compute active rotation matrix from intrinsic zxy Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around z-, x'-, and y''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(2, alpha).dot(
active_matrix_from_angle(0, beta)).dot(
active_matrix_from_angle(1, gamma))
return R
def active_matrix_from_extrinsic_euler_zxy(e):
"""Compute active rotation matrix from extrinsic zxy Cardan angles.
Parameters
----------
e : array-like, shape (3,)
Angles for rotation around z-, x-, and y-axes (extrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
alpha, beta, gamma = e
R = active_matrix_from_angle(1, gamma).dot(
active_matrix_from_angle(0, beta)).dot(
active_matrix_from_angle(2, alpha))
return R
def active_matrix_from_extrinsic_roll_pitch_yaw(rpy):
"""Compute active rotation matrix from extrinsic roll, pitch, and yaw.
Parameters
----------
rpy : array-like, shape (3,)
Angles for rotation around x- (roll), y- (pitch), and z-axes (yaw),
extrinsic rotations
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
return active_matrix_from_extrinsic_euler_xyz(rpy)
def matrix_from(R=None, a=None, q=None, e_xyz=None, e_zyx=None):
"""Compute rotation matrix from another representation.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle)
q : array-like, shape (4,)
Unit quaternion to represent rotation: (w, x, y, z)
e_xyz : array-like, shape (3,)
Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations)
e_zyx : array-like, shape (3,)
Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations)
Returns
-------
R : array-like, shape (3, 3)
Rotation matrix
"""
if R is not None:
return R
if a is not None:
return matrix_from_axis_angle(a)
if q is not None:
return matrix_from_quaternion(q)
if e_xyz is not None:
return matrix_from_euler_xyz(e_xyz)
if e_zyx is not None:
return matrix_from_euler_zyx(e_zyx)
raise ValueError("Cannot compute rotation matrix from no rotation.")
def _general_intrinsic_euler_from_active_matrix(
R, n1, n2, n3, proper_euler, strict_check=True):
"""General algorithm to extract intrinsic euler angles from a matrix.
The implementation is based on SciPy's implementation:
https://github.com/scipy/scipy/blob/master/scipy/spatial/transform/rotation.pyx
Parameters
----------
R : array-like, shape (3, 3)
Active rotation matrix
n1 : array, shape (3,)
First rotation axis (basis vector)
n2 : array, shape (3,)
Second rotation axis (basis vector)
n3 : array, shape (3,)
Third rotation axis (basis vector)
proper_euler : bool
Is this an Euler angle convention or a Cardan / Tait-Bryan convention?
Proper Euler angles rotate about the same axis twice, for example,
z, y', and z''.
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
euler_angles : array, shape (3,)
Extracted intrinsic rotation angles in radians about the axes
n1, n2, and n3 in this order. The first and last angle are
normalized to [-pi, pi]. The middle angle is normalized to
either [0, pi] (proper Euler angles) or [-pi/2, pi/2]
(Cardan / Tait-Bryan angles).
