prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
''' Basic models for decomposing large-scale stacked profiles ''' import numpy as np from astropy.modeling import models, fitting from scipy.interpolate import InterpolatedUnivariateSpline from scipy.special import erf from scipy.optimize import curve_fit from functools import partial from astropy.convolution import convolve from .spectral_fitting import gauss_model_discrete def fit_2gaussian(vels, spectrum): ''' Fit a 2 Gaussian model with the means tied. .. todo:: Allow passing sigma for weighting in the fit. ''' max_vel = vels[np.argmax(spectrum)] specmax = spectrum.max() # Estimate the inner width from the HWHM sigma_est = find_hwhm(vels, spectrum)[0] # Use this as the narrow estimate, and let the wide guess be 3x g_HI_init = models.Gaussian1D(amplitude=0.75 * specmax, mean=max_vel, stddev=sigma_est) + \ models.Gaussian1D(amplitude=0.25 * specmax, mean=max_vel, stddev=3 * sigma_est) # Force to the same mean def tie_mean(mod): return mod.mean_0 g_HI_init.mean_1.tied = tie_mean fit_g = fitting.LevMarLSQFitter() g_HI = fit_g(g_HI_init, vels, spectrum) # The covariance matrix is hidden away... tricksy cov = fit_g.fit_info['param_cov'] parnames = [n for n in g_HI.param_names if n not in ['mean_1']] parvals = [v for (n, v) in zip(g_HI.param_names, g_HI.parameters) if n in parnames] if cov is not None: chan_width = np.diff(vels[:2])[0] parerrs = [] for name, var in zip(parnames, np.diag(cov)): if "mean" in name or "stddev" in name: # Add the finite channel width in quadrature stderr = np.sqrt(var + (0.5 * chan_width)**2) else: stderr = np.sqrt(var) parerrs.append(stderr) else: parerrs = [np.NaN] * len(parnames) return parvals, parerrs, cov, parnames, g_HI def fit_gaussian(vels, spectrum, p0=None, sigma=None, use_discrete=False, kernel=None, add_chan_width_err=True): ''' Fit a Gaussian model. Parameters ---------- sigma : `~astropy.units.Quantity`, optional Pass a single value to be used for all points or an array of values equal to the size of vels and spectrum. These are used to define weights in the fit, and the weights as defined as 1 / sigma, as is used in `~scipy.optimize.curve_fit`. ''' if hasattr(vels, 'unit'): vel_unit = vels.unit else: vel_unit = 1. if hasattr(vels, 'unit'): spec_unit = spectrum.unit else: spec_unit = 1. if p0 is None: max_vel = vels[np.argmax(spectrum)] specmax = spectrum.max() # Estimate the inner width from the HWHM sigma_est = find_hwhm(vels, spectrum)[0] p0 = (specmax.value, max_vel.value, sigma_est) else: specmax, max_vel, sigma_est = p0 if sigma is not None: if hasattr(sigma, 'size'): if sigma.size > 1: if sigma.size != vels.size: raise ValueError("sigma must match the data shape when " "multiple values are given.") weights = 1 / np.abs(sigma.value) else: # A quantity will still have a `size` attribute with one # element weights = 1 / np.array([np.abs(sigma.value)] * len(vels)) else: weights = 1 / np.array([np.abs(sigma)] * len(vels)) else: weights = None # Use this as the narrow estimate, and let the wide guess be 3x g_init = models.Gaussian1D(amplitude=specmax, mean=max_vel, stddev=sigma_est) if use_discrete: # Don't use the astropy fitting for the discrete model # Though the astropy fitter is using something quite similar # to this, anyways. if kernel is not None: def spectral_model(vels, amp, mean, stddev): model = gauss_model_discrete(vels, amp=amp, stddev=stddev, mean=mean) return convolve(model, kernel) else: def spectral_model(vels, amp, mean, stddev): return gauss_model_discrete(vels, amp=amp, stddev=stddev, mean=mean) out = curve_fit(spectral_model, vels, spectrum, p0=p0, sigma=sigma * np.ones_like(vels), absolute_sigma=True, maxfev=100000) g_fit = models.Gaussian1D(amplitude=out[0][0] * spec_unit, mean=out[0][1] * vel_unit, stddev=out[0][2] * vel_unit) cov = out[1] parerrs = np.sqrt(np.diag(out[1])) else: fit_g = fitting.LevMarLSQFitter() g_fit = fit_g(g_init, vels, spectrum, weights=weights) # The covariance matrix is hidden away... tricksy cov = fit_g.fit_info['param_cov'] if cov is None: cov = np.zeros((3, 3)) * np.NaN parnames = g_fit.param_names parvals = g_fit.parameters if cov is not None: chan_width = np.diff(vels[:2])[0].value parerrs = [] for name, var, val in zip(parnames, np.diag(cov), parvals): # print(name, var, val) if "mean" in name or "stddev" in name and add_chan_width_err: # Add the finite channel width in quadrature # print(var, chan_width) # print(np.diag(cov)) stderr = np.sqrt(var + (0.35 * chan_width)**2) else: stderr = np.sqrt(var) parerrs.append(stderr) else: parerrs = [np.NaN] * len(parnames) # Sometimes the width is negative parvals[-1] =
np.abs(parvals[-1])
numpy.abs
import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import numpy as np import sys sys.path.append('/home/groups/ZuckermanLab/copperma/cell/celltraj') import celltraj import h5py import pickle import os import subprocess import time sys.path.append('/home/groups/ZuckermanLab/copperma/msmWE/BayesianBootstrap') import bootstrap import umap import pyemma.coordinates as coor import scipy modelList=['PBS_17nov20','EGF_17nov20','HGF_17nov20','OSM_17nov20','BMP2_17nov20','IFNG_17nov20','TGFB_17nov20'] nmodels=len(modelList) modelSet=[None]*nmodels for i in range(nmodels): modelName=modelList[i] objFile=modelName+'_coords.obj' objFileHandler=open(objFile,'rb') modelSet[i]=pickle.load(objFileHandler) objFileHandler.close() wctm=celltraj.cellTraj() fileSpecifier='/home/groups/ZuckermanLab/copperma/cell/live_cell/mcf10a/batch_17nov20/*_17nov20.h5' print('initializing...') wctm.initialize(fileSpecifier,modelName) nfeat=modelSet[0].Xf.shape[1] Xf=np.zeros((0,nfeat)) indtreatment=np.array([]) indcellSet=np.array([]) for i in range(nmodels): Xf=np.append(Xf,modelSet[i].Xf,axis=0) indtreatment=np.append(indtreatment,i*np.ones(modelSet[i].Xf.shape[0])) indcellSet=np.append(indcellSet,modelSet[i].cells_indSet) indtreatment=indtreatment.astype(int) indcellSet=indcellSet.astype(int) Xpca,pca=wctm.get_pca_fromdata(Xf,var_cutoff=.9) wctm.Xpca=Xpca wctm.pca=pca for i in range(nmodels): indsf=np.where(indtreatment==i)[0] modelSet[i].Xpca=Xpca[indsf,:] all_trajSet=[None]*nmodels for i in range(nmodels): modelSet[i].get_unique_trajectories() all_trajSet[i]=modelSet[i].trajectories.copy() self=wctm for trajl in [8]: #,2,3,4,5,6,7,8,9,10,12,14,16,18,20,25,30,26]: wctm.trajl=trajl Xpcat=np.zeros((0,pca.ndim*trajl)) indtreatment_traj=np.array([]) indstack_traj=np.array([]) indframes_traj=np.array([]) cellinds0_traj=np.array([]) cellinds1_traj=np.array([]) for i in range(nmodels): modelSet[i].trajectories=all_trajSet[i].copy() modelSet[i].trajl=trajl modelSet[i].traj=modelSet[i].get_traj_segments(trajl) data=modelSet[i].Xpca[modelSet[i].traj,:] data=data.reshape(modelSet[i].traj.shape[0],modelSet[i].Xpca.shape[1]*trajl) Xpcat=np.append(Xpcat,data,axis=0) indtreatment_traj=np.append(indtreatment_traj,i*np.ones(data.shape[0])) indstacks=modelSet[i].cells_imgfileSet[modelSet[i].traj[:,0]] indstack_traj=np.append(indstack_traj,indstacks) indframes=modelSet[i].cells_frameSet[modelSet[i].traj[:,0]] indframes_traj=np.append(indframes_traj,indframes) cellinds0=modelSet[i].traj[:,0] cellinds0_traj=np.append(cellinds0_traj,cellinds0) cellinds1=modelSet[i].traj[:,-1] cellinds1_traj=np.append(cellinds1_traj,cellinds1) cellinds0_traj=cellinds0_traj.astype(int) cellinds1_traj=cellinds1_traj.astype(int) for neigen in [2]: #[1,2,3,4,5]: reducer=umap.UMAP(n_neighbors=200,min_dist=0.1, n_components=neigen, metric='euclidean') trans = reducer.fit(Xpcat) x=trans.embedding_ indst=np.arange(x.shape[0]).astype(int) wctm.Xtraj=x.copy() wctm.indst=indst.copy() indconds=np.array([[0,1],[2,3],[4,5]]).astype(int) ncond=3 fl=12 fu=96 nbinstotal=15.*15. indstw=np.where(np.logical_and(indframes_traj[indst]<fu,indframes_traj[indst]>fl))[0] probSet=[None]*nmodels avoverlapSet=np.zeros(ncond) prob1,edges=np.histogramdd(x[indstw,:],bins=int(np.ceil(nbinstotal**(1./neigen))),density=True) for icond in range(ncond): imf1=indconds[icond,0] imf2=indconds[icond,1] inds_imf1=np.where(indstack_traj==imf1)[0] inds_imf2=np.where(indstack_traj==imf2)[0] inds_cond=np.append(inds_imf1,inds_imf2) for imf in range(nmodels): indstm=np.where(indtreatment_traj==imf)[0] indstm_cond=np.intersect1d(indstm,inds_cond) xt=x[indstm_cond,0:neigen] indg=np.where(np.logical_not(np.logical_or(np.isnan(xt[:,0]),np.isinf(xt[:,0]))))[0] xt=xt[indg] prob,edges2=np.histogramdd(xt,bins=edges,density=True) #for d=1 prob=prob/np.sum(prob) probSet[imf]=prob.copy() poverlapMatrix=np.zeros((nmodels,nmodels)) for i in range(nmodels): for j in range(nmodels): probmin=np.minimum(probSet[i],probSet[j]) poverlapMatrix[i,j]=np.sum(probmin) avoverlapSet[icond]=np.mean(poverlapMatrix[np.triu_indices(nmodels,1)]) sys.stdout.write('avoverlap: '+str(avoverlapSet[0])+' '+str(avoverlapSet[1])+' '+str(avoverlapSet[2])+'\n') #np.savetxt('avoverlapSet_UMAP_trajl'+str(trajl)+'_ndim'+str(neigen)+'_19feb21.dat',avoverlapSet) for i in range(nmodels): modelSet[i].trajectories=all_trajSet[i].copy() indconds=np.array([[0,1],[2,3],[4,5]]).astype(int) ncond=3 probSet=[None]*nmodels sigdxSet=np.zeros(ncond) sigxSet=np.zeros(ncond) dxSet=np.zeros(ncond) x0=np.zeros((0,neigen)) x1=np.zeros((0,neigen)) for icond in range(ncond): imf1=indconds[icond,0] imf2=indconds[icond,1] inds_imf1=np.where(indstack_traj==imf1)[0] inds_imf2=np.where(indstack_traj==imf2)[0] inds_cond=np.append(inds_imf1,inds_imf2) for imf in range(nmodels): indstm=np.where(indtreatment_traj==imf)[0] indstm_cond=np.intersect1d(indstm,inds_cond) modelSet[imf].Xtraj=x[indstm,0:neigen] indstm_cond_model=indstm_cond-np.min(indstm) #index in model modelSet[imf].get_trajectory_steps(inds=None,get_trajectories=False,traj=modelSet[imf].traj[indstm_cond_model,:],Xtraj=modelSet[imf].Xtraj[indstm_cond_model,:]) x0=np.append(x0,modelSet[imf].Xtraj0,axis=0) x1=np.append(x1,modelSet[imf].Xtraj1,axis=0) g0=np.logical_not(np.logical_or(np.isnan(x0[:,0]),np.isinf(x0[:,0]))) g1=np.logical_not(np.logical_or(np.isnan(x1[:,0]),np.isinf(x1[:,0]))) indg=np.where(np.logical_and(g0,g1))[0] x0=x0[indg,:] x1=x1[indg,:] avdx=np.median(x1-x0,axis=0) avdxsq=np.median(np.power(x1-x0,2),axis=0) sigdx=np.sqrt(np.sum(avdxsq-np.power(avdx,2))) avx=np.mean(x0,axis=0) avxsq=np.mean(np.power(x0-avx,2),axis=0) sigx=np.sqrt(np.sum(avxsq)) sys.stdout.write('sigx: '+str(sigx)+' sigdx: '+str(sigdx)+'\n') dxSet[icond]=sigdx/sigx #np.sum(dxcorr[0:4]) #np.mean(dr[inds_xr]) sigxSet[icond]=sigx sigdxSet[icond]=sigdx sys.stdout.write('dx ratio: '+str(dxSet[0])+' '+str(dxSet[1])+' '+str(dxSet[2])+'\n') #np.savetxt('dxratioSet_UMAP_trajl'+str(trajl)+'_ndim'+str(neigen)+'_19feb21.dat',dxSet) fl=12 fu=96 #frames for time window indstw=np.where(np.logical_and(indframes_traj<fu,indframes_traj>fl))[0] inds_imft=np.array([]) for imf in range(5): inds_imft=np.append(inds_imft,np.where(indstack_traj==imf)[0]) for i in range(nmodels): modelSet[i].trajectories=all_trajSet[i].copy() inds_imft=inds_imft.astype(int) inds_imfv=np.where(indstack_traj==5)[0] inds_test=np.intersect1d(indstw,inds_imft) inds_val=np.intersect1d(indstw,inds_imfv) for n_clusters in [10,50,100,200]: wctm.cluster_trajectories(n_clusters,x=x) entpSet=np.zeros(nmodels) for i in range(nmodels): indstm=np.where(indtreatment_traj==i)[0] modelSet[i].Xtraj=x[indstm,0:neigen] indstm_test=np.intersect1d(indstm,inds_test) indstm_test_model=indstm_test-np.min(indstm) #index in model modelSet[i].get_trajectory_steps(inds=None,get_trajectories=False,traj=modelSet[i].traj[indstm_test_model,:],Xtraj=modelSet[i].Xtraj[indstm_test_model,:]) x0=modelSet[i].Xtraj0 x1=modelSet[i].Xtraj1 wctm.get_transition_matrix(x0,x1) indstm_val=np.intersect1d(indstm,inds_val) indstm_val_model=indstm_val-np.min(indstm) #index in model modelSet[i].get_trajectory_steps(inds=None,get_trajectories=False,traj=modelSet[i].traj[indstm_val_model,:],Xtraj=modelSet[i].Xtraj[indstm_val_model,:]) x0v=modelSet[i].Xtraj0 x1v=modelSet[i].Xtraj1 entp=wctm.get_path_entropy_2point(x0v,x1v,exclude_stays=True) entpSet[i]=entp sys.stdout.write('mean entp across treatments: '+str(np.mean(entpSet))+'\n') #np.savetxt('entpSet_UMAP_trajl'+str(trajl)+'_ndim'+str(neigen)+'_nc'+str(n_clusters)+'_19feb21.dat',entpSet) for i in range(nmodels): modelSet[i].trajectories=all_trajSet[i].copy() dlfkj import scipy knn=200 dxSet=np.zeros((nmodels,n_clusters)) nt=5 xbins=np.arange(nt)*.5 xbins_spl=np.linspace(xbins[0],xbins[-1],100) clusters=wctm.clusterst for i in range(nmodels): for iclust in range(n_clusters): xc=np.array([clusters.clustercenters[iclust,:]]) dmatr=wctm.get_dmat(modelSet[i].Xtraj,xc) #get closest cells to cluster center indr=np.argsort(dmatr[:,0]) indr=indr[0:knn] cellindsr=modelSet[i].traj[indr,-1] modelSet[i].get_unique_trajectories(cell_inds=cellindsr) try: dxcorr=modelSet[i].get_dx_tcf(trajectories=modelSet[i].trajectories) except: dxcorr=np.ones(nt)*np.nan if dxcorr.size<nt: dxcorr_r=np.ones(nt)*np.nan dxcorr_r[0:dxcorr.size]=dxcorr dxcorr=dxcorr_r spl=scipy.interpolate.interp1d(xbins,dxcorr[0:nt]) dxcorr_spl=spl(xbins_spl) dxSet[i,iclust]=np.trapz(dxcorr_spl/dxcorr_spl[0],x=xbins_spl) #np.sum(dxcorr[0:4]) #np.mean(dr[inds_xr]) #stdxSet[iclust,icond]=np.std(dr[inds_xr]) plt.figure(figsize=(7,12)) nbins=10 plt.subplot(4,2,1) vdist1,xedges1,yedges1=np.histogram2d(clusters.clustercenters[:,0],clusters.clustercenters[:,1],bins=nbins,weights=np.mean(dxSet,axis=0)) norm1,xedges1,yedges1=np.histogram2d(clusters.clustercenters[:,0],clusters.clustercenters[:,1],bins=[xedges1,yedges1]) vdist1=np.divide(vdist1,norm1) indnan=np.where(np.isnan(vdist1)) indgood=np.where(np.logical_not(np.isnan(vdist1))) xedges1c=.5*(xedges1[1:]+xedges1[0:-1]) yedges1c=.5*(yedges1[1:]+yedges1[0:-1]) xx,yy=np.meshgrid(xedges1c,yedges1c) #levels=np.linspace(np.min(vdist1[indgood]),np.max(vdist1[indgood]),20) levels=np.linspace(.1,.55,20) plt.contourf(xx,yy,vdist1.T,cmap=plt.cm.jet,levels=levels) cbar=plt.colorbar() cbar.set_label('repolarization time (hrs)') plt.title('average') plt.pause(.1) plt.axis('off') for i in range(nmodels): plt.subplot(4,2,i+2) vdist1,xedges1,yedges1=np.histogram2d(clusters.clustercenters[:,0],clusters.clustercenters[:,1],bins=nbins,weights=dxSet[i,:]) norm1,xedges1,yedges1=np.histogram2d(clusters.clustercenters[:,0],clusters.clustercenters[:,1],bins=[xedges1,yedges1]) vdist1=np.divide(vdist1,norm1) indnan=np.where(np.isnan(vdist1)) indgood=np.where(np.logical_not(np.isnan(vdist1))) xedges1c=.5*(xedges1[1:]+xedges1[0:-1]) yedges1c=.5*(yedges1[1:]+yedges1[0:-1]) xx,yy=np.meshgrid(xedges1c,yedges1c) plt.contourf(xx,yy,vdist1.T,cmap=plt.cm.jet,levels=levels) #plt.xlabel('UMAP 1') #plt.ylabel('UMAP 2') plt.axis('off') plt.title(tmSet[i]) plt.pause(.1) plt.savefig('mcf10a_repolarization_24feb21.png') knn=50 n_clusters=200 wctm.cluster_trajectories(n_clusters,x=x) clusters=wctm.clusterst dxs=np.zeros((nmodels,n_clusters,2)) for i in range(nmodels): indstm=np.where(indtreatment_traj==i)[0] modelSet[i].Xtraj=x[indstm,0:neigen] indstm_model=indstm-np.min(indstm) #index in model modelSet[i].get_trajectory_steps(inds=None,get_trajectories=False,traj=modelSet[i].traj[indstm_model,:],Xtraj=modelSet[i].Xtraj[indstm_model,:]) x0=modelSet[i].Xtraj0 x1=modelSet[i].Xtraj1 dx=x1-x0 for iclust in range(n_clusters): xc=np.array([clusters.clustercenters[iclust,:]]) dmatr=wctm.get_dmat(modelSet[i].Xtraj[modelSet[i].inds_trajp1[:,-1],:],xc) #get closest cells to cluster center indr=np.argsort(dmatr[:,0]) indr=indr[0:knn] cellindsr=modelSet[i].traj[[modelSet[i].inds_trajp1[indr,-1]],-1] dxs[i,iclust,:]=np.mean(dx[indr,:],axis=0) tmSet=['PBS','EGF','HGF','OSM','BMP2','IFNG','TGFB'] nbins=15 fl=12 fu=96 #frames for time window indstw=np.where(np.logical_and(indframes_traj[indst]<fu,indframes_traj[indst]>fl))[0] probSet=[None]*nmodels plt.subplot(4,2,1) prob1,xedges1,yedges1=np.histogram2d(x[indstw,0],x[indstw,1],bins=nbins,density=True) xx,yy=np.meshgrid(xedges1[1:],yedges1[1:]) #prob1=prob1/np.sum(prob1) #levels=np.linspace(0,.09,100) levels=np.linspace(0,np.max(prob1),100) #levels=np.append(levels,1.) cs=plt.contourf(xx,yy,prob1.T,levels=levels,cmap=plt.cm.jet) #plt.clim(0,0.03) cs.cmap.set_over('darkred') cbar1=plt.colorbar() cbar1.set_label('prob density') plt.title('combined') plt.axis('off') for imf in range(nmodels): tm=modelList[imf][0:4] indstm=np.where(indtreatment_traj==imf)[0] indstwm=np.intersect1d(indstm,indstw) prob,xedges2,yedges2=np.histogram2d(x[indstwm,0],x[indstwm,1],bins=[xedges1,yedges1],density=True) #prob=prob/np.sum(prob) probSet[imf]=prob.copy() plt.subplot(4,2,imf+2) #levels=np.linspace(0,np.max(prob),100) cs=plt.contourf(xx,yy,prob.T,levels=levels,cmap=plt.cm.jet,extend='both') #plt.clim(0,0.03) cs.cmap.set_over('darkred') plt.axis('off') plt.pause(.1) dxsav=np.mean(dxs,axis=0) plt.subplot(4,2,1) plt.title('average') plt.axis('off') for ic in range(n_clusters): ax=plt.gca() ax.arrow(clusters.clustercenters[ic,0],clusters.clustercenters[ic,1],dxsav[ic,0],dxsav[ic,1],head_width=.1,linewidth=.5,color='white',alpha=1.0) for i in range(nmodels): plt.subplot(4,2,i+2) ax=plt.gca() for ic in range(n_clusters): ax.arrow(clusters.clustercenters[ic,0],clusters.clustercenters[ic,1],dxs[i,ic,0],dxs[i,ic,1],head_width=.1,linewidth=.5,color='white',alpha=1.0) #plt.xlabel('UMAP 1') #plt.ylabel('UMAP 2') plt.axis('off') #plt.title(tmSet[i]) plt.pause(.1) plt.savefig('mcf10a_prob_flows_24feb21.png') plt.figure(figsize=(8,6)) nbins=15 fl=12 fu=96 #frames for time window indstw=np.where(np.logical_and(indframes_traj[indst]<fu,indframes_traj[indst]>fl))[0] probSet=[None]*nmodels prob1,xedges1,yedges1=np.histogram2d(x[indstw,0],x[indstw,1],bins=nbins,density=True) xx,yy=np.meshgrid(xedges1[1:],yedges1[1:]) levels=np.linspace(0,np.max(prob1),100) for imf in range(nmodels): indstm=np.where(indtreatment_traj==imf)[0] indstwm=np.intersect1d(indstm,indstw) prob,xedges2,yedges2=np.histogram2d(x[indstwm,0],x[indstwm,1],bins=[xedges1,yedges1],density=True) cs=plt.contourf(xx,yy,prob.T,levels=levels,cmap=plt.cm.jet,extend='both') #plt.clim(0,0.03) cs.cmap.set_over('darkred') #cbar1=plt.colorbar() #cbar1.set_label('prob density') plt.axis('off') plt.pause(.1) ax=plt.gca() for ic in range(n_clusters): ax.arrow(clusters.clustercenters[ic,0],clusters.clustercenters[ic,1],dxs[imf,ic,0],dxs[imf,ic,1],head_width=.1,linewidth=.5,color='white',alpha=1.0) plt.pause(1) plt.savefig(tmSet[imf]+'_probflows_tl8_2mar21.png') plt.clf() #plot with flows and trajectories nbins=15 fl=12 fu=96 #frames for time window indstw=np.where(np.logical_and(indframes_traj[indst]<fu,indframes_traj[indst]>fl))[0] probSet=[None]*nmodels prob1,xedges1,yedges1=np.histogram2d(x[indstw,0],x[indstw,1],bins=nbins,density=True) xx,yy=np.meshgrid(xedges1[1:],yedges1[1:]) levels=np.linspace(0,np.max(prob1),100) nt=10 minl=24 ctrajSet=[48523,23315,48696,32932,18054,41460,20248] for imf in [4]: #range(nmodels-1,-1,-1): modelSet[imf].visual=True indstm=np.where(indtreatment_traj==imf)[0] indstwm=np.intersect1d(indstm,indstw) traj_lengths=np.array([]) for itraj in range(len(modelSet[imf].trajectories)): traj_lengths=np.append(traj_lengths,modelSet[imf].trajectories[itraj].size) indtrajs=np.where(traj_lengths>=minl)[0] #indr=np.random.choice(indtrajs.size,nt,replace=False) indr=np.arange(indtrajs.size-1,-1,-1).astype(int) for itrajr in indr: cell_traj=modelSet[imf].trajectories[indtrajs[itrajr]] if cell_traj[-1]==ctrajSet[imf]: plt.figure(figsize=(8,6)) xt,inds_traj=get_Xtraj_celltrajectory(modelSet[imf],cell_traj,Xtraj=None,traj=None) prob,xedges2,yedges2=np.histogram2d(x[indstwm,0],x[indstwm,1],bins=[xedges1,yedges1],density=True) cs=plt.contourf(xx,yy,prob.T,levels=levels,cmap=plt.cm.Greys,extend='both') #plt.clim(0,0.03) cs.cmap.set_over('black') #cbar1=plt.colorbar() #cbar1.set_label('prob density') plt.axis('off') ax=plt.gca() for ic in range(n_clusters): ax.arrow(clusters.clustercenters[ic,0],clusters.clustercenters[ic,1],dxs[imf,ic,0],dxs[imf,ic,1],head_width=.1,linewidth=.5,color='goldenrod',alpha=1.0) #.2,.75 for itt in range(xt.shape[0]-1): t=modelSet[imf].cells_frameSet[cell_traj[itt+trajl-1]]*.5 ax.arrow(xt[itt,0],xt[itt,1],xt[itt+1,0]-xt[itt,0],xt[itt+1,1]-xt[itt,1],head_width=.2,linewidth=1.0,color=plt.cm.winter(1.*itt/xt.shape[0]),alpha=1.0) #.4,1.5 t0=modelSet[imf].cells_frameSet[cell_traj[0]]*.5 tf=modelSet[imf].cells_frameSet[cell_traj[-1]]*.5 plt.title('t0='+str(t0)+' tf='+str(tf)) plt.pause(1) plt.savefig(tmSet[imf]+'_probflows_tl8_c'+str(cell_traj[-1])+'_4mar21.png') plt.close() show_cells(modelSet[imf],cell_traj) plt.savefig(tmSet[imf]+'_celltraj_tl8_c'+str(cell_traj[-1])+'_4mar21.png') plt.close() def get_Xtraj_celltrajectory(self,cell_traj,Xtraj=None,traj=None): #traj and if traj is None: traj=self.traj if Xtraj is None: x=self.Xtraj else: x=Xtraj ntraj=cell_traj.size neigen=x.shape[1] xt=np.zeros((0,neigen)) inds_traj=np.array([]) for itraj in range(ntraj-self.trajl): test=cell_traj[itraj:itraj+trajl] res = (traj[:, None] == test[np.newaxis,:]).all(-1).any(-1) if np.sum(res)==1: indt=np.where(res)[0][0] xt=np.append(xt,np.array([x[indt,:]]),axis=0) inds_traj=np.append(inds_traj,indt) return xt,inds_traj.astype(int) def show_cells(self,cell_inds,show_segs=False): if self.visual: ncells=cell_inds.size nb=int(np.ceil(np.sqrt(ncells))) fig, ax = plt.subplots(nrows=nb, ncols=nb, figsize=(12, 16), sharex='all', sharey='all') #plt.figure(figsize=(12,16)) #fig,ax=plt.subplots(nrows=nb,ncols=2,sharex='all',sharey='all') inds=np.arange(nb*nb).astype(int) inds2d=np.unravel_index(inds,(nb,nb)) inds2d1b=inds2d[1].reshape(nb,nb) for ir in range(1,nb,2): inds2d1b[ir]=np.flip(inds2d1b[ir]) inds2d=(inds2d[0],inds2d1b.flatten()) for ic in range(nb*nb): if ic<ncells: self.get_cellborder_images(indcells=np.array([cell_inds[ic]]),bordersize=40) imgcell=self.cellborder_imgs[0] mskcell=self.cellborder_msks[0] fmskcell=self.cellborder_fmsks[0] ccborder,csborder=self.get_cc_cs_border(mskcell,fmskcell) img_fg=ax[inds2d[0][ic],inds2d[1][ic]].imshow(np.ma.masked_where(fmskcell == 0, imgcell),cmap=plt.cm.seismic,clim=(-10,10),alpha=1.0) img_bg=ax[inds2d[0][ic],inds2d[1][ic]].imshow(
np.ma.masked_where(fmskcell == 1, imgcell)
numpy.ma.masked_where
import numpy as np import cvxpy as cp import numba from imhist import imhist def imhblpce(image): [h, w] = image.shape hist_image = imhist(image) PMFx = hist_image / (h*w) # CDFx = np.cumsum(PMFx) r = (PMFx>0) * np.arange(1, 257) r = r[r>0] r_inv = np.where(PMFx==0, PMFx, np.ones_like(PMFx)) r_inv = np.where(PMFx==0, r_inv, np.cumsum(r_inv)).astype(np.int) # K = len(r) N = len(r) # making W #sigma sigma = 20 # Creating Q(W, P) W = _Creating_W(r, sigma) P = _Creatng_P(PMFx, sigma, N) # Q is the H in the quadprog equation : minimum( 0.5 * y'*H*y ) Q = P * W y = _solve_quadratic_problem(Q, N) # x = D\y # D = np.diag(np.ones((N-1))) + np.diag(-np.ones((N-2)),k=-1) D_inv = np.tril(np.ones((N-1, N-1)), k=0) x = np.round(np.matmul(D_inv, y)) x = np.where(x<=256, x, 256*np.ones_like(x)) x = np.where(x>=1, x, np.ones_like(x)) x =_padzero(x-1).astype(np.uint8) img_out = _map_image(image, r_inv, x) # img_out = _map_image(image, r, x) return img_out @numba.njit() def _map_image(image, r_inv, x): output = image.copy().reshape(-1) for i in range(output.size): pixel_intensity = output[i] output[i] = x[r_inv[pixel_intensity]-1] return output.copy().reshape((image.shape)) # def _map_image(image, r, x): # img_out = image.copy() # N = len(r) # for i in range(N): # indx = N-i-1 # img_out[np.where(image==r[indx]-1)] = x[indx] # return img_out def _padzero(arr): padded_arr = np.zeros((arr.size+1), dtype=arr.dtype) padded_arr[1:] = arr.copy().reshape(-1) return padded_arr def _solve_quadratic_problem(Q, N): # 1/2 y.T Q y # Gx ≤ h, Ax = b N = Q.shape[0] + 1 A = np.ones((1, N-1), dtype=np.float64) b = np.array([256.], dtype=np.float64) lb = np.zeros((N-1), dtype=np.float64) ub = np.ones((N-1), dtype=np.float64) * 255 y = cp.Variable(N-1) constraints = [y >= lb, y <= ub, A @ y == b] prob = cp.Problem( cp.Minimize(cp.quad_form(y, Q)), constraints=constraints ) prob.solve() return np.array(y.value) def _Creating_W(r, sigma): N = len(r) # r = np.insert(r, 0, 0) # r is N r =_padzero(r) temp_1 = np.diag( np.arange(2, N+1) ) temp_2 = np.diag( np.arange(1, N) ) w_temp = np.exp(-(r[temp_1]-r[temp_2])/(2*sigma**2)) # w_temp[np.where(w_temp==1)] = 0 w_temp = np.where(w_temp!=1, w_temp, np.zeros_like(w_temp)) w_diag = w_temp**2 temp_1 = np.diag( np.arange(3, N+1) , -1) temp_2 = np.diag( np.arange(2, N) , -1) w_temp_1 = np.exp(-(r[temp_1]-r[temp_2])/(2*sigma**2)) temp_1 = np.diag( np.arange(2, N) , -1) temp_2 = np.diag( np.arange(1, N-1) , -1) w_temp_2 =
np.exp(-(r[temp_1]-r[temp_2])/(2*sigma**2))
numpy.exp
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Created on October 28, 2015 """ from __future__ import division, print_function, unicode_literals, absolute_import from PostProcessorInterfaceBaseClass import PostProcessorInterfaceBase, CheckInterfacePP import os import numpy as np from scipy import interpolate import copy from utils import InputData, InputTypes class dataObjectLabelFilter(PostProcessorInterfaceBase): """ This Post-Processor filters out the points or histories accordingly to a chosen clustering label """ @classmethod def getInputSpecification(cls): """ Method to get a reference to a class that specifies the input data for class cls. @ In, cls, the class for which we are retrieving the specification @ Out, inputSpecification, InputData.ParameterInput, class to use for specifying input of cls. """ inputSpecification = super().getInputSpecification() inputSpecification.setCheckClass(CheckInterfacePP("dataObjectLabelFilter")) DOLFDataTypeType = InputTypes.makeEnumType("DOLFDataType", "DOLFDataTypeType", ['HistorySet','PointSet']) inputSpecification.addSubSimple("dataType", DOLFDataTypeType) inputSpecification.addSubSimple("label", InputTypes.StringType) inputSpecification.addSubSimple("clusterIDs", InputTypes.IntegerListType) #Should method be in super class? inputSpecification.addSubSimple("method", contentType=InputTypes.StringType) return inputSpecification def initialize(self): """ Method to initialize the Interfaced Post-processor @ In, None, @ Out, None, """ PostProcessorInterfaceBase.initialize(self) self.inputFormat = None self.outputFormat = None self.label = None self.clusterIDs = [] def _handleInput(self, paramInput): """ Function to handle the parameter input. @ In, paramInput, ParameterInput, the already parsed input. @ Out, None """ for child in paramInput.subparts: if child.getName() == 'dataType': dataType = child.value if dataType in set(['HistorySet','PointSet']): self.inputFormat = dataType self.outputFormat = dataType else: self.raiseAnError(IOError, 'dataObjectLabelFilter Interfaced Post-Processor ' + str(self.name) + ' : dataType ' + str(dataType) + ' is not recognized (available are HistorySet, PointSet)') elif child.getName() == 'label': self.label = child.value elif child.getName() == 'clusterIDs': for clusterID in child.value: self.clusterIDs.append(clusterID) elif child.getName() !='method': self.raiseAnError(IOError, 'dataObjectLabelFilter Interfaced Post-Processor ' + str(self.name) + ' : XML node ' + str(child) + ' is not recognized') def run(self,inputDic): """ Method to post-process the dataObjects @ In, inputDic, list, list of dictionaries which contains the data inside the input DataObjects @ Out, outputDic, dictionary, output dictionary to be provided to the base class """ if len(inputDic)>1: self.raiseAnError(IOError, 'HistorySetSync Interfaced Post-Processor ' + str(self.name) + ' accepts only one dataObject') else: inputDict = inputDic[0] outputDict = {} outputDict['data'] ={} outputDict['dims'] = {} outputDict['metadata'] = copy.deepcopy(inputDict['metadata']) if 'metadata' in inputDict.keys() else {} labelType = type(inputDict['data'][self.label][0]) if labelType != np.ndarray: indexes = np.where(np.in1d(inputDict['data'][self.label],self.clusterIDs))[0] for key in inputDict['data'].keys(): outputDict['data'][key] = inputDict['data'][key][indexes] outputDict['dims'][key] = [] else: for key in inputDict['data'].keys(): if type(inputDict['data'][key][0]) == np.ndarray: temp = [] for cnt in range(len(inputDict['data'][self.label])): indexes = np.where(np.in1d(inputDict['data'][self.label][cnt],self.clusterIDs))[0] if len(indexes) > 0: temp.append(copy.deepcopy(inputDict['data'][key][cnt][indexes])) outputDict['data'][key] = np.asanyarray(temp) outputDict['dims'][key] = [] else: outputDict['data'][key] =
np.empty(0)
numpy.empty
""" This module provides a Jones matrix framework for radio interometric measurement equations. """ import copy import numpy.ma as ma import numpy as np import matplotlib.pyplot as plt from casacore.measures import measures from casacore.quanta import quantity from .conversion_utils import sph2crt, crt2sph, convertBasis, \ getSph2CartTransf, getSph2CartTransfArr, \ IAU_pol_basis, shiftmat2back, IAUtoC09, \ sphmeshgrid, dc_hrz2vrt class Jones(object): """This is the base class for Jones algebra. It contains the Jones matrix itself and a basis w.r.t. which the Jones matrix is given. The basis is such that: self.jonesbasis=array([[r_hat], [phi_hat], [theta_hat]]). """ _ecef_frame = 'ITRF' _eci_frame = 'J2000' _topo_frame = 'STN' def __init__(self): pass def op(self, jonesobjright): """Operate this Jones on to the Jones passed in the argument.""" self.jonesr = jonesobjright.getValue() self.jonesrbasis_from = jonesobjright.get_basis() self.refframe_r = jonesobjright.get_refframe() self.iaucmp = jonesobjright.iaucmp self.computeJonesRes() return self def getValue(self): """Return value of the Jones matrix""" return self.jones def get_basis(self): """Return basis of the Jones matrix""" return self.jonesbasis def get_refframe(self): """Return the reference frame of the Jones matrix.""" return self.refframe def computeJonesRes(self): pass def sph2lud3_basis(self, jonesbasis_sph, alignment=None): """Convert sph basis to Ludwig3 frame with an optional rotation alignment.""" # The jonesbasis for the antennas is taken to be the Ludwig3 def. # with r,u,v basis expressed wrt the station frame r_refframe = jonesbasis_sph[..., 0] if alignment is not None: r = np.tensordot(r_refframe, alignment, axes=([-1, 1])) else: r = r_refframe (az, el) = crt2sph(r.T) lugwig3rot = np.zeros((3, 3, len(az))) lugwig3rot[0, 0, :] = 1. lugwig3rot[1:, 1:, :] = np.array([[np.cos(az), np.sin(az)], [-np.sin(az), np.cos(az)]]) lugwig3rot = np.moveaxis(lugwig3rot, -1, 0) jonesbasis_lud3 = np.matmul(jonesbasis_sph, lugwig3rot) # ang_u = np.rad2deg( # np.arctan2(jonesbasis_lud3[:,1,1], jonesbasis_lud3[:,0,1])) # print ang_u return jonesbasis_lud3 def convert2iaucmp(self): if not self.iaucmp: self.jones = np.matmul(self.jones, IAUtoC09[1:, 1:]) self.iaucmp = True class JonesChain(object): jonesproducts = [] def __init__(self): self.jonesproducts = [] class PJones(Jones): """This is a P-Jones or parallactic Jones. This has a temporal dependence given by the epoch of observation.""" def __init__(self, obsTimespy, ITRF2stnrot, do_parallactic_rot=True): super(PJones, self).__init__() obsTimes_lst = [] for obsTimepy in obsTimespy: obsTimes_lst.append(quantity(obsTimepy.isoformat()).get_value()) obsTimes_me = quantity(obsTimes_lst, 'd') self.obsTimes = obsTimes_me.get_value() self.obsTimeUnit = obsTimes_me.get_unit() self.ITRF2stnrot = ITRF2stnrot self.do_parallactic_rot = do_parallactic_rot def computeJonesRes(self): if type(self.obsTimes) is float: self.computeJonesRes_overfield() else: self.computeJonesRes_overtime() def computeJonesRes_overtime(self): """Compute and apply the P Jones matrix. The structure is: jones[time, sphcomp, skycomp] = Pjones[time, sphcomp, comp]*jonesr[comp, skycomp] The Pjones matrix is computed as follows: consider a direction vector d. Let jonesrbasis be the column concatenation of the 3 spherical basis vectors corresponding to d in the J2000 reference frame, so jonesrbasis = [[r_J2000],[phi_J2000],[theta_J2000]].T where r_J2000 is along the direction d and theta, phi are the remaining two spherical basis vectors. Let jonesbasis be the basis vectors corresponding to the same direction d but in the STN reference frame, so jonesbasis = [[r_STN],[phi_STN],[theta_STN]].T where r_STN is along the direction d and theta, phi are the remaining two spherical basis vectors in the spherical system associated with the STN. The algorithm takes r_J2000 from component 0 of the jonesrbasis and converts it to STN (i.e. finds r_STN) using casacore measures module, along with the other 2 J2000 basis vectors. These converted vectors are called jonesrbasis_to. With r_STN, it also computes the corresponding jonesbasis. A vector in the cartesian J2000 ref sys converted to STN must be equal to the same vector expressed in the cartesian STN ref sys via a coversion from spherical, so jonesbasis * V_STN^sph = jonesrbasis_to * V_J2000^sph which implies that we can convert directly from spherical J2000 to the sppherical STN like this V_STN^sph = (jonesbasis.H * jonesrbasis_to) * V_J2000^sph where the matrix in parentheses is the P Jones matrix. The P Jones matrix is then applied to the operand Jones matrix. """ nrOfTimes = len(self.obsTimes) pjones = np.zeros((nrOfTimes, 2, 2)) me = measures() me.doframe(measures().position(self._ecef_frame, '0m', '0m', '0m')) self.jonesbasis = np.zeros((nrOfTimes, 3, 3)) if self.refframe_r == self._eci_frame: convert2irf = self._ecef_frame jonesrbasis_from = self.jonesrbasis_from jr_refframe = self.refframe_r else: convert2irf = self._eci_frame jonesrbasis_from = np.matmul(self.ITRF2stnrot.T, self.jonesrbasis_from) jr_refframe = self._ecef_frame for ti in range(0, nrOfTimes): # Set current time in reference frame timEpoch = me.epoch('UTC', quantity(self.obsTimes[ti], self.obsTimeUnit)) me.doframe(timEpoch) jonesrbasis_to = np.asmatrix(convertBasis(me, jonesrbasis_from, jr_refframe, convert2irf)) if convert2irf == self._ecef_frame: jonesrbasis_to = np.matmul(self.ITRF2stnrot, jonesrbasis_to) jonesbasisMat = getSph2CartTransf(jonesrbasis_to[:, 0]) if self.do_parallactic_rot: pjones[ti, :, :] = jonesbasisMat[:, 1:].H \ * jonesrbasis_to[:, 1:] else: pjones[ti, :, :] = np.asmatrix(np.identity(2)) self.jonesbasis[ti, :, :] = jonesbasisMat if convert2irf == self._ecef_frame: self.refframe = 'STN' # Final Ref frame is station else: self.refframe = self._eci_frame self.jones = np.matmul(pjones, self.jonesr) self.thisjones = pjones def computeJonesRes_overfield(self): """Compute the PJones over field of directions for one frequency. """ pjones = np.zeros(self.jonesrbasis_from.shape[0:-2]+(2, 2)) me = measures() me.doframe(measures().position(self._ecef_frame, '0m', '0m', '0m')) self.jonesbasis = np.zeros(self.jonesrbasis_from.shape) if self.refframe_r == self._eci_frame: convert2irf = self._ecef_frame jonesrbasis_from = self.jonesrbasis_from jr_refframe = self.refframe_r else: convert2irf = self._eci_frame jonesrbasis_from = np.matmul(self.ITRF2stnrot.T, self.jonesrbasis_from) jr_refframe = self._ecef_frame timEpoch = me.epoch('UTC', quantity(self.obsTimes, self.obsTimeUnit)) me.doframe(timEpoch) for idxi in range(self.jonesrbasis_from.shape[0]): for idxj in range(self.jonesrbasis_from.shape[1]): jonesrbasis_to = np.asmatrix(convertBasis( me, jonesrbasis_from[idxi, idxj, :, :], jr_refframe, convert2irf)) if convert2irf == self._ecef_frame: jonesrbasis_to = np.matmul(self.ITRF2stnrot, jonesrbasis_to) jonesbasisMat = getSph2CartTransf(jonesrbasis_to[..., 0]) pjones[idxi, idxj, :, :] = jonesbasisMat[:, 1:].H \ * jonesrbasis_to[:, 1:] self.jonesbasis[idxi, idxj, :, :] = jonesbasisMat if convert2irf == self._ecef_frame: self.refframe = 'STN' # Final Ref frame is station else: self.refframe = self._eci_frame self.jones = np.matmul(pjones, self.jonesr) self.thisjones = pjones class DualPolFieldPointSrc(Jones): """This is a mock Jones point source. It does not model a real source. It's purpose is for testing. It can be seen as a source that first transmits in one polarization and then in another, then 2 transmissions given in the 2 columns. It may have a spectral dimension. The src_dir should be a tuple with (az, el, ref).""" def __init__(self, src_dir, dualPolField=np.identity(2), iaucmp=True): (src_az, src_el, src_ref) = src_dir dualPolField3d = np.asmatrix(np.identity(3)) dualPolField3d[1:, 1:] = np.asmatrix(dualPolField) if iaucmp: jones = np.matmul(IAUtoC09, dualPolField3d)[1:, 1:] self.iaucmp = True else: jones = dualPolField3d[1:, 1:] self.iaucmp = False self.jones =
np.asarray(jones)
numpy.asarray
import matplotlib.pyplot as plt import os import subprocess import numpy as np from PIL import Image, ImageChops from PIL import ImageFont from PIL import ImageDraw from meld_classifier.dataset import load_combined_hemisphere_data from meld_classifier.meld_cohort import MeldCohort, MeldSubject import matplotlib_surface_plotting.matplotlib_surface_plotting as msp import meld_classifier.paths as paths import nibabel as nb def trim(im): bg = Image.new(im.mode, im.size, im.getpixel((0,0))) diff = ImageChops.difference(im, bg) diff = ImageChops.add(diff, diff, 2.0, -100) bbox = diff.getbbox() if bbox: return im.crop(bbox) else: return im def rotate90(im): return im.transpose(method=Image.ROTATE_270) def plot_single_subject(data_to_plots, lesion, feature_names=None, out_filename="tmp.png"): """create a grid of flatmap plots for a single subject""" # load in meshes flat = nb.load(os.path.join(paths.BASE_PATH, "fsaverage_sym", "surf", "lh.full.patch.flat.gii")) vertices, faces = flat.darrays[0].data, flat.darrays[1].data cortex = MeldCohort().cortex_label cortex_bin = np.zeros(len(vertices)).astype(bool) cortex_bin[cortex] = 1 # round up to get the square grid size gridsize = np.ceil(np.sqrt(len(data_to_plots))).astype(int) ims = np.zeros((gridsize, gridsize), dtype=object) random = np.random.choice(100000) for k, data_to_plot in enumerate(data_to_plots): msp.plot_surf( vertices, faces, data_to_plot, flat_map=True, base_size=10, mask=~cortex_bin, pvals=np.ones_like(cortex_bin), parcel=lesion, vmin=np.percentile(data_to_plot[cortex_bin], 1), vmax=np.percentile(data_to_plot[cortex_bin], 99), cmap="viridis", colorbar=False, filename=out_filename, ) plt.close() # subprocess.call(f"convert {out_filename} -trim ./tmp{random}1.png", shell=True) # subprocess.call(f"convert ./tmp{random}1.png -rotate 90 {out_filename}", shell=True) # os.remove(f"./tmp{random}1.png") im = Image.open(out_filename) im = trim(im) im = rotate90(im) im = im.convert("RGBA") #fnt = ImageFont.truetype("Pillow/Tests/fonts/FreeSansBold.ttf", 25) fnt = ImageFont.load_default() f_name = "" if feature_names is not None: if k == 0: f_name = feature_names[k] base = np.array(im.convert("RGBA")) else: f_name = feature_names[k][35:-9] draw = ImageDraw.Draw(im) draw.text((100, 0), f_name, (255, 0, 0), font=fnt) arr_im = np.array(im.convert("RGBA")) s0 = np.min([base.shape[0], arr_im.shape[0]]) s1 = np.min([base.shape[1], arr_im.shape[1]]) base[:s0, :s1, :3] = arr_im[:s0, :s1, :3] # make transparent white # cropped[cropped[:,:,3]==0]=255 base = base[:, :, :3] ims[k // gridsize, k % gridsize] = base.copy() rows = np.zeros(1 + k // gridsize, dtype=object) for j in
np.arange(1 + k // gridsize)
numpy.arange
# -*- coding: utf-8 -*- from __future__ import print_function import importlib import json import os import random import re import sys import tempfile import h5py import numpy from random_words import RandomWords, LoremIpsum rw = RandomWords() li = LoremIpsum() from . import TEST_DATA_PATH, Py23FixTestCase, _random_integer, _random_float, _random_integers, _random_floats from ..core import _str, _xrange, _decode from ..schema import base EMDB_SFF_VERSION = u'0.8.0.dev1' adapter_name = 'sfftkrw.schema.adapter_v{schema_version}'.format( schema_version=EMDB_SFF_VERSION.replace('.', '_') ) adapter = importlib.import_module(adapter_name) # dynamically import the latest schema generateDS API emdb_sff_name = 'sfftkrw.schema.v{schema_version}'.format( schema_version=EMDB_SFF_VERSION.replace('.', '_') ) emdb_sff = importlib.import_module(emdb_sff_name) class TestSFFRGBA(Py23FixTestCase): def setUp(self): self.red = random.random() self.green = random.random() self.blue = random.random() self.alpha = random.random() def test_default(self): """Test default colour""" colour = adapter.SFFRGBA() colour.red = self.red colour.green = self.green colour.blue = self.blue self.assertEqual(colour.red, self.red) self.assertEqual(colour.green, self.green) self.assertEqual(colour.blue, self.blue) self.assertEqual(colour.alpha, 1.0) def test_kwarg_colour(self): """Test colour using kwargs""" colour = adapter.SFFRGBA( red=self.red, green=self.green, blue=self.blue, alpha=self.alpha ) self.assertEqual(colour.red, self.red) self.assertEqual(colour.green, self.green) self.assertEqual(colour.blue, self.blue) self.assertEqual(colour.alpha, self.alpha) def test_get_value(self): """Test colour.value""" colour = adapter.SFFRGBA( red=self.red, green=self.green, blue=self.blue, alpha=self.alpha ) red, green, blue, alpha = colour.value self.assertEqual(colour.red, red) self.assertEqual(colour.green, green) self.assertEqual(colour.blue, blue) self.assertEqual(colour.alpha, alpha) def test_set_value(self): """Test colour.value = rgb(a)""" # rgb colour = adapter.SFFRGBA() colour.value = self.red, self.green, self.blue self.assertEqual(colour.red, self.red) self.assertEqual(colour.green, self.green) self.assertEqual(colour.blue, self.blue) # rgba colour.value = self.red, self.green, self.blue, self.alpha self.assertEqual(colour.red, self.red) self.assertEqual(colour.green, self.green) self.assertEqual(colour.blue, self.blue) self.assertEqual(colour.alpha, self.alpha) def test_as_hff(self): """Test convert to HDF5 group""" colour = adapter.SFFRGBA( red=self.red, green=self.green, blue=self.blue, alpha=self.alpha ) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u"container") group = colour.as_hff(group) self.assertIn(u"colour", group) self.assertCountEqual(group[u'colour'][()], colour.value) def test_from_hff(self): """Test create from HDF5 group""" colour = adapter.SFFRGBA( red=self.red, green=self.green, blue=self.blue, alpha=self.alpha ) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u"container") group = colour.as_hff(group) self.assertIn(u"colour", group) self.assertCountEqual(group[u'colour'][()], colour.value) colour2 = adapter.SFFRGBA.from_hff(h[u'container']) self.assertCountEqual(colour.value, colour2.value) def test_native_random_colour(self): """Test that using a kwarg random_colour will set random colours""" colour = adapter.SFFRGBA(random_colour=True) self.assertTrue(0 <= colour.red <= 1) self.assertTrue(0 <= colour.green <= 1) self.assertTrue(0 <= colour.blue <= 1) self.assertTrue(0 <= colour.alpha <= 1) def test_validation(self): """Test that validation works""" c = adapter.SFFRGBA(random_colour=True) self.assertTrue(c._is_valid()) c = adapter.SFFRGBA() self.assertFalse(c._is_valid()) def test_as_json(self): """Test export to JSON""" # empty c = adapter.SFFRGBA() with self.assertRaisesRegex(base.SFFValueError, r".*validation.*"): c.export(sys.stderr) # populated c = adapter.SFFRGBA(random_colour=True) c_json = c.as_json() self.assertEqual(c_json, c.value) def test_from_json(self): """Test import from JSON""" c_json = (0.8000087483646712, 0.017170600210644427, 0.5992636068532492, 1.0) c = adapter.SFFRGBA.from_json(c_json) self.assertEqual(c.value, c_json) class TestSFFExternalReference(Py23FixTestCase): def setUp(self): self.i = _random_integer() self.r = rw.random_word() self.u = rw.random_word() self.a = rw.random_word() self.l = u" ".join(rw.random_words(count=3)) self.d = li.get_sentence() def tearDown(self): adapter.SFFExternalReference.reset_id() def test_default(self): """Test default settings""" e = adapter.SFFExternalReference( resource=self.r, url=self.u, accession=self.a, label=self.l, description=self.d ) self.assertEqual(e.id, 0) self.assertEqual(e.resource, self.r) self.assertEqual(e.url, self.u) self.assertEqual(e.accession, self.a) self.assertEqual(e.label, self.l) self.assertEqual(e.description, self.d) self.assertEqual( _str(e), u"""SFFExternalReference(id={}, resource="{}", url="{}", accession="{}", label="{}", description="{}")""".format( 0, self.r, self.u, self.a, self.l, self.d ) ) def test_from_gds_type(self): """Test that we can instantiate from gds_type""" _e = emdb_sff.external_reference_type( id=self.i, resource=self.r, url=self.u, accession=self.a, label=self.l, description=self.d, ) e = adapter.SFFExternalReference.from_gds_type(_e) self.assertEqual(e.id, self.i) self.assertEqual(e.resource, self.r) self.assertEqual(e.url, self.u) self.assertEqual(e.accession, self.a) self.assertEqual(e.label, self.l) self.assertEqual(e.description, self.d) self.assertEqual( _str(e), u"""SFFExternalReference(id={}, resource="{}", url="{}", accession="{}", label="{}", description="{}")""".format( self.i, self.r, self.u, self.a, self.l, self.d ) ) def test_as_json(self): """Test that we can output as JSON""" e = adapter.SFFExternalReference() self.assertEqual(e.as_json(), { u"id": e.id, u"resource": None, u"url": None, u"accession": None, u"label": None, u"description": None, }) e = adapter.SFFExternalReference( resource=self.r, url=self.u, accession=self.a, label=self.l, description=self.d, ) e_json = e.as_json() self.assertEqual(e_json[u'id'], e.id) self.assertEqual(e_json[u'resource'], e.resource) self.assertEqual(e_json[u'url'], e.url) self.assertEqual(e_json[u'accession'], e.accession) self.assertEqual(e_json[u'label'], e.label) self.assertEqual(e_json[u'description'], e.description) # missing mandatory e = adapter.SFFExternalReference( # resource=self.r, # url=self.u, # accession=self.a, label=self.l, description=self.d, ) with self.assertRaisesRegex(base.SFFValueError, r".*validation.*"): e.export(sys.stderr) # missing non-mandatory e = adapter.SFFExternalReference( resource=self.r, url=self.u, accession=self.a, # label=self.l, # description=self.d, ) self.assertEqual(e_json[u'resource'], e.resource) self.assertEqual(e_json[u'url'], e.url) self.assertEqual(e_json[u'accession'], e.accession) def test_from_json(self): """Test that we can recreate from JSON""" e_json = {'id': 0, 'resource': 'symptom', 'url': 'thin', 'accession': 'definitions', 'label': 'chairpersons swabs pools', 'description': 'Malesuada facilisinam elitduis mus dis facer, primis est pellentesque integer dapibus ' 'semper semvestibulum curae lacusnulla.'} e = adapter.SFFExternalReference.from_json(e_json) self.assertEqual(e_json[u'id'], e.id) self.assertEqual(e_json[u'resource'], e.resource) self.assertEqual(e_json[u'url'], e.url) self.assertEqual(e_json[u'accession'], e.accession) self.assertEqual(e_json[u'label'], e.label) self.assertEqual(e_json[u'description'], e.description) # missing mandatory e_json = {'id': 0, 'url': 'thin', 'accession': 'definitions', 'label': 'chairpersons swabs pools', 'description': 'Malesuada facilisinam elitduis mus dis facer, primis est pellentesque integer dapibus ' 'semper semvestibulum curae lacusnulla.'} adapter.SFFExternalReference.from_json(e_json) # missing non-mandatory e_json = {'resource': 'symptom', 'url': 'thin', 'accession': 'definitions', 'label': 'chairpersons swabs pools'} e = adapter.SFFExternalReference.from_json(e_json) self.assertIsNone(e.id) self.assertEqual(e_json[u'resource'], e.resource) self.assertEqual(e_json[u'url'], e.url) self.assertEqual(e_json[u'accession'], e.accession) self.assertEqual(e_json[u'label'], e.label) self.assertIsNone(e.description) def test_hff(self): """Interconversion to HDF5""" # empty e = adapter.SFFExternalReference() with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = e.as_hff(group) self.assertIn(u'{}'.format(e.id), group) with h5py.File(self.test_hdf5_fn, u'r') as h: for group in h[u'container'].values(): e2 = adapter.SFFExternalReference.from_hff(group) self.assertEqual(e, e2) self.assertIsInstance(e2.id, int) # empty with id=None e = adapter.SFFExternalReference(new_obj=False) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = e.as_hff(group) self.assertIn(u'{}'.format(e.id), group) with h5py.File(self.test_hdf5_fn, u'r') as h: for group in h[u'container'].values(): e2 = adapter.SFFExternalReference.from_hff(group) self.assertEqual(e, e2) # pop'd e = adapter.SFFExternalReference( resource=self.r, url=self.u, accession=self.a, label=self.l, description=self.d, ) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = e.as_hff(group) group_name = u'{}'.format(e.id) self.assertIn(group_name, group) self.assertIn(group_name + u'/resource', group) self.assertIn(group_name + u'/url', group) self.assertIn(group_name + u'/accession', group) self.assertIn(group_name + u'/label', group) self.assertIn(group_name + u'/description', group) self.assertEqual(group[group_name + u'/id'][()], e.id) self.assertEqual(_decode(group[group_name + u'/resource'][()], 'utf-8'), e.resource) self.assertEqual(_decode(group[group_name + u'/url'][()], 'utf-8'), e.url) self.assertEqual(_decode(group[group_name + u'/accession'][()], 'utf-8'), e.accession) self.assertEqual(_decode(group[group_name + u'/label'][()], 'utf-8'), e.label) self.assertEqual(_decode(group[group_name + u'/description'][()], 'utf-8'), e.description) with h5py.File(self.test_hdf5_fn, u'r') as h: for group in h[u'container'].values(): e2 = adapter.SFFExternalReference.from_hff(group) self.assertEqual(e, e2) # missing non-mandatory e = adapter.SFFExternalReference( resource=self.r, url=self.u, accession=self.a, ) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = e.as_hff(group) group_name = u'{}'.format(e.id) self.assertIn(group_name, group) self.assertIn(group_name + u'/resource', group) self.assertIn(group_name + u'/url', group) self.assertIn(group_name + u'/accession', group) self.assertNotIn(group_name + u'/label', group) self.assertNotIn(group_name + u'/description', group) self.assertEqual(group[group_name + u'/id'][()], e.id) self.assertEqual(_decode(group[group_name + u'/resource'][()], 'utf-8'), e.resource) self.assertEqual(_decode(group[group_name + u'/url'][()], 'utf-8'), e.url) self.assertEqual(_decode(group[group_name + u'/accession'][()], 'utf-8'), e.accession) with h5py.File(self.test_hdf5_fn, u'r') as h: for group in h[u'container'].values(): e2 = adapter.SFFExternalReference.from_hff(group) self.assertEqual(e, e2) class TestSFFExternalReferenceList(Py23FixTestCase): def setUp(self): self._no_items = _random_integer(start=2, stop=10) self.ii = list(_xrange(self._no_items)) self.rr = [rw.random_word() for _ in _xrange(self._no_items)] self.uu = [rw.random_word() for _ in _xrange(self._no_items)] self.aa = [rw.random_word() for _ in _xrange(self._no_items)] self.ll = [" ".join(rw.random_words(count=3)) for _ in _xrange(self._no_items)] self.dd = [li.get_sentence() for _ in _xrange(self._no_items)] def tearDown(self): adapter.SFFExternalReference.reset_id() def test_default(self): """Test default settings""" ee = [adapter.SFFExternalReference( resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] ) for i in _xrange(self._no_items)] E = adapter.SFFExternalReferenceList() [E.append(e) for e in ee] # str self.assertRegex( _str(E), r"""SFFExternalReferenceList\(\[.*\]\)""" ) # length self.assertEqual(len(E), self._no_items) # get e = E[self._no_items - 1] self.assertIsInstance(e, adapter.SFFExternalReference) self.assertEqual(e.id, self._no_items - 1) self.assertEqual(e.resource, self.rr[self._no_items - 1]) self.assertEqual(e.url, self.uu[self._no_items - 1]) self.assertEqual(e.accession, self.aa[self._no_items - 1]) self.assertEqual(e.label, self.ll[self._no_items - 1]) self.assertEqual(e.description, self.dd[self._no_items - 1]) # get_ids e_ids = E.get_ids() self.assertEqual(len(e_ids), self._no_items) # get_by_ids e_id = random.choice(list(e_ids)) e = E.get_by_id(e_id) self.assertIsInstance(e, adapter.SFFExternalReference) self.assertEqual(e.id, e_id) self.assertEqual(e.resource, self.rr[e_id]) self.assertEqual(e.url, self.uu[e_id]) self.assertEqual(e.accession, self.aa[e_id]) self.assertEqual(e.label, self.ll[e_id]) self.assertEqual(e.description, self.dd[e_id]) def test_create_from_gds_type(self): """Test that we can create from gds_type""" _ee = [emdb_sff.external_reference_type( id=self.ii[i], resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] ) for i in _xrange(self._no_items)] _E = emdb_sff.external_referencesType() _E.set_ref(_ee) E = adapter.SFFExternalReferenceList.from_gds_type(_E) # str self.assertRegex( _str(E), r"""SFFExternalReferenceList\(\[.*\]\)""" ) # length self.assertEqual(len(E), self._no_items) # get e = E[self._no_items - 1] self.assertIsInstance(e, adapter.SFFExternalReference) self.assertEqual(e.id, self._no_items - 1) self.assertEqual(e.resource, self.rr[self._no_items - 1]) self.assertEqual(e.url, self.uu[self._no_items - 1]) self.assertEqual(e.accession, self.aa[self._no_items - 1]) self.assertEqual(e.label, self.ll[self._no_items - 1]) self.assertEqual(e.description, self.dd[self._no_items - 1]) # get_ids e_ids = E.get_ids() self.assertEqual(len(e_ids), self._no_items) # get_by_ids e_id = random.choice(list(e_ids)) e = E.get_by_id(e_id) self.assertIsInstance(e, adapter.SFFExternalReference) self.assertEqual(e.id, e_id) self.assertEqual(e.resource, self.rr[e_id]) self.assertEqual(e.url, self.uu[e_id]) self.assertEqual(e.accession, self.aa[e_id]) self.assertEqual(e.label, self.ll[e_id]) self.assertEqual(e.description, self.dd[e_id]) def test_as_json(self): """Test that we can export to JSON""" ee = adapter.SFFExternalReferenceList() self.assertEqual(ee.as_json(), []) ee = [adapter.SFFExternalReference( resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] ) for i in _xrange(self._no_items)] E = adapter.SFFExternalReferenceList() [E.append(e) for e in ee] E_json = E.as_json() # _print(E_json) for i in _xrange(self._no_items): self.assertEqual(E[i].id, E_json[i][u'id']) self.assertEqual(E[i].resource, E_json[i][u'resource']) self.assertEqual(E[i].url, E_json[i][u'url']) self.assertEqual(E[i].accession, E_json[i][u'accession']) self.assertEqual(E[i].label, E_json[i][u'label']) self.assertEqual(E[i].description, E_json[i][u'description']) # empty E = adapter.SFFExternalReferenceList() E_json = E.as_json() self.assertEqual(len(E), len(E_json)) def test_from_json(self): """Test that we can import from JSON""" E_json = [{'id': 0, 'resource': 'projectiles', 'url': 'blast', 'accession': 'injector', 'label': 'bricks breaches crawl', 'description': 'Est facilisicurabitur morbi dapibus volutpat, vestibulumnulla consecteturpraesent velit sempermorbi diaminteger taciti risusdonec accusam.'}, {'id': 1, 'resource': 'signals', 'url': 'wines', 'accession': 'experience', 'label': 'alibi defaults showers', 'description': 'Auctor habitasse amet temporsuspendisse, integer hendrerit nullasuspendisse.'}, {'id': 2, 'resource': 'openings', 'url': 'pack', 'accession': 'augmentations', 'label': 'outing rings tilling', 'description': 'Liberoduis esse nobis semvestibulum bibendumin non, sagittis eget eum massapellentesque eratproin nonummy massaphasellus.'}, {'id': 3, 'resource': 'blaze', 'url': 'contract', 'accession': 'diagrams', 'label': 'sewers weddings telecommunications', 'description': 'Ipsum no luctus ultricies enimsed antesuspendisse.'}, {'id': 4, 'resource': 'terms', 'url': 'blackboard', 'accession': 'nothing', 'label': 'depot trades strikers', 'description': 'Elitr hendrerit tortorvestibulum exerci.'}, {'id': 5, 'resource': 'carriage', 'url': 'screens', 'accession': 'apprehension', 'label': 'signalers hunk wagon', 'description': 'Consequatduis muspellentesque.'}, {'id': 6, 'resource': 'lot', 'url': 'gums', 'accession': 'rim', 'label': 'chatter north clearances', 'description': 'Nostra felis.'}, {'id': 7, 'resource': 'outlet', 'url': 'actions', 'accession': 'twists', 'label': 'compromises additives mirrors', 'description': 'Diaminteger phasellus mi sollicitudin laoreetphasellus possim, himenaeos semvestibulum egestasmauris clita elitnunc suscipit pulvinar.'}, {'id': 8, 'resource': 'shears', 'url': 'user', 'accession': 'view', 'label': 'cable diagram churns', 'description': 'Dolor laoreet adipiscing takimata neque dignissim velit enimaliquam, lobortisetiam mazim nunccurabitur aliquip praesent blandit.'}, {'id': 9, 'resource': 'jurisdiction', 'url': 'plug', 'accession': 'calibrations', 'label': 'oscillation baby males', 'description': 'Iusto aliquam quod orci, aaenean justo luctus.'}] E = adapter.SFFExternalReferenceList.from_json(E_json) for i, extref in enumerate(E_json): self.assertEqual(E[i].id, extref[u'id']) self.assertEqual(E[i].resource, extref[u'resource']) self.assertEqual(E[i].url, extref[u'url']) self.assertEqual(E[i].accession, extref[u'accession']) self.assertEqual(E[i].label, extref[u'label']) self.assertEqual(E[i].description, extref[u'description']) def test_hff(self): """Interconvert to HDF5""" # empty ee = adapter.SFFExternalReferenceList() with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = ee.as_hff(group) self.assertIn(u'external_references', group) self.assertEqual(len(ee), 0) self.assertEqual(len(ee), len(group[u'external_references'])) with h5py.File(self.test_hdf5_fn, u'r') as h: ee2 = adapter.SFFExternalReferenceList.from_hff(h[u'container']) self.assertEqual(ee, ee2) # pop'd but empty extrefs ee = adapter.SFFExternalReferenceList() e = adapter.SFFExternalReference() ee.append(e) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = ee.as_hff(group) with h5py.File(self.test_hdf5_fn, u'r') as h: ee2 = adapter.SFFExternalReferenceList.from_hff(h[u'container']) self.assertEqual(ee, ee2) # pop'd ee = [adapter.SFFExternalReference( resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] ) for i in _xrange(self._no_items)] E = adapter.SFFExternalReferenceList() [E.append(e) for e in ee] with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = E.as_hff(group) self.assertIn(u'external_references', group) self.assertTrue(len(ee) > 0) self.assertEqual(len(ee), len(group[u'external_references'])) for er in E: self.assertEqual(er, adapter.SFFExternalReference.from_hff(group[u'external_references/{}'.format(er.id)])) with h5py.File(self.test_hdf5_fn, u'r') as h: ee2 = adapter.SFFExternalReferenceList.from_hff(h[u'container']) class TestSFFGlobalExternalReferenceList(Py23FixTestCase): """Test the SFFGlobalExternalReferenceList class""" def setUp(self): self._no_items = _random_integer(start=2, stop=10) self.ii = list(_xrange(self._no_items)) self.rr = [rw.random_word() for _ in _xrange(self._no_items)] self.uu = [rw.random_word() for _ in _xrange(self._no_items)] self.aa = [rw.random_word() for _ in _xrange(self._no_items)] self.ll = [" ".join(rw.random_words(count=3)) for _ in _xrange(self._no_items)] self.dd = [li.get_sentence() for _ in _xrange(self._no_items)] def tearDown(self): adapter.SFFExternalReference.reset_id() def test_default(self): """Test default settings""" ee = [adapter.SFFExternalReference( resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] ) for i in _xrange(self._no_items)] G = adapter.SFFGlobalExternalReferenceList() [G.append(e) for e in ee] # str self.assertRegex( _str(G), r"""SFFGlobalExternalReferenceList\(\[.*\]\)""" ) # length self.assertEqual(len(G), self._no_items) # get e = G[self._no_items - 1] self.assertIsInstance(e, adapter.SFFExternalReference) self.assertEqual(e.id, self._no_items - 1) self.assertEqual(e.resource, self.rr[self._no_items - 1]) self.assertEqual(e.url, self.uu[self._no_items - 1]) self.assertEqual(e.accession, self.aa[self._no_items - 1]) self.assertEqual(e.label, self.ll[self._no_items - 1]) self.assertEqual(e.description, self.dd[self._no_items - 1]) # get_ids e_ids = G.get_ids() self.assertEqual(len(e_ids), self._no_items) # get_by_ids e_id = random.choice(list(e_ids)) e = G.get_by_id(e_id) self.assertIsInstance(e, adapter.SFFExternalReference) self.assertEqual(e.id, e_id) self.assertEqual(e.resource, self.rr[e_id]) self.assertEqual(e.url, self.uu[e_id]) self.assertEqual(e.accession, self.aa[e_id]) self.assertEqual(e.label, self.ll[e_id]) self.assertEqual(e.description, self.dd[e_id]) def test_create_from_gds_type(self): """Test that we can create from gds_type""" _ee = [emdb_sff.external_reference_type( id=self.ii[i], resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] ) for i in _xrange(self._no_items)] _G = emdb_sff.global_external_referencesType() _G.set_ref(_ee) G = adapter.SFFGlobalExternalReferenceList.from_gds_type(_G) # str self.assertRegex( _str(G), r"""SFFGlobalExternalReferenceList\(\[.*\]\)""" ) # length self.assertEqual(len(G), self._no_items) # get e = G[self._no_items - 1] self.assertIsInstance(e, adapter.SFFExternalReference) self.assertEqual(e.id, self._no_items - 1) self.assertEqual(e.resource, self.rr[self._no_items - 1]) self.assertEqual(e.url, self.uu[self._no_items - 1]) self.assertEqual(e.accession, self.aa[self._no_items - 1]) self.assertEqual(e.label, self.ll[self._no_items - 1]) self.assertEqual(e.description, self.dd[self._no_items - 1]) # get_ids e_ids = G.get_ids() self.assertEqual(len(e_ids), self._no_items) # get_by_ids e_id = random.choice(list(e_ids)) e = G.get_by_id(e_id) self.assertIsInstance(e, adapter.SFFExternalReference) self.assertEqual(e.id, e_id) self.assertEqual(e.resource, self.rr[e_id]) self.assertEqual(e.url, self.uu[e_id]) self.assertEqual(e.accession, self.aa[e_id]) self.assertEqual(e.label, self.ll[e_id]) self.assertEqual(e.description, self.dd[e_id]) def test_as_json(self): """Test that we can export to JSON""" ge = adapter.SFFGlobalExternalReferenceList() self.assertEqual(ge.as_json(), []) ge = [adapter.SFFExternalReference( resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] ) for i in _xrange(self._no_items)] G = adapter.SFFGlobalExternalReferenceList() [G.append(g) for g in ge] G_json = G.as_json() for i in _xrange(self._no_items): self.assertEqual(G[i].id, G_json[i][u'id']) self.assertEqual(G[i].resource, G_json[i][u'resource']) self.assertEqual(G[i].url, G_json[i][u'url']) self.assertEqual(G[i].accession, G_json[i][u'accession']) self.assertEqual(G[i].label, G_json[i][u'label']) self.assertEqual(G[i].description, G_json[i][u'description']) # empty G = adapter.SFFGlobalExternalReferenceList() G_json = G.as_json() self.assertEqual(len(G), len(G_json)) def test_from_json(self): """Test that we can import from JSON""" G_json = [{'id': 0, 'resource': 'projectiles', 'url': 'blast', 'accession': 'injector', 'label': 'bricks breaches crawl', 'description': 'Est facilisicurabitur morbi dapibus volutpat, vestibulumnulla consecteturpraesent velit sempermorbi diaminteger taciti risusdonec accusam.'}, {'id': 1, 'resource': 'signals', 'url': 'wines', 'accession': 'experience', 'label': 'alibi defaults showers', 'description': 'Auctor habitasse amet temporsuspendisse, integer hendrerit nullasuspendisse.'}, {'id': 2, 'resource': 'openings', 'url': 'pack', 'accession': 'augmentations', 'label': 'outing rings tilling', 'description': 'Liberoduis esse nobis semvestibulum bibendumin non, sagittis eget eum massapellentesque eratproin nonummy massaphasellus.'}, {'id': 3, 'resource': 'blaze', 'url': 'contract', 'accession': 'diagrams', 'label': 'sewers weddings telecommunications', 'description': 'Ipsum no luctus ultricies enimsed antesuspendisse.'}, {'id': 4, 'resource': 'terms', 'url': 'blackboard', 'accession': 'nothing', 'label': 'depot trades strikers', 'description': 'Elitr hendrerit tortorvestibulum exerci.'}, {'id': 5, 'resource': 'carriage', 'url': 'screens', 'accession': 'apprehension', 'label': 'signalers hunk wagon', 'description': 'Consequatduis muspellentesque.'}, {'id': 6, 'resource': 'lot', 'url': 'gums', 'accession': 'rim', 'label': 'chatter north clearances', 'description': 'Nostra felis.'}, {'id': 7, 'resource': 'outlet', 'url': 'actions', 'accession': 'twists', 'label': 'compromises additives mirrors', 'description': 'Diaminteger phasellus mi sollicitudin laoreetphasellus possim, himenaeos semvestibulum egestasmauris clita elitnunc suscipit pulvinar.'}, {'id': 8, 'resource': 'shears', 'url': 'user', 'accession': 'view', 'label': 'cable diagram churns', 'description': 'Dolor laoreet adipiscing takimata neque dignissim velit enimaliquam, lobortisetiam mazim nunccurabitur aliquip praesent blandit.'}, {'id': 9, 'resource': 'jurisdiction', 'url': 'plug', 'accession': 'calibrations', 'label': 'oscillation baby males', 'description': 'Iusto aliquam quod orci, aaenean justo luctus.'}] G = adapter.SFFGlobalExternalReferenceList.from_json(G_json) for i, extref in enumerate(G_json): self.assertEqual(G[i].id, extref[u'id']) self.assertEqual(G[i].resource, extref[u'resource']) self.assertEqual(G[i].url, extref[u'url']) self.assertEqual(G[i].accession, extref[u'accession']) self.assertEqual(G[i].label, extref[u'label']) self.assertEqual(G[i].description, extref[u'description']) def test_hff(self): """Interconvert to HDF5""" # empty G = adapter.SFFGlobalExternalReferenceList() with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = G.as_hff(group) self.assertIn(u'global_external_references', group) self.assertEqual(len(G), 0) self.assertEqual(len(G), len(group[u'global_external_references'])) with h5py.File(self.test_hdf5_fn, u'r') as h: G2 = adapter.SFFGlobalExternalReferenceList.from_hff(h[u'container']) self.assertEqual(G, G2) # pop'd G = adapter.SFFGlobalExternalReferenceList() [G.append(adapter.SFFExternalReference( resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] )) for i in _xrange(self._no_items)] with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = G.as_hff(group) # self.stderrh(h) self.assertIn(u'global_external_references', group) self.assertTrue(len(G) > 0) self.assertEqual(len(G), len(group[u'global_external_references'])) for er in G: self.assertEqual(er, adapter.SFFExternalReference.from_hff( group[u'global_external_references/{}'.format(er.id)])) with h5py.File(self.test_hdf5_fn, u'r') as h: G2 = adapter.SFFGlobalExternalReferenceList.from_hff(h[u'container']) self.assertEqual(G, G2) class TestSFFBiologicalAnnotation(Py23FixTestCase): def setUp(self): self.name = " ".join(rw.random_words(count=3)) self.description = li.get_sentence() self._no_items = _random_integer(start=2, stop=10) self.ii = list(_xrange(self._no_items)) self.rr = [rw.random_word() for _ in _xrange(self._no_items)] self.uu = [rw.random_word() for _ in _xrange(self._no_items)] self.aa = [rw.random_word() for _ in _xrange(self._no_items)] self.ll = [" ".join(rw.random_words(count=3)) for _ in _xrange(self._no_items)] self.dd = [li.get_sentence() for _ in _xrange(self._no_items)] self.ee = [adapter.SFFExternalReference( resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] ) for i in _xrange(self._no_items)] self._ee = [emdb_sff.external_reference_type( resource=self.rr[i], url=self.uu[i], accession=self.aa[i], label=self.ll[i], description=self.dd[i] ) for i in _xrange(self._no_items)] E = adapter.SFFExternalReferenceList() [E.append(e) for e in self.ee] _E = emdb_sff.external_referencesType() _E.set_ref(self._ee) self.external_references = E self._external_references = _E self.no = _random_integer() def test_default(self): """Test default settings""" b = adapter.SFFBiologicalAnnotation( name=self.name, description=self.description, external_references=self.external_references, number_of_instances=self.no, ) self.assertRegex( _str(b), r"""SFFBiologicalAnnotation\(""" \ r"""name="{}", description="{}", """ \ r"""number_of_instances={}, """ \ r"""external_references=SFFExternalReferenceList\(\[.