References
----------
Shuster, Markley: General Formula for Extracting the Euler Angles,
https://arc.aiaa.org/doi/abs/10.2514/1.16622
"""
D = check_matrix(R, strict_check=strict_check)
# Differences to the paper:
# - we call the angles alpha, beta, and gamma
# - we obtain angles from intrinsic rotations, thus some matrices are
# transposed like in SciPy's implementation
# Step 2
# - Equation 5
n1_cross_n2 = np.cross(n1, n2)
lmbda = np.arctan2(
np.dot(n1_cross_n2, n3),
np.dot(n1, n3)
)
# - Equation 6
C = np.vstack((n2, n1_cross_n2, n1))
# Step 3
# - Equation 8
CDCT = np.dot(np.dot(C, D), C.T)
O = np.dot(CDCT, active_matrix_from_angle(0, lmbda).T)
# Step 4
# - Equation 10a
beta = lmbda + np.arccos(O[2, 2])
safe1 = abs(beta - lmbda) >= np.finfo(float).eps
safe2 = abs(beta - lmbda - np.pi) >= np.finfo(float).eps
if safe1 and safe2: # Default case, no gimbal lock
# Step 5
# - Equation 10b
alpha = np.arctan2(O[0, 2], -O[1, 2])
# - Equation 10c
gamma = np.arctan2(O[2, 0], O[2, 1])
# Step 7
if proper_euler:
valid_beta = 0.0 <= beta <= np.pi
else: # Cardan / Tait-Bryan angles
valid_beta = -0.5 * np.pi <= beta <= 0.5 * np.pi
# - Equation 12
if not valid_beta:
alpha += np.pi
beta = 2.0 * lmbda - beta
gamma -= np.pi
else:
# Step 6 - Handle gimbal locks
# a)
gamma = 0.0
if not safe1:
# b)
alpha = np.arctan2(O[1, 0] - O[0, 1], O[0, 0] + O[1, 1])
else:
# c)
alpha = np.arctan2(O[1, 0] + O[0, 1], O[0, 0] - O[1, 1])
euler_angles = norm_angle([alpha, beta, gamma])
return euler_angles
def euler_xyz_from_matrix(R, strict_check=True):
"""Compute xyz Euler angles from passive rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Passive rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e_xyz : array-like, shape (3,)
Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations)
"""
R = check_matrix(R, strict_check=strict_check)
if np.abs(R[0, 2]) != 1.0:
# NOTE: There are two solutions: angle2 and pi - angle2!
angle2 = np.arcsin(-R[0, 2])
angle1 = np.arctan2(R[1, 2] / np.cos(angle2), R[2, 2] / np.cos(angle2))
angle3 = np.arctan2(R[0, 1] / np.cos(angle2), R[0, 0] / np.cos(angle2))
else:
if R[0, 2] == 1.0:
angle3 = 0.0
angle2 = -np.pi / 2.0
angle1 = np.arctan2(-R[1, 0], -R[2, 0])
else:
angle3 = 0.0
angle2 = np.pi / 2.0
angle1 = np.arctan2(R[1, 0], R[2, 0])
return np.array([angle1, angle2, angle3])
def euler_zyx_from_matrix(R, strict_check=True):
"""Compute zyx Euler angles from passive rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Passive rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e_zyx : array-like, shape (3,)
Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations)
"""
R = check_matrix(R, strict_check=strict_check)
if np.abs(R[2, 0]) != 1.0:
# NOTE: There are two solutions: angle2 and pi - angle2!
angle2 = np.arcsin(R[2, 0])
angle3 = np.arctan2(-R[2, 1] / np.cos(angle2),
R[2, 2] / np.cos(angle2))
angle1 = np.arctan2(-R[1, 0] / np.cos(angle2),
R[0, 0] / np.cos(angle2))
else:
if R[2, 0] == 1.0:
angle3 = 0.0
angle2 = np.pi / 2.0
angle1 = np.arctan2(R[0, 1], -R[0, 2])
else:
angle3 = 0.0
angle2 = -np.pi / 2.0
angle1 = np.arctan2(R[0, 1], R[0, 2])
return np.array([angle1, angle2, angle3])
def intrinsic_euler_xzx_from_active_matrix(R, strict_check=True):
"""Compute intrinsic xzx Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array, shape (3,)
Angles for rotation around x-, z'-, and x''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitx, unitz, unitx, True, strict_check)
def extrinsic_euler_xzx_from_active_matrix(R, strict_check=True):
"""Compute active rotation matrix from extrinsic xzx Euler angles.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around x-, z-, and x-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitx, unitz, unitx, True, strict_check)[::-1]
def intrinsic_euler_xyx_from_active_matrix(R, strict_check=True):
"""Compute intrinsic xyx Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array, shape (3,)
Angles for rotation around x-, y'-, and x''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitx, unity, unitx, True, strict_check)
def extrinsic_euler_xyx_from_active_matrix(R, strict_check=True):
"""Compute extrinsic xyx Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array, shape (3,)
Angles for rotation around x-, y-, and x-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitx, unity, unitx, True, strict_check)[::-1]
def intrinsic_euler_yxy_from_active_matrix(R, strict_check=True):
"""Compute intrinsic yxy Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around y-, x'-, and y''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unity, unitx, unity, True, strict_check)
def extrinsic_euler_yxy_from_active_matrix(R, strict_check=True):
"""Compute extrinsic yxy Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around y-, x-, and y-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unity, unitx, unity, True, strict_check)[::-1]
def intrinsic_euler_yzy_from_active_matrix(R, strict_check=True):
"""Compute intrinsic yzy Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around y-, z'-, and y''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unity, unitz, unity, True, strict_check)
def extrinsic_euler_yzy_from_active_matrix(R, strict_check=True):
"""Compute extrinsic yzy Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around y-, z-, and y-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unity, unitz, unity, True, strict_check)[::-1]
def intrinsic_euler_zyz_from_active_matrix(R, strict_check=True):
"""Compute intrinsic zyz Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around z-, y'-, and z''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitz, unity, unitz, True, strict_check)
def extrinsic_euler_zyz_from_active_matrix(R, strict_check=True):
"""Compute extrinsic zyz Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around z-, y-, and z-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitz, unity, unitz, True, strict_check)[::-1]
def intrinsic_euler_zxz_from_active_matrix(R, strict_check=True):
"""Compute intrinsic zxz Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around z-, x'-, and z''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitz, unitx, unitz, True, strict_check)
def extrinsic_euler_zxz_from_active_matrix(R, strict_check=True):
"""Compute extrinsic zxz Euler angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around z-, x-, and z-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitz, unitx, unitz, True, strict_check)[::-1]
def intrinsic_euler_xzy_from_active_matrix(R, strict_check=True):
"""Compute intrinsic xzy Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around x-, z'-, and y''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitx, unitz, unity, False, strict_check)
def extrinsic_euler_xzy_from_active_matrix(R, strict_check=True):
"""Compute extrinsic xzy Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around x-, z-, and y-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unity, unitz, unitx, False, strict_check)[::-1]
def intrinsic_euler_xyz_from_active_matrix(R, strict_check=True):
"""Compute intrinsic xyz Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitx, unity, unitz, False, strict_check)
def extrinsic_euler_xyz_from_active_matrix(R, strict_check=True):
"""Compute extrinsic xyz Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around x-, y-, and z-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitz, unity, unitx, False, strict_check)[::-1]
def intrinsic_euler_yxz_from_active_matrix(R, strict_check=True):
"""Compute intrinsic yxz Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around y-, x'-, and z''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unity, unitx, unitz, False, strict_check)
def extrinsic_euler_yxz_from_active_matrix(R, strict_check=True):
"""Compute extrinsic yxz Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around y-, x-, and z-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitz, unitx, unity, False, strict_check)[::-1]
def intrinsic_euler_yzx_from_active_matrix(R, strict_check=True):
"""Compute intrinsic yzx Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around y-, z'-, and x''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unity, unitz, unitx, False, strict_check)
def extrinsic_euler_yzx_from_active_matrix(R, strict_check=True):
"""Compute extrinsic yzx Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around y-, z-, and x-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitx, unitz, unity, False, strict_check)[::-1]
def intrinsic_euler_zyx_from_active_matrix(R, strict_check=True):
"""Compute intrinsic zyx Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array, shape (3,)
Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitz, unity, unitx, False, strict_check)
def extrinsic_euler_zyx_from_active_matrix(R, strict_check=True):
"""Compute extrinsic zyx Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array, shape (3,)
Angles for rotation around z-, y-, and x-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitx, unity, unitz, False, strict_check)[::-1]
def intrinsic_euler_zxy_from_active_matrix(R, strict_check=True):
"""Compute intrinsic zxy Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array, shape (3,)
Angles for rotation around z-, x'-, and y''-axes (intrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unitz, unitx, unity, False, strict_check)
def extrinsic_euler_zxy_from_active_matrix(R, strict_check=True):
"""Compute extrinsic zxy Cardan angles from active rotation matrix.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
e : array-like, shape (3,)
Angles for rotation around z-, x-, and y-axes (extrinsic rotations)
"""
return _general_intrinsic_euler_from_active_matrix(
R, unity, unitx, unitz, False, strict_check)[::-1]
def axis_angle_from_matrix(R, strict_check=True):
"""Compute axis-angle from rotation matrix.
This operation is called logarithmic map. Note that there are two possible
solutions for the rotation axis when the angle is 180 degrees (pi).
We usually assume active rotations.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle). The angle is
constrained to [0, pi].
"""
R = check_matrix(R, strict_check=strict_check)
angle = np.arccos((np.trace(R) - 1.0) / 2.0)
if angle == 0.0: # R == np.eye(3)
return np.array([1.0, 0.0, 0.0, 0.0])
a = np.empty(4)
# We can usually determine the rotation axis by inverting Rodrigues'
# formula. Subtracting opposing off-diagonal elements gives us
# 2 * sin(angle) * e,
# where e is the normalized rotation axis.
axis_unnormalized = np.array(
[R[2, 1] - R[1, 2], R[0, 2] - R[2, 0], R[1, 0] - R[0, 1]])
if abs(angle - np.pi) < 1e-4: # np.trace(R) close to -1
# The threshold is a result from this discussion:
# https://github.com/rock-learning/pytransform3d/issues/43
# The standard formula becomes numerically unstable, however,
# Rodrigues' formula reduces to R = I + 2 (ee^T - I), with the
# rotation axis e, that is, ee^T = 0.5 * (R + I) and we can find the
# squared values of the rotation axis on the diagonal of this matrix.
# We can still use the original formula to reconstruct the signs of
# the rotation axis correctly.
a[:3] = np.sqrt(0.5 * (np.diag(R) + 1.0)) * np.sign(axis_unnormalized)
else:
a[:3] = axis_unnormalized
# The norm of axis_unnormalized is 2.0 * np.sin(angle), that is, we
# could normalize with a[:3] = a[:3] / (2.0 * np.sin(angle)),
# but the following is much more precise for angles close to 0 or pi:
a[:3] /= np.linalg.norm(a[:3])
a[3] = angle
return a
def axis_angle_from_quaternion(q):
"""Compute axis-angle from quaternion.
This operation is called logarithmic map.
We usually assume active rotations.
Parameters
----------
q : array-like, shape (4,)
Unit quaternion to represent rotation: (w, x, y, z)
Returns
-------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle). The angle is
constrained to [0, pi) so that the mapping is unique.
"""
q = check_quaternion(q)
p = q[1:]
p_norm = np.linalg.norm(p)
if p_norm < np.finfo(float).eps:
return np.array([1.0, 0.0, 0.0, 0.0])
else:
axis = p / p_norm
angle = (2.0 * np.arccos(q[0]),)
return np.hstack((axis, angle))
def axis_angle_from_compact_axis_angle(a):
"""Compute axis-angle from compact axis-angle representation.
We usually assume active rotations.
Parameters
----------
a : array-like, shape (3,)
Axis of rotation and rotation angle: angle * (x, y, z).
Returns
-------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle). The angle is
constrained to [0, pi].
"""
a = check_compact_axis_angle(a)
angle = np.linalg.norm(a)
if angle == 0.0:
return np.array([1.0, 0.0, 0.0, 0.0])
else:
axis = a / angle
return np.hstack((axis, (angle,)))
def axis_angle_from_two_directions(a, b):
"""Compute axis-angle representation from two direction vectors.
The rotation will transform direction vector a to direction vector b.
The direction vectors don't have to be normalized as this will be
done internally. Note that there is more than one possible solution.
Parameters
----------
a : array-like, shape (3,)
First direction vector
b : array-like, shape (3,)
Second direction vector
Returns
-------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle). The angle is
constrained to [0, pi].