*\]\)\)""".format( self.name, self.description, self.no ) ) self.assertEqual(b.name, self.name) self.assertEqual(b.description, self.description) self.assertEqual(b.number_of_instances, self.no) self.assertEqual(b.external_references, self.external_references) def test_create_from_gds_type(self): """Test that we can create from a gds_type""" _b = emdb_sff.biological_annotationType( name=self.name, description=self.description, number_of_instances=self.no, external_references=self._external_references ) b = adapter.SFFBiologicalAnnotation.from_gds_type(_b) self.assertRegex( _str(b), r"""SFFBiologicalAnnotation\(""" \ r"""name="{}", description="{}", """ \ r"""number_of_instances={}, """ \ r"""external_references=SFFExternalReferenceList\(\[.*\]\)\)""".format( self.name, self.description, self.no ) ) self.assertEqual(b.name, self.name) self.assertEqual(b.description, self.description) self.assertEqual(b.number_of_instances, self.no) self.assertEqual(b.external_references, self.external_references) def test_as_json(self): """Test conversion to and from JSON""" # empty case b_empty = adapter.SFFBiologicalAnnotation() b_json = b_empty.as_json() self.assertEqual(b_json, { u"name": None, u"description": None, u"external_references": [], u"number_of_instances": 1, }) b2_empty = adapter.SFFBiologicalAnnotation.from_json(b_json) self.assertEqual(b_empty, b2_empty) # non-empty case b_full = adapter.SFFBiologicalAnnotation() b_full.name = ' '.join(rw.random_words(count=2)) b_full.description = li.get_sentence() es = adapter.SFFExternalReferenceList() no_es = _random_integer(2, 10) for _ in _xrange(no_es): e = adapter.SFFExternalReference() e.resource = rw.random_word() e.url = rw.random_word() e.accession = rw.random_word() e.label = ' '.join(rw.random_words(count=3)) e.description = li.get_sentence() es.append(e) b_full.external_references = es b_json = b_full.as_json() b2_full = adapter.SFFBiologicalAnnotation.from_json(b_json) self.assertEqual(b_full, b2_full) def test_from_json(self): """Test that we can import from JSON""" b_json = {'name': 'returns agent', 'description': 'Lacus leopraesent risusdonec tempus congue.', 'external_references': [{'id': 0, 'resource': 'listing', 'url': 'antennas', 'accession': 'weddings', 'label': 'times selection deployment', 'description': 'Facilisicurabitur mi sanctus fames dignissim autem.'}, {'id': 1, 'resource': 'basis', 'url': 'leaks', 'accession': 'cups', 'label': 'yaw workloads house', 'description': 'Nequeetiam habitasse.'}, {'id': 2, 'resource': 'chance', 'url': 'theory', 'accession': 'allegation', 'label': 'maps chairwomen flashes', 'description': 'Suscipit eos pulvinar zzril doming dolores.'}]} b_full = adapter.SFFBiologicalAnnotation.from_json(b_json) self.assertEqual(b_full.name, b_json[u'name']) self.assertEqual(b_full.description, b_json[u'description']) try: self.assertEqual(b_full.number_of_instances, b_json[u'number_of_instances']) except KeyError: self.assertEqual(b_full.number_of_instances, 1) for i, extref in enumerate(b_json[u'external_references']): self.assertEqual(b_full.external_references[i].id, extref[u'id']) self.assertEqual(b_full.external_references[i].resource, extref[u'resource']) self.assertEqual(b_full.external_references[i].url, extref[u'url']) self.assertEqual(b_full.external_references[i].accession, extref[u'accession']) self.assertEqual(b_full.external_references[i].label, extref[u'label']) self.assertEqual(b_full.external_references[i].description, extref[u'description']) def test_hff(self): """Interconvert to HDF5""" # empty case b_empty = adapter.SFFBiologicalAnnotation() with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = b_empty.as_hff(group) self.assertIn(u'biological_annotation', group) with h5py.File(self.test_hdf5_fn, u'r') as h: b_empty2 = adapter.SFFBiologicalAnnotation.from_hff(h[u'container']) self.assertEqual(b_empty, b_empty2) # non-empty case b_full = adapter.SFFBiologicalAnnotation() b_full.name = ' '.join(rw.random_words(count=2)) b_full.description = li.get_sentence() es = adapter.SFFExternalReferenceList() no_es = _random_integer(2, 10) for _ in _xrange(no_es): e = adapter.SFFExternalReference() e.resource = rw.random_word() e.url = rw.random_word() e.accession = rw.random_word() e.label = ' '.join(rw.random_words(count=3)) e.description = li.get_sentence() es.append(e) b_full.external_references = es with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = b_full.as_hff(group) self.assertIn(u'biological_annotation', group) self.assertIn(u'name', group[u'biological_annotation']) self.assertEqual(_decode(group[u'biological_annotation/name'][()], 'utf-8'), b_full.name) self.assertIn(u'description', group[u'biological_annotation']) self.assertEqual(_decode(group[u'biological_annotation/description'][()], 'utf-8'), b_full.description) self.assertIn(u'number_of_instances', group[u'biological_annotation']) self.assertEqual(_decode(group[u'biological_annotation/number_of_instances'][()], 'utf-8'), b_full.number_of_instances) self.assertIn(u'external_references', group[u'biological_annotation']) self.assertEqual(len(group[u'biological_annotation/external_references']), len(b_full.external_references)) with h5py.File(self.test_hdf5_fn, u'r') as h: b_full2 = adapter.SFFBiologicalAnnotation.from_hff(h[u'container']) self.assertEqual(b_full, b_full2) class TestSFFThreeDVolume(Py23FixTestCase): def setUp(self): self.lattice_id = _random_integer() self.value = _random_integer() self.transform_id = _random_integer() def test_default(self): """Test default settings""" v = adapter.SFFThreeDVolume( lattice_id=self.lattice_id, value=self.value, transform_id=self.transform_id, ) self.assertEqual( _str(v), """SFFThreeDVolume(lattice_id={}, value={}, transform_id={})""".format( self.lattice_id, self.value, self.transform_id ) ) self.assertEqual(v.lattice_id, self.lattice_id) self.assertEqual(v.value, self.value) self.assertEqual(v.transform_id, self.transform_id) def test_create_from_gds_type(self): """Test that we can create from a gds_type""" _v = emdb_sff.three_d_volume_type( lattice_id=self.lattice_id, value=self.value, transform_id=self.transform_id ) v = adapter.SFFThreeDVolume.from_gds_type(_v) self.assertEqual( _str(v), """SFFThreeDVolume(lattice_id={}, value={}, transform_id={})""".format( self.lattice_id, self.value, self.transform_id ) ) self.assertEqual(v.lattice_id, self.lattice_id) self.assertEqual(v.value, self.value) self.assertEqual(v.transform_id, self.transform_id) def test_json(self): lattice_id = _random_integer(start=1) value = _random_integer(start=1) transform_id = _random_integer(start=0) vol_full = adapter.SFFThreeDVolume(lattice_id=lattice_id, value=value, transform_id=transform_id) vol_json = vol_full.as_json() vol_full2 = adapter.SFFThreeDVolume.from_json(vol_json) self.assertEqual(vol_full, vol_full2) # empty vol_empty = adapter.SFFThreeDVolume() vol_empty_json = vol_empty.as_json() self.assertIsNone(vol_empty_json[u'lattice_id']) self.assertIsNone(vol_empty_json[u'value']) vol_empty2 = adapter.SFFThreeDVolume.from_json(vol_empty_json) self.assertEqual(vol_empty, vol_empty2) def test_hff(self): lattice_id = _random_integer(start=1) value = _random_integer(start=1) transform_id = _random_integer(start=0) vol_full = adapter.SFFThreeDVolume(lattice_id=lattice_id, value=value, transform_id=transform_id) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = vol_full.as_hff(group) self.assertIn(u'three_d_volume', group) self.assertEqual(group[u'three_d_volume/lattice_id'][()], vol_full.lattice_id) self.assertEqual(group[u'three_d_volume/value'][()], vol_full.value) self.assertEqual(group[u'three_d_volume/transform_id'][()], vol_full.transform_id) with h5py.File(self.test_hdf5_fn, u'r') as h: vol_full2 = adapter.SFFThreeDVolume.from_hff(h[u'container']) self.assertEqual(vol_full, vol_full2) self.assertIsInstance(vol_full2.lattice_id, int) self.assertIsInstance(vol_full2.transform_id, int) # empty vol_empty = adapter.SFFThreeDVolume() with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = vol_empty.as_hff(group) self.assertIn(u'three_d_volume', group) self.assertNotIn(u'lattice_id', group[u'three_d_volume']) self.assertNotIn(u'value', group[u'three_d_volume']) self.assertNotIn(u'transform_id', group[u'three_d_volume']) with h5py.File(self.test_hdf5_fn, u'r') as h: vol_empty2 = adapter.SFFThreeDVolume.from_hff(h[u'container']) self.assertEqual(vol_empty, vol_empty2) self.assertIsInstance(vol_full2.lattice_id, int) self.assertIsInstance(vol_full2.transform_id, int) class TestSFFVolumeStructure(Py23FixTestCase): def setUp(self): self.cols = _random_integer() self.rows = _random_integer() self.sections = _random_integer() def test_default(self): """Test default settings""" vs = adapter.SFFVolumeStructure(cols=self.cols, rows=self.rows, sections=self.sections) self.assertRegex(_str(vs), r"SFFVolumeStructure\(cols.*rows.*sections.*\)") self.assertEqual(vs.cols, self.cols) self.assertEqual(vs.rows, self.rows) self.assertEqual(vs.sections, self.sections) self.assertEqual(vs.voxel_count, self.cols * self.rows * self.sections) def test_get_set_value(self): """Test the .value attribute""" vs = adapter.SFFVolumeStructure(cols=self.cols, rows=self.rows, sections=self.sections) self.assertEqual(vs.cols, self.cols) self.assertEqual(vs.rows, self.rows) self.assertEqual(vs.sections, self.sections) self.assertEqual(vs.value, (self.cols, self.rows, self.sections)) _c, _r, _s = _random_integer(), _random_integer(), _random_integer() vs.value = _c, _r, _s self.assertEqual(vs.value, (_c, _r, _s)) self.assertEqual(vs.cols, _c) self.assertEqual(vs.rows, _r) self.assertEqual(vs.sections, _s) def test_create_from_gds_type(self): """Test that we can create from a gds_type""" _vs = emdb_sff.volume_structure_type(cols=self.cols, rows=self.rows, sections=self.sections) vs = adapter.SFFVolumeStructure.from_gds_type(_vs) self.assertRegex(_str(vs), r"SFFVolumeStructure\(cols.*rows.*sections.*\)") self.assertEqual(vs.cols, self.cols) self.assertEqual(vs.rows, self.rows) self.assertEqual(vs.sections, self.sections) self.assertEqual(vs.voxel_count, self.cols * self.rows * self.sections) def test_json(self): # empty s = adapter.SFFVolumeStructure() s_json = s.as_json() s2 = adapter.SFFVolumeStructure.from_json(s_json) self.assertEqual(s, s2) # pop'd rows, cols, sections = _random_integers(start=100, stop=1000, count=3) s = adapter.SFFVolumeStructure(rows=rows, cols=cols, sections=sections) s_json = s.as_json() s2 = adapter.SFFVolumeStructure.from_json(s_json) self.assertEqual(s, s2) def test_hff(self): # empty vs = adapter.SFFVolumeStructure() with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = vs.as_hff(group) self.assertIn(u'size', group) self.assertNotIn(u'size/rows', group) self.assertNotIn(u'size/cols', group) self.assertNotIn(u'size/sections', group) with h5py.File(self.test_hdf5_fn, u'r') as h: vs2 = adapter.SFFVolumeStructure.from_hff(h[u'container']) self.assertEqual(vs, vs2) # non-empty rows, cols, sections = _random_integers(count=3) vs = adapter.SFFVolumeStructure(rows=rows, cols=cols, sections=sections) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = vs.as_hff(group) self.assertIn(u'size', group) self.assertIn(u'size/rows', group) self.assertIn(u'size/cols', group) self.assertIn(u'size/sections', group) self.assertEqual(group[u'size/rows'][()], rows) self.assertEqual(group[u'size/cols'][()], cols) self.assertEqual(group[u'size/sections'][()], sections) with h5py.File(self.test_hdf5_fn, u'r') as h: vs2 = adapter.SFFVolumeStructure.from_hff(h[u'container']) self.assertEqual(vs, vs2) class TestSFFVolumeIndex(Py23FixTestCase): def setUp(self): self.cols = _random_integer() self.rows = _random_integer() self.sections = _random_integer() def test_default(self): """Test default settings""" vi = adapter.SFFVolumeIndex(cols=self.cols, rows=self.rows, sections=self.sections) self.assertRegex(_str(vi), r"SFFVolumeIndex\(rows.*cols.*sections.*\)") self.assertEqual(vi.cols, self.cols) self.assertEqual(vi.rows, self.rows) self.assertEqual(vi.sections, self.sections) def test_create_from_gds_type(self): """Test that we can create from a gds_type""" _vi = emdb_sff.volume_index_type(cols=self.cols, rows=self.rows, sections=self.sections) vi = adapter.SFFVolumeIndex.from_gds_type(_vi) self.assertRegex(_str(vi), r"SFFVolumeIndex\(rows.*cols.*sections.*\)") self.assertEqual(vi.cols, self.cols) self.assertEqual(vi.rows, self.rows) self.assertEqual(vi.sections, self.sections) def test_json(self): # empty s = adapter.SFFVolumeIndex() s_json = s.as_json() s2 = adapter.SFFVolumeIndex.from_json(s_json) self.assertEqual(s, s2) # pop'd rows, cols, sections = _random_integers(start=100, stop=1000, count=3) s = adapter.SFFVolumeIndex(rows=rows, cols=cols, sections=sections) s_json = s.as_json() s2 = adapter.SFFVolumeIndex.from_json(s_json) self.assertEqual(s, s2) class TestSFFLattice(Py23FixTestCase): def setUp(self): adapter.SFFLattice.reset_id() self.r, self.c, self.s = _random_integer(start=2, stop=10), _random_integer(start=2, stop=10), _random_integer( start=2, stop=10) self.l_mode = u'float64' self.l_endian = u'little' self.l_size = adapter.SFFVolumeStructure(rows=self.r, cols=self.c, sections=self.s) self.l_start = adapter.SFFVolumeIndex(rows=0, cols=0, sections=0) self.l_data = numpy.random.rand(self.r, self.c, self.s) self.l_bytes = adapter.SFFLattice._encode(self.l_data, mode=self.l_mode, endianness=self.l_endian) self.l_unicode = _decode(self.l_bytes, u'utf-8') def tearDown(self): adapter.SFFLattice.reset_id() def test_create_init_array(self): """Test that we can create from a numpy array using __init__""" l = adapter.SFFLattice( mode=self.l_mode, endianness=self.l_endian, size=self.l_size, start=self.l_start, data=self.l_data ) self.assertIsInstance(l, adapter.SFFLattice) self.assertEqual(l.id, 0) self.assertEqual(l.mode, self.l_mode) self.assertEqual(l.endianness, self.l_endian) self.assertEqual(l.size.voxel_count, self.r * self.c * self.s) self.assertEqual(l.start.value, (0, 0, 0)) self.assertEqual(l.data, adapter.SFFLattice._encode(self.l_data, mode=self.l_mode, endianness=self.l_endian)) self.assertEqual(l.data_array.flatten().tolist(), self.l_data.flatten().tolist()) self.assertRegex( _str(l), r"""SFFLattice\(id=\d+, mode=".*", endianness=".*", size=SFFVolumeStructure\(.*\), start=SFFVolumeIndex\(.*\), data=".*"\)""" ) import sys # self.stderr(type(l.data)) l.export(sys.stderr) def test_create_init_bytes(self): """Test that we can create from bytes using __init__""" l = adapter.SFFLattice( mode=self.l_mode, endianness=self.l_endian, size=self.l_size, start=self.l_start, data=self.l_bytes ) self.assertIsInstance(l, adapter.SFFLattice) self.assertEqual(l.id, 0) self.assertEqual(l.mode, self.l_mode) self.assertEqual(l.endianness, self.l_endian) self.assertEqual(l.size.voxel_count, self.r * self.c * self.s) self.assertEqual(l.start.value, (0, 0, 0)) self.assertEqual(l.data, adapter.SFFLattice._encode(self.l_data, mode=self.l_mode, endianness=self.l_endian)) self.assertEqual(l.data_array.flatten().tolist(), self.l_data.flatten().tolist()) self.assertRegex( _str(l), r"""SFFLattice\(id=\d+, mode=".*", endianness=".*", size=SFFVolumeStructure\(.*\), start=SFFVolumeIndex\(.*\), data=".*"\)""" ) def test_create_init_unicode(self): """Test that we can create from unicode using __init__""" l = adapter.SFFLattice( mode=self.l_mode, endianness=self.l_endian, size=self.l_size, start=self.l_start, data=self.l_unicode ) self.assertIsInstance(l, adapter.SFFLattice) self.assertEqual(l.id, 0) self.assertEqual(l.mode, self.l_mode) self.assertEqual(l.endianness, self.l_endian) self.assertEqual(l.size.voxel_count, self.r * self.c * self.s) self.assertEqual(l.start.value, (0, 0, 0)) self.assertEqual(l.data, adapter.SFFLattice._encode(self.l_data, mode=self.l_mode, endianness=self.l_endian)) self.assertEqual(l.data_array.flatten().tolist(), self.l_data.flatten().tolist()) self.assertRegex( _str(l), r"""SFFLattice\(id=\d+, mode=".*", endianness=".*", size=SFFVolumeStructure\(.*\), start=SFFVolumeIndex\(.*\), data=".*"\)""" ) def test_create_classmethod_array(self): """Test that we can create an object using the classmethod""" l = adapter.SFFLattice.from_array( mode=self.l_mode, endianness=self.l_endian, size=self.l_size, start=self.l_start, data=self.l_data ) self.assertIsInstance(l, adapter.SFFLattice) self.assertEqual(l.id, 0) self.assertEqual(l.mode, self.l_mode) self.assertEqual(l.endianness, self.l_endian) self.assertEqual(l.size.voxel_count, self.r * self.c * self.s) self.assertEqual(l.start.value, (0, 0, 0)) self.assertEqual(_decode(l.data, u'utf-8'), adapter.SFFLattice._encode(self.l_data, mode=self.l_mode, endianness=self.l_endian)) self.assertEqual(l.data_array.flatten().tolist(), self.l_data.flatten().tolist()) self.stderr(l) self.assertRegex( _str(l), r"""SFFLattice\(id=\d+, mode=".*", endianness=".*", size=SFFVolumeStructure\(.*\), start=SFFVolumeIndex\(.*\), data=".*"\)""" ) def test_create_classmethod_bytes(self): """Test that we can create an object using the classmethod""" l = adapter.SFFLattice.from_bytes( self.l_bytes, self.l_size, mode=self.l_mode, endianness=self.l_endian, start=self.l_start, ) self.assertIsInstance(l, adapter.SFFLattice) self.assertEqual(l.id, 0) self.assertEqual(l.mode, self.l_mode) self.assertEqual(l.endianness, self.l_endian) self.assertEqual(l.size.voxel_count, self.r * self.c * self.s) self.assertEqual(l.start.value, (0, 0, 0)) self.assertEqual(l.data, adapter.SFFLattice._encode(self.l_data, mode=self.l_mode, endianness=self.l_endian)) self.assertEqual(l.data_array.flatten().tolist(), self.l_data.flatten().tolist()) self.assertRegex( _str(l), r"""SFFLattice\(id=\d+, mode=".*", endianness=".*", size=SFFVolumeStructure\(.*\), start=SFFVolumeIndex\(.*\), data=".*"\)""" ) with self.assertRaisesRegex(base.SFFTypeError, r".*is not object of type.*"): l = adapter.SFFLattice.from_bytes( self.l_bytes, (self.r, self.c, self.s), mode=self.l_mode, endianness=self.l_endian, start=self.l_start, ) def test_from_gds_type(self): """Test that all attributes exists when we start with a gds_type""" r, c, s = _random_integer(start=3, stop=10), _random_integer(start=3, stop=10), _random_integer(start=3, stop=10) _data = numpy.random.randint(low=0, high=100, size=(r, c, s)) mode_ = u'uint8' _bytes = adapter.SFFLattice._encode(_data, endianness=u'big', mode=mode_) _l = emdb_sff.lattice_type( mode=mode_, endianness=u'big', size=emdb_sff.volume_structure_type(cols=c, rows=r, sections=s), start=emdb_sff.volume_index_type(cols=0, rows=0, sections=0), data=_bytes ) l = adapter.SFFLattice.from_gds_type(_l) self.assertTrue(hasattr(l, u'data_array')) def test_json(self): # empty l = adapter.SFFLattice() l_json = l.as_json() with self.assertRaises(base.SFFTypeError): l2 = adapter.SFFLattice.from_json(l_json) # self.assertEqual(l, l2) # pop'd rows, cols, sections = _random_integers(start=2, stop=5, count=3) array = numpy.random.randint(0, 20, size=(rows, cols, sections)) l = adapter.SFFLattice.from_array(array) l_json = l.as_json() l2 = adapter.SFFLattice.from_json(l_json) self.assertEqual(l, l2) def test_hff(self): # empty case l = adapter.SFFLattice() with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = l.as_hff(group) self.assertIn(u'{}'.format(l.id), group) self.assertIn(u'{}/id'.format(l.id), group) self.assertIn(u'{}/mode'.format(l.id), group) self.assertIn(u'{}/endianness'.format(l.id), group) self.assertNotIn(u'{}/size'.format(l.id), group) self.assertIn(u'{}/start'.format(l.id), group) self.assertNotIn(u'{}/data'.format(l.id), group) with h5py.File(self.test_hdf5_fn, u'r') as h: l2 = adapter.SFFLattice.from_hff(h[u'container']) self.assertEqual(l, l2) self.assertIsNone(l2.id) # non-empty case rows, cols, sections = _random_integers(count=3, start=5, stop=10) array = numpy.random.randint(0, 10, size=(rows, cols, sections)) l = adapter.SFFLattice.from_array(array) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = l.as_hff(group) self.assertIn(u'{}'.format(l.id), group) self.assertIn(u'{}/id'.format(l.id), group) self.assertIn(u'{}/mode'.format(l.id), group) self.assertIn(u'{}/endianness'.format(l.id), group) self.assertIn(u'{}/size'.format(l.id), group) self.assertIn(u'{}/start'.format(l.id), group) self.assertIn(u'{}/data'.format(l.id), group) self.assertEqual(group[u'{}/id'.format(l.id)][()], l.id) self.assertEqual(_decode(group[u'{}/mode'.format(l.id)][()], 'utf-8'), l.mode) self.assertEqual(_decode(group[u'{}/endianness'.format(l.id)][()], 'utf-8'), l.endianness) self.assertEqual(adapter.SFFVolumeStructure.from_hff(group[u'{}'.format(l.id)]), l.size) self.assertEqual(adapter.SFFVolumeIndex.from_hff(group[u'{}'.format(l.id)]), l.start) self.assertEqual(_decode(group[u'{}/data'.format(l.id)][()], 'utf-8'), l.data) with h5py.File(self.test_hdf5_fn, u'r') as h: for group in h[u'container'].values(): l2 = adapter.SFFLattice.from_hff(group) self.assertEqual(l, l2) self.assertIsInstance(l2.id, int) class TestSFFLatticeList(Py23FixTestCase): """Test the SFFLatticeList class""" @staticmethod def generate_sff_data( rows=_random_integer(start=10, stop=20), cols=_random_integer(start=10, stop=20), sections=_random_integer(start=10, stop=20) ): mode = random.choice(list(adapter.FORMAT_CHARS.keys())) endianness = random.choice(list(adapter.ENDIANNESS.keys())) size = adapter.SFFVolumeStructure(rows=rows, cols=cols, sections=sections) start = adapter.SFFVolumeIndex(rows=0, cols=0, sections=0) if re.match(r".*int.*", mode): data = numpy.random.randint(0, 100, size=(rows, cols, sections)) elif re.match(r".*float.*", mode): data = numpy.random.rand(rows, cols, sections) return mode, endianness, size, start, data @staticmethod def generate_gds_data( rows=_random_integer(start=10, stop=20), cols=_random_integer(start=10, stop=20), sections=_random_integer(start=10, stop=20) ): mode = random.choice(list(adapter.FORMAT_CHARS.keys())) endianness = random.choice(list(adapter.ENDIANNESS.keys())) size = emdb_sff.volume_structure_type(rows=rows, cols=cols, sections=sections) start = emdb_sff.volume_index_type(rows=0, cols=0, sections=0) if re.match(r".*int.*", mode): _data = numpy.random.randint(0, 100, size=(rows, cols, sections)) elif re.match(r".*float.*", mode): _data = numpy.random.rand(rows, cols, sections) data = adapter.SFFLattice._encode(_data, mode=mode, endianness=endianness) return mode, endianness, size, start, data def test_default(self): """Test default settings""" L = adapter.SFFLatticeList() self.assertRegex( _str(L), r"""SFFLatticeList\(\[.*\]\)""" ) self.assertEqual(len(L), 0) _no_items = _random_integer(start=2, stop=5) for _ in _xrange(_no_items): _mode, _endianness, _size, _start, _data = TestSFFLatticeList.generate_sff_data() L.append( adapter.SFFLattice( mode=_mode, endianness=_endianness, size=_size, start=_start, data=_data ) ) self.assertRegex( _str(L), r"""SFFLatticeList\(\[SFFLattice\(.*\]\)""" ) self.assertEqual(len(L), _no_items) self.assertEqual(list(L.get_ids()), list(_xrange(_no_items))) l_id = random.choice(list(L.get_ids())) l = L.get_by_id(l_id) self.assertIsInstance(l, adapter.SFFLattice) self.assertEqual(l.id, l_id) self.assertIn(l.mode, list(adapter.FORMAT_CHARS.keys())) self.assertIn(l.endianness, list(adapter.ENDIANNESS.keys())) self.assertIsInstance(l.size, adapter.SFFVolumeStructure) self.assertIsInstance(l.start, adapter.SFFVolumeIndex) self.assertIsInstance(l.data, _str) self.assertIsInstance(l.data_array, numpy.ndarray) self.assertTrue(len(l.data) > 0) def test_create_from_gds_type(self): """Test that we can create from gds_type""" _L = emdb_sff.lattice_listType() _no_items = _random_integer(start=2, stop=5) _l = list() for i in _xrange(_no_items): _mode, _endianness, _size, _start, _data = TestSFFLatticeList.generate_gds_data() _l.append( emdb_sff.lattice_type( id=i, mode=_mode, endianness=_endianness, size=_size, start=_start, data=_data ) ) _L.set_lattice(_l) L = adapter.SFFLatticeList.from_gds_type(_L) self.assertRegex( _str(L), r"""SFFLatticeList\(\[SFFLattice\(.*\]\)""" ) self.assertEqual(len(L), _no_items) self.assertEqual(list(L.get_ids()), list(_xrange(_no_items))) l_id = random.choice(list(L.get_ids())) l = L.get_by_id(l_id) self.assertIsInstance(l, adapter.SFFLattice) self.assertEqual(l.id, l_id) self.assertIn(l.mode, list(adapter.FORMAT_CHARS.keys())) self.assertIn(l.endianness, list(adapter.ENDIANNESS.keys())) self.assertIsInstance(l.size, adapter.SFFVolumeStructure) self.assertIsInstance(l.start, adapter.SFFVolumeIndex) self.assertIsInstance(l.data, _str) self.assertIsInstance(l.data_array, numpy.ndarray) self.assertTrue(len(l.data) > 0) def test_json(self): """Test that we can convert back and forth into JSON""" L = adapter.SFFLatticeList() _no_lats = _random_integer(start=2, stop=5) for _ in _xrange(_no_lats): _mode, _endianness, _size, _start, _data = TestSFFLatticeList.generate_sff_data() L.append( adapter.SFFLattice( mode=_mode, endianness=_endianness, size=_size, start=_start, data=_data ) ) L_json = L.as_json() L2 = adapter.SFFLatticeList.from_json(L_json) self.assertEqual(L, L2) def test_hff(self): # empty case L = adapter.SFFLatticeList() with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = L.as_hff(group) self.assertIn(u'lattice_list', group) self.assertEqual(len(group[u'lattice_list']), 0) with h5py.File(self.test_hdf5_fn, u'r') as h: L2 = adapter.SFFLatticeList.from_hff(h[u'container']) self.assertEqual(L, L2) # non-empty case L = adapter.SFFLatticeList() _no_lats = _random_integer(start=2, stop=15) for _ in _xrange(_no_lats): _mode, _endianness, _size, _start, _data = TestSFFLatticeList.generate_sff_data() L.append( adapter.SFFLattice( mode=_mode, endianness=_endianness, size=_size, start=_start, data=_data ) ) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = L.as_hff(group) self.assertIn(u'lattice_list', group) self.assertEqual(len(group[u'lattice_list']), len(L)) for i in _xrange(_no_lats): self.assertEqual(L[i].mode, _decode(group[u'lattice_list'][_str(i)][u'mode'][()], 'utf-8')) self.assertEqual(L[i].endianness, _decode(group[u'lattice_list'][_str(i)][u'endianness'][()], 'utf-8')) self.assertEqual(L[i].size, adapter.SFFVolumeStructure.from_hff(group[u'lattice_list/{}'.format(i)])) self.assertEqual(L[i].start, adapter.SFFVolumeIndex.from_hff(group[u'lattice_list/{}'.format(i)])) self.assertEqual(L[i].data, _decode(group[u'lattice_list'][_str(i)][u'data'][()], 'utf-8')) with h5py.File(self.test_hdf5_fn, u'r') as h: L2 = adapter.SFFLatticeList.from_hff(h[u'container']) self.assertEqual(L, L2) class TestSFFVertices(Py23FixTestCase): """SFFVertices tests""" def setUp(self): self.num_vertices = _random_integer(start=2, stop=10) self.mode = u'float64' self.endian = u'little' self.data = numpy.random.rand(self.num_vertices, 3) self.bytes = adapter.SFFVertices._encode(self.data, mode=self.mode, endianness=self.endian) self.unicode = _decode(self.bytes, u'utf-8') def test_create_init_array(self): """Default configuration""" v = adapter.SFFVertices( num_vertices=self.num_vertices, mode=self.mode, endianness=self.endian, data=self.data ) self.assertIsInstance(v, adapter.SFFVertices) self.assertEqual(v.mode, self.mode) self.assertEqual(v.endianness, self.endian) self.assertIsInstance(v.data, _str) self.assertEqual(v.data, adapter.SFFVertices._encode(self.data, mode=self.mode, endianness=self.endian)) self.assertEqual(v.data_array.flatten().tolist(), self.data.flatten().tolist()) if len(v.data) < 100: _data = _decode(v.data, u"utf-8") else: _data = _decode(v.data[:100] + u"...", u"utf-8") self.assertEqual( _str(v), u"""SFFVertices(num_vertices={}, mode="{}", endianness="{}", data="{}")""".format( self.num_vertices, self.mode, self.endian, _data ) ) with self.assertRaisesRegex(ValueError, r".invalid dimensions.*"): adapter.SFFVertices( num_vertices=self.num_vertices, data=numpy.random.rand(self.num_vertices, 4) ) def test_create_init_bytes(self): """Test that we can create from bytes using __init__""" v = adapter.SFFVertices( num_vertices=self.num_vertices, mode=self.mode, endianness=self.endian, data=self.bytes ) self.assertIsInstance(v, adapter.SFFVertices) self.assertEqual(v.mode, self.mode) self.assertEqual(v.endianness, self.endian) self.assertEqual(v.data, adapter.SFFVertices._encode(self.data, mode=self.mode, endianness=self.endian)) self.assertEqual(v.data_array.flatten().tolist(), self.data.flatten().tolist()) if len(v.data) < 100: _data = _decode(v.data, u"utf-8") else: _data = _decode(v.data[:100] + u"...", u"utf-8") self.assertEqual( _str(v), u"""SFFVertices(num_vertices={}, mode="{}", endianness="{}", data="{}")""".format( self.num_vertices, self.mode, self.endian, _data ) ) with self.assertRaisesRegex(ValueError, r".*mismatch.*stated.*retrieved.*"): v = adapter.SFFVertices( num_vertices=self.num_vertices * 2, mode=self.mode, endianness=self.endian, data=self.bytes ) def test_create_init_unicode(self): """Test that we can create from unicode using __init__""" v = adapter.SFFVertices( num_vertices=self.num_vertices, mode=self.mode, endianness=self.endian, data=self.unicode ) self.assertIsInstance(v, adapter.SFFVertices) self.assertEqual(v.mode, self.mode) self.assertEqual(v.endianness, self.endian) self.assertEqual(v.data, adapter.SFFVertices._encode(self.data, mode=self.mode, endianness=self.endian)) self.assertEqual(v.data_array.flatten().tolist(), self.data.flatten().tolist()) if len(v.data) < 100: _data = _decode(v.data, u"utf-8") else: _data = _decode(v.data[:100] + u"...", u"utf-8") self.assertEqual( _str(v), u"""SFFVertices(num_vertices={}, mode="{}", endianness="{}", data="{}")""".format( self.num_vertices, self.mode, self.endian, _data ) ) with self.assertRaisesRegex(ValueError, r".*mismatch.*stated.*retrieved.*"): v = adapter.SFFVertices( num_vertices=self.num_vertices * 2, mode=self.mode, endianness=self.endian, data=self.bytes ) def test_create_classmethod_array(self): """Test that we can create an object using the classmethod""" v = adapter.SFFVertices.from_array( data=self.data, mode=self.mode, endianness=self.endian, ) self.assertIsInstance(v, adapter.SFFVertices) self.assertEqual(v.mode, self.mode) self.assertEqual(v.endianness, self.endian) self.assertEqual(v.data, adapter.SFFVertices._encode(self.data, mode=self.mode, endianness=self.endian)) self.assertEqual(v.data_array.flatten().tolist(), self.data.flatten().tolist()) if len(v.data) < 100: _data = _decode(v.data, u"utf-8") else: _data = _decode(v.data[:100] + u"...", u"utf-8") self.assertEqual( _str(v), u"""SFFVertices(num_vertices={}, mode="{}", endianness="{}", data="{}")""".format( self.num_vertices, self.mode, self.endian, _data, ) ) def test_create_classmethod_bytes(self): """Test that we can create an object using the classmethod""" v = adapter.SFFVertices.from_bytes( self.bytes, self.num_vertices, mode=self.mode, endianness=self.endian, ) self.assertIsInstance(v, adapter.SFFVertices) self.assertEqual(v.mode, self.mode) self.assertEqual(v.endianness, self.endian) self.assertEqual(v.data, adapter.SFFVertices._encode(self.data, mode=self.mode, endianness=self.endian)) self.assertEqual(v.data_array.flatten().tolist(), self.data.flatten().tolist()) if len(v.data) < 100: _data = _decode(v.data, u"utf-8") else: _data = _decode(v.data[:100] + u"...", u"utf-8") self.assertEqual( _str(v), u"""SFFVertices(num_vertices={}, mode="{}", endianness="{}", data="{}")""".format( self.num_vertices, self.mode, self.endian, _data ) ) def test_dict_interface(self): """Test the dictionary interface""" v = adapter.SFFVertices( num_vertices=self.num_vertices, mode=self.mode, endianness=self.endian, data=self.data ) index = _random_integer(start=0, stop=self.num_vertices - 1) self.assertTrue(numpy.array_equal(self.data[index], v[index])) def test_from_gds_type(self): """Test that we can create an object direct from gds_type""" _v = emdb_sff.vertices_type( num_vertices=self.num_vertices, mode=self.mode, endianness=self.endian, data=self.bytes ) v = adapter.SFFVertices.from_gds_type(_v) self.assertEqual(v.num_vertices, self.num_vertices) self.assertTrue(hasattr(v, u'data_array')) self.assertIsInstance(v.data_array, numpy.ndarray) def test_json(self): """Interconversion to JSON""" v = adapter.SFFVertices( num_vertices=self.num_vertices, mode=self.mode, endianness=self.endian, data=self.data ) v_json = v.as_json() self.assertEqual(v_json, { u'num_vertices': self.num_vertices, u'mode': self.mode, u'endianness': self.endian, u'data': _decode(self.bytes, 'ASCII'), }) v2 = adapter.SFFVertices.from_json(v_json) self.assertEqual(v, v2) def test_hff(self): # empty v = adapter.SFFVertices() with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = v.as_hff(group) self.assertIn(u'vertices', group) self.assertNotIn(u'vertices/num_vertices', group) self.assertIn(u'vertices/mode', group) self.assertIn(u'vertices/endianness', group) self.assertNotIn(u'vertices/data', group) with h5py.File(self.test_hdf5_fn, u'r') as h: v2 = adapter.SFFVertices.from_hff(h[u'container']) self.assertEqual(v, v2) # non-empty v = adapter.SFFVertices( num_vertices=self.num_vertices, mode=self.mode, endianness=self.endian, data=self.data ) with h5py.File(self.test_hdf5_fn, u'w') as h: group = h.create_group(u'container') group = v.as_hff(group) self.assertIn(u'vertices', group) self.assertIn(u'vertices/num_vertices', group) self.assertEqual(group[u'vertices/num_vertices'][()], v.num_vertices) self.assertIn(u'vertices/mode', group) self.assertEqual(_decode(group[u'vertices/mode'][()], 'utf-8'), v.mode) self.assertIn(u'vertices/endianness', group) self.assertEqual(_decode(group[u'vertices/endianness'][()], 'utf-8'), v.endianness) self.assertIn(u'vertices/data', group) self.assertEqual(_decode(group[u'vertices/data'][()], 'utf-8'), v.data) with h5py.File(self.test_hdf5_fn, u'r') as h: v2 = adapter.SFFVertices.from_hff(h[u'container']) self.assertEqual(v, v2) class TestSFFNormals(Py23FixTestCase): """SFFNormals tests""" def setUp(self): self.num_normals = _random_integer(start=2, stop=10) self.mode = u'float64' self.endian = u'little' self.data =
numpy.random.rand(self.num_normals, 3)
numpy.random.rand
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from .utils import cKDTree, guess_pos_columns import numpy as np from pandas import DataFrame from .utils import pandas_concat # Maximum number of elements in the array of all distances. # Should be roughly (bytes of available memory)/16 MAX_ARRAY_SIZE = 1e8 def proximity(features, pos_columns=None): """Find the distance to each feature's nearest neighbor. Parameters ---------- features : DataFrame pos_columns : list of column names ['x', 'y'] by default Returns ------- proximity : DataFrame distance to each particle's nearest neighbor, indexed by particle if 'particle' column is present in input Examples -------- Find the proximity of each particle to its nearest neighbor in every frame. >>> prox = t.groupby('frame').apply(proximity).reset_index() >>> avg_prox = prox.groupby('particle')['proximity'].mean() And filter the trajectories... >>> particle_nos = avg_prox[avg_prox > 20].index >>> t_filtered = t[t['particle'].isin(particle_nos)] """ if pos_columns is None: pos_columns = ['x', 'y'] leaf_size = max(1, int(np.round(np.log10(len(features))))) tree = cKDTree(features[pos_columns].copy(), leaf_size) proximity = tree.query(tree.data, 2)[0][:, 1] result = DataFrame({'proximity': proximity}) if 'particle' in features: result.set_index(features['particle'], inplace=True) return result def pair_correlation_2d(feat, cutoff, fraction=1., dr=.5, p_indices=None, ndensity=None, boundary=None, handle_edge=True, max_rel_ndensity=10): """Calculate the pair correlation function in 2 dimensions. Parameters ---------- feat : Pandas DataFrame DataFrame containing the x and y coordinates of particles cutoff : float Maximum distance to calculate g(r) fraction : float, optional The fraction of particles to calculate g(r) with. May be used to increase speed of function. Particles selected at random. dr : float, optional The bin width p_indices : list or ndarray, optional Only consider a pair of particles if one of them is in 'p_indices'. Uses zero-based indexing, regardless of how 'feat' is indexed. ndensity : float, optional Density of particle packing. If not specified, density will be calculated assuming rectangular homogeneous arrangement. boundary : tuple, optional Tuple specifying rectangular prism boundary of particles (xmin, xmax, ymin, ymax). Must be floats. Default is to assume a rectangular packing. Boundaries are determined by edge particles. handle_edge : boolean, optional If true, compensate for reduced area around particles near the edges. max_rel_ndensity : number, optional The relative maximum density deviation, used to estimate the maximum number of neighbours. Lower numbers increase performance, until the method fails because there are more neighbours than expected. Returns ------- r_edges : array The bin edges, with 1 more element than g_r. g_r : array The values of g_r. """ if boundary is None: xmin, xmax, ymin, ymax = (feat.x.min(), feat.x.max(), feat.y.min(), feat.y.max()) else: xmin, xmax, ymin, ymax = boundary # Disregard all particles outside the bounding box feat = feat[(feat.x >= xmin) & (feat.x <= xmax) & (feat.y >= ymin) & (feat.y <= ymax)] if ndensity is None: # particle packing density ndensity = (feat.x.count() - 1) / ((xmax - xmin) * (ymax - ymin)) if p_indices is None: if fraction == 1.: p_indices = slice(len(feat)) else: # grab random sample of particles p_indices = np.random.randint(0, len(feat), int(fraction * len(feat))) # radii bins to search for particles r_edges = np.arange(0, cutoff + dr, dr) # initialize kdtree for fast neighbor search ckdtree = cKDTree(feat[['x', 'y']]) pos = ckdtree.data[p_indices] # Estimate upper bound for neighborhood particle count max_p_count = int(np.pi * (r_edges.max() + dr)**2 * ndensity * max_rel_ndensity) # Protect against too large memory usage if len(pos) * max_p_count > MAX_ARRAY_SIZE: raise MemoryError('The distance array will be larger than the maximum ' 'allowed size. Please reduce the cutoff or ' 'max_rel_ndensity. Or run the analysis on a fraction ' 'of the features using the fraction parameter.') dist, idxs = ckdtree.query(pos, k=max_p_count, distance_upper_bound=cutoff) if np.any(np.isfinite(dist[:, -1])): raise RuntimeError("There are too many particle pairs per particle. " "Apparently, density fluctuations are larger than " "max_rel_ndensity. Please increase it.") # drop zero and infinite dist values mask = (dist > 0) & np.isfinite(dist) dist = dist[mask] if handle_edge: pos_repeated = pos[:, np.newaxis].repeat(max_p_count, axis=1)[mask] arclen = arclen_2d_bounded(dist, pos_repeated, np.array([[xmin, xmax], [ymin, ymax]])) else: arclen = 2*np.pi*dist g_r = np.histogram(dist, bins=r_edges, weights=1/arclen)[0] return r_edges, g_r / (ndensity * len(pos) * dr) def pair_correlation_3d(feat, cutoff, fraction=1., dr=.5, p_indices=None, ndensity=None, boundary=None, handle_edge=True, max_rel_ndensity=10): """Calculate the pair correlation function in 3 dimensions. Parameters ---------- feat : Pandas DataFrame DataFrame containing the x, y and z coordinates of particles cutoff : float Maximum distance to calculate g(r) fraction : float, optional The fraction of particles to calculate g(r) with. May be used to increase speed of function. Particles selected at random. dr : float, optional The bin width p_indices : list or ndarray, optional Only consider a pair of particles if one of them is in 'p_indices'. Uses zero-based indexing, regardless of how 'feat' is indexed. ndensity : float, optional Density of particle packing. If not specified, density will be calculated assuming rectangular homogeneous arrangement. boundary : tuple, optional Tuple specifying rectangular boundary of particles (xmin, xmax, ymin, ymax, zmin, zmax). Must be floats. Default is to assume a rectangular packing. Boundaries are determined by edge particles. handle_edge : boolean, optional If true, compensate for reduced volume around particles near the edges. max_rel_ndensity : number, optional The relative maximum density deviation, used to estimate the maximum number of neighbours. Lower numbers increase performance, until the method fails because there are more neighbours than expected. Returns ------- r_edges : array The bin edges, with 1 more element than g_r. g_r : array The values of g_r. """ if boundary is None: xmin, xmax, ymin, ymax, zmin, zmax = (feat.x.min(), feat.x.max(), feat.y.min(), feat.y.max(), feat.z.min(), feat.z.max()) else: xmin, xmax, ymin, ymax, zmin, zmax = boundary # Disregard all particles outside the bounding box feat = feat[(feat.x >= xmin) & (feat.x <= xmax) & (feat.y >= ymin) & (feat.y <= ymax) & (feat.z >= zmin) & (feat.z <= zmax)] if ndensity is None: # particle packing density ndensity = (feat.x.count() - 1) / \ ((xmax - xmin) * (ymax - ymin) * (zmax - zmin)) if p_indices is None: if fraction == 1.: p_indices = slice(len(feat)) else: # grab random sample of particles p_indices = np.random.randint(0, len(feat), int(fraction * len(feat))) # radii bins to search for particles r_edges = np.arange(0, cutoff + dr, dr) # initialize kdtree for fast neighbor search ckdtree = cKDTree(feat[['x', 'y', 'z']]) pos = ckdtree.data[p_indices] # Estimate upper bound for neighborhood particle count max_p_count = int((4./3.) * np.pi * (r_edges.max() + dr)**3 * ndensity * max_rel_ndensity) # Protect against too large memory usage if len(pos) * max_p_count > MAX_ARRAY_SIZE: raise MemoryError('The distance array will be larger than the maximum ' 'allowed size. Please reduce the cutoff or ' 'max_rel_ndensity. Or run the analysis on a fraction ' 'of the features using the fraction parameter.') dist, idxs = ckdtree.query(pos, k=max_p_count, distance_upper_bound=cutoff) if np.any(np.isfinite(dist[:, -1])): raise RuntimeError("There are too many particle pairs in the frame. " "Please reduce the cutoff distance, increase " "max_rel_ndensity, or use a fraction.") # drop zero and infinite dist values mask = (dist > 0) & np.isfinite(dist) dist = dist[mask] if handle_edge: pos_repeated = pos[:, np.newaxis].repeat(max_p_count, axis=1)[mask] area = area_3d_bounded(dist, pos_repeated, np.array([[xmin, xmax], [ymin, ymax], [zmin, zmax]])) else: area = 4*np.pi*dist**2 g_r = np.histogram(dist, bins=r_edges, weights=1/area)[0] return r_edges, g_r / (ndensity * len(pos) * dr) def circle_cap_arclen(h, r): """ Length of a circle arc of circle with radius R that is bounded by a straight line `h` from the origin. h >= 0, h < R""" return 2*r*np.arccos(h / r) def circle_corner_arclen(h1, h2, r): """ Length of a circle arc of circle with radius R that is bounded by two perpendicular straight lines `h1` and `h2` from the origin. h1**2 + h2**2 < R**2 h1 >= R h2 >= R """ return r*(np.arccos(h2 / r) - np.arcsin(h1 / r)) def sphere_cap_area(h, r): """ Area of a sphere cap of sphere with radius R that is bounded by a flat plane `h` from the origin. h >= 0, h < R""" return 2*np.pi*r*(r-h) def sphere_edge_area(x, y, r): """ Area of a sphere 'edge' of sphere with radius R that is bounded by two perpendicular flat planes `h0`, `h1` from the origin. h >= 0, h < R""" p = np.sqrt(r**2 - x**2 - y**2) A = (r - x - y)*np.pi - 2*r*np.arctan(x*y/(p*r)) + \ 2*x*np.arctan(y/p) + 2*y*np.arctan(x/p) return A*r def sphere_corner_area(x, y, z, r): """ Area of a sphere 'corner' of sphere with radius R that is bounded by three perpendicular flat planes `h0`, `h1`, `h2` from the origin. """ pxy = np.sqrt(r**2 - x**2 - y**2) pyz = np.sqrt(r**2 - y**2 - z**2) pxz = np.sqrt(r**2 - x**2 - z**2) A = np.pi*(r - x - y - z)/2 + \ x*(np.arctan(y/pxy) + np.arctan(z/pxz)) - r*np.arctan(y*z/(r*pyz)) + \ y*(np.arctan(x/pxy) + np.arctan(z/pyz)) - r*np.arctan(x*z/(r*pxz)) + \ z*(np.arctan(x/pxz) + np.arctan(y/pyz)) - r*
np.arctan(x*y/(r*pxy))
numpy.arctan
""" This module """ import numpy, math from numpy import log10 as log10 from numpy import pi as pi from scipy.interpolate import UnivariateSpline as interpolate from scipy.optimize import curve_fit as cf from scipy.optimize import minimize from scipy.integrate import simps, quad from pmesh.particlemesh import ParticleMesh import sys sys.path.append("/global/homes/c/chmodi/Programs/Py_codes/modules/") import mytools as tools import matplotlib.pyplot as plt from matplotlib.colors import LogNorm, SymLogNorm from sklearn import svm ##slope = 0 intercept = 0 ######################################################################### def sm_scale(mass, ovd = 178., rhoc = 27.756, M = 0.3175): '''Return Eulerian scale of the halo for solar mass''' rhobar = ovd * rhoc*M*10**10. return (3 * mass / (4*numpy.pi*rhobar))**(1/3.) def sigmoidf(delta, hold, alpha = 0.8, b = 1): '''Pass delta through a sigmoid of threshold = hold, multiplicative coeff = alpha, power = b''' z = alpha * (delta**b - hold**b) return 1./(1 + numpy.exp(-z)) def normalize(ar): '''Normalize the array by subtracting the mean and dividing by std ''' mean = ar.mean() std = ar.std() return (ar - mean)/std def svm_thresh(ft, cls, cls_wt = None): '''Do the svm on the ft(feature) and cl(ass) ''' if cls_wt is None: clf = svm.LinearSVC(max_iter=10000, dual = False) else: clf = svm.LinearSVC(max_iter=10000, dual = False, class_weight = cls_wt) clf.fit(ft, cls) return clf.coef_[0], clf.intercept_[0], clf.score(ft, cls) def find_mask(ftlist, cls, mesh, catpos, alpha = 20., b = 1, file = None, label = "None", cls_wt = None, NN = False): '''Find mask passed through sigmoid''' mesh.push() nft = len(ftlist) ft = numpy.empty([cls.size, nft]) if NN: nc = mesh.real.shape[0] bs = mesh.BoxSize[0] side = bs/nc pos = numpy.round(catpos/side).astype(int) pos[pos == nc] = 0 for foo in range(nft): ft[:, foo] = ftlist[foo][tuple(pos.T)] else: for foo in range(nft): mesh.clear() mesh.real[:] = ftlist[foo] ft[:, foo] = mesh.readout(catpos) coeff, intercept, score = svm_thresh(ft, cls, cls_wt) if file is not None: file.write("label = %s , nft = %d\n"%(label, nft)) file.write("coeff = %s, intercept = %s \n"%(str(coeff), str(intercept))) file.write("threshold = %s, score = %0.3f \n"%(str(intercept/coeff[0]), score)) pmgrid = numpy.zeros_like(mesh.real) for foo in range(nft): pmgrid += coeff[foo]*ftlist[foo] mask = sigmoidf(pmgrid, -intercept, alpha, b) mesh.pop() return mask, coeff, intercept def crosspower(mesh1, mesh2, bs, a1 = False, a2 = False, cross = True, normit = False, std1 = False, unlog = False, ovd1 = False, ovd2 = False): pmesh1 = mesh1.copy() pmesh2 = mesh2.copy() if unlog: pmesh1 =10**pmesh1 pmesh2 =10**pmesh2 if normit: pmesh1 = normalize(pmesh1) pmesh2 = normalize(pmesh2) if pmesh1.mean() < 10**-6: pmesh1 += 1 if pmesh2.mean() < 10**-6: pmesh2 += 1 if std1: pmesh1 = pmesh1/pmesh1.std() pmesh2 = pmesh2/pmesh2.std() add1 = 0 add2 = 0 if a1: k, pow1 = tools.power_cheap(pmesh1 + add1, boxsize = bs) if a2: k, pow2 = tools.power_cheap(pmesh2 + add2, boxsize = bs) if cross: k, powc = tools.power_cheap(pmesh1 + add1, pmesh2 + add2, boxsize = bs) toret = [k] if a1: toret.append(pow1) if a2: toret.append(pow2) if cross: toret.append(powc) return toret ######################################################################### ###Different style of painting and other array transformations def grid(mesh, pos = None, wts = None, style = 'CIC', ingrid = None, logscale = False, dolog = False, smooth = None, R=0, dologsm = False): mesh.push() if pos is None: if ingrid is None: return 'No input given! Give either position or a grid to operate on.' else: mesh.clear() mesh.real[:] = ingrid[:] if logscale: mesh.real[:] = 10**mesh.real[:] mesh.real[mesh.real == 1] = 0 else: if wts is None: wts = numpy.ones(pos.shape[0]) mesh.clear() if style == 'CIC': mesh.paint(pos, mass = wts) elif style == 'NN': nc = mesh.real.shape[0] mesh.real[:], dummy = numpy.histogramdd(pos, bins = (nc, nc, nc), weights=wts) toret = mesh.real.copy() if dolog: dummy = numpy.empty_like(toret) dummy[:] = toret[:] dummy[dummy <= 0] = 1 dummy = log10(dummy) toret2 = dummy.copy() if smooth is not None: mesh.clear() mesh.real[:] = toret[:] mesh.r2c() if smooth == 'Fingauss': mesh.transfer([tools.pmFingauss(R)]) elif smooth == 'Gauss': mesh.transfer([tools.pmGauss(R)]) elif smooth == 'Tophat': mesh.transfer([tools.pmTophat(R)]) else: return 'Smoothing kernel not defined' mesh.c2r() toret3 = mesh.real.copy() if dologsm: dummy = numpy.empty_like(toret3) dummy[:] = toret3[:] dummy[dummy <= 0] = 1 dummy = log10(dummy) toret4 = dummy.copy() mesh.pop() if dolog: if smooth: if dologsm: return toret, toret2, toret3, toret4 else: return toret, toret2, toret3 else: return toret, toret2 elif smooth: if dologsm: return toret, toret3, toret4 else: return toret, toret3 else: return toret ######################################################################### #### Stellar Mass def line(x, m , c): return m*x + c def scatter(hmass, sigma, seed = 123): '''Take in halo mass in solar mass and return the log-normally scattered mass ''' logl = numpy.log10(hmass) rng = numpy.random.RandomState(seed) t = rng.normal(scale=sigma, size=len(logl)) logl = logl + t return 10**logl def stellar_relation(): x1 = 10**15 * 1.6 x2 = 10**12 * 4 y1 = x1 * 1.5*10**-3 y2 = x2 * 3.2*10**-2 line1, dummy = cf(line, numpy.array([log10(x1), log10(x2)]), numpy.array([log10(y1), log10(y2)])) y1 = x1 * 3.5*10**-4 y2 = x2 * 2.2*10**-2 line2, dummy = cf(line, numpy.array([log10(x1), log10(x2)]), numpy.array([log10(y1), log10(y2)])) #mean line m = (line1[0] + line2[0])*0.5 c = (line1[1] + line2[1])*0.5 xval = numpy.linspace(log10(x2), log10(x1)) xline = line(xval, m, c) stellar_sigma = interpolate(xline, 0.01 + (line(xval, line1[0], line1[1]) - xline)) return stellar_sigma, m, c def htostar(hmass, seed = 123, stellar_sigma = stellar_relation()[0], slope = stellar_relation()[1],\ intercept = stellar_relation()[2]): '''Take in halo mass in solar mass and return the stellar mass in solar mass. ''' logh = numpy.log10(hmass) rng = numpy.random.RandomState(seed) logs = logh*slope + intercept testf = lambda x : rng.normal(0, x, 1) logs = logs + numpy.array(list(map(testf, stellar_sigma(logs)))).T return 10**logs[0, :] def twiddle(halomass, sigma, seed=12345): length = halomass.copy() logl = numpy.log10(length) rng = numpy.random.RandomState(seed) t = rng.normal(scale=sigma, size=len(logl)) logl = logl + t # logl[0] = np.inf arg = logl.argsort()[::-1] halos = halomass[arg].copy() return halos, arg ######################################################################### ###Functions for fitting mass def fit_log(x, *p): ''' y = b*numpy.log10(1 + a*x) + c''' a, b, c = p x2 = numpy.log10(1 + a*x) return b*x2 + c def quad_exp(x, *p): '''y = 10**z *(ax**2 + b*x + c)''' a, b, c, y = p return (10**y) * (a*x**2 + b*x+ c ) def chi_sqf(p, xdata, ydata, sigma): model = quad_exp(xdata, *p) return (((model - ydata)/sigma)**2).sum() def quad_exp_der(p, xdata, ydata, sigma): model = quad_exp(xdata, *p) fac = (2*(model - ydata)/sigma) a, b, c, y = p #a, b, c, y = p; model = (10**y) * (a*x**2 + b*x+ c ) dmdy = numpy.log(10)*model*fac dmda = (10**y)*(xdata**2)*fac dmdb = (10**y)*xdata*fac dmdc = (10**y)*fac return numpy.array([dmda.sum(), dmdb.sum(), dmdc.sum(), dmdy.sum()]).T def domass_10min(Y, X, func = chi_sqf, p0 = [1, 1, 1, 1], lim = False, sigma = True, absig = False, \ abund = False, retdata = False, nonzeroy = True, ranzero = 0, tol = 0): xdata = X.astype("float64").flatten() ydata = Y.astype("float64").flatten() if nonzeroy: pos = numpy.where(ydata > 0)[0] ydata = ydata[pos] xdata = xdata[pos] if abund: xdata = numpy.sort(xdata)[::-1] ydata = numpy.sort(ydata)[::-1] if lim: pos = numpy.where(ydata > (lim))[0] ydata = ydata[pos] xdata = xdata[pos] if ranzero: posz = numpy.where(ydata == 0)[0] posz = numpy.random.permutation(posz) pos = numpy.concatenate((pos, posz[:int(ranzero*Y.size/100)])) if sigma: sigmaval = ydata.copy() sigmaval[sigmaval == 0] = 1 else: sigmaval = numpy.ones_like(ydata) # res = minimize(func, x0 = p0, args =(xdata, ydata, sigmaval), jac = quad_exp_der,\ # method='L-BFGS-B', options = {'ftol' : 10**-15, 'gtol':10**-10}) res = minimize(func, x0 = p0, args =(xdata, ydata, sigmaval), jac = quad_exp_der,\ method='BFGS', options = {'gtol':10**-10}) # if tol: # res = minimize(func, x0 = p0, args =(xdata, ydata, sigmaval), method = 'Nelder-Mead', tol=10**-10) # else:res = minimize(func, x0 = p0, args =(xdata, ydata, sigmaval), method = 'Nelder-Mead', options ={'fatol':0.0001}) print(res.message, res.nit) sigmass = quad_exp(X, *res.x) if retdata: return sigmass, res.x, xdata, ydata else: return sigmass, res.x def domass(Y, X, func = fit_log, p0 = [1, 2, 8], lim = False, loglim = False, sigma = True, absig = False, \ abund = False, retdata = False, nonzeroy = True, ranzero = 0): '''Take in X(delta) & Y(loghalo) field and fit with function 'func' and starting parameter 'p0' ''' xdata = X.flatten() ydata = Y.flatten() if nonzeroy: pos = numpy.where(ydata > 0)[0] if ranzero: posz = numpy.where(ydata == 0)[0] posz = numpy.random.permutation(posz) pos = numpy.concatenate((pos, posz[:int(ranzero*Y.size/100)])) ydata = ydata[pos] xdata = xdata[pos] if abund: #xdata = xdata[xdata > 0].flatten() #ydata = ydata[ydata > 0].flatten() xdata = numpy.sort(xdata)[::-1] ydata = numpy.sort(ydata)[::-1] if lim: pos = numpy.where(ydata > (lim))[0] ydata = ydata[pos] xdata = xdata[pos] if loglim: pos = numpy.where(ydata >
log10(lim)
numpy.log10
# -*- coding: utf-8 -*- """ Created on Mon Dec 6 19:54:46 2021 @author: GSung """ import pytest import numpy as np from src.AutomaticDifferentiation.ReverseAD import ReverseAD from src.AutomaticDifferentiation.ReverseAD import ReverseFunctions class TestFunctions: ########################################## # __init__ def test_init_value(self): """check that variables can be initialized correctly""" x = ReverseAD(4) assert x.value == 4 def test_init_grad(self): """check that variables can be initialized correctly""" x = ReverseAD(4) assert x.local_gradients == [(None,1)] ########################################## # add def test_add_value(self): x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") z = ReverseAD(4, label = "z") f = ReverseFunctions([x + y, y + z + 2], [x,y,z]) assert f.vals == [5,9] def test_add_ders(self): x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") z = ReverseAD(4, label = "z") f = ReverseFunctions([x + y, y + z + 2], [x, y, z]) assert np.array_equal(f.ders, np.array([[1, 1, 0],[0, 1, 1]])) def test_add_label(self): x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") z = ReverseAD(4, label = "z") f = ReverseFunctions([x + y, y + z + 2], [x, y, z]) assert f.vars == ['x','y','z'] def test_radd_value(self): x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") z = ReverseAD(4, label = "z") f = ReverseFunctions([3 + x, y + z], [x, y, z]) assert f.vals == [5,7] def test_radd_ders(self): x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") z = ReverseAD(4, label = "z") f = ReverseFunctions([3 + x, y + z], [x, y, z]) assert np.array_equal(f.ders, np.array([[1, 0, 0],[0, 1, 1]])) def test_radd_label(self): x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([x + y, 2 + y], [x, y]) assert f.vars == ['x','y'] ########################################## # Subtraction def test_sub_val(self): """check that __add__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([x - 3.0, x + y]) assert f.vals == [-1.0, 5] def test_sub_der(self): """check that __add__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([x - 3.0, x + y], [x, y]) assert np.array_equal(f.ders,np.array([[1, 0],[1,1]])) def test_sub_label(self): """check that __add__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([x - 3.0, x + y], [x, y]) assert f.vars == ['x','y'] def test_rsub_val(self): """check that __radd__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([3.0 - x, x - y, y - x],[x,y]) assert np.array_equal(f.vals, [1, -1, 1]) def test_rsub_der(self): """check that __radd__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([3.0 - x, x - y, y - x],[x,y]) assert np.array_equal(f.ders,[[-1,0], [1,-1],[-1, 1]]) def test_rsub_label(self): """check that __radd__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([3.0 - x, x - y, y - x],[x,y]) assert f.vars == ['x', 'y'] ########################################## # multiplication def test_mul_val(self): """check that __mul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([x * 3, x * y, y * x], [x,y]) assert f.vals == [6.0,6.0,6.0] def test_mul_der(self): """check that __mul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([x * 3, x * y, y * x], [x,y]) assert np.array_equal(f.ders, [[3.0,0],[3.0,2.0],[3.0, 2.0]]) def test_mul_label(self): """check that __mul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([x * 3, x * y, y * x], [x,y]) assert f.vars == ['x','y'] def test_rmul_val(self): """check that __rmul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([3 * x, x * y, y * x], [x,y]) assert f.vals == [6,6,6] def test_rmul_der(self): """check that __rmul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([3 * x, x * y, y * x], [x,y]) assert np.array_equal(f.ders, [[3,0],[3,2],[3, 2]]) def test_rmul_label(self): """check that __rmul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([3 * x, x * y, y * x], [x,y]) assert f.vars == ['x','y'] ########################################## # Inversion def test_inv_val(self): """check that __truediv__ has been overwritten correctly""" x = ReverseAD(2, label="x") f = ReverseFunctions([2 / x],[x]) assert f.vals == [1] def test_inv_der(self): """check that __truediv__ has been overwritten correctly""" x = ReverseAD(2, label="x") f = ReverseFunctions([2 / x],[x]) assert np.array_equal(f.ders, [[-0.5]]) def test_inv_label(self): """check that __truediv__ has been overwritten correctly""" x = ReverseAD(2, label="x") f = ReverseFunctions([2 / x],[x]) assert f.vars == ['x'] ########################################## # true division #TODO def test_truediv_val(self): """check that __truediv__ has been overwritten correctly""" x = ReverseAD(2, label = "x") z = ReverseAD(4, label = "z") f = ReverseFunctions([x / 2, x / z], [x, z]) assert f.vals == [1.0,0.5] def test_truediv_der(self): """check that __truediv__ has been overwritten correctly""" x = ReverseAD(2, label = "x") z = ReverseAD(4, label = "z") f = ReverseFunctions([x / 2, x / z], [x, z]) assert np.array_equal(f.ders, [[0.5, 0],[0.25, -0.125]]) def test_truediv_label(self): """check that __truediv__ has been overwritten correctly""" x = ReverseAD(2, label = "x") z = ReverseAD(4, label = "z") f = ReverseFunctions([x / 2, x / z], [x, z]) assert f.vars == ['x','z'] ########################################## # negation def test_neg_val(self): """check that __truediv__ has been overwritten correctly""" x = ReverseAD(2, label = "x") z = ReverseAD(4, label = "z") f = ReverseFunctions([-x / 2, -z], [x,z]) assert f.vals == [-1.0, -4] def test_neg_der(self): """check that __truediv__ has been overwritten correctly""" x = ReverseAD(2, label = "x") z = ReverseAD(4, label = "z") f = ReverseFunctions([-x / 2, -z], [x,z]) assert np.array_equal(f.ders, [[-0.5, 0], [0, -1]]) def test_neg_label(self): """check that __truediv__ has been overwritten correctly""" x = ReverseAD(2, label = "x") z = ReverseAD(4, label = "z") f = ReverseFunctions([-x / 2, -z], [x,z]) assert f.vars == ['x','z'] ########################################## # power def test_pow_val(self): """check that __pow__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(2, label = "y") f = ReverseFunctions([x ** 2, (x + y) ** 2], [x, y]) assert f.vals == [4, 16] def test_pow_der(self): """check that __mul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(2, label = "y") f = ReverseFunctions([x ** 2, (x + y) ** 2], [x, y]) assert np.array_equal(f.ders, [[4.0,0],[8, 8]]) def test_pow_label(self): """check that __mul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(2, label = "y") f = ReverseFunctions([x ** 2, (x + y) ** 2], [x, y]) assert f.vars == ['x','y'] def test_rpow_val(self): """check that __rmul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(2, label = "y") f = ReverseFunctions([2 ** x, 2**(x + y)], [x, y]) assert f.vals == [4, 16] def test_rpow_der(self): """check that __rmul__ has been overwritten correctly""" x = ReverseAD(2, label = "x") y = ReverseAD(3, label = "y") f = ReverseFunctions([2 ** x, 2**(x + y)], [x, y]) assert np.array_equal(f.ders, [[np.log(2)*2*2,0],[
np.log(2)
numpy.log
# Copyright 2017 The UAI-SDK Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import StringIO import numpy as np import tensorflow as tf from PIL import Image from uai.arch.tf_model import TFAiUcloudModel class MnistModel(TFAiUcloudModel): def __init__(self, conf): super(MnistModel, self).__init__(conf) def load_model(self): sess = tf.Session() x = tf.placeholder(tf.float32, [None, 784]) W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x, W) + b y_ = tf.nn.softmax(y) saver = tf.train.Saver() params_file = tf.train.latest_checkpoint("./checkpoint_dir") saver.restore(sess, params_file) self.output['sess'] = sess self.output['x'] = x self.output['y_'] = y_ def execute(self, data, batch_size): sess = self.output['sess'] x = self.output['x'] y_ = self.output['y_'] ids = [] imgs = [] for i in range(batch_size): json_input = json.load(data[i]) data_id = json_input['appid'] img_data = json_input['img'].decode('base64') im = Image.open(StringIO.StringIO(img_data)).resize((28, 28)).convert('L') im = np.array(im) im = im.reshape(784) im = im.astype(np.float32) im = np.multiply(im, 1.0 / 255.0) imgs.append(im) ids.append(data_id) imgs = np.array(imgs) print(imgs.shape) predict = sess.run(y_, feed_dict={x: imgs}) ret = [] for i in range(batch_size): ret_val = np.array_str(
np.argmax(predict[i])
numpy.argmax
#!/usr/bin/env python """ Vector Forward Mode """ import numpy as npy import numpy import instant class adouble: """Class: Algorithmic differentiation""" def __init__(self, *taylor_coeffs): """Constructor takes a list, array, tuple and variable lenght input""" if not npy.isscalar(taylor_coeffs[0]): taylor_coeffs = npy.array(taylor_coeffs[0],dtype=float) self.tc = npy.array(taylor_coeffs,dtype=float) self.off = 0 self.shp =
npy.shape(self.tc)
numpy.shape