"""
a = norm_vector(a)
b = norm_vector(b)
cos_angle = a.dot(b)
if abs(-1.0 - cos_angle) < eps:
# For 180 degree rotations we have an infinite number of solutions,
# but we have to pick one axis.
axis = perpendicular_to_vector(a)
else:
axis = np.cross(a, b)
aa = np.empty(4)
aa[:3] = norm_vector(axis)
aa[3] = np.arccos(cos_angle)
return norm_axis_angle(aa)
def compact_axis_angle(a):
"""Compute 3-dimensional axis-angle from a 4-dimensional one.
In a 3-dimensional axis-angle, the 4th dimension (the rotation) is
represented by the norm of the rotation axis vector, which means we
transform :math:`\\left( \\boldsymbol{\hat{e}}, \\theta \\right)` to
:math:`\\theta \\boldsymbol{\hat{e}}`.
We usually assume active rotations.
Parameters
----------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle).
Returns
-------
a : array-like, shape (3,)
Axis of rotation and rotation angle: angle * (x, y, z) (compact
representation).
"""
a = check_axis_angle(a)
return a[:3] * a[3]
def compact_axis_angle_from_matrix(R):
"""Compute compact axis-angle from rotation matrix.
This operation is called logarithmic map. Note that there are two possible
solutions for the rotation axis when the angle is 180 degrees (pi).
We usually assume active rotations.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
a : array-like, shape (3,)
Axis of rotation and rotation angle: angle * (x, y, z). The angle is
constrained to [0, pi].
"""
a = axis_angle_from_matrix(R)
return compact_axis_angle(a)
def compact_axis_angle_from_quaternion(q):
"""Compute compact axis-angle from quaternion (logarithmic map).
We usually assume active rotations.
Parameters
----------
q : array-like, shape (4,)
Unit quaternion to represent rotation: (w, x, y, z)
Returns
-------
a : array-like, shape (3,)
Axis of rotation and rotation angle: angle * (x, y, z). The angle is
constrained to [0, pi].
"""
a = axis_angle_from_quaternion(q)
return compact_axis_angle(a)
def quaternion_from_matrix(R, strict_check=True):
"""Compute quaternion from rotation matrix.
We usually assume active rotations.
.. warning::
When computing a quaternion from the rotation matrix there is a sign
ambiguity: q and -q represent the same rotation.
Parameters
----------
R : array-like, shape (3, 3)
Rotation matrix
strict_check : bool, optional (default: True)
Raise a ValueError if the rotation matrix is not numerically close
enough to a real rotation matrix. Otherwise we print a warning.
Returns
-------
q : array-like, shape (4,)
Unit quaternion to represent rotation: (w, x, y, z)
"""
R = check_matrix(R, strict_check=strict_check)
q = np.empty(4)
# Source: http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
trace = np.trace(R)
if trace > 0.0:
sqrt_trace = np.sqrt(1.0 + trace)
q[0] = 0.5 * sqrt_trace
q[1] = 0.5 / sqrt_trace * (R[2, 1] - R[1, 2])
q[2] = 0.5 / sqrt_trace * (R[0, 2] - R[2, 0])
q[3] = 0.5 / sqrt_trace * (R[1, 0] - R[0, 1])
else:
if R[0, 0] > R[1, 1] and R[0, 0] > R[2, 2]:
sqrt_trace = np.sqrt(1.0 + R[0, 0] - R[1, 1] - R[2, 2])
q[0] = 0.5 / sqrt_trace * (R[2, 1] - R[1, 2])
q[1] = 0.5 * sqrt_trace
q[2] = 0.5 / sqrt_trace * (R[1, 0] + R[0, 1])
q[3] = 0.5 / sqrt_trace * (R[0, 2] + R[2, 0])
elif R[1, 1] > R[2, 2]:
sqrt_trace = np.sqrt(1.0 + R[1, 1] - R[0, 0] - R[2, 2])
q[0] = 0.5 / sqrt_trace * (R[0, 2] - R[2, 0])
q[1] = 0.5 / sqrt_trace * (R[1, 0] + R[0, 1])
q[2] = 0.5 * sqrt_trace
q[3] = 0.5 / sqrt_trace * (R[2, 1] + R[1, 2])
else:
sqrt_trace = np.sqrt(1.0 + R[2, 2] - R[0, 0] - R[1, 1])
q[0] = 0.5 / sqrt_trace * (R[1, 0] - R[0, 1])
q[1] = 0.5 / sqrt_trace * (R[0, 2] + R[2, 0])
q[2] = 0.5 / sqrt_trace * (R[2, 1] + R[1, 2])
q[3] = 0.5 * sqrt_trace
return q
def quaternion_from_axis_angle(a):
"""Compute quaternion from axis-angle.
This operation is called exponential map.
We usually assume active rotations.
Parameters
----------
a : array-like, shape (4,)
Axis of rotation and rotation angle: (x, y, z, angle)
Returns
-------
q : array-like, shape (4,)
Unit quaternion to represent rotation: (w, x, y, z)
"""
a = check_axis_angle(a)
theta = a[3]
q = np.empty(4)
q[0] = np.cos(theta / 2)
q[1:] = np.sin(theta / 2) * a[:3]
return q
def quaternion_from_compact_axis_angle(a):
"""Compute quaternion from compact axis-angle (exponential map).
We usually assume active rotations.
Parameters
----------
a : array-like, shape (4,)
Axis of rotation and rotation angle: angle * (x, y, z)
Returns
-------
q : array-like, shape (4,)
Unit quaternion to represent rotation: (w, x, y, z)
"""
a = axis_angle_from_compact_axis_angle(a)
return quaternion_from_axis_angle(a)
def quaternion_xyzw_from_wxyz(q_wxyz):
"""Converts from w, x, y, z to x, y, z, w convention.
Parameters
----------
q_wxyz : array-like, shape (4,)
Quaternion with scalar part before vector part
Returns
-------
q_xyzw : array-like, shape (4,)
Quaternion with scalar part after vector part
"""
q_wxyz = check_quaternion(q_wxyz)
return np.array([q_wxyz[1], q_wxyz[2], q_wxyz[3], q_wxyz[0]])
def quaternion_wxyz_from_xyzw(q_xyzw):
"""Converts from x, y, z, w to w, x, y, z convention.
Parameters
----------
q_xyzw : array-like, shape (4,)
Quaternion with scalar part after vector part
Returns
-------
q_wxyz : array-like, shape (4,)
Quaternion with scalar part before vector part
"""
q_xyzw = check_quaternion(q_xyzw)
return np.array([q_xyzw[3], q_xyzw[0], q_xyzw[1], q_xyzw[2]])
def quaternion_integrate(Qd, q0=np.array([1.0, 0.0, 0.0, 0.0]), dt=1.0):
"""Integrate angular velocities to quaternions.
Parameters
----------
A : array-like, shape (n_steps, 3)
Angular velocities in a compact axis-angle representation. Each angular
velocity represents the rotational offset after one unit of time.
q0 : array-like, shape (4,), optional (default: [1, 0, 0, 0])
Unit quaternion to represent initial rotation: (w, x, y, z)
dt : float, optional (default: 1)
Time interval between steps.
Returns
-------
Q : array-like, shape (n_steps, 4)
Quaternions to represent rotations: (w, x, y, z)
"""
Q = np.empty((len(Qd), 4))
Q[0] = q0
for t in range(1, len(Qd)):
qd = (Qd[t] + Qd[t - 1]) / 2.0
Q[t] = concatenate_quaternions(
quaternion_from_compact_axis_angle(dt * qd), Q[t - 1])
return Q
def quaternion_gradient(Q, dt=1.0):
"""Time-derivatives of a sequence of quaternions.
Note that this function does not provide the exact same functionality for
quaternions as [NumPy's gradient
function](https://numpy.org/doc/stable/reference/generated/numpy.gradient.html)
for positions. Gradients are always computed as central differences except
the first and last gradient. We additionally accept a parameter dt that
defines the time interval between each quaternion. Note that this means
that we expect this to be constant for the whole sequence.
Parameters
----------
Q : array-like, shape (n_steps, 4)
Quaternions to represent rotations: (w, x, y, z)
dt : float, optional (default: 1)
Time interval between steps. If you have non-constant dt, you can pass
1 and manually divide angular velocities by their corresponding time
interval afterwards.
Returns
-------
A : array-like, shape (n_steps, 3)
Angular velocities in a compact axis-angle representation. Each angular
velocity represents the rotational offset after one unit of time.
"""
Q = check_quaternions(Q)
Qd = np.empty((len(Q), 3))
Qd[0] = compact_axis_angle_from_quaternion(
concatenate_quaternions(Q[1], q_conj(Q[0]))) / dt
for t in range(1, len(Q) - 1):
# divided by two because of central differences
Qd[t] = compact_axis_angle_from_quaternion(
concatenate_quaternions(Q[t + 1], q_conj(Q[t - 1]))) / (2.0 * dt)
Qd[-1] = compact_axis_angle_from_quaternion(
concatenate_quaternions(Q[-1], q_conj(Q[-2]))) / dt
return Qd
def concatenate_quaternions(q1, q2):
"""Concatenate two quaternions.
We use Hamilton's quaternion multiplication.
Suppose we want to apply two extrinsic rotations given by quaternions
q1 and q2 to a vector v. We can either apply q2 to v and then q1 to
the result or we can concatenate q1 and q2 and apply the result to v.
Parameters
----------
q1 : array-like, shape (4,)
First quaternion
q2 : array-like, shape (4,)
Second quaternion
Returns
-------
q12 : array-like, shape (4,)
Quaternion that represents the concatenated rotation q1 * q2
"""
q1 = check_quaternion(q1, unit=False)
q2 = check_quaternion(q2, unit=False)
q12 = np.empty(4)
q12[0] = q1[0] * q2[0] - | np.dot(q1[1:], q2[1:]) | numpy.dot |
from __future__ import annotations
import os
import numpy as np
import pytest
import xarray as xr
from xclim.testing import open_dataset
try:
import clisops.core.subset as subset
import geopandas as gpd
except ImportError:
subset = False
gpd = False
pytestmark = pytest.mark.slow
TESTS_HOME = os.path.abspath(os.path.dirname(__file__))
TESTS_DATA = os.path.join(TESTS_HOME, "data")
class TestSubsetRaises:
@pytest.mark.skipif(
subset is False, reason="`clisops` subset utilities are not installed."
)
def test_raises_deprecation_warning(self):
with pytest.deprecated_call():
from xclim import subset
assert subset.__doc__
@pytest.mark.skipif(
hasattr(subset, "__all__"), reason="Necessary dependencies are installed."
)
def test_raise_import_error(self):
with pytest.raises(ImportError):
from xclim import subset
assert subset.__doc__
@pytest.mark.skipif(
subset is False, reason="`clisops` subset utilities are not installed."
)
class TestSubsetTime:
nc_poslons = os.path.join("cmip3", "tas.sresb1.giss_model_e_r.run1.atm.da.nc")
def test_simple(self):
da = open_dataset(self.nc_poslons).tas
yr_st = "2050"
yr_ed = "2059"
out = subset.subset_time(da, start_date=yr_st, end_date=yr_ed)
out1 = subset.subset_time(da, start_date=f"{yr_st}-01", end_date=f"{yr_ed}-12")
out2 = subset.subset_time(
da, start_date=f"{yr_st}-01-01", end_date=f"{yr_ed}-12-31"
)
np.testing.assert_array_equal(out, out1)
np.testing.assert_array_equal(out, out2)
np.testing.assert_array_equal(len( | np.unique(out.time.dt.year) | numpy.unique |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.