from __future__ import division from typing import List, Optional import numpy as np import matplotlib.pyplot as plt import random import cv2 from PIL import Image, ImageDraw, ImageFont import pickle from pathlib import Path import scipy.signal as ssig import scipy.stats as sstat import math def sample_weighted(p_dict): ps = list(p_dict.keys()) return p_dict[np.random.choice(ps, p=ps)] def move_bb(bbs, t): """ Translate the bounding-boxes in by t_x,t_y. BB : 2x4xn T : 2-long np.array """ return bbs + t[:, None, None] def crop_safe(arr, rect, bbs=[], pad=0): """ ARR : arr to crop RECT: (x,y,w,h) : area to crop to BBS : nx4 xywh format bounding-boxes PAD : percentage to pad Does safe cropping. Returns the cropped rectangle and the adjusted bounding-boxes """ rect = np.array(rect) rect[:2] -= pad rect[2:] += 2*pad x1, y1 = max(0, rect[0]), max(0, rect[1]) x2, y2 = [min(arr.shape[0], rect[0]+rect[2]), min(arr.shape[1], rect[1]+rect[3])] arr = arr[y1:y2, x1:x2] if len(bbs) > 0: for i in range(len(bbs)): bbs[i, 0] -= x1 bbs[i, 1] -= y1 return arr, bbs else: return arr class BaselineState(object): A = [0.50, 0.05] def __init__(self, a) -> None: self.a = a def curve(self, x): return self.a*x**2 def differential(self, x): return 2*self.a*x @staticmethod def get_sample(): """ Returns the functions for the curve and differential for a and b """ sgn = 1.0 if np.random.rand() < 0.5: sgn = -1 a = BaselineState.A[1]*np.random.randn() + sgn*BaselineState.A[0] return BaselineState(a) class RenderFont(object): """ Outputs a rasterized font sample. Output is a binary mask matrix cropped closesly with the font. Also, outputs ground-truth bounding boxes and text string """ def __init__(self, font_dir: Path, font_model_path: Path, text_path: Path): # distribution over the type of text: # whether to get a single word, paragraph or a line: self.p_text = {1.0: 'WORD', 0.0: 'LINE', 0.0: 'PARA'} # TEXT PLACEMENT PARAMETERS: self.f_shrink = 0.90 self.max_shrink_trials = 5 # 0.9^5 ~= 0.6 # the minimum number of characters that should fit in a mask # to define the maximum font height. self.min_nchar = 2 self.min_font_h = 48 # px : 0.6*12 ~ 7px <= actual minimum height self.max_font_h = 320 # px self.p_flat = 0.10 # curved baseline: self.p_curved = 1.0 self.baselinestate = BaselineState.get_sample() # text-source : gets english text: self.text_source = TextSource(min_nchar=self.min_nchar, fn=text_path) # get font-state object: self.font_state = FontState(font_dir, font_model_path) def render_multiline(self, font: ImageFont.FreeTypeFont, text): """ renders multiline TEXT on the pygame surface SURF with the font style FONT. A new line in text is denoted by \n, no other characters are escaped. Other forms of white-spaces should be converted to space. returns the updated surface, words and the character bounding boxes. """ # get the number of lines lines = text.split('\n') line_max_length = lines[np.argmax([len(l) for l in lines])] LINE_W, LINE_H = font.getsize(line_max_length) fsize = (round(2.0*LINE_W), round(1.25*LINE_H*len(lines))) image = Image.new('L', fsize, color='black') draw = ImageDraw.Draw(image) char_bb = [] space_w = font.getsize('O')[0] x, y = 0, 0 for line in lines: x = 0 # carriage-return for ch in line: # render each character if ch.isspace(): # just shift x += space_w else: # render the character draw.text((x, y), ch, fill='white', font=font) ch_size = font.getsize(ch) char_bb.append((x, y, ch_size[0], ch_size[1])) x += ch_size[0] y += LINE_H # line-feed crop_box_x = min([box[0] for box in char_bb]) crop_box_y = min([box[1] for box in char_bb]) crop_box_w = max([box[0]+box[2] for box in char_bb]) crop_box_h = max([box[1]+box[3] for box in char_bb]) crop_box = (crop_box_x, crop_box_y, crop_box_w, crop_box_h) # debug = image.convert('RGB') # draw = ImageDraw.Draw(debug) # for (x, y, w, h) in char_bb: # draw.rectangle((x, y, x+w, y+h), outline=(255, 0, 0)) # draw.rectangle(crop_box, outline=(0, 255, 0)) # debug.show() words = ' '.join(text.split()) image = np.array(image.crop(crop_box)) char_bb = np.array(char_bb) return image, words, char_bb def render_curved(self, font: ImageFont.FreeTypeFont, word_text): # add lang """ use curved baseline for rendering word """ def draw_char(font: ImageFont.FreeTypeFont, ch: str, rotation: float): offsetx, offsety, w, h = list(font.getbbox(ch)) ch_image = Image.new('RGBA', (w, h), (0, 0, 0, 0)) draw = ImageDraw.Draw(ch_image) draw.text((0, 0), ch, font=font, fill=(255, 255, 255, 255)) ch_image = ch_image.crop((offsetx, offsety, w, h)) ch_image = ch_image.rotate(rotation, Image.BICUBIC, expand=True) return ch_image wl = len(word_text) isword = len(word_text.split()) == 1 if not isword or wl > 10 or np.random.rand() > self.p_curved: return self.render_multiline(font, word_text) word_bound = font.getbbox(word_text) fsize = (round(2.0*word_bound[2]), round(3*word_bound[3])) image = Image.new('L', fsize, color='black') # baseline state mid_idx = wl//2 BS = BaselineState.get_sample() curve = [BS.curve(i-mid_idx) for i in range(wl)] curve[mid_idx] = -np.sum(curve) / (wl-1) rots = [math.degrees(math.atan(BS.differential(i-mid_idx)/(font.size/2))) for i in range(wl)] # pillow size = image.size ch_image = draw_char(font, word_text[mid_idx], rots[mid_idx]) x = int((size[0] - ch_image.size[0]) / 2) y = int((size[1] - ch_image.size[1]) / 2 - curve[mid_idx]) image.paste(ch_image, (x, y), mask=ch_image) mid_ch_bb = (x, y, ch_image.size[0], ch_image.size[1]) char_bb = [] last_bb = mid_ch_bb for i in range(wl): # skip the middle character if i == mid_idx: last_bb = mid_ch_bb char_bb.append(mid_ch_bb) continue elif i < mid_idx: # left-chars i = mid_idx-1-i elif i > mid_idx: # right-chars begin pass ch = word_text[i] # draw a single character to a separate image ch_bb = list(font.getbbox(ch)) ch_image = draw_char(font, ch, rots[i]) if i < mid_idx: x = last_bb[0] - ch_bb[2] elif i >= mid_idx: x = last_bb[0] + last_bb[2] y = int(last_bb[1] + 2 + curve[i]) image.paste(ch_image, (x, y), mask=ch_image) ch_bb[0] = x ch_bb[1] = y last_bb = (x, y, ch_image.size[0], ch_image.size[1]) char_bb.append(last_bb) crop_box_x = min([box[0] for box in char_bb]) crop_box_y = min([box[1] for box in char_bb]) crop_box_w = max([box[0]+box[2] for box in char_bb]) crop_box_h = max([box[1]+box[3] for box in char_bb]) crop_box = (crop_box_x, crop_box_y, crop_box_w, crop_box_h) # debug = image.convert('RGB') # draw = ImageDraw.Draw(debug) # for (x, y, w, h) in char_bb: # draw.rectangle((x, y, x+w, y+h), outline=(255, 0, 0)) # draw.rectangle(crop_box, outline=(0, 255, 0)) # debug.show() # exit(0) word_image = np.array(image.crop(crop_box)) char_bb = np.array(char_bb) # update box coordinates after cropping char_bb[:, 0] = char_bb[:, 0] - crop_box_x char_bb[:, 1] = char_bb[:, 1] - crop_box_y # plt.imshow(word_image) # plt.show() # exit() return word_image, word_text, char_bb def get_nline_nchar(self, mask_size, font_height, font_width): """ Returns the maximum number of lines and characters which can fit in the MASK_SIZED image. """ H, W = mask_size nline = int(np.ceil(H/(2*font_height))) nchar = int(np.floor(W/font_width)) return nline, nchar def place_text(self, text_arrs: List[np.ndarray], back_arr, bbs: List[np.ndarray]): areas = [-np.prod(ta.shape) for ta in text_arrs] order = np.argsort(areas) locs = [None for i in range(len(text_arrs))] out_arr = np.zeros_like(back_arr) for i in order: ba = np.clip(back_arr.copy().astype(np.float), 0, 255) ta = np.clip(text_arrs[i].copy().astype(np.float), 0, 255) ba[ba > 127] = 1e8 intersect = ssig.fftconvolve(ba, ta[:: -1, :: -1], mode='valid') safemask = intersect < 1e8 if not np.any(safemask): # no collision-free position: print("COLLISION!!!") # warn("COLLISION!!!") return back_arr, locs[: i], bbs[: i], order[: i] minloc = np.transpose(np.nonzero(safemask)) loc = minloc[
np.random.choice(minloc.shape[0])
numpy.random.choice
"""Test partial_transpose.""" import cvxpy import numpy as np from cvxpy.atoms.affine.vstack import Vstack from toqito.channels import partial_transpose from toqito.states import bell def test_partial_transpose_bipartite(): """Partial transpose of bipartite systems.""" rho = np.arange(16).reshape(4, 4) # Partial transpose of first subsystem: res = partial_transpose(rho, [1], [2, 2]) expected_res = np.array([[0, 1, 8, 9], [4, 5, 12, 13], [2, 3, 10, 11], [6, 7, 14, 15]]) bool_mat = np.isclose(expected_res, res) np.testing.assert_equal(np.all(bool_mat), True) # Partial transpose of second subsystem: res = partial_transpose(rho, [2], [2, 2]) expected_res = np.array([[0, 4, 2, 6], [1, 5, 3, 7], [8, 12, 10, 14], [9, 13, 11, 15]]) bool_mat = np.isclose(expected_res, res) np.testing.assert_equal(np.all(bool_mat), True) # Full transpose: res = partial_transpose(rho, [1, 2], [2, 2]) expected_res = np.array([[0, 4, 8, 12], [1, 5, 9, 13], [2, 6, 10, 14], [3, 7, 11, 15]]) bool_mat = np.isclose(expected_res, res) np.testing.assert_equal(np.all(bool_mat), True) def test_partial_transpose(): """ Default partial_transpose. By default, the partial_transpose function performs the transposition on the second subsystem. """ test_input_mat = np.arange(1, 17).reshape(4, 4) expected_res = np.array([[1, 5, 3, 7], [2, 6, 4, 8], [9, 13, 11, 15], [10, 14, 12, 16]]) res = partial_transpose(test_input_mat) bool_mat =
np.isclose(expected_res, res)
numpy.isclose
from __future__ import print_function import numpy as np import os import pickle as pk import pyfftw from lensit.sims.sims_generic import hash_check from lensit.misc.misc_utils import npy_hash, Freq from lensit.misc.rfft2_utils import udgrade_rfft2, supersample from lensit.pbs import pbs class ell_mat: """Library helping with flat-sky patch discretization and harmonic mode structure. This handles Fourier mode structure on the flat sky, at the given resolution and size of specified rectangular box. Args: lib_dir: various things might be cached there (unlens *cache* is set to 0, in which case only a hashdict is put there at instantiation) shape(2-tuple): pair of int defining the number of pixels on each side of the box lsides(2-tuple): physical size (in radians) of the box sides cache(optional): if non-zero, a bunch of matrices might be cached to speed up some calculations. """ def __init__(self, lib_dir, shape, lsides, cache=1): assert len(shape) == 2 and len(lsides) == 2 assert shape[0] % 2 == 0 and shape[1] % 2 == 0 assert shape[0] < 2 ** 16 and shape[1] < 2 ** 16 self.shape = tuple(shape) self.rshape = (shape[0], shape[1] // 2 + 1) self.lsides = tuple(lsides) self.lib_dir = lib_dir self.mmap_mode = None self.cache=cache fn_hash = os.path.join(lib_dir, "ellmat_hash.pk") if pbs.rank == 0 and self.cache > 0: if not os.path.exists(lib_dir): os.makedirs(lib_dir) if not os.path.exists(fn_hash): pk.dump(self.hash_dict(), open(fn_hash, 'wb'), protocol=2) pbs.barrier() if self.cache > 0: hash_check(pk.load(open(fn_hash, 'rb')), self.hash_dict()) if pbs.rank == 0 and self.cache > 0 and not os.path.exists(os.path.join(self.lib_dir, 'ellmat.npy')): print('ell_mat:caching ells in ' + os.path.join(self.lib_dir, 'ellmat.npy')) np.save(os.path.join(self.lib_dir, 'ellmat.npy'), self._build_ellmat()) pbs.barrier() self.ellmax = int(self._get_ellmax()) self._ell_counts = self._build_ell_counts() self._nz_counts = self._ell_counts.nonzero() def __eq__(self, other): return self.shape == other.shape and self.lsides == self.lsides def _build_ellmat(self): kmin = 2. * np.pi / np.array(self.lsides) ky2 = Freq(np.arange(self.shape[0]), self.shape[0]) ** 2 * kmin[0] ** 2 kx2 = Freq(np.arange(self.rshape[1]), self.shape[1]) ** 2 * kmin[1] ** 2 ones = np.ones(np.max(self.shape)) return self.k2ell(np.sqrt(np.outer(ky2, ones[0:self.rshape[1]]) + np.outer(ones[0:self.rshape[0]], kx2))) def hash_dict(self): return {'shape': self.shape, 'lsides': self.lsides} @staticmethod def k2ell(k): r"""Mapping of 2d-frequency :math:`k` to multipole :math:`\ell` :math:`\ell = \rm{int}\left(|k| - \frac 12 \right)` """ ret = np.uint16(np.round(k - 0.5) + 0.5 * ((k - 0.5) < 0)) return ret def __call__(self, *args, **kwargs): return self.get_ellmat(*args, **kwargs) def __getitem__(self, item): return self.get_ellmat()[item] def get_pixwinmat(self): r"""Pixel window function rfft array :math:`\sin(k_x l_{\rm cell, x} / 2) \sin (k_y l_{\rm cell, y} / 2 )` """ ky = (np.pi/self.shape[0]) * Freq(np.arange(self.shape[0]), self.shape[0]) ky[self.shape[0] // 2:] *= -1. kx = (np.pi/self.shape[1]) * Freq(np.arange(self.rshape[1]), self.shape[1]) rety = np.sin(ky) rety[1:] /= ky[1:];rety[0] = 1. retx = np.sin(kx) retx[1:] /= kx[1:];retx[0] = 1. return np.outer(rety,retx) def get_ellmat(self, ellmax=None): r"""Returns the matrix containing the multipole ell assigned to 2d-frequency :math:`k = (k_x,k_y)` """ if self.cache == 0: ret = self._build_ellmat() return ret if ellmax is None else ret[np.where(ret <= ellmax)] if ellmax is None: return np.load(os.path.join(self.lib_dir, 'ellmat.npy'), mmap_mode=self.mmap_mode) else: fname = os.path.join(self.lib_dir, 'ellmat_ellmax%s.npy' % ellmax) if os.path.exists(fname): return np.load(fname, mmap_mode=self.mmap_mode) if pbs.rank == 0: print('ell_mat:caching ells in ' + fname) np.save(fname, self.get_ellmat()[np.where(self() <= ellmax)]) pbs.barrier() return np.load(fname, mmap_mode=self.mmap_mode) def get_phasemat(self, ellmax=None): r"""Returns the rfft array containing the phase :math:`\phi` where 2d-frequencies are :math:`k = |k| e^{i \phi}` """ if self.cache == 0: ret = np.arctan2(self.get_ky_mat(), self.get_kx_mat()) return ret if ellmax is None else ret[np.where(self() <= ellmax)] if ellmax is None: fname = os.path.join(self.lib_dir, 'phasemat.npy') if os.path.exists(fname): return np.load(fname, mmap_mode=self.mmap_mode) if not os.path.exists(fname) and pbs.rank == 0: print('ell_mat:caching phases in '+ fname) np.save(fname, np.arctan2(self.get_ky_mat(), self.get_kx_mat())) pbs.barrier() return np.load(fname, mmap_mode=self.mmap_mode) else: fname = os.path.join(self.lib_dir, 'phase_ellmax%s.npy' % ellmax) if not os.path.exists(fname) and pbs.rank == 0: print('ell_mat:caching phases in '+ fname) np.save(fname, np.arctan2(self.get_ky_mat(), self.get_kx_mat())[np.where(self.get_ellmat() <= ellmax)]) pbs.barrier() return np.load(fname, mmap_mode=self.mmap_mode) def get_e2iphi_mat(self, cache_only=False): r"""Returns the matrix containing the phase :math:`e^{2 i \phi}` """ if self.cache == 0: return np.exp(2j * np.arctan2(self.get_ky_mat(), self.get_kx_mat())) fname = os.path.join(self.lib_dir, 'e2iphimat.npy') if os.path.exists(fname): return None if cache_only else np.load(fname, mmap_mode=self.mmap_mode) if not os.path.exists(fname) and pbs.rank == 0: print('ell_mat:caching e2iphi in ' + fname) np.save(fname, np.exp(2j * np.arctan2(self.get_ky_mat(), self.get_kx_mat()))) pbs.barrier() return None if cache_only else np.load(fname, mmap_mode=self.mmap_mode) def degrade(self, LDshape, lib_dir=None): """Returns an *ell_mat* instance on the same physical flat-sky patch but a degraded sampling resolution """ if np.all(LDshape >= self.shape): return self if lib_dir is None: lib_dir = os.path.join(self.lib_dir, 'degraded%sx%s' % (LDshape[0], LDshape[1])) return ell_mat(lib_dir, LDshape, self.lsides, cache=self.cache) def get_cossin_2iphi_mat(self): """ Returns: :math:`\cos(2i\phi), \sin(2i\phi)` as rfft arrays """ e2iphi = self.get_e2iphi_mat() return e2iphi.real, e2iphi.imag def _get_ellmax(self): r""" Max. ell present in the grid """ return np.max(self.get_ellmat()) def _build_ell_counts(self): counts = np.bincount(self.get_ellmat()[:, 1:self.rshape[1] - 1].flatten(), minlength=self.ellmax + 1) s_counts = np.bincount(self.get_ellmat()[0:self.shape[0] // 2 + 1, [-1, 0]].flatten()) counts[0:len(s_counts)] += s_counts return counts def _get_ellcounts(self): r"""Number of non-redundant entries in freq map. for each ell, in the rfftmap. Corresponds roughly to :math:`\ell + \frac 1/2`. """ return self._ell_counts def get_Nell(self): """Mode number counts on the flat-sky patch. Goes roughly like :math:`2\ell + 1` """ Nell = 2 * self._get_ellcounts() for ell in self.get_ellmat()[self.rfft2_reals()]: Nell[ell] -= 1 return Nell def get_nonzero_ellcounts(self): return self._nz_counts def map2cl(self, m, m2=None): r"""Returns s pseudo-:math:`C_\ell` estimate from a map. Returns a cross-:math:`C_\ell` if m2 is set. Must have compatible shape. """ assert m.shape == self.shape, m.shape if m2 is not None: assert m2.shape == self.shape, m2.shape return self._rfft2cl(np.fft.rfft2(m), rfftmap2=np.fft.rfft2(m2)) return self._rfft2cl(np.fft.rfft2(m)) def _rfft2cl(self, rfftmap, rfftmap2=None): """Returns a :math:`C_\ell` estimate from a rfftmap. (e.g. np.fft.rfft2(sim) where sim is the output of this library) Must have the same shape then self.rshape """ assert rfftmap.shape == self.rshape, rfftmap.shape if rfftmap2 is not None: assert rfftmap2.shape == self.rshape, rfftmap2.shape weights = rfftmap.real ** 2 + rfftmap.imag ** 2 if rfftmap2 is None else (rfftmap * np.conjugate(rfftmap2)).real Cl = np.bincount(self.get_ellmat()[:, 1:self.rshape[1] - 1].flatten(), weights=weights[:, 1:self.rshape[1] - 1].flatten(), minlength=self.ellmax + 1) Cl += np.bincount(self.get_ellmat()[0:self.shape[0] // 2 + 1, [-1, 0]].flatten(), weights=weights[0:self.shape[0] // 2 + 1, [-1, 0]].flatten(), minlength=self.ellmax + 1) Cl[self._nz_counts] *= (np.prod(self.lsides) / np.prod(self.shape) ** 2) / self._ell_counts[self._nz_counts] return Cl def bin_inell(self, rfftmap): """Bin in a rfftmap according to multipole :math:`\ell` Input must have the same shape then self.rshape """ assert rfftmap.shape == self.rshape, rfftmap.shape weights = rfftmap Cl = np.bincount(self.get_ellmat()[:, 1:self.rshape[1] - 1].flatten(), weights=weights[:, 1:self.rshape[1] - 1].flatten(), minlength=self.ellmax + 1) Cl += np.bincount(self.get_ellmat()[0:self.shape[0] // 2 + 1, [-1, 0]].flatten(), weights=weights[0:self.shape[0] // 2 + 1, [-1, 0]].flatten(), minlength=self.ellmax + 1) Cl[self._nz_counts] /= self._ell_counts[self._nz_counts] return Cl def get_kx_mat(self): kx_min = (2. * np.pi) / self.lsides[1] kx = kx_min * Freq(np.arange(self.rshape[1]), self.shape[1]) return np.outer(np.ones(self.shape[0]), kx) def get_ky_mat(self): ky_min = (2. * np.pi) / self.lsides[0] ky = ky_min * Freq(np.arange(self.shape[0]), self.shape[0]) ky[self.shape[0] // 2:] *= -1. return np.outer(ky, np.ones(self.rshape[1])) def get_ikx_mat(self): return 1j * self.get_kx_mat() def get_iky_mat(self): return 1j * self.get_ky_mat() def get_unique_ells(self, return_index=False, return_inverse=False, return_counts=False): """Returns list of multipoles :math:`\ell` present in the flat-sky patch """ return np.unique(self.get_ellmat(), return_index=return_index, return_inverse=return_inverse, return_counts=return_counts) def rfftmap2alm(self, rfftmap, filt_func=lambda ell: True): """Turns a rfft map to ffs_alm array. This performs the filtering defined by the instance together with the normalization """ cond = filt_func(np.arange(self.ellmax + 1)) return rfftmap[cond[self.get_ellmat()]] * np.sqrt(np.prod(self.lsides)) / np.prod(self.shape) def alm2rfftmap(self, alm, filt_func=lambda ell: True): """Returns a ffs_alm array from a rfftmap. Pseudo-inverse to *fftmap2alm* """ cond = filt_func(np.arange(self.ellmax + 1)) ret = np.zeros(self.rshape, dtype=complex) ret[cond[self.get_ellmat()]] = alm * np.prod(self.shape) / np.sqrt(np.prod(self.lsides)) return ret def rfft2_reals(self): """Pure reals modes in 2d rfft according to patch specifics """ N0, N1 = self.shape fx = [0] fy = [0] if N1 % 2 == 0: fx.append(0) fy.append(N1 // 2) if N0 % 2 == 0: fx.append(N0 // 2) fy.append(0) if N1 % 2 == 0 and N0 % 2 == 0: fx.append(N0 // 2) fy.append(N1 // 2) return np.array(fx), np.array(fy) class ffs_alm(object): """Library to facilitate operations on flat-sky alms in the ffs scheme. Methods includes alm2map and map2alm, among other things. The instance contains info on the sky patch size and discretization. Args: ellmat: *lensit.ffs_covs.ell_mat.ell_mat* instance carrying flat-sky patch definitions filt_func(callable, optional): mutlipole filtering. Set this to discard multipoles in map2alm Defaults to lambda ell : ell > 0 kxfilt_func(callable, optional): filtering on x-component of the 2d-frequencies kyfilt_func(callable, optional): filtering on y-component of the 2d-frequencies """ def __init__(self, ellmat, filt_func=lambda ell: ell > 0, kxfilt_func=None, kyfilt_func=None): self.ell_mat = ellmat self.shape = self.ell_mat.shape self.lsides = self.ell_mat.lsides self.filt_func = filt_func self.kxfilt_func = kxfilt_func self.kyfilt_func = kyfilt_func self.alm_size = np.count_nonzero(self._cond()) # The mapping ell[i] for i in alm array : self.reduced_ellmat = lambda: ellmat()[self._cond()] self.ellmax = np.max(self.reduced_ellmat()) if self.alm_size > 0 else None self.ellmin = np.min(self.reduced_ellmat()) if self.alm_size > 0 else None # Some trivial convenience factors : self.fac_rfft2alm = np.sqrt(np.prod(ellmat.lsides)) / np.prod(self.ell_mat.shape) self.fac_alm2rfft = 1. / self.fac_rfft2alm self.__ellcounts = None def _cond(self): ret = self.filt_func(self.ell_mat()) if self.kxfilt_func is not None: ret &= self.kxfilt_func(self.ell_mat.get_kx_mat()) if self.kyfilt_func is not None: ret &= self.kyfilt_func(self.ell_mat.get_ky_mat()) return ret def __eq__(self, lib_alm): if not np.all(self.ell_mat.lsides == lib_alm.ell_mat.lsides): return False if not np.all(self.ell_mat.shape == lib_alm.ell_mat.shape): return False ellmax = max(self.ellmax, lib_alm.ellmax) if not np.all(self.filt_func(np.arange(ellmax + 1)) == lib_alm.filt_func(np.arange(ellmax + 1))): return False kxf = self.kxfilt_func if self.kxfilt_func is not None else lambda kx : np.ones_like(kx, dtype = bool) _kxf = lib_alm.kxfilt_func if lib_alm.kxfilt_func is not None else lambda kx: np.ones_like(kx, dtype=bool) if not np.all(kxf(np.arange(-ellmax,ellmax + 1)) == _kxf(np.arange(-ellmax,ellmax + 1))): return False kyf = self.kyfilt_func if self.kyfilt_func is not None else lambda ky : np.ones_like(ky, dtype = bool) _kyf = lib_alm.kyfilt_func if lib_alm.kyfilt_func is not None else lambda ky: np.ones_like(ky, dtype=bool) if not np.all(kyf(np.arange(-ellmax,ellmax + 1)) == _kyf(np.arange(-ellmax,ellmax + 1))): return False return True def iseq(self, lib_alm, allow_shape=False): if not allow_shape: return self == lib_alm # We allow differences in resolution provided the filtering is the scheme # (ordering should then be the same as well) if not np.all(self.ell_mat.lsides == lib_alm.ell_mat.lsides): return False if not self.alm_size == lib_alm.alm_size: return False ellmax = max(self.ellmax, lib_alm.ellmax) if not np.all(self.filt_func(np.arange(ellmax + 1)) == lib_alm.filt_func(
np.arange(ellmax + 1)
numpy.arange
import sys import numpy as np import scipy.ndimage import matplotlib.pyplot as plt import soundfile # Test of pitch-shift quality without PVC if __name__ == "__main__": block_size = 4096 n_blocks = 4 FILT_SIZE = 8 if len(sys.argv) < 5: print( "Usage: {} <in_filename> <out_filename> <length_mult> <pitch_mult> [block_size={}] [n_blocks={}]".format( sys.argv[0], block_size, n_blocks ) ) sys.exit() in_filename = sys.argv[1] out_filename = sys.argv[2] length_mult = float(sys.argv[3]) pitch_mult = float(sys.argv[4]) if len(sys.argv) >= 6: block_size = int(sys.argv[5]) if len(sys.argv) >= 7: n_blocks = int(sys.argv[6]) in_shift = block_size // n_blocks out_shift = int(in_shift * length_mult) in_file = soundfile.SoundFile(in_filename) rate = in_file.samplerate n_blocks = np.ceil(in_file.frames / in_shift) out_length = int(n_blocks * out_shift + block_size) # print("from", in_file.frames, "to", out_length) out_data = np.zeros((out_length, in_file.channels)) indices =
np.arange(block_size // 2 + 1)
numpy.arange
# -*- coding: utf-8 -*- import os os.environ["MKL_NUM_THREADS"] = "1" os.environ["NUMEXPR_NUM_THREADS"] = "1" os.environ["OMP_NUM_THREADS"] = "1" from os import path, listdir import numpy as np np.random.seed(1) import random random.seed(1) import pandas as pd import timeit import cv2 from tqdm import tqdm import sys sys.setrecursionlimit(10000) from multiprocessing import Pool from shapely.geometry.linestring import LineString from skimage.morphology import skeletonize_3d, square, erosion, dilation, medial_axis from skimage.measure import label, regionprops, approximate_polygon from math import hypot, sin, cos, asin, acos, radians from sklearn.neighbors import KDTree from shapely.wkt import dumps # import matplotlib.pyplot as plt # import seaborn as sns pred_folders = ['/wdata/test_pred', '/wdata/test_pred_960'] def get_ordered_coords(lbl, l, coords): res = [] nxt = coords[0] for i in range(coords.shape[0]): y, x = coords[i] cnt = 0 for y0 in range(max(0, y-1), min(1300, y+2)): for x0 in range(max(0, x-1), min(1300, x+2)): if lbl[y0, x0] == l: cnt += 1 if cnt == 2: nxt = coords[i] lbl[y, x] = 0 res.append(nxt) break while nxt is not None: y, x = nxt fl = False for y0 in range(max(0, y-1), min(1300, y+2)): for x0 in range(max(0, x-1), min(1300, x+2)): if lbl[y0, x0] == l: fl = True nxt = np.asarray([y0, x0]) lbl[y0, x0] = 0 res.append(nxt) break if fl: break if not fl: nxt = None return np.asarray(res) def point_hash(x, y): x_int = int(x) y_int = int(y) h = x_int * 10000 + y_int return h def pair_hash(p1, p2): h1 = point_hash(p1[0], p1[1]) h2 = point_hash(p2[0], p2[1]) return np.int64(h1 * 1e8 + h2) def get_next_point(p1, p2, add_dist): l = hypot(p1[0] - p2[0], p1[1] - p2[1]) dx = (p2[1] - p1[1]) / l dy = (p2[0] - p1[0]) / l x3 = int(round(p1[1] + (l + add_dist) * dx)) y3 = int(round(p1[0] + (l + add_dist) * dy)) if x3 < 0: x3 = 0 if y3 < 0: y3 = 0 if x3 > 1299: x3 = 1299 if y3 > 1299: y3 = 1299 return np.asarray([y3, x3]) def try_connect(p1, p2, a, max_dist, road_msk, min_prob, msk, roads, r=3): prob = [] r_id = road_msk[p2[0], p2[1]] hashes = set([point_hash(p2[1], p2[0])]) l = hypot(p1[0] - p2[0], p1[1] - p2[1]) dx = (p2[1] - p1[1]) / l dy = (p2[0] - p1[0]) / l if a != 0: l = 0 p1 = p2 _a = asin(dy) + a dy = sin(_a) _a = acos(dx) + a dx = cos(_a) step = 0.5 d = step while d < max_dist: x3 = int(round(p1[1] + (l + d) * dx)) y3 = int(round(p1[0] + (l + d) * dy)) if x3 < 0 or y3 < 0 or x3 > 1299 or y3 > 1299: return None h = point_hash(x3, y3) if h not in hashes: prob.append(msk[y3, x3]) hashes.add(h) for x0 in range(max(0, x3 - r), min(1299, x3 + r + 1)): for y0 in range(max(0, y3 - r), min(1299, y3 + r + 1)): if road_msk[y0, x0] > 0 and road_msk[y0, x0] != r_id: p3 = np.asarray([y0, x0]) r2_id = road_msk[y0, x0] - 1 t = KDTree(roads[r2_id]) clst = t.query(p3[np.newaxis, :]) if clst[0][0][0] < 10: p3 = roads[r2_id][clst[1][0][0]] if np.asarray(prob).mean() > min_prob: return p3 else: return None d += step return None def inject_point(road, p): for i in range(road.shape[0]): if road[i, 0] == p[0] and road[i, 1] == p[1]: return road, [] new_road = [] to_add = True new_hashes = [] for i in range(road.shape[0] - 1): new_road.append(road[i]) if (to_add and min(road[i, 0], road[i+1, 0]) <= p[0] and max(road[i, 0], road[i+1, 0]) >= p[0] and min(road[i, 1], road[i+1, 1]) <= p[1] and max(road[i, 1], road[i+1, 1]) >= p[1]): to_add = False new_road.append(p) new_hashes.append(pair_hash(p, road[i])) new_hashes.append(pair_hash(road[i], p)) new_hashes.append(pair_hash(p, road[i+1])) new_hashes.append(pair_hash(road[i+1], p)) new_road.append(road[-1]) return np.asarray(new_road), new_hashes def process_file(img_id): res_rows = [] msks = [] for pred_folder in pred_folders: msk = cv2.imread(path.join(pred_folder, img_id + '.png'), cv2.IMREAD_UNCHANGED) msk = msk.max(axis=2) if msk.shape[0] < 1306: msk = cv2.resize(msk, (1300, 1300)) msk = np.pad(msk, ((6, 6), (6, 6)), mode='reflect') else: msk = msk[6:1306, 6:1306] msk = np.pad(msk, ((6, 6), (6, 6)), mode='reflect') msks.append(msk) msks = np.asarray(msks) msk = msks.mean(axis=0) thr = 120 msk2 = 1 * (msk > thr) msk2 = msk2.astype(np.uint8) msk2 = dilation(msk2, square(5)) msk2 = erosion(msk2, square(5)) skeleton = skeletonize_3d(msk2) skeleton = skeleton[6:1306, 6:1306] lbl0 = label(skeleton) props0 = regionprops(lbl0) cnt = 0 crosses = [] for x in range(1300): for y in range(1300): if skeleton[y, x] == 1: if skeleton[max(0, y-1):min(1300, y+2), max(0, x-1):min(1300, x+2)].sum() > 3: cnt += 1 crss = [] crss.append((x, y)) for y0 in range(max(0, y-1), min(1300, y+2)): for x0 in range(max(0, x-1), min(1300, x+2)): if x == x0 and y == y0: continue if skeleton[max(0, y0-1):min(1300, y0+2), max(0, x0-1):min(1300, x0+2)].sum() > 3: crss.append((x0, y0)) crosses.append(crss) cross_hashes = [] for crss in crosses: crss_hash = set([]) for x0, y0 in crss: crss_hash.add(point_hash(x0, y0)) skeleton[y0, x0] = 0 cross_hashes.append(crss_hash) new_crosses = [] i = 0 while i < len(crosses): new_hashes = set([]) new_hashes.update(cross_hashes[i]) new_crss = crosses[i][:] fl = True while fl: fl = False j = i + 1 while j < len(crosses): if len(new_hashes.intersection(cross_hashes[j])) > 0: new_hashes.update(cross_hashes[j]) new_crss.extend(crosses[j]) cross_hashes.pop(j) crosses.pop(j) fl = True break j += 1 mean_p = np.asarray(new_crss).mean(axis=0).astype('int') if len(new_crss) > 1: t = KDTree(np.asarray(new_crss)) mean_p = new_crss[t.query(mean_p[np.newaxis, :])[1][0][0]] new_crosses.append([(mean_p[0], mean_p[1])] + new_crss) i += 1 crosses = new_crosses lbl = label(skeleton) props = regionprops(lbl) connected_roads = [] connected_crosses = [set([]) for p in props] for i in range(len(crosses)): rds = set([]) for j in range(len(crosses[i])): x, y = crosses[i][j] for y0 in range(max(0, y-1), min(1300, y+2)): for x0 in range(max(0, x-1), min(1300, x+2)): if lbl[y0, x0] > 0: rds.add(lbl[y0, x0]) connected_crosses[lbl[y0, x0]-1].add(i) connected_roads.append(rds) res_roads = [] tot_dist_min = 20 coords_min = 10 for i in range(len(props)): coords = props[i].coords crss = list(connected_crosses[i]) tot_dist = props0[lbl0[coords[0][0], coords[0][1]]-1].area if (tot_dist < tot_dist_min) or (coords.shape[0] < coords_min and len(crss) < 2): continue if coords.shape[0] == 1: coords = np.asarray([coords[0], coords[0]]) else: coords = get_ordered_coords(lbl, i+1, coords) for j in range(len(crss)): x, y = crosses[crss[j]][0] d1 = abs(coords[0][0] - y) + abs(coords[0][1] - x) d2 = abs(coords[-1][0] - y) + abs(coords[-1][1] - x) if d1 < d2: coords[0][0] = y coords[0][1] = x else: coords[-1][0] = y coords[-1][1] = x coords_approx = approximate_polygon(coords, 1.5) res_roads.append(coords_approx) hashes = set([]) final_res_roads = [] for r in res_roads: if r.shape[0] > 2: final_res_roads.append(r) for i in range(1, r.shape[0]): p1 = r[i-1] p2 = r[i] h1 = pair_hash(p1, p2) h2 = pair_hash(p2, p1) hashes.add(h1) hashes.add(h2) for r in res_roads: if r.shape[0] == 2: p1 = r[0] p2 = r[1] h1 = pair_hash(p1, p2) h2 = pair_hash(p2, p1) if not (h1 in hashes or h2 in hashes): final_res_roads.append(r) hashes.add(h1) hashes.add(h2) end_points = {} for r in res_roads: h = point_hash(r[0, 0], r[0, 1]) if not (h in end_points.keys()): end_points[h] = 0 end_points[h] = end_points[h] + 1 h = point_hash(r[-1, 0], r[-1, 1]) if not (h in end_points.keys()): end_points[h] = 0 end_points[h] = end_points[h] + 1 road_msk = np.zeros((1300, 1300), dtype=np.int32) road_msk = road_msk.copy() thickness = 1 for j in range(len(final_res_roads)): l = final_res_roads[j] for i in range(len(l) - 1): cv2.line(road_msk, (int(l[i, 1]), int(l[i, 0])), (int(l[i+1, 1]), int(l[i+1, 0])), j+1, thickness) connect_dist = 110 min_prob = 30 angles_to_check = [0, radians(5), radians(-5), radians(10), radians(-10), radians(15), radians(-15)] angles_to_check += [radians(20), radians(-20), radians(25), radians(-25)] add_dist = 30 add_dist2 = 6 con_r = 8 for i in range(len(final_res_roads)): h = point_hash(final_res_roads[i][0, 0], final_res_roads[i][0, 1]) if end_points[h] == 1: p1 = final_res_roads[i][1] p2 = final_res_roads[i][0] p3 = try_connect(p1, p2, 0, connect_dist, road_msk, min_prob, msk, final_res_roads, con_r) if p3 is not None: h1 = pair_hash(p2, p3) h2 = pair_hash(p3, p2) if not (h1 in hashes or h2 in hashes): r_id = road_msk[p3[0], p3[1]] - 1 final_res_roads[r_id], new_hashes = inject_point(final_res_roads[r_id], p3) hashes.update(new_hashes) tmp_road_msk = np.zeros((1300, 1300), dtype=np.int32) tmp_road_msk = tmp_road_msk.copy() cv2.line(tmp_road_msk, (p2[1], p2[0]), (p3[1], p3[0]), i+1, thickness) road_msk[road_msk == 0] = tmp_road_msk[road_msk == 0] road_msk = road_msk.copy() final_res_roads[i] = np.vstack((p3, final_res_roads[i])) hashes.add(h1) hashes.add(h2) end_points[point_hash(p3[0], p3[1])] = 2 h = point_hash(final_res_roads[i][-1, 0], final_res_roads[i][-1, 1]) if end_points[h] == 1: p1 = final_res_roads[i][-2] p2 = final_res_roads[i][-1] p3 = try_connect(p1, p2, 0, connect_dist, road_msk, min_prob, msk, final_res_roads, con_r) if p3 is not None: h1 = pair_hash(p2, p3) h2 = pair_hash(p3, p2) if not (h1 in hashes or h2 in hashes): r_id = road_msk[p3[0], p3[1]] - 1 final_res_roads[r_id], new_hashes = inject_point(final_res_roads[r_id], p3) hashes.update(new_hashes) tmp_road_msk = np.zeros((1300, 1300), dtype=np.int32) tmp_road_msk = tmp_road_msk.copy() cv2.line(tmp_road_msk, (p2[1], p2[0]), (p3[1], p3[0]), i+1, thickness) road_msk[road_msk == 0] = tmp_road_msk[road_msk == 0] road_msk = road_msk.copy() final_res_roads[i] = np.vstack((final_res_roads[i], p3)) hashes.add(h1) hashes.add(h2) end_points[point_hash(p3[0], p3[1])] = 2 for i in range(len(final_res_roads)): h = point_hash(final_res_roads[i][0, 0], final_res_roads[i][0, 1]) if end_points[h] == 1: p1 = final_res_roads[i][1] p2 = final_res_roads[i][0] p3 = None for a in angles_to_check: p3 = try_connect(p1, p2, a, connect_dist, road_msk, min_prob, msk, final_res_roads, con_r) if p3 is not None: break if p3 is not None: h1 = pair_hash(p2, p3) h2 = pair_hash(p3, p2) if not (h1 in hashes or h2 in hashes): r_id = road_msk[p3[0], p3[1]] - 1 final_res_roads[r_id], new_hashes = inject_point(final_res_roads[r_id], p3) hashes.update(new_hashes) tmp_road_msk = np.zeros((1300, 1300), dtype=np.int32) tmp_road_msk = tmp_road_msk.copy() cv2.line(tmp_road_msk, (p2[1], p2[0]), (p3[1], p3[0]), i+1, thickness) road_msk[road_msk == 0] = tmp_road_msk[road_msk == 0] road_msk = road_msk.copy() final_res_roads[i] = np.vstack((p3, final_res_roads[i])) hashes.add(h1) hashes.add(h2) end_points[point_hash(p3[0], p3[1])] = 2 else: p3 = get_next_point(p1, p2, add_dist) if not (p3[0] < 2 or p3[1] < 2 or p3[0] > 1297 or p3[1] > 1297): p3 = get_next_point(p1, p2, add_dist2) if (p3[0] != p2[0] or p3[1] != p2[1]) and (road_msk[p3[0], p3[1]] == 0): h1 = pair_hash(p2, p3) h2 = pair_hash(p3, p2) if not (h1 in hashes or h2 in hashes): final_res_roads[i] = np.vstack((p3, final_res_roads[i])) hashes.add(h1) hashes.add(h2) tmp_road_msk = np.zeros((1300, 1300), dtype=np.int32) tmp_road_msk = tmp_road_msk.copy() cv2.line(tmp_road_msk, (p2[1], p2[0]), (p3[1], p3[0]), i+1, thickness) road_msk[road_msk == 0] = tmp_road_msk[road_msk == 0] road_msk = road_msk.copy() end_points[point_hash(p3[0], p3[1])] = 2 h = point_hash(final_res_roads[i][-1, 0], final_res_roads[i][-1, 1]) if end_points[h] == 1: p1 = final_res_roads[i][-2] p2 = final_res_roads[i][-1] p3 = None for a in angles_to_check: p3 = try_connect(p1, p2, a, connect_dist, road_msk, min_prob, msk, final_res_roads, con_r) if p3 is not None: break if p3 is not None: h1 = pair_hash(p2, p3) h2 = pair_hash(p3, p2) if not (h1 in hashes or h2 in hashes): r_id = road_msk[p3[0], p3[1]] - 1 final_res_roads[r_id], new_hashes = inject_point(final_res_roads[r_id], p3) hashes.update(new_hashes) tmp_road_msk = np.zeros((1300, 1300), dtype=np.int32) tmp_road_msk = tmp_road_msk.copy() cv2.line(tmp_road_msk, (p2[1], p2[0]), (p3[1], p3[0]), i+1, thickness) road_msk[road_msk == 0] = tmp_road_msk[road_msk == 0] road_msk = road_msk.copy() final_res_roads[i] = np.vstack((final_res_roads[i], p3)) hashes.add(h1) hashes.add(h2) end_points[point_hash(p3[0], p3[1])] = 2 else: p3 = get_next_point(p1, p2, add_dist) if not (p3[0] < 2 or p3[1] < 2 or p3[0] > 1297 or p3[1] > 1297): p3 = get_next_point(p1, p2, add_dist2) if (p3[0] != p2[0] or p3[1] != p2[1]) and (road_msk[p3[0], p3[1]] == 0): h1 = pair_hash(p2, p3) h2 = pair_hash(p3, p2) if not (h1 in hashes or h2 in hashes): final_res_roads[i] =
np.vstack((final_res_roads[i], p3))
numpy.vstack
# SVMs for Food Experiment Data import matplotlib import numpy as np import matplotlib.pyplot as pp import optparse import unittest import random import itertools from sklearn import decomposition from sklearn import svm from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import LeaveOneOut from sklearn.model_selection import KFold from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from scipy.interpolate import InterpolatedUnivariateSpline from scipy.ndimage.filters import gaussian_filter1d import sys import lib_get_subset as lib_get_subset import lib_overlapping as lib_overlapping import matplotlib.pyplot as plt try: import cPickle as pkl def load_pickle(filename): with open(filename, 'rb') as f: return pkl.load(f) except: import pickle as pkl def load_pickle(filename): with open(filename, 'rb') as f: return pkl.load(f, encoding = 'latin1') TRIAL_ORDER = [[1, 4, 6, 2, 3, 7, 0, 5, 8], [0, 3, 6, 2, 5, 7, 1, 4, 8], [2, 3, 7, 1, 4, 6, 0, 5, 8], [2, 4, 6, 0, 5, 8, 1, 3, 7], [0, 5, 6, 1, 4, 7, 2, 3, 8], [1, 3, 8, 0, 4, 6, 2, 5, 7], [0, 4, 7, 1, 3, 8, 2, 5, 6], [2, 3, 8, 0, 4, 6, 1, 5, 7], [0, 3, 8, 2, 4, 6, 1, 5, 7], [1, 3, 6, 0, 5, 7, 2, 4, 8], [0, 5, 7, 1, 3, 8, 2, 4, 6], [1, 3, 8, 0, 4, 7, 2, 5, 6], [1, 5, 6, 0, 4, 7, 2, 3, 8], [1, 5, 8, 2, 4, 6, 0, 3, 7], [1, 5, 8, 2, 4, 6, 0, 3, 7], [1, 4, 6, 2, 5, 7, 0, 3, 8], [0, 4, 6, 2, 5, 8, 1, 3, 7], [2, 4, 7, 0, 5, 6, 1, 3, 8], [1, 5, 7, 0, 3, 6, 2, 4, 8], [2, 5, 7, 0, 4, 8, 1, 3, 6], [2, 5, 7, 1, 4, 6, 0, 3, 8], [0, 5, 7, 2, 3, 6, 1, 4, 8], [2, 4, 8, 0, 5, 6, 1, 3, 7], [2, 5, 7, 0, 4, 8, 1, 3, 6], [1, 3, 7, 2, 5, 8, 0, 4, 6], [2, 3, 8, 1, 5, 7, 0, 4, 6], [2, 3, 7, 0, 5, 8, 1, 4, 6], [1, 4, 7, 0, 5, 6, 2, 3, 8], [2, 5, 8, 1, 3, 6, 0, 4, 7], [1, 4, 8, 0, 5, 7, 2, 3, 6]] NUM_TRIAL_SETS = len(TRIAL_ORDER) def create_dataset(train_type, alignment_type): R_W1, R_W2, R_W3 = [], [], [] R_CW1, R_CW2, R_CW3 = [], [], [] R_M1, R_M2, R_M3 = [], [], [] for trial_set in range(len(TRIAL_ORDER)): if trial_set == NUM_TRIAL_SETS: break directory = "./test/R_"+str(trial_set + 1) print(directory+"/M_count_"+str(TRIAL_ORDER[trial_set][6])+"_sensor_29.5.pkl") R_M1.append(load_pickle(directory+"/M_count_"+str(TRIAL_ORDER[trial_set][6])+"_sensor_29.5.pkl")) R_M2.append(load_pickle(directory+"/M_count_"+str(TRIAL_ORDER[trial_set][7])+"_sensor_29.5.pkl")) R_M3.append(load_pickle(directory+"/M_count_"+str(TRIAL_ORDER[trial_set][8])+"_sensor_29.5.pkl")) R_W1.append(load_pickle(directory+"/W_count_"+str(TRIAL_ORDER[trial_set][0])+"_sensor_29.5.pkl")) R_W2.append(load_pickle(directory+"/W_count_"+str(TRIAL_ORDER[trial_set][1])+"_sensor_29.5.pkl")) R_W3.append(load_pickle(directory+"/W_count_"+str(TRIAL_ORDER[trial_set][2])+"_sensor_29.5.pkl")) R_CW1.append(load_pickle(directory+"/CW_count_"+str(TRIAL_ORDER[trial_set][3])+"_sensor_29.5.pkl")) R_CW2.append(load_pickle(directory+"/CW_count_"+str(TRIAL_ORDER[trial_set][4])+"_sensor_29.5.pkl")) R_CW3.append(load_pickle(directory+"/CW_count_"+str(TRIAL_ORDER[trial_set][5])+"_sensor_29.5.pkl")) x_full = R_CW1[0][:, 0] #match_set_LOW = R_CW3[0][250:1250,2] #match_set_HIGH = R_W1[0][280:1280,2] match_set_W = load_pickle("./test/R_1/W_count_"+str(TRIAL_ORDER[0][0])+"_sensor_29.5.pkl")[184:1184,2] match_set_CW = load_pickle("./test/R_1/CW_count_"+str(TRIAL_ORDER[0][3])+"_sensor_29.5.pkl")[32:1032,2] match_set_M = load_pickle("./test/R_1/M_count_"+str(TRIAL_ORDER[0][6])+"_sensor_29.5.pkl")[130:1130,2] print(R_M1[0][:,4]) data_dict = {} for trial_set in range(NUM_TRIAL_SETS): if train_type == 'all_active' or train_type == 'noCW_active': if alignment_type == 'firstsec': data_dict['trial_set_'+str(trial_set+1)+'_X'] = np.vstack(( lib_get_subset.get_x_matched_set(x_full, match_set_M, R_M1[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_set(x_full, match_set_M, R_M2[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_set(x_full, match_set_M, R_M3[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_set(x_full, match_set_W, R_W1[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_set(x_full, match_set_W, R_W2[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_set(x_full, match_set_W, R_W3[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_set(x_full, match_set_CW, R_CW1[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_set(x_full, match_set_CW, R_CW2[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_set(x_full, match_set_CW, R_CW3[trial_set][:, 1:3], is_heated=True))) elif alignment_type == 'curvemax': data_dict['trial_set_'+str(trial_set+1)+'_X'] = np.vstack(( lib_get_subset.get_x_matched_deriv_set(x_full, R_M1[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_deriv_set(x_full, R_M2[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_deriv_set(x_full, R_M3[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_deriv_set(x_full, R_W1[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_deriv_set(x_full, R_W2[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_deriv_set(x_full, R_W3[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_deriv_set(x_full, R_CW1[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_deriv_set(x_full, R_CW2[trial_set][:, 1:3], is_heated=True), lib_get_subset.get_x_matched_deriv_set(x_full, R_CW3[trial_set][:, 1:3], is_heated=True))) elif alignment_type == 'force': data_dict['trial_set_'+str(trial_set+1)+'_X'] = np.vstack(( lib_get_subset.get_x_matched_force_set(x_full, R_M1[trial_set][:, 1:5], is_heated=True), lib_get_subset.get_x_matched_force_set(x_full, R_M2[trial_set][:, 1:5], is_heated=True), lib_get_subset.get_x_matched_force_set(x_full, R_M3[trial_set][:, 1:5], is_heated=True), lib_get_subset.get_x_matched_force_set(x_full, R_W1[trial_set][:, 1:5], is_heated=True), lib_get_subset.get_x_matched_force_set(x_full, R_W2[trial_set][:, 1:5], is_heated=True), lib_get_subset.get_x_matched_force_set(x_full, R_W3[trial_set][:, 1:5], is_heated=True), lib_get_subset.get_x_matched_force_set(x_full, R_CW1[trial_set][:, 1:5], is_heated=True), lib_get_subset.get_x_matched_force_set(x_full, R_CW2[trial_set][:, 1:5], is_heated=True), lib_get_subset.get_x_matched_force_set(x_full, R_CW3[trial_set][:, 1:5], is_heated=True))) elif train_type == 'all_active_passive' or train_type == 'noCW_active_passive': if alignment_type == 'firstsec': data_dict['trial_set_'+str(trial_set+1)+'_X'] = np.vstack(( lib_get_subset.get_x_matched_set(x_full, match_set_M, R_M1[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_set(x_full, match_set_M, R_M1[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_set(x_full, match_set_M, R_M2[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_set(x_full, match_set_M, R_M2[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_set(x_full, match_set_M, R_M3[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_set(x_full, match_set_M, R_M3[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_set(x_full, match_set_W, R_W1[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_set(x_full, match_set_W, R_W1[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_set(x_full, match_set_W, R_W2[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_set(x_full, match_set_W, R_W2[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_set(x_full, match_set_W, R_W3[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_set(x_full, match_set_W, R_W3[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_set(x_full, match_set_CW, R_CW1[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_set(x_full, match_set_CW, R_CW1[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_set(x_full, match_set_CW, R_CW2[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_set(x_full, match_set_CW, R_CW2[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_set(x_full, match_set_CW, R_CW3[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_set(x_full, match_set_CW, R_CW3[trial_set][:, 1:3], is_heated=False))) elif alignment_type == 'curvemax': data_dict['trial_set_'+str(trial_set+1)+'_X'] = np.vstack(( lib_get_subset.get_x_matched_deriv_set(x_full, R_M1[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_deriv_set(x_full, R_M1[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_deriv_set(x_full, R_M2[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_deriv_set(x_full, R_M2[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_deriv_set(x_full, R_M3[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_deriv_set(x_full, R_M3[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_deriv_set(x_full, R_W1[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_deriv_set(x_full, R_W1[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_deriv_set(x_full, R_W2[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_deriv_set(x_full, R_W2[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_deriv_set(x_full, R_W3[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_deriv_set(x_full, R_W3[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_deriv_set(x_full, R_CW1[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_deriv_set(x_full, R_CW1[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_deriv_set(x_full, R_CW2[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_deriv_set(x_full, R_CW2[trial_set][:, 1:3], is_heated=False), lib_get_subset.get_x_matched_deriv_set(x_full, R_CW3[trial_set][:, 1:3], is_heated=True)+lib_get_subset.get_x_matched_deriv_set(x_full, R_CW3[trial_set][:, 1:3], is_heated=False))) #print(data_dict['trial_set_1_X'].shape) #print(data_dict['trial_set_'+str(trial_set+1)+'_X'].shape) #data_dict['trial_set_'+str(trial_set+1)+'_y'] = np.array([1, 1, 1, 0, 0, 0, 0, 0, 0]) data_dict['trial_set_'+str(trial_set+1)+'_y'] = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) #print(data_dict['trial_set_'+str(trial_set+1)+'_y'].shape) if train_type == 'all_active':# or train_type == 'all_active_passive': #data_dict = lib_overlapping.get_most_overlapping(x_full, data_dict, num_pairs = 10) #data_dict = lib_overlapping.get_overlapping_reference(x_full, data_dict, num_referenced = 20) data_dict = lib_overlapping.get_meanstd_overlapping2(data_dict) #x_full, cross_val_dict = {} for trial_set in range(NUM_TRIAL_SETS): X_train = [] y_train = [] for other_trial_set in range(NUM_TRIAL_SETS): if other_trial_set != trial_set: if train_type == 'all_active' or train_type == 'all_active_passive': try: X_train = np.concatenate((X_train, data_dict['trial_set_'+str(other_trial_set+1)+'_X']), axis = 0) except: X_train = data_dict['trial_set_'+str(other_trial_set+1)+'_X'] try: y_train = np.concatenate((y_train, data_dict['trial_set_'+str(other_trial_set+1)+'_y']), axis = 0) except: y_train = data_dict['trial_set_'+str(other_trial_set+1)+'_y'] elif train_type == 'noCW_active' or train_type == 'noCW_active_passive': try: X_train = np.concatenate((X_train, data_dict['trial_set_' + str(other_trial_set + 1) + '_X'][0:6, :]), axis=0) except: X_train = data_dict['trial_set_' + str(other_trial_set + 1) + '_X'][0:6, :] try: y_train = np.concatenate((y_train, data_dict['trial_set_' + str(other_trial_set + 1) + '_y'][0:6]), axis=0) except: y_train = data_dict['trial_set_' + str(other_trial_set + 1) + '_y'][0:6] cross_val_dict['fold'+str(trial_set+1)+'_X_train'] = X_train #shape is (8x9) x (1000) cross_val_dict['fold'+str(trial_set+1)+'_y_train'] = y_train #shape is (8x9) cross_val_dict['fold'+str(trial_set+1)+'_X_test'] = data_dict['trial_set_'+str(trial_set+1)+'_X'] #shape is (1x9) x (1000) cross_val_dict['fold'+str(trial_set+1)+'_y_test'] = data_dict['trial_set_'+str(trial_set+1)+'_y'] #shape is (1x9) print("created dataset") return cross_val_dict, data_dict def run_crossvalidation_all(cross_val_dict, trial_set, svm_type): #print("cross val on trial set", trial_set) scores_list = [] X_train = cross_val_dict['fold'+str(trial_set+1)+'_X_train'] y_train = cross_val_dict['fold'+str(trial_set+1)+'_y_train'] X_test = cross_val_dict['fold'+str(trial_set+1)+'_X_test'] y_test = cross_val_dict['fold'+str(trial_set+1)+'_y_test'] #print(np.shape(X_train), np.shape(X_test), np.shape(y_train), np.shape(y_test)) #print(X_test, y_test) #print(X_train, y_train) svc = svm.SVC(kernel=svm_type) #svc = svm.SVC(kernel='rbf') #svc = svm.SVC(kernel='poly', degree=3) clf = svc.fit(X_train, y_train) preds = svc.predict(X_test) #print("ground tr", y_test) #print("predicted", preds) #knn = KNeighborsClassifier(n_neighbors=10) #clf = knn.fit(X_train, y_train) #preds = knn.predict(X_test) cm = confusion_matrix(y_test, preds) scores = clf.score(X_test, y_test) #print("Confusion matrix created") #cmat = cmat + cm total = float(cm.sum()) true = float(np.trace(cm)) scores_list.append(true/total) #print(scores_list) print(y_test) if y_test[3] == 0: y_test[3] += 2 if y_test[4] == 0: y_test[4] += 2 if y_test[5] == 0: y_test[5] += 2 preds_cm = preds.copy() if preds_cm[3] == 0: preds_cm[3] += 2 if preds_cm[4] == 0: preds_cm[4] += 2 if preds_cm[5] == 0: preds_cm[5] += 2 cm = confusion_matrix(y_test, preds_cm) scores = clf.score(X_test, y_test) print(y_test, preds_cm) #print(cm) print(np.array(preds), cm) return np.array(preds), cm def run_leave_one_block_out_crossvalidation_all(train_type, data_dict, svm_type): # print("cross val on trial set", trial_set) scores_list = [] X_data = [] y_data = [] for trial_set in range(NUM_TRIAL_SETS): for block in range(len(data_dict['trial_set_' + str(trial_set + 1) + '_X'])): # print(trial_set, block) # X_train.append(data_dict['trial_set_'+str(trial_set+1)+'_X'][block, :]) if train_type == 'all_active' or train_type == 'all_active_passive': X_data.append(data_dict['trial_set_' + str(trial_set + 1) + '_X'][block, :]) y_data.append(data_dict['trial_set_' + str(trial_set + 1) + '_y'][block]) elif train_type == 'noCW_active' or train_type == 'noCW_active_passive': if block < 6: X_data.append(data_dict['trial_set_' + str(trial_set + 1) + '_X'][block, :]) y_data.append(data_dict['trial_set_' + str(trial_set + 1) + '_y'][block]) print(np.shape(X_data)) print(np.shape(y_data)) X_data = np.array(X_data) y_data = np.array(y_data) cm_total = np.zeros((3, 3)) # skf = StratifiedKFold(y_data, n_folds=3, shuffle=True) loo = LeaveOneOut(n=9) #block_sets_test = [[0, 1, 2], [0, 1, 5], [0, 1, 8], [0, 2, 4], [0, 2, 7], [0, 4, 5], [0, 4, 8], [0, 5, 7],[0, 7, 8], # [3, 1, 2], [3, 1, 5], [3, 1, 8], [3, 2, 4], [3, 2, 7], [3, 4, 5], [3, 4, 8], [3, 5, 7],[3, 7, 8], # [6, 1, 2], [6, 1, 5], [6, 1, 8], [6, 2, 4], [6, 2, 7], [6, 4, 5], [6, 4, 8], [6, 5, 7],[6, 7, 8]] block_sets_test = [[0, 3, 6], [0, 3, 7], [0, 3, 8], [0, 4, 6], [0, 4, 7], [0, 4, 8], [0, 5, 6], [0, 5, 7],[0, 5, 8], [1, 3, 6], [1, 3, 7], [1, 3, 8], [1, 4, 6], [1, 4, 7], [1, 4, 8], [1, 5, 6], [1, 5, 7],[1, 5, 8], [2, 3, 6], [2, 3, 7], [2, 3, 8], [2, 4, 6], [2, 4, 7], [2, 4, 8], [2, 5, 6], [2, 5, 7],[2, 5, 8]] block_sets_train = [] for blocks_test in block_sets_test: blocks_train = [] for i in range(9): if i not in blocks_test: blocks_train.append(i) block_sets_train.append(blocks_train) trial_set_skip = np.arange(0, 270, 9) print(trial_set_skip) for i in range(27): train_block_index = block_sets_train[i] test_block_index = block_sets_test[i] #print(train_block_index, test_block_index) train_index = [] for idx in train_block_index: train_index.append(idx+trial_set_skip) train_index = sorted(list(np.array(train_index).flatten())) test_index = [] for idx in test_block_index: test_index.append(idx+trial_set_skip) test_index = sorted(list(np.array(test_index).flatten())) print("TRAIN:", train_index, "TEST:", test_index) X_train, X_test = X_data[train_index], X_data[test_index] y_train, y_test = y_data[train_index], y_data[test_index] print(X_test) print(y_test) svc = svm.SVC(kernel=svm_type) # svc = svm.SVC(kernel='rbf') # svc = svm.SVC(kernel='poly', degree=3) clf = svc.fit(X_train, y_train) preds = svc.predict(X_test) # print(y_test, preds) cm = confusion_matrix(y_test, preds, labels=[0, 1, 2]) scores = clf.score(X_test, y_test) # print("Confusion matrix created") # cmat = cmat + cm total = float(cm.sum()) true = float(np.trace(cm)) scores_list.append(true / total) # print(scores_list) scores = clf.score(X_test, y_test) #print(test_index, y_test, np.array(preds)) cm_total += cm print(cm) print(cm_total) print(cm_total.T) print(cm_total.T/9) #cm_total.T return scores, cm_total def run_kfold_crossvalidation_all(train_type, data_dict, svm_type): #print("cross val on trial set", trial_set) scores_list = [] X_data = [] y_data = [] for trial_set in range(NUM_TRIAL_SETS): for block in range(len(data_dict['trial_set_' + str(trial_set + 1) + '_X'])): #print(trial_set, block) #X_train.append(data_dict['trial_set_'+str(trial_set+1)+'_X'][block, :]) if train_type == 'all_active' or train_type == 'all_active_passive': X_data.append(data_dict['trial_set_' + str(trial_set + 1) + '_X'][block, :]) y_data.append(data_dict['trial_set_' + str(trial_set + 1) + '_y'][block]) elif train_type == 'noCW_active' or train_type == 'noCW_active_passive': if block < 6: X_data.append(data_dict['trial_set_' + str(trial_set + 1) + '_X'][block, :]) y_data.append(data_dict['trial_set_' + str(trial_set + 1) + '_y'][block]) print(np.shape(X_data)) print(np.shape(y_data)) X_data = np.array(X_data) y_data = np.array(y_data) cm_total =
np.zeros((3,3))
numpy.zeros
import cea import os import pandas as pd import numpy as np import pickle from scipy.stats import triang from scipy.stats import norm from scipy.stats import uniform from pyDOE import lhs from cea.demand import demand_main from geopandas import GeoDataFrame as Gdf import cea.inputlocator as inputlocator from cea.demand.calibration.settings import subset_samples from keras.layers import Input, Dense from keras.models import Model import scipy.io from keras.models import Sequential from keras.callbacks import EarlyStopping from sklearn.preprocessing import MinMaxScaler import cea.config __author__ = "<NAME>" __copyright__ = "Copyright 2017, Architecture and Building Systems - ETH Zurich" __credits__ = ["<NAME>","<NAME>"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Testing" all_results=[] def simulate_demand_sample(locator, building_name, output_parameters): """ This script runs the cea demand tool in series and returns a single value of cvrmse and rmse. :param locator: pointer to location of files in CEA :param building_name: name of building :param output_parameters: building load to consider in the anlysis :return: """ # force simulation to be sequential and to only do one building gv = cea.globalvar.GlobalVariables() gv.multiprocessing = False gv.print_totals = False gv.simulate_building_list = [building_name] gv.testing = True #import weather and measured data weather_path = locator.get_default_weather() #weather_path = 'C:\CEAforArcGIS\cea\databases\weather\Zurich.epw' #calculate demand timeseries for buidling an calculate cvrms demand_main.demand_calculation(locator, weather_path, gv) output_folder=locator.get_demand_results_folder() file_path=os.path.join(output_folder, "%(building_name)s.xls" % locals()) #file_path=locator.get_demand_results_file(building_name) new_calcs = pd.read_excel(file_path) #cv_rmse, rmse = calc_cv_rmse(time_series_simulation[output_parameters].values, time_series_measured[output_parameters].values) return new_calcs #cv_rmse, rmse def latin_sampler(locator, num_samples, variables, region): """ This script creates a matrix of m x n samples using the latin hypercube sampler. for this, it uses the database of probability distribtutions stored in locator.get_uncertainty_db() :param locator: pointer to locator of files of CEA :param num_samples: number of samples to do :param variables: list of variables to sample :return: 1. design: a matrix m x n with the samples 2. pdf_list: a dataframe with properties of the probability density functions used in the excercise. """ # get probability density function PDF of variables of interest variable_groups = ('ENVELOPE', 'INDOOR_COMFORT', 'INTERNAL_LOADS') database = pd.concat([pd.read_excel(locator.get_uncertainty_db(region), group, axis=1) for group in variable_groups]) pdf_list = database[database['name'].isin(variables)].set_index('name') # get number of variables num_vars = pdf_list.shape[0] #alternatively use len(variables) # get design of experiments design = lhs(num_vars, samples=num_samples) for i, variable in enumerate(variables): distribution = pdf_list.loc[variable, 'distribution'] min = pdf_list.loc[variable,'min'] max = pdf_list.loc[variable,'max'] mu = pdf_list.loc[variable,'mu'] stdv = pdf_list.loc[variable,'stdv'] if distribution == 'triangular': loc = min scale = max - min c = (mu - min) / (max - min) design[:, i] = triang(loc=loc, c=c, scale=scale).ppf(design[:, i]) elif distribution == 'normal': design[:, i] = norm(loc=mu, scale=stdv).ppf(design[:, i]) else: # assume it is uniform design[:, i] = uniform(loc=min, scale=max).ppf(design[:, i]) return design, pdf_list def prep_NN_inputs(NN_input,NN_target,NN_delays): #NN_input.to_csv('TEMP.csv', index=False, header=False, float_format='%.3f', decimal='.') #file_path_temp = 'C:\CEAforArcGIS\cea\surrogate\Temp.csv' #input1 = pd.read_csv(file_path_temp) input1=NN_input target1=NN_target nS, nF = input1.shape nSS, nT = target1.shape nD=NN_delays aD=nD+1 input_matrix_features=np.zeros((nS+nD, aD*nF)) rowsF, colsF=input_matrix_features.shape input_matrix_targets=np.zeros((nS+nD, aD*nT)) rowsFF, ColsFF = input_matrix_targets.shape i=1 while i<aD+1: j=i-1 aS=nS+j m1=(i*nF)-(nF) m2=(i*nF) n1=(i*nT)-(nT) n2=(i*nT) input_matrix_features[j:aS, m1:m2]=input1 input_matrix_targets[j:aS, n1:n2]=target1 i=i+1 trimmed_inputn = input_matrix_features[nD:nS,:] trimmed_inputt = input_matrix_targets[nD:nS, 2:] NN_input_ready=np.concatenate([trimmed_inputn, trimmed_inputt], axis=1) NN_target_ready=target1[nD:nS,:] return NN_input_ready, NN_target_ready def sampling_main(locator, variables, building_name, building_load, region): """ This script creates samples using a lating Hypercube sample of 5 variables of interest. then runs the demand calculation of CEA for all the samples. It delivers a json file storing the results of cv_rmse and rmse for each sample. for more details on the work behind this please check: <NAME>., <NAME>., <NAME>. Bayesian calibration of Dynamic building Energy Models. Applied Energy 2017. :param locator: pointer to location of CEA files :param variables: input variables of CEA to sample. They must be 5! :param building_name: name of building to calibrate :param building_load: name of building load to calibrate :return: 1. a file storing values of cv_rmse and rmse for all samples. the file is sotred in file(locator.get_calibration_cvrmse_file(building_name) 2 a file storing information about variables, the building_load and the probability distribtuions used in the excercise. the file is stored in locator.get_calibration_problem(building_name) :rtype: .json and .pkl """ # create list of samples with a LHC sampler and save to disk samples, pdf_list = latin_sampler(locator, subset_samples, variables, region) np.save(locator.get_calibration_samples(building_name), samples) # create problem and save to disk as json problem = {'variables':variables, 'building_load':building_load, 'probabiltiy_vars':pdf_list} pickle.dump(problem, file(locator.get_calibration_problem(building_name), 'w')) nn_X_ht = [] nn_X_cl = [] nn_T_ht = [] nn_T_cl = [] nn_X_ht = np.array(nn_X_ht) nn_X_cl = np.array(nn_X_cl) nn_T_ht = np.array(nn_T_ht) nn_T_cl =
np.array(nn_T_cl)
numpy.array
import unittest import numpy as np from phonopy.api_phonopy import Phonopy from phonopy.spectrum.dynamic_structure_factor import atomic_form_factor_WK1995 from phonopy import load import os data_dir = os.path.dirname(os.path.abspath(__file__)) # <NAME> and <NAME>, Acta Cryst. A51, 416 (1995) # f(Q) = \sum_i a_i \exp((-b_i Q^2) + c # Q is in angstron^-1 # a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, c f_params = {'Na': [3.148690, 2.594987, 4.073989, 6.046925, 0.767888, 0.070139, 0.995612, 14.1226457, 0.968249, 0.217037, 0.045300], # 1+ 'Cl': [1.061802, 0.144727, 7.139886, 1.171795, 6.524271, 19.467656, 2.355626, 60.320301, 35.829404, 0.000436, -34.916604], # 1- 'Si': [5.275329, 2.631338, 3.191038, 33.730728, 1.511514, 0.081119, 1.356849, 86.288640, 2.519114, 1.170087, 0.145073], # neutral 'Pb': [32.505656, 1.047035, 20.014240, 6.670321, 14.645661, 0.105279, 5.029499, 16.525040, 1.760138, 0.105279, 4.044678], # 4+ 'Pb0': [16.419567, 0.105499, 32.738592, 1.055049, 6.530247, 25.025890, 2.342742, 80.906596, 19.916475, 6.664449, 4.049824], 'Te': [6.660302, 33.031656, 6.940756, 0.025750, 19.847015, 5.065547, 1.557175, 84.101613, 17.802427, 0.487660, -0.806668]} # neutral data_AFF = """5.171588679 1.845620236 3.025894647 0.124171430 0.531444271 0.357372083 0.023856320 1.675511060 0.792733731 0.046252215 0.607606835 0.365938849 0.201611049 0.529561499 0.375299494 0.629569610 0.028195996 0.376744812 0.122785611 0.283082649 0.233015457 0.057604235 0.606819089 0.388606570 0.241073793 0.027598574 0.174838303 0.120170236 0.551166577 0.399921690 0.017676892 0.191317799 0.155253863 0.001382605 0.675194157 0.408290981 0.124073001 0.069254933 0.037429027 0.639561207 0.163254273 0.408934148 0.003757843 0.217553444 0.213773706 0.446843472 0.205635357 0.389828659 0.335273837 0.009258283 0.461748466 0.111918275 0.311894016 0.321054550 0.155257213 0.560104925 0.005767736 0.261429629 0.511077151 0.176362423""" data_b = """99.367366854 35.461912077 57.989024624 1.109493894 4.748549446 3.191839110 0.483763005 33.976333211 15.902329182 0.422741848 5.553481879 3.338937967 4.324846943 11.359855711 7.850959264 5.886910551 0.263652029 3.509134839 2.773336666 6.393937243 5.030350431 0.550562310 5.799777024 3.688180663 5.647859305 0.646577389 3.821967934 1.171203888 5.371783065 3.853918874 0.418131844 4.525459914 3.344658336 0.013681138 6.681172229 3.970863352 2.850888142 1.591305647 0.373114126 6.375514924 3.354075619 3.970894110 0.079674882 4.612631104 2.112023136 4.414685828 3.888741010 3.698457365 6.120367922 0.169008406 4.303015992 1.042962054 5.252650957 2.818141845 2.305763345 8.318257049 0.039499076 1.790343459 7.590133448 1.207779368""" def get_func_AFF(f_params): def func(symbol, Q): return atomic_form_factor_WK1995(Q, f_params[symbol]) return func class TestDynamicStructureFactor(unittest.TestCase): def setUp(self): self.phonon = self._get_phonon() mesh = [5, 5, 5] self.phonon.set_mesh(mesh, is_mesh_symmetry=False, is_eigenvectors=True) def tearDown(self): pass def show(self): directions = np.array([[0.5, 0.5, 0.5], [-0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [0.5, 0.5, -0.5], [0.5, -0.5, -0.5], [-0.5, 0.5, -0.5], [-0.5, -0.5, 0.5], [-0.5, -0.5, -0.5]]) G_points_cubic = ([7, 1, 1], ) self._run(G_points_cubic, directions, verbose=True) def test_IXS_G_to_L(self, verbose=False): directions = np.array([[0.5, 0.5, 0.5], ]) n_points = 11 G_points_cubic = ([7, 1, 1], ) # Atomic form factor self._run(G_points_cubic, directions, func_AFF=get_func_AFF(f_params), n_points=n_points) Q, S = self.phonon.get_dynamic_structure_factor() data_cmp = np.reshape([float(x) for x in data_AFF.split()], (-1, 6)) for i in (([0, 1], [2], [3, 4], [5])): np.testing.assert_allclose( S[:6, i].sum(axis=1), data_cmp[:6, i].sum(axis=1), atol=1e-5) if verbose: print(S[:6, i].sum(axis=1) - data_cmp[:6, i].sum(axis=1)) for i in (([0, 1], [2, 3], [4], [5])): np.testing.assert_allclose( S[6:, i].sum(axis=1), data_cmp[6:, i].sum(axis=1), atol=1e-5) if verbose: print(S[6:, i].sum(axis=1) - data_cmp[6:, i].sum(axis=1)) # Scattering lengths self._run(G_points_cubic, directions, scattering_lengths={'Na': 3.63, 'Cl': 9.5770}, n_points=n_points) Q, S = self.phonon.get_dynamic_structure_factor() data_cmp = np.reshape([float(x) for x in data_b.split()], (-1, 6)) for i in (([0, 1], [2], [3, 4], [5])): np.testing.assert_allclose( S[:6, i].sum(axis=1), data_cmp[:6, i].sum(axis=1), atol=1e-5) if verbose: print(S[:6, i].sum(axis=1) - data_cmp[:6, i].sum(axis=1)) for i in (([0, 1], [2, 3], [4], [5])): np.testing.assert_allclose( S[6:, i].sum(axis=1), data_cmp[6:, i].sum(axis=1), atol=1e-5) if verbose: print(S[6:, i].sum(axis=1) - data_cmp[6:, i].sum(axis=1)) def plot_f_Q(f_params): import matplotlib.pyplot as plt x = np.linspace(0.0, 6.0, 101) for elem in ('Si', 'Na', 'Cl', 'Pb', 'Pb0', 'Te'): y = [atomic_form_factor_WK1995(Q, f_params[elem]) for Q in x] plt.plot(x, y, label=elem) plt.xlim(xmin=0) plt.ylim(ymin=0) plt.legend() plt.show() def _run(self, G_points_cubic, directions, func_AFF=None, scattering_lengths=None, n_points=51): P = [[0, 0.5, 0.5], [0.5, 0, 0.5], [0.5, 0.5, 0]] G_to_L = np.array( [directions[0] * x for x in np.arange(0, n_points) / float(n_points - 1)]) self.phonon.set_band_structure([G_to_L]) _, distances, frequencies, _ = self.phonon.get_band_structure() T = 300 for G_cubic in G_points_cubic: G_prim = np.dot(G_cubic, P) for direction in directions: direction_prim = np.dot(direction, P) G_to_L = np.array( [direction_prim * x for x in np.arange(1, n_points) / float(n_points - 1)]) if func_AFF is not None: self.phonon.set_dynamic_structure_factor( G_to_L, G_prim, T, func_atomic_form_factor=func_AFF, freq_min=1e-3, run_immediately=False) elif scattering_lengths is not None: self.phonon.set_dynamic_structure_factor( G_to_L, G_prim, T, scattering_lengths=scattering_lengths, freq_min=1e-3, run_immediately=False) else: raise SyntaxError dsf = self.phonon.dynamic_structure_factor for i, S in enumerate(dsf): pass def _get_phonon(self): filename_cell = os.path.join(data_dir, "..", "POSCAR_NaCl") filename_forces = os.path.join(data_dir, "..", "FORCE_SETS_NaCl") filename_born = os.path.join(data_dir, "..", "BORN_NaCl") phonon = load(
np.diag([2, 2, 2])
numpy.diag
from deepnn.core import * import unittest import numpy as np import pprint class TestCore(unittest.TestCase): def test_initialization(self): nn = NeuralNetwork([5, 4, 3], seed = 3) self.assertEqual(nn.L, 2) try: np.testing.assert_allclose(nn.W[1], [[ 0.01788628, 0.0043651, 0.00096497, -0.01863493, -0.00277388], [-0.00354759, -0.00082741, -0.00627001, -0.00043818, -0.00477218], [-0.01313865, 0.00884622, 0.00881318, 0.01709573, 0.00050034], [-0.00404677, -0.0054536, -0.01546477, 0.00982367, -0.01101068]], rtol=1e-5) except AssertionError: self.fail("Failed initialize_parameters W1") try: np.testing.assert_array_equal(nn.b[1], [[0.], [0.], [0.], [0.]]) except AssertionError: self.fail("Failed initialize_parameters b1") try: np.testing.assert_allclose(nn.W[2], [[-0.01185047, -0.0020565, 0.01486148, 0.00236716], [-0.01023785, -0.00712993, 0.00625245, -0.00160513], [-0.00768836, -0.00230031, 0.00745056, 0.01976111]], rtol=1e-5) except AssertionError: self.fail("Failed initialize_parameters W2") try: np.testing.assert_array_equal(nn.b[2], [[0.], [0.], [0.]]) except AssertionError: self.fail("Failed initialize_parameters b2") def test_linear_forward(self): np.random.seed(1) A_prev = np.random.randn(3,2) W = np.random.randn(1,3) b = np.random.randn(1,1) nn = NeuralNetwork([3, 1], seed = 1) nn.W[1], nn.b[1] = W, b self.assertEqual(nn.L, 1) Z = nn._linear_forward(A_prev, 1) try: np.testing.assert_allclose(Z, [[ 3.26295337, -1.23429987]], rtol=1e-5) except AssertionError: self.fail("Failed linear_forward") def test_linear_activation_forward(self): np.random.seed(2) A_prev = np.random.randn(3,2) W = np.random.randn(1,3) b = np.random.randn(1,1) nn = NeuralNetwork([3, 1], seed = 1) nn.W[1], nn.b[1] = W, b A, linear_activation_cache = nn._linear_activation_forward(A_prev, 1, activation = "sigmoid") try: np.testing.assert_allclose(A, [[ 0.96890023, 0.11013289 ]], rtol=1e-5) except AssertionError: self.fail("Failed linear_activation_forward with sigmoid") A, linear_activation_cache = nn._linear_activation_forward(A_prev, 1, activation = "relu") try: np.testing.assert_allclose(A, [[ 3.43896131, 0. ]], rtol=1e-5) except AssertionError: self.fail("Failed linear_activation_forward with ReLU") def test_L_model_forward(self): np.random.seed(6) X = np.random.randn(5,4) W1, b1 = np.random.randn(4,5), np.random.randn(4,1) W2, b2 = np.random.randn(3,4), np.random.randn(3,1) W3, b3 = np.random.randn(1,3), np.random.randn(1,1) nn = NeuralNetwork([5, 4, 3, 1], seed = 6) self.assertEqual(nn.L, 3) nn.W[1], nn.b[1] = W1, b1 nn.W[2], nn.b[2] = W2, b2 nn.W[3], nn.b[3] = W3, b3 AL = nn.L_model_forward(X) try: np.testing.assert_allclose(AL, [[ 0.03921668, 0.70498921, 0.19734387, 0.04728177]], rtol=1e-5) except AssertionError: self.fail("Failed L_model_forward with AL") self.assertEqual(len(nn.caches), 3) def test_cross_entropy(self): Y =
np.asarray([[1, 1, 1]])
numpy.asarray
import numpy as np def trade_quote_processing(t, dates_quotes, q_ask, p_ask, q_bid, p_bid, t_n, dates_trades, p_last, delta_q, delta_sgn, match, varargin=None): """For details, see here. Parameters ---------- t : array, shape (k1_,) dates_quotes : array, shape (k1_,) q_ask : array, shape (k1_,) p_ask : array, shape (k1_,) q_bid : array, shape (k1_,) p_bid : array, shape (k1_,) t_n : array, shape (k3_,) dates_trades : array, shape (k3_,) p_last : array, shape (k3_,) delta_q : array, shape (k3_,) delta_sgn : array, shape (k3_,) match : array, shape (k3_,) varargin{1} : array, shape (k1_,) varargin{2} : array, shape (k1_,) Returns ------- t_p : array, shape (k1_,) dates_quotes_p : array, shape (k1_,) q_ask_p : array, shape (k1_,) p_ask_p : array, shape (k1_,) q_bid_p : array, shape (k1_,) p_bid_p : array, shape (k1_,) t_n_p : array, shape (k2_,) dates_trades_p : array, shape (k2_,) p_last_p : array, shape (k2_,) delta_q_p : array, shape (k2_,) delta_sgn_p : array, shape (k2_,) varargout{1} : array, shape (k1_,) varargout{2} : array, shape (k1_,) """ ## QUOTES: if there are repeated times, consider the last stored observation and delete the others t_unique = np.unique(t) k1_ = len(t_unique) dates_quotes_p = {} t_p = np.zeros(k1_) p_bid_p = np.zeros(k1_) p_ask_p = np.zeros(k1_) q_bid_p = np.zeros(k1_) q_ask_p = np.zeros(k1_) varargout = {1: np.zeros(k1_), 2:
np.zeros(k1_)
numpy.zeros
import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import numpy as np import sys sys.path.append('/home/groups/ZuckermanLab/copperma/cell/celltraj') import celltraj import h5py import pickle import os import subprocess import time sys.path.append('/home/groups/ZuckermanLab/copperma/msmWE/BayesianBootstrap') import bootstrap import umap import pyemma.coordinates as coor import scipy modelList=['PBS_17nov20','EGF_17nov20','HGF_17nov20','OSM_17nov20','BMP2_17nov20','IFNG_17nov20','TGFB_17nov20'] nmodels=len(modelList) modelSet=[None]*nmodels for i in range(nmodels): modelName=modelList[i] objFile=modelName+'_coords.obj' objFileHandler=open(objFile,'rb') modelSet[i]=pickle.load(objFileHandler) objFileHandler.close() wctm=celltraj.cellTraj() fileSpecifier='/home/groups/ZuckermanLab/copperma/cell/live_cell/mcf10a/batch_17nov20/*_17nov20.h5' print('initializing...') wctm.initialize(fileSpecifier,modelName) nfeat=modelSet[0].Xf.shape[1] Xf=np.zeros((0,nfeat)) indtreatment=np.array([]) indcellSet=np.array([]) for i in range(nmodels): Xf=np.append(Xf,modelSet[i].Xf,axis=0) indtreatment=np.append(indtreatment,i*np.ones(modelSet[i].Xf.shape[0])) indcellSet=np.append(indcellSet,modelSet[i].cells_indSet) indtreatment=indtreatment.astype(int) indcellSet=indcellSet.astype(int) Xpca,pca=wctm.get_pca_fromdata(Xf,var_cutoff=.9) wctm.Xpca=Xpca wctm.pca=pca for i in range(nmodels): indsf=np.where(indtreatment==i)[0] modelSet[i].Xpca=Xpca[indsf,:] all_trajSet=[None]*nmodels for i in range(nmodels): modelSet[i].get_unique_trajectories() all_trajSet[i]=modelSet[i].trajectories.copy() self=wctm for trajl in [8]: #,2,3,4,5,6,7,8,9,10,12,14,16,18,20,25,30,26]: wctm.trajl=trajl Xpcat=np.zeros((0,pca.ndim*trajl)) indtreatment_traj=np.array([]) indstack_traj=np.array([]) indframes_traj=np.array([]) cellinds0_traj=np.array([]) cellinds1_traj=np.array([]) for i in range(nmodels): modelSet[i].trajectories=all_trajSet[i].copy() modelSet[i].trajl=trajl modelSet[i].traj=modelSet[i].get_traj_segments(trajl) data=modelSet[i].Xpca[modelSet[i].traj,:] data=data.reshape(modelSet[i].traj.shape[0],modelSet[i].Xpca.shape[1]*trajl) Xpcat=np.append(Xpcat,data,axis=0) indtreatment_traj=np.append(indtreatment_traj,i*np.ones(data.shape[0])) indstacks=modelSet[i].cells_imgfileSet[modelSet[i].traj[:,0]] indstack_traj=np.append(indstack_traj,indstacks) indframes=modelSet[i].cells_frameSet[modelSet[i].traj[:,0]] indframes_traj=np.append(indframes_traj,indframes) cellinds0=modelSet[i].traj[:,0] cellinds0_traj=np.append(cellinds0_traj,cellinds0) cellinds1=modelSet[i].traj[:,-1] cellinds1_traj=np.append(cellinds1_traj,cellinds1) cellinds0_traj=cellinds0_traj.astype(int) cellinds1_traj=cellinds1_traj.astype(int) for neigen in [2]: #[1,2,3,4,5]: reducer=umap.UMAP(n_neighbors=200,min_dist=0.1, n_components=neigen, metric='euclidean') trans = reducer.fit(Xpcat) x=trans.embedding_ indst=np.arange(x.shape[0]).astype(int) wctm.Xtraj=x.copy() wctm.indst=indst.copy() indconds=np.array([[0,1],[2,3],[4,5]]).astype(int) ncond=3 fl=12 fu=96 nbinstotal=15.*15. indstw=np.where(np.logical_and(indframes_traj[indst]<fu,indframes_traj[indst]>fl))[0] probSet=[None]*nmodels avoverlapSet=np.zeros(ncond) prob1,edges=np.histogramdd(x[indstw,:],bins=int(np.ceil(nbinstotal**(1./neigen))),density=True) for icond in range(ncond): imf1=indconds[icond,0] imf2=indconds[icond,1] inds_imf1=np.where(indstack_traj==imf1)[0] inds_imf2=np.where(indstack_traj==imf2)[0] inds_cond=np.append(inds_imf1,inds_imf2) for imf in range(nmodels): indstm=np.where(indtreatment_traj==imf)[0] indstm_cond=np.intersect1d(indstm,inds_cond) xt=x[indstm_cond,0:neigen] indg=np.where(np.logical_not(np.logical_or(np.isnan(xt[:,0]),np.isinf(xt[:,0]))))[0] xt=xt[indg] prob,edges2=np.histogramdd(xt,bins=edges,density=True) #for d=1 prob=prob/np.sum(prob) probSet[imf]=prob.copy() poverlapMatrix=np.zeros((nmodels,nmodels)) for i in range(nmodels): for j in range(nmodels): probmin=np.minimum(probSet[i],probSet[j]) poverlapMatrix[i,j]=np.sum(probmin) avoverlapSet[icond]=np.mean(poverlapMatrix[np.triu_indices(nmodels,1)]) sys.stdout.write('avoverlap: '+str(avoverlapSet[0])+' '+str(avoverlapSet[1])+' '+str(avoverlapSet[2])+'\n') #np.savetxt('avoverlapSet_UMAP_trajl'+str(trajl)+'_ndim'+str(neigen)+'_19feb21.dat',avoverlapSet) for i in range(nmodels): modelSet[i].trajectories=all_trajSet[i].copy() indconds=np.array([[0,1],[2,3],[4,5]]).astype(int) ncond=3 probSet=[None]*nmodels sigdxSet=np.zeros(ncond) sigxSet=np.zeros(ncond) dxSet=np.zeros(ncond) x0=
np.zeros((0,neigen))
numpy.zeros
import numpy as np import chainer from chainer import serializers import onnx_chainer from PIL import Image from model import FastStyleNet, postprocess def main(): chainer.config.train = False model = FastStyleNet() serializers.load_npz('./chainer-fast-neuralstyle-models/models/starrynight.model', model) input = './test1.jpg' original = Image.open(input).convert('RGB') print(original.size) image =
np.asarray(original, dtype=np.float32)
numpy.asarray
import numpy as np from sklearn.neighbors import BallTree, KDTree import os from baselines.deepq.experiments.atari.lru_knn_gpu_bp import LRU_KNN_GPU_BP import gc from baselines.deepq.experiments.atari.knn_cuda_fixmem import knn as knn_cuda_fixmem import copy class LRU_KNN_COMBINE_BP(object): def __init__(self, num_actions, buffer_size, latent_dim, hash_dim, gamma=0.99, bp=True): self.ec_buffer = [] self.num_actions = num_actions self.gamma = gamma self.rmax = 100000 self.bp = bp for i in range(num_actions): self.ec_buffer.append(LRU_KNN_GPU_BP(buffer_size, latent_dim, hash_dim, 'game')) def add(self, action, key, value, reward, done, brothers): buffer = self.ec_buffer[action] if buffer.curr_capacity >= buffer.capacity: # find the LRU entry index =
np.argmin(buffer.lru)
numpy.argmin
import hnswlib import numpy as np from disjoint_set import DisjointSet from tqdm import tqdm_notebook as tqdm import torch from scipy.spatial import ConvexHull from itertools import chain import networkx as nx from matplotlib import pyplot as plt from matplotlib.ticker import MaxNLocator def HNSWNearestNeighbors(X, k=2): '''For a given set of points X finds k nearest neighbors for every point Parameters ---------- X : array-like, shape (n_samples, n_features) Point data to find nearest neighbors, where n_samples is the number of samples and n_features is the number of features. Returns ------- labels : array-like, shape (n_samples, k) indices of k nearest neighbors for every point distances : array-like, shape (n_samples, k) distances to k nearest neighbors in increasing order ''' X_float32 = np.array(X, dtype=np.float32) X_labels = np.arange(len(X)) # Declaring index p = hnswlib.Index(space='l2', dim=X.shape[1]) # possible options are l2, cosine or ip # Initing index - the maximum number of elements should be known beforehand p.init_index(max_elements=len(X), ef_construction=200, M=16) # Element insertion (can be called several times): p.add_items(X_float32, X_labels) # Controlling the recall by setting ef: p.set_ef(50 + k) # ef should always be > k return p.knn_query(X, k=k) def GetLowPoints(Cub, f, threshold, num, batch = 100, show_bar = True): thetas = np.zeros((0, f.param_dim)) values = np.zeros(0) if show_bar: pbar = tqdm(total=num) while len(thetas) < num: thetas_batch = Cub.get_points(batch) values_batch = f(thetas_batch) mask = values_batch < threshold thetas = np.vstack([thetas, thetas_batch[mask]]) values = np.concatenate([values, values_batch[mask]]) if show_bar: pbar.update(np.sum(mask)) del thetas_batch return thetas, values class Cube: def __init__(self, min_point, max_point): self.min = min_point self.max = max_point self.dim = max_point.shape[0] def check_points(self, points): return np.logical_and(np.all(self.min < points, axis=1), np.all(self.max > points, axis=1)) def get_points(self, num = 1): return self.min + (self.max - self.min)*np.random.rand(num, self.dim) class NetworkDataSetLoss: def __init__(self, hidden_layer_sizes, X, Y, activation='tanh', max_batch_size=500000): assert type(X) == torch.Tensor assert type(Y) == torch.Tensor assert X.device == Y.device self.device = X.device self.max_batch_size = max_batch_size self.hidden_layer_sizes = hidden_layer_sizes self.b_shapes = tuple(hidden_layer_sizes) + (Y.shape[1],) self.W_shapes = tuple(zip( [X.shape[1],] + list(hidden_layer_sizes), self.b_shapes )) self.param_dim = np.sum([np.prod(W_shape) for W_shape in self.W_shapes]) + np.sum(self.b_shapes) if activation == 'relu': self.activation = torch.relu elif activation == 'tanh': self.activation = torch.tanh self.X = X.clone().detach() self.Y = Y.clone().detach() def to(self, device): self.X = self.X.to(device) self.Y = self.Y.to(device) self.device = device def predict(self, thetas, with_grads=True): # assert thetas.shape[0] <= self.max_batch_size output = self.X.unsqueeze(0) pos = 0 for d in range(len(self.W_shapes)): W_shape, b_shape = self.W_shapes[d], self.b_shapes[d] W_len, b_len = np.prod(W_shape), np.prod(b_shape) Ws = thetas[:, pos:pos+W_len].reshape(-1, *W_shape) pos += W_len bs = thetas[:, pos:pos+b_len].reshape(-1, b_shape) pos += b_len # output = torch.bmm(output, Ws) + bs[:,None,:] output = torch.matmul(output, Ws) output.add_(bs.unsqueeze(1)) if d != len(self.W_shapes) - 1: output = self.activation(output) del Ws, bs output = output if with_grads else output.detach() # torch.cuda.empty_cache() return output def __call__(self, thetas, with_grads=True): if with_grads: # assert len(thetas) <= self.max_batch_size Y_pred = self.predict(thetas, with_grads=with_grads) losses = ((Y_pred - self.Y) ** 2).flatten(start_dim=1).mean(dim=1) return losses with torch.no_grad(): result = [] for thetas_batch in tqdm(torch.split(thetas, self.max_batch_size)): Y_pred = self.predict(thetas_batch, with_grads=with_grads) losses = ((Y_pred - self.Y) ** 2).flatten(start_dim=1).mean(dim=1) result.append(losses.detach()) torch.cuda.empty_cache() torch.cuda.empty_cache() return torch.cat(result).detach() class ReLUFixedBiasFullyConnectedNetworkDataSetLoss: def __init__( self, hidden_layer_sizes, biases, X, Y, max_batch_size=500000, lambda_l1=0., lambda_l2=0., last_bias_on=True ): assert type(X) == torch.Tensor assert type(Y) == torch.Tensor assert X.device == Y.device assert lambda_l1 >= 0 assert lambda_l2 >= 0 self.lambda_l1 = lambda_l1 self.lambda_l2 = lambda_l2 self.device = X.device self.max_batch_size = max_batch_size self.biases = [torch.tensor(bias, dtype=torch.float32, device=self.device) for bias in biases] self.last_bias = last_bias_on self.hidden_layer_sizes = hidden_layer_sizes self.b_shapes = tuple(hidden_layer_sizes) + (Y.shape[1],) self.W_shapes = tuple(zip( [X.shape[1],] + list(hidden_layer_sizes), self.b_shapes )) self.param_dim = np.sum([np.prod(W_shape) for W_shape in self.W_shapes]) if last_bias_on: self.param_dim += np.prod(self.b_shapes[-1]) self.X = X.clone().detach() self.Y = Y.clone().detach() def to(self, device): self.X = self.X.to(device) self.Y = self.Y.to(device) self.biases = [bias.to(device) for bias in self.biases] self.device = device def predict(self, thetas, inner=False): assert (type(thetas) == torch.Tensor) or (type(thetas) == np.ndarray) assert len(thetas) <= self.max_batch_size if type(thetas) == np.ndarray: return self.predict( torch.tensor(thetas, device=self.device, dtype=torch.float32) ).cpu().detach().numpy() output = self.X.unsqueeze(0) pos = 0 for d in range(len(self.W_shapes)): W_shape, b_shape = self.W_shapes[d], self.b_shapes[d] W_len, b_len = np.prod(W_shape), np.prod(b_shape) Ws = thetas[:, pos:pos+W_len].reshape(-1, *W_shape) pos += W_len if d < len(self.W_shapes) - 1: bs = self.biases[d].reshape(-1, b_shape) else: if self.last_bias: bs = thetas[:, -b_len:].reshape(-1, b_shape) else: bs = torch.zeros((thetas.shape[0], b_shape), device=self.device, dtype=torch.float32) output = torch.matmul(output, Ws) output.add_(bs.unsqueeze(1)) if d != len(self.W_shapes) - 1: output = torch.relu(output) if d == len(self.W_shapes) - 1 and not inner: ad = ((self.Y - output).flatten(start_dim=1).mean(dim=1))/(1 + self.lambda_l2) output.add_(ad.reshape(output.shape[0], 1, 1)) return output def _compute_regularization(self, thetas): return self.lambda_l1 * torch.abs(thetas).sum(dim=1) + self.lambda_l2 * ((thetas) ** 2).sum(dim=1) def __call__(self, thetas): assert (type(thetas) == torch.Tensor) or (type(thetas) == np.ndarray) if type(thetas) == torch.Tensor: assert len(thetas) <= self.max_batch_size # assert thetas.device == self.device Y_pred = self.predict(thetas, inner=True) if not self.last_bias: addition = ((self.Y - Y_pred).flatten(start_dim=1).mean(dim=1))/(1 + self.lambda_l2) Y_pred.add_(addition.reshape(Y_pred.shape[0], 1, 1)) losses = ((Y_pred - self.Y) ** 2).flatten(start_dim=1).mean(dim=1) if not self.last_bias: losses.add_(self.lambda_l2*addition**2) return losses + self._compute_regularization(thetas) with torch.no_grad(): result = [] start = 0 while start < len(thetas): thetas_batch = torch.tensor( thetas[start:start+self.max_batch_size], device=self.device, dtype=torch.float32 ) result.append(self(thetas_batch).cpu().detach().numpy()) torch.cuda.empty_cache() start += self.max_batch_size torch.cuda.empty_cache() return np.hstack(result) def make_undirected(graph): undirected_graph = graph.tolist() for v1 in range(len(graph)): for v2 in graph[v1]: undirected_graph[v2].append(v1) undirected_graph = [list(set(neighbors)) for neighbors in undirected_graph] return undirected_graph def make_rectangular(graph): max_n = max([len(neighbors) for neighbors in graph]) for v in range(len(graph)): graph[v] += [-1] * (max_n - len(graph[v])) return graph class ExtendedConvexHull(ConvexHull): def __init__(self, points, volume_multiplier=1.): super().__init__(points, incremental=False) self.volume_multiplier = volume_multiplier self._initialize_sampler() def _initialize_sampler(self): assert len(self.vertices) > self.ndim pivot = self.simplices[0][0] self._partition_idx = np.array( [[pivot] + simplex.tolist() for simplex in self.simplices if pivot not in simplex], dtype=int ) partition_vol = np.array([ np.abs(np.linalg.det(self.points[idx][1:] - self.points[idx][0])) for idx in self._partition_idx ]) self._partition_p = partition_vol / np.sum(partition_vol) self.mass_center = np.zeros(self.ndim, dtype=float) for idx, p in zip(self._partition_idx, self._partition_p): self.mass_center += self.points[idx].mean(axis=0) * p def add_points(self, *args, **kwargs): raise Exception('Not supported. Please reinitialize from scratch.') def sample(self, n_points): simplex_idx = np.random.choice(range(len(self._partition_idx)), size=n_points, p=self._partition_p).astype(int) points_idx = self._partition_idx[simplex_idx] weights = np.random.dirichlet([1.] * (self.ndim+1), size=n_points) points = self.points[points_idx.flatten().astype(int)].reshape(*points_idx.shape, -1,) points = torch.tensor(points) weights = torch.tensor(weights) batch = torch.matmul(points.transpose(2, 1), weights[:, :, None]).numpy().sum(axis=2) # Scaling batch = self.mass_center + \ (batch - self.mass_center) * (self.volume_multiplier ** (1. / batch.shape[1])) return batch def get_dist_to_bounding_planes(self, points): inner_dist = (points @ self.equations[:, :-1].T + self.equations[:, -1]) center_dist = (self.equations[:, :-1] @ self.mass_center + self.equations[:, -1]) return inner_dist + center_dist def plot_barcodes(result, ax, min_cluster_size=20, title=''): minima = result[result.dead_cluster_size >= min_cluster_size].copy() minima = minima.sort_values('birth').reset_index() # minima.set_index('id_dead_min', inplace=True) for i, row in minima.iterrows(): ax.plot([i, i], [row.birth, row.death], c='darkslategrey') ax.plot( [0, 0], [minima.iloc[0].birth, minima.death[minima.death < np.inf].max()], c='darkslategrey', linestyle='--' ) ax.scatter( range(len(minima)), minima.birth.values, c='mediumblue', marker="v", edgecolor='black', zorder=np.inf, label='Value at Local Min' ) ax.scatter( range(len(minima)), minima.death.values, c='red', edgecolor='black', marker='s', zorder=np.inf, label='Value at 1-Saddle' ) #ax.set_ylabel('Minima Barcode') # ax.set_ylim(-0.03, 0.7) ax.set_title(title) plt.setp(ax.get_xticklabels(), visible=False) ax.legend(fontsize=12) return ax def plot_graph(result, ax, min_cluster_size=20, title=''): G = nx.DiGraph() minima = result[result.dead_cluster_size >= min_cluster_size].copy() minima = minima.sort_values('birth').reset_index() for i, row in minima.iterrows(): G.add_edge(int(row.id_swallowed_min), int(row.id_dead_min), directed=True) pos=nx.planar_layout(G) nx.draw(G, pos, ax=ax, node_size=200, with_labels=False, font_size=10,) def plot_2d_colormap( f, ax, scatter_points=None, x_min=-1, y_min=-1, x_max=1, y_max=1, grid_size=100, nbins=50, title=None ): X = np.linspace(x_min, x_max, grid_size) Y = np.linspace(y_min, y_max, grid_size) X, Y =
np.meshgrid(X, Y)
numpy.meshgrid
import os import re import unittest import numpy as np import wfdb class TestAnnotation(unittest.TestCase): """ Testing read and write of WFDB annotations, including Physionet streaming. Target files created using the original WFDB Software Package version 10.5.24 """ def test_1(self): """ Target file created with: rdann -r sample-data/100 -a atr > ann-1 """ annotation = wfdb.rdann("sample-data/100", "atr") # This is not the fault of the script. The annotation file specifies a # length 3 annotation.aux_note[0] = "(N" # aux_note field with a null written after '(N' which the script correctly picks up. I am just # getting rid of the null in this unit test to compare with the regexp output below which has # no null to detect in the output text file of rdann. # Target data from WFDB software package lines = tuple(open("tests/target-output/ann-1", "r")) nannot = len(lines) target_time = [None] * nannot target_sample = np.empty(nannot, dtype="object") target_symbol = [None] * nannot target_subtype = np.empty(nannot, dtype="object") target_chan = np.empty(nannot, dtype="object") target_num = np.empty(nannot, dtype="object") target_aux_note = [None] * nannot RXannot = re.compile( "[ \t]*(?P<time>[\[\]\w\.:]+) +(?P<sample>\d+) +(?P<symbol>.) +(?P<subtype>\d+) +(?P<chan>\d+) +(?P<num>\d+)\t?(?P<aux_note>.*)" ) for i in range(0, nannot): ( target_time[i], target_sample[i], target_symbol[i], target_subtype[i], target_chan[i], target_num[i], target_aux_note[i], ) = RXannot.findall(lines[i])[0] # Convert objects into integers target_sample = target_sample.astype("int") target_num = target_num.astype("int") target_subtype = target_subtype.astype("int") target_chan = target_chan.astype("int") # Compare comp = [ np.array_equal(annotation.sample, target_sample), np.array_equal(annotation.symbol, target_symbol), np.array_equal(annotation.subtype, target_subtype), np.array_equal(annotation.chan, target_chan), np.array_equal(annotation.num, target_num), annotation.aux_note == target_aux_note, ] # Test file streaming pn_annotation = wfdb.rdann( "100", "atr", pn_dir="mitdb", return_label_elements=["label_store", "symbol"], ) pn_annotation.aux_note[0] = "(N" pn_annotation.create_label_map() # Test file writing annotation.wrann(write_fs=True) write_annotation = wfdb.rdann( "100", "atr", return_label_elements=["label_store", "symbol"] ) write_annotation.create_label_map() assert comp == [True] * 6 assert annotation.__eq__(pn_annotation) assert annotation.__eq__(write_annotation) def test_2(self): """ Annotation file with many aux_note strings. Target file created with: rdann -r sample-data/100 -a atr > ann-2 """ annotation = wfdb.rdann("sample-data/12726", "anI") # Target data from WFDB software package lines = tuple(open("tests/target-output/ann-2", "r")) nannot = len(lines) target_time = [None] * nannot target_sample = np.empty(nannot, dtype="object") target_symbol = [None] * nannot target_subtype = np.empty(nannot, dtype="object") target_chan = np.empty(nannot, dtype="object") target_num = np.empty(nannot, dtype="object") target_aux_note = [None] * nannot RXannot = re.compile( "[ \t]*(?P<time>[\[\]\w\.:]+) +(?P<sample>\d+) +(?P<symbol>.) +(?P<subtype>\d+) +(?P<chan>\d+) +(?P<num>\d+)\t?(?P<aux_note>.*)" ) for i in range(0, nannot): ( target_time[i], target_sample[i], target_symbol[i], target_subtype[i], target_chan[i], target_num[i], target_aux_note[i], ) = RXannot.findall(lines[i])[0] # Convert objects into integers target_sample = target_sample.astype("int") target_num = target_num.astype("int") target_subtype = target_subtype.astype("int") target_chan = target_chan.astype("int") # Compare comp = [
np.array_equal(annotation.sample, target_sample)
numpy.array_equal
from enum import Enum import numpy as np from qiskit.extensions import XGate, YGate, SGate, ZGate, HGate, TGate, RXGate, RYGate, RZGate, IdGate from qiskit.circuit import Gate from qiskit.circuit import QuantumRegister def gen_predefined_payoffs(game_name: str, num_players: int, payoff_input: dict): """Generates payoff table based on game name""" num_players = num_players payoff_table = {} if game_name == "minority": for i in range(2**num_players): outcome = format(i, '0'+str(num_players)+'b') payoff = np.zeros(num_players) if outcome.count('0') != 1 and outcome.count('1') != 1: payoff_table[outcome] = tuple(payoff) else: if outcome.count('0') == 1: win_ind = outcome.find('0') payoff[win_ind] = 1 payoff_table[outcome] = tuple(payoff) if outcome.count('1') == 1: win_ind = outcome.find('1') payoff[win_ind] = 1 payoff_table[outcome] = tuple(payoff) elif game_name == "chicken": for i in range(2**num_players): outcome = format(i, '0'+str(num_players)+'b') if outcome.count('1') == 0: payoff_table[outcome] = tuple(np.zeros(num_players)) elif outcome.count('1') == 1: payoff = np.array([]) for j in range(num_players): if outcome[j] == '0': payoff = np.append(payoff, -1) else: payoff = np.append(payoff, 1) payoff_table[outcome] = tuple(payoff) else: payoff = np.array([]) for j in range(num_players): if outcome[j] == '0': payoff = np.append(payoff, 0) else: payoff =
np.append(payoff, -10)
numpy.append
"""Analysis and modification of structural data exported from GeoModeller All structural data from an entire GeoModeller project can be exported into ASCII files using the function in the GUI: Export -> 3D Structural Data This method generates files for defined geological parameters: "Points" (i.e. formation contact points) and "Foliations" (i.e. orientations/ potential field gradients). Exported parameters include all those defined in sections as well as 3D data points. This package contains methods to check, visualise, and extract/modify parts of these exported data sets, for example to import them into a different Geomodeller project. """ # import os, sys import numpy as np import numpy.random import matplotlib.pyplot as plt # from mpl_toolkits.mplot3d import Axes3D class Struct3DPoints(): """Class container for 3D structural points data sets""" def __init__(self, **kwds): """Structural points data set **Optional keywords**: - *filename* = string : filename of csv file with exported points to load """ # store point information in purpose defined numpy record self.ptype = np.dtype([('x', np.float32), ('y', np.float32), ('z', np.float32), ('formation', np.str_, 32)]) if kwds.has_key("filename"): self.filename = kwds['filename'] # read data self.parse() self.get_formation_names() self.get_range() def parse(self): """Parse filename and load data into numpy record The point information is stored in a purpose defined numpy record self.points """ f = open(self.filename, "r") lines = f.readlines() self.header = lines[0] # determine position of elements in header (for extension to foliations, etc.) h_elem = np.array(self.header.rstrip().split(',')) x_id = np.where(h_elem == 'X')[0] y_id = np.where(h_elem == 'Y')[0] z_id = np.where(h_elem == 'Z')[0] form_id = np.where(h_elem == 'formation')[0] # print x_id # create numpy array for points self.len = (len(lines)-1) self.points = np.ndarray(self.len, dtype = self.ptype) for i,line in enumerate(lines[1:]): l = line.rstrip().split(',') self.points[i]['x'] = float(l[x_id]) self.points[i]['y'] = float(l[y_id]) self.points[i]['z'] = float(l[z_id]) self.points[i]['formation'] = l[form_id] def get_formation_names(self): """Get names of all formations that have a point in this data set and store in: self.formation_names """ # self.formation_names = np.unique(self.formations) self.formation_names =
np.unique(self.points[:]['formation'])
numpy.unique
from __future__ import absolute_import, print_function, division import theano import theano.tensor as T from theano import function, shared from theano.tests import unittest_tools as utt from theano.tensor.nnet.ConvTransp3D import convTransp3D, ConvTransp3D from theano.tensor.nnet.ConvGrad3D import convGrad3D, ConvGrad3D from theano.tensor.nnet.Conv3D import conv3D, Conv3D from theano.tests.unittest_tools import attr from nose.plugins.skip import SkipTest import numpy as N from six.moves import xrange import copy import theano.sparse if theano.sparse.enable_sparse: from scipy import sparse floatX = theano.config.floatX # TODO: each individual test method should seed rng with utt.fetch_seed() # as it is right now, setUp does the seeding, so if you run just # a subset of the tests they will do different things than if you # run all of them class DummyConv3D: """A dummy version of Conv3D passed to verify_grad Stores a fixed stride, since stride is not differentiable Exposes only one scalar argument, which is used as the position along a parametrically defined line, with 0 being at VwbVals Direction of the line is chosen randomly at construction The reason for locking the inputs to lie on this line is so that the verify_grad will not need to test hundreds of variables. Disadvantage is we can't be certain that all of them are correct, advantange is that this random projection lets us test lots of variables very quickly """ def __init__(self, rng, VWbVals, d): """ param: rng Random number generator used to pick direction of the line param: VWbVals tuple containing values to test V,W,b around param: d shared variable for d, the stride """ self.V, self.W, self.b = VWbVals self.dV = shared(rng.uniform(-1, 1, self.V.get_value(borrow=True).shape)) self.dW = shared(rng.uniform(-1, 1, self.W.get_value(borrow=True).shape)) self.db = shared(rng.uniform(-1, 1, self.b.get_value(borrow=True).shape)) self.d = d def __call__(self, t): output = conv3D(self.V + t * self.dV, self.W + t * self.dW, self.b + t * self.db, self.d) return output class DummyConvGrad3D: def __init__(self, rng, VdHvals, d, WShape): """ param: rng Random number generator used to pick direction of the line param: VWbVals tuple containing values to test V,W,b around param: d shared variable for d, the stride """ self.V, self.dCdH = VdHvals self.dV = shared(rng.uniform(-1, 1, self.V.get_value(borrow=True).shape)) self.ddCdH = shared(rng.uniform( -1, 1, self.dCdH.get_value(borrow=True).shape)) self.d = d self.WShape = WShape def __call__(self, t): output = convGrad3D(self.V + t * self.dV, self.d, self.WShape, self.dCdH + t * self.ddCdH) return output class DummyConvTransp3D: def __init__(self, rng, WbHvals, d, RShape): """ param: rng Random number generator used to pick direction of the line param: VWbVals tuple containing values to test V,W,b around param: d shared variable for d, the stride """ self.W, self.b, self.H = WbHvals self.dW = rng.uniform(-1, 1, self.W.get_value(borrow=True).shape) self.db = rng.uniform(-1, 1, self.b.get_value(borrow=True).shape) self.dH = rng.uniform(-1, 1, self.H.get_value(borrow=True).shape) self.dW, self.db = shared(self.dW), shared(self.db), self.dH = shared(self.dH) self.d = d self.RShape = RShape def __call__(self, t): output = convTransp3D(self.W + t * self.dW, self.b + t * self.db, self.d, self.H + t * self.dH, self.RShape) return output class TestConv3D(utt.InferShapeTester): def setUp(self): super(TestConv3D, self).setUp() utt.seed_rng() self.rng = N.random.RandomState(utt.fetch_seed()) mode = copy.copy(theano.compile.mode.get_default_mode()) mode.check_py_code = False self.W = shared(N.ndarray(shape=(1, 1, 1, 1, 1), dtype=floatX)) self.W.name = 'W' self.b = shared(N.zeros(1, dtype=floatX)) self.b.name = 'b' self.rb = shared(N.zeros(1, dtype=floatX)) self.rb.name = 'rb' self.V = shared(N.ndarray(shape=(1, 1, 1, 1, 1), dtype=floatX)) self.V.name = 'V' self.d = shared(N.ndarray(shape=(3, ), dtype=int)) self.d.name = 'd' self.H = conv3D(self.V, self.W, self.b, self.d) self.H.name = 'H' self.H_func = function([], self.H, mode=mode) self.H_shape_func = function([], self.H.shape, mode=mode) self.RShape = T.vector(dtype='int64') self.RShape.name = 'RShape' self.otherH = T.TensorType( floatX, (False, False, False, False, False))(name='otherH') self.transp = convTransp3D(self.W, self.rb, self.d, self.otherH, self.RShape) self.transp.name = 'transp' self.transp_func = function([self.otherH, self.RShape], self.transp, mode=mode) self.R = convTransp3D(self.W, self.rb, self.d, self.H, self.RShape) self.R.name = 'R' self.R_func = function([self.RShape], self.R, mode=mode) self.R_shape_func = function([self.RShape], self.R.shape) diff = self.V - self.R diff.name = 'diff' sqr = T.sqr(diff) sqr.name = 'sqr' self.reconsObj = T.sum(sqr) self.reconsObj.name = 'reconsObj' self.reconsObjFunc = function([self.RShape], self.reconsObj, mode=mode) W_grad = T.grad(self.reconsObj, self.W) self.gradientsFunc = function( [self.RShape], [W_grad, T.grad(self.reconsObj, self.H), T.grad(self.reconsObj, self.V), T.grad(self.reconsObj, self.b)], mode=mode) self.check_c_against_python = function( [self.RShape], [T.grad(self.reconsObj, self.W), T.grad(self.reconsObj, self.H), T.grad(self.reconsObj, self.V), T.grad(self.reconsObj, self.b)], mode='DEBUG_MODE') self.dCdW_shape_func = function([self.RShape], T.grad(self.reconsObj, self.W).shape, mode=mode) def random_tensor(self, *dims): return N.asarray(self.rng.uniform(-.05, .05, dims), dtype=floatX) def randomize(self): batchSize = self.rng.randint(1, 4) videoDur = self.rng.randint(8, 30) filterWidth = self.rng.randint(1, 8) filterHeight = self.rng.randint(1, 8) filterDur = self.rng.randint(1, 8) tsteps = self.rng.randint(1, 4) rsteps = self.rng.randint(1, 4) csteps = self.rng.randint(1, 4) videoDur = tsteps * filterDur + self.rng.randint(0, 3) videoWidth = csteps * filterWidth + self.rng.randint(0, 3) videoHeight = rsteps * filterHeight + self.rng.randint(0, 3) numFilters = self.rng.randint(1, 3) inputChannels = self.rng.randint(1, 3) self.d.get_value(borrow=True, return_internal_type=True)[0] = \ self.rng.randint(1, 15) self.d.get_value(borrow=True, return_internal_type=True)[1] = \ self.rng.randint(1, 15) self.d.get_value(borrow=True, return_internal_type=True)[2] = \ self.rng.randint(1, 15) int((videoHeight - filterHeight) / self.d.get_value(borrow=True)[0]) + 1 int((videoWidth - filterWidth) / self.d.get_value(borrow=True)[1]) + 1 int((videoDur - filterDur) / self.d.get_value(borrow=True)[2]) + 1 self.W.set_value(self.random_tensor( numFilters, filterHeight, filterWidth, filterDur, inputChannels), borrow=True) self.b.set_value(self.random_tensor(numFilters), borrow=True) self.rb.set_value(self.random_tensor(inputChannels), borrow=True) self.V.set_value(self.random_tensor( batchSize, videoHeight, videoWidth, videoDur, inputChannels), borrow=True) self.rb.set_value(self.random_tensor(inputChannels), borrow=True) def test_c_against_python(self): self.randomize() self.check_c_against_python(self.V.get_value(borrow=True).shape[1:4]) @attr('slow') def test_c_against_mat_mul(self): # Use a filter of the same size as the image, so the convolution is # just a dense matrix multiply. # Check that dense matrix multiplication gives the same result as # convolution. batchSize = self.rng.randint(1, 10) videoDur = self.rng.randint(3, 10) videoWidth = self.rng.randint(1, 5) videoHeight = self.rng.randint(1, 5) filterWidth = videoWidth filterHeight = videoHeight filterDur = videoDur numFilters = self.rng.randint(1, 3) inputChannels = self.rng.randint(1, 4) self.d.get_value(borrow=True, return_internal_type=True)[0] = \ self.rng.randint(1, 15) self.d.get_value(borrow=True, return_internal_type=True)[1] = \ self.rng.randint(1, 15) self.d.get_value(borrow=True, return_internal_type=True)[2] = \ self.rng.randint(1, 15) self.W.set_value(self.random_tensor( numFilters, filterHeight, filterWidth, filterDur, inputChannels), borrow=True) self.W.set_value( self.W.get_value(borrow=True) * (self.W.get_value(borrow=True) < 1e-5), borrow=True) self.b.set_value(self.random_tensor(numFilters), borrow=True) self.V.set_value(self.random_tensor( batchSize, videoHeight, videoWidth, videoDur, inputChannels), borrow=True) Hv = self.H_func() assert Hv.shape[1] == 1 assert Hv.shape[2] == 1 assert Hv.shape[3] == 1 n = inputChannels * videoHeight * videoWidth * videoDur W_mat = N.zeros((n, numFilters)) V_mat = N.zeros((batchSize, n)) Hv_mat = N.zeros((batchSize, numFilters)) for qi in xrange(0, numFilters): W_mat[:, qi] = \ self.W.get_value(borrow=True)[qi, :, :, :, :].reshape((n)) Hv_mat[:, qi] = Hv[:, 0, 0, 0, qi] for qi in xrange(0, batchSize): V_mat[qi, :] = \ self.V.get_value(borrow=True)[qi, :, :, :, :].reshape((n)) H_mat = N.dot(V_mat, W_mat) + self.b.get_value(borrow=True) tol = 1e-5 if floatX == 'float32': tol = 1e-4 if N.abs(H_mat - Hv_mat).max() > tol and not N.allclose(H_mat, Hv_mat): print(H_mat) print(Hv_mat) print('max error: ' + str(N.abs(H_mat - Hv_mat).max())) self.W.get_value(borrow=True)[self.W.get_value(borrow=True) != 0] += 1.0 print('min non-zero kernel mag: ' + str( N.abs(self.W.get_value(borrow=True)).min())) assert False def test_c_against_mat_transp_mul(self): # Use a filter of the same size as the image, so the convolution is just a # dense matrix multiply. # Check that dense matrix multiplication by the transpose of the matrix # gives the same result as ConvTransp. batchSize = self.rng.randint(1, 10) videoDur = self.rng.randint(3, 15) videoWidth = self.rng.randint(3, 15) videoHeight = self.rng.randint(3, 15) filterWidth = videoWidth filterHeight = videoHeight filterDur = videoDur numFilters = self.rng.randint(1, 15) inputChannels = self.rng.randint(1, 15) self.d.get_value(borrow=True, return_internal_type=True)[0] = \ self.rng.randint(1, 15) self.d.get_value(borrow=True, return_internal_type=True)[1] = \ self.rng.randint(1, 15) self.d.get_value(borrow=True, return_internal_type=True)[2] = \ self.rng.randint(1, 15) self.W.set_value(self.random_tensor( numFilters, filterHeight, filterWidth, filterDur, inputChannels), borrow=True) self.b.set_value(self.random_tensor(numFilters), borrow=True) self.V.set_value(self.random_tensor( batchSize, videoHeight, videoWidth, videoDur, inputChannels), borrow=True) self.rb.set_value(self.random_tensor(inputChannels), borrow=True) H_shape = self.H_shape_func() assert H_shape[1] == 1 assert H_shape[2] == 1 assert H_shape[3] == 1 Hv = self.random_tensor(* H_shape) Vv = self.transp_func(Hv, [videoHeight, videoWidth, videoDur]) n = inputChannels * videoHeight * videoWidth * videoDur rbim = N.zeros((videoHeight, videoWidth, videoDur, inputChannels)) for qi in xrange(0, inputChannels): rbim[:, :, :, qi] = self.rb.get_value(borrow=True)[qi] rbv = rbim.reshape((n)) W_mat = N.zeros((numFilters, n)) Vv_mat = N.zeros((n, batchSize)) Hv_mat = N.zeros((numFilters, batchSize)) for qi in xrange(0, numFilters): W_mat[qi, :] = \ self.W.get_value(borrow=True)[qi, :, :, :, :].reshape((n)) Hv_mat[qi, :] = Hv[:, 0, 0, 0, qi] for qi in xrange(0, batchSize): Vv_mat[:, qi] = Vv[qi, :, :, :, :].reshape((n)) V_mat = (N.dot(W_mat.transpose(), Hv_mat).transpose() + rbv).transpose() if N.abs(V_mat - Vv_mat).max() > 1e-5: print(V_mat) print(Vv_mat) for qq in xrange(V_mat.shape[0]): for qqq in xrange(Vv_mat.shape[1]): if abs(V_mat[qq, qqq] - Vv_mat[qq, qqq]) > 1e-5: print( ('wrong at ' + str((qq, qqq)) + ': ' + str(V_mat[qq, qqq], Vv_mat[qq, qqq]))) assert False def test_c_against_sparse_mat_transp_mul(self): # like test_c_against_mat_transp_mul but using a sparse matrix and a kernel # that is smaller than the image if not theano.sparse.enable_sparse: raise SkipTest('Optional package sparse disabled') batchSize = self.rng.randint(1, 3) filterWidth = self.rng.randint(1, 8) filterHeight = self.rng.randint(1, 8) filterDur = self.rng.randint(1, 8) self.d.get_value(borrow=True, return_internal_type=True)[0] = \ self.rng.randint(1, 15) self.d.get_value(borrow=True, return_internal_type=True)[1] = \ self.rng.randint(1, 15) self.d.get_value(borrow=True, return_internal_type=True)[2] = \ self.rng.randint(1, 15) dr = self.d.get_value(borrow=True)[0] dc = self.d.get_value(borrow=True)[1] dt = self.d.get_value(borrow=True)[2] numFilters = self.rng.randint(1, 3) row_steps = self.rng.randint(1, 4) col_steps = self.rng.randint(1, 4) time_steps = self.rng.randint(1, 4) # print (row_steps,col_steps,time_steps) videoDur = (time_steps - 1) * dt + filterDur + self.rng.randint(0, 3) videoWidth = (col_steps - 1) * dc + filterWidth + self.rng.randint(0, 3) videoHeight = (row_steps - 1) * dr + filterHeight + self.rng.randint(0, 3) inputChannels = self.rng.randint(1, 15) self.W.set_value(self.random_tensor( numFilters, filterHeight, filterWidth, filterDur, inputChannels), borrow=True) self.b.set_value(self.random_tensor(numFilters), borrow=True) # just needed so H_shape works self.V.set_value(self.random_tensor( batchSize, videoHeight, videoWidth, videoDur, inputChannels), borrow=True) self.rb.set_value(self.random_tensor(inputChannels), borrow=True) H_shape = self.H_shape_func() # make index maps h = N.zeros(H_shape[1:], dtype='int32') r = N.zeros(H_shape[1:], dtype='int32') c = N.zeros(H_shape[1:], dtype='int32') t = N.zeros(H_shape[1:], dtype='int32') for qi in xrange(0, H_shape[4]): h[:, :, :, qi] = qi for qi in xrange(0, H_shape[1]): r[qi, :, :, :] = qi for qi in xrange(0, H_shape[2]): c[:, qi, :, :] = qi for qi in xrange(0, H_shape[3]): t[:, :, qi, :] = qi hn = H_shape[1] * H_shape[2] * H_shape[3] * H_shape[4] h = h.reshape((hn)) r = r.reshape((hn)) c = c.reshape((hn)) t = t.reshape((hn)) Hv = self.random_tensor(*H_shape) Vv = self.transp_func(Hv, [videoHeight, videoWidth, videoDur]) n = inputChannels * videoHeight * videoWidth * videoDur rbim = N.zeros((videoHeight, videoWidth, videoDur, inputChannels)) for qi in xrange(0, inputChannels): rbim[:, :, :, qi] = self.rb.get_value(borrow=True)[qi] rbv = rbim.reshape((n)) W_mat = N.zeros((hn, n)) Vv_mat =
N.zeros((n, batchSize))
numpy.zeros
import pytest import numpy as np from devito import (Constant, Grid, TimeFunction, SparseTimeFunction, Operator, Eq, ConditionalDimension, SubDimension, SubDomain, configuration) from devito.ir import FindSymbols, retrieve_iteration_tree from devito.exceptions import InvalidOperator def test_read_write(): nt = 10 grid = Grid(shape=(4, 4)) u = TimeFunction(name='u', grid=grid, save=nt) u1 = TimeFunction(name='u', grid=grid, save=nt) eqn = Eq(u.forward, u + 1) op0 = Operator(eqn, opt='noop') op1 = Operator(eqn, opt='buffering') # Check generated code assert len(retrieve_iteration_tree(op1)) == 2 buffers = [i for i in FindSymbols().visit(op1) if i.is_Array] assert len(buffers) == 1 assert buffers.pop().symbolic_shape[0] == 2 op0.apply(time_M=nt-2) op1.apply(time_M=nt-2, u=u1) assert np.all(u.data == u1.data) def test_write_only(): nt = 10 grid = Grid(shape=(4, 4)) time = grid.time_dim u = TimeFunction(name='u', grid=grid, save=nt) u1 = TimeFunction(name='u', grid=grid, save=nt) v = TimeFunction(name='v', grid=grid) v1 = TimeFunction(name='v', grid=grid) eqns = [Eq(v.forward, v + 1, implicit_dims=time), Eq(u, v)] op0 = Operator(eqns, opt='noop') op1 = Operator(eqns, opt='buffering') # Check generated code assert len(retrieve_iteration_tree(op1)) == 1 buffers = [i for i in FindSymbols().visit(op1) if i.is_Array] assert len(buffers) == 1 op0.apply(time_M=nt-2) op1.apply(time_M=nt-2, u=u1, v=v1) assert np.all(u.data == u1.data) assert np.all(v.data == v1.data) def test_read_only(): nt = 10 grid = Grid(shape=(2, 2)) u = TimeFunction(name='u', grid=grid, save=nt) v = TimeFunction(name='v', grid=grid) v1 = TimeFunction(name='v', grid=grid) for i in range(nt): u.data[i, :] = i eqns = [Eq(v.forward, v + u.backward + u + u.forward + 1.)] op0 = Operator(eqns, opt='noop') op1 = Operator(eqns, opt='buffering') # Check generated code assert len(retrieve_iteration_tree(op1)) == 2 buffers = [i for i in FindSymbols().visit(op1) if i.is_Array] assert len(buffers) == 1 op0.apply(time_M=nt-2) op1.apply(time_M=nt-2, v=v1) assert np.all(v.data == v1.data) def test_read_only_w_offset(): nt = 10 grid = Grid(shape=(2, 2)) u = TimeFunction(name='u', grid=grid, save=nt) v = TimeFunction(name='v', grid=grid) v1 = TimeFunction(name='v', grid=grid) for i in range(nt): u.data[i, :] = i eqns = [Eq(v.forward, v + u.backward + u + u.forward + 1.)] op0 = Operator(eqns, opt='noop') op1 = Operator(eqns, opt='buffering') op0.apply(time_M=nt-2, time_m=4) op1.apply(time_M=nt-2, time_m=4, v=v1) assert np.all(v.data == v1.data) def test_read_only_backwards(): nt = 10 grid = Grid(shape=(2, 2)) u = TimeFunction(name='u', grid=grid, save=nt) v = TimeFunction(name='v', grid=grid) v1 = TimeFunction(name='v', grid=grid) for i in range(nt): u.data[i, :] = i eqns = [Eq(v.backward, v + u.backward + u + u.forward + 1.)] op0 = Operator(eqns, opt='noop') op1 = Operator(eqns, opt='buffering') # Check generated code assert len(retrieve_iteration_tree(op1)) == 2 buffers = [i for i in FindSymbols().visit(op1) if i.is_Array] assert len(buffers) == 1 op0.apply(time_m=1) op1.apply(time_m=1, v=v1) assert
np.all(v.data == v1.data)
numpy.all
''' episodestats.py implements statistic that are used in producing employment statistics for the lifecycle model ''' import h5py import numpy as np import numpy_financial as npf import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from scipy.stats import norm #import locale from tabulate import tabulate import pandas as pd import scipy.optimize from tqdm import tqdm_notebook as tqdm from . empstats import Empstats from scipy.stats import gaussian_kde #locale.setlocale(locale.LC_ALL, 'fi_FI') def modify_offsettext(ax,text): ''' For y axis ''' x_pos = 0.0 y_pos = 1.0 horizontalalignment='left' verticalalignment='bottom' offset = ax.yaxis.get_offset_text() #value=offset.get_text() # value=float(value) # if value>=1e12: # text='biljoonaa' # elif value>1e9: # text=str(value/1e9)+' miljardia' # elif value==1e9: # text=' miljardia' # elif value>1e6: # text=str(value/1e6)+' miljoonaa' # elif value==1e6: # text='miljoonaa' # elif value>1e3: # text=str(value/1e3)+' tuhatta' # elif value==1e3: # text='tuhatta' offset.set_visible(False) ax.text(x_pos, y_pos, text, transform=ax.transAxes, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment) class Labels(): def get_labels(self,language='English'): labels={} if language=='English': labels['osuus tilassa x']='Proportion in state {} [%]' labels['age']='Age [y]' labels['ratio']='Proportion [%]' labels['unemp duration']='Length of unemployment [y]' labels['scaled freq']='Scaled frequency' labels['probability']='probability' labels['telp']='Employee pension premium' labels['sairausvakuutus']='Health insurance' labels['työttömyysvakuutusmaksu']='Unemployment insurance' labels['puolison verot']='Partners taxes' labels['taxes']='Taxes' labels['asumistuki']='Housing benefit' labels['toimeentulotuki']='Supplementary benefit' labels['tyottomyysturva']='Unemployment benefit' labels['paivahoito']='Daycare' labels['elake']='Pension' labels['tyollisyysaste']='Employment rate' labels['tyottomien osuus']='Proportion of unemployed' labels['havainto']='Observation' labels['tyottomyysaste']='Unemployment rate [%]' labels['tyottomien osuus']='Proportion of unemployed [%]' labels['tyollisyysaste %']='Employment rate [%]' labels['ero osuuksissa']='Difference in proportions [%]' labels['osuus']='proportion' labels['havainto, naiset']='data, women' labels['havainto, miehet']='data, men' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='Life cycle model' else: labels['osuus tilassa x']='Osuus tilassa {} [%]' labels['age']='Ikä [v]' labels['ratio']='Osuus tilassa [%]' labels['unemp duration']='työttömyysjakson pituus [v]' labels['scaled freq']='skaalattu taajuus' labels['probability']='todennäköisyys' labels['telp']='TEL-P' labels['sairausvakuutus']='Sairausvakuutus' labels['työttömyysvakuutusmaksu']='Työttömyysvakuutusmaksu' labels['puolison verot']='puolison verot' labels['taxes']='Verot' labels['asumistuki']='Asumistuki' labels['toimeentulotuki']='Toimeentulotuki' labels['tyottomyysturva']='Työttömyysturva' labels['paivahoito']='Päivähoito' labels['elake']='Eläke' labels['tyollisyysaste']='työllisyysaste' labels['tyottomien osuus']='työttömien osuus' labels['havainto']='havainto' labels['tyottomyysaste']='Työttömyysaste [%]' labels['tyottomien osuus']='Työttömien osuus väestöstö [%]' labels['tyollisyysaste %']='Työllisyysaste [%]' labels['ero osuuksissa']='Ero osuuksissa [%]' labels['osuus']='Osuus' labels['havainto, naiset']='havainto, naiset' labels['havainto, miehet']='havainto, miehet' labels['palkkasumma']='Palkkasumma [euroa]' labels['Verokiila %']='Verokiila [%]' labels['Työnteko [hlö/htv]']='Työnteko [hlö/htv]' labels['Työnteko [htv]']='Työnteko [htv]' labels['Työnteko [hlö]']='Työnteko [hlö]' labels['Työnteko [miljoonaa hlö/htv]']='Työnteko [miljoonaa hlö/htv]' labels['Työnteko [miljoonaa htv]']='Työnteko [miljoonaa htv]' labels['Työnteko [miljoonaa hlö]']='Työnteko [miljoonaa hlö]' labels['Osatyönteko [%-yks]']='Osa-aikatyössä [%-yks]' labels['Muut tulot [euroa]']='Muut tulot [euroa]' labels['Henkilöitä']='Henkilöitä' labels['Verot [euroa]']='Verot [euroa]' labels['Verot [[miljardia euroa]']='Verot [[miljardia euroa]' labels['Verokertymä [euroa]']='Verokertymä [euroa]' labels['Verokertymä [miljardia euroa]']='Verokertymä [miljardia euroa]' labels['Muut tarvittavat tulot [euroa]']='Muut tarvittavat tulot [euroa]' labels['Muut tarvittavat tulot [miljardia euroa]']='Muut tarvittavat tulot [miljardia euroa]' labels['malli']='elinkaarimalli' return labels class EpisodeStats(): def __init__(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year=2018,version=3,params=None,gamma=0.92,lang='English'): self.version=version self.gamma=gamma self.params=params self.lab=Labels() self.reset(timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,params=params,lang=lang) print('version',version) def reset(self,timestep,n_time,n_emps,n_pop,env,minimal,min_age,max_age,min_retirementage,year,version=None,params=None,lang=None,dynprog=False): self.min_age=min_age self.max_age=max_age self.min_retirementage=min_retirementage self.minimal=minimal if params is not None: self.params=params if lang is None: self.language='English' else: self.language=lang if version is not None: self.version=version self.setup_labels() self.n_employment=n_emps self.n_time=n_time self.timestep=timestep # 0.25 = 3kk askel self.inv_timestep=int(np.round(1/self.timestep)) # pitää olla kokonaisluku self.n_pop=n_pop self.year=year self.env=env self.reaalinen_palkkojenkasvu=0.016 self.palkkakerroin=(0.8*1+0.2*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.elakeindeksi=(0.2*1+0.8*1.0/(1+self.reaalinen_palkkojenkasvu))**self.timestep self.dynprog=dynprog if self.minimal: self.version=0 if self.version in set([0,101]): self.n_groups=1 else: self.n_groups=6 self.empstats=Empstats(year=self.year,max_age=self.max_age,n_groups=self.n_groups,timestep=self.timestep,n_time=self.n_time, min_age=self.min_age) self.init_variables() def init_variables(self): n_emps=self.n_employment self.empstate=np.zeros((self.n_time,n_emps)) self.gempstate=np.zeros((self.n_time,n_emps,self.n_groups)) self.deceiced=np.zeros((self.n_time,1)) self.alive=np.zeros((self.n_time,1)) self.galive=np.zeros((self.n_time,self.n_groups)) self.rewstate=np.zeros((self.n_time,n_emps)) self.poprewstate=np.zeros((self.n_time,self.n_pop)) self.salaries_emp=np.zeros((self.n_time,n_emps)) #self.salaries=np.zeros((self.n_time,self.n_pop)) self.actions=np.zeros((self.n_time,self.n_pop)) self.popempstate=np.zeros((self.n_time,self.n_pop)) self.popunemprightleft=np.zeros((self.n_time,self.n_pop)) self.popunemprightused=np.zeros((self.n_time,self.n_pop)) self.tyoll_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.unemp_distrib_bu=np.zeros((self.n_time,self.n_pop)) self.siirtyneet=np.zeros((self.n_time,n_emps)) self.siirtyneet_det=np.zeros((self.n_time,n_emps,n_emps)) self.pysyneet=np.zeros((self.n_time,n_emps)) self.aveV=np.zeros((self.n_time,self.n_pop)) self.time_in_state=np.zeros((self.n_time,n_emps)) self.stat_tyoura=np.zeros((self.n_time,n_emps)) self.stat_toe=np.zeros((self.n_time,n_emps)) self.stat_pension=np.zeros((self.n_time,n_emps)) self.stat_paidpension=np.zeros((self.n_time,n_emps)) self.out_of_work=np.zeros((self.n_time,n_emps)) self.stat_unemp_len=np.zeros((self.n_time,self.n_pop)) self.stat_wage_reduction=np.zeros((self.n_time,n_emps)) self.stat_wage_reduction_g=np.zeros((self.n_time,n_emps,self.n_groups)) self.infostats_group=np.zeros((self.n_pop,1)) self.infostats_taxes=np.zeros((self.n_time,1)) self.infostats_wagetaxes=np.zeros((self.n_time,1)) self.infostats_taxes_distrib=np.zeros((self.n_time,n_emps)) self.infostats_etuustulo=np.zeros((self.n_time,1)) self.infostats_etuustulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_perustulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo=np.zeros((self.n_time,1)) self.infostats_palkkatulo_eielakkeella=np.zeros((self.n_time,1)) self.infostats_palkkatulo_group=np.zeros((self.n_time,self.n_groups)) self.infostats_palkkatulo_eielakkeella_group=np.zeros((self.n_time,1)) self.infostats_ansiopvraha=np.zeros((self.n_time,1)) self.infostats_ansiopvraha_group=np.zeros((self.n_time,self.n_groups)) self.infostats_asumistuki=np.zeros((self.n_time,1)) self.infostats_asumistuki_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero=np.zeros((self.n_time,1)) self.infostats_valtionvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_kunnallisvero=np.zeros((self.n_time,1)) self.infostats_kunnallisvero_group=np.zeros((self.n_time,self.n_groups)) self.infostats_valtionvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_kunnallisvero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_ptel=np.zeros((self.n_time,1)) self.infostats_tyotvakmaksu=np.zeros((self.n_time,1)) self.infostats_tyoelake=np.zeros((self.n_time,1)) self.infostats_kokoelake=np.zeros((self.n_time,1)) self.infostats_opintotuki=np.zeros((self.n_time,1)) self.infostats_isyyspaivaraha=np.zeros((self.n_time,1)) self.infostats_aitiyspaivaraha=np.zeros((self.n_time,1)) self.infostats_kotihoidontuki=np.zeros((self.n_time,1)) self.infostats_sairauspaivaraha=np.zeros((self.n_time,1)) self.infostats_toimeentulotuki=np.zeros((self.n_time,1)) self.infostats_tulot_netto=np.zeros((self.n_time,1)) self.infostats_pinkslip=np.zeros((self.n_time,n_emps)) self.infostats_pop_pinkslip=np.zeros((self.n_time,self.n_pop)) self.infostats_chilren18_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren7_emp=np.zeros((self.n_time,n_emps)) self.infostats_chilren18=np.zeros((self.n_time,1)) self.infostats_chilren7=np.zeros((self.n_time,1)) self.infostats_tyelpremium=np.zeros((self.n_time,self.n_pop)) self.infostats_paid_tyel_pension=np.zeros((self.n_time,self.n_pop)) self.infostats_sairausvakuutus=np.zeros((self.n_time)) self.infostats_pvhoitomaksu=np.zeros((self.n_time,self.n_pop)) self.infostats_ylevero=np.zeros((self.n_time,1)) self.infostats_ylevero_distrib=np.zeros((self.n_time,n_emps)) self.infostats_irr=np.zeros((self.n_pop,1)) self.infostats_npv0=np.zeros((self.n_pop,1)) self.infostats_mother_in_workforce=np.zeros((self.n_time,1)) self.infostats_children_under3=np.zeros((self.n_time,self.n_pop)) self.infostats_children_under7=np.zeros((self.n_time,self.n_pop)) self.infostats_unempwagebasis=np.zeros((self.n_time,self.n_pop)) self.infostats_unempwagebasis_acc=np.zeros((self.n_time,self.n_pop)) self.infostats_toe=np.zeros((self.n_time,self.n_pop)) self.infostats_ove=np.zeros((self.n_time,n_emps)) self.infostats_kassanjasen=np.zeros((self.n_time)) self.infostats_poptulot_netto=np.zeros((self.n_time,self.n_pop)) self.infostats_pop_wage=np.zeros((self.n_time,self.n_pop)) self.infostats_pop_pension=np.zeros((self.n_time,self.n_pop)) self.infostats_equivalent_income=np.zeros(self.n_time) self.infostats_alv=np.zeros(self.n_time) self.infostats_puoliso=np.zeros(self.n_time) self.pop_predrew=np.zeros((self.n_time,self.n_pop)) if self.version==101: self.infostats_savings=np.zeros((self.n_time,self.n_pop)) self.sav_actions=np.zeros((self.n_time,self.n_pop)) def add(self,n,act,r,state,newstate,q=None,debug=False,plot=False,aveV=None,pred_r=None): if self.version==0: emp,_,_,a,_,_=self.env.state_decode(state) # current employment state newemp,newpen,newsal,a2,tis,next_wage=self.env.state_decode(newstate) g=0 bu=0 ove=0 jasen=0 puoliso=0 elif self.version==1: # v1 emp,_,_,_,a,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,ura,oof,bu,wr,p=self.env.state_decode(newstate) ove=0 jasen=0 puoliso=0 elif self.version==2: # v2 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,ura,bu,wr,upr,uw,uwr,pr,c3,c7,c18,unemp_left,aa,toe58=self.env.state_decode(newstate) ove=0 jasen=0 puoliso=0 elif self.version==3: # v3 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,toek,ura,bu,wr,upr,uw,uwr,pr,c3,c7,c18,unemp_left,aa,toe58,ove,jasen=self.env.state_decode(newstate) puoliso=0 elif self.version==4: # v3 emp,_,_,_,a,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_=self.env.state_decode(state) # current employment state newemp,g,newpen,newsal,a2,tis,paidpens,pink,toe,toek,ura,bu,wr,upr,uw,uwr,pr,\ c3,c7,c18,unemp_left,aa,toe58,ove,jasen,puoliso,puoliso_tyossa,puoliso_palkka=self.env.state_decode(newstate) elif self.version==101: emp,_,_,a,_,_,_=self.env.state_decode(state) # current employment state newemp,newpen,newsal,a2,tis,next_wage,savings=self.env.state_decode(newstate) g=0 bu=0 ove=0 jasen=0 t=int(np.round((a2-self.min_age)*self.inv_timestep))#-1 if a2>a and newemp>=0: # new state is not reset (age2>age) if a2>self.min_retirementage and newemp==3 and self.version in set([1,2,3,4]): newemp=2 if self.version in set([1,2,3,4]): self.empstate[t,newemp]+=1 self.alive[t]+=1 self.rewstate[t,newemp]+=r self.poprewstate[t,n]=r self.actions[t,n]=act self.popempstate[t,n]=newemp #self.salaries[t,n]=newsal self.salaries_emp[t,newemp]+=newsal self.time_in_state[t,newemp]+=tis if tis<=0.25 and newemp==5: self.infostats_mother_in_workforce[t]+=1 self.infostats_pinkslip[t,newemp]+=pink self.infostats_pop_pinkslip[t,n]=pink self.gempstate[t,newemp,g]+=1 self.stat_wage_reduction[t,newemp]+=wr self.stat_wage_reduction_g[t,newemp,g]+=wr self.galive[t,g]+=1 self.stat_tyoura[t,newemp]+=ura self.stat_toe[t,newemp]+=toe self.stat_pension[t,newemp]+=newpen self.stat_paidpension[t,newemp]+=paidpens self.stat_unemp_len[t,n]=tis self.popunemprightleft[t,n]=-self.env.unempright_left(newemp,tis,bu,a2,ura) self.popunemprightused[t,n]=bu self.infostats_group[n]=int(g) self.infostats_unempwagebasis[t,n]=uw self.infostats_unempwagebasis_acc[t,n]=uwr self.infostats_toe[t,n]=toe self.infostats_ove[t,newemp]+=ove self.infostats_kassanjasen[t]+=jasen self.infostats_pop_wage[t,n]=newsal self.infostats_pop_pension[t,n]=newpen self.infostats_puoliso[t]+=puoliso if q is not None: #print(newsal,q['palkkatulot']) self.infostats_taxes[t]+=q['verot']*self.timestep*12 self.infostats_wagetaxes[t]+=q['verot_ilman_etuuksia']*self.timestep*12 self.infostats_taxes_distrib[t,newemp]+=q['verot']*self.timestep*12 self.infostats_etuustulo[t]+=q['etuustulo_brutto']*self.timestep*12 self.infostats_etuustulo_group[t,g]+=q['etuustulo_brutto']*self.timestep*12 self.infostats_perustulo[t]+=q['perustulo']*self.timestep*12 self.infostats_palkkatulo[t]+=q['palkkatulot']*self.timestep*12 self.infostats_palkkatulo_eielakkeella[t]+=q['palkkatulot_eielakkeella']*self.timestep*12 self.infostats_ansiopvraha[t]+=q['ansiopvraha']*self.timestep*12 self.infostats_asumistuki[t]+=q['asumistuki']*self.timestep*12 self.infostats_valtionvero[t]+=q['valtionvero']*self.timestep*12 self.infostats_valtionvero_distrib[t,newemp]+=q['valtionvero']*self.timestep*12 self.infostats_kunnallisvero[t]+=q['kunnallisvero']*self.timestep*12 self.infostats_kunnallisvero_distrib[t,newemp]+=q['kunnallisvero']*self.timestep*12 self.infostats_ptel[t]+=q['ptel']*self.timestep*12 self.infostats_tyotvakmaksu[t]+=q['tyotvakmaksu']*self.timestep*12 self.infostats_tyoelake[t]+=q['elake_maksussa']*self.timestep*12 self.infostats_kokoelake[t]+=q['kokoelake']*self.timestep*12 self.infostats_opintotuki[t]+=q['opintotuki']*self.timestep*12 self.infostats_isyyspaivaraha[t]+=q['isyyspaivaraha']*self.timestep*12 self.infostats_aitiyspaivaraha[t]+=q['aitiyspaivaraha']*self.timestep*12 self.infostats_kotihoidontuki[t]+=q['kotihoidontuki']*self.timestep*12 self.infostats_sairauspaivaraha[t]+=q['sairauspaivaraha']*self.timestep*12 self.infostats_toimeentulotuki[t]+=q['toimtuki']*self.timestep*12 self.infostats_tulot_netto[t]+=q['kateen']*self.timestep*12 self.infostats_tyelpremium[t,n]=q['tyel_kokomaksu']*self.timestep*12 self.infostats_paid_tyel_pension[t,n]=q['puhdas_tyoelake']*self.timestep*12 self.infostats_sairausvakuutus[t]+=q['sairausvakuutus']*self.timestep*12 self.infostats_pvhoitomaksu[t,n]=q['pvhoito']*self.timestep*12 self.infostats_ylevero[t]+=q['ylevero']*self.timestep*12 self.infostats_ylevero_distrib[t,newemp]=q['ylevero']*self.timestep*12 self.infostats_poptulot_netto[t,n]=q['kateen']*self.timestep*12 self.infostats_children_under3[t,n]=c3 self.infostats_children_under7[t,n]=c7 self.infostats_npv0[n]=q['multiplier'] self.infostats_equivalent_income[t]+=q['eq'] if 'alv' in q: self.infostats_alv[t]+=q['alv'] #self.infostats_kassanjasen[t]+=1 elif self.version in set([0,101]): self.empstate[t,newemp]+=1 self.alive[t]+=1 self.rewstate[t,newemp]+=r self.infostats_tulot_netto[t]+=q['netto'] # already at annual level self.infostats_poptulot_netto[t,n]=q['netto'] self.poprewstate[t,n]=r self.popempstate[t,n]=newemp #self.salaries[t,n]=newsal self.salaries_emp[t,newemp]+=newsal self.time_in_state[t,newemp]+=tis self.infostats_equivalent_income[t]+=q['eq'] self.infostats_pop_wage[t,n]=newsal self.infostats_pop_pension[t,n]=newpen if self.dynprog and pred_r is not None: self.pop_predrew[t,n]=pred_r if self.version==101: self.infostats_savings[t,n]=savings self.actions[t,n]=act[0] self.sav_actions[t,n]=act[1] else: self.actions[t,n]=act # if self.version in set([1,2,3]): # self.gempstate[t,newemp,g]+=1 # self.stat_wage_reduction[t,newemp]+=wr # self.galive[t,g]+=1 # self.stat_tyoura[t,newemp]+=ura # self.stat_toe[t,newemp]+=toe # self.stat_pension[t,newemp]+=newpen # self.stat_paidpension[t,newemp]+=paidpens # self.stat_unemp_len[t,n]=tis # self.popunemprightleft[t,n]=0 # self.popunemprightused[t,n]=0 if aveV is not None: self.aveV[t,n]=aveV if not emp==newemp: self.siirtyneet[t,emp]+=1 self.siirtyneet_det[t,emp,newemp]+=1 else: self.pysyneet[t,emp]+=1 elif newemp<0: self.deceiced[t]+=1 def scale_error(self,x,target=None,averaged=False): return (target-self.comp_scaled_consumption(x,averaged=averaged)) def comp_employed_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=np.squeeze(self.gempstate[:,:,g]) else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyoll_osuus=(emp[:,1]+emp[:,3])/nn htv_osuus=(emp[:,1]+0.5*emp[:,3])/nn tyoll_osuus=np.reshape(tyoll_osuus,(tyoll_osuus.shape[0],1)) htv_osuus=np.reshape(htv_osuus,(htv_osuus.shape[0],1)) else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyoll_osuus=(emp[:,1]+emp[:,8]+emp[:,9]+emp[:,10]) htv_osuus=(emp[:,1]+0.5*emp[:,8]+emp[:,9]+0.5*emp[:,10]) tyoll_osuus=np.reshape(tyoll_osuus,(tyoll_osuus.shape[0],1)) htv_osuus=np.reshape(htv_osuus,(htv_osuus.shape[0],1)) return tyoll_osuus,htv_osuus def comp_employed_aggregate(self,emp=None,start=20,end=63.5,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyoll_osuus=(emp[:,1]+emp[:,3])/nn htv_osuus=(emp[:,1]+0.5*emp[:,3])/nn else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyoll_osuus=(emp[:,1]+emp[:,8]+emp[:,9]+emp[:,10])/nn htv_osuus=(emp[:,1]+0.5*emp[:,8]+emp[:,9]+0.5*emp[:,10])/nn htv_osuus=self.comp_state_stats(htv_osuus,start=start,end=end,ratio=True) tyoll_osuus=self.comp_state_stats(tyoll_osuus,start=start,end=end,ratio=True) return tyoll_osuus,htv_osuus def comp_group_ps(self): return self.comp_palkkasumma(grouped=True) def comp_palkkasumma(self,start=19,end=68,grouped=False,scale_time=True): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 if grouped: scalex=demog2/self.n_pop*self.timestep ps=np.zeros((self.n_time,6)) ps_norw=np.zeros((self.n_time,6)) a_ps=np.zeros(6) a_ps_norw=np.zeros(6) for k in range(self.n_pop): g=int(self.infostats_group[k,0]) for t in range(min_cage,max_cage): e=int(self.popempstate[t,k]) if e in set([1,10]): ps[t,g]+=self.infostats_pop_wage[t,k] ps_norw[t,g]+=self.infostats_pop_wage[t,k] elif e in set([8,9]): ps[t,g]+=self.infostats_pop_wage[t,k]*self.timestep for g in range(6): a_ps[g]=np.sum(scalex[min_cage:max_cage]*ps[min_cage:max_cage,g]) a_ps_norw[g]=np.sum(scalex[min_cage:max_cage]*ps_norw[min_cage:max_cage,g]) else: scalex=demog2/self.n_pop*self.timestep ps=np.zeros((self.n_time,1)) ps_norw=np.zeros((self.n_time,1)) for k in range(self.n_pop): for t in range(min_cage,max_cage): e=int(self.popempstate[t,k]) if e in set([1,10]): ps[t,0]+=self.infostats_pop_wage[t,k] ps_norw[t,0]+=self.infostats_pop_wage[t,k] elif e in set([8,9]): ps[t,0]+=self.infostats_pop_wage[t,k] a_ps=np.sum(scalex[min_cage:max_cage]*ps[min_cage:max_cage]) a_ps_norw=np.sum(scalex[min_cage:max_cage]*ps_norw[min_cage:max_cage]) return a_ps,a_ps_norw def comp_stats_agegroup(self,border=[19,35,50]): n_groups=len(border) low=border.copy() high=border.copy() high[0:n_groups-1]=border[1:n_groups] high[-1]=65 employed=np.zeros(n_groups) unemployed=np.zeros(n_groups) ahtv=np.zeros(n_groups) parttimeratio=np.zeros(n_groups) unempratio=np.zeros(n_groups) empratio=np.zeros(n_groups) i_ps=np.zeros(n_groups) i_ps_norw=np.zeros(n_groups) for n in range(n_groups): l=low[n] h=high[n] htv,tyollvaikutus,tyollaste,tyotosuus,tyottomat,osatyollaste=\ self.comp_tyollisyys_stats(self.empstate,scale_time=True,start=l,end=h,agegroups=True) ps,ps_norw=self.comp_palkkasumma(start=l,end=h) print(f'l {l} h {h}\nhtv {htv}\ntyollaste {tyollaste}\ntyotosuus {tyotosuus}\ntyottomat {tyottomat}\nosatyollaste {osatyollaste}\nps {ps}') employed[n]=tyollvaikutus ahtv[n]=htv unemployed[n]=tyottomat unempratio[n]=tyotosuus empratio[n]=tyollaste parttimeratio[n]=osatyollaste i_ps[n]=ps i_ps_norw[n]=ps_norw return employed,ahtv,unemployed,parttimeratio,i_ps,i_ps_norw,unempratio,empratio def comp_unemployed_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyot_osuus=emp[:,0]/nn tyot_osuus=np.reshape(tyot_osuus,(tyot_osuus.shape[0],1)) else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk tyot_osuus=(emp[:,0]+emp[:,4]+emp[:,13])[:,None] #tyot_osuus=np.reshape(tyot_osuus,(tyot_osuus.shape[0],1)) return tyot_osuus def comp_unemployed_aggregate(self,emp=None,start=20,end=63.5,scale_time=True,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: tyot_osuus=emp[:,0]/nn else: tyot_osuus=(emp[:,0]+emp[:,4]+emp[:,13])/nn #print(f'tyot_osuus {tyot_osuus}') unemp=self.comp_state_stats(tyot_osuus,start=start,end=end,ratio=True) return unemp def comp_parttime_aggregate(self,emp=None,start=20,end=63.5,scale_time=True,grouped=False,g=0): ''' Lukumäärätiedot (EI HTV!) ''' if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if not self.minimal: tyossa=(emp[:,1]+emp[:,10]+emp[:,8]+emp[:,9])/nn osatyossa=(emp[:,10]+emp[:,8])/nn else: tyossa=emp[:,1]/nn osatyossa=0*tyossa osatyo_osuus=osatyossa/tyossa osatyo_osuus=self.comp_state_stats(osatyo_osuus,start=start,end=end,ratio=True) kokotyo_osuus=1-osatyo_osuus return kokotyo_osuus,osatyo_osuus def comp_parttime_ratio_by_age(self,emp=None,grouped=False,g=0): if emp is None: if grouped: emp=self.gempstate[:,:,g] else: emp=self.empstate nn=np.sum(emp,1) if self.minimal: kokotyo_osuus=(emp[:,1])/nn osatyo_osuus=(emp[:,3])/nn else: if grouped: for g in range(6): kokotyo_osuus=(emp[:,1,g]+emp[:,9,g])/nn osatyo_osuus=(emp[:,8,g]+emp[:,10,g])/nn else: kokotyo_osuus=(emp[:,1]+emp[:,9])/nn osatyo_osuus=(emp[:,8]+emp[:,10])/nn osatyo_osuus=np.reshape(osatyo_osuus,(osatyo_osuus.shape[0],1)) kokotyo_osuus=np.reshape(kokotyo_osuus,(osatyo_osuus.shape[0],1)) return kokotyo_osuus,osatyo_osuus def comp_employed_ratio(self,emp): tyoll_osuus,htv_osuus=self.comp_employed_ratio_by_age(emp) tyot_osuus=self.comp_unemployed_ratio_by_age(emp) kokotyo_osuus,osatyo_osuus=self.comp_parttime_ratio_by_age(emp) return tyoll_osuus,htv_osuus,tyot_osuus,kokotyo_osuus,osatyo_osuus def comp_unemployed_detailed(self,emp): if self.minimal: ansiosid_osuus=emp[:,0]/np.sum(emp,1) tm_osuus=ansiosid_osuus*0 else: # työllisiksi lasketaan kokoaikatyössä olevat, osa-aikaiset, ve+työ, ve+osatyö # isyysvapaalla olevat jötetty pois, vaikka vapaa kestöö alle 3kk ansiosid_osuus=(emp[:,0]+emp[:,4])/np.sum(emp,1) tm_osuus=(emp[:,13])/np.sum(emp,1) return ansiosid_osuus,tm_osuus def comp_tyollisyys_stats(self,emp,scale_time=True,start=19,end=68,full=False,tyot_stats=False,agg=False,shapes=False,only_groups=False,g=0,agegroups=False): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 scalex=demog2[min_cage:max_cage]/self.n_pop*scale if only_groups: tyollosuus,htvosuus,tyot_osuus,kokotyo_osuus,osatyo_osuus=self.comp_employed_ratio(emp) else: tyollosuus,htvosuus,tyot_osuus,kokotyo_osuus,osatyo_osuus=self.comp_employed_ratio(emp) htv=np.sum(scalex*htvosuus[min_cage:max_cage]) tyollvaikutus=np.sum(scalex*tyollosuus[min_cage:max_cage]) tyottomat=np.sum(scalex*tyot_osuus[min_cage:max_cage]) osatyollvaikutus=np.sum(scalex*osatyo_osuus[min_cage:max_cage]) kokotyollvaikutus=np.sum(scalex*kokotyo_osuus[min_cage:max_cage]) haj=np.mean(np.std(tyollosuus[min_cage:max_cage])) tyollaste=tyollvaikutus/(np.sum(scalex)*self.n_pop) osatyollaste=osatyollvaikutus/(kokotyollvaikutus+osatyollvaikutus) kokotyollaste=kokotyollvaikutus/(kokotyollvaikutus+osatyollvaikutus) if tyot_stats: if agg: #d2=np.squeeze(demog2) tyolliset_osuus=np.squeeze(tyollosuus) tyottomat_osuus=np.squeeze(tyot_osuus) return tyolliset_ika,tyottomat_ika,htv_ika,tyolliset_osuus,tyottomat_osuus else: d2=np.squeeze(demog2) tyolliset_ika=np.squeeze(scale*d2*np.squeeze(htvosuus)) tyottomat_ika=np.squeeze(scale*d2*np.squeeze(tyot_osuus)) htv_ika=np.squeeze(scale*d2*np.squeeze(htvosuus)) tyolliset_osuus=np.squeeze(tyollosuus) tyottomat_osuus=np.squeeze(tyot_osuus) return tyolliset_ika,tyottomat_ika,htv_ika,tyolliset_osuus,tyottomat_osuus elif full: return htv,tyollvaikutus,haj,tyollaste,tyollosuus,osatyollvaikutus,kokotyollvaikutus,osatyollaste,kokotyollaste elif agegroups: tyot_osuus=self.comp_unemployed_aggregate(start=start,end=end) return htv,tyollvaikutus,tyollaste,tyot_osuus,tyottomat,osatyollaste else: return htv,tyollvaikutus,haj,tyollaste,tyollosuus def comp_employment_stats(self,scale_time=True,returns=False): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 min_cage=self.map_age(self.min_age) max_cage=self.map_age(self.max_age)+1 scalex=np.squeeze(demog2/self.n_pop*self.timestep) d=np.squeeze(demog2[min_cage:max_cage]) self.ratiostates=self.empstate/self.alive self.demogstates=(self.empstate.T*scalex).T if self.minimal>0: self.stats_employed=self.demogstates[:,0]+self.demogstates[:,3] self.stats_parttime=self.demogstates[:,3] self.stats_unemployed=self.demogstates[:,0] self.stats_all=np.sum(self.demogstates,1) else: self.stats_employed=self.demogstates[:,0]+self.demogstates[:,10]+self.demogstates[:,8]+self.demogstates[:,9] self.stats_parttime=self.demogstates[:,10]+self.demogstates[:,8] self.stats_unemployed=self.demogstates[:,0]+self.demogstates[:,4]+self.demogstates[:,13] self.stats_all=np.sum(self.demogstates,1) if returns: return self.stats_employed,self.stats_parttime,self.stats_unemployed # def test_emp(self): # g_emp=0 # g_htv=0 # g_10=0 # g_1=0 # g_8=0 # g_9=0 # g_x=0 # scalex=1 # # demog2=self.empstats.get_demog() # scalex=np.squeeze(demog2/self.n_pop*self.timestep) # # # for g in range(6): # q=self.comp_participants(grouped=True,g=g) # #g_1+=np.sum(self.gempstate[:,1,g]) # #g_10+=np.sum(self.gempstate[:,10,g]) # #g_8+=np.sum(self.gempstate[:,8,g]) # #g_9+=np.sum(self.gempstate[:,9,g]) # g_emp+=q['palkansaajia'] # g_htv+=q['htv'] # g_x+=np.sum((self.gempstate[:,1,g]+self.gempstate[:,10,g])*scalex) # # q=self.comp_participants() # s_1=np.sum(self.empstate[:,1]) # s_10=np.sum(self.empstate[:,10]) # s_8=np.sum(self.empstate[:,8]) # s_9=np.sum(self.empstate[:,9]) # s_x=np.sum((self.empstate[:,1]+self.empstate[:,10])*scalex) # emp=q['palkansaajia'] # htv=q['htv'] # # print(f'htv {htv} vs g_htv {g_htv}') # print(f'emp {emp} vs g_emp {g_emp}') # print(f's_x {s_x} vs g_x {g_x}') # #print(f's_1 {s_1} vs g_1 {g_1}') # #print(f's_10 {s_10} vs g_10 {g_10}') # #print(f's_8 {s_8} vs g_8 {g_8}') # #print(f's_9 {s_9} vs g_9 {g_9}') def comp_participants(self,scale=True,include_retwork=True,grouped=False,g=0): ''' <NAME> lkm scalex olettaa, että naisia & miehiä yhtä paljon. Tämän voisi tarkentaa. ''' demog2=self.empstats.get_demog() scalex=np.squeeze(demog2/self.n_pop*self.timestep) #print('version',self.version) q={} if self.version in set([1,2,3,4]): if grouped: #print('group=',g) emp=np.squeeze(self.gempstate[:,:,g]) q['yhteensä']=np.sum(np.sum(emp,axis=1)*scalex) if include_retwork: q['palkansaajia']=np.sum((emp[:,1]+emp[:,10]+emp[:,8]+emp[:,9])*scalex) q['htv']=np.sum((emp[:,1]+0.5*emp[:,10]+0.5*emp[:,8]+emp[:,9])*scalex) else: q['palkansaajia']=np.sum((emp[:,1]+emp[:,10])*scalex) q['htv']=np.sum((emp[:,1]+0.5*emp[:,10])*scalex) q['ansiosidonnaisella']=np.sum((emp[:,0]+emp[:,4])*scalex) q['tmtuella']=np.sum(emp[:,13]*scalex) q['isyysvapaalla']=np.sum(emp[:,6]*scalex) q['kotihoidontuella']=np.sum(emp[:,7]*scalex) q['vanhempainvapaalla']=np.sum(emp[:,5]*scalex) else: q['yhteensä']=np.sum(np.sum(self.empstate[:,:],axis=1)*scalex) if include_retwork: q['palkansaajia']=np.sum((self.empstate[:,1]+self.empstate[:,10]+self.empstate[:,8]+self.empstate[:,9])*scalex) q['htv']=np.sum((self.empstate[:,1]+0.5*self.empstate[:,10]+0.5*self.empstate[:,8]+self.empstate[:,9])*scalex) else: q['palkansaajia']=np.sum((self.empstate[:,1]+self.empstate[:,10])*scalex) q['htv']=np.sum((self.empstate[:,1]+0.5*self.empstate[:,10])*scalex) q['ansiosidonnaisella']=np.sum((self.empstate[:,0]+self.empstate[:,4])*scalex) q['tmtuella']=np.sum(self.empstate[:,13]*scalex) q['isyysvapaalla']=np.sum(self.empstate[:,6]*scalex) q['kotihoidontuella']=np.sum(self.empstate[:,7]*scalex) q['vanhempainvapaalla']=np.sum(self.empstate[:,5]*scalex) else: q['yhteensä']=np.sum(np.sum(self.empstate[:,:],1)*scalex) q['palkansaajia']=np.sum((self.empstate[:,1])*scalex) q['htv']=np.sum((self.empstate[:,1])*scalex) q['ansiosidonnaisella']=np.sum((self.empstate[:,0])*scalex) q['tmtuella']=np.sum(self.empstate[:,1]*0) q['isyysvapaalla']=np.sum(self.empstate[:,1]*0) q['kotihoidontuella']=np.sum(self.empstate[:,1]*0) q['vanhempainvapaalla']=np.sum(self.empstate[:,1]*0) return q def comp_employment_groupstats(self,scale_time=True,g=0,include_retwork=True,grouped=True): demog2=self.empstats.get_demog() if scale_time: scale=self.timestep else: scale=1.0 #min_cage=self.map_age(self.min_age) #max_cage=self.map_age(self.max_age)+1 scalex=np.squeeze(demog2/self.n_pop*scale) #d=np.squeeze(demog2[min_cage:max_cage]) if grouped: ratiostates=np.squeeze(self.gempstate[:,:,g])/self.alive demogstates=np.squeeze(self.gempstate[:,:,g]) else: ratiostates=self.empstate[:,:]/self.alive demogstates=self.empstate[:,:] if self.version in set([1,2,3,4]): if include_retwork: stats_employed=np.sum((demogstates[:,1]+demogstates[:,9])*scalex) stats_parttime=np.sum((demogstates[:,10]+demogstates[:,8])*scalex) else: stats_employed=np.sum((demogstates[:,1])*scalex) stats_parttime=np.sum((demogstates[:,10])*scalex) stats_unemployed=np.sum((demogstates[:,0]+demogstates[:,4]+demogstates[:,13])*scalex) else: stats_employed=np.sum((demogstates[:,0]+demogstates[:,3])*scalex) stats_parttime=np.sum((demogstates[:,3])*scalex) stats_unemployed=np.sum((demogstates[:,0])*scalex) #stats_all=np.sum(demogstates,1) return stats_employed,stats_parttime,stats_unemployed def comp_state_stats(self,state,scale_time=True,start=20,end=63.5,ratio=False): demog2=np.squeeze(self.empstats.get_demog()) #if scale_time: # scale=self.timestep #else: # scale=1.0 min_cage=self.map_age(start) max_cage=self.map_age(end)+1 #vaikutus=np.round(scale*np.sum(demog2[min_cage:max_cage]*state[min_cage:max_cage]))/np.sum(demog2[min_cage:max_cage]) vaikutus=np.sum(demog2[min_cage:max_cage]*state[min_cage:max_cage])/np.sum(demog2[min_cage:max_cage]) x=np.sum(demog2[min_cage:max_cage]*state[min_cage:max_cage]) y=np.sum(demog2[min_cage:max_cage]) #print(f'vaikutus {vaikutus} x {x} y {y}\n s {state[min_cage:max_cage]} mean {np.mean(state[min_cage:max_cage])}\n d {demog2[min_cage:max_cage]}') return vaikutus def get_vanhempainvapaat(self): ''' Laskee vanhempainvapaalla olevien määrän outsider-mallia (Excel) varten, tila 6 ''' alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) ulkopuolella_m=np.sum(self.gempstate[:,7,0:3],axis=1)[:,None]/alive alive[:,0]=np.sum(self.galive[:,3:6],1) nn=np.sum(self.gempstate[:,5,3:6]+self.gempstate[:,7,3:6],axis=1)[:,None]-self.infostats_mother_in_workforce ulkopuolella_n=nn/alive return ulkopuolella_m[::4],ulkopuolella_n[::4] def get_vanhempainvapaat_md(self): ''' Laskee vanhempainvapaalla olevien määrän outsider-mallia (Excel) varten, tila 7 ''' alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) ulkopuolella_m=np.sum(self.gempstate[:,6,0:3],axis=1)[:,None]/alive alive[:,0]=np.sum(self.galive[:,3:6],1) nn=self.infostats_mother_in_workforce ulkopuolella_n=nn/alive return ulkopuolella_m[::4],ulkopuolella_n[::4] def comp_L2error(self): tyollisyysaste_m,osatyoaste_m,tyottomyysaste_m,ka_tyottomyysaste=self.comp_gempratios(gender='men',unempratio=False) tyollisyysaste_w,osatyoaste_w,tyottomyysaste_w,ka_tyottomyysaste=self.comp_gempratios(gender='women',unempratio=False) emp_statsratio_m=self.empstats.emp_stats(g=1)[:-1]*100 emp_statsratio_w=self.empstats.emp_stats(g=2)[:-1]*100 unemp_statsratio_m=self.empstats.unemp_stats(g=1)[:-1]*100 unemp_statsratio_w=self.empstats.unemp_stats(g=2)[:-1]*100 w1=1.0 w2=3.0 L2= w1*np.sum(np.abs(emp_statsratio_m-tyollisyysaste_m[:-1])**2)+\ w1*np.sum(np.abs(emp_statsratio_w-tyollisyysaste_w[:-1])**2)+\ w2*np.sum(np.abs(unemp_statsratio_m-tyottomyysaste_m[:-1])**2)+\ w2*np.sum(np.abs(unemp_statsratio_w-tyottomyysaste_w[:-1])**2) L2=L2/self.n_pop #print(L1,emp_statsratio_m,tyollisyysaste_m,tyollisyysaste_w,unemp_statsratio_m,tyottomyysaste_m,tyottomyysaste_w) print('L2 error {}'.format(L2)) return L2 def comp_budgetL2error(self,ref_muut,scale=1): q=self.comp_budget() muut=q['muut tulot'] L2=-((ref_muut-muut)/scale)**2 print(f'L2 error {L2} (muut {muut} muut_ref {ref_muut})') return L2 def optimize_scale(self,target,averaged=scale_error): opt=scipy.optimize.least_squares(self.scale_error,0.20,bounds=(-1,1),kwargs={'target':target,'averaged':averaged}) #print(opt) return opt['x'] def optimize_logutil(self,target,source): ''' analytical compensated consumption does not implement final reward, hence duration 110 y ''' n_time=110 gy=np.empty(n_time) g=1 gx=np.empty(n_time) for t in range(0,n_time): gx[t]=g g*=self.gamma for t in range(1,n_time): gy[t]=np.sum(gx[0:t]) gf=np.mean(gy[1:])/10 lx=(target-source) opt=np.exp(lx/gf)-1.0 print(opt) def min_max(self): min_wage=np.min(self.infostats_pop_wage) max_wage=np.max(self.infostats_pop_wage) max_pension=np.max(self.infostats_pop_pension) min_pension=np.min(self.infostats_pop_pension) print(f'min wage {min_wage} max wage {max_wage}') print(f'min pension {min_pension} max pension {max_pension}') def setup_labels(self): self.labels=self.lab.get_labels(self.language) def map_age(self,age,start_zero=False): if start_zero: return int((age)*self.inv_timestep) else: return int((age-self.min_age)*self.inv_timestep) def map_t_to_age(self,t): return self.min_age+t/self.inv_timestep def episodestats_exit(self): plt.close(self.episode_fig) def comp_gini(self): ''' <NAME>-kerroin populaatiolle ''' income=np.sort(self.infostats_tulot_netto,axis=None) n=len(income) L=np.arange(n,0,-1) A=np.sum(L*income)/np.sum(income) G=(n+1-2*A)/2 return G def comp_annual_irr(self,npv,premium,pension,empstate,doprint=False): k=0 max_npv=int(np.ceil(npv)) cashflow=-premium+pension x=np.zeros(cashflow.shape[0]+max_npv) eind=np.zeros(max_npv+1) el=1 for k in range(max_npv+1): eind[k]=el el=el*self.elakeindeksi x[:cashflow.shape[0]]=cashflow if npv>0: x[cashflow.shape[0]-1:]=cashflow[-2]*eind[:max_npv+1] y=np.zeros(int(np.ceil(x.shape[0]/4))) for k in range(y.shape[0]): y[k]=np.sum(x[4*k:4*k+4]) irri=npf.irr(y)*100 #if np.isnan(irri): # if np.sum(pension)<0.1 and np.sum(empstate[0:self.map_age(63)]==15)>0: # vain maksuja, joista ei saa tuottoja, joten tappio 100% # irri=-100 if irri<0.01 and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,pension,empstate)) if irri>100 and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,pension,empstate)) if np.isnan(irri) and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,np.sum(pension),empstate)) #print('---------\nirri {}\nnpv {}\n\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,np.sum(pension),np.sum(empstate==15))) if irri<-50 and doprint: print('---------\nirri {}\nnpv {}\nx {}\ny {}\nprem {}\npens {}\nemps {}\n---------\n'.format(irri,npv,x,y,premium,pension,empstate)) return irri def comp_irr(self): ''' Laskee sisäisen tuottoasteen (IRR) Indeksointi puuttuu npv:n osalta Tuloksiin lisättävä inflaatio+palkkojen reaalikasvu = palkkojen nimellinen kasvu ''' for k in range(self.n_pop): self.infostats_irr[k]=self.reaalinen_palkkojenkasvu*100+self.comp_annual_irr(self.infostats_npv0[k,0],self.infostats_tyelpremium[:,k],self.infostats_paid_tyel_pension[:,k],self.popempstate[:,k]) def comp_aggirr(self): ''' Laskee aggregoidun sisäisen tuottoasteen (IRR) Indeksointi puuttuu npv:n osalta Tuloksiin lisättävä inflaatio+palkkojen reaalikasvu = palkkojen nimellinen kasvu ''' maxnpv=np.max(self.infostats_npv0) agg_premium=np.sum(self.infostats_tyelpremium,axis=1) agg_pensions=np.sum(self.infostats_paid_tyel_pension,axis=1) agg_irr=self.reaalinen_palkkojenkasvu*100+self.comp_annual_irr(maxnpv,agg_premium,agg_pensions,self.popempstate[:,0]) x=np.zeros(self.infostats_paid_tyel_pension.shape[0]+int(np.ceil(maxnpv))) max_npv=int(max(np.ceil(self.infostats_npv0[:,0]))) eind=np.zeros(max_npv) el=1 for k in range(max_npv): eind[k]=el el=el*self.elakeindeksi cfn=self.infostats_tyelpremium.shape[0] for k in range(self.n_pop): if np.sum(self.popempstate[0:self.map_age(63),k]==15)<1: # ilman kuolleita n=int(np.ceil(self.infostats_npv0[k,0])) cashflow=-self.infostats_tyelpremium[:,k]+self.infostats_paid_tyel_pension[:,k] # indeksointi puuttuu x[:cfn]+=cashflow if n>0: x[cfn-1:cfn+n-1]+=cashflow[-2]*eind[:n] # ei indeksoida, pitäisi huomioida takuueläkekin y=np.zeros(int(np.ceil(x.shape[0]/4))) for k in range(y.shape[0]): y[k]=np.sum(x[4*k:4*k+101]) irri=npf.irr(y)*100 print('aggregate irr {}'.format(agg_irr)) def comp_unemp_durations(self,popempstate=None,popunemprightused=None,putki=True,\ tmtuki=False,laaja=False,outsider=False,ansiosid=True,tyott=False,kaikki=False,\ return_q=True,max_age=100): ''' Poikkileikkaushetken työttömyyskestot ''' unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if kaikki: unempset=[0,2,3,4,5,6,7,8,9,11,12,13,14] unempset=set(unempset) if popempstate is None: popempstate=self.popempstate if popunemprightused is None: popunemprightused=self.popunemprightused keskikesto=np.zeros((5,5)) # 20-29, 30-39, 40-49, 50-59, 60-69, vastaa TYJin tilastoa n=np.zeros(5) for k in range(self.n_pop): for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k] in unempset: if age<29: l=0 elif age<39: l=1 elif age<49: l=2 elif age<59: l=3 else: l=4 n[l]+=1 if self.popunemprightused[t,k]<=0.51: keskikesto[l,0]+=1 elif self.popunemprightused[t,k]<=1.01: keskikesto[l,1]+=1 elif self.popunemprightused[t,k]<=1.51: keskikesto[l,2]+=1 elif self.popunemprightused[t,k]<=2.01: keskikesto[l,3]+=1 else: keskikesto[l,4]+=1 for k in range(5): keskikesto[k,:] /= n[k] if return_q: return self.empdur_to_dict(keskikesto) else: return keskikesto def empdur_to_dict(self,empdur): q={} q['20-29']=empdur[0,:] q['30-39']=empdur[1,:] q['40-49']=empdur[2,:] q['50-59']=empdur[3,:] q['60-65']=empdur[4,:] return q def comp_unemp_durations_v2(self,popempstate=None,putki=True,tmtuki=False,laaja=False,\ outsider=False,ansiosid=True,tyott=False,kaikki=False,\ return_q=True,max_age=100): ''' Poikkileikkaushetken työttömyyskestot Tässä lasketaan tulos tiladatasta, jolloin kyse on viimeisimmän jakson kestosta ''' unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if kaikki: unempset=[0,2,3,4,5,6,7,8,9,11,12,13,14] unempset=set(unempset) if popempstate is None: popempstate=self.popempstate keskikesto=np.zeros((5,5)) # 20-29, 30-39, 40-49, 50-59, 60-69, vastaa TYJin tilastoa n=np.zeros(5) for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] not in unempset: prev_state=popempstate[t,k] duration=(t-prev_trans)*self.timestep prev_trans=t if age<29: l=0 elif age<39: l=1 elif age<49: l=2 elif age<59: l=3 else: l=4 n[l]+=1 if duration<=0.51: keskikesto[l,0]+=1 elif duration<=1.01: keskikesto[l,1]+=1 elif duration<=1.51: keskikesto[l,2]+=1 elif duration<=2.01: keskikesto[l,3]+=1 else: keskikesto[l,4]+=1 elif prev_state not in unempset and popempstate[t,k] in unempset: prev_trans=t prev_state=popempstate[t,k] else: # some other state prev_state=popempstate[t,k] prev_trans=t for k in range(5): keskikesto[k,:] /= n[k] if return_q: return self.empdur_to_dict(keskikesto) else: return keskikesto def comp_virrat(self,popempstate=None,putki=True,tmtuki=True,laaja=False,outsider=False,ansiosid=True,tyott=False,kaikki=False,max_age=100): tyoll_virta=np.zeros((self.n_time,1)) tyot_virta=np.zeros((self.n_time,1)) unempset=[] empset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if kaikki: unempset=[0,2,3,4,5,6,7,8,9,11,12,13,14] empset=set([1,10]) unempset=set(unempset) if popempstate is None: popempstate=self.popempstate for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] in empset: tyoll_virta[t]+=1 prev_state=popempstate[t,k] elif prev_state in empset and popempstate[t,k] in unempset: tyot_virta[t]+=1 prev_state=popempstate[t,k] else: # some other state prev_state=popempstate[t,k] return tyoll_virta,tyot_virta def comp_tyollistymisdistribs(self,popempstate=None,popunemprightleft=None,putki=True,tmtuki=True,laaja=False,outsider=False,ansiosid=True,tyott=False,max_age=100): tyoll_distrib=[] tyoll_distrib_bu=[] unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] empset=set([1,10]) unempset=set(unempset) if popempstate is None or popunemprightleft is None: popempstate=self.popempstate popunemprightleft=self.popunemprightleft for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] in empset: tyoll_distrib.append((t-prev_trans)*self.timestep) tyoll_distrib_bu.append(popunemprightleft[t,k]) prev_state=popempstate[t,k] prev_trans=t else: # some other state prev_state=popempstate[t,k] prev_trans=t return tyoll_distrib,tyoll_distrib_bu def comp_empdistribs(self,popempstate=None,popunemprightleft=None,putki=True,tmtuki=True,laaja=False,outsider=False,ansiosid=True,tyott=False,max_age=100): unemp_distrib=[] unemp_distrib_bu=[] emp_distrib=[] unempset=[] if tmtuki: unempset.append(13) if outsider: unempset.append(11) if putki: unempset.append(4) if ansiosid: unempset.append(0) if tyott: unempset=[0,4,13] if laaja: unempset=[0,4,11,13] if popempstate is None or popunemprightleft is None: popempstate=self.popempstate popunemprightleft=self.popunemprightleft empset=set([1,10]) unempset=set(unempset) for k in range(self.n_pop): prev_state=popempstate[0,k] prev_trans=0 for t in range(1,self.n_time): age=self.min_age+t*self.timestep if age<=max_age: if self.popempstate[t,k]!=prev_state: if prev_state in unempset and popempstate[t,k] not in unempset: unemp_distrib.append((t-prev_trans)*self.timestep) unemp_distrib_bu.append(popunemprightleft[t,k]) prev_state=popempstate[t,k] prev_trans=t elif prev_state in empset and popempstate[t,k] not in unempset: emp_distrib.append((t-prev_trans)*self.timestep) prev_state=popempstate[t,k] prev_trans=t else: # some other state prev_state=popempstate[t,k] prev_trans=t return unemp_distrib,emp_distrib,unemp_distrib_bu def empdist_stat(self): ratio=np.array([1,0.287024901703801,0.115508955875928,0.0681083442551332,0.0339886413280909,0.0339886413280909,0.0114460463084316,0.0114460463084316,0.0114460463084316,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00419397116644823,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00166011358671909,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206,0.00104849279161206]) return ratio def comp_gempratios(self,unempratio=True,gender='men'): if gender=='men': # men gempstate=np.sum(self.gempstate[:,:,0:3],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,0:3],1) mother_in_workforce=0 else: # women gempstate=np.sum(self.gempstate[:,:,3:6],axis=2) alive=np.zeros((self.galive.shape[0],1)) alive[:,0]=np.sum(self.galive[:,3:6],1) mother_in_workforce=self.infostats_mother_in_workforce tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste=self.comp_empratios(gempstate,alive,unempratio=unempratio,mother_in_workforce=mother_in_workforce) return tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste def comp_empratios(self,emp,alive,unempratio=True,mother_in_workforce=0): employed=emp[:,1] retired=emp[:,2] unemployed=emp[:,0] if self.version in set([1,2,3,4]): disabled=emp[:,3] piped=emp[:,4] mother=emp[:,5] dad=emp[:,6] kotihoidontuki=emp[:,7] vetyo=emp[:,9] veosatyo=emp[:,8] osatyo=emp[:,10] outsider=emp[:,11] student=emp[:,12] tyomarkkinatuki=emp[:,13] tyollisyysaste=100*(employed+osatyo+veosatyo+vetyo+dad+mother_in_workforce)/alive[:,0] osatyoaste=100*(osatyo+veosatyo)/(employed+osatyo+veosatyo+vetyo) if unempratio: tyottomyysaste=100*(unemployed+piped+tyomarkkinatuki)/(tyomarkkinatuki+unemployed+employed+piped+osatyo+veosatyo+vetyo) ka_tyottomyysaste=100*np.sum(unemployed+tyomarkkinatuki+piped)/np.sum(tyomarkkinatuki+unemployed+employed+piped+osatyo+veosatyo+vetyo) else: tyottomyysaste=100*(unemployed+piped+tyomarkkinatuki)/alive[:,0] ka_tyottomyysaste=100*np.sum(unemployed+tyomarkkinatuki+piped)/np.sum(alive[:,0]) elif self.version in set([0,101]): if False: osatyo=emp[:,3] else: osatyo=0 tyollisyysaste=100*(employed+osatyo)/alive[:,0] #osatyoaste=np.zeros(employed.shape) osatyoaste=100*(osatyo)/(employed+osatyo) if unempratio: tyottomyysaste=100*(unemployed)/(unemployed+employed+osatyo) ka_tyottomyysaste=100*np.sum(unemployed)/np.sum(unemployed+employed+osatyo) else: tyottomyysaste=100*(unemployed)/alive[:,0] ka_tyottomyysaste=100*np.sum(unemployed)/np.sum(alive[:,0]) return tyollisyysaste,osatyoaste,tyottomyysaste,ka_tyottomyysaste def plot_ratiostats(self,t): ''' Tee kuvia tuloksista ''' x=np.linspace(self.min_age,self.max_age,self.n_time) fig,ax=plt.subplots() ax.set_xlabel('palkat') ax.set_ylabel('freq') ax.hist(self.infostats_pop_wage[t,:]) plt.show() fig,ax=plt.subplots() ax.set_xlabel('aika') ax.set_ylabel('palkat') meansal=np.mean(self.infostats_pop_wage,axis=1) stdsal=np.std(self.infostats_pop_wage,axis=1) ax.plot(x,meansal) ax.plot(x,meansal+stdsal) ax.plot(x,meansal-stdsal) plt.show() def plot_empdistribs(self,emp_distrib): fig,ax=plt.subplots() ax.set_xlabel('työsuhteen pituus [v]') ax.set_ylabel('freq') ax.set_yscale('log') max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled,x2=np.histogram(emp_distrib,x) scaled=scaled/np.sum(emp_distrib) #ax.hist(emp_distrib) ax.bar(x2[1:-1],scaled[1:],align='center') plt.show() def plot_compare_empdistribs(self,emp_distrib,emp_distrib2,label2='vaihtoehto',label1=''): fig,ax=plt.subplots() ax.set_xlabel('työsuhteen pituus [v]') ax.set_ylabel(self.labels['probability']) ax.set_yscale('log') max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled,x2=np.histogram(emp_distrib,x) scaled=scaled/np.sum(emp_distrib) x=np.linspace(0,max_time,nn_time) scaled3,x3=np.histogram(emp_distrib2,x) scaled3=scaled3/np.sum(emp_distrib2) ax.plot(x3[:-1],scaled3,label=label1) ax.plot(x2[:-1],scaled,label=label2) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() def plot_vlines_unemp(self,point=0): axvcolor='gray' lstyle='--' plt.axvline(x=300/(12*21.5),ls=lstyle,color=axvcolor) plt.text(310/(12*21.5),point,'300',rotation=90) plt.axvline(x=400/(12*21.5),ls=lstyle,color=axvcolor) plt.text(410/(12*21.5),point,'400',rotation=90) plt.axvline(x=500/(12*21.5),ls=lstyle,color=axvcolor) plt.text(510/(12*21.5),point,'500',rotation=90) def plot_tyolldistribs(self,emp_distrib,tyoll_distrib,tyollistyneet=True,max=10,figname=None): max_time=55 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled0,x0=np.histogram(emp_distrib,x) if not tyollistyneet: scaled=scaled0 x2=x0 else: scaled,x2=np.histogram(tyoll_distrib,x) jaljella=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien kumulatiivinen summa scaled=scaled/jaljella fig,ax=plt.subplots() ax.set_xlabel('työttömyysjakson pituus [v]') if tyollistyneet: ax.set_ylabel('työllistyneiden osuus') point=0.5 else: ax.set_ylabel('pois siirtyneiden osuus') point=0.9 self.plot_vlines_unemp(point) ax.plot(x2[1:-1],scaled[1:]) #ax.bar(x2[1:-1],scaled[1:],align='center',width=self.timestep) plt.xlim(0,max) if figname is not None: plt.savefig(figname+'tyollistyneetdistrib.eps', format='eps') plt.show() def plot_tyolldistribs_both(self,emp_distrib,tyoll_distrib,max=10,figname=None): max_time=50 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(0,max_time,nn_time) scaled0,x0=np.histogram(emp_distrib,x) scaled=scaled0 scaled_tyoll,x2=np.histogram(tyoll_distrib,x) jaljella=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa scaled=scaled/jaljella jaljella_tyoll=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa scaled_tyoll=scaled_tyoll/jaljella_tyoll fig,ax=plt.subplots() ax.set_xlabel('työttömyysjakson pituus [v]') point=0.6 self.plot_vlines_unemp(point) ax.plot(x2[1:-1],scaled[1:],label='pois siirtyneiden osuus') ax.plot(x2[1:-1],scaled_tyoll[1:],label='työllistyneiden osuus') #ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.legend() ax.set_ylabel('pois siirtyneiden osuus') plt.xlim(0,max) plt.ylim(0,0.8) if figname is not None: plt.savefig(figname+'tyolldistribs.eps', format='eps') plt.show() def plot_tyolldistribs_both_bu(self,emp_distrib,tyoll_distrib,max=2): max_time=4 nn_time = int(np.round((max_time)*self.inv_timestep))+1 x=np.linspace(-max_time,0,nn_time) scaled0,x0=np.histogram(emp_distrib,x) scaled=scaled0 scaled_tyoll,x2=np.histogram(tyoll_distrib,x) jaljella=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa #jaljella=np.cumsum(scaled0) scaled=scaled/jaljella jaljella_tyoll=np.cumsum(scaled0[::-1])[::-1] # jäljellä olevien summa #jaljella_tyoll=np.cumsum(scaled0) scaled_tyoll=scaled_tyoll/jaljella_tyoll fig,ax=plt.subplots() ax.set_xlabel('aika ennen ansiopäivärahaoikeuden loppua [v]') point=0.6 #self.plot_vlines_unemp(point) ax.plot(x2[1:-1],scaled[1:],label='pois siirtyneiden osuus') ax.plot(x2[1:-1],scaled_tyoll[1:],label='työllistyneiden osuus') ax.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ax.set_ylabel('pois siirtyneiden osuus') plt.xlim(-max,0) #plt.ylim(0,0.8) plt.show() def plot_compare_tyolldistribs(self,emp_distrib1,tyoll_distrib1,emp_distrib2, tyoll_distrib2,tyollistyneet=True,max=4,label1='perus',label2='vaihtoehto', figname=None): max_time=50 nn_time = int(
np.round((max_time)*self.inv_timestep)
numpy.round
import numpy as np from math import cos, sin, pi import math import cv2 from scipy.spatial import Delaunay def softmax(x): x -= np.max(x,axis=1, keepdims=True) a = np.exp(x) b = np.sum(np.exp(x), axis=1, keepdims=True) return a/b def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100): # Referenced from HopeNet https://github.com/natanielruiz/deep-head-pose pitch = pitch * np.pi / 180 yaw = -(yaw * np.pi / 180) roll = roll * np.pi / 180 if tdx != None and tdy != None: tdx = tdx tdy = tdy else: height, width = img.shape[:2] tdx = width / 2 tdy = height / 2 # X-Axis pointing to right. drawn in red x1 = size * (cos(yaw) * cos(roll)) + tdx y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy # Y-Axis | drawn in green # v x2 = size * (-cos(yaw) * sin(roll)) + tdx y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy # Z-Axis (out of the screen) drawn in blue x3 = size * (sin(yaw)) + tdx y3 = size * (-cos(yaw) * sin(pitch)) + tdy cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),2) cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),2) cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),2) return img def projectPoints(X, K, R, t, Kd): """ Projects points X (3xN) using camera intrinsics K (3x3), extrinsics (R,t) and distortion parameters Kd=[k1,k2,p1,p2,k3]. Roughly, x = K*(R*X + t) + distortion See http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html or cv2.projectPoints """ x = np.asarray(R * X + t) x[0:2, :] = x[0:2, :] / x[2, :] r = x[0, :] * x[0, :] + x[1, :] * x[1, :] x[0, :] = x[0, :] * (1 + Kd[0] * r + Kd[1] * r * r + Kd[4] * r * r * r) + 2 * Kd[2] * x[0, :] * x[1, :] + Kd[3] * ( r + 2 * x[0, :] * x[0, :]) x[1, :] = x[1, :] * (1 + Kd[0] * r + Kd[1] * r * r + Kd[4] * r * r * r) + 2 * Kd[3] * x[0, :] * x[1, :] + Kd[2] * ( r + 2 * x[1, :] * x[1, :]) x[0, :] = K[0, 0] * x[0, :] + K[0, 1] * x[1, :] + K[0, 2] x[1, :] = K[1, 0] * x[0, :] + K[1, 1] * x[1, :] + K[1, 2] return x def align(model, data): """Align two trajectories using the method of Horn (closed-form). https://github.com/raulmur/evaluate_ate_scale Input: model -- first trajectory (3xn) data -- second trajectory (3xn) Output: rot -- rotation matrix (3x3) trans -- translation vector (3x1) trans_error -- translational error per point (1xn) """ np.set_printoptions(precision=3, suppress=True) model_zerocentered = model - model.mean(1) data_zerocentered = data - data.mean(1) W = np.zeros((3, 3)) for column in range(model.shape[1]): W += np.outer(model_zerocentered[:, column], data_zerocentered[:, column]) U, d, Vh = np.linalg.linalg.svd(W.transpose()) S = np.matrix(np.identity(3)) if (np.linalg.det(U) * np.linalg.det(Vh) < 0): S[2, 2] = -1 rot = U * S * Vh rotmodel = rot * model_zerocentered dots = 0.0 norms = 0.0 for column in range(data_zerocentered.shape[1]): dots += np.dot(data_zerocentered[:, column].transpose(), rotmodel[:, column]) normi = np.linalg.norm(model_zerocentered[:, column]) norms += normi * normi s = float(dots / norms) trans = data.mean(1) - s * rot * model.mean(1) model_aligned = s * rot * model + trans alignment_error = model_aligned - data trans_error = np.sqrt(np.sum(np.multiply(alignment_error, alignment_error), 0)).A[0] return rot, trans, trans_error, s def rotationMatrixToEulerAngles2(R): y1 = -math.asin(R[2,0]) y2 = math.pi - y1 if y1>math.pi: y1 = y1 - 2*math.pi if y2>math.pi: y2 = y2 - 2*math.pi x1 = math.atan2(R[2,1]/math.cos(y1), R[2,2]/math.cos(y1)) x2 = math.atan2(R[2,1]/math.cos(y2), R[2,2]/math.cos(y2)) z1 = math.atan2(R[1,0]/math.cos(y1), R[0,0]/math.cos(y1)) z2 = math.atan2(R[1, 0] / math.cos(y2), R[0, 0] / math.cos(y2)) return [x1, y1, z1], [x2, y2, z2] def reference_head(scale=0.01,pyr=(10.,0.0,0.0)): kps = np.asarray([[-7.308957, 0.913869, 0.000000], [-6.775290, -0.730814, -0.012799], [-5.665918, -3.286078, 1.022951], [-5.011779, -4.876396, 1.047961], [-4.056931, -5.947019, 1.636229], [-1.833492, -7.056977, 4.061275], [0.000000, -7.415691, 4.070434], [1.833492, -7.056977, 4.061275], [4.056931, -5.947019, 1.636229], [5.011779, -4.876396, 1.047961], [5.665918, -3.286078, 1.022951], [6.775290, -0.730814, -0.012799], [7.308957, 0.913869, 0.000000], [5.311432, 5.485328, 3.987654], [4.461908, 6.189018, 5.594410], [3.550622, 6.185143, 5.712299], [2.542231, 5.862829, 4.687939], [1.789930, 5.393625, 4.413414], [2.693583, 5.018237, 5.072837], [3.530191, 4.981603, 4.937805], [4.490323, 5.186498, 4.694397], [-5.311432, 5.485328, 3.987654], [-4.461908, 6.189018, 5.594410], [-3.550622, 6.185143, 5.712299], [-2.542231, 5.862829, 4.687939], [-1.789930, 5.393625, 4.413414], [-2.693583, 5.018237, 5.072837], [-3.530191, 4.981603, 4.937805], [-4.490323, 5.186498, 4.694397], [1.330353, 7.122144, 6.903745], [2.533424, 7.878085, 7.451034], [4.861131, 7.878672, 6.601275], [6.137002, 7.271266, 5.200823], [6.825897, 6.760612, 4.402142], [-1.330353, 7.122144, 6.903745], [-2.533424, 7.878085, 7.451034], [-4.861131, 7.878672, 6.601275], [-6.137002, 7.271266, 5.200823], [-6.825897, 6.760612, 4.402142], [-2.774015, -2.080775, 5.048531], [-0.509714, -1.571179, 6.566167], [0.000000, -1.646444, 6.704956], [0.509714, -1.571179, 6.566167], [2.774015, -2.080775, 5.048531], [0.589441, -2.958597, 6.109526], [0.000000, -3.116408, 6.097667], [-0.589441, -2.958597, 6.109526], [-0.981972, 4.554081, 6.301271], [-0.973987, 1.916389, 7.654050], [-2.005628, 1.409845, 6.165652], [-1.930245, 0.424351, 5.914376], [-0.746313, 0.348381, 6.263227], [0.000000, 0.000000, 6.763430], [0.746313, 0.348381, 6.263227], [1.930245, 0.424351, 5.914376], [2.005628, 1.409845, 6.165652], [0.973987, 1.916389, 7.654050], [0.981972, 4.554081, 6.301271]]).T R = rotate_zyx(
np.deg2rad(pyr)
numpy.deg2rad
import torch import torch.nn as nn import numpy as np import os from torch.utils.data import DataLoader from dataset.UCFRep_loader import TestData from tqdm import tqdm, trange from models.TransRAC import TransferModel from tools.my_tools import paint_smi_matrixs,density_map device_ids = [0] device = torch.device("cuda:" + str(device_ids[0]) if torch.cuda.is_available() else "cpu") torch.manual_seed(1) def test_loop(n_epochs, model,test_set,batch_size=1, lastckpt=None, paint=False, device_ids=[0]): device = torch.device("cuda:" + str(device_ids[0]) if torch.cuda.is_available() else "cpu") currEpoch = 0 testloader = DataLoader(test_set, batch_size=batch_size, pin_memory=True, shuffle=True, num_workers=20) model = nn.DataParallel(model.to(device), device_ids=device_ids) if lastckpt != None: print("loading checkpoint") checkpoint = torch.load(lastckpt) currEpoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict'], strict=False) del checkpoint for epoch in tqdm(range(currEpoch, n_epochs + currEpoch)): testOBO = [] testMAE = [] predCount=[] Count=[] ACC=[] with torch.no_grad(): batch_idx = 0 pbar = tqdm(testloader, total=len(testloader)) for input, target in pbar: model.eval() acc = 0 input = input.to(device) count = target.to(device) output, sim_matrix = model(input, epoch) predict_count = torch.sum(output, dim=1).round() mae = torch.sum(torch.div(torch.abs(predict_count - count), count + 1e-1)) / \ predict_count.flatten().shape[0] # mae gaps = torch.sub(predict_count, count).reshape(-1).cpu().detach().numpy().reshape(-1).tolist() for item in gaps: if abs(item) <= 1: acc += 1 OBO = acc / predict_count.flatten().shape[0] testOBO.append(OBO) MAE = mae.item() testMAE.append(MAE) predCount.append(predict_count.item()) Count.append(count.item()) print('predict count :{0}, groundtruth :{1}'.format(predict_count.item(), count.item())) #if predict_count.item() == count.item() and MAE < 0.2: # density_map(output, count.item(), batch_idx) # if paint: # paint_smi_matrixs(sim_matrix,batch_idx) batch_idx += 1 print("MAE:{0},OBO:{1}".format(
np.mean(testMAE)
numpy.mean
import numpy as np INSTRU = 0 # so that data[INSTRU] = instrumental def initialValues(data, model, options): # Initializes the parameter values for the MCMC procedure # Draws from (at times) truncated priors. currentParams = {} if options['useModes']: # Initial Value of alpha: (uniform, so take mean): currentParams['alpha'] = np.mean(options['priors']['alpha'][:]) # Initial Value for mu: mode of the normal prior. currentParams['mu'] = options['priors']['mu'][0] # Initial Value for sigma2: mode of inverse gamma prior: currentParams['sigma2'] = options['priors']['sigma2'][1] / (options['priors']['sigma2'][0] + 1) # Initial Value for phi: mode of the log-normal distribution: currentParams['phi'] = np.exp(options['priors']['phi'][0] - options['priors']['phi'][1]) # Initial Value for tau2_I: : mode of inverse gamma prior: currentParams['tau2_I'] = options['priors']['tau2_I'][1] / (options['priors']['tau2_I'][0] + 1) # Initial Value for tau2_P: : mode of inverse gamma prior: currentParams['tau2_P'] = options['priors']['tau2_P'][:, 1] / (options['priors']['tau2_P'][:, 0] + 1) # Initial value for Beta_1: mode of the normal prior: currentParams['Beta_1'] = options['priors']['Beta_1'][:, 0] # Initial value for Beta_0: mode of the normal prior: currentParams['Beta_0'] = options['priors']['Beta_0'][:, 0] else: # Initial Value of alpha: Draw from the uniform prior: # currentParams.alpha=rand(1)*diff(options.priors.alpha)+options.priors.alpha(1); # TRUNCATE A Bit to set initial value near 0.5: currentParams['alpha'] = np.random.rand() * 0.5 + 0.25 # Initial Value for mu: draw from the normal prior. currentParams['mu'] = options['priors']['mu'][0] + np.sqrt(options['priors']['mu'][1]) * np.random.normal() # Initial Value for sigma2: draw from inverse gamma prior is likely a bad ideas, # due to the very large possible values. So truncate to below some value: while True: t = 1 / np.random.gamma(options['priors']['sigma2'][0], 1 / options['priors']['sigma2'][1]) # right? if t < 5: currentParams['sigma2'] = t break # Initial Value for phi: draw from the log-normal distribution, truncated to less than a cutoff, # determined by the prior parameters: cutt = np.exp(options['priors']['phi'][0] + 2 * np.sqrt(options['priors']['phi'][1])) while True: t = np.random.lognormal(options['priors']['phi'][0], np.sqrt(options['priors']['phi'][1])) if t < cutt: currentParams['phi'] = t break # Initial Value for tau2_I: : draw from inverse gamma prior truncated to less than some cut off value: while True: t = 1 / np.random.gamma(options['priors']['tau2_I'][0], 1 / options['priors']['tau2_I'][1]) if t < 5: currentParams['tau2_I'] = t break if len(data) > 1: # Initial Value for tau2_P: : draw from inverse gamma prior truncated to less than some cut off value: pars = options['priors']['tau2_P'][:] vals = np.zeros((np.size(pars, 0), 1)) for i in range(np.size(pars, 0)): while True: t = 1 / np.random.gamma(pars[i, 0], 1 / pars[i, 1]) if t < 10: vals[i] = t break currentParams['tau2_P'] = vals # Initial value for Beta_1: mode of the normal prior: currentParams['Beta_1'] = options['priors']['Beta_1'][0] + np.random.rand(
np.size(options['priors']['Beta_1'], 1)
numpy.size
""" Scan a large frequency range at a given frequency resolution. At each LO frequency, scan most of the positive baseband frequencies and save one SweepArray. """ from __future__ import division import time import numpy as np from kid_readout.roach import analog, hardware_tools, tools from kid_readout.measurement import acquire, basic, core from kid_readout.equipment import hardware acquire.show_settings() acquire.show_git_status() logger = acquire.get_script_logger(__file__) # Parameters suffix = 'scan' attenuation = 0 df_baseband_target = 25e3 f_start = 1500e6 f_stop = 3500e6 overlap_fraction = 0.5 f_baseband_minimum = 10e6 # Keep the tones above the LO by at least this frequency f_baseband_maximum = 180e6 # Keep the tones below this frequency length_seconds = 0.01 filterbank_bin_separation = 4 # The minimum number of PFB bins that separate tones f_lo_resolution = 2.5e3 # The minimum num_tones_maximum = 128 # Imposed by the data streaming rate #fft_gain_maximum = 4 # Hardware conditioner = analog.HeterodyneMarkII() hw = hardware.Hardware(conditioner) ri = hardware_tools.r2h14_with_mk2(initialize=True, use_config=False) ri.adc_valon.set_ref_select(0) assert np.all(ri.adc_valon.get_phase_locks()) # Calculate sweep parameters, LO and baseband sweep frequencies ri_state = ri.state # The tone sample exponent (and thus the number of tone samples) are set so that the actual frequency spacing # is less than the target frequency spacing. tone_sample_exponent = int(np.ceil(np.log2(ri_state.adc_sample_rate / df_baseband_target))) df_baseband = ri_state.adc_sample_rate / 2 ** tone_sample_exponent logger.info("Baseband resolution is {:.0f} Hz using 2^{:d} samples".format(df_baseband, tone_sample_exponent)) df_filterbank = ri_state.adc_sample_rate / ri_state.num_filterbank_channels df_tone_minimum = df_filterbank * filterbank_bin_separation # The minimum distance between tones df_tone = max([df_tone_minimum]) logger.info("Separating tones by {:d} filterbank bins, or {:.3f} MHz".format( filterbank_bin_separation, 1e-6 * df_tone)) num_waveforms = filterbank_bin_separation * 2 ** tone_sample_exponent // ri_state.num_filterbank_channels num_tones = min([num_tones_maximum, 2 ** int(np.log2((f_baseband_maximum - f_baseband_minimum) / df_tone))]) df_sweep = df_tone * num_tones logger.info("Each sweep consists of {:d} waveforms of {:d} tones and spans {:.1f} MHz".format( num_waveforms, num_tones, 1e-6 * df_sweep)) df_lo = (1 - overlap_fraction) * df_sweep logger.info("With {:.2f} fractional overlap, LO frequencies are separated by {:.1f} MHz".format( overlap_fraction, 1e-6 * df_lo)) num_sweeps = int(
np.ceil((f_stop - f_start) / df_lo)
numpy.ceil
def dataCleaning(marriageNum='Full', classNum=2, dropColumns=True): ''' This is the data cleaning function for the CE264 final project: Marriage Analysis Return a pandas data frame and a numpy array: data (X) and observation (y) The name of each column refers to the JGSS data codebook For some combined categories in a particular data feature, please refer to the source code Parameters: marriageNum: integer or 'Full'(as default); the number of sampled 'Marriage' class, should be smaller than its actual number classNum: 2(as default), 3 or 'Full'; the class number of the observation; if 2, class 1 for 'Currently Marriage' and 2 for other if 3, class 1 for 'Currently Marriage', 2 for 'Divorced', and 3 for other if 'Full', check the code book for the meaning of each class dropColumns: whether drop the columns that may have correlation with the marriage status (default is True) ''' # parameter check if classNum not in [2, 3, 'Full']: raise ValueError('Invalid class number: should be 2, 3, or "Full".') # import libraries and raw data import numpy as np import pandas as pd rawData = pd.read_stata('34623-0001-Data.dta') # data selected primarily by genetic algorithm selectedCol = ['SIZE', 'SEXA', 'TP5UNEMP', 'AGESTPWK', 'SZSJBHWK', 'TPJOBP', 'TPJBDP', 'SZCMTHR', 'XXJOB', 'XJOBDWK', 'SZTTLSTA', 'ST5JOB', 'SSJB1WK', 'SSTPUNEM', 'SSSJBHWK', 'SSTPJOB','SSTPJBDP', 'SSTPJBSE', 'SSXJBSCH', 'SSSZWKYR', 'SSSZSTFA', 'SPAGEX', 'SPLVTG', 'PPLVTG', 'MMLVTG', 'PPAGE', 'MMAGE', 'MMJOB', 'CCNUMTTL', 'CC01SEX', 'CC01AGE', 'CC02LVTG', 'CC02AGE', 'CC02MG', 'CC03MG', 'CC03JOB', 'CC04LVTG', 'CC04MG', 'CC05SEX', 'CC05JOB', 'CC06SEX', 'CC06AGE', 'CC07SEX', 'CC07LVTG', 'CC07AGE', 'CC07JOB', 'CC08MG', 'CC08JOB', 'SZFFOTHR', 'FFH01REL', 'FFH03SEX', 'FFH04REL', 'FFH04SEX', 'FFH05REL', 'FFH05SEX', 'FFH07REL', 'FFH07SEX', 'FFH07AGE', 'SZFFONLY', 'SZFFTTL', 'FFHEAD', 'SZFFOUT', 'FFO01REL', 'FFO01WHY', 'FFO02REL', 'FFO02WHY', 'FFO03REL', 'FFO03WHY', 'FFO05REL', 'FFO05WHY', 'FFO06REL', 'FFO06WHY', 'INCSELF', 'INCSP', 'INCPEN', 'INCUEB', 'INCIRR', 'INCRENT', 'INCMAIN', 'SZINCOMA', 'XNUMSISE', 'XNUMBROY', 'XSSNBROY', 'XSSNSISY', 'PREF15', 'TP5LOC15', 'PPJBXX15', 'PPJBSZ15', 'MMJBTP15', 'XXLSTSCH','SSLSTSCH', 'PPLSTSCH', 'DOLSTSCH', 'XGRADE', 'XSPSCH', 'MARC'] selectedData = rawData[selectedCol] # filter data with more than 1500 'NA' values NAfilter = [] for i in selectedCol: if len(selectedData[selectedData[i] == 'Not applicable']) < 1500: NAfilter += [i] selectedData = selectedData[NAfilter] # sample the marriage class if marriageNum != 'Full': marriageClass = selectedData[selectedData['MARC'] == 'Currently married'] dropNum = len(marriageClass) - marriageNum if not dropNum > 0: raise ValueError('The number of sampled "Marriage" class should be smaller than its actual number. Try another value.') drop_id = np.random.choice(marriageClass.index, dropNum, replace=False) selectedData = selectedData.drop(drop_id) # data cleaning... selectedData['SIZE'].replace('Largest cities', 1, inplace=True) selectedData['SIZE'].replace('Cities with population of 200000 or more', 2, inplace=True) selectedData['SIZE'].replace('Cities with population of less than 200000', 3, inplace=True) selectedData['SIZE'].replace('Town/village', 4, inplace=True) selectedData['SEXA'].replace('Male', 1, inplace=True) selectedData['SEXA'].replace('Female', 2, inplace=True) selectedData['SSJB1WK'].replace('He/she worked last week.', 1, inplace=True) selectedData['SSJB1WK'].replace('He/she was going to work last week, but did not work.', 2, inplace=True) selectedData['SSJB1WK'].replace('He/she did not work.', 3, inplace=True) selectedData['SPLVTG'].replace('Living together', 1, inplace=True) selectedData['SPLVTG'].replace('Not living together (because of work circumstances)', 2, inplace=True) selectedData['SPLVTG'].replace('Not living together (for other reasons)', 3, inplace=True) selectedData['PPLVTG'].replace('Living together', 1, inplace=True) selectedData['PPLVTG'].replace('Not living together', 2, inplace=True) selectedData['PPLVTG'].replace('Deceased', 3, inplace=True) selectedData['MMLVTG'].replace('Living together', 1, inplace=True) selectedData['MMLVTG'].replace('Not living together', 2, inplace=True) selectedData['MMLVTG'].replace('Deceased', 3, inplace=True) selectedData['CC01SEX'].replace('Male', 1, inplace=True) selectedData['CC01SEX'].replace('Female', 2, inplace=True) for i in np.unique(selectedData['FFHEAD']): if i not in ['Respondent himself/herself', 'Husband', 'Wife']: selectedData['FFHEAD'].replace(i, 4, inplace=True) selectedData['FFHEAD'].replace('Respondent himself/herself', 1, inplace=True) selectedData['FFHEAD'].replace('Husband', 2, inplace=True) selectedData['FFHEAD'].replace('Wife', 3, inplace=True) selectedData['INCSELF'].replace('Chosen', 0, inplace=True) selectedData['INCSELF'].replace('Not chosen', 1, inplace=True) selectedData['INCSP'].replace('Chosen', 1, inplace=True) selectedData['INCSP'].replace('Not chosen', 1, inplace=True) selectedData['INCPEN'].replace('Chosen', 0, inplace=True) selectedData['INCPEN'].replace('Not chosen', 1, inplace=True) selectedData['INCUEB'].replace('Chosen', 0, inplace=True) selectedData['INCUEB'].replace('Not chosen', 1, inplace=True) selectedData['INCIRR'].replace('Chosen', 0, inplace=True) selectedData['INCIRR'].replace('Not chosen', 1, inplace=True) selectedData['INCRENT'].replace('Chosen', 0, inplace=True) selectedData['INCRENT'].replace('Not chosen', 1, inplace=True) selectedData.drop('INCMAIN', axis=1, inplace=True) for i in np.unique(selectedData['SZINCOMA']): if i == 'None': selectedData['SZINCOMA'].replace(i, 1, inplace=True) elif i in ['Less than 700,000 yen', '700,000 yen - 1 million yen']: selectedData['SZINCOMA'].replace(i, 2, inplace=True) elif i in ['1 million yen - 1.3 million yen', '1.3 million yen - 1.5 million yen', '1.5 million yen - 2.5 million yen']: selectedData['SZINCOMA'].replace(i, 3, inplace=True) elif i in ['2.5 million yen - 3.5 million yen', '3.5 million yen - 4.5 million yen', '4.5 million yen - 5.5 million yen',]: selectedData['SZINCOMA'].replace(i, 4, inplace=True) elif i in ['5.5 million yen - 6.5 million yen', '6.5 million yen - 7.5 million yen', '7.5 million yen - 8.5 million yen', '8.5 million yen - 10 million yen', '10 million yen - 12 million yen', '12 million yen - 14 million yen', '14 million yen - 16 million yen', '16 million yen - 18.5 million yen', '18.5 million yen - 23 million yen',]: selectedData['SZINCOMA'].replace(i, 5, inplace=True) else: selectedData['SZINCOMA'].replace(i, 0, inplace=True) selectedData.drop('PREF15', axis=1, inplace=True) selectedData['TP5LOC15'].replace('Large city', 1, inplace=True) selectedData['TP5LOC15'].replace('Small to medium sized city', 2, inplace=True) selectedData['TP5LOC15'].replace('Town', 3, inplace=True) selectedData['TP5LOC15'].replace('Village', 4, inplace=True) for i in np.unique(selectedData['PPJBXX15']): if i == 'managers in companies/organizations': selectedData['PPJBXX15'].replace(i, 1, inplace=True) elif i == 'Not applicable': selectedData['PPJBXX15'].replace(i, 0, inplace=True) else: selectedData['PPJBXX15'].replace(i, 2, inplace=True) selectedData['PPJBSZ15'].replace('1', 1, inplace=True) selectedData['PPJBSZ15'].replace('Small company (2-29 employees)', 2, inplace=True) selectedData['PPJBSZ15'].replace('Medium-sized company (30-299 employees)', 3, inplace=True) selectedData['PPJBSZ15'].replace('Large company (300-999 employees)', 4, inplace=True) selectedData['PPJBSZ15'].replace('Major company (1000 or more employees', 5, inplace=True) selectedData['PPJBSZ15'].replace('Government agency', 6, inplace=True) selectedData['PPJBSZ15'].replace("Don't know", 0, inplace=True) for i in np.unique(selectedData['MMJBTP15']): if i == 'She was not working.': selectedData['MMJBTP15'].replace(i, 1, inplace=True) elif i == 'Temporary worker, Daily worker, Part-time temporary worker': selectedData['MMJBTP15'].replace(i, 2, inplace=True) elif i in ["Regular employee - don't know about occupation", 'Regular employee - managerial position', 'Regular employee - non-management', 'Regular employee - professional (nurse, teacher, etc.)']: selectedData['MMJBTP15'].replace(i, 3, inplace=True) elif i in ["Don't know", 'No answer']: selectedData['MMJBTP15'].replace(i, 0, inplace=True) else: selectedData['MMJBTP15'].replace(i, 4, inplace=True) for i in np.unique(selectedData['XXLSTSCH']): if i in ['Ordinary elementary school in the old system', 'Higher elementary school in the old system']: selectedData['XXLSTSCH'].replace(i, 1, inplace=True) elif i in ["Junior high school/Girls' high school in the old system", 'Vocational school/Commerce school in the old system', 'Normal school in the old system', 'Higher school or vocational school in the old system', 'Junior high school', 'High school']: selectedData['XXLSTSCH'].replace(i, 2, inplace=True) elif i in ['No answer', "Don't know"]: selectedData['XXLSTSCH'].replace(i, 0, inplace=True) else: selectedData['XXLSTSCH'].replace(i, 3, inplace=True) for i in np.unique(selectedData['SSLSTSCH']): if i in ['Ordinary elementary school in the old system', 'Higher elementary school in the old system']: selectedData['SSLSTSCH'].replace(i, 1, inplace=True) elif i in ["Junior high school/Girls' high school in the old system", 'Vocational school/Commerce school in the old system', 'Normal school in the old system', 'Higher school or vocational school in the old system', 'Junior high school', 'High school']: selectedData['SSLSTSCH'].replace(i, 2, inplace=True) elif i in ['No answer', "Don't know", 'Never-married/Divorced']: selectedData['SSLSTSCH'].replace(i, 0, inplace=True) else: selectedData['SSLSTSCH'].replace(i, 3, inplace=True) for i in
np.unique(selectedData['PPLSTSCH'])
numpy.unique
""" Library Features: Name: lib_utils_plot Author(s): <NAME> (<EMAIL>) Date: '20220208' Version: '1.0.0' """ ####################################################################################### # Libraries import logging import cartopy import rasterio import numpy as np from lib_utils_io import write_file_tif, read_file_tif, save_file_json from lib_utils_colormap import load import matplotlib.pylab as plt import matplotlib.ticker as mticker import cartopy.io.img_tiles as cimgt from pyproj import Proj from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable logging.getLogger('rasterio').setLevel(logging.WARNING) logging.getLogger('matplotlib').setLevel(logging.WARNING) logging.getLogger('PIL').setLevel(logging.WARNING) from lib_info_args import logger_name # Logging log_stream = logging.getLogger(logger_name) ####################################################################################### # ------------------------------------------------------------------------------------- # Method to save info data in json format def save_file_info(file_name, file_data_collections): save_file_json(file_name, file_data_dict=file_data_collections) # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to read data values from geotiff format def read_file_tiff(file_name): file_data, file_proj, file_geotrans = read_file_tif(file_name) return file_data # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to save data values in geotiff format def save_file_tiff(file_name, file_data, file_geo_x, file_geo_y, file_metadata=None, file_epsg_code='EPSG:32632'): if file_metadata is None: file_metadata = {'description': 'data'} file_data_height, file_data_width = file_data.shape file_geo_x_west =
np.min(file_geo_x)
numpy.min
# -*- coding: utf-8 -*- """ Created on Tue Jan 23 11:41:16 2018 This module is an implementation of the (S)ingle (O)bjective (B)inary (G)enetic (A)lgorithm. @author: sreimond """ import numpy as np from copy import deepcopy import itertools class Population( object ): """ The `Population` class holds Individuals and optimizes the objective function as defined in the config dictionary. """ def __init__( self, config ): self.config = _default_config(config) self.individuals = [] self.development = {'generation':[], 'function_calls':0, 'best_fitness':[], 'worst_fitness':[], 'mean_fitness':[], 'std_fitness':[]} self.optimized_parameters = [] self.iteration = 0 def initialize_individuals(self): for _ in range(self.config['pop_size']): self.add_individual() def add_individual(self): d_min = -np.inf for ix in range(10): individual = Individual(self) if ix==0: self.individuals.append(individual) continue d = [] for individual2 in self.individuals: if individual == individual2: continue d.append( individual.determine_distance(individual2) ) if np.min(d) > d_min: d_min = np.min(d) del self.individuals[-1] self.individuals.append(individual) def sort_individuals(self): # fittest indivdual has max. fitness and is located at index 0 neg_fitness = [-individual.development['fitness'][-1] for individual in self.individuals] neg_feasibility = [-individual.development['feasibility'][-1] for individual in self.individuals] ix = np.lexsort((neg_fitness,neg_feasibility)) # ix = np.argsort(neg_fitness) return [self.individuals[jx] for jx in ix] def update_statistics(self): fitness = [individual.development['fitness'][-1] for individual in self.individuals] self.development['generation'].append( self.iteration ) self.development['best_fitness'].append( np.max(fitness) ) self.development['worst_fitness'].append( np.min(fitness) ) self.development['mean_fitness'].append( np.mean(fitness) ) self.development['std_fitness'].append( np.std(fitness) ) def test_individuals(self): for individual in self.individuals: individual.determine_fitness() self.development['function_calls'] += 1 def dismiss_individuals(self): method = self.config['nsel_method'] pop_size = self.config['pop_size'] rate = self.config['nsel_rate'] thresh = self.config['nsel_thresh'] if method == 'sorted_list': ix = int(pop_size - pop_size * rate ) ix_dismiss = list(range(ix,pop_size)) elif method == 'thresholding': ix_dismiss = [] for ix,individual in self.individuals: if (-individual.development['fitness'][-1]) > thresh: ix_dismiss.append(ix) ix_dismiss.sort(reverse=True) for ix in ix_dismiss: del self.individuals[ix] while len(self.individuals)<2: self.add_individual() if (pop_size - len(self.individuals)) % 2 != 0: del self.individuals[-1] def select_parents(self): pop_size = int(self.config['pop_size']) individual_count = len(self.individuals) missing_count = pop_size-individual_count parents_count = int(missing_count/2) participants_count = int(self.config['msel_n_participants']) method = self.config['msel_method'] do_replace = False if ((individual_count < missing_count) or (individual_count < participants_count * 2)): do_replace = True if method == 'sorted_list': ix = range(missing_count) self.parents = (ix[::2],ix[1::2]) elif method == 'random_picking': ix = np.random.choice(range(individual_count), replace=do_replace, size=missing_count) self.parents = (ix[0:parents_count],ix[parents_count:missing_count]) elif method == 'tournament': parent1 = [] parent2 = [] for _ in range(parents_count): ix = np.random.choice(range(individual_count), replace=do_replace, size=participants_count*2) mums = ix[0:participants_count] dads = ix[participants_count:participants_count*2] mums_fitness = [self.individuals[mum].development['fitness'][-1] for mum in mums] dads_fitness = [self.individuals[dad].development['fitness'][-1] for dad in dads] parent1.append(mums[np.argmax(mums_fitness)]) parent2.append(dads[np.argmax(dads_fitness)]) self.parents = (parent1,parent2) def mate_individuals(self): ix_parents1, ix_parents2 = self.parents for ix,ix_parent1 in enumerate(ix_parents1): ix_parent2 = ix_parents2[ix] parent1 = self.individuals[ix_parent1] parent2 = self.individuals[ix_parent2] children = parent1.mate(parent2) self.individuals.append(children[0]) self.individuals.append(children[1]) def mutate_individuals(self): ix = 0 if self.config['mut_elitism']: ix = 1 for jx,individual in enumerate(self.individuals): if jx < ix: continue individual.mutate() def start_evolution(self): self.initialize_individuals() self.test_individuals() self.individuals = self.sort_individuals() self.update_statistics() for _ in range(self.config['max_iterations']-1): self.iteration += 1 self.dismiss_individuals() self.select_parents() self.mate_individuals() self.mutate_individuals() self.test_individuals() self.individuals = self.sort_individuals() self.update_statistics() self.optimized_parameters = self.individuals[0].genes class Individual( object ): """ The `Individual` class defines Individuals and assigns Genes. """ def __init__(self,population): self.population = population self.development = {'generation':[],'fitness':[],'feasibility':[]} self.initialize() def initialize(self): self.genes = [] for parameter in self.population.config['objective_function'].parameters: gene = deepcopy( parameter ) gene.set_random_value() self.genes.append( gene ) self.update_dna() def determine_distance(self,individual): d = 0 for ix,gene in enumerate(self.genes): d += (gene.value - individual.genes[ix].value)**2.0 return np.sqrt(d) def update_dna(self): dna = [gene.code for gene in self.genes] self.dna = np.array(list(itertools.chain(*dna))) def update_genes(self): ix = 0 for gene in self.genes: jx = ix + gene.bits code = self.dna[ix:jx] gene.set_binary_code(code) ix = jx def determine_fitness(self): cost = self.population.config['objective_function'].evaluate( self.genes ) fitness = -cost feasibility = self.population.config['objective_function'].determine_feasibility( self.genes ) self.development['generation'].append(self.population.iteration) self.development['fitness'].append(fitness) self.development['feasibility'].append(feasibility) def mutate(self): total_bits = len(self.dna) mutations_count = int(np.ceil(total_bits*self.population.config['mut_rate'])) ix = np.random.randint(0,total_bits,mutations_count) mutations = np.fabs(self.dna[ix] - 1) self.dna[ix] = mutations self.update_genes() def mate(self,individual): total_bits = len(self.dna) parents_dna = (self.dna,individual.dna) children_dna = parents_dna mask = np.zeros(total_bits,dtype=bool) if self.population.config['mat_method'] == 'single_point': ix = np.random.randint(0,total_bits) mask[0:ix] = True elif self.population.config['mat_method'] == 'two_point': ix = np.sort(
np.random.choice(total_bits, 2, replace=False)
numpy.random.choice
#!/usr/bin/env python # Version: 1.0 # Author: <NAME> (updated by <NAME>) from __future__ import division, print_function import sys, math, os import numpy as np import scipy.stats import datetime import matplotlib.pyplot as plt import glob from collections import deque import astropy.units as u from astropy import log from astropy.io import fits from astropy.time import Time from nicer.values import * from pint.fits_utils import read_fits_event_mjds from pint.eventstats import h2sig,hm import argparse desc= """ Read one or more event files to sort GTI by background rate and evaluate H-test """ plt.rc('font', size=14) # controls default text sizes plt.rc('axes', labelsize=13) # fontsize of the x and y labels plt.rc('xtick', labelsize=13) # fontsize of the tick labels plt.rc('ytick', labelsize=13) # fontsize of the tick labels plt.rc('legend', fontsize=14) # legend fontsize plt.rc('axes', linewidth=1.5) plt.rc('xtick.major', size=4, width=1.5) plt.rc('ytick.major', size=4, width=1.5) parser = argparse.ArgumentParser(description = desc) #parser.add_argument("evt", help="Input event files using glob.glob (e.g.'10010101*_Proc/cleanfilt_par.evt')") parser.add_argument("infile", help="file or text file with list of event file", nargs='+') parser.add_argument("outfile", help="name for output files") parser.add_argument("--emin", help="Minimum energy to include (keV, default=0.25)", type=float, default=0.25) parser.add_argument("--emax", help="Maximum energy to include (keV, default=2.00)", type=float, default=2.00) parser.add_argument("--gridsearch", help="Search over energies to find max H-test", action="store_true",default=False) parser.add_argument("--coarsegridsearch", help="Search over energies to find max H-test", action="store_true",default=False) parser.add_argument("--savefile", help="Saving optimized event file", action="store_true",default=False) parser.add_argument("--nbins", help="Number of bins for plotting pulse profile (default=16)", type=int, default=16) parser.add_argument("--name", help="Pulsar name for output figure", type=str, default='') args = parser.parse_args() def load_files(fnames): # make a comprehensive list of gtis/rates gtis = deque() times = deque() pis = deque() phases = deque() for fname in fnames: f = fits.open(fname) t0s = f['gti'].data.field('start') t1s = f['gti'].data.field('stop') for t0,t1 in zip(t0s,t1s): gtis.append([t0,t1]) times.append(f['events'].data.field('time')) pis.append(f['events'].data.field('pi')) try: phases.append(f['events'].data.field('pulse_phase')) except: pass times = np.concatenate(times) pis = np.concatenate(pis) if len(phases) > 0: phases = np.concatenate(phases) else: phases = None t0s,t1s = np.asarray(list(gtis)).transpose() return times,phases,pis,t0s,t1s def dice_gtis(data,tmax=100): """ Break larger GTIs into small pieces to handle rate variations.""" times,phases,pis,t0s,t1s = data new_t0s = deque() new_t1s = deque() for t0,t1 in zip(t0s,t1s): dt = t1-t0 if dt < tmax: new_t0s.append(t0) new_t1s.append(t1) else: # break up GTI in such a way to avoid losing time (to tmin) and # to avoid having pieces longer than tmax npiece = int(np.floor(dt/tmax))+1 new_edges = np.linspace(t0,t1,npiece+1) for it0,it1 in zip(new_edges[:-1],new_edges[1:]): new_t0s.append(it0) new_t1s.append(it1) return times,phases,pis,np.asarray(new_t0s),np.asarray(new_t1s) def ensemble_htest(phases,slices,m=20,c=4): """ Calculate H-test statistic for subsets of a set of phases. Cache intermediate products to avoid O(N^2) complexity! """ phases = np.asarray(phases)*(2*np.pi) # in radians and copy cache = np.empty((2*m,len(phases))) for i in range(m): cache[2*i] = np.cos((i+1)*phases) cache[2*i+1] = np.sin((i+1)*phases) rvals = np.empty(len(slices)) penalty = c*np.arange(0,m) for isl,sl in enumerate(slices): x = cache[:,sl] nph = x.shape[1] if nph == 0: rvals[isl] = 0.01 continue t = np.sum(cache[:,sl],axis=1)**2 t = np.cumsum(t[::2] + t[1::2])*(2./nph) rvals[isl] = np.max(t-penalty) return rvals def make_sn(data,mask=None,rate=0.1,min_gti=5): """ data -- output of load_local mask -- optional mask to select events (e.g. on PI) rate -- assumed rate for S/N calculation in ct/sec min_gti -- minimum GTI length in seconds """ times,phases,pis,t0s,t1s = data if mask is not None: times = times[mask] phases = phases[mask] pis = pis[mask] # determine which gti each event belongs to gti_idx = np.searchsorted(t1s,times) # count events in each gti gti_cts = np.bincount(gti_idx,minlength=len(t1s)) gti_len = t1s-t0s mask = gti_len > min_gti rates = (gti_cts / gti_len)[mask] a = np.argsort(rates) gti_len_s = gti_len[mask][a] gti_cts_s = gti_cts[mask][a] gti_rts_s = gti_cts_s/gti_len_s sn = rate*np.cumsum(gti_len_s)/np.sqrt(np.cumsum(gti_cts_s)+rate*gti_len_s) rate = 0 sn0 = np.cumsum(gti_len_s)/np.sqrt(np.cumsum(gti_cts_s)) if phases is not None: counter = 0 ph_gti = deque() for i,ct in enumerate(gti_cts): ph_gti.append(phases[counter:counter+ct]) counter += ct # apply mask ph_gti = [ph_gti[i] for i,imask in enumerate(mask) if imask] # apply sorting ph_gti = [ph_gti[i] for i in a] # make a set of slices nph = np.cumsum([len(phg) for phg in ph_gti]) slices = [slice(0,n) for n in nph] assert(len(slices)==len(ph_gti)) # calculate H test hs = ensemble_htest(np.concatenate(ph_gti),slices) else: hs = None ph_gti = None return sn,sn0,hs,ph_gti,gti_rts_s,gti_len_s ## UNUSED... def get_optimal_cuts(data,pred_rate = 0.017): """ Determine rates from analytic prediction for both 0.25 and 0.40 keV cuts, and use these to estimate an optimal H test. """ pi_mask = (data[2]>25) & (data[2]<100) sn,sn0,hs,ph_gti,gti_rts_s,gti_len_s = make_sn(data,mask=pi_mask,rate=pred_rate) amax = np.argmax(sn) pi_mask = (data[2]>40) & (data[2]<100) pred_rate *= 3./5 sn_40,sn0_40,hs_40,ph_gti_40,gti_rts_s_40,gti_len_s_40 = make_sn(data,mask=pi_mask,rate=pred_rate) hsig_40 = [h2sig(h) for h in hs] exposure = np.cumsum(gti_len_s) amax_40 = np.argmax(sn_40) # get intersection of 0.25 keV data sets and 0.4 keV data sets rate_025_cut = gti_rts_s[amax] rate_040_cut = gti_rts_s_40[amax_40] mask_025 = gti_rts_s<=rate_025_cut mask_040 = ~mask_025 & (gti_rts_s_40<rate_040_cut) ph1 = np.concatenate(np.asarray(ph_gti)[mask_025]) try: ph2 = np.concatenate(np.asarray(ph_gti_40)[mask_040]) except ValueError: ph2 = np.asarray([]) print('Found %d photons satisfying 0.25 keV cut; exposure = %.1fs'%(len(ph1),np.sum(np.asarray(gti_len_s)[mask_025]))) print('Found %d photons satisfying 0.40 keV cut; exposure = %.1fs'%(len(ph2),np.sum(np.asarray(gti_len_s_40)[mask_040]))) print('H-test 1: %.2f'%hm(ph1)) if len(ph2)>0: print('H-test 2: %.2f'%hm(ph2)) else: print('H-test 2: no photons!') print('H-test joint: %.2f'%hm(np.append(ph1,ph2))) if len(args.infile)==1: if args.infile[0].startswith('@'): inputfile = args.infile[0].split('@')[1] log.info('Reading input ObsID list: {}'.format(inputfile)) all_files = np.loadtxt(inputfile,dtype=str) else: all_files = args.infile else: all_files = args.infile data = load_files(all_files) data_diced = dice_gtis(data) #get_optimal_cuts(data_diced) if args.gridsearch: all_emin = np.arange(0.24,1.0,0.01) elif args.coarsegridsearch: all_emin = np.arange(0.3,2.0,0.1) else: all_emin = np.array([args.emin]) hbest = 0.0 eminbest = 0.0 emaxbest = 100.0 eminlist = [] emaxlist = [] hgrid = [] for emin in all_emin: if args.gridsearch: all_emax = np.arange(1.0,3.0,0.01) elif args.coarsegridsearch: all_emax = np.arange(emin+0.1,7.0,0.2) else: all_emax = np.array([args.emax]) for emax in all_emax: print("Energy range: {:0.2f}-{:0.2f} keV".format(emin,emax)) pi_mask = (data[2]>emin*KEV_TO_PI) & (data[2]<emax*KEV_TO_PI) pred_rate = 0.05/10.0 # 2241 sn,sn0,hs,ph_gti,gti_rts_s,gti_len_s = make_sn(data_diced,mask=pi_mask,rate=pred_rate) hsig = [h2sig(h) for h in hs] exposure = np.cumsum(gti_len_s) plt.figure(5); plt.clf() # scale exposure to the expected S/N amax = np.argmax(sn) exposure_scale = sn[amax]/exposure[amax]**0.5 Hmax = np.argmax(hsig) if not args.gridsearch and not args.coarsegridsearch: #plt.plot(gti_rts_s,exposure**0.5*exposure_scale,label='scaled exposure') #plt.plot(gti_rts_s,sn,label='predicted S/N') plt.plot(gti_rts_s,hsig,label='H-test significance') plt.axvline(gti_rts_s[amax],color='k',ls='--') plt.axvline(gti_rts_s[Hmax],color='r',ls='--') plt.xlabel('Background Rate (ct/s)') plt.ylabel('Significance (sigma)') plt.title('{} - [{},{}]'.format(args.name,emin,emax)) plt.legend(loc='lower right') plt.savefig('{}_sig.png'.format(args.outfile)) plt.clf() nbins=args.nbins select_ph = np.concatenate(ph_gti[:Hmax]).ravel() profbins = np.linspace(0.0,1.0,nbins+1,endpoint=True) profile, edges = np.histogram(select_ph,bins=profbins) bbins = np.concatenate((profbins, profbins[1:]+1.0, profbins[1:]+2.0)) fullprof = np.concatenate((profile,profile,profile,
np.array([profile[0]])
numpy.array
# -*- coding: utf-8 -*- """ The project implements Reinforcement Learning (specifically, Finite Action-set Learning Automata) to tune the PID controller gains of a simulated Quadcopter + multi-vehicle + obstacle avoidance using potential fields + plus an improvement on potential fields using shifting planar inequalities Full documentation here: https://github.com/tjards/Quadcopter_multi editing author: <NAME>, PhD email: <EMAIL> The vehicle dynamics, controllers, and other files have been modified from the original implementation of: author: <NAME> email: <EMAIL> license: MIT Please feel free to use and modify this, but keep the above information. Thanks! """ # Import stuff # ------------ import numpy as np import matplotlib.pyplot as plt import time #import cProfile from trajectory import Trajectory from ctrl import Control from quadFiles.quad import Quadcopter from utils.windModel import Wind import utils #import config as simConfig # my libraries from fala import falaObj from potentialField import potentialField as pf import utils.collectData as collect import config as simConfig import utils.shiftingPIC as QP from utils.animation import sameAxisAnimation as sameAxisAnimation #from utils.animation2 import sameAxisAnimation2 as sameAxisAnimation2 from utils.animation_n import sameAxisAnimationN as sameAxisAnimationN # This function integrates the control inputs through the dynamics # ---------------------------------------------------------------- def quad_sim(t, Ts, quad, ctrl, wind, traj, fala, obsPF, config): # Hard code the learned params # ---------------------------- # these are bad ones: # #selPars = np.array([1,6,3,6,0,6,0,2,0,1,5,4,0,2]) # selPars = np.array([1,1,1,1,1,1,1,1,1,1,1,1,1,1]) # for i in range(0,config.nParams): # fala.selectedVals[0,i] = fala.optionsTable[selPars[i],i] # ctrl.tune(fala.selectedVals.transpose().ravel(), [1, 1, 1, 1]) # Dynamics (using last timestep's commands) # --------------------------- quad.update(t, Ts, ctrl.w_cmd, wind, config) t += Ts # Learn from the trial (if selected) # --------------------------------- if fala.doLearn != 0: fala.learn(quad,traj,ctrl,Ts,t) # Trajectory for Desired States (for next iteration) # ------------------------------------------------- sDes = traj.desiredState(t, Ts, quad) # Use PIC shifting to move target (if enabled) # --------------------------------------------- if config.PIC: xv = np.reshape(quad.state[0:3], (1,3)) xt = np.reshape(traj.sDes[0:3], (1,3)) cx = QP.moveTarget(quad.state, obsPF.Po, xv, xt, 0.1, 0.1, config.obsRad) traj.sDes[0:3] = np.array(cx['x'][:]) # Avoid obstacles using potential fields (if enabled) # --------------------------------------------------- if config.PF: obsPF.updateTraj(quad.state[0:3],traj.sDes[0:3],traj) # Generate Commands (for next iteration) # -------------------------------------- ctrl.controller(traj, quad, sDes, config) return t # This is the main function # -------------------------- def main(): start_time = time.time() # Import the simulation setup # --------------------------- config=simConfig.config() # Initialize wind (untested) # -------------------------- wind = Wind('None', 2.0, 90, -15) # Initialize list for objects # --------------------------- numTimeStep = int(config.Tf/config.Ts+1) quadList = [] trajList = [] ctrlList = [] sDesList = [] obsPFList = [] myDataList = [] # For the number of vehicles # -------------------------- for objectIndex in range(0,config.nVeh): quadList.append(Quadcopter(config)) trajList.append(Trajectory(quadList[objectIndex], config.ctrlType, config.trajSelect, config)) ctrlList.append(Control(quadList[objectIndex], trajList[objectIndex].yawType)) sDesList.append(trajList[objectIndex].desiredState(0, config.Ts, quadList[objectIndex]) ) obsPFList.append(pf(trajList[objectIndex], np.vstack((config.o1,config.o2,config.o3,quadList[objectIndex-1].state[0:3])).transpose() , gamma=config.gamma, eta=config.eta, obsRad=config.obsRad, obsRange = config.obsRange)) # generate first command ctrlList[objectIndex].controller(trajList[objectIndex], quadList[objectIndex], sDesList[objectIndex], config) # Create learning object # --------------------------- fala = falaObj(config) # Initialize Result Matrixes # --------------------------- for objectIndex in range(0,config.nVeh): # initialize result matrices myDataList.append(collect.quadata(quadList[objectIndex], trajList[objectIndex], ctrlList[objectIndex], fala, config.Ti, numTimeStep)) # Run Simulation # --------------------------- t = config.Ti*np.ones(config.nVeh) i = 1 while round(t[0],3) < config.Tf: # Update the obstacle positions # ----------------------------- if t[0] > 0.1: # recall these, as they could move with time o1 = config.o1 # np.array([-2.1, 0, -3],) # obstacle 1 (x,y,z) o2 = config.o2 # np.array([2, -1.2, 0.9]) # obstacle 2 (x,y,z) o3 = config.o3 # np.array([0, 2.5, -2.5]) # obstacle 2 (x,y,z) # if just one vehicle if config.nVeh == 1: obsPFList[0].Po =
np.vstack((o1,o2,o3))
numpy.vstack
"""Film Mode Matching Mode Solver Implementation of the Film Mode Matching (FMM) algorithm, as described in: - Sudbo, "Film mode matching a versatile numerical method for vector mode field calculations in dielectric waveguides", Pure App. Optics, 2 (1993), 211-233 - Sudbo, "Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides", Pure App. Optics, 3 (1994), 381-388 Examples ======== See L{FMM1d} and L{FMM2d}. """ from __future__ import print_function from builtins import zip from builtins import range from builtins import object from functools import reduce __author__ = '<NAME> & <NAME>' import numpy import scipy import scipy.optimize import copy import EMpy.utils from EMpy.modesolvers.interface import * import pylab class Message(object): def __init__(self, msg, verbosity=0): self.msg = msg self.verbosity = verbosity def show(self, verbosity=0): if self.verbosity <= verbosity: print((self.verbosity - 1) * '\t' + self.msg) class Struct(object): """Empty class to fill with whatever I want. Maybe a dictionary would do?""" pass class Boundary(object): """Boundary conditions. Electric and Magnetic boundary conditions are translated to Symmetric and Antisymmetric for each field. @ivar xleft: Left bc on x. @ivar xright: Right bc on x. @ivar yleft: Left bc on y. @ivar yright: Right bc on y. """ def __init__(self, xleft='Electric Wall', yleft='Magnetic Wall', xright='Electric Wall', yright='Magnetic Wall'): """Set the boundary conditions, validate and translate.""" self.xleft = xleft self.yleft = yleft self.xright = xright self.yright = yright self.validate() self.translate() def validate(self): """Validate the input. @raise ValueError: Unknown boundary. """ if not reduce(lambda x, y: x & y, [(x == 'Electric Wall') | (x == 'Magnetic Wall') for x in [self.xleft, self.yleft, self.xright, self.yright]]): raise ValueError('Unknown boundary.') def translate(self): """Translate for each field. @raise ValueError: Unknown boundary. """ self.xh = '' self.xe = '' self.yh = '' self.ye = '' if self.xleft == 'Electric Wall': self.xh += 'A' self.xe += 'S' elif self.xleft == 'Magnetic Wall': self.xh += 'S' self.xe += 'A' else: raise ValueError('Unknown boundary.') if self.xright == 'Electric Wall': self.xh += 'A' self.xe += 'S' elif self.xright == 'Magnetic Wall': self.xh += 'S' self.xe += 'A' else: raise ValueError('Unknown boundary.') if self.yleft == 'Electric Wall': self.yh += 'A' self.ye += 'S' elif self.yleft == 'Magnetic Wall': self.yh += 'S' self.ye += 'A' else: raise ValueError('Unknown boundary.') if self.yright == 'Electric Wall': self.yh += 'A' self.ye += 'S' elif self.yright == 'Magnetic Wall': self.yh += 'S' self.ye += 'A' else: raise ValueError('Unknown boundary.') def __str__(self): return 'xleft = %s, xright = %s, yleft = %s, yright = %s' % (self.xleft, self.xright, self.yleft, self.yright) class Slice(object): """One dimensional arrangement of layers and 1d modes. A slice is made of a stack of layers, i.e. refractive indeces with a thickness, with given boundary conditions. It holds 1d modes, both TE and TM. @ivar x1: start point of the slice in x. @ivar x2: end point of the slice in x. @ivar Uy: array of points delimiting the layers. @ivar boundary: boundary conditions. @ivar modie: E modes. @ivar modih: H modes. @ivar Ux: array of points delimiting the slices in x (internally set). @ivar refractiveindex: refractive index of all the slices (internally set). @ivar epsilon: epsilon of all the slices (internally set). @ivar wl: vacuum wavelength. """ def __init__(self, x1, x2, Uy, boundary, modie, modih): self.x1 = x1 self.x2 = x2 self.Uy = Uy self.boundary = boundary self.modie = modie self.modih = modih def __str__(self): return 'x1 = %g, x2 = %g\nUy = %s\nboundary = %s' % (self.x1, self.x2, self.Uy, self.boundary) class FMMMode1d(Mode): """One dimensional mode. Note ==== Virtual class. """ pass class FMMMode1dx(FMMMode1d): """Matching coefficients in the x-direction. L{FMMMode1dy}s are weighted by these coefficients to assure continuity. """ def __str__(self): return 'sl = %s\nsr = %s\nal = %s\nar = %s\nk = %s\nU = %s' % \ (self.sl.__str__(), self.sr.__str__(), self.al.__str__(), self.ar.__str__(), self.k.__str__(), self.U.__str__()) class FMMMode1dy(FMMMode1d): """One dimensional mode. It holds the coefficients that describe the mode in the FMM expansion. Note ==== The mode is suppose one dimensional, in the y direction. @ivar sl: array of value of the mode at the lhs of each slice. @ivar sr: array of value of the mode at the rhs of each slice. @ivar al: array of value of the derivative of the mode at the lhs of each slice. @ivar ar: array of value of the derivative of the mode at the lhs of each slice. @ivar k: wavevector inside each layer. @ivar keff: effective wavevector. @ivar zero: how good the mode is? it must be as close to zero as possible! @ivar Uy: array of points delimiting the layers. """ def eval(self, y_): """Evaluate the mode at y.""" y = numpy.atleast_1d(y_) ny = len(y) f = numpy.zeros(ny, dtype=complex) for iU in range(len(self.U) - 1): k = self.k[iU] sl = self.sl[iU] al = self.al[iU] Ul = self.U[iU] Ur = self.U[iU+1] idx = numpy.where((Ul <= y) & (y <= Ur)) yy = y[idx] - Ul f[idx] = sl * numpy.cos(k * yy) + al * sinxsux(k * yy) * yy return f def plot(self, y): f = self.eval(y) pylab.plot(y, numpy.real(f), y, numpy.imag(y)) pylab.legend(('real', 'imag')) pylab.xlabel('y') pylab.ylabel('mode1d') pylab.show() def __str__(self): return 'sl = %s\nsr = %s\nal = %s\nar = %s\nk = %s\nkeff = %s\nzero = %s\nU = %s' % \ (self.sl.__str__(), self.sr.__str__(), self.al.__str__(), self.ar.__str__(), self.k.__str__(), self.keff.__str__(), self.zero.__str__(), self.U.__str__()) class FMMMode2d(Mode): """Two dimensional mode. It holds the coefficients that describe the mode in the FMM expansion. """ def get_x(self, n=100): return numpy.linspace(self.slicesx[0].Ux[0], self.slicesx[0].Ux[-1], n) def get_y(self, n=100): return numpy.linspace(self.slicesx[0].Uy[0], self.slicesx[0].Uy[-1], n) def eval(self, x_=None, y_=None): """Evaluate the mode at x,y.""" if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) nmodi = len(self.modie) lenx = len(x) leny = len(y) k0 = 2. * numpy.pi / self.slicesx[0].wl kz = self.keff uh = numpy.zeros((nmodi, lenx), dtype=complex) ue = numpy.zeros_like(uh) udoth = numpy.zeros_like(uh) udote = numpy.zeros_like(uh) Exsh = numpy.zeros((leny, nmodi), dtype=complex) Exah = numpy.zeros_like(Exsh) Exse = numpy.zeros_like(Exsh) Exae = numpy.zeros_like(Exsh) Eysh = numpy.zeros_like(Exsh) Eyah = numpy.zeros_like(Exsh) Eyse = numpy.zeros_like(Exsh) Eyae = numpy.zeros_like(Exsh) Ezsh = numpy.zeros_like(Exsh) Ezah = numpy.zeros_like(Exsh) Ezse = numpy.zeros_like(Exsh) Ezae = numpy.zeros_like(Exsh) cBxsh = numpy.zeros_like(Exsh) cBxah = numpy.zeros_like(Exsh) cBxse = numpy.zeros_like(Exsh) cBxae = numpy.zeros_like(Exsh) cBysh = numpy.zeros_like(Exsh) cByah = numpy.zeros_like(Exsh) cByse = numpy.zeros_like(Exsh) cByae = numpy.zeros_like(Exsh) cBzsh = numpy.zeros_like(Exsh) cBzah = numpy.zeros_like(Exsh) cBzse = numpy.zeros_like(Exsh) cBzae = numpy.zeros_like(Exsh) ExTE = numpy.zeros((leny,lenx), dtype=complex) EyTE = numpy.zeros_like(ExTE) EzTE = numpy.zeros_like(ExTE) ExTM = numpy.zeros_like(ExTE) EyTM = numpy.zeros_like(ExTE) EzTM = numpy.zeros_like(ExTE) cBxTE = numpy.zeros_like(ExTE) cByTE = numpy.zeros_like(ExTE) cBzTE = numpy.zeros_like(ExTE) cBxTM = numpy.zeros_like(ExTE) cByTM = numpy.zeros_like(ExTE) cBzTM = numpy.zeros_like(ExTE) for mx, slice in enumerate(self.slicesx): idx = numpy.where((slice.x1 <= x) & (x < slice.x2)) x2 = x[idx] - slice.x1 x1 = slice.x2 - x[idx] dx = slice.x2 - slice.x1 for n in range(nmodi): fi = slice.modih[n].eval(y) fidot = dot(slice.modih[n]).eval(y) psi = slice.modie[n].eval(y) psisueps = sueps(slice.modie[n]).eval(y) psidotsueps = sueps(dot(slice.modie[n])).eval(y) kfh = self.modih[n].k[mx] kxh = scipy.sqrt(kfh**2 - kz**2) sl = self.modih[n].sl[mx] * (k0/kfh)**2 al = self.modih[n].al[mx] sr = self.modih[n].sr[mx] * (k0/kfh)**2 ar = self.modih[n].ar[mx] uh[n,idx] = (numpy.sin(kxh * x1) * sl + numpy.sin(kxh * x2) * sr) / numpy.sin(kxh * dx) udoth[n,idx] = (numpy.sin(kxh * x1) * al + numpy.sin(kxh * x2) * ar) / numpy.sin(kxh * dx) kfe = self.modie[n].k[mx] kxe = scipy.sqrt(kfe**2 - kz**2) sl = self.modie[n].sl[mx] * (k0/kfe)**2 al = self.modie[n].al[mx] sr = self.modie[n].sr[mx] * (k0/kfe)**2 ar = self.modie[n].ar[mx] ue[n,idx] = (numpy.sin(kxe * x1) * sl + numpy.sin(kxe * x2) * sr) / numpy.sin(kxe * dx) udote[n,idx] = (numpy.sin(kxe * x1) * al + numpy.sin(kxe * x2) * ar) / numpy.sin(kxe * dx) Exsh[:,n] = (kz/k0) * fi Exah[:,n] = 0 Exse[:,n] = 0 Exae[:,n] = -psidotsueps / k0**2 Eysh[:,n] = 0 Eyah[:,n] = 0 Eyse[:,n] = -(kfe/k0)**2 * psisueps Eyae[:,n] = 0 Ezsh[:,n] = 0 Ezah[:,n] = -1j * fi / k0 Ezse[:,n] = 1j * kz / k0**2 * psidotsueps Ezae[:,n] = 0 cBxsh[:,n] = 0 cBxah[:,n] = fidot / k0**2 cBxse[:,n] = kz / k0 * psi cBxae[:,n] = 0 cBysh[:,n] = (kfh/k0)**2 * fi cByah[:,n] = 0 cByse[:,n] = 0 cByae[:,n] = 0 cBzsh[:,n] = -1j * kz / k0**2 * fidot cBzah[:,n] = 0 cBzse[:,n] = 0 cBzae[:,n] = -1j * psi / k0 ExTE[:,idx] = numpy.tensordot(Exsh, uh[:,idx], axes=1) + numpy.tensordot(Exah, udoth[:,idx], axes=1) ExTM[:,idx] = numpy.tensordot(Exse, ue[:,idx], axes=1) + numpy.tensordot(Exae, udote[:,idx], axes=1) EyTE[:,idx] = numpy.tensordot(Eysh, uh[:,idx], axes=1) + numpy.tensordot(Eyah, udoth[:,idx], axes=1) EyTM[:,idx] = numpy.tensordot(Eyse, ue[:,idx], axes=1) + numpy.tensordot(Eyae, udote[:,idx], axes=1) EzTE[:,idx] = numpy.tensordot(Ezsh, uh[:,idx], axes=1) + numpy.tensordot(Ezah, udoth[:,idx], axes=1) EzTM[:,idx] = numpy.tensordot(Ezse, ue[:,idx], axes=1) + numpy.tensordot(Ezae, udote[:,idx], axes=1) cBxTE[:,idx] = numpy.tensordot(cBxsh, uh[:,idx], axes=1) + numpy.tensordot(cBxah, udoth[:,idx], axes=1) cBxTM[:,idx] = numpy.tensordot(cBxse, ue[:,idx], axes=1) + numpy.tensordot(cBxae, udote[:,idx], axes=1) cByTE[:,idx] = numpy.tensordot(cBysh, uh[:,idx], axes=1) + numpy.tensordot(cByah, udoth[:,idx], axes=1) cByTM[:,idx] = numpy.tensordot(cByse, ue[:,idx], axes=1) + numpy.tensordot(cByae, udote[:,idx], axes=1) cBzTE[:,idx] = numpy.tensordot(cBzsh, uh[:,idx], axes=1) + numpy.tensordot(cBzah, udoth[:,idx], axes=1) cBzTM[:,idx] = numpy.tensordot(cBzse, ue[:,idx], axes=1) + numpy.tensordot(cBzae, udote[:,idx], axes=1) return (ExTE, ExTM, EyTE, EyTM, EzTE, EzTM, cBxTE, cBxTM, cByTE, cByTM, cBzTE, cBzTM) def fields(self, x=None, y=None): ExTE, ExTM, EyTE, EyTM, EzTE, EzTM, cBxTE, cBxTM, cByTE, cByTM, cBzTE, cBzTM = self.eval(x, y) Ex = ExTE + ExTM Ey = EyTE + EyTM Ez = EzTE + EzTM cBx = cBxTE + cBxTM cBy = cByTE + cByTM cBz = cBzTE + cBzTM return (Ex, Ey, Ez, cBx, cBy, cBz) def intensity(self, x=None, y=None): Ex, Ey, Ez, cBx, cBy, cBz = self.fields(x, y) cSz = .5 * (Ex * numpy.conj(cBy) - Ey * numpy.conj(cBx)) return cSz def TEfrac_old(self, x_=None, y_=None): if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) Ex, Ey, Ez, cBx, cBy, cBz, cSz = self.fields(x, y) cSTE = .5 * EMpy.utils.trapz2(Ex * numpy.conj(cBy), y, x) cSTM = .5 * EMpy.utils.trapz2(-Ey * numpy.conj(cBx), y, x) return numpy.abs(cSTE) / (numpy.abs(cSTE) + numpy.abs(cSTM)) def TEfrac(self): Sx, Sy = self.__overlap(self) return Sx / (Sx - Sy) def overlap_old(self, m, x_=None, y_=None): if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) Ex, Ey, Ez, cBx, cBy, cBz = self.fields(x, y) cSz = self.intensity(x, y) norm = scipy.sqrt(EMpy.utils.trapz2(cSz, y, x)) Ex1, Ey1, Ez1, cBx1, cBy1, cBz1 = m.fields(x, y) cSz1 = m.intensity(x, y) norm1 = scipy.sqrt(EMpy.utils.trapz2(cSz1, y, x)) return .5 * EMpy.utils.trapz2(Ex/norm * numpy.conj(cBy1/norm1) - Ey/norm * numpy.conj(cBx1/norm1), y, x) def __overlap_old(self, mode): nmodi = len(self.modie) k0 = 2. * numpy.pi / self.slicesx[0].wl kz = self.keff Sx = 0j Sy = 0j for mx, slice in enumerate(self.slicesx): for n1 in range(nmodi): phi_n1 = slice.modih[n1] phidot_n1 = dot(phi_n1) psi_n1 = slice.modie[n1] psisueps_n1 = sueps(psi_n1) psidotsueps_n1 = sueps(dot(psi_n1)) uh_n1 = copy.deepcopy(self.modih[n1]) # reduce to a single slice kfh_n1 = uh_n1.k[mx] uh_n1.k = numpy.atleast_1d(scipy.sqrt(kfh_n1**2 - kz**2)) uh_n1.sl = numpy.atleast_1d(uh_n1.sl[mx] * (k0/kfh_n1)**2) uh_n1.al = numpy.atleast_1d(uh_n1.al[mx]) uh_n1.sr = numpy.atleast_1d(uh_n1.sr[mx] * (k0/kfh_n1)**2) uh_n1.ar = numpy.atleast_1d(uh_n1.ar[mx]) uh_n1.U = numpy.atleast_1d(uh_n1.U[mx:mx+2]) uhdot_n1 = dot(uh_n1) ue_n1 = copy.deepcopy(self.modie[n1]) # reduce to a single slice kfe_n1 = ue_n1.k[mx] ue_n1.k = numpy.atleast_1d(scipy.sqrt(kfe_n1**2 - kz**2)) ue_n1.sl = numpy.atleast_1d(ue_n1.sl[mx] * (k0/kfe_n1)**2) ue_n1.al = numpy.atleast_1d(ue_n1.al[mx]) ue_n1.sr = numpy.atleast_1d(ue_n1.sr[mx] * (k0/kfe_n1)**2) ue_n1.ar = numpy.atleast_1d(ue_n1.ar[mx]) ue_n1.U = numpy.atleast_1d(ue_n1.U[mx:mx+2]) uedot_n1 = dot(ue_n1) for n2 in range(nmodi): phi_n2 = mode.slicesx[mx].modih[n2] phidot_n2 = dot(phi_n2) psi_n2 = mode.slicesx[mx].modie[n2] psisueps_n2 = sueps(psi_n2) psidotsueps_n2 = sueps(dot(psi_n2)) uh_n2 = copy.deepcopy(mode.modih[n2]) # reduce to a single slice kfh_n2 = uh_n2.k[mx] uh_n2.k = numpy.atleast_1d(scipy.sqrt(kfh_n2**2 - kz**2)) uh_n2.sl = numpy.atleast_1d(uh_n2.sl[mx] * (k0/kfh_n2)**2) uh_n2.al = numpy.atleast_1d(uh_n2.al[mx]) uh_n2.sr = numpy.atleast_1d(uh_n2.sr[mx] * (k0/kfh_n2)**2) uh_n2.ar = numpy.atleast_1d(uh_n2.ar[mx]) uh_n2.U = numpy.atleast_1d(uh_n2.U[mx:mx+2]) uhdot_n2 = dot(uh_n2) ue_n2 = copy.deepcopy(mode.modie[n2]) # reduce to a single slice kfe_n2 = ue_n2.k[mx] ue_n2.k = numpy.atleast_1d(scipy.sqrt(kfe_n2**2 - kz**2)) ue_n2.sl = numpy.atleast_1d(ue_n2.sl[mx] * (k0/kfe_n2)**2) ue_n2.al = numpy.atleast_1d(ue_n2.al[mx]) ue_n2.sr = numpy.atleast_1d(ue_n2.sr[mx] * (k0/kfe_n2)**2) ue_n2.ar = numpy.atleast_1d(ue_n2.ar[mx]) ue_n2.U = numpy.atleast_1d(ue_n2.U[mx:mx+2]) uedot_n2 = dot(ue_n2) Sx += kz * kfh_n2**2 / k0**3 * scalarprod(uh_n1, uh_n2) * scalarprod(phi_n1, phi_n2) \ - kfh_n2**2 / k0**4 * scalarprod(uedot_n1, uh_n2) * scalarprod(psidotsueps_n1, phi_n2) Sy += kfe_n1**2 * kz / k0**3 * scalarprod(ue_n1, ue_n2) * scalarprod(psisueps_n1, psi_n2) \ + kfe_n1**2 / k0**4 * scalarprod(ue_n1, uhdot_n2) * scalarprod(psisueps_n1, phidot_n2) return (Sx, Sy) def __overlap(self, mode): nmodi = len(self.modie) k0 = 2. * numpy.pi / self.slicesx[0].wl kz = self.keff Sx = 0j Sy = 0j for mx, slice in enumerate(self.slicesx): phi_n1s = [] phidot_n1s = [] psi_n1s = [] psisueps_n1s = [] psidotsueps_n1s = [] uh_n1s = [] uhdot_n1s = [] ue_n1s = [] uedot_n1s = [] kfe_n1s = [] kfh_n1s = [] phi_n2s = [] phidot_n2s = [] psi_n2s = [] psisueps_n2s = [] psidotsueps_n2s = [] uh_n2s = [] uhdot_n2s = [] ue_n2s = [] uedot_n2s = [] kfe_n2s = [] kfh_n2s = [] for n1 in range(nmodi): phi_n1 = slice.modih[n1] phi_n1s.append(phi_n1) phidot_n1s.append(dot(phi_n1)) psi_n1 = slice.modie[n1] psi_n1s.append(psi_n1) psisueps_n1s.append(sueps(psi_n1)) psidotsueps_n1s.append(sueps(dot(psi_n1))) uh_n1 = copy.deepcopy(self.modih[n1]) # reduce to a single slice kfh_n1 = uh_n1.k[mx] kfh_n1s.append(kfh_n1) uh_n1.k = numpy.atleast_1d(scipy.sqrt(kfh_n1**2 - kz**2)) uh_n1.sl = numpy.atleast_1d(uh_n1.sl[mx] * (k0/kfh_n1)**2) uh_n1.al = numpy.atleast_1d(uh_n1.al[mx]) uh_n1.sr = numpy.atleast_1d(uh_n1.sr[mx] * (k0/kfh_n1)**2) uh_n1.ar = numpy.atleast_1d(uh_n1.ar[mx]) uh_n1.U = numpy.atleast_1d(uh_n1.U[mx:mx+2]) uh_n1s.append(uh_n1) uhdot_n1s.append(dot(uh_n1)) ue_n1 = copy.deepcopy(self.modie[n1]) # reduce to a single slice kfe_n1 = ue_n1.k[mx] kfe_n1s.append(kfe_n1) ue_n1.k = numpy.atleast_1d(scipy.sqrt(kfe_n1**2 - kz**2)) ue_n1.sl = numpy.atleast_1d(ue_n1.sl[mx] * (k0/kfe_n1)**2) ue_n1.al = numpy.atleast_1d(ue_n1.al[mx]) ue_n1.sr = numpy.atleast_1d(ue_n1.sr[mx] * (k0/kfe_n1)**2) ue_n1.ar = numpy.atleast_1d(ue_n1.ar[mx]) ue_n1.U = numpy.atleast_1d(ue_n1.U[mx:mx+2]) ue_n1s.append(ue_n1) uedot_n1s.append(dot(ue_n1)) phi_n2 = mode.slicesx[mx].modih[n1] phi_n2s.append(phi_n2) phidot_n2s.append(dot(phi_n2)) psi_n2 = mode.slicesx[mx].modie[n1] psi_n2s.append(psi_n2) psisueps_n2s.append(sueps(psi_n2)) psidotsueps_n2s.append(sueps(dot(psi_n2))) uh_n2 = copy.deepcopy(mode.modih[n1]) # reduce to a single slice kfh_n2 = uh_n2.k[mx] kfh_n2s.append(kfh_n2) uh_n2.k = numpy.atleast_1d(scipy.sqrt(kfh_n2**2 - kz**2)) uh_n2.sl = numpy.atleast_1d(uh_n2.sl[mx] * (k0/kfh_n2)**2) uh_n2.al = numpy.atleast_1d(uh_n2.al[mx]) uh_n2.sr = numpy.atleast_1d(uh_n2.sr[mx] * (k0/kfh_n2)**2) uh_n2.ar = numpy.atleast_1d(uh_n2.ar[mx]) uh_n2.U = numpy.atleast_1d(uh_n2.U[mx:mx+2]) uh_n2s.append(uh_n2) uhdot_n2s.append(dot(uh_n2)) ue_n2 = copy.deepcopy(mode.modie[n1]) # reduce to a single slice kfe_n2 = ue_n2.k[mx] kfe_n2s.append(kfe_n2) ue_n2.k = numpy.atleast_1d(scipy.sqrt(kfe_n2**2 - kz**2)) ue_n2.sl = numpy.atleast_1d(ue_n2.sl[mx] * (k0/kfe_n2)**2) ue_n2.al = numpy.atleast_1d(ue_n2.al[mx]) ue_n2.sr = numpy.atleast_1d(ue_n2.sr[mx] * (k0/kfe_n2)**2) ue_n2.ar = numpy.atleast_1d(ue_n2.ar[mx]) ue_n2.U = numpy.atleast_1d(ue_n2.U[mx:mx+2]) ue_n2s.append(ue_n2) uedot_n2.append(dot(ue_n2)) for n1 in range(nmodi): uh_n1 = uh_n1s[n1] ue_n1 = ue_n1s[n1] uedot_n1 = uedot_n1s[n1] phi_n1 = phi_n1s[n1] psi_n1 = psi_n1s[n1] psidotsueps_n1 = psidotsueps_n1s[n1] psisueps_n1 = psisueps_n1s[n1] kfe_n1 = kfe_n1s[n1] for n2 in range(nmodi): uh_n2 = uh_n2s[n2] uhdot_n2 = uhdot_n2s[n2] ue_n2 = ue_n2s[n2] phi_n2 = phi_n2s[n2] phidot_n2 = phidot_n2s[n2] psi_n2 = psi_n2s[n2] kfh_n2 = kfh_n2s[n2] Sx += kz * kfh_n2**2 / k0**3 * scalarprod(uh_n1, uh_n2) * scalarprod(phi_n1, phi_n2) \ - kfh_n2**2 / k0**4 * scalarprod(uedot_n1, uh_n2) * scalarprod(psidotsueps_n1, phi_n2) Sy += kfe_n1**2 * kz / k0**3 * scalarprod(ue_n1, ue_n2) * scalarprod(psisueps_n1, psi_n2) \ + kfe_n1**2 / k0**4 * scalarprod(ue_n1, uhdot_n2) * scalarprod(psisueps_n1, phidot_n2) return (Sx, Sy) def overlap(self, mode): Sx, Sy = self.__overlap(mode) return Sx - Sy def norm(self): return scipy.sqrt(self.overlap(self)) def normalize(self): n = self.norm() for ue, uh in zip(self.modie, self.modih): ue.sl /= n ue.al /= n ue.sr /= n ue.ar /= n uh.sl /= n uh.al /= n uh.sr /= n uh.ar /= n def get_fields_for_FDTD(self, x, y): """Get mode's field on a staggered grid. Note: ignores some fields on the boudaries. """ x0 = self.get_x() y0 = self.get_y() Ex, Ey, Ez, cBx, cBy, cBz = self.fields(x0, y0) # Ex: ignores y = 0, max x_Ex_FDTD = EMpy.utils.centered1d(x) y_Ex_FDTD = y[1:-1] Ex_FDTD = EMpy.utils.interp2(x_Ex_FDTD, y_Ex_FDTD, x0, y0, Ex) # Ey: ignores x = 0, max x_Ey_FDTD = x[1:-1] y_Ey_FDTD = EMpy.utils.centered1d(y) Ey_FDTD = EMpy.utils.interp2(x_Ey_FDTD, y_Ey_FDTD, x0, y0, Ey) # Ez: ignores x, y = 0, max x_Ez_FDTD = x[1:-1] y_Ez_FDTD = y[1:-1] Ez_FDTD = EMpy.utils.interp2(x_Ez_FDTD, y_Ez_FDTD, x0, y0, Ez) # Hx: ignores x = 0, max, /120pi, reverse direction x_Hx_FDTD = x[1:-1] y_Hx_FDTD = EMpy.utils.centered1d(y) Hx_FDTD = EMpy.utils.interp2(x_Hx_FDTD, y_Hx_FDTD, x0, y0, cBx) / (-120. * numpy.pi) # OKKIO! # Hy: ignores y = 0, max, /120pi, reverse direction x_Hy_FDTD = EMpy.utils.centered1d(x) y_Hy_FDTD = y[1:-1] Hy_FDTD = EMpy.utils.interp2(x_Hy_FDTD, y_Hy_FDTD, x0, y0, Hy) / (-120. * numpy.pi) # Hz: /120pi, reverse direction x_Hz_FDTD = EMpy.utils.centered1d(x) y_Hz_FDTD = EMpy.utils.centered1d(y) Hz_FDTD = EMpy.utils.interp2(x_Hz_FDTD, y_Hz_FDTD, x0, y0, Hz) / (-120. * numpy.pi) return (Ex_FDTD, Ey_FDTD, Ez_FDTD, Hx_FDTD, Hy_FDTD, Hz_FDTD) def plot(self, x_=None, y_=None): if x_ is None: x = self.get_x() else: x = numpy.atleast_1d(x_) if y_ is None: y = self.get_y() else: y = numpy.atleast_1d(y_) f = self.fields(x, y) # fields pylab.figure() titles = ['Ex', 'Ey', 'Ez', 'cBx', 'cBy', 'cBz'] for i in range(6): subplot_id = 231 + i pylab.subplot(subplot_id) pylab.contour(x, y, numpy.abs(f[i])) pylab.xlabel('x') pylab.ylabel('y') pylab.title(titles[i]) pylab.axis('image') pylab.show() # power pylab.figure() pylab.contour(x, y, numpy.abs(f[-1])) pylab.xlabel('x') pylab.ylabel('y') pylab.title('cSz') pylab.axis('image') pylab.show() def __str__(self): return 'neff = %s' % (self.keff / (2 * numpy.pi / self.slicesx[0].wl)) class FMM(ModeSolver): pass class FMM1d(FMM): """Drive to simulate 1d structures. Examples ======== Find the first 3 TE modes of two slabs of refractive indeces 1 and 3, of thickness 1um each, for wl = 1, with symmetric boundary conditions: >>> import numpy >>> import FMM >>> Uy = numpy.array([0., 1., 2.]) >>> ny = numpy.array([1., 3.]) >>> wl = 1. >>> nmodi = 3 >>> simul = FMM.FMM1d(Uy, ny, 'SS').solve(wl, nmodi, 'TE') >>> keff_0_expected = 18.790809413149393 >>> keff_1_expected = 18.314611633384185 >>> keff_2_expected = 17.326387847565034 >>> assert(numpy.allclose(simul.modes[0].keff, keff_0_expected)) >>> assert(numpy.allclose(simul.modes[1].keff, keff_1_expected)) >>> assert(numpy.allclose(simul.modes[2].keff, keff_2_expected)) """ def __init__(self, Uy, ny, boundary): """Set coordinates of regions, refractive indeces and boundary conditions.""" self.Uy = Uy self.ny = ny self.boundary = boundary def solve(self, wl, nmodes, polarization, verbosity=0): """Find nmodes modes at a given wavelength and polarization.""" Message('Solving 1d modes.', 1).show(verbosity) self.wl = wl self.nmodes = nmodes self.polarization = polarization self.modes = FMM1d_y(self.Uy, self.ny, self.wl, self.nmodes, self.boundary, self.polarization, verbosity) return self class FMM2d(FMM): """Drive to simulate 2d structures. Examples ======== Find the first 2 modes of a lossy Si channel waveguide in SiO2, using only 3 1dmodes and with electric and magnetic bc on x and y, respectively: >>> import numpy >>> import FMM >>> wl = 1.55 >>> nmodislices = 3 >>> nmodi2d = 2 >>> Ux = numpy.array([0, 2, 2.4, 4.4]) >>> Uy = numpy.array([0, 2, 2.22, 4.22]) >>> boundary = Boundary(xleft='Electric Wall', yleft='Magnetic Wall', xright='Electric Wall', yright='Magnetic Wall') >>> n2 = 1.446 >>> n1 = 3.4757 - 1e-4j >>> refindex = numpy.array([[n2, n2, n2], [n2, n1, n2], [n2, n2, n2]]) >>> simul = FMM.FMM2d(Ux, Uy, refindex, boundary).solve(wl, nmodislices, nmodi2d) >>> keff0_expected = 9.666663697969399e+000 -4.028846755836984e-004j >>> keff1_expected = 7.210476803133368e+000 -2.605078086535284e-004j >>> assert(numpy.allclose(simul.modes[0].keff, keff0_expected)) >>> assert(numpy.allclose(simul.modes[1].keff, keff1_expected)) """ def __init__(self, Ux, Uy, rix, boundary): """Set coordinates of regions, refractive indeces and boundary conditions.""" self.Ux = Ux self.Uy = Uy self.rix = rix self.boundary = boundary def solve(self, wl, n1dmodes, nmodes, verbosity=0): """Find nmodes modes at a given wavelength using n1dmodes 1d modes in each slice.""" Message('Solving 2d modes', 1).show(verbosity) self.wl = wl self.n1dmodes = n1dmodes self.nmodes = nmodes self.slices = script1d(self.Ux, self.Uy, self.rix, self.wl, self.boundary, self.n1dmodes, verbosity) self.modes = FMM1d_x_component(self.slices, nmodes, verbosity) return self def analyticalsolution(nmodi, TETM, FMMpars): betay = FMMpars['beta'] epsilon = FMMpars['epsilon'] Uy = FMMpars['Uy'] by = FMMpars['boundary'] Nregions = len(epsilon) sl = numpy.zeros((nmodi,Nregions), dtype=complex) sr = numpy.zeros_like(sl) al = numpy.zeros_like(sl) ar = numpy.zeros_like(sl) # interval D = Uy[-1] - Uy[0] if TETM == 'TE': N = numpy.sqrt(2. / D) else: N = numpy.sqrt(2. / D * epsilon[0]) # boundary condition if by == 'AA': kn = (numpy.pi * numpy.arange(1, nmodi + 1) / D) kn = kn[:, numpy.newaxis] sl = numpy.sin(kn * (Uy[:-1] - Uy[0])) sr = numpy.sin(kn * (Uy[1:] - Uy[0])) al = numpy.cos(kn * (Uy[:-1] - Uy[0])) ar = numpy.cos(kn * (Uy[1:] - Uy[0])) sr[:, -1] = 0. sl[:, 0] = 0. elif by == 'AS': kn = (numpy.pi * (numpy.arange(0, nmodi) + .5) / D) kn = kn[:, numpy.newaxis] sl = numpy.sin(kn * (Uy[:-1] - Uy[0])) sr = numpy.sin(kn * (Uy[1:] - Uy[0])) al = numpy.cos(kn * (Uy[:-1] - Uy[0])) ar = numpy.cos(kn * (Uy[1:] - Uy[0])) ar[:, -1] = 0. sl[:, 0] = 0. elif by == 'SA': kn = (numpy.pi * (
numpy.arange(0, nmodi)
numpy.arange
from warnings import warn import numpy as np import pandas as pd import scipy.stats as stats from scipy import linalg from ..doctools import document from ..exceptions import PlotnineWarning from .stat import stat @document class stat_ellipse(stat): """ Calculate normal confidence interval ellipse {usage} Parameters ---------- {common_parameters} type : str in ['t', 'norm', 'euclid'] (default: 't') The type of ellipse. - ``'t'`` - assumes a multivariate t-distribution, and - ``'norm'`` - assumes a multivariate normal distribution. - ``'euclid'`` - draws a circle with the radius equal to `level`, representing the euclidean distance from the center. level : float, optional (default: 0.95) The confidence level at which to draw the ellipse. segments : int, optional (default: 51) Number of segments to be used in drawing the ellipse. """ REQUIRED_AES = {'x', 'y'} DEFAULT_PARAMS = {'geom': 'path', 'position': 'identity', 'na_rm': False, 'type': 't', 'level': 0.95, 'segments': 51} @classmethod def compute_group(cls, data, scales, **params): level = params['level'] segments = params['segments'] type_ = params['type'] dfn = 2 dfd = len(data) - 1 if dfd < 3: warn("Too few points to calculate an ellipse", PlotnineWarning) return pd.DataFrame({'x': [], 'y': []}) m = np.asarray(data[['x', 'y']]) # The stats used to create the ellipse if type_ == 't': res = cov_trob(m) cov = res['cov'] center = res['center'] elif type_ == 'norm': cov = np.cov(m, rowvar=False) center = np.mean(m, axis=0) elif type_ == 'euclid': cov = np.cov(m, rowvar=False) cov = np.diag(np.repeat(np.diag(cov).min(), 2)) center = np.mean(m, axis=0) # numpy's cholesky function does not gaurantee upper/lower # triangular factorization. chol_decomp = linalg.cholesky(cov, lower=False) # Parameters of the ellipse if type_ == 'euclid': radius = level / chol_decomp.max() else: radius = np.sqrt(dfn * stats.f.ppf(level, dfn, dfd)) space = np.linspace(0, 2*np.pi, segments) # Catesian coordinates unit_circle = np.column_stack([np.cos(space), np.sin(space)]) res = center + radius * np.dot(unit_circle, chol_decomp) return pd.DataFrame({'x': res[:, 0], 'y': res[:, 1]}) def cov_trob(x, wt=None, cor=False, center=True, nu=5, maxit=25, tol=0.01): """ Covariance Estimation for Multivariate t Distribution Estimates a covariance or correlation matrix assuming the data came from a multivariate t distribution: this provides some degree of robustness to outlier without giving a high breakdown point. **credit**: This function a port of the R function ``MASS::cov.trob``. Parameters ---------- x : array data matrix. Missing values (NaNs) are not allowed. wt : array A vector of weights for each case: these are treated as if the case i actually occurred ``wt[i]`` times. cor : bool Flag to choose between returning the correlation (``cor=True``) or covariance (``cor=False``) matrix. center : array or bool A logical value or a numeric vector providing the location about which the covariance is to be taken. If ``center=False``, no centering is done; if ``center=True`` the MLE of the location vector is used. nu : int 'degrees of freedom' for the multivariate t distribution. Must exceed 2 (so that the covariance matrix is finite). maxit : int Maximum number of iterations in fitting. tol : float Convergence tolerance for fitting. Returns ------- out : dict A dictionary with with the following key-value - ``cov`` : the fitted covariance matrix. - ``center`` : the estimated or specified location vector. - ``wt`` : the specified weights: only returned if the wt argument was given. - ``n_obs`` : the number of cases used in the fitting. - ``cor`` : the fitted correlation matrix: only returned if ``cor=True``. - ``call`` : The matched call. - ``iter`` : The number of iterations used. References ---------- - <NAME>, <NAME> and <NAME> (1994) A curious likelihood identity for the multivariate t-distribution. *Communications in Statistics-Simulation and Computation* **23**, 441-453. - <NAME>. and <NAME>. (1999) *Modern Applied Statistics with S-PLUS*. Third Edition. Springer. """ def test_values(x): if pd.isnull(x).any() or np.isinf(x).any(): raise ValueError("Missing or infinite values in 'x'") def scale_simp(x, center, n, p): return x - np.repeat([center], n, axis=0) x = np.asarray(x) n, p = x.shape test_values(x) # wt miss_wt = wt is None if not miss_wt: wt = np.asarray(wt) wt0 = wt if len(wt) != n: raise ValueError( "length of 'wt' must equal number of observations.") if any(wt < 0): raise ValueError("Negative weights not allowed.") if not np.sum(wt): raise ValueError("No positive weights.") x = x[wt > 0, :] wt = wt[wt > 0] n, _ = x.shape else: wt = np.ones(n) wt = wt[:, np.newaxis] # loc loc = np.sum(wt*x, axis=0) / wt.sum() try: _len = len(center) except TypeError: if isinstance(center, bool) and not center: loc = np.zeros(p) else: if _len != p: raise ValueError("'center' is not the right length") loc = p use_loc = isinstance(center, bool) and center w = wt * (1 + p/nu) for iteration in range(maxit): w0 = w X = scale_simp(x, loc, n, p) _, s, v = linalg.svd(np.sqrt(w/np.sum(w)) * X) # wX = X @ v.T @ np.diag(np.full(p, 1/s)) wX = np.dot(np.dot(X, v.T), np.diag(np.full(p, 1/s))) # Q = np.squeeze((wX**2) @ np.ones(p)) Q = np.squeeze(np.dot(wX**2, np.ones(p))) w = (wt * (nu + p)) / (nu + Q)[:, np.newaxis] if use_loc: loc = np.sum(w*x, axis=0) / w.sum() if all(
np.abs(w-w0)
numpy.abs
#!/usr/bin/python # -*- coding: utf-8 -*- from ddf_library.context import COMPSsContext import pandas as pd import numpy as np def binarizer(cc): print("\n_____Testing Binarizer_____\n") columns = ['x', 'y', 'z'] df = pd.DataFrame([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]], columns=columns) ddf = cc.parallelize(df, 4) from ddf_library.functions.ml.feature import Binarizer res = Binarizer(threshold=0)\ .transform(ddf, output_col=columns, input_col=columns, remove=True).to_df().values.tolist() sol = [[1., 0., 1.], [1., 0., 0.], [0., 1., 0.]] if not np.allclose(res, sol): raise Exception(" Output different from expected.") print("Ok") def maxabs_scaler(cc): print("_____Testing MaxAbsScaler _____") cols = ['x', 'y', 'z'] df_maxabs = pd.DataFrame([[1., -1., 2.], [2., 0., 0.], [0., 1., -1.]], columns=cols) # Creating DDF from DataFrame ddf_maxabs = cc.parallelize(df_maxabs, 4) from ddf_library.functions.ml.feature import MaxAbsScaler ddf_maxabs = MaxAbsScaler() \ .fit_transform(ddf_maxabs, input_col=cols) res = ddf_maxabs.to_df(cols).values.tolist() sol = [[0.5, -1., 1], [1., 0., 0.], [0., 1., -0.5]] if not np.allclose(res, sol): raise Exception(" Output different from expected.") print("Ok") def minmax_scaler(cc): print("_____Testing MinMaxScaler _____") cols = ['x', 'y'] df_minmax = pd.DataFrame([[-1, 2], [-0.5, 6], [0, 10], [1, 18]], columns=cols) ddf_minmax = cc.parallelize(df_minmax, 4) from ddf_library.functions.ml.feature import MinMaxScaler ddf_minmax = MinMaxScaler()\ .fit_transform(ddf_minmax, input_col=cols) res = ddf_minmax.to_df(cols).values.tolist() sol = [[0., 0.], [0.25, 0.25], [0.5, 0.5], [1., 1.]] if not np.allclose(res, sol): raise Exception(" Output different from expected.") print("Ok") def std_scaler(cc): print("_____Testing StandardScaler _____") cols = ['x', 'y'] df_std = pd.DataFrame([[0, 0], [0, 0], [1, 1], [1, 1]], columns=cols) ddf_std = cc.parallelize(df_std, 4) from ddf_library.functions.ml.feature import StandardScaler scaler = StandardScaler(with_mean=True, with_std=True).fit(ddf_std, input_col=cols) ddf_std = scaler.transform(ddf_std) res = ddf_std.to_df(cols).values.tolist() sol = [[-1., -1.], [-1., -1.], [1., 1.], [1., 1.]] if not np.allclose(res, sol): raise Exception(" Output different from expected.") print("Ok") def pca_workflow(cc): print("\n_____Testing PCA_____\n") df = pd.read_csv('./datasets/iris-dataset.csv', sep=',') df.dropna(how="all", inplace=True) columns = df.columns.tolist() columns.remove('class') ddf = cc.parallelize(df, 4) from ddf_library.functions.ml.feature import StandardScaler ddf_std = StandardScaler().fit_transform(ddf, input_col=columns) n_components = 2 new_columns = ['col{}'.format(i) for i in range(n_components)] from ddf_library.functions.ml.feature import PCA pca = PCA(n_components=n_components) res = pca.fit_transform(ddf_std, input_col=columns, output_col=new_columns)\ .to_df(new_columns).values.tolist()[0:10] sol = [[-2.26454173, -0.505703903], [-2.08642550, 0.655404729], [-2.36795045, 0.318477311], [-2.30419716, 0.575367713], [-2.38877749, -0.674767397], [-2.07053681, -1.51854856], [-2.44571134, -0.0745626750], [-2.23384186, -0.247613932], [-2.34195768, 1.09514636], [-2.18867576, 0.448629048]] sol_values = [2.93035378, 0.92740362, 0.14834223, 0.02074601] cond1 = np.allclose(res, sol) cond2 =
np.allclose(pca.model['eig_values'], sol_values)
numpy.allclose
""" Bayesian Mixture Model. Copyright (C) 2017, <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np from scipy.special import logsumexp from .model import EFDStats, DiscreteLatentModel from ..densities import Dirichlet, NormalGamma, NormalDiag class Mixture(DiscreteLatentModel): """Bayesian Mixture Model. Bayesian Mixture Model with a Dirichlet prior over the weights. """ def create(n_comp, mean, var): """Create and initialize a Bayesian Mixture Model. Parameters ---------- n_comp : int Number of components in the mixture. mean : numpy.ndarray Mean of the data set to train on. var : numpy.ndarray Variance of the data set to train on. Returns ------- model : :class:`Mixture` A new mixture model. """ priors = [] prior_mean = mean.copy() prior_var = var.copy() for i in range(n_comp): prior = NormalGamma( prior_mean, np.ones_like(mean), np.ones_like(var), prior_var, ) priors.append(prior) dirichlet_prior = Dirichlet(np.ones(n_comp)) dirichlet_posterior = Dirichlet(np.ones(n_comp)) components = [] cov = np.diag(prior_var) for i in range(n_comp): s_mean =
np.random.multivariate_normal(mean, cov)
numpy.random.multivariate_normal
import numpy as np def randomizePostions(postions,cell,random_seed=None): if random_seed is not None: np.random.seed(random_seed) for i in range(postions.shape[0]): postions[i][0] = np.random.uniform(0,cell[0]) postions[i][1] = np.random.uniform(0,cell[1]) postions[i][2] = np.random.uniform(0,cell[2]) #------------------------------- def randomDisplacement(postions,max_displacement,particle_index,random_seed=None): indexes = [particle_index] if random_seed is not None: np.random.seed(random_seed) for k in indexes: postions[k][0] += max_displacement * np.random.uniform(-1,1) postions[k][1] += max_displacement * np.random.uniform(-1,1) postions[k][2] += max_displacement * np.random.uniform(-1,1) #------------------------------- def writePostionsToFileXYZ(filename,postions,particle_names,cell=None,append=True): num_particles = postions.shape[0] if len(particle_names)==1: particle_names = particle_names*num_particles if append: f = open(filename,'a') else: f = open(filename,'w') f.write(" {0}\n\n".format(num_particles)) for i in range(num_particles): a = particle_names[i] p = postions[i] if cell is not None: p = p - np.floor(p/cell) * cell out_str = " {0} {1:20.9f} {2:20.9f} {3:20.9f}\n".format(a,p[0],p[1],p[2]) f.write(out_str) f.close() #------------------------------- def writePostionsToFileGro(filename,postions,particle_names,header,cell=None,append=True): num_particles = postions.shape[0] if len(particle_names)==1: particle_names = particle_names*num_particles if append: f = open(filename,'a') else: f = open(filename,'w') f.write(" {0}\n".format(header)) f.write(" {0}\n".format(num_particles)) for i in range(num_particles): rstr = "SOL" a = particle_names[i] p = postions[i] if cell is not None: p = p - np.floor(p/cell) * cell out_str = "{0:5d}{1:5s}{2:5s}{3:5d}{4:8.3f}{5:8.3f}{6:8.3f}\n".format(i,rstr,a,i,p[0],p[1],p[2]) f.write(out_str) if cell is not None: out_str = "{0:10.5f}{1:10.5f}{2:10.5f}\n".format(cell[0],cell[1],cell[2]) f.write(out_str) f.close() #------------------------------- def readPostionsFromFileGro(filename): f = open(filename,'r') rawdata = f.readlines() f.close() # num_particles = int(rawdata[1]) # cell_str = rawdata[-1] cell = [] cell.append(float(cell_str[0:10])) cell.append(float(cell_str[10:20])) cell.append(float(cell_str[20:30])) cell =
np.array(cell)
numpy.array
import os import copy from tqdm import tqdm import numpy as np import pandas as pd import plotly.graph_objects as go from stl import mesh from typing import Dict, List, Optional from .settings_pyskindose import PhantomDimensions from pyskindose.plotting.create_ploty_ijk_indices import \ _create_plotly_ijk_indices_for_cuboid_objects # valid phantom types VALID_PHANTOM_MODELS = ["plane", "cylinder", "human", "table", "pad"] class Phantom: """Create and handle phantoms for patient, support table and pad. This class creates a phatom of any of the types specified in VALID_PHANTOM_MODELS (plane, cylinder or human to represent the patient, as well as patient support table and pad). The patient phantoms consists of a number of skin cells where the skin dose can be calculated. Attributes ---------- phantom_model : str Type of phantom, i.e. "plane", "cylinder", "human", "table" or "pad" r : np.array n*3 array where n are the number of phantom skin cells. Each row contains the xyz coordinate of one of the phantom skin cells ijk : np.array A matrix containing vertex indices. This is required in order to plot the phantom using plotly Mesh3D. For more info, see "i", "j", and "k" at https://plot.ly/python/reference/#mesh3d dose : np.array An empty 1d array to store skin dose calculation for each of the n phantom cells. Only for patient phantom types (plane, cylinder, human) n : np.array normal vectors to each of the n phantom skin cells. (only for 3D patient phantoms, i.e. "cylinder" and "human") r_ref : np.array Empty array to store of reference position of the phantom cells after the phantom has been aligned in the geometry with the position_patient_phantom_on_table function in geom_calc.py table_length : float length of patient support table. The is needed for all phantom object to select correct rotation origin for At1, At2, and At3. Methods ------- rotate(rotation) Rotating the phantom about any of the x, y, or z axis translate(dr) Translates the phantom along the x, y or z direction save_position Saves the reference position after the phantom has been properly positioned in the irradiation geometry. This method is called in the position_patient_phantom_on_table function position(data_norm) Positions the phantom from reference position to actual position according to the table displacement info in data_norm """ def __init__(self, phantom_model: str, phantom_dim: PhantomDimensions, human_mesh: Optional[str] = None): """Create the phantom of choice. Parameters ---------- phantom_model : str Type of phantom to create. Valid selections are 'plane', 'cylinder', 'human', "table" an "pad". phantom_dim : PhantomDimensions instance of class PhantomDimensions containing dimensions for all phantoms models except human phantoms: Length, width, radius, thickness etc. human_mesh : str, optional Choose which human mesh phantom to use. Valid selection are names of the *.stl-files in the phantom_data folder (The default is none. Raises ------ ValueError Raises value error if unsupported phantom type are selected, or if phantom_model='human' selected, without specifying human_mesh """ self.phantom_model = phantom_model.lower() # Raise error if invalid phantom model selected if self.phantom_model not in VALID_PHANTOM_MODELS: raise ValueError(f"Unknown phantom model selected. Valid type:" f"{'.'.join(VALID_PHANTOM_MODELS)}") self.r_ref: np.array # Save table length for all phantom in order to choose correct rotation # origin when applying At1, At2, and At3 self.table_length = phantom_dim.table_length # creates a plane phantom (2D grid) if phantom_model == "plane": # Use a dense grid if specified by user if phantom_dim.plane_resolution.lower() == 'dense': res_length = res_width = 2.0 elif phantom_dim.plane_resolution.lower() == 'sparse': res_length = res_width = 1.0 # Linearly spaced points along the longitudinal direction x = np.linspace(-phantom_dim.plane_width / 2, +phantom_dim.plane_width / 2, int(res_width * phantom_dim.plane_width + 1)) # Linearly spaced points along the lateral direction z = np.linspace(0, -phantom_dim.plane_length, int(res_length * phantom_dim.plane_length)) # Create phantom in form of rectangular grid x_plane, z_plane = np.meshgrid(x, z) t = phantom_dim.plane_width # Create index vectors for plotly mesh3d plotting i2: List[int] = [] i1 = j1 = k1 = i2 for i in range(len(x) - 1): for j in range(len(z) - 1): i1 = i1 + [j * len(x) + i] j1 = j1 + [j * len(x) + i + 1] k1 = k1 + [j * len(x) + i + len(x)] i2 = i2 + [j * len(x) + i + len(x) + 1] self.r = np.column_stack((x_plane.ravel(), np.zeros(len(x_plane.ravel())), z_plane.ravel())) self.ijk = np.column_stack((i1 + i2, j1 + k1, k1 + j1)) self.dose = np.zeros(len(self.r)) # creates a cylinder phantom (elliptic) elif phantom_model == "cylinder": # Use a dense grid if specified by user if phantom_dim.cylinder_resolution.lower() == 'dense': res_length = 4 res_width = 0.05 elif phantom_dim.cylinder_resolution.lower() == 'sparse': res_length = 1.0 res_width = 0.1 # Creates linearly spaced points along an ellipse # in the lateral direction t = np.arange(0 * np.pi, 2 * np.pi, res_width) x = (phantom_dim.cylinder_radii_a * np.cos(t)).tolist() y = (phantom_dim.cylinder_radii_b * np.sin(t)).tolist() # calculate normal vectors of a cylinder (pointing outwards) nx = np.cos(t) / ( np.sqrt(np.square(np.cos(t) + 4 * np.square(
np.sin(t)
numpy.sin
from __future__ import print_function import gc, os, sys import numpy as np import scipy as sp import numpy.linalg as la import scipy.linalg as sla from numpy.linalg import norm from time import time from copy import deepcopy from warnings import warn from time import time from Kuru.FiniteElements.Assembly import Assemble #, AssembleExplicit from Kuru.FiniteElements.LocalAssembly.KinematicMeasures import * from Kuru.FiniteElements.LocalAssembly._KinematicMeasures_ import _KinematicMeasures_ from Kuru import Mesh from Kuru import FunctionSpace, QuadratureRule __all__ = ["GrowthRemodelingIntegrator"] class GrowthRemodelingIntegrator(object): """Base class for structural time integerators """ def __init__(self, gain, turnover, density_turnover="self", not_degradation=True, degradation_at_line=False, degradation_at_point=False, degradation_point=None, aging_only=False, monitoring_node=0, damage_spread_space=None, damage_spread_time=None, damage_axis=0, has_dissection=False, dissection_time_threshold = None, maximum_dissection_spread = None, dissection_pressure = None ): self.HomeostaticStress = None self.gain = gain self.turnover = turnover self.density_turnover = density_turnover self.degradation_at_line = degradation_at_line self.degradation_at_point = degradation_at_point self.degradation_point = degradation_point self.aging_only = aging_only self.not_degradation = not_degradation self.monitoring_node = monitoring_node if degradation_at_point or aging_only or degradation_at_line: self.not_degradation = False if degradation_point is None and degradation_at_point: self.degradation_point = [0.,0.,0.] self.damage_spread_space = damage_spread_space self.damage_spread_time = damage_spread_time self.damage_axis = damage_axis self.has_dissection = has_dissection self.dissection_time_threshold = dissection_time_threshold self.maximum_dissection_spread = maximum_dissection_spread self.dissection_pressure = dissection_pressure def HomeostaticDistortion(self, fem_solver, formulation, TotalDisp, Increment): """ check the distortion of homeostasis""" dmesh = Mesh() dmesh.points = TotalDisp[:,:formulation.ndim,Increment] dmesh_bounds = dmesh.Bounds distortion = 100.0*np.sqrt(dmesh_bounds[1,0]**2+dmesh_bounds[1,1]**2+\ dmesh_bounds[1,2]**2)/0.010 if distortion<5.0: print("The Distortion in Homeostasis is: {}".format(distortion)) else: print("The Distortion in Homeostasis is: {}".format(distortion)) sys.exit("Growth and Remodeling solver stop, distortion in Homeostasis is to big") def LogSave(self, fem_solver, formulation, TotalDisp, Increment, materials, FibreStress, gr_materials): if fem_solver.print_incremental_log: # find the set of the node under surveillance imat = -1 for i in range(gr_materials.shape[0]): if self.monitoring_node in materials[gr_materials[i]].node_set: imat = gr_materials[i] imat0 = i inode = np.where(materials[imat].node_set==self.monitoring_node)[0][0] break if imat is -1: print("Set of the node is not recognized. I will use material 0 and its node 0.") imat = gr_materials[0] imat0 = 0 inode = 0 dmesh = Mesh() dmesh.points = TotalDisp[:,:formulation.ndim,Increment] dmesh_bounds = dmesh.Bounds print("\nMinimum and maximum incremental solution values at increment {} are \n".\ format(Increment),dmesh_bounds) print("\nGrowth and Remodeling properties at node, {}".format(self.monitoring_node)) print("Densities: {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}".\ format(materials[imat].state_variables[inode,14],materials[imat].state_variables[inode,15],\ materials[imat].state_variables[inode,16],materials[imat].state_variables[inode,17],\ materials[imat].state_variables[inode,18],materials[imat].state_variables[inode,19])) print("Remodeling: {:6.3f}, {:6.3f}, {:6.3f}, {:6.3f}, {:6.3f}".\ format(materials[imat].state_variables[inode,9],materials[imat].state_variables[inode,10],\ materials[imat].state_variables[inode,11],materials[imat].state_variables[inode,12],\ materials[imat].state_variables[inode,13])) print("Growth: {:6.3f}".format(materials[imat].state_variables[inode,20])) print("FibreStress: {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}".\ format(FibreStress[imat0][inode,0],FibreStress[imat0][inode,1],FibreStress[imat0][inode,2],\ FibreStress[imat0][inode,3],FibreStress[imat0][inode,4])) # SAVE INCREMENTAL SOLUTION IF ASKED FOR if fem_solver.save_incremental_solution: # FOR BIG MESHES if Increment % fem_solver.incremental_solution_save_frequency !=0: return from scipy.io import savemat filename = fem_solver.incremental_solution_filename if filename is not None: if ".mat" in filename: filename = filename.split(".")[0] savemat(filename+"_"+str(Increment), {'solution':TotalDisp[:,:,Increment]},do_compression=True) else: raise ValueError("No file name provided to save incremental solution") def NewtonRaphson(self, function_spaces, formulation, solver, Increment, K, NodalForces, Residual, mesh, Eulerx, materials, boundary_condition, AppliedDirichletInc, fem_solver): Tolerance = fem_solver.newton_raphson_tolerance LoadIncrement = fem_solver.number_of_load_increments Iter = 0 fem_solver.iterative_norm_history = [] # APPLY INCREMENTAL DIRICHLET PER LOAD STEP (THIS IS INCREMENTAL NOT ACCUMULATIVE) IncDirichlet = boundary_condition.UpdateFixDoFs(AppliedDirichletInc, K.shape[0],formulation.nvar) # UPDATE EULERIAN COORDINATE Eulerx += IncDirichlet[:,:formulation.ndim] while fem_solver.norm_residual > Tolerance or Iter==0: # GET THE REDUCED SYSTEM OF EQUATIONS K_b, F_b = boundary_condition.GetReducedMatrices(K,Residual)[:2] # SOLVE THE SYSTEM sol = solver.Solve(K_b,-F_b) # GET ITERATIVE SOLUTION dU = boundary_condition.UpdateFreeDoFs(sol,K.shape[0],formulation.nvar) # UPDATE THE EULERIAN COMPONENTS # UPDATE THE GEOMETRY Eulerx += dU[:,:formulation.ndim] # RE-ASSEMBLE - COMPUTE STIFFNESS AND INTERNAL TRACTION FORCES K, TractionForces = Assemble(fem_solver, function_spaces, formulation, mesh, materials, boundary_condition, Eulerx)[:2] # COMPUTE ROBIN STIFFNESS AND FORCES (EXTERNAL) K, TractionForces = boundary_condition.ComputeRobinForces(mesh, materials, function_spaces, fem_solver, Eulerx, K, TractionForces) # FIND THE RESIDUAL Residual[boundary_condition.columns_in] = TractionForces[boundary_condition.columns_in] - \ NodalForces[boundary_condition.columns_in] # SAVE THE NORM fem_solver.abs_norm_residual = la.norm(Residual[boundary_condition.columns_in]) if Iter==0: fem_solver.NormForces = la.norm(Residual[boundary_condition.columns_in]) fem_solver.norm_residual = np.abs(la.norm(Residual[boundary_condition.columns_in])/fem_solver.NormForces) # SAVE THE NORM fem_solver.NRConvergence['Increment_'+str(Increment)] = np.append(fem_solver.NRConvergence[\ 'Increment_'+str(Increment)],fem_solver.norm_residual) print("Iteration {} for increment {}.".format(Iter, Increment) +\ " Residual (abs) {0:>16.7g}".format(fem_solver.abs_norm_residual), "\t Residual (rel) {0:>16.7g}".format(fem_solver.norm_residual)) # BREAK BASED ON RELATIVE NORM if np.abs(fem_solver.abs_norm_residual) < Tolerance: break # BREAK BASED ON INCREMENTAL SOLUTION - KEEP IT AFTER UPDATE if norm(dU) <= fem_solver.newton_raphson_solution_tolerance and Iter!=0: print("Incremental solution within tolerance i.e. norm(dU): {}".format(norm(dU))) break # UPDATE ITERATION NUMBER Iter +=1 if Iter==fem_solver.maximum_iteration_for_newton_raphson: fem_solver.newton_raphson_failed_to_converge = True break if np.isnan(fem_solver.norm_residual) or fem_solver.norm_residual>1e06: fem_solver.newton_raphson_failed_to_converge = True break # IF BREAK WHEN NEWTON RAPHSON STAGNATES IS ACTIVATED if fem_solver.break_at_stagnation: fem_solver.iterative_norm_history.append(fem_solver.norm_residual) if Iter >= 5: if np.mean(fem_solver.iterative_norm_history) < 1.: break # USER DEFINED CRITERIA TO BREAK OUT OF NEWTON-RAPHSON if fem_solver.user_defined_break_func != None: if fem_solver.user_defined_break_func(Increment,Iter,fem_solver.norm_residual,fem_solver.abs_norm_residual, Tolerance): break # USER DEFINED CRITERIA TO STOP NEWTON-RAPHSON AND THE WHOLE ANALYSIS if fem_solver.user_defined_stop_func != None: if fem_solver.user_defined_stop_func(Increment,Iter,fem_solver.norm_residual,fem_solver.abs_norm_residual, Tolerance): fem_solver.newton_raphson_failed_to_converge = True break return Eulerx, K, Residual def GetFibreStressAndSoftness(self, mesh, formulation, material, fem_solver, Eulerx, average_derived_quantities=True): """ steps: [list,np.1darray] for which time steps/increments the data should be recovered """ det = np.linalg.det inv = np.linalg.inv # GET THE UNDERLYING LINEAR MESH # lmesh = mesh.GetLinearMesh() C = mesh.InferPolynomialDegree() - 1 ndim = mesh.InferSpatialDimension() nelem = mesh.elements.shape[0]; npoint = mesh.points.shape[0] nodeperelem = mesh.elements.shape[1] # GET QUADRATURE norder = 2*C if norder == 0: norder=1 # quadrature = QuadratureRule(qtype="gauss", norder=norder, mesh_type=mesh.element_type, optimal=3) # Domain = FunctionSpace(mesh, quadrature, p=C+1) Domain = FunctionSpace(mesh, p=C+1, evaluate_at_nodes=True) Jm = Domain.Jm AllGauss = Domain.AllGauss Bases = Domain.Bases # requires_geometry_update = fem_solver.requires_geometry_update requires_geometry_update = True # ALWAYS TRUE FOR THIS ROUTINE F = np.zeros((material.element_set.shape[0],nodeperelem,ndim,ndim)) # DEFINE CONSTITUENT STRESSES FOR GROWTH-REMODELING PROBLEM ElemFibreStress = np.zeros((material.element_set.shape[0],nodeperelem,5)) # 5-fibres ElemSoftness = np.zeros((material.element_set.shape[0],nodeperelem,5)) # 5-fibres FibreStress = np.zeros((material.node_set.shape[0],5)) Softness = np.zeros((material.node_set.shape[0],5)) # LOOP OVER ELEMENTS for ielem in range(material.element_set.shape[0]): elem = material.element_set[ielem] # GET THE FIELDS AT THE ELEMENT LEVEL LagrangeElemCoords = mesh.points[mesh.elements[elem,:],:] EulerElemCoords = Eulerx[mesh.elements[elem,:],:] # GROWTH-REMODELING VALUES FOR THIS ELEMENT material.MappingStateVariables(mesh,Domain,elem) if material.has_low_level_dispatcher: # GET LOCAL KINEMATICS SpatialGradient, F[ielem,:,:,:], detJ, dV = _KinematicMeasures_(Jm, AllGauss[:,0], LagrangeElemCoords, EulerElemCoords, requires_geometry_update) # PARAMETERS FOR INCOMPRESSIBILITY (MEAN DILATATION METHOD HU-WASHIZU) if material.is_incompressible: MaterialVolume = np.sum(dV) if fem_solver.has_growth_remodeling: dve = np.true_divide(detJ,material.StateVariables[:,20]) CurrentVolume = np.sum(dve) else: CurrentVolume = np.sum(detJ) material.pressure = material.kappa*(CurrentVolume-MaterialVolume)/MaterialVolume # COMPUTE FIBRE STRESS AND SOFTNESS ElemFibreStress[ielem,:,:],ElemSoftness[ielem,:,:] = material._ConstituentMeasures_(F[ielem,:,:,:],elem) else: # GAUSS LOOP IN VECTORISED FORM ParentGradientX = np.einsum('ijk,jl->kil', Jm, LagrangeElemCoords) # MATERIAL GRADIENT TENSOR IN PHYSICAL ELEMENT [\nabla_0 (N)] MaterialGradient = np.einsum('ijk,kli->ijl', inv(ParentGradientX), Jm) # DEFORMATION GRADIENT TENSOR [\vec{x} \otimes \nabla_0 (N)] F[ielem,:,:,:] = np.einsum('ij,kli->kjl', EulerElemCoords, MaterialGradient) # COMPUTE REMAINING KINEMATIC MEASURES StrainTensors = KinematicMeasures(F[ielem,:,:,:], fem_solver.analysis_nature) # GEOMETRY UPDATE IS A MUST # MAPPING TENSOR [\partial\vec{X}/ \partial\vec{\varepsilon} (ndim x ndim)] ParentGradientx = np.einsum('ijk,jl->kil',Jm,EulerElemCoords) # SPATIAL GRADIENT TENSOR IN PHYSICAL ELEMENT [\nabla (N)] SpatialGradient = np.einsum('ijk,kli->ilj',inv(ParentGradientx),Jm) # COMPUTE ONCE detJ (GOOD SPEEDUP COMPARED TO COMPUTING TWICE) detJ = np.einsum('i,i,i->i',AllGauss[:,0],np.abs(det(ParentGradientX)), np.abs(StrainTensors['J'])) # COMPUTE PARAMETERS FOR MEAN DILATATION METHOD, IT NEEDS TO BE BEFORE COMPUTE HESSIAN AND STRESS if material.is_incompressible: dV = np.einsum('i,i->i',AllGauss[:,0],np.abs(det(ParentGradientX))) MaterialVolume = np.sum(dV) if fem_solver.has_growth_remodeling: dve = np.true_divide(detJ,material.StateVariables[:,20]) CurrentVolume = np.sum(dve) else: CurrentVolume =
np.sum(detJ)
numpy.sum
#! /usr/bin/env python import os import pdb import time import yaml import json import random import shutil import argparse import numpy as np from collections import defaultdict # torch import torch import torch.nn as nn import torch.nn.functional as F from utils import AverageMeter from solvers import Solver __all__ = ['BaselineSolver'] def euclidean_dist(x, y): x = torch.from_numpy(x).cuda() y = torch.from_numpy(y).cuda() dist = torch.sum(x ** 2, 1).unsqueeze(1) + torch.sum(y ** 2, 1).unsqueeze( 1).transpose(0, 1) - 2 * torch.matmul(x, y.transpose(0, 1)) dist = torch.sqrt(F.relu(dist)) return dist def cosine_dist(x, y): x = torch.from_numpy(x).cuda() y = torch.from_numpy(y).cuda() return 1 - F.cosine_similarity(x[:, None, :], y[None, :, :], 2) # Exclude identical-view cases def de_diag(acc, each_angle=False): view_num = acc.shape[0] result = np.sum(acc - np.diag(np.diag(acc)), 1) / (view_num - 1) if not each_angle: result = np.mean(result) return result class BaselineSolver(Solver): def train(self): self.build_data() self.build_model() self.build_optimizer() self.build_loss() start_time = time.time() self.iter = 0 # Print out configurations self.print_log('{} samples in train set'.format( len(self.trainloader.dataset))) self.print_log('{} samples in test set'.format( len(self.testloader.dataset))) if self.cfg.print_model: self.print_log('Architecture:\n{}'.format(self.model)) num_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad) self.print_log('Parameters: {}'.format(num_params)) self.print_log('Configurations:\n{}\n'.format( json.dumps(vars(self.cfg), indent=4))) # Load from previous checkpoints self.load() self.best_acc, self.best_iter = [0], -1 meters = defaultdict(lambda: AverageMeter()) end = time.time() for seq, view, seq_type, label in self.trainloader: self.model.train() meters['dataTime'].update(time.time() - end) end = time.time() lr = self.lr_scheduler.step(self.iter) self.iter += 1 seq, label = seq.float().cuda(), label.long().cuda() feature = self.model(seq) loss, loss_num = self.loss(feature, label) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # record loss meters['modelTime'].update(time.time() - end) meters['loss'].update(loss) meters['lossNum'].update(loss_num) # show log info if self.iter % self.cfg.log_interval == 0: self.print_log('Iter: {}/{}'.format(self.iter, self.cfg.num_iter) + ' - Data: {:.0f}s'.format(meters['dataTime'].sum) + ' - Model: {:.0f}s'.format(meters['modelTime'].sum) + ' - Lr: {:.2e}'.format(lr) + ' - Loss: {:.2f}'.format(meters['loss'].avg) + ' - Num: {:.2e}'.format(meters['lossNum'].avg)) for i in ['loss', 'lossNum']: self.writer.add_scalar('train/{}'.format(i), meters[i].avg, self.iter) for m in meters.values(): m.reset() # save checkpoints self.save() # test if self.iter % self.cfg.test_interval == 0: acc = self._test() self.collect(acc) # show distributions of weights and grads self.show_info() # End if self.iter == self.cfg.num_iter: self.print_log('\nBest Acc: {}'.format(self.best_acc) + '\nIter: {}'.format(self.best_iter) + '\nDir: {}'.format(self.work_dir) + '\nTime: {}'.format( self._convert_time(time.time() - start_time))) return end = time.time() def show_info(self, with_weight=True, with_grad=True): if with_weight: for name, param in self.model.named_parameters(): w = param.data.cpu().numpy() self.writer.add_histogram('weight_info/{}'.format(name), w, self.iter) if with_grad: for name, param in self.model.named_parameters(): if param.grad is not None: w = param.grad.cpu().numpy() self.writer.add_histogram('grad_info/{}'.format(name), w, self.iter) def collect(self, acc): acc_avg = sum(acc) / len(acc) best_avg = sum(self.best_acc) / len(self.best_acc) if acc_avg > best_avg: self.best_acc = acc self.best_iter = self.iter # save the best path = os.path.join(self.work_dir, self.cfg.save_name+'.pth.tar') return self.save_checkpoint(path) def test(self): self.build_data() self.build_model() if self.cfg.pretrained is None: raise ValueError('Please appoint --pretrained.') self.iter = self.load_checkpoint(self.cfg.pretrained, optim=False) return self._test() def _test(self): self.model.eval() feature_list = list() view_list = list() seq_type_list = list() label_list = list() for i, x in enumerate(self.testloader): seq, view, seq_type, label = x seq = seq.float().cuda() feature = self.model(seq) n = feature.size(0) feature_list.append(feature.view(n, -1).data.cpu().numpy()) view_list += view seq_type_list += seq_type label_list.append(label.item()) acc = self._compute_accuracy(feature_list, view_list, seq_type_list, label_list) if len(acc) > 1: self.writer.add_scalar('test/accNM', acc[0], self.iter) self.writer.add_scalar('test/accBG', acc[1], self.iter) self.writer.add_scalar('test/accCL', acc[2], self.iter) else: self.writer.add_scalar('test/acc', acc[0], self.iter) return acc def _compute_accuracy(self, feature, view, seq_type, label, metric='euclidean'): _metrics = {'euclidean': euclidean_dist, 'cosine': cosine_dist} dist_metric = _metrics[metric] feature = np.concatenate(feature, 0) label = np.array(label) view_list = list(set(view)) view_list.sort() view_num = len(view_list) sample_num = len(feature) probe_seq_dict = {'CASIA': [['nm-05', 'nm-06'], ['bg-01', 'bg-02'], ['cl-01', 'cl-02']], 'OUMVLP': [['00']]} gallery_seq_dict = {'CASIA': [['nm-01', 'nm-02', 'nm-03', 'nm-04']], 'OUMVLP': [['01']]} num_rank = 5 dataset = 'CASIA' if 'CASIA' in self.cfg.dataset else 'OUMVLP' acc = np.zeros([len(probe_seq_dict[dataset]), view_num, view_num, num_rank]) for (p, probe_seq) in enumerate(probe_seq_dict[dataset]): for gallery_seq in gallery_seq_dict[dataset]: for (v1, probe_view) in enumerate(view_list): for (v2, gallery_view) in enumerate(view_list): gseq_mask =
np.isin(seq_type, gallery_seq)
numpy.isin
import numpy as np from pyNastran.femutils.utils import unique2d from pyNastran.dev.bdf_vectorized.utils import slice_to_iter from pyNastran.dev.bdf_vectorized.cards.elements.solid.ctetra4 import volume4 from pyNastran.dev.bdf_vectorized.cards.elements.solid.chexa8 import quad_area_centroid from pyNastran.dev.bdf_vectorized.cards.elements.solid.cpenta6 import tri_area_centroid from pyNastran.dev.bdf_vectorized.cards.elements.shell.cquad4 import _cquad4_normal_A from pyNastran.dev.bdf_vectorized.cards.elements.shell.ctria3 import _ctria3_normal_A from pyNastran.dev.bdf_vectorized.cards.elements.utils import build_groups, asarray from pyNastran.dev.bdf_vectorized.cards.vectorized_card import BaseMethods class Elements(BaseMethods): def __init__(self, model): """ Defines the Elements object. Parameters ---------- model : BDF the BDF object """ self.model = model self.n = 0 self.nelements = 0 self.nproperties = 0 self.element_ids = None self.property_ids = None self.element_groups = None self.property_groups = None #: stores PSHELL, PCOMP, PCOMPG self.properties_shell = model.properties_shell #: stores CTRIA3, CTRIA6, CQUAD4, CQUAD8 self.elements_shell = model.elements_shell # shear #: stores CSHEAR self.cshear = model.cshear #: stores PSHEAR self.pshear = model.pshear # rigid #self.rbe2 = model.rbe2 #self.rbe3 = model.rbe3 # spring self.elements_spring = model.elements_spring self.pelas = model.pelas # bushings self.cbush = model.cbush self.cbush1d = model.cbush1d self.cbush2d = model.cbush2d self.pbush = model.pbush # rods self.conrod = model.conrod self.prod = model.prod self.crod = model.crod self.ctube = model.ctube self.ptube = model.ptube # mass #: stores CONM1, CONM2, CMASS1, CMASS2, CMASS3, CMASS4, CMASS5, PMASS self.mass = model.mass #self.conm1 = model.conm1 #self.conm2 = model.conm2 #self.cmass1 = self.cmass1 #self.cmass1 = self.cmass1 #self.cmass2 = self.cmass2 #self.cmass3 = self.cmass3 #self.cmass4 = self.cmass4 #self.cmass5 = self.cmass5 # bars #: stores CBAR self.cbar = model.cbar #: stores PBAR, PBARL self.properties_bar = model.properties_bar # beams #: stores CBEAM self.cbeam = model.cbeam #: stores PBEAM, PBEAML self.properties_beam = model.properties_beam # solids #: stores CTETRA4, CPENTA6, CHEXA8, CTETRA10, CPENTA15, CHEXA20 self.elements_solid = model.elements_solid #: stores PSOLID, PLSOLID self.properties_solid = model.properties_solid def validate_nodes(self, elements): validate_nodes = False if not hasattr(elements, 'node_ids'): # this element isn't finished return if not validate_nodes: # no checks return grids = self.model.grid.node_id nids = np.unique(np.ravel(elements.node_ids)) #nids.sort() diff = np.setdiff1d(nids, grids) if len(diff): eids = [] # find the bad elements for i, eid in enumerate(elements.element_id): j = np.intersect1d(diff, elements.node_ids[i, :]) if len(j): eids.append(eid) # prevents really long arrays eids = np.array(eids) msg = "Couldn't find Node ID: %s, which is required by %s %s" % ( diff, elements.type, eids) raise RuntimeError(msg) def build(self): #print('elements') self.n = 0 self._build_elements() self._build_properties() old_build = False if old_build: etypes = self._get_element_types(nlimit=False) ptypes = self._get_property_types(nlimit=False) for elems in etypes: #if elems is None: #continue if hasattr(elems, 'type'): if elems.type in self.model.card_count: self.model.log.debug('building %s' % elems.__class__.__name__) else: #if elems.n: self.model.log.debug('building %s' % elems.__class__.__name__) elems.build() self.nelements += elems.n self.validate_nodes(elems) #print(nids - grids[i]) for props in ptypes: #if props is None: #continue if hasattr(props, 'type'): if props.type in self.model.card_count: self.model.log.debug('building %s' % props.__class__.__name__) else: #if props.n: self.model.log.debug('building %s' % props.__class__.__name__) props.build() self.nproperties += props.n else: etypes = self._get_element_types(nlimit=True) ptypes = self._get_property_types(nlimit=True) self.model.log.debug('etypes = %s' % etypes) self.model.log.debug('ptypes = %s' % ptypes) for elems in etypes: #if elems.type in ['CONROD']: #self.nproperties += elems.n self.nelements += elems.n self.validate_nodes(elems) for props in ptypes: self.nproperties += props.n self.model.log.debug('finished building %s' % self.__class__.__name__) if self.nelements: eids = check_duplicate('element_id', etypes, self.model.log) self.element_ids = asarray(eids, dtype='int32') self.element_ids.sort() self.element_groups = build_groups(etypes, 'element_id', is_element=True) #self.model.log.info('self.element_groups = %s' % self.element_groups) else: self.model.log.warning('no elements...') if self.nproperties: pids = check_duplicate('property_id', ptypes, self.model.log) self.property_ids = asarray(pids, dtype='int32') self.property_ids.sort() self.property_groups = build_groups(ptypes, 'property_id') self.model.log.info('self.property_groups = %s' % self.property_groups) #print('*****self.element_ids =', self.element_ids) #print('*****self.property_ids =', self.property_ids) def get_elements(self, element_id): type_map = { 'CELAS1' : self.elements_spring.celas1, 'CELAS2' : self.elements_spring.celas2, 'CELAS3' : self.elements_spring.celas3, 'CELAS4' : self.elements_spring.celas4, #'CBUSH' : self.elements_bush.cbush, #'CBUSH1D' : self.elements_bush.cbush1d, #'CBUSH2D' : self.elements_bush.cbush2d, 'CBUSH' : self.cbush, 'CBUSH1D' : self.cbush1d, 'CBUSH2D' : self.cbush2d, 'CROD' : self.crod, 'CTUBE' : self.ctube, 'CONROD' : self.conrod, 'CSHEAR' : self.cshear, 'CTRIA3' : self.elements_shell.ctria3, 'CQUAD4' : self.elements_shell.cquad4, 'CTRIA6' : self.elements_shell.ctria6, 'CQUAD8' : self.elements_shell.cquad8, 'CTETRA4' : self.elements_solid.ctetra4, 'CPENTA6' : self.elements_solid.cpenta6, 'CHEXA8' : self.elements_solid.chexa8, 'CTETRA10' : self.elements_solid.ctetra10, 'CPENTA15' : self.elements_solid.cpenta15, 'CHEXA20' : self.elements_solid.chexa20, } out = [] for eid in element_id: obj = None for etype, eids in self.element_groups.items(): if eid in eids: i = np.where(eid == eids)[0] obj = type_map[etype][i] out.append(obj) return out def get_element_properties(self, exclude_types=None): if exclude_types is None: exclude_types = [] element_objs = [ self.elements_spring.celas1, self.elements_spring.celas2, self.elements_spring.celas3, self.elements_spring.celas4, self.cshear, self.crod, self.conrod, self.ctube, self.cbar, self.cbeam, self.cbush, self.cbush1d, self.cbush2d, self.elements_shell.ctria3, self.elements_shell.cquad4, self.elements_shell.ctria6, self.elements_shell.cquad8, self.elements_solid.ctetra4, self.elements_solid.cpenta6, self.elements_solid.chexa8, self.elements_solid.ctetra10, self.elements_solid.cpenta15, self.elements_solid.chexa20, ] if exclude_types is None: exclude_types = [] element_objs2 = [] for element_obj in element_objs: if element_obj.type not in exclude_types: element_objs2.append(element_obj) element_objs = element_objs2 del element_objs2 # this isn't working... #element_objs = [element_obj if element_obj.type not in exclude_types #for element_obj in element_objs] elements_without_properties = ['CELAS2', 'CELAS4', 'CONROD'] eids = np.hstack([element_obj.element_id for element_obj in element_objs]) pids = np.hstack([np.zeros(element_obj.n, dtype='int32') if element_obj.type in elements_without_properties else element_obj.property_id for element_obj in element_objs]) return element_objs, eids, pids def get_element_ids_by_property_type(self, element_ids, exclude_types=None): #self.model.log.debug('element_ids = %s' % element_ids) Types, eids, pids = self.get_element_properties(exclude_types) # remove undefined properties #existing_pids = setdiff1d(unique(pids), self.property_ids, assume_unique=True) #self.model.log.debug('pids = %s' % pids) #self.model.log.debug('self.property_ids = %s' % self.property_ids) #self.model.log.debug('existing_pids = %s' % existing_pids) # make sure oids is unique oids = np.hstack([Type.op2_id for Type in Types]) oids2 = np.unique(oids) assert len(oids) == len(oids2), oids oids = np.hstack([Type.op2_id * np.ones(Type.n, dtype='int32') for Type in Types]) i = np.argsort(eids) #self.model.log.debug('i = %s' % i) #self.model.log.debug('eids = %s len=%s' % (eids, len(eids))) #self.model.log.debug('pids = %s len=%s' % (pids, len(pids))) #self.model.log.debug('oids = %s len=%s' % (oids, len(oids))) assert len(eids) == len(pids), 'len(eids)=%i len(pids)=%i' % (len(eids), len(pids)) assert len(eids) == len(oids), 'len(eids)=%i len(oids)=%i' % (len(eids), len(oids)) eids = eids[i] pids = pids[i] oids = oids[i] data = np.vstack([eids, pids, oids]).T #self.model.log.debug(data) # drop extra elements # for eids greater than the max allowable eid located at data[-1,0], # we drop them i_less = np.where(data[-1, 0] >= element_ids)[0] element_ids = element_ids[i_less] # drop more extra elements # we're handling cases of skipped elements (e.g. CELASx cards) # that have a sorted location in data, but no unique value #print('++++++ %s' % element_ids) #print('++++++ %s' % data[:, 0]) ie = np.unique(np.searchsorted(data[:, 0], element_ids)) #print('ie = %s' % ie) #print('dataA \n%s' % data) return data[ie, :] #return data def get_nodes(self, node_id, xyz_cid0, msg=''): i = self.model.grid.get_node_index_by_node_id(node_id, msg=msg) return xyz_cid0[i, :] def _get_element_ids(self, element_ids_orig): if element_ids_orig is None: element_ids = self.element_ids element_ids_orig = element_ids #print('A %s' % element_ids) else: # remove elements that don't exist in the BDF #print("self.element_ids = \n%s" % str(self.element_ids)) #print("element_ids = \n%s" % str(element_ids)) element_ids_orig = asarray(element_ids_orig) element_ids = np.intersect1d(element_ids_orig, self.element_ids) # check for invalid IDs #n = len(element_ids) #i = where(element_ids < 1)[0] # < 100000000 #j = where(element_ids[i] > 99999999)[0] #if len(i) + len(j): #eids = setdiff1d(element_ids[i[j]], element_ids) #eids = '???' #raise RuntimeError('0 < element_ids < 100000000 is invalid; eids=%s' % eids) #element_ids = element_ids[i[j]] #print('B %s' % element_ids) return element_ids, element_ids_orig def get_mass_by_element_id(self, element_ids_orig=None, xyz_cid0=None, sort_output=True): if xyz_cid0 is None: xyz_cid0 = self.model.grid.get_position_by_node_index() element_ids, element_ids_orig = self._get_element_ids(element_ids_orig) if len(element_ids) == 0: nelements = len(element_ids_orig) mass = np.full(nelements, np.nan, 'float64') if sort_output: i = np.argsort(element_ids_orig) #print("i =", i, i.shape) #print("element_ids_orig =", element_ids_orig, element_ids_orig.shape) return element_ids_orig[i], mass else: return element_ids_orig, mass nelements_orig = len(element_ids_orig) #print('eids orig = %s' % element_ids_orig) type_map = { #'CELAS1' : self.elements_spring.celas1, 'CELAS2' : self.elements_spring.celas2, 'CELAS3' : self.elements_spring.celas3, 'CELAS4' : self.elements_spring.celas4, 'CBAR' : self.cbar, 'CBEAM' : self.cbeam, 'CROD' : self.crod, 'CONROD' : self.conrod, 'CTUBE' : self.ctube, 'CSHEAR' : self.cshear, 'CQUAD4' : self.elements_shell.cquad4, 'CTRIA3' : self.elements_shell.ctria3, 'CTETRA4' : self.elements_solid.ctetra4, 'CPENTA6' : self.elements_solid.cpenta6, 'CHEXA8' : self.elements_solid.chexa8, 'CTETRA10' : self.elements_solid.ctetra10, 'CPENTA15' : self.elements_solid.cpenta15, 'CHEXA20' : self.elements_solid.chexa20, } exclude_types = [ 'CELAS1', 'CELAS2', 'CELAS3', 'CELAS4', 'CDAMP1', 'CDAMP2', 'CDAMP3', 'CDAMP4', 'CMASS1', 'CMASS2', 'CMASS3', 'CMASS4', 'CBUSH', 'CBUSH1D', 'CBUSH2D', ] pid_data = self.get_element_ids_by_property_type(element_ids, exclude_types=exclude_types) element_ids_to_analyze = pid_data[:, 0] data2 = self.group_elements_by_property_type_and_element_type(self, pid_data) #self.model.log.debug('**data2 = %s' % data2) nelements = len(element_ids) #self.model.log.debug('nelement_ids =', nelements) eids2 = np.zeros(nelements_orig, dtype='int32') #mass = full(nelements, nan, dtype='float64') mass = np.full(nelements_orig, np.nan, dtype='float64') #self.model.log.debug('mass.shape =', mass.shape) ni = 0 self.model.log.debug('data2 = %s' % data2) for (pid, etype), element_ids in data2.items(): #self.model.log.debug('pid=%s eType=%s element_ids=%s' % (pid, eType, element_ids)) elements = type_map[etype] i = np.searchsorted(elements.element_id, element_ids) n = len(i) eids2[ni:ni+n] = elements.element_id[i] if pid == 0: # CONROD pass else: self.model.log.debug('*cat pid = %s' % pid) props = self.get_properties([pid]) if len(props) == 0: # the property doesn't exist self.model.log.debug('Property %i does not exist and is needed by %s eid=%i' % ( pid, etype, element_ids[0])) ni += n #print('props = %s' % props) continue # we only get one property at a time prop = props[0] #print(' prop = %s' % str(prop).rstrip()) elements = type_map[etype] i = np.searchsorted(elements.element_id, element_ids) n = len(i) #print('ielements = %s' % i) if etype in ['CELAS1', 'CELAS2', 'CELAS3', 'CELAS4',]: pass elif etype in ['CROD', 'CONROD', 'CBAR', 'CBEAM']: msg = ', which is required for %ss' % etype n1 = self.get_nodes(elements.node_ids[i, 0], xyz_cid0, msg=msg) n2 = self.get_nodes(elements.node_ids[i, 1], xyz_cid0, msg=msg) length =
np.linalg.norm(n2 - n1, axis=1)
numpy.linalg.norm
# pylint: disable=C0114,C0115,C0116 import unittest import numpy as np from scipy import constants as const from nonrad.scaling import (charged_supercell_scaling, charged_supercell_scaling_VASP, distance_PBC, find_charge_center, radial_distribution, sommerfeld_parameter, thermal_velocity) from nonrad.tests import TEST_FILES, FakeFig class SommerfeldTest(unittest.TestCase): def setUp(self): self.args = { 'T': 300, 'Z': 0, 'm_eff': 1., 'eps0': 1., 'method': 'Integrate' } def test_neutral(self): self.assertAlmostEqual(sommerfeld_parameter(**self.args), 1.) self.args['method'] = 'Analytic' self.assertAlmostEqual(sommerfeld_parameter(**self.args), 1.) def test_attractive(self): self.args['Z'] = -1 self.assertGreater(sommerfeld_parameter(**self.args), 1.) self.args['method'] = 'Analytic' self.assertGreater(sommerfeld_parameter(**self.args), 1.) def test_repulsive(self): self.args['Z'] = 1 self.assertLess(sommerfeld_parameter(**self.args), 1.) self.args['method'] = 'Analytic' self.assertLess(sommerfeld_parameter(**self.args), 1.) def test_list(self): self.args['T'] = np.linspace(0.1, 1000, 100) self.assertEqual(sommerfeld_parameter(**self.args), 1.) self.args['Z'] = -1 self.assertTrue(np.all(sommerfeld_parameter(**self.args) > 1.)) self.args['Z'] = 1 self.assertTrue(np.all(sommerfeld_parameter(**self.args) < 1.)) self.args['Z'] = 0 self.args['method'] = 'Analytic' self.assertEqual(sommerfeld_parameter(**self.args), 1.) self.args['Z'] = -1 self.assertTrue(np.all(sommerfeld_parameter(**self.args) > 1.)) self.args['Z'] = 1 self.assertTrue(np.all(sommerfeld_parameter(**self.args) < 1.)) def test_compare_methods(self): self.args = { 'T': 150, 'Z': -1, 'm_eff': 0.2, 'eps0': 8.9, 'method': 'Integrate' } f0 = sommerfeld_parameter(**self.args) self.args['method'] = 'Analytic' f1 = sommerfeld_parameter(**self.args) self.assertAlmostEqual(f0, f1, places=2) self.args['Z'] = 1 self.args['T'] = 900 f0 = sommerfeld_parameter(**self.args) self.args['method'] = 'Integrate' f1 = sommerfeld_parameter(**self.args) self.assertGreater(np.abs(f0-f1)/f1, 0.1) class ChargedSupercellScalingTest(unittest.TestCase): def test_find_charge_center(self): lattice = np.eye(3) density = np.ones((50, 50, 50)) self.assertTrue( np.allclose(find_charge_center(density, lattice), [0.49]*3) ) density = np.zeros((50, 50, 50)) density[0, 0, 0] = 1. self.assertTrue( np.allclose(find_charge_center(density, lattice), [0.]*3) ) def test_distance_PBC(self): a = np.array([0.25]*3) b = np.array([0.5]*3) lattice = np.eye(3) self.assertEqual(distance_PBC(a, b, lattice), np.sqrt(3)*0.25) b = np.array([0.9]*3) self.assertEqual(distance_PBC(a, b, lattice), np.sqrt(3)*0.35) def test_radial_distribution(self): lattice = np.eye(3) density = np.zeros((50, 50, 50)) density[0, 0, 0] = 1. point = np.array([0.]*3) dist = distance_PBC(np.zeros(3), point, lattice) r, n = radial_distribution(density, point, lattice) self.assertAlmostEqual(r[np.where(n == 1.)[0][0]], dist) point = np.array([0.25]*3) dist = distance_PBC(np.zeros(3), point, lattice) r, n = radial_distribution(density, point, lattice) self.assertAlmostEqual(r[np.where(n == 1.)[0][0]], dist) point = np.array([0.29, 0.73, 0.44]) dist = distance_PBC(np.zeros(3), point, lattice) r, n = radial_distribution(density, point, lattice) self.assertAlmostEqual(r[
np.where(n == 1.)
numpy.where
# The MIT License (MIT) # # Copyright (c) 2016-2019 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """One-dimensional histograms.""" from typing import Optional, Tuple import numpy as np from . import bin_utils from .histogram_base import HistogramBase from .binnings import BinningBase import pandas # TODO: Fix I/O with binning class Histogram1D(HistogramBase): """One-dimensional histogram data. The bins can be of different widths. The bins need not be consecutive. However, some functionality may not be available for non-consecutive bins (like keeping information about underflow and overflow). Attributes ---------- _stats : dict These are the basic attributes that can be used in the constructor (see there) Other attributes are dynamic. """ def __init__( self, binning, frequencies=None, errors2=None, *, stats=None, **kwargs ): """Constructor Parameters ---------- binning: physt.binnings.BinningBase or array_like The binning frequencies: Optional[array_like] The bin contents. keep_missed: Optional[bool] Whether to keep track of underflow/overflow when filling with new values. underflow: Optional[float] Weight of observations that were smaller than the minimum bin. overflow: Optional[float] Weight of observations that were larger than the maximum bin. name: Optional[str] Name of the histogram (will be displayed as plot title) axis_name: Optional[str] Name of the characteristics that is histogrammed (will be displayed on x axis) errors2: Optional[array_like] Quadratic errors of individual bins. If not set, defaults to frequencies. stats: dict Dictionary of various statistics ("sum", "sum2") """ missed = [ kwargs.pop("underflow", 0), kwargs.pop("overflow", 0), kwargs.pop("inner_missed", 0), ] if "axis_name" in kwargs: kwargs["axis_names"] = [kwargs.pop("axis_name")] HistogramBase.__init__(self, [binning], frequencies, errors2, **kwargs) if frequencies is None: self._stats = Histogram1D.EMPTY_STATS.copy() else: self._stats = stats if self.keep_missed: self._missed = np.array(missed, dtype=self.dtype) else: self._missed = np.zeros(3, dtype=self.dtype) EMPTY_STATS = {"sum": 0.0, "sum2": 0.0} @property def axis_name(self) -> str: return self.axis_names[0] @axis_name.setter def axis_name(self, value: str): self.axis_names = (value,) def select(self, axis, index, force_copy: bool = False): """Alias for [] to be compatible with HistogramND.""" if axis == 0: if index == slice(None) and not force_copy: return self return self[index] else: raise ValueError("In Histogram1D.select(), axis must be 0.") def __getitem__(self, i): """Select sub-histogram or get one bin. Parameters ---------- i : int or slice or bool masked array or array with indices In most cases, this has same semantics as for numpy.ndarray.__getitem__ Returns ------- Histogram1D or tuple Depending on the parameters, a sub-histogram or content of one bin are returned. """ underflow = np.nan overflow = np.nan keep_missed = False if isinstance(i, int): return self.bins[i], self.frequencies[i] elif isinstance(i, np.ndarray): if i.dtype == bool: if i.shape != (self.bin_count,): raise IndexError( "Cannot index with masked array " "of a wrong dimension" ) elif isinstance(i, slice): keep_missed = self.keep_missed # TODO: Fix this if i.step: raise IndexError("Cannot change the order of bins") if i.step == 1 or i.step is None: underflow = self.underflow overflow = self.overflow if i.start: underflow += self.frequencies[0 : i.start].sum() if i.stop: overflow += self.frequencies[i.stop :].sum() # Masked arrays or item list or ... return self.__class__( self._binning.as_static(copy=False)[i], self.frequencies[i], self.errors2[i], overflow=overflow, keep_missed=keep_missed, underflow=underflow, dtype=self.dtype, name=self.name, axis_name=self.axis_name, ) @property def _binning(self) -> BinningBase: """Adapter property for HistogramBase interface""" return self._binnings[0] @_binning.setter def _binning(self, value: BinningBase): self._binnings = [value] @property def binning(self) -> BinningBase: """The binning. Note: Please, do not try to update the object itself. """ return self._binning @property def bins(self) -> np.ndarray: """Array of all bin edges. Returns ------- Wide-format [[leftedge1, rightedge1], ... [leftedgeN, rightedgeN]] """ # TODO: Read-only copy return self._binning.bins # TODO: or this should be read-only copy? @property def numpy_bins(self) -> np.ndarray: """Bins in the format of numpy. """ # TODO: If not consecutive, does not make sense # TODO: Deprecate return self._binning.numpy_bins @property def edges(self) -> np.ndarray: return self.numpy_bins @property def numpy_like(self) -> Tuple[np.ndarray, np.ndarray]: """Same result as would the numpy.histogram function return.""" return self.frequencies, self.numpy_bins @property def cumulative_frequencies(self) -> np.ndarray: """Cumulative frequencies. Note: underflow values are not considered """ return self._frequencies.cumsum() @property def underflow(self): if not self.keep_missed: return np.nan return self._missed[0] @underflow.setter def underflow(self, value): self._missed[0] = value @property def overflow(self): if not self.keep_missed: return np.nan return self._missed[1] @overflow.setter def overflow(self, value): self._missed[1] = value @property def inner_missed(self): if not self.keep_missed: return np.nan return self._missed[2] @inner_missed.setter def inner_missed(self, value): self._missed[2] = value def mean(self) -> Optional[float]: """Statistical mean of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. """ if self._stats: # TODO: should be true always? if self.total > 0: return self._stats["sum"] / self.total else: return np.nan else: return None # TODO: or error def std(self) -> Optional[float]: # , ddof=0): """Standard deviation of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. Returns ------- float """ # TODO: Add DOF if self._stats: return np.sqrt(self.variance()) else: return None # TODO: or error def variance(self) -> Optional[float]: # , ddof: int = 0) -> float: """Statistical variance of all values entered into histogram. This number is precise, because we keep the necessary data separate from bin contents. Returns ------- float """ # TODO: Add DOF # http://stats.stackexchange.com/questions/6534/how-do-i-calculate-a-weighted-standard-deviation-in-excel if self._stats: if self.total > 0: return ( self._stats["sum2"] - self._stats["sum"] ** 2 / self.total ) / self.total else: return np.nan else: return None # TODO: Add (correct) implementation of SEM # def sem(self): # if self._stats: # return 1 / total * np.sqrt(self.variance) # else: # return None @property def bin_left_edges(self): """Left edges of all bins. Returns ------- numpy.ndarray """ return self.bins[..., 0] @property def bin_right_edges(self): """Right edges of all bins. Returns ------- numpy.ndarray """ return self.bins[..., 1] @property def min_edge(self): """Left edge of the first bin. Returns ------- float """ return self.bin_left_edges[0] @property def max_edge(self): """Right edge of the last bin. Returns ------- float """ # TODO: Perh return self.bin_right_edges[-1] @property def bin_centers(self): """Centers of all bins. Returns ------- numpy.ndarray """ return (self.bin_left_edges + self.bin_right_edges) / 2 @property def bin_widths(self): """Widths of all bins. Returns ------- numpy.ndarray """ return self.bin_right_edges - self.bin_left_edges @property def total_width(self): """Total width of all bins. In inconsecutive histograms, the missing intervals are not counted in. Returns ------- float """ return self.bin_widths.sum() @property def bin_sizes(self): return self.bin_widths def find_bin(self, value): """Index of bin corresponding to a value. Parameters ---------- value: float Value to be searched for. Returns ------- int index of bin to which value belongs (-1=underflow, N=overflow, None=not found - inconsecutive) """ ixbin = np.searchsorted(self.bin_left_edges, value, side="right") if ixbin == 0: return -1 elif ixbin == self.bin_count: if value <= self.bin_right_edges[-1]: return ixbin - 1 else: return self.bin_count elif value < self.bin_right_edges[ixbin - 1]: return ixbin - 1 elif ixbin == self.bin_count: return self.bin_count else: return None def fill(self, value, weight=1): """Update histogram with a new value. Parameters ---------- value: float Value to be added. weight: float, optional Weight assigned to the value. Returns ------- int index of bin which was incremented (-1=underflow, N=overflow, None=not found) Note: If a gap in unconsecutive bins is matched, underflow & overflow are not valid anymore. Note: Name was selected because of the eponymous method in ROOT """ self._coerce_dtype(type(weight)) if self._binning.is_adaptive(): map = self._binning.force_bin_existence(value) self._reshape_data(self._binning.bin_count, map) ixbin = self.find_bin(value) if ixbin is None: self.overflow = np.nan self.underflow = np.nan elif ixbin == -1 and self.keep_missed: self.underflow += weight elif ixbin == self.bin_count and self.keep_missed: self.overflow += weight else: self._frequencies[ixbin] += weight self._errors2[ixbin] += weight ** 2 if self._stats: self._stats["sum"] += weight * value self._stats["sum2"] += weight * value ** 2 return ixbin def fill_n(self, values, weights=None, dropna: bool = True): """Update histograms with a set of values. Parameters ---------- values: array_like weights: Optional[array_like] drop_na: Optional[bool] If true (default), all nan's are skipped. """ # TODO: Unify with HistogramBase values = np.asarray(values) if dropna: values = values[~np.isnan(values)] if self._binning.is_adaptive(): map = self._binning.force_bin_existence(values) self._reshape_data(self._binning.bin_count, map) if weights is not None: weights = np.asarray(weights) self._coerce_dtype(weights.dtype) (frequencies, errors2, underflow, overflow, stats) = calculate_frequencies( values, self._binning, dtype=self.dtype, weights=weights, validate_bins=False, ) self._frequencies += frequencies self._errors2 += errors2 # TODO: check that adaptive does not produce under-/over-flows? if self.keep_missed: self.underflow += underflow self.overflow += overflow if self._stats: for key in self._stats: self._stats[key] += stats.get(key, 0.0) def __eq__(self, other): if not isinstance(other, self.__class__): return False # TODO: Change to something in binning itself if not np.allclose(other.bins, self.bins): return False if not np.allclose(other.frequencies, self.frequencies): return False if not np.allclose(other.errors2, self.errors2): return False if not other.overflow == self.overflow: return False if not other.underflow == self.underflow: return False if not other.inner_missed == self.inner_missed: return False if not other.name == self.name: return False if not other.axis_name == self.axis_name: return False return True def to_dataframe(self) -> "pandas.DataFrame": """Convert to pandas DataFrame. This is not a lossless conversion - (under/over)flow info is lost. """ import pandas as pd df = pd.DataFrame( { "left": self.bin_left_edges, "right": self.bin_right_edges, "frequency": self.frequencies, "error": self.errors, }, columns=["left", "right", "frequency", "error"], ) return df @classmethod def _kwargs_from_dict(cls, a_dict: dict) -> dict: kwargs = HistogramBase._kwargs_from_dict.__func__(cls, a_dict) kwargs["binning"] = kwargs.pop("binnings")[0] return kwargs def calculate_frequencies( data, binning, weights=None, validate_bins=True, already_sorted=False, dtype=None ): """Get frequencies and bin errors from the data. Parameters ---------- data : array_like Data items to work on. binning : physt.binnings.BinningBase A set of bins. weights : array_like, optional Weights of the items. validate_bins : bool, optional If True (default), bins are validated to be in ascending order. already_sorted : bool, optional If True, the data being entered are already sorted, no need to sort them once more. dtype: Optional[type] Underlying type for the histogram. (If weights are specified, default is float. Otherwise long.) Returns ------- frequencies : numpy.ndarray Bin contents errors2 : numpy.ndarray Error squares of the bins underflow : float Weight of items smaller than the first bin overflow : float Weight of items larger than the last bin stats: dict { sum: ..., sum2: ...} Note ---- Checks that the bins are in a correct order (not necessarily consecutive). Does not check for numerical overflows in bins. """ # TODO: Is it possible to merge with histogram_nd.calculate_frequencies? # TODO: What if data is None # TODO: Change stats into namedtuple # Statistics sum = 0.0 sum2 = 0.0 # Ensure correct binning bins = binning.bins # bin_utils.make_bin_array(bins) if validate_bins: if bins.shape[0] == 0: raise RuntimeError("Cannot have histogram with 0 bins.") if not bin_utils.is_rising(bins): raise RuntimeError("Bins must be rising.") # Prepare 1D numpy array of data data = np.asarray(data) if data.ndim > 1: data = data.flatten() # Prepare 1D numpy array of weights if weights is not None: weights = np.asarray(weights) if weights.ndim > 1: weights = weights.flatten() # Check compatibility of weights if weights.shape != data.shape: raise RuntimeError("Weights must have the same shape as data.") # Ensure proper dtype for the bin contents if dtype is None: dtype = weights.dtype if dtype is None: dtype = int dtype = np.dtype(dtype) if dtype.kind in "iu" and weights is not None and weights.dtype.kind == "f": raise RuntimeError("Integer histogram requested " "but float weights entered.") # Data sorting if not already_sorted: args = np.argsort(data) # Memory: another copy data = data[args] # Memory: another copy if weights is not None: weights = weights[args] del args # Fill frequencies and errors frequencies = np.zeros(bins.shape[0], dtype=dtype) errors2 = np.zeros(bins.shape[0], dtype=dtype) for xbin, bin in enumerate(bins): start = np.searchsorted(data, bin[0], side="left") stop =
np.searchsorted(data, bin[1], side="left")
numpy.searchsorted
import numpy as np from .helpers import scale, scale_clean #from numba import jit import pandas as pd defs = { 'r9.4': { 'ed_params': { 'window_lengths': [3, 6], 'thresholds': [1.4, 1.1], 'peak_height': 0.2 } }, 'r9': { 'ed_params': { 'window_lengths': [6, 12], 'thresholds': [2.0, 1.1], 'peak_height': 1.2 } }, 'r9.5b': { 'ed_params': { 'window_lengths': [4, 5], 'thresholds': [1.4, 1.0], 'peak_height': 1 } }, 'r9.5': { 'ed_params': { 'window_lengths': [4, 6], 'thresholds': [1.4, 1.0], 'peak_height': 0.65 } }, 'rf': { 'ed_params': { 'window_lengths': [4, 6], 'thresholds': [1.4, 1.1], # [1.4, 1.1], 'peak_height': 1.2 # 1.2 } } } def smooth(ser, sc): return np.array(pd.Series(ser).rolling(sc, min_periods=1, center=True).mean()) def find_raw(raw, maxi=1000, safe=10): m = raw d2 = smooth(
np.sqrt((m[1:]-m[:-1])**2)
numpy.sqrt
import os import argparse import numpy as np import torch import torch.optim as optim from engine.dataloader import get_dataloader from engine.retinanet import model from engine.retinanet import coco_eval from engine.log.saver import Saver from tqdm import tqdm from collections import deque from engine.log import logger, summarise assert torch.__version__.split('.')[0] == '1' print('CUDA available: {}'.format(torch.cuda.is_available())) class Trainer(object): def __init__(self, config, img_dir, coco_json): self.config = config # Define Saver self.saver = Saver(self.config) # Define Tensorboard if self.config.tensorboard: self.summary = summarise.TensorboardSummary(self.saver.directory) self.writer = self.summary.create_summary() # Define Logger self.getlogger = logger.get_logger(self.saver.directory) self.logger = self.getlogger # Define DataLoader self.train_loader, self.n_train_img,\ self.val_set, self.val_loader, self.n_val_img, self.n_classes = get_dataloader(self.config, img_dir, coco_json) # Define Network if self.config.depth == 18: self.retinanet = model.resnet18(num_classes=self.n_classes, pretrained=True) elif self.config.depth == 34: self.retinanet = model.resnet34(num_classes=self.n_classes, pretrained=True) elif self.config.depth == 50: self.retinanet = model.resnet50(num_classes=self.n_classes, pretrained=True) elif self.config.depth == 101: self.retinanet = model.resnet101(num_classes=self.n_classes, pretrained=True) elif self.config.depth == 152: self.retinanet = model.resnet152(num_classes=self.n_classes, pretrained=True) else: raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152') # Define Optimizer self.optimizer = optim.Adam(self.retinanet.parameters(), lr=self.config.lr) # Define lr_schduler self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=3, verbose=True) # Define loss self.loss_hist = deque(maxlen=500) # Define cuda if torch.cuda.is_available(): self.retinanet = torch.nn.DataParallel(self.retinanet).cuda() else: raise ValueError('=> Cuda is not available. Check cuda') # Define resume self.best_f1_score = .0 if self.config.resume is not None: self.retinanet = torch.load(self.config.resume) self.retinanet.cuda() # check model summary # summary(self.retinanet, (3, 512, 512)) def train(self, epoch): self.retinanet.train() self.retinanet.module.freeze_bn() epoch_loss = [] print(f'Num training images: {self.n_train_img}') with tqdm(self.train_loader) as tbar: for iter_num, data in enumerate(tbar): self.optimizer.zero_grad() img = data['img'].cuda().float() annot = data['annot'] cls_loss, reg_loss = self.retinanet([img, annot]) cls_loss = cls_loss.mean() reg_loss = reg_loss.mean() loss = cls_loss + reg_loss epoch_loss.append(float(loss)) self.loss_hist.append(float(loss)) if bool(loss == 0): continue loss.backward() torch.nn.utils.clip_grad_norm_(self.retinanet.parameters(), 0.1) self.optimizer.step() if self.config.tensorboard: self.writer.add_scalar('Train_Loss/classification_loss', cls_loss, iter_num + epoch*(len(self.train_loader))) self.writer.add_scalar('Train_Loss/regression_loss', reg_loss, iter_num + epoch*(len(self.train_loader))) self.writer.add_scalar('Train_Loss/total_loss', np.mean(self.loss_hist), iter_num + epoch*(len(self.train_loader))) tbar.set_description(f'Epoch: {epoch} | ' f'Cls loss: {cls_loss:1.5f} | ' f'Reg loss: {reg_loss:1.5f} | ' f'Running loss: {np.mean(self.loss_hist):1.5f}') del cls_loss, reg_loss self.scheduler.step(
np.mean(epoch_loss)
numpy.mean
'''Functions and scripts for machine learning training and classification of photometry and spectra.''' import os import shutil from functools import lru_cache import itertools import pickle import argparse import numpy as np import requests from astropy.table import Table import astropy.units as u from scipy.interpolate import interp1d import matplotlib.pyplot as plt import sdf.filter import sdf.spectrum import sdf.db import sdf.photometry from . import utils from . import config as cfg # routines related to photometry def download_photometry(sdbid): """Get and return an sdf.Photometry object for a given sdbid. Once retrieved, files are stored in photometry training directory. Parameters ---------- sdbid : string sdb id of desired target. Returns ------- sdf.Photometry object. """ fname = sdbid+'-rawphot.txt' dir = cfg.training_dir+'photometry/photometry_files/' try: file = '/Users/grant/a-extra/sdb/masters/'+sdbid+'/public/'+fname p = sdf.photometry.Photometry.read_sdb_file(file) except FileNotFoundError: try: file = dir+fname p = sdf.photometry.Photometry.read_sdb_file(file) except FileNotFoundError: r = requests.get('http://drgmk.com/sdb/seds/masters/'+ sdbid+'/public/'+fname,auth=(cfg.sdb_user,cfg.sdb_pass)) with open(dir+fname,'w') as f: f.write(r.text) p = sdf.photometry.Photometry.read_sdb_file(dir+fname) # copy the file to the training dir if not os.path.exists(dir+fname): shutil.copyfile(file,dir+fname) return p @lru_cache() def interpolator(colour_name,out_column='Teff'): """Return interpolator to get a value from the spectral type table. Interpolation uses the colour table from Eric Mamajek's website. Various derived columns are added so that as many input colours as possible can be used. Parameters ---------- colour_name : string Name of the colour used for the interpolator. out_column : string, optional Name of column to retrieve, effective temperature by default. Returns ------- A scipy interp1d interpolator object. """ # assume eem means H_Ks when he says H_K t = Table.read(os.path.dirname(os.path.abspath(__file__))+'/eem_colours.txt', format='ascii',fill_values=[('...',0),('....',0),('.....',0)]) t['Rc-Ic'] = t['V-Ic'] - t['V-Rc'] t['Ks-W3'] = t['Ks-W1'] + t['W1-W3'] t['Ks-W4'] = t['Ks-W1'] + t['W1-W4'] t['W2-W3'] = t['W1-W3'] - t['W1-W2'] t['W3-W4'] = t['W1-W4'] - t['W1-W3'] # conversion from sdf filter names to eem ones c = {'UJ_BJ':'U-B', 'BJ_VJ':'B-V', 'BT_VT':'Bt-Vt', 'VJ_RC':'V-Rc', 'VJ_IC':'V-Ic', 'RC_IC':'Rc-Ic', 'VJ_2MKS':'V-Ks', '2MJ_2MH':'J-H', '2MH_2MKS':'H-K', '2MKS_WISE3P4':'Ks-W1', '2MKS_WISE12':'Ks-W3', '2MKS_WISE22':'Ks-W4', 'WISE3P4_WISE4P6':'W1-W2', 'WISE3P4_WISE12':'W1-W3', 'WISE3P4_WISE22':'W1-W4', 'WISE4P6_WISE12':'W2-W3', 'WISE12_WISE22':'W3-W4', 'Teff':'Teff'} if colour_name not in c.keys(): return None # out of range interpolation yields cool and hot temperatures, # otherwise zero colour (i.e. Vega) if out_column == 'Teff': fill = (30000.0,1500.0) else: fill = 0.0 ok = np.logical_and( t[c[colour_name]].mask == False, t[c[out_column]].mask == False ) return interp1d(t[c[colour_name]][ok], t[c[out_column]][ok], kind='linear',bounds_error=False,fill_value=fill) class Colours(object): """Class to sort out colours for given photometry. The goal is to return a list of colours for a given target, which can then be used for the machine learning. Where the desired colours don't exist they are either inferred from something close, or interpolated based on an estimated effective temperature. Where very little information exists the colours default to zero, meaning that an object is by default assumed to be a star, and that a classification is always possible. There are various quirks of this approach. - Stars bright enough to be detected at far-IR wavelengths are so bright that no useful WISE W1/2 photometry exists. Therefore very few stars with 'complete' photometry that can be derived without interpolation exist. Parameters ---------- phot : sdf.photometry.Photometry Photometry object wanted : list, optional The colours we want returned. extras : list, optional Colours that may be useful in deriving what we want. """ def __init__(self,phot=None, wanted=['2MJ_2MH','2MH_2MKS','2MKS_WISE3P4', 'WISE3P4_WISE4P6','WISE4P6_WISE12','WISE12_WISE22', 'KP_WAV100','WISE22_WAV100'], extras=['2MKS_WISE12','2MKS_WISE22', 'WISE3P4_WISE12','WISE3P4_WISE22']): self.wanted = wanted if phot is not None: # swap Read numbers in 2MASS for "plain" (2MR1KS -> 2MKS) for i,f in enumerate(phot.filters): if '2MR' in f: phot.filters[i] = f[0:2]+f[4:] self.extras_in = extras ok = np.logical_and(phot.ignore == 0,phot.upperlim == 0) self.in_names = phot.filters[ok] self.in_values = phot.measurement[ok] self.in_units = phot.unit[ok] self.in_dict = {} for key,val in zip(self.in_names,self.in_values): self.in_dict[key] = val # we'll fill these self.colours = {} self.extras = {} self.filled = {} # do it self.fill_wav100() self.fill_wise() self.fill_kp() self.fill_extras() self.fill_colours() self.fill_missing() def fill_colours(self): """Fill missing colours that we want. These are assumed to be sufficiently accurate, as opposed to guessing or interpolating, that the values in the self.colours dictionary are considered not to have been 'filled'. """ # if colours given for i,name in enumerate(self.in_names): if name in self.wanted: self.colours[name] = self.in_values[i] self.filled[name] = False # if components of colours given for name in self.wanted: c = sdf.filter.Colour.get(name) if c.filters[0] in self.in_names and c.filters[1] in self.in_names: self.colours[name] = self.in_dict[c.filters[0]] - \ self.in_dict[c.filters[1]] self.filled[name] = False # attempt to fill BJ_VJ if not present, this doesn't count as filled if 'BJ_VJ' in self.wanted and 'BJ_VJ' not in self.colours.keys(): # Tycho -> Johnson, 2002AJ....124.1670M if 'BT' in self.in_names and 'VT' in self.in_names: BT = self.in_dict['BT'] VT = self.in_dict['VT'] self.colours['BJ_VJ'] = (BT - VT) - 0.006 - \ 0.1069*(BT - VT) + \ 0.1459*(BT-VT)**2 self.filled['BJ_VJ'] = False # or from APASS 1996AJ....111.1748F elif 'GAPASS' in self.in_names and 'RAPASS' in self.in_names: g_r = self.in_dict['GAPASS'] - self.in_dict['RAPASS'] VJ = self.in_dict['RAPASS'] + 0.44 * g_r - 0.02 BJ = VJ + 1.04 * g_r + 0.19 self.colours['BJ_VJ'] = BJ - VJ self.filled['BJ_VJ'] = False def fill_extras(self): """Fill missing extras from what we have, if possible.""" # if components of colours given for name in self.extras_in: c = sdf.filter.Colour.get(name) if c.filters[0] in self.in_names and c.filters[1] in self.in_names: self.extras[name] = self.in_dict[c.filters[0]] - \ self.in_dict[c.filters[1]] def fill_missing(self): """Interpolate missing colours. These are considered to have been 'filled', as they are guessed (for zero colour) or interpolated. """ for name in self.wanted: # if this key exists we already have the colour if name in self.colours.keys(): continue # zero colour at long wavelengths elif name == 'WISE22_WAV100' or name == 'KP_WAV100': self.colours[name] = 0.0 self.filled[name] = True # else interpolate based on median Teff from what we have, # setting zero colour if interpolation is not possible else: f = interpolator('Teff',name) med_temp = self.med_temp() self.filled[name] = True if np.isfinite(med_temp): self.colours[name] = f( med_temp ).tolist() # a float else: self.colours[name] = 0.0 def sorted_colours(self): """Return colours sorted by mean wavelength.""" names = list(self.colours.keys()) waves = [] for c in names: col = sdf.filter.Colour.get(c) waves.append( col.mean_wavelength ) srt = np.argsort(waves) cols = [] for i in srt: cols.append(self.colours[names[i]]) if not np.all(np.isfinite(cols)): print("Not all colours finite ({})".format(cols)) return None if len(cols) != len(self.wanted): print("Didn't get all wanted colours") return None return cols def med_temp(self): """Return the median temperature for defined colours.""" temp = [] for key in self.extras.keys(): f = interpolator(key) if f is not None: temp.append( f(self.extras[key]) ) for key in self.colours.keys(): f = interpolator(key) if f is not None and not self.filled[key]: temp.append( f(self.colours[key]) ) if len(temp) > 0: med_t = np.nanmedian(temp) else: med_t = np.nan return med_t def fill_wise(self): """Fill WISE mags from Spitzer and AKARI. These are assumed to be sufficiently accurate that they are considered not to have been 'filled'. """ # IRAC fluxes in uJy if 'WISE3P4' not in self.in_names and 'IRAC3P6' in self.in_names: f = sdf.filter.Filter.get('IRAC3P6') mag36 = f.flux2mag(self.in_dict['IRAC3P6']/1e6) self.in_names = np.append(self.in_names,'WISE3P4') self.in_values = np.append(self.in_values,mag36) self.in_dict['WISE3P4'] = mag36 self.filled['WISE3P4'] = False if 'WISE4P6' not in self.in_names and 'IRAC4P5' in self.in_names: f = sdf.filter.Filter.get('IRAC4P5') mag45 = f.flux2mag(self.in_dict['IRAC4P5']/1e6) self.in_names = np.append(self.in_names,'WISE4P6') self.in_values = np.append(self.in_values,mag45) self.in_dict['WISE4P6'] = mag45 self.filled['WISE4P6'] = False # AKARI fluxes in Jy if 'WISE12' not in self.in_names and 'AKARI9' in self.in_names: f = sdf.filter.Filter.get('AKARI9') mag9 = f.flux2mag(self.in_dict['AKARI9']) self.in_names = np.append(self.in_names,'WISE12') self.in_values = np.append(self.in_values,mag9) self.in_dict['WISE12'] = mag9 self.filled['WISE12'] = False # MIPS 24 fluxes in uJy if 'WISE22' not in self.in_names and 'MIPS24' in self.in_names: f = sdf.filter.Filter.get('MIPS24') mag24 = f.flux2mag(self.in_dict['MIPS24']/1e6) self.in_names = np.append(self.in_names,'WISE22') self.in_values = np.append(self.in_values,mag24) self.in_dict['WISE22'] = mag24 self.filled['WISE22'] = False # AKARI fluxes in Jy if 'WISE22' not in self.in_names and 'AKARI18' in self.in_names: f = sdf.filter.Filter.get('AKARI18') mag18 = f.flux2mag(self.in_dict['AKARI18']) self.in_names = np.append(self.in_names,'WISE22') self.in_values = np.append(self.in_values,mag18) self.in_dict['WISE22'] = mag18 self.filled['WISE22'] = False # IRAS fluxes in Jy if 'WISE12' not in self.in_names and 'IRAS12' in self.in_names: f = sdf.filter.Filter.get('IRAS12') mag12 = f.flux2mag(self.in_dict['IRAS12']) self.in_names = np.append(self.in_names,'WISE12') self.in_values = np.append(self.in_values,mag12) self.in_dict['WISE12'] = mag12 self.filled['WISE12'] = False # IRAS fluxes in Jy if 'WISE22' not in self.in_names and 'IRAS25' in self.in_names: f = sdf.filter.Filter.get('IRAS25') mag25 = f.flux2mag(self.in_dict['IRAS25']) self.in_names = np.append(self.in_names,'WISE22') self.in_values = np.append(self.in_values,mag25) self.in_dict['WISE22'] = mag25 self.filled['WISE22'] = False def fill_wav100(self,bands=['IRAS60','IRAS100','MIPS70','PACS70','PACS100']): """Derive a WAV100 magnitude, using the given bands. Parameters ---------- bands : list, optional Bands that can be used to derive the WAV100 magnitude. """ f = [] for i,name in enumerate(self.in_names): ok = np.where(name == np.array(bands))[0] if len(ok) > 0: filt = sdf.filter.Filter.get(name) if self.in_values[i] <= 0: continue flux_jy = (self.in_values[i]*self.in_units[i]).to('Jy').value wave = np.linspace(25,150,50) _,cc = filt.synthphot( sdf.spectrum.ModelSpectrum(wavelength=wave, fnujy_sr=1/wave**2)) f.append( filt.flux2mag(flux_jy) ) if len(f) > 0: wav100 = np.median(f) self.in_names = np.append(self.in_names,'WAV100') self.in_values = np.append(self.in_values,wav100) self.in_dict['WAV100'] = wav100 def fill_kp(self,bands=['VJ','VT','HP','2MJ','2MH','2MKS','WISE3P4']): """Derive a 'Kepler' magnitude using the given bands. This photometry is to have an optical magnitude to create the KP-WAV100 colour. KP is chosen because no observed photometry from this band exists (in sdb). Parameters ---------- bands : list, optional Bands that can be used to derive the KP magnitude. """ if 'KP' not in self.in_dict.keys(): for f in bands: if f in self.in_dict.keys(): self.in_names = np.append(self.in_names,'KP') self.in_values = np.append(self.in_values,self.in_dict[f]) self.in_dict['KP'] = self.in_dict[f] def skipped(self): """Return a boolean indicating if this object should be skipped. Conditions to be skipped are: - no effective temperature estimate - more than two 'filled' colours (>1 missing phot) """ if not np.isfinite(self.med_temp()): return True elif np.sum(list(self.filled.values())) > 2: return True else: return False def get_data(files): """Get and prepare input data given a list of label files. Files should have sdbid and label columns. The photometry files are obtained by download_data. Whether a file should be skipped is decided in colours.skipped. Parameters ---------- files : list List of csv files, first column sdbid name, second label Returns ------- A tuple of: - data [n_data,n_colurs] - one hot array of labels [n_data,n_classes] - sdbids [n_data] - skip [n_data] (whether this file should be skipped) - label names [n_classes] """ sdbids = [] data = [] labels = [] skip = [] # go through all files to get labels label_names =
np.array([])
numpy.array
#///////////////////////////////////////////////////////////////# #///////////////////////////////////////////////////////////////# #%% # Import Libraries. # Torch. import torch import torchvision import torch.nn as nn import torch.nn.functional as F import torch.optim as optim # Torchvision. import torchvision.transforms as transforms from torchvision import transforms, datasets, models # Numpy, Matplotlib and other utility functions. import numpy as np import matplotlib.pyplot as plt import time import copy import os #///////////////////////////////////////////////////////////////# #///////////////////////////////////////////////////////////////# #%% # Helpher Functions. # Imshow for Tensor. def imshow(img, title=None): img = img.numpy().transpose((1, 2, 0)) mean = np.array([0.5, 0.5, 0.5]) std =
np.array([0.5, 0.5, 0.5])
numpy.array
import unittest import pytest import xarray as xr import pandas as pd from pywatts.core.exceptions.input_not_available import InputNotAvailable from pywatts.modules import RmseCalculator import numpy as np class TestRMSECalculator(unittest.TestCase): def setUp(self) -> None: self.rmse_calculator = RmseCalculator() def tearDown(self) -> None: self.rmse_calculator = None def test_get_params(self): self.assertEqual(self.rmse_calculator.get_params(), {'offset': 0, 'rolling': False, 'window': 24}) def test_set_params(self): self.rmse_calculator.set_params(offset=24, rolling=True, window=2) self.assertEqual(self.rmse_calculator.get_params(), {'offset': 24, 'rolling': True, 'window': 2}) def test_transform_rolling(self): self.rmse_calculator.set_params(rolling=True, window=2) time = pd.to_datetime(['2015-06-03 00:00:00', '2015-06-03 01:00:00', '2015-06-03 02:00:00', '2015-06-03 03:00:00', '2015-06-03 04:00:00']) test_data = xr.Dataset({"testCol": ("time", xr.DataArray([-2, -1, 0, 1, 2]).data), "predictCol1": ("time", xr.DataArray([2, -3, 3, 1, -2]).data), "predictCol2": ("time", xr.DataArray([4, 4, 3, -2, 1]).data), "time": time}) test_result = self.rmse_calculator.transform(y=test_data['testCol'], gt=test_data['testCol'], pred1=test_data['predictCol1'], pred2=test_data['predictCol2']) expected_result = xr.DataArray(np.array([[np.nan, np.nan, np.nan], [0.0, np.sqrt(10), np.sqrt(30.5)], [0.0, np.sqrt(6.5),
np.sqrt(17)
numpy.sqrt
# suppressing messages only works if set before tensorflow is imported import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorx as tx import numpy as np import pytest import tensorflow as tf def test_input_spec(): x = tx.Input() assert x.shape.as_list() == [None, None] x = tx.Input(n_units=1, shape=None) assert x.shape.as_list() == [None, 1] # n_units does not match shape with pytest.raises(ValueError): tx.Input(n_units=1, shape=[]) x = tx.Input(n_units=1, shape=[1]) assert x.shape.as_list() == [1] assert tx.tensor_equal(x(), tf.zeros([1])) with pytest.raises(ValueError): tx.Input(n_units=1, shape=[None, 2]) with pytest.raises(ValueError): tx.Input(n_units=0, shape=[None, 1]) x = tx.Input(n_units=2, shape=[None, None, 2]) assert x.n_units == 2 assert x.shape.as_list() == [None, None, 2] assert tx.tensor_equal(x(), tf.zeros([1, 1, 2])) value = tf.ones([2, 2]) x = tx.Input(value) assert x.shape.as_list() == [None, 2] with pytest.raises(ValueError): tx.Input(value, n_units=3) with pytest.raises(ValueError): tx.Input(value, shape=[None]) with pytest.raises(ValueError): tx.Input(value, shape=[None, 3]) with pytest.raises(ValueError): tx.Input(value, shape=[None, None, 2]) x = tx.Input(value, shape=[None, 2]) assert x.shape.as_list() == [None, 2] x = tx.Input(value) assert x.dtype == value.dtype assert x.dtype == tf.float32 x = tx.Input(value, dtype=tf.int32) assert x.dtype == tf.int32 assert x().dtype == tf.int32 x = tx.Input(value, dtype=tf.int32, cast=False) with pytest.raises(TypeError): x.value = value x = tx.Input(value, n_active=2, n_units=10) assert x.dtype == tf.int64 assert isinstance(x(), tf.SparseTensor) with pytest.raises(ValueError): # [2,2] not compatible with [None,3] tx.Input(value, n_active=3, n_units=10) def test_input_config(): in1 = tx.Input(init_value=tf.ones([2, 2]), n_units=2) cfg1 = in1.config in2 = cfg1() assert tx.tensor_equal(in1(), in2()) def test_input_value(): inputs = tx.Input(n_units=4, dtype=tf.int32, constant=False) assert tx.tensor_equal(inputs.value, tf.zeros([1, 4], dtype=tf.int32)) with pytest.raises(ValueError): inputs.value = np.ones([2, 3], dtype=np.int32) inputs.value = np.ones([2, 4], dtype=np.int32) assert inputs.value is not None assert inputs() is not None assert inputs().dtype == tf.int32 # test sparse input inputs = tx.Input(n_units=4, n_active=2, dtype=tf.int64, constant=False) assert tx.tensor_equal(inputs.value, tf.zeros([0, 2], dtype=tf.int64)) with pytest.raises(ValueError) as ve: inputs.value = [[0, 2, 2]] assert "Invalid shape" in str(ve) inputs.value = [[0, 2]] # create an equivalent sparse input sp_input = inputs() assert isinstance(sp_input, tf.SparseTensor) inputs2 = tx.Input(n_units=4, init_value=sp_input) dense_value = tf.sparse.to_dense(inputs()) dense_value2 = tf.sparse.to_dense(inputs2()) expected = tf.constant([[1, 0, 1, 0]], dtype=np.int64) assert tx.tensor_equal(expected, dense_value) assert tx.tensor_equal(dense_value, dense_value2) def test_input_compile(): inputs = tx.Input(n_units=4, dtype=tf.int32, constant=False) fn = tf.function()(inputs.__call__) assert tx.tensor_equal(fn(), tf.zeros([1, 4], dtype=tf.int32)) def test_input_3d(): # we either create a 3d input or specify the shape data = np.ones([2, 2, 2], dtype=np.float32) x = tx.Input(shape=[None, None, 2], dtype=tf.float32, n_units=2) x.value = data x.value = x() * 2 assert tx.tensor_equal(data * 2, x()) x2 = tx.Input(data) assert x2.n_units == np.shape(data)[-1] assert x2.shape[-1] == np.shape(data)[-1] x2.value = x2() * 2 assert tx.tensor_equal(data * 2, x2()) with pytest.raises(ValueError, match="Invalid shape"): x3 = tx.Input(n_units=2) x3.value = data pytest.fail("Value Error Expected: invalid shape for value set") def test_dynamic_input_graph(): """ When we freeze the graph function with a dynamic input, the function includes a variable value read operation, that reads from the variable defined in the Input layer """ x = tx.Input(tf.zeros([2, 2]), n_units=2, constant=False) y = tx.Linear(x, 2, add_bias=False) graph_function = y.as_function() out1 = graph_function() assert tx.tensor_equal(out1, tf.zeros([2, 2])) x.value = tf.ones([2, 2]) out2 = graph_function() assert tx.tensor_equal(out2, tf.matmul(tf.ones([2, 2]), y.weights)) assert not tx.tensor_equal(out1, out2) def test_activation(): inputs = tx.Input(init_value=tf.ones([2, 2]), n_units=2) output = tx.Activation(inputs, tf.sigmoid) assert tx.shape_equal(inputs.shape, output.shape) def test_shared_state(): inputs = tf.ones([2, 4]) l1 = tx.Linear(inputs, 8) l2 = tx.Linear(inputs, 8, share_state_with=l1) proto = tx.Linear.config(n_units=8, share_state_with=l1) l3 = proto(inputs) assert l1.weights is l2.weights assert l1.bias is l2.bias assert l1.weights is l3.weights assert l1.bias is l3.bias def test_mul(): # also tests graphs with constants inputs = tx.Constant(tf.constant(2), dtype=tf.float64) inputs2 = inputs * 2 assert tx.tensor_equal(inputs2(), inputs() * 2) inputs2_fn = tf.function(inputs2.__call__) assert inputs2_fn() == inputs2() def test_linear_function(): inputs = tx.Constant(tf.ones([2, 4]), dtype=tf.float64) linear = tx.Linear(inputs, n_units=8, dtype=tf.float64) fn = tf.function(linear.__call__) assert tx.tensor_equal(fn(), linear()) def test_linear(): inputs = tx.Constant(tf.ones([2, 4]), dtype=tf.float64) inputs2 = inputs * 2 linear = tx.Linear(inputs, n_units=8, dtype=tf.float64) w = linear.weights b = linear.bias assert w.shape == [4, 8] assert b.shape == [8] assert len(linear.trainable_variables) == 2 t1 = linear() t2 = linear() assert tx.tensor_equal(t1, t2) linear2 = tx.Linear(linear.inputs[0], 8, share_state_with=linear, dtype=tf.float64) t3 = linear2() assert tx.tensor_equal(t1, t3) linear = tx.Linear(inputs, 8, dtype=tf.float64) linear2 = linear.reuse_with(inputs2) assert linear.weights is linear2.weights assert linear.bias is linear2.bias assert tx.tensor_equal(linear() * 2, linear2()) def test_linear_rank3(): val = tf.constant([[[1], [1]], [[2], [2]]]) x1 = tx.Input(val, dtype=tf.float32) x2 = tx.Transpose(x1) assert val.shape[1:] == x1.shape[1:] x1_flat = tx.Reshape(x1, [-1, 1]) linear1 = tx.Linear(x1, n_units=2) linear2 = tx.Linear(x2, weights_shape=[2, 1], weights=linear1.weights, transpose_weights=True) # we cant do this because it changes the definition # of the layer (n_units etc) with pytest.raises(ValueError): linear1.reuse_with(x2, transpose_weights=True) pytest.fail("can't reuse with transpose weights while changing the layer definition") linear_flat = linear1.reuse_with(x1_flat, shape=(4, 2)) x1_tensor = x1() new_shape = x1_tensor.shape[:-1] + [2] linear_flat = tx.Reshape(linear_flat, new_shape) assert tx.tensor_equal(linear1(), linear_flat()) assert tx.tensor_equal(tf.shape(linear2()), [1, 2, 1]) def test_constant_shape(): tensor = tf.ones([3, 3]) const_layer = tx.Constant(tensor) assert const_layer.shape == tensor.shape def test_transpose(): tensor = tf.ones([3, 3]) trans_tensor = tf.transpose(tensor) trans_layer = tx.Transpose(tensor, n_units=3) assert trans_layer.input.shape == [3, 3] assert trans_layer.shape == trans_tensor.shape tensor = tf.ones([2, 3, 4]) perm = [2, 0, 1] trans_tensor = tf.transpose(tensor, perm) trans_layer = tx.Transpose(tensor, perm) assert trans_layer.input.n_units == tensor.shape[-1] assert trans_layer.shape == trans_tensor.shape assert trans_layer.n_units == tensor.shape[perm[-1]] inputs = tx.Input(shape=tf.TensorShape([None, 3])) trans = tx.Transpose(inputs) assert trans.shape[-1] is None assert trans.shape[0] == 3 def test_reshape_shape(): x = tf.reshape(tf.range(9), [3, 3, 1]) x = tx.Input(x, dtype=tf.float32) flat = tx.Reshape(x, [-1, 1]) assert flat.shape[0] is None assert flat.shape[-1] == 1 x = tx.Input(x, shape=[3, 3, 1], dtype=tf.float32) print(x.shape) flat = tx.Reshape(x, [-1, 1]) print(flat.shape) def test_transpose_reshape(): x = tf.reshape(tf.range(9), [3, 3]) x2 = tx.Reshape(tf.range(9), [3, 3]) assert tx.tensor_equal(x2(), x) assert tx.tensor_equal(x2.compute(tf.range(9)), x) t = tf.transpose(x) y = tx.Transpose(t) assert tx.tensor_equal(y(), x) assert tx.tensor_equal(y.compute(x), t) x = tf.reshape(tf.ones([18]), [-1, 3, 2]) x2 = tx.Reshape(tf.ones([18]), [-1, 3, 2]) assert x.shape == [3, 3, 2] assert x.shape == x2.shape def test_mul_shape(): x = tx.Input(n_units=3) m = x * 2 assert m.shape[0] is None assert m.shape[-1] is 3 t = tx.Transpose(x) assert t.shape[-1] is None t = tx.Transpose(x, n_units=3) assert t.shape == [3, 3] m = t * 2 assert m.shape == [3, 3] x = tx.Input(n_units=3) # [None,3] t = tx.Transpose(x) # [None,None] assert t.shape[0] == 3 assert t.shape[-1] is None m = t * 2 # [None,None] # TensorShape([3,None]) != TensorShape([3,None]) # because we don't know what None is assert m.shape[0] == 3 assert m.shape[-1] is None def test_module_shape(): x = tx.Input(n_units=3) t = tx.Transpose(x, n_units=3) mul = t * 2 assert mul.shape == [3, 3] m = tx.Module(output=mul, inputs=x) assert m.n_units == 3 m() def test_wrap_shape(): x = tx.Input(n_units=3) t = tx.Transpose(x, n_units=3) assert t.shape[-1] == 3 w = tx.Wrap(t, wrap_fn=lambda layer: layer * 2) assert w.shape == [3, 3] def test_wrap_transpose(): tensor = tf.reshape(tf.range(9), [3, 3]) t = tf.transpose(tensor) t_layer = tx.Transpose(t, n_units=3) assert t_layer.shape == (3, 3) mul2 = tx.Wrap(t_layer, wrap_fn=lambda layer: layer * 2) mul2_2 = mul2.reuse_with(tensor) assert tx.tensor_equal(mul2_2(), t * 2) assert tx.tensor_equal(mul2(tensor), t * 2) assert tx.tensor_equal(mul2(t), mul2()) assert tx.tensor_equal(mul2.compute(t), mul2()) assert tx.tensor_equal(mul2.compute(t), tf.transpose(t) * 2) assert tx.tensor_equal(t_layer.compute(t), tensor) assert tx.tensor_equal(mul2_2.compute(tensor), mul2_2()) def test_variable_layer(): input_layer = tx.Input([[1]], n_units=1, dtype=tf.float32) var_layer = tx.VariableLayer(input_layer, dtype=tf.float32) init_value = var_layer.variable.value() after_update = var_layer() assert not tx.tensor_equal(init_value, after_update) assert tx.tensor_equal(after_update, var_layer.variable.value()) def test_variable_init_from_input(): input_layer = tx.Input(n_units=1, constant=False) layer_once = tx.VariableLayer(input_layer, update_once=True) layer_var = tx.VariableLayer(input_layer, update_once=False) layer_once.reuse_with(init_from_input=False) data1 = np.array([[1]]) data2 = np.array([[2]]) data3 = np.array([[3]]) input_layer.value = data1 # counter is a tf.Variable assert layer_once.counter.value() == 0 input_layer.value = data2 y1 = layer_once() assert layer_once.counter.value() == 1 assert tx.tensor_equal(layer_once.variable.value(), y1) input_layer.value = data3 y2 = layer_once() assert layer_once.counter.value() == 1 assert tx.tensor_equal(y1, y2) assert tx.tensor_equal(y1, layer_once.variable.value()) # dynamic var layer input_layer.value = data1 assert layer_var.counter.value() == 0 y1 = layer_var() assert layer_var.counter.value() == 1 assert tx.tensor_equal(layer_var.variable.value(), y1) input_layer.value = data2 y2 = layer_var() assert layer_var.counter.value() == 2 assert not tx.tensor_equal(y1, y2) def test_variable_layer_reuse(): input_layer = tx.Input([[1]], n_units=1, dtype=tf.float32) input_layer2 = tx.Input([[1], [2]], n_units=1, dtype=tf.float32) var1 = tx.VariableLayer(shape=[2, 1]) var2 = var1.reuse_with(input_layer) var3 = var1.reuse_with(input_layer2) v0 = var1() v1 = var2() assert not tx.tensor_equal(v0, v1) # v0 inner variable changed when we evaluate v1 v2 = var1() assert not tx.tensor_equal(v0, v1) v3 = var3() assert not tx.tensor_equal(v2, v3) v4 = var1() assert tx.tensor_equal(v3, v4) # variable batch dimension is dynamic its shape will be different assert not tx.same_shape(v4, v1) assert tx.same_shape(v2, v1) def test_standalone_variable_layer(): var_layer = tx.VariableLayer(shape=[4]) assert tx.tensor_equal(np.zeros([4], dtype=np.float32), var_layer()) assert not tx.tensor_equal(np.zeros([4]), var_layer()) assert tx.tensor_equal(tf.zeros([4]), var_layer()) def test_merge_add_shape(): x1 = tx.Input([[2.]], n_units=1, name="x1") x2 = tx.Input([[2.]], n_units=1, name="x2") add = tx.Add(x1, x2) assert len(add.shape) == 2 assert add.shape[-1] == 1 assert add.shape[0] is None def test_module_reuse_order(): x1 = tx.Input([[2.]], n_units=1, name="x1") x2 = tx.Input([[2.]], n_units=1, name="x2") x3 = tx.Input([[1.]], n_units=1, name="x3") h = tx.Add(x2, x3) y = tx.Add(x1, h) module = tx.Module(inputs=[x1, x2, x3], output=y) x1_ = tx.Constant([[2.]], name="x1b") x2_ = tx.Constant([[2.]], name="x2b") m2 = module.reuse_with(x1_, x2_) m1 = module() m2 = m2() assert tx.tensor_equal(m1, m2) def test_attention_rnn_shape(): """ test attention and rnn layers integration with shape inference """ x1 = tx.Input(tf.ones([1, 2, 3]), n_units=3, name="x1") rnn1 = tx.RNN(x1, cell_config=tx.LSTMCell.config(n_units=4), n_units=4, stateful=False) att = tx.MHAttention(rnn1, rnn1, rnn1, n_units=3) rnn1_res = rnn1() att_res = att() assert rnn1.n_units == 4 assert rnn1.n_units == rnn1.cell.n_units assert tx.shape_equal(rnn1.shape[:-1], att.shape[:-1]) assert att.shape[-1] == att.n_units assert tx.shape_equal(rnn1_res.shape[1:], rnn1.shape[1:]) assert tx.shape_equal(att_res.shape[1:], att.shape[1:]) def test_module_rnn(): """ Module + RNN integration """ # test wrapping module around RNN because it has input dependencies that might not be given in the constructor x1 = tx.Input(tf.ones([1, 2, 3]), n_units=3, name="x1") x2 = tx.Input(tf.ones([1, 2, 3]), n_units=3, name="x2") rnn1 = tx.RNN(x1, cell_config=tx.LSTMCell.config(n_units=4), n_units=4, stateful=False) rnn2 = tx.RNN(x1, cell_config=tx.LSTMCell.config(n_units=4), n_units=4, stateful=False) out = tx.Concat(rnn1, rnn2) # add previous state as a dependency to a module m = tx.Module(inputs=x1, output=out, dependencies=rnn1.previous_state + rnn2.previous_state) m2 = m.reuse_with(x2) var_layers = set() for node in m2.graph.dependency_iter(): if isinstance(node, tx.VariableLayer): var_layers.add(node) assert var_layers == set(rnn1.previous_state + rnn2.previous_state) assert tx.tensor_equal(m(), m2()) def test_module_with_attention(): """ Module + Attention integration This also tests Graph indirectly to check if we can add layers whose input layers are the same object (e.g. in self-attention) """ x1 = tx.Input(tf.ones([1, 2, 3]), n_units=3, name="x1") rnn1 = tx.RNN(x1, cell_config=tx.LSTMCell.config(n_units=4), n_units=4, stateful=False) att = tx.MHAttention(rnn1, rnn1, rnn1, n_units=3) m = tx.Module(inputs=x1, output=att, dependencies=rnn1.previous_state) g = tx.Graph.build(inputs=x1, outputs=m, add_missing_inputs=True) fn = g.as_function(ord_inputs=x1, ord_outputs=m) # this returns a tuple out1 = g.compute(tf.ones([1, 2, 3])) # this returns the function result out2 = fn(tf.ones([1, 2, 3])) assert tx.tensor_equal(out1[0], out2) def test_module(): l1 = tx.Input([[1]], n_units=1, dtype=tf.float32) l2 = tx.Input([[1]], n_units=1, dtype=tf.float32) l3 = tx.layer(n_units=1)(lambda x1, x2: tf.add(x1, x2))(l1, l2) l4 = tx.layer(n_units=1)(lambda x1, x2: tf.add(x1, x2))(l1, l2) l5 = tx.Linear(l4, 1) in1 = tx.Input([[1]], n_units=1, dtype=tf.float32) l7 = tx.layer(n_units=1)(lambda x1, x2: tf.add(x1, x2))(l3, in1) l8 = tx.layer(n_units=1)(lambda x1, x2: tf.add(x1, x2))(l7, l5) in2 = tx.Input([[1]], n_units=1, dtype=tf.float32, constant=False) in3 = tx.Input([[1]], n_units=1, dtype=tf.float32) m = tx.Module([l1, l2, in1], l8) with tf.name_scope("module_reuse"): m2 = m.reuse_with(in2, in3, in1) assert tx.tensor_equal(m(), m2()) in2.value = [[3]] assert not tx.tensor_equal(m(), m2()) def test_rnn_cell(): n_inputs = 4 n_hidden = 2 batch_size = 2 x = tx.Input(init_value=tf.ones([batch_size, n_inputs]), constant=False) rnn1 = tx.RNNCell(x, n_hidden) assert rnn1.shape[0] == x.shape[0] assert rnn1.shape[-1] == rnn1.n_units state = rnn1.state state = state[0]() rnn_2 = rnn1.reuse_with(x, state) rnn_3 = rnn1.reuse_with(x) with pytest.raises(TypeError): tx.RNNCell(x, n_hidden, share_state_with=x) pytest.fail("Type Error Expected: inputs cannot share state with RNNCell") res1 = rnn1() res2 = rnn_2() res3 = rnn_3() assert (batch_size, n_hidden) == np.shape(res1) assert tx.tensor_equal(res1, res3) assert not tx.tensor_equal(res1, res2) def test_rnn_layer_config(): x1 = tx.Input(init_value=tf.ones([2, 2]), n_units=2) x_config = x1.config x2 = x_config() assert tx.tensor_equal(x1(), x2()) rnn_cell = tx.RNNCell(input_layer=x1, n_units=3) rnn_proto = rnn_cell.config rnn_cell2 = rnn_proto(x1) assert tx.same_shape(rnn_cell(), rnn_cell2()) assert not tx.tensor_equal(rnn_cell(), rnn_cell2()) def test_gru_cell_module(): n_inputs = 4 n_hidden = 2 batch_size = 2 data = tf.ones([batch_size, 4]) inputs = tx.Input(init_value=data, n_units=n_inputs, dtype=tf.float32) rnn_1 = tx.GRUCell(inputs, n_hidden) fn = rnn_1.as_function(compile=True) fn() # rnn_2 = rnn_1.reuse_with(inputs, rnn_1) # # rnn_3 = rnn_1.reuse_with(inputs, tx.GRUCell.zero_state(rnn_1.n_units)) # # res1 = rnn_1() # res2 = rnn_2() # res3 = rnn_3() # # assert (batch_size, n_hidden) == np.shape(res1) # assert tx.tensor_equal(res1, res3) # assert not tx.tensor_equal(res1, res2) def test_rnn_cell_graph(): n_inputs = 4 n_hidden = 2 batch_size = 2 data1 = tf.ones([batch_size, n_inputs]) inputs = tx.Input(data1) rnn1 = tx.RNNCell(inputs, n_hidden) # if we use missing_inputs=True, extra inputs might be added with pytest.raises(ValueError): tx.Graph.build(inputs=inputs, outputs=rnn1, add_missing_inputs=False) pytest.fail("Value Error Expected: missing inputs") g = tx.Graph.build(inputs=inputs, outputs=rnn1, add_missing_inputs=True) f = g.as_function(ord_inputs=inputs) f(data1) def test_rnn_cell_drop(): n_hidden = 4 inputs1 = tx.Input(np.ones([2, 100]), dtype=tf.float32) inputs2 = tx.Input(np.ones([2, 100]), dtype=tf.float32) with tf.name_scope("wtf"): rnn1 = tx.RNNCell(inputs1, n_hidden, x_dropout=0.5, r_dropout=0.5, u_dropconnect=0.5, w_dropconnect=0.5, regularized=True ) rnn2 = rnn1.reuse_with(inputs2, rnn1) rnn3 = rnn1.reuse_with(inputs2, rnn1) rnn4 = rnn1.reuse_with(inputs2, None, regularized=False) rnn5 = rnn4.reuse_with(inputs2, None, regularized=True) r1, r2, r3, r4, r5 = rnn1(), rnn2(), rnn3(), rnn4(), rnn5() # w is a linear layer from the input but a regularized layer applies dropout to the input, so we have a dropout # in between # without a shared state object, we couldn't rewire graphs, in the case of non-eager we can share a tensor # that is already wired with something (it takes the shape of the input of one layer and creates a mask tensor # shared across dropout instances # Linear layers should have shared states as well, in this case sharing the weights # dropout_state1 = rnn1.w.input_layers[0].layer_state # dropout_state2 = rnn2.w.input_layers[0].layer_state # dropout_state3 = rnn3.w.input_layers[0].layer_state # mask1, mask2, mask3 = dropout_state1.mask, dropout_state2.mask, dropout_state3 assert tx.tensor_equal(r2, r3) assert not tx.tensor_equal(r2, r4) assert not tx.tensor_equal(r4, r5) assert rnn1.dropout_locked assert rnn2.dropout_locked assert hasattr(rnn1, "w") assert hasattr(rnn2, "w") w1: tx.Layer = getattr(rnn1, "w") w2: tx.Layer = getattr(rnn2, "w") assert isinstance(w1, tx.DropConnect) state1, state2 = w1.layer_state, w2.layer_state assert hasattr(state1, "weight_mask") assert hasattr(state2, "weight_mask") # dropout locked == true mask1 = getattr(state1, "weight_mask") mask2 = getattr(state2, "weight_mask") assert tx.tensor_equal(mask1, mask2) def test_to_sparse(): inputs = tx.Input(init_value=tf.ones([2, 100])) linear = tx.Linear(inputs, n_units=100) relu = tx.Activation(linear, tx.relu) sparse = tx.ToSparse(relu) assert tx.shape_equal(sparse.shape, linear.shape) assert tx.shape_equal(sparse.shape, relu.shape) def test_gate(): inputs = tx.Input(init_value=tf.ones([2, 3])) linear = tx.Linear(inputs, n_units=4) nop = tx.Activation(linear, fn=tx.identity) gate_w = tx.Linear(linear, n_units=4, add_bias=True) gate1 = tx.Gate(linear, gate_w) gate2 = gate1.reuse_with(nop) assert tx.shape_equal(gate1.shape, gate2.shape) r1 = gate1() r2 = gate2() assert tx.tensor_equal(r1, r2) def test_coupled_gate(): vocab_size = 4 n_features = 3 seq_size = 2 inputs = tx.Input(init_value=np.array([[2, 0], [1, 2]]), n_units=seq_size, dtype=tf.int32, constant=True) features1 = tx.Lookup(inputs, seq_size, embedding_shape=[vocab_size, n_features]).as_concat() features2 = tx.Lookup(inputs, seq_size, embedding_shape=[vocab_size, n_features]).as_concat() gate_w = tx.Linear(features1, seq_size, add_bias=True) coupled_gate = tx.CoupledGate(features1, features2, gate_w) sp_features1 = tx.ToSparse(features1) assert tx.tensor_equal(tf.sparse.to_dense(sp_features1()), features1()) sp_gate = tx.CoupledGate(sp_features1, features2, gate_w) print(sp_gate()) print(sp_gate.shape) # coupled_gate2 = coupled_gate.reuse_with(sp_features1, features2) r1 = coupled_gate() # r2 = coupled_gate2() # assert tx.tensor_equal(r1, r2) def test_module_gate(): """ Module + Gate Integration """ x1 = tx.Input([[1, 1, 1, 1]], n_units=4, dtype=tf.float32) x2 = tx.Input([[1, 1]], n_units=2, dtype=tf.float32) x1 = tx.Add(x1, x1) gate = tx.Gate(input_layer=x1, gate_input=x2, gate_fn=tf.sigmoid) gate_module = tx.Module([x1, x2], gate) x3 = tx.Input([[1, 1, 1, 1]], n_units=4, dtype=tf.float32) x4 = tx.Input([[1, 1]], n_units=2, dtype=tf.float32) m2 = gate_module.reuse_with(x3, x4) result1 = gate_module() result2 = m2() result3 = gate_module.compute(x3, x4) assert tx.tensor_equal(result1, result2 * 2) assert tx.tensor_equal(result2, result3) def test_gru_cell(): n_inputs = 4 n_hidden = 2 batch_size = 2 data = tf.ones([batch_size, 4]) inputs = tx.Input(init_value=data, n_units=n_inputs, dtype=tf.float32) rnn_1 = tx.GRUCell(inputs, n_hidden) rnn_2 = rnn_1.reuse_with(inputs, rnn_1) # if we don't wipe the memory it reuses it rnn_3 = rnn_1.reuse_with(inputs, tx.GRUCell.zero_state(rnn_1.n_units)) res1 = rnn_1() res2 = rnn_2() res3 = rnn_3() assert (batch_size, n_hidden) == np.shape(res1) assert tx.tensor_equal(res1, res3) assert not tx.tensor_equal(res1, res2) def test_lstm_cell(): n_inputs = 4 n_hidden = 2 batch_size = 2 inputs = tx.Input(np.ones([batch_size, n_inputs], np.float32), n_units=n_inputs, constant=True) rnn1 = tx.LSTMCell(inputs, n_hidden, gate_activation=tf.sigmoid) previous_state = (None, rnn1.state[-1]()) rnn2 = rnn1.reuse_with(inputs, *previous_state) # if we don't wipe the memory, memory will be reused previous_state = (None, tx.LSTMCell.zero_state(rnn1.n_units)) rnn3 = rnn1.reuse_with(inputs, *previous_state) rnn4 = rnn1.reuse_with(inputs) res1 = rnn1() res2 = rnn2() res3 = rnn3() res4 = rnn4() assert (batch_size, n_hidden) == np.shape(res1) assert tx.tensor_equal(res1, res3) assert not tx.tensor_equal(res1, res2) assert tx.tensor_equal(res1, res4) def test_lstm_cell_regularization(): n_inputs = 8 n_hidden = 2 batch_size = 2 inputs = tx.Input(n_units=n_inputs, constant=False) rnn1 = tx.LSTMCell(inputs, n_hidden, u_dropconnect=0.1, w_dropconnect=0.1, name="lstm1") rnn2 = rnn1.reuse_with(inputs, *rnn1.state, regularized=True, name="lstm2" ) rnn3 = rnn2.reuse_with(inputs, *rnn1.state, name="lstm3" ) data = np.ones([batch_size, n_inputs]) inputs.value = data assert tx.tensor_equal(rnn2, rnn3) assert not tx.tensor_equal(rnn1, rnn3) assert not tx.tensor_equal(rnn1, rnn3) state2, state3 = rnn2.w_f.weight_mask, rnn3.w_f.weight_mask assert tx.tensor_equal(state2, state3) w2, w3 = rnn2.w_f, rnn3.w_f assert tx.tensor_equal(w2, w3) w2, w3 = rnn2.w_i, rnn3.w_i assert tx.tensor_equal(w2, w3) w2, w3 = rnn2.w_o, rnn3.w_o assert tx.tensor_equal(w2, w3) w2, w3 = rnn2.w_c, rnn3.w_c assert tx.tensor_equal(w2, w3) def test_lstm_cell_state(): n_inputs = 8 n_hidden = 2 batch = 3 x = tf.ones([batch, n_inputs], dtype=tf.float32) cell = tx.LSTMCell(x, n_hidden, u_dropconnect=0.1, w_dropconnect=0.1, name="cell") state = cell.previous_state assert len(state) == 2 # state = [s() for s in state] state = tx.Graph.build(inputs=None, outputs=cell.state) x = tf.random.uniform([batch, n_inputs]) s = state.compute(x) state.compute(x, *s) def test_rnn_layer(): n_features = 5 embed_size = 4 hidden_dim = 3 seq_size = 3 batch_size = 2 inputs = tx.Input(np.random.random([batch_size, seq_size]), n_units=seq_size, dtype=tf.int32) lookup = tx.Lookup(inputs, seq_size=seq_size, embedding_shape=[n_features, embed_size]) seq = lookup.permute_batch_time() ones_state = tf.ones([batch_size, hidden_dim]) zero_state = (tf.zeros([batch_size, hidden_dim])) rnn_proto = tx.RNNCell.config(n_units=hidden_dim) rnn1 = tx.RNN(seq, cell_config=rnn_proto, previous_state=ones_state, return_state=True) rnn2 = rnn1.reuse_with(seq) # problem with RNN layer is that it uses modules that require # all the params to output the right answer # we need to supply the default values for the rest or all the inputs out1, last1 = rnn1() out2, last2 = rnn2() assert tx.tensor_equal(out1, out2) assert tx.tensor_equal(last1, last2) rnn3 = rnn1.reuse_with(seq, zero_state) rnn4 = rnn3.reuse_with(seq) rnn5 = rnn4.reuse_with(seq, ones_state) assert tx.tensor_equal(rnn2.previous_state, rnn1.previous_state) assert tx.tensor_equal(rnn3.previous_state, rnn4.previous_state) out3, last3 = rnn3() out4, last4 = rnn4() assert tx.tensor_equal(out3, out4) assert tx.tensor_equal(last3, last4) cell_state1 = rnn1.cell.previous_state[0]() cell_state2 = rnn2.cell.previous_state[0]() cell_state3 = rnn3.cell.previous_state[0]() cell_state4 = rnn4.cell.previous_state[0]() assert len(rnn1.cell.previous_state) == 1 assert tx.tensor_equal(cell_state1, cell_state2) assert tx.tensor_equal(cell_state3, cell_state4) assert not tx.tensor_equal(out1, out3) out5, last5 = rnn5() assert tx.tensor_equal(out1, out5) assert tx.tensor_equal(last1, last5) def test_biRNN(): # bidirectional RNN n_features = 5 embed_size = 4 hidden_dim = 3 seq_size = 6 batch_size = 2 inputs = tx.Input(np.random.random([batch_size, seq_size]), n_units=seq_size, dtype=tf.int32) lookup = tx.Lookup(inputs, seq_size=seq_size, embedding_shape=[n_features, embed_size]) seq = lookup.permute_batch_time() rnn_proto = tx.RNNCell.config(n_units=hidden_dim) rnn0 = tx.RNN(seq, cell_config=rnn_proto, stateful=False, return_state=True) # because a stateful rnn0 has a variable layer as input as well rnn_m0 = tx.Module(inputs=rnn0.inputs, output=rnn0) rnn1 = rnn0.reuse_with(seq, reverse=True, stateful=False, return_state=True) # this solves rnn output multiple tensors r01 = rnn_m0.compute(seq(), rnn0.previous_state[0]()) rnn0.reset() r02 = rnn0() assert tx.tensor_equal(r01[0], r02[0]) rnn0_0 = rnn0[0] rnn1_0 = rnn1[0] rnn0 = tx.Wrap(rnn0, wrap_fn=lambda y: y[0], n_units=rnn0.n_units) rnn1 = tx.Wrap(rnn1, wrap_fn=lambda y: y[0], n_units=rnn1.n_units) rnn0_tensor = rnn0() rnn1_tensor = rnn1() rnn0_0_tensor = rnn0_0() print(rnn0_tensor.shape) print(rnn0_0_tensor.shape) # assert tx.same_shape(rnn0(), rnn1()) # assert tx.same_shape(rnn1(), rnn1_0()) def test_batch_norm(): v = tf.random.uniform([3, 4]) x = tx.Input(v, dtype=tf.float32) bn = tx.BatchNorm(x, offset=True, scale=True) moving_mean = bn.moving_mean moving_variance = bn.moving_variance before = bn.moving_mean.value() bn() after = bn.moving_mean.value() assert not tx.tensor_equal(before, after) x.value = tf.random.uniform([3, 4]) bn = bn.reuse_with(x, training=False) before = bn.moving_mean.value() bn() after = bn.moving_mean.value() assert tx.tensor_equal(before, after) assert moving_mean is bn.moving_mean assert moving_variance is bn.moving_variance bn = bn.reuse_with(x, training=True) x.value = tf.random.uniform([3, 4]) before = bn.moving_mean.value() bn() after = bn.moving_mean.value() assert not tx.tensor_equal(before, after) def test_stateful_rnn_layer(): n_features = 5 embed_size = 4 hidden_dim = 3 seq_size = 3 batch_size = 2 inputs = tx.Input(np.random.random([batch_size, seq_size]), n_units=seq_size, dtype=tf.int32) lookup = tx.Lookup(inputs, seq_size=seq_size, embedding_shape=[n_features, embed_size]) seq = lookup.permute_batch_time() rnn_proto = tx.RNNCell.config(n_units=hidden_dim) rnn1 = tx.RNN(seq, cell_config=rnn_proto, stateful=True, return_state=True) lstm1 = tx.RNN(seq, cell_config=tx.LSTMCell.config(n_units=hidden_dim), stateful=True, return_state=True) zero_state0 = [layer() for layer in rnn1.previous_state] assert len(zero_state0) == 1 expected_state = tf.zeros([1, hidden_dim], dtype=tf.float32) assert tx.tensor_equal(zero_state0[0], expected_state) # import logging # logging.getLogger("tensorx").setLevel(logging.DEBUG) out1, state1 = rnn1() tx.Graph.build(inputs=None, outputs=lstm1) # out2, state2 = lstm1() lstm1() # state after single run # zero_state1 = [layer() for layer in ] zero_state1 = rnn1.previous_state[0]() assert tx.tensor_equal(zero_state1, state1) rnn1.reset() reset_state = rnn1.previous_state[0]() assert tx.tensor_equal(reset_state, zero_state0[0]) def test_lookup_config(): inputs = tx.Input(np.array([[2, 0], [1, 2]]), 2, dtype=tf.int64) lookup = tx.Lookup(inputs, None, embedding_shape=[2, 10], batch_size=None, batch_padding=True) assert lookup.config['embedding_shape'] == [2, 10] assert lookup.config['batch_size'] is None assert lookup.config['batch_padding'] is True assert lookup.config['seq_size'] is None def test_lookup_sequence_mismatch(): inputs = tx.Input(np.array([[2, 0], [1, 2]]), 2, dtype=tf.int64) lookup = tx.Lookup(inputs, None, embedding_shape=[2, 10], batch_size=None, batch_padding=True) assert lookup.shape.is_compatible_with(lookup().shape) lookup = tx.Lookup(inputs, 1, embedding_shape=[2, 10], batch_size=None, batch_padding=True) # not validating seq_len differing from input seq_len assert lookup.batch_size is None assert lookup.shape.is_compatible_with(lookup().shape) def test_lookup_sequence_dense(): input_dim = 4 embed_dim = 3 seq_size = 2 batch_size = 3 inputs = tx.Input(np.array([[2, 0], [1, 2]]), 2, dtype=tf.int64) tensor_input = tx.Input(tf.constant([2]), 1, dtype=tf.int64) lookup = tx.Lookup(inputs, seq_size, embedding_shape=[input_dim, embed_dim], batch_size=batch_size, batch_padding=True) lookup_from_tensor = lookup.reuse_with(tensor_input) v1 = lookup() v2 = lookup_from_tensor() assert np.shape(v1) == (batch_size, seq_size, embed_dim) assert np.shape(v2) == (batch_size, seq_size, embed_dim) def test_as_concat_wrap(): n = 10 h = 4 inputs = tx.Input(dtype=tf.int32, constant=False) lookup = tx.Lookup(inputs, seq_size=None, embedding_shape=[n, h]) assert tx.shape_equal(lookup.shape, (None, None, h)) concat = lookup.as_concat() assert tx.shape_equal(concat.shape, (None, None)) lookup = tx.Lookup(inputs, seq_size=2, embedding_shape=[n, h]) concat = lookup.as_concat() assert tx.shape_equal(concat.shape, (None, 2 * 4)) seq1 = [[1, 2], [3, 4]] inputs.value = seq1 concat_tensor = concat() assert concat_tensor.shape[-1] == concat.shape[-1] def test_lookup_dynamic_sequence(): seq1 = [[1, 2], [3, 4]] seq2 = [[1, 2, 3], [4, 5, 6]] n = 10 h = 4 inputs = tx.Input(dtype=tf.int32, constant=False) lookup = tx.Lookup(inputs, seq_size=None, embedding_shape=[n, h]) assert tx.shape_equal(lookup.shape, (None, None, h)) concat = lookup.as_concat() inputs.value = seq1 inputs.value = seq1 inputs() inputs.value = seq2 inputs() inputs.value = seq1 l1 = lookup() inputs.value = seq2 l2 = lookup() inputs.value = seq1 c1 = concat() inputs.value = seq2 c2 = concat() assert np.shape(l1)[-1] == h assert np.shape(l2)[-1] == h assert np.shape(c1)[-1] == h * 2 assert
np.shape(c2)
numpy.shape
import torch.utils.data as data import sys sys.path.append('/home/benkesheng/BMI_DETECT/') from sklearn.metrics import mean_absolute_error from sklearn.svm import SVR from Detected import Image_Processor import torch import torch.nn as nn import torch.utils.data as data from torchvision import models, transforms import numpy as np import os import pandas as pd import cv2 import re import csv from PIL import Image from Data import Img_info import random def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True setup_seed(20) END_EPOCH = 0 mask_model = "/home/benkesheng/BMI_DETECT/pose2seg_release.pkl" keypoints_model = "COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml" # P = Image_Processor(mask_model,keypoints_model) IMG_MEAN = [0.485, 0.456, 0.406] IMG_STD = [0.229, 0.224, 0.225] DEVICE = torch.device("cuda:3") IMG_SIZE = 224 BATCH_SIZE = 64 def _get_image_size(img): if transforms.functional._is_pil_image(img): return img.size elif isinstance(img, torch.Tensor) and img.dim() > 2: return img.shape[-2:][::-1] else: raise TypeError("Unexpected type {}".format(type(img))) class Resize(transforms.Resize): def __call__(self, img): h, w = _get_image_size(img) scale = max(w, h) / float(self.size) new_w, new_h = int(w / scale), int(h / scale) return transforms.functional.resize(img, (new_w, new_h), self.interpolation) class Dataset(data.Dataset): def __init__(self, file, transfrom): self.Pic_Names = os.listdir(file) self.file = file self.transfrom = transfrom def __len__(self): return len(self.Pic_Names) def __getitem__(self, idx): img_name = self.Pic_Names[idx] Pic = Image.open(os.path.join(self.file, self.Pic_Names[idx])) Pic = self.transfrom(Pic) try: ret = re.match(r"\d+?_([FMfm])_(\d+?)_(\d+?)_(\d+).+", img_name) BMI = (int(ret.group(4)) / 100000) / (int(ret.group(3)) / 100000) ** 2 Pic_name = os.path.join(self.file, self.Pic_Names[idx]) return (Pic, Pic_name), BMI except: return (Pic, ''), 10000 transform = transforms.Compose([ Resize(IMG_SIZE), transforms.Pad(IMG_SIZE), transforms.CenterCrop(IMG_SIZE), transforms.ToTensor(), transforms.Normalize(IMG_MEAN, IMG_STD) ]) dataset = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_train', transform) # val_dataset = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_val', transform) test_dataset = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_test', transform) train_size = int(0.8 * len(dataset)) val_size = len(dataset) - train_size train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size]) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=True) # Vgg16 # Pred_Net = torchvision.models.vgg16(pretrained=True) # for param in Pred_Net.parameters(): # param.requires_grad = True # # Pred_Net.classifier = nn.Sequential( # nn.Linear(25088, 1024), # nn.ReLU(True), # nn.Linear(1024, 512), # nn.ReLU(True), # nn.Linear(512, 256), # nn.ReLU(True), # nn.Linear(256, 20), # nn.ReLU(True), # nn.Linear(20, 1) # ) # Resnet101 Pred_Net = models.resnet101(pretrained=True,num_classes= 1) print(Pred_Net) for param in Pred_Net.parameters(): param.requires_grad = True # Pred_Net.fc = nn.Sequential( # nn.Linear(2048, 1024), # nn.ReLU(True), # nn.Linear(1024, 512), # nn.ReLU(True), # nn.Linear(512, 256), # nn.ReLU(True), # nn.Linear(256, 20), # nn.ReLU(True), # nn.Linear(20, 1) # ) Pred_Net = Pred_Net.to(DEVICE) criterion = nn.MSELoss() optimizer = torch.optim.Adam([ {'params': Pred_Net.parameters()} ], lr=0.0001) def train(model, device, train_loader, epoch): model.train() runing_loss = 0.0 for idx, ((x, n), y) in enumerate(train_loader, 0): x, y = x.to(device), y.to(device) optimizer.zero_grad() y_pred = model(x) # print(y_pred.shape) y = torch.unsqueeze(y, 1) loss = criterion(y_pred.double(), y.double()) loss.backward() optimizer.step() runing_loss += loss.item() print('loss:', loss.item()) print('Train Epoch:{}\t RealLoss:{:.6f}'.format(epoch, runing_loss / len(train_loader))) def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(
np.abs((y_true - y_pred) / y_true)
numpy.abs
# python/example1.py -- Python version of an example application that shows # how to use the various widget classes. For a C++ implementation, see # '../src/example1.cpp'. # # NanoGUI was developed by <NAME> <<EMAIL>>. # The widget drawing code is based on the NanoVG demo application # by <NAME>. # # All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE.txt file. import nanogui import math import time import gc import numpy as np from nanogui import Color, ColorPicker, Screen, Window, GroupLayout, \ BoxLayout, ToolButton, Label, Button, Widget, \ Popup, PopupButton, CheckBox, MessageDialog, \ VScrollPanel, ImagePanel, ImageView, ComboBox, \ ProgressBar, Slider, TextBox, ColorWheel, Graph, \ GridLayout, Alignment, Orientation, TabWidget, \ IntBox, RenderPass, Shader, Texture, Matrix4f from nanogui import glfw, icons # A simple counter, used for dynamic tab creation with TabWidget callback counter = 1 class TestApp(Screen): def __init__(self): super(TestApp, self).__init__((1024, 768), "NanoGUI Test") self.shader = None window = Window(self, "Button demo") window.set_position((15, 15)) window.set_layout(GroupLayout()) Label(window, "Push buttons", "sans-bold") b = Button(window, "Plain button") def cb(): print("pushed!") b.set_callback(cb) b = Button(window, "Styled", icons.FA_ROCKET) b.set_background_color(Color(0, 0, 1.0, 0.1)) b.set_callback(cb) Label(window, "Toggle buttons", "sans-bold") b = Button(window, "Toggle me") b.set_flags(Button.Flags.ToggleButton) def change_cb(state): print("Toggle button state: %s" % str(state)) b.set_change_callback(change_cb) Label(window, "Radio buttons", "sans-bold") b = Button(window, "Radio button 1") b.set_flags(Button.Flags.RadioButton) b = Button(window, "Radio button 2") b.set_flags(Button.Flags.RadioButton) Label(window, "A tool palette", "sans-bold") tools = Widget(window) tools.set_layout(BoxLayout(Orientation.Horizontal, Alignment.Middle, 0, 6)) ToolButton(tools, icons.FA_CLOUD) ToolButton(tools, icons.FA_FAST_FORWARD) ToolButton(tools, icons.FA_COMPASS) ToolButton(tools, icons.FA_UTENSILS) Label(window, "Popup buttons", "sans-bold") popup_btn = PopupButton(window, "Popup", icons.FA_FLASK) popup = popup_btn.popup() popup.set_layout(GroupLayout()) Label(popup, "Arbitrary widgets can be placed here") CheckBox(popup, "A check box") # popup right popup_btn = PopupButton(popup, "Recursive popup", icons.FA_CHART_PIE) popup_right = popup_btn.popup() popup_right.set_layout(GroupLayout()) CheckBox(popup_right, "Another check box") # popup left popup_btn = PopupButton(popup, "Recursive popup", icons.FA_DNA) popup_btn.set_side(Popup.Side.Left) popup_left = popup_btn.popup() popup_left.set_layout(GroupLayout()) CheckBox(popup_left, "Another check box") window = Window(self, "Basic widgets") window.set_position((200, 15)) window.set_layout(GroupLayout()) Label(window, "Message dialog", "sans-bold") tools = Widget(window) tools.set_layout(BoxLayout(Orientation.Horizontal, Alignment.Middle, 0, 6)) def cb2(result): print("Dialog result: %i" % result) b = Button(tools, "Info") def cb(): dlg = MessageDialog(self, MessageDialog.Type.Information, "Title", "This is an information message") dlg.set_callback(cb2) b.set_callback(cb) b = Button(tools, "Warn") def cb(): dlg = MessageDialog(self, MessageDialog.Type.Warning, "Title", "This is a warning message") dlg.set_callback(cb2) b.set_callback(cb) b = Button(tools, "Ask") def cb(): dlg = MessageDialog(self, MessageDialog.Type.Warning, "Title", "This is a question message", "Yes", "No", True) dlg.set_callback(cb2) b.set_callback(cb) import os import sys os.chdir(sys.path[0]) try: icons_data = nanogui.load_image_directory(self.nvg_context(), "icons") except: try: icons_data = nanogui.load_image_directory(self.nvg_context(), "../icons") except: icons_data = nanogui.load_image_directory(self.nvg_context(), "../resources/icons") Label(window, "Image panel & scroll panel", "sans-bold") image_panel_btn = PopupButton(window, "Image Panel") image_panel_btn.set_icon(icons.FA_IMAGES) popup = image_panel_btn.popup() vscroll = VScrollPanel(popup) img_panel = ImagePanel(vscroll) img_panel.set_images(icons_data) popup.set_fixed_size((245, 150)) img_window = Window(self, "Selected image") img_window.set_position((710, 15)) img_window.set_layout(GroupLayout()) img_view = ImageView(img_window) img_view.set_image(Texture(icons_data[0][1] + ".png", Texture.InterpolationMode.Trilinear, Texture.InterpolationMode.Nearest)) img_view.center() def cb(i): print("Selected item %i" % i) img_view.set_image(Texture(icons_data[i][1] + ".png", Texture.InterpolationMode.Trilinear, Texture.InterpolationMode.Nearest)) img_panel.set_callback(cb) Label(window, "File dialog", "sans-bold") tools = Widget(window) tools.set_layout(BoxLayout(Orientation.Horizontal, Alignment.Middle, 0, 6)) b = Button(tools, "Open") valid = [("png", "Portable Network Graphics"), ("txt", "Text file")] def cb(): result = nanogui.file_dialog(valid, False) print("File dialog result = %s" % result) b.set_callback(cb) b = Button(tools, "Save") def cb(): result = nanogui.file_dialog(valid, True) print("File dialog result = %s" % result) b.set_callback(cb) Label(window, "Combo box", "sans-bold") ComboBox(window, ["Combo box item 1", "Combo box item 2", "Combo box item 3"]) Label(window, "Check box", "sans-bold") def cb(state): print("Check box 1 state: %s" % state) chb = CheckBox(window, "Flag 1", cb) chb.set_checked(True) def cb(state): print("Check box 2 state: %s" % state) CheckBox(window, "Flag 2", cb) Label(window, "Progress bar", "sans-bold") self.progress = ProgressBar(window) Label(window, "Slider and text box", "sans-bold") panel = Widget(window) panel.set_layout(BoxLayout(Orientation.Horizontal, Alignment.Middle, 0, 20)) slider = Slider(panel) slider.set_value(0.5) slider.set_fixed_width(80) text_box = TextBox(panel) text_box.set_fixed_size((60, 25)) text_box.set_value("50") text_box.set_units("%") text_box.set_font_size(20) text_box.set_alignment(TextBox.Alignment.Right) def cb(value): text_box.set_value("%i" % int(value * 100)) slider.set_callback(cb) def cb(value): print("Final slider value: %i" % int(value * 100)) slider.set_final_callback(cb) window = Window(self, "Misc. widgets") window.set_position((425, 15)) window.set_layout(GroupLayout()) tab_widget = TabWidget(window) layer = Widget(tab_widget) layer.set_layout(GroupLayout()) tab_widget.append_tab("Color Wheel", layer) Label(layer, "Color wheel widget", "sans-bold") ColorWheel(layer) layer = Widget(tab_widget) layer.set_layout(GroupLayout()) tab_widget.append_tab("Function Graph", layer) Label(layer, "Function graph widget", "sans-bold") graph = Graph(layer, "Some function") graph.set_header("E = 2.35e-3") graph.set_footer("Iteration 89") values = [0.5 * (0.5 * math.sin(i / 10.0) + 0.5 * math.cos(i / 23.0) + 1) for i in range(100)] graph.set_values(values) # Dummy tab used to represent the last tab button. plus_id = tab_widget.append_tab("+", Widget(tab_widget)) def tab_cb(index): if index == plus_id: global counter # When the "+" tab has been clicked, simply add a new tab. tab_name = "Dynamic {0}".format(counter) layer_dyn = Widget(tab_widget) layer_dyn.set_layout(GroupLayout()) new_id = tab_widget.insert_tab(tab_widget.tab_count() - 1, tab_name, layer_dyn) Label(layer_dyn, "Function graph widget", "sans-bold") graph_dyn = Graph(layer_dyn, "Dynamic function") graph_dyn.set_header("E = 2.35e-3") graph_dyn.set_footer("Iteration {0}".format(index*counter)) values_dyn = [0.5 * abs((0.5 * math.sin(i / 10.0 + counter)) + (0.5 * math.cos(i / 23.0 + 1 + counter))) for i in range(100)] graph_dyn.set_values(values_dyn) counter += 1 # We must invoke the layout manager after adding tabs dynamically self.perform_layout() tab_widget.set_selected_id(new_id) tab_widget.set_callback(tab_cb) window = Window(self, "Grid of small widgets") window.set_position((425, 300)) layout = GridLayout(Orientation.Horizontal, 2, Alignment.Middle, 15, 5) layout.set_col_alignment( [Alignment.Maximum, Alignment.Fill]) layout.set_spacing(0, 10) window.set_layout(layout) Label(window, "Floating point :", "sans-bold") float_box = TextBox(window) float_box.set_editable(True) float_box.set_fixed_size((100, 20)) float_box.set_value("50") float_box.set_units("GiB") float_box.set_default_value("0.0") float_box.set_font_size(16) float_box.set_format("[-]?[0-9]*\\.?[0-9]+") Label(window, "Positive integer :", "sans-bold") int_box = IntBox(window) int_box.set_editable(True) int_box.set_fixed_size((100, 20)) int_box.set_value(50) int_box.set_units("Mhz") int_box.set_default_value("0") int_box.set_font_size(16) int_box.set_format("[1-9][0-9]*") int_box.set_spinnable(True) int_box.set_min_value(1) int_box.set_value_increment(2) Label(window, "Checkbox :", "sans-bold") cb = CheckBox(window, "Check me") cb.set_font_size(16) cb.set_checked(True) Label(window, "Combo box :", "sans-bold") cobo = ComboBox(window, ["Item 1", "Item 2", "Item 3"]) cobo.set_font_size(16) cobo.set_fixed_size((100, 20)) Label(window, "Color picker :", "sans-bold") cp = ColorPicker(window, Color(255, 120, 0, 255)) cp.set_fixed_size((100, 20)) def cp_final_cb(color): print( "ColorPicker Final Callback: [{0}, {1}, {2}, {3}]".format(color.r, color.g, color.b, color.w) ) cp.set_final_callback(cp_final_cb) # setup a fast callback for the color picker widget on a new window # for demonstrative purposes window = Window(self, "Color Picker Fast Callback") window.set_position((425, 300)) layout = GridLayout(Orientation.Horizontal, 2, Alignment.Middle, 15, 5) layout.set_col_alignment( [Alignment.Maximum, Alignment.Fill]) layout.set_spacing(0, 10) window.set_layout(layout) window.set_position((425, 500)) Label(window, "Combined: ") b = Button(window, "ColorWheel", icons.FA_INFINITY) Label(window, "Red: ") red_int_box = IntBox(window) red_int_box.set_editable(False) Label(window, "Green: ") green_int_box = IntBox(window) green_int_box.set_editable(False) Label(window, "Blue: ") blue_int_box = IntBox(window) blue_int_box.set_editable(False) Label(window, "Alpha: ") alpha_int_box = IntBox(window) def cp_fast_cb(color): b.set_background_color(color) b.set_text_color(color.contrasting_color()) red = int(color.r * 255.0) red_int_box.set_value(red) green = int(color.g * 255.0) green_int_box.set_value(green) blue = int(color.b * 255.0) blue_int_box.set_value(blue) alpha = int(color.w * 255.0) alpha_int_box.set_value(alpha) cp.set_callback(cp_fast_cb) self.perform_layout() self.render_pass = RenderPass([self]) self.render_pass.set_clear_color(0, Color(0.3, 0.3, 0.32, 1.0)) if nanogui.api == 'opengl': vertex_shader = """ #version 330 uniform mat4 mvp; in vec3 position; void main() { gl_Position = mvp * vec4(position, 1.0); }""" fragment_shader = """ #version 330 out vec4 color; uniform float intensity; void main() { color = vec4(vec3(intensity), 1.0); }""" elif nanogui.api == 'gles2' or nanogui.api == 'gles3': vertex_shader = """ precision highp float; uniform mat4 mvp; attribute vec3 position; void main() { gl_Position = mvp * vec4(position, 1.0); }""" fragment_shader = """ precision highp float; uniform float intensity; void main() { gl_FragColor = vec4(vec3(intensity), 1.0); }""" elif nanogui.api == 'metal': vertex_shader = """ using namespace metal; struct VertexOut { float4 position [[position]]; }; vertex VertexOut vertex_main(const device packed_float3 *position, constant float4x4 &mvp, uint id [[vertex_id]]) { VertexOut vert; vert.position = mvp * float4(position[id], 1.f); return vert; }""" fragment_shader = """ using namespace metal; fragment float4 fragment_main(const constant float &intensity) { return float4(intensity); }""" self.shader = Shader( self.render_pass, # An identifying name "A simple shader", vertex_shader, fragment_shader ) self.shader.set_buffer("indices", np.array([0, 1, 2, 2, 3, 0], dtype=np.uint32)) self.shader.set_buffer("position", np.array( [[-1, -1, 0], [1, -1, 0], [1, 1, 0], [-1, 1, 0]], dtype=np.float32 )) self.shader.set_buffer("intensity", np.array(0.5, dtype=np.float32)) def draw(self, ctx): self.progress.set_value(math.fmod(time.time() / 10, 1)) super(TestApp, self).draw(ctx) def draw_contents(self): if self.shader is None: return self.render_pass.resize(self.framebuffer_size()) s = self.size() with self.render_pass: mvp = Matrix4f.scale([s[1] / float(s[0]) * 0.25, 0.25, 0.25]) @ \ Matrix4f.rotate([0, 0, 1], glfw.getTime()) self.shader.set_buffer("mvp",
np.float32(mvp)
numpy.float32
# Copyright 2022 The jax3d Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions.""" from typing import Callable, List, Optional import chex import flax import jax import jax.numpy as jnp import jax3d.projects.nesf as j3d from jax3d.projects.nesf.nerfstatic.metrics import metrics from jax3d.projects.nesf.nerfstatic.nerf import colormap from jax3d.projects.nesf.nerfstatic.utils import types from jax3d.projects.nesf.utils.typing import PathLike from jax3d.projects.nesf.utils.typing import Tree, f32, i32 # pylint: disable=g-multiple-import import numpy as np from PIL import Image # This cannot be a chex.dataclass, b/c this is not supported by msgpack. @flax.struct.dataclass class TrainState: optimizer: flax.optim.Optimizer @chex.dataclass class ReconstructionStats: """Reconstruction model statistics for the losses and metrics.""" coarse_model: types.ReconstructionModelStats fine_model: types.ReconstructionModelStats regularization: types.LossTerm ray_regularization: types.LossTerm @property def total(self) -> float: return (self.coarse_model.total + self.fine_model.total + self.regularization.value + self.ray_regularization.value) @chex.dataclass class SemanticStats: """Semantic Model statistics for the losses and metrics.""" semantic_model: types.SemanticModelStats regularization: types.LossTerm @property def total(self) -> float: semantic_model_total = jnp.array(self.semantic_model.total) assert not semantic_model_total.shape, semantic_model_total.shape regularization_value = self.regularization.value assert not regularization_value.shape, regularization_value.shape return semantic_model_total + regularization_value def render_image(render_fn: Callable[[int, types.Rays], types.RenderResult], rays: types.Rays, normalize_disp, chunk) -> types.RenderedRays: """Render all the pixels of an image (in test mode). This function ensures that 'rays' is evenly split across all hosts if using a multi-host evaluation setup. While each host receives the same super batch, only a subset of rays are evaluated by devices attached to this host. This only works if 'rays' is identical on each host. This function ensures a maximum of 'chunk' rays are processed at one time. This upper bounds the memory usage of the underlying devices. WARNING: !! HERE THERE BE DRAGONS !! The following chunk of code efficiently uses a TPU Pod slice for inference. Let 'num_local_devices' be the number of TPU cores attached to this host and 'num_total_devices' be the total number of TPU cores across all hosts. This computation depends on the following assumptions, 1) Each TPU host has the same value for 'rays'. 2) render_fn: $INPUT -> $OUTPUT is such that $INPUT is of shape [num_local_devices, batch_size_per_device, ...] and $OUTPUT is of shape [num_local_devices, num_total_devices, batch_size_per_device]. 3) Each $INPUT[i, j] is operated upon independently of $INPUT[i', j'] for all choices of (i, j), (i', j'). Communication within the same batch, such as via BatchNorm, is not allowed. 4) $OUTPUT[0] == ... == $OUTPUT[num_local_devices-1]. 5) $OUTPUT fits in host RAM. If any of the above are violated, this code will do The Wrong Thing (TM). TODO(duckworthd): Consider migrating pmap(all_gather(..)) inside of this function. Doing so will ensure that the assumptions above are hidden from the caller. Args: render_fn: function, jit-ed render function. rays: a `Rays` namedtuple, the rays to be rendered. The shape of this objext *must* be [H W C], i.e. it contains rays for a single image. normalize_disp: bool, if true then normalize `disp` to [0, 1]. chunk: int, the size of chunks to render sequentially. Returns: A types.RenderedRays object. """ if len(rays.batch_shape) != 2: raise ValueError("rays must have exactly rank 3 (i.e. 2 batch dimensions). " "Expected batch shape: [H W] " f"Actual batch shape: {rays.batch_shape}") # Transform 'rays' into a bag-of-rays representation. height, width = rays.batch_shape num_rays = height * width rays = jax.tree_map(lambda r: r.reshape((num_rays, -1)), rays) process_index = jax.process_index() results = [] for i in range(0, num_rays, chunk): # pylint: disable=cell-var-from-loop # Split 'rays' into smaller, bite-sized bits that fit in device memory. # Result is of shape, # [chunk, ...] # Requires Assumption (3): no cross-batch communication. chunk_rays = jax.tree_map(lambda r: r[i:i + chunk], rays) chunk_size = chunk_rays.origin.shape[0] # Pad pseudo-examples at the end of this 'chunk_rays' to ensure that each # device is operating on an ndarray of the same shape. # # Requires Assumption (3): no cross-batch communication. rays_remaining = chunk_size % jax.device_count() if rays_remaining != 0: padding = jax.device_count() - rays_remaining chunk_rays = jax.tree_map( lambda r: jnp.pad(r, ((0, padding), (0, 0)), mode="edge"), chunk_rays) else: padding = 0 # After padding the number of chunk_rays is always divisible by # process_count. rays_per_process = chunk_rays.origin.shape[0] // jax.process_count() # Identify the subset of 'chunk_rays' that this host is responsible for. # If each host is processing the same value for 'chunk_rays', then we can # reconstruct the full 'render_fn(chunk_rays)' at the end. start = process_index * rays_per_process stop = start + rays_per_process # Reshape chunk_rays to shape, # [num_local_devices, batch_size_per_device, ...] # Requires Assumption (1): Each host has same input 'rays'. chunk_rays = jax.tree_map(lambda r: shard(r[start:stop]), chunk_rays) # Apply inference function. Result is of shape, # [num_local_devices, num_total_devices, batch_size_per_device, ...] # Requires Assumption (1): Each host has same input 'rays'. # Requires Assumption (2): Input/Output shapes. fine = render_fn(chunk_rays)[0].fine sigma_grid = fine.sigma_grid # Remove sigma_grid from fine to avoid error when reshapping. fine.sigma_grid = None # Undo sharding operation. We select $OUTPUT[0] for each result as # $OUTPUT[0] == ... == $OUTPUT[num_local_devices-1]. # After unshard(), result is of shape, # [chunk, ...] # Requires Assumption (4): Each device returns the same value. # Requires Assumption (5): Output fits in RAM. fine = jax.tree_map(lambda x: unshard(x[0], padding=padding), fine) results.append(fine) # pylint: enable=cell-var-from-loop # Merge each list of ndarrays into one ndarray of shape [num_rays, ...]. # Signature: `tree_multimap(fn, *arrs: RenderedRays) -> RenderedRays` # fn has signature `fn(*arrs: Array) -> Array` results = jax.tree_multimap( lambda *arrs: jnp.concatenate(arrs, axis=0), *results, ) # Reshape each ndarray to [height, width, num_channels]. results = jax.tree_map(lambda x: x.reshape(height, width, -1), results) # Normalize disp for visualization for scenes that aren't scaled in [0, 1]. if normalize_disp: disp = results.disparity # Zero disparity is ignored for normalization since those are only produced # by masked padding pixels. min_disp = jnp.min(disp[jnp.nonzero(disp)]) max_disp = jnp.max(disp) disp = (disp - min_disp) / (max_disp - min_disp) results = results.replace(disparity=disp) # Sigma_grid is the same for every ray in this batch as the rays belong to # a single image from a single scene. if sigma_grid is not None: # the first 3 axes are batch, height, width which are repeated across all # sigma_grids. results.sigma_grid = sigma_grid[0, 0, 0] return results # TODO(svora): Merge predict_2d_semantic with render_image when finalized. def predict_2d_semantic( render_pfn: Callable[..., types.RenderResult], rng: j3d.RandomState, rays: types.Rays, nerf_variables: Tree[jnp.ndarray], nerf_sigma_grid: f32["1 x y z c"], chunk: int) -> types.RenderedRays: """Render all the pixels of an image (in test mode) for semantic decoder. Args: render_pfn: Rendering function. Arguments must be the following, rng - jax.random.PRNGKey. Random key. rays - types.Rays. Rays to predict semantics for. nerf_variables - Tree[jnp.ndarray]. NeRF variables. nerf_sigma_grid - f32["1 x y z c"]. NeRF density grid. rng: Random number generator. rays: a `Rays` object. The rays to be rendered. The shape of this objext *must* be [H W C], i.e. it contains rays for a single image. nerf_variables: NeRF model variables. nerf_sigma_grid: NeRF sigma grid. chunk: Maximum number of rays to process at a time. Returns: A types.RenderedRays object. """ if len(rays.batch_shape) != 2: raise ValueError("rays must have exactly rank 3 (i.e. 2 batch dimensions). " "Expected batch shape: [H W] " f"Actual batch shape: {rays.batch_shape}") # Transform 'rays' into a bag-of-rays representation. height, width = rays.batch_shape num_rays = height * width rays = jax.tree_map(lambda r: r.reshape((num_rays, -1)), rays) process_index = jax.process_index() results = [] for i in range(0, num_rays, chunk): # pylint: disable=cell-var-from-loop # Split 'rays' into smaller, bite-sized bits that fit in device memory. # Result is of shape, # [chunk, ...] # Requires Assumption (3): no cross-batch communication. chunk_rays = jax.tree_map(lambda r: r[i:i + chunk], rays) chunk_size = chunk_rays.origin.shape[0] # Pad pseudo-examples at the end of this 'chunk_rays' to ensure that each # device is operating on an ndarray of the same shape. # # Requires Assumption (3): no cross-batch communication. rays_remaining = chunk_size % jax.device_count() if rays_remaining != 0: padding = jax.device_count() - rays_remaining chunk_rays = jax.tree_map( lambda r: jnp.pad(r, ((0, padding), (0, 0)), mode="edge"), chunk_rays) else: padding = 0 # After padding the number of chunk_rays is always divisible by # process_count. rays_per_process = chunk_rays.origin.shape[0] // jax.process_count() # Identify the subset of 'chunk_rays' that this host is responsible for. # If each host is processing the same value for 'chunk_rays', then we can # reconstruct the full 'render_pfn(chunk_rays)' at the end. start = process_index * rays_per_process stop = start + rays_per_process # Reshape chunk_rays to shape, # [num_local_devices, batch_size_per_device, ...] # Requires Assumption (1): Each host has same input 'rays'. chunk_rays = jax.tree_map(lambda r: shard(r[start:stop]), chunk_rays) # Apply inference function. Result is of shape, # [num_local_devices, num_total_devices, batch_size_per_device, ...] # Requires Assumption (1): Each host has same input 'rays'. # Requires Assumption (2): Input/Output shapes. fine = render_pfn(rng.next(), chunk_rays, nerf_variables, nerf_sigma_grid) # Undo sharding operation. We select $OUTPUT[0] for each result as # $OUTPUT[0] == ... == $OUTPUT[num_local_devices-1]. # After unshard(), result is of shape, # [chunk, ...] # Requires Assumption (4): Each device returns the same value. # Requires Assumption (5): Output fits in RAM. fine = jax.tree_map(lambda x: unshard(x[0], padding=padding), fine) results.append(fine) # pylint: enable=cell-var-from-loop # Merge each list of ndarrays into one ndarray of shape [num_rays, ...]. # Signature: `tree_multimap(fn, *arrs: RenderedRays) -> RenderedRays` # fn has signature `fn(*arrs: Array) -> Array` results = jax.tree_multimap( lambda *arrs: jnp.concatenate(arrs, axis=0), *results, ) # Reshape each ndarray to [height, width, num_channels]. results = jax.tree_map(lambda x: x.reshape(height, width, -1), results) return results def predict_3d_semantic( render_pfn: Callable[..., f32["d D n k"]], rng: j3d.RandomState, sample_points: types.SamplePoints, nerf_variables: Tree[jnp.ndarray], nerf_sigma_grid: f32["1 x y z c"], chunk: int, num_semantic_classes: int, ) -> f32["N k"]: """Predict semantic categories for 3D points. Args: render_pfn: a function resulting from jax.pmap(f), where f returns the result of an jax.lax.all_gather(). The arguments to this function must be, rng - jax.random.PRNGKey. Random key. sample_points - types.SamplePoints. Points to predict semantics for. batch_shape will be [d n k]. nerf_variables - Tree[jnp.ndarray]. NeRF variables. nerf_sigma_grid - f32["1 x y z c"]. NeRF density grid. The return value of this function's dimensions correspond to, d - number of local devices D - number of total devices n - number of points per device k - number of semantic categories rng: Random number generator. sample_points: Query points to predict semantic categories for. Batch shape must be [N 1]. nerf_variables: NeRF variables for a single scene. nerf_sigma_grid: NeRF sigma grid for a single scene. chunk: maximum number of points per call to render_pfn. num_semantic_classes: number of expected semantic classes. Returns: Semantic logits for all points in 'sample_points'. """ if not (len(sample_points.batch_shape) == 2 and sample_points.batch_shape[-1] == 1): raise ValueError( f"sample_points must have exactly rank 3 (i.e. 2 batch dimensions). " f"Expected batch shape: [N 1] " f"Actual batch shape: {sample_points.batch_shape}") # Helper functions for readability. def pad_first_dimension(x, n): padding = [(0, n)] + [(0, 0)] * (len(x.shape)-1) return jnp.pad(x, padding, mode="edge") num_points, _ = sample_points.batch_shape process_index = jax.process_index() results = [] for i in range(0, num_points, chunk): # pylint: disable=cell-var-from-loop # Split 'sample_points' into smaller, bite-sized bits that fit in device # memory. Result is of shape, # [chunk, ...] chunk_sample_points: types.SamplePoints = ( jax.tree_map(lambda r: r[i:i+chunk], sample_points)) chunk_size = chunk_sample_points.batch_shape[0] # Pad pseudo-examples at the end of this 'chunk_sample_points' to ensure # that each device is operating on an ndarray of the same shape. sample_points_remaining = chunk_size % jax.device_count() if sample_points_remaining != 0: padding = jax.device_count() - sample_points_remaining chunk_sample_points = jax.tree_map( lambda r: pad_first_dimension(r, padding), chunk_sample_points) else: padding = 0 # After padding the number of chunk_sample_points is always divisible by # process_count. sample_points_per_process = ( chunk_sample_points.batch_shape[0] // jax.process_count()) # Identify the subset of 'chunk_sample_points' that this host is # responsible for. If each host is processing the same value for # 'chunk_sample_points', then we can reconstruct the full # 'render_pfn(chunk_sample_points)' at the end. start = process_index * sample_points_per_process stop = start + sample_points_per_process # Reshape chunk_sample_points to shape, # [num_local_devices, batch_size_per_device, ...] chunk_sample_points = jax.tree_map(lambda r: shard(r[start:stop]), chunk_sample_points) # Apply inference function. Result is of shape, # [num_local_devices, num_total_devices, batch_size_per_device, ...] predictions = render_pfn(rng.next(), chunk_sample_points, nerf_variables, nerf_sigma_grid) # Undo sharding operation. We select $OUTPUT[0] for each result as # $OUTPUT[0] == ... == $OUTPUT[num_local_devices-1]. # After unshard(), result is of shape, # [chunk, ...] predictions = jax.tree_map(lambda x: unshard(x[0], padding=padding), predictions) results.append(predictions) # pylint: enable=cell-var-from-loop # In case there aren't any points to render, return something of a meaningful # shape. if not results: return jnp.zeros((0, num_semantic_classes)) # Merge each list of ndarray into one ndarray of shape # [num_sample_points, ...]. results = jax.tree_multimap(lambda *arrs: jnp.concatenate(arrs, axis=0), *results) return results def save_img(img, path: PathLike): """Save an image to disk. Note clipping and rescaling is only performed if the image type is float. Otherwise the image is saved to disk as is. Args: img: jnp.ndarry, [height, width, channels], float32 images will be clipped to [0, 1] before saved to path. path: string, path to save the image to. """ with j3d.Path(path).open("wb") as imgout: if img.dtype == np.float32: img = np.array((np.clip(img, 0., 1.) * 255.).astype(jnp.uint8)) else: img = np.array(img) assert np.amax(img) <= 255, f"Saved image has max {np.amax(img)} > 255." Image.fromarray(img).save(imgout, format="PNG") def learning_rate_decay(step, lr_init, lr_final, max_steps, lr_delay_steps=0, lr_delay_mult=1): """Continuous learning rate decay function. The returned rate is lr_init when step=0 and lr_final when step=max_steps, and is log-linearly interpolated elsewhere (equivalent to exponential decay). If lr_delay_steps>0 then the learning rate will be scaled by some smooth function of lr_delay_mult, such that the initial learning rate is lr_init*lr_delay_mult at the beginning of optimization but will be eased back to the normal learning rate when steps>lr_delay_steps. Args: step: int, the current optimization step. lr_init: float, the initial learning rate. lr_final: float, the final learning rate. max_steps: int, the number of steps during optimization. lr_delay_steps: int, the number of steps to delay the full learning rate. lr_delay_mult: float, the multiplier on the rate when delaying it. Returns: lr: the learning for current step 'step'. """ if lr_delay_steps > 0: # A kind of reverse cosine decay. delay_rate = lr_delay_mult + (1 - lr_delay_mult) * np.sin( 0.5 * np.pi *
np.clip(step / lr_delay_steps, 0, 1)
numpy.clip
import sys import pygame import numpy as np from pygame.locals import * from random import randint class GameOfLife: def __init__(self): pygame.display.set_caption("Game of Life") pygame.init() pygame.mixer.quit() self.font = pygame.font.SysFont("Arial", 18) self.fps = 60 self.pause = False self.screen_width = 600 self.screen_height = 600 self.grid_size = 10 self.grid_x_size = int(self.screen_width / self.grid_size) self.grid_y_size = int(self.screen_height / self.grid_size) self.grid = np.zeros((self.grid_x_size, self.grid_y_size)) self.screen = pygame.display.set_mode((self.screen_width, self.screen_height)) self.clock = pygame.time.Clock() self.cell_skin = pygame.Surface((self.grid_size, self.grid_size)) self.cell_skin.fill((255, 255, 255)) self.initial_conditions() def initial_conditions(self): self.grid = np.random.randint(2, size=(self.grid_x_size, self.grid_y_size)) def on_grid_random(self): x = randint(0, self.screen_width - self.grid_size) y = randint(0, self.screen_height - self.grid_size) return (x//self.grid_size * self.grid_size, y//self.grid_size * self.grid_size) def check_alive(self, position, current_state): alive_neighbors = self.check_neighborhood(position) if alive_neighbors < 2 or alive_neighbors > 3: return 0 elif alive_neighbors == 3: return 1 return current_state def check_neighborhood(self, position, radius=1): filter_size = 2 * radius + 1 filter_matrix = np.ones((filter_size, filter_size)) filter_matrix[radius][radius] = 0 alive_cells = 0 for pos, filter_value in
np.ndenumerate(filter_matrix)
numpy.ndenumerate
# -*- coding: UTF-8 -*- import math import pymatgen as mg from ase.utils import gcd, basestring from ase.build import bulk from copy import deepcopy from numpy.linalg import norm, solve from pymatgen.analysis.graphs import MoleculeGraph, StructureGraph from pymatgen.core.structure import Molecule from pymatgen.io.vasp.inputs import Poscar from ase import io import networkx.algorithms.isomorphism as iso import numpy as np import networkx as nx from pymatgen.core.lattice import Lattice from pymatgen.core.sites import PeriodicSite # used for deciding which atoms are bonded from pymatgen.analysis.local_env import JmolNN import os import sys import time from functools import wraps from collections import Counter def from_ASE_to_pymatgen(working_dir, images): """ change ASE structure to pymatgen structure """ file_name = working_dir + "/temp.POSCAR.vasp" io.write(file_name, images) modify_poscar(file_name) slab = mg.Structure.from_file(file_name) os.remove(file_name) return slab def modify_poscar(file): """ Change the file to compliant POSCAR. """ index = 0 prev_file = open(file, 'r') new_file = open(file+'.new', 'w') for line in prev_file: if index == 0: tmp = line new_file.write('slab\n') elif index == 5: #new_file.write(tmp) new_file.write(line) else: new_file.write(line) index = index+1 prev_file.close() new_file.close() os.remove(file) os.rename(file+'.new', file) def surface(lattice, indices, layers, tol=1e-10, termination=0): """Create surface from a given lattice and Miller indices. lattice: Atoms object or str Bulk lattice structure of alloy or pure metal. Note that the unit-cell must be the conventional cell - not the primitive cell. One can also give the chemical symbol as a string, in which case the correct bulk lattice will be generated automatically. indices: sequence of three int Surface normal in Miller indices (h,k,l). layers: int Number of equivalent layers of the slab. termination: int The termination "number" for your crystal. The same value will not produce the same termination for different symetrically identical bulk structures, but changing this value allows your to explore all the possible terminations for the bulk structure you provide it. note: this code is not well tested """ indices = np.asarray(indices) if indices.shape != (3,) or not indices.any() or indices.dtype != int: raise ValueError('%s is an invalid surface type' % indices) if isinstance(lattice, basestring): lattice = bulk(lattice, cubic=True) h, k, l = indices h0, k0, l0 = (indices == 0) if termination != 0: # changing termination import warnings warnings.warn('Work on changing terminations is currently in ' 'progress. Code may not behave as expected.') lattice1 = deepcopy(lattice) cell = lattice1.get_cell() pt = [0, 0, 0] millers = list(indices) for index, item in enumerate(millers): if item == 0: millers[index] = 10 ** 9 # make zeros large numbers elif pt == [0, 0, 0]: # for numerical stability pt = list(cell[index] / float(item) / np.linalg.norm(cell[index])) h1, k1, l1 = millers N = np.array(cell[0] / h1 + cell[1] / k1 + cell[2] / l1) n = N / np.linalg.norm(N) # making a unit vector normal to cut plane d = [np.round(np.dot(n, (a - pt)), 4) for a in lattice.get_scaled_positions()] d = set(d) d = sorted(list(d)) d = [0] + d # distances of atoms from cut plane displacement = (h * cell[0] + k * cell[1] + l * cell[2]) * d[termination] lattice1.positions += displacement lattice = lattice1 if h0 and k0 or h0 and l0 or k0 and l0: # if two indices are zero if not h0: c1, c2, c3 = [(0, 1, 0), (0, 0, 1), (1, 0, 0)] if not k0: c1, c2, c3 = [(0, 0, 1), (1, 0, 0), (0, 1, 0)] if not l0: c1, c2, c3 = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] else: p, q = ext_gcd(k, l) a1, a2, a3 = lattice.cell # constants describing the dot product of basis c1 and c2: # dot(c1,c2) = k1+i*k2, i in Z k1 = np.dot(p * (k * a1 - h * a2) + q * (l * a1 - h * a3), l * a2 - k * a3) k2 = np.dot(l * (k * a1 - h * a2) - k * (l * a1 - h * a3), l * a2 - k * a3) if abs(k2) > tol: i = -int(round(k1 / k2)) # i corresponding to the optimal basis p, q = p + i * l, q - i * k a, b = ext_gcd(p * k + q * l, h) c1 = (p * k + q * l, -p * h, -q * h) c2 = np.array((0, l, -k)) // abs(gcd(l, k)) c3 = (b, a * p, a * q) surf = build(lattice, np.array([c1, c2, c3]), layers, tol) return surf def ext_gcd(a, b): """ Extended Euclidean Algorithm. Find the result for ax + by = gcd(a, b). Parameters ---------- a: int b: int """ if b == 0: return 1, 0 elif a % b == 0: return 0, 1 else: x, y = ext_gcd(b, a % b) return y, x - y * (a // b) def build(lattice, basis, layers, tol): """ Transform the structure to original surface based on basis. Parameters ---------- basis: 3 * 3 matrix, [[a, b, c], ...] the basis vectors of the target surfaces. lattice: Atoms object or str Bulk lattice structure of alloy or pure metal. Note that the unit-cell must be the conventional cell - not the primitive cell. One can also give the chemical symbol as a string, in which case the correct bulk lattice will be generated automatically. layers: int Number of equivalent layers of the slab. """ surf = lattice.copy() scaled = solve(basis.T, surf.get_scaled_positions().T).T scaled -= np.floor(scaled + tol) surf.set_scaled_positions(scaled) surf.set_cell(np.dot(basis, surf.cell), scale_atoms=True) surf *= (1, 1, layers) return surf def modify_cell(structure): """ This is the final step of a molecular reconstruction step, and would align z direction to be perpendicular to the surface Parameters --------- structure: Atoms object or str In this structure, the z direction might not be perpendicular to the target surface. """ slab = structure.copy() a1, a2, a3 = slab.cell slab.set_cell([a1, a2, np.cross(a1, a2) * np.dot(a3, np.cross(a1, a2)) / norm(np.cross(a1, a2)) ** 2]) # Change unit cell to have the x-axis parallel with a surface vector # and z perpendicular to the surface: a1, a2, a3 = slab.cell slab.set_cell([(norm(a1), 0, 0), (np.dot(a1, a2) / norm(a1), np.sqrt(norm(a2) ** 2 - (np.dot(a1, a2) / norm(a1)) ** 2), 0), (0, 0, norm(a3))], scale_atoms=True) slab.pbc = (True, True, False) scaled = slab.get_scaled_positions() scaled[:, :2] %= 1 slab.set_scaled_positions(scaled) return slab def handle_with_molecules(slab_move, delta, down=True): """ Move some very tiny fragments of broken molecule to the other side. This is a preparation step for the move_method, which could minimize the limitations. Parameters ---------- slab_move: Atoms structure slab_move is the original surfaces that is generated by ase library. delta: list of double, [delta_x, delta_y, delta_z] Add or subtract the delta (cart_coords) to the tiny broken molecules to initially repair parts of molecules. down: bool True: Add a delta to the tiny broken molecules that are located at the bottom, False: subtract a delta to the tiny broken molecules that are located at the top. """ slab_sg = StructureGraph.with_local_env_strategy(slab_move, JmolNN()) slab_supercell_sg = slab_sg * (3, 3, 1) slab_sg_graph = nx.Graph(slab_supercell_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (slab_sg_graph)) super_subgraphs = [] for subgraph in all_super_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: super_subgraphs.append(subgraph) for subgraph in super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(slab_supercell_sg.structure[n].specie)) molecules = [] for subgraph in super_subgraphs: coords = [slab_supercell_sg.structure[n].coords for n in subgraph.nodes()] # get the frac_cood of every atom for every molecules coord_z_list = [slab_move.lattice.get_fractional_coords( coord)[-1] for coord in coords] if down is True: temp = [coord_z < 0.5 for coord_z in coord_z_list] else: temp = [coord_z > 0.5 for coord_z in coord_z_list] if not all(temp) or len(coords) > 6: continue species = [slab_supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) # molecules are the list of molecules that need to be moved move_list = [] move_sites = reduced_sites(molecules, slab_move) for move_site in move_sites: for i, atom in enumerate(slab_move): if atom.is_periodic_image(move_site): move_list.append(i) break coords_move = slab_move.cart_coords species_move = slab_move.species slab_move.remove_sites(move_list) for i in move_list: if down is True: new_coord = np.array(coords_move[i]) + np.array(delta) else: new_coord = np.array(coords_move[i]) - np.array(delta) slab_move.append(species_move[i], new_coord, coords_are_cartesian=True) return slab_move def Find_Broken_Molecules(slab, sg, species_intact, coords_intact, unique_bulk_subgraphs): """ Use molecular identification method to find those molecules in the surface that are different from that in the bulk. Parameters ---------- slab: Atoms structure The surface that is generated by ase library and might have broken molecules. sg: list of Molecules Unique Molecules in bulk Structure. species_intact: list, ['specie_1', 'specie_2', ...] A list of atomic species of intact molecules. coords_intact: list, [[coord_1_1, coord_1_2, coord_1_3], ...] A list of atomic cart_coords of intact molecules. unique_bulk_subgraphs: list of graphs A list of intact molecules' graphs. Note that every graph is this list is unique """ slab_sg = StructureGraph.with_local_env_strategy(slab, JmolNN()) # enlarge the cell to a (3 * 3 * 1) super_cell slab_supercell_sg = slab_sg * (3, 3, 1) different_subgraphs_in_slab, slab_molecules = \ get_slab_different_subgraphs(slab_supercell_sg, unique_bulk_subgraphs) slab_molecules = double_screen(slab_molecules, sg) # the molecules in slab_original would be the template #print("The number of molecules that need to be fixed : " + # str(len(slab_molecules))) # slab_molecules are the molecules that are broken and need to be fixed delete_sites = reduced_sites(slab_molecules, slab) # delete_list is the list of broken atoms delete_list = [] for delete_site in delete_sites: for i, atom in enumerate(slab): if atom.is_periodic_image(delete_site): delete_list.append(i) break species_all = slab.species coords_all = slab.cart_coords for i, atom in enumerate(slab): temp = [i == delete for delete in delete_list] if not any(temp): species_intact.append(species_all[i]) coords_intact.append(coords_all[i]) delete_list = [] # remove intact molecules in the slab for convenience #print("Delete all atoms!") for i, atom in enumerate(slab): delete_list.append(i) slab.remove_sites(delete_list) sites = [] for slab_molecule in slab_molecules: for curr_site in slab_molecule: curr_site = mg.PeriodicSite(curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) tmp = [curr_site.is_periodic_image(site) for site in sites] if not any(tmp): sites.append(curr_site) for site in sites: # add the broken molecules into the system slab.append(species=site.specie, coords=site.coords, coords_are_cartesian=True) return slab def get_broken_molecules(self, bulk_subgraphs, use_weights=False): # compare each molecule in slab to each molecule in the bulk, # get rid of isomorohic, molecules store the brokens """ Retrieve broken_subgraphs as molecules Will return nonunique molecules, duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). Returns: ------- : list of nonunique broken Molecules in Structure """ # creating a supercell is an easy way to extract # molecules (and not, e.g., layers of a 2D crystal) # without adding extra logic supercell_sg = self*(3, 3, 1) # make undirected to find connected subgraphs supercell_sg.graph = nx.Graph(supercell_sg.graph) # find subgraphs all_subgraphs = list(nx.connected_component_subgraphs(supercell_sg.graph)) # discount subgraphs that lie across *supercell* boundaries # these will subgraphs representing crystals molecule_subgraphs = [] for subgraph in all_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: molecule_subgraphs.append(subgraph) # add specie names to graph to be able to test for isomorphism for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) # now define how we test for isomorphism def node_match(n1, n2): return n1['specie'] == n2['specie'] def edge_match(e1, e2): if use_weights: return e1['weight'] == e2['weight'] else: return True nm = iso.categorical_node_match("specie", "ERROR") # remove complete molecules in subgraphs different_subgraphs = [] start = time.time() for subgraph in molecule_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=nm) for g in bulk_subgraphs] if not any(already_present): different_subgraphs.append(subgraph) # get Molecule objects for each subgraph molecules = [] for subgraph in different_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) # shift so origin is at center of mass #molecule = molecule.get_centered_molecule() molecules.append(molecule) return molecules # now define how we test for isomorphism def node_match(n1, n2): """the strategy for node matching in is_isomorphic. Parameters ------ n1, n2 : node Returns: ------- True of false : bool based on whether the species of two nodes are the same. """ return n1['specie'] == n2['specie'] def get_bulk_molecules(self, use_weights=False): # get rid of the repetitve molecule in bulk, only left with unique molecule###### """ Retrieve subgraphs as molecules, useful for extracting molecules from periodic crystals. Will only return unique molecules, not any duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). Parameters: ------ use_weights: (bool) If True, only treat subgraphs as isomorphic if edges have the same weights. Typically, this means molecules will need to have the same bond lengths to be defined as duplicates, otherwise bond lengths can differ. This is a fairly robust approach, but will treat e.g. enantiomers as being duplicates. Returns: ------- list of unique Molecules in Structure """ # creating a supercell is an easy way to extract # molecules (and not, e.g., layers of a 2D crystal) # without adding extra logic # enlarge the structureGraph object to a supercell supercell_sg = self*(3, 3, 1) # make undirected to find connected subgraphs # create networkx undirected graph object to supercell_sg.graph = nx.Graph(supercell_sg.graph) # store the input graph # find subgraphs all_subgraphs = list(nx.connected_component_subgraphs( supercell_sg.graph)) # add specie names to graph to be able to test for isomorphism for subgraph in all_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) # now define how we test for isomorphism def node_match(n1, n2): return n1['specie'] == n2['specie'] def edge_match(e1, e2): if use_weights: return e1['weight'] == e2['weight'] else: return True nm = iso.categorical_node_match("specie", "ERROR") # prune duplicate subgraphs unique_subgraphs = [] for subgraph in all_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_subgraphs] if not any(already_present): unique_subgraphs.append(subgraph) # get Molecule objects for each subgraph molecules = [] for subgraph in unique_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) molecules.append(molecule) return molecules, unique_subgraphs #################convert to undirected mx.graph and then determine if isomorphic############### def isomorphic_to(self, other): """ Checks if the graphs of two MoleculeGraphs are isomorphic to one another. In order to prevent problems with misdirected edges, both graphs are converted into undirected nx.Graph objects. Parameters: ---------- other: MoleculeGraph object to be compared. Returns: ------- bool """ if self.molecule.composition != other.molecule.composition: return False else: self_undir = self.graph.to_undirected() other_undir = other.graph.to_undirected() nm = iso.categorical_node_match("specie", "ERROR") isomorphic = nx.is_isomorphic(self_undir, other_undir, node_match=nm) return isomorphic def reduced_sites(molecules, slab): """ Find atoms that appear again due to the periodicity. Parameters: ----------- molecules: List[molecule]. All molecules that might be within or out of the slab boundary. slab: ASE structure. Slab structure. Returns: -------- sites: List[atom]. """ sites = [] for molecule in molecules: for curr_site in molecule: curr_site = PeriodicSite( curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) tmp = [curr_site.is_periodic_image(site) for site in sites] if not any(tmp): sites.append(curr_site) return sites def is_isomorphic(molecule1, molecule2): """ Determin whether two molecules are the same. Parameters: ----------- molecule1 and molecule2. Returns: -------- bool. """ return isomorphic_to(MoleculeGraph.with_local_env_strategy(molecule1, JmolNN()), MoleculeGraph.with_local_env_strategy(molecule2, JmolNN())) def double_screen(slab_molecules, bulk_molecules): """ Double check with bulk if there is any molecule already present in bulk """ delete_list = [] for bulk_molecule in bulk_molecules: for i, slab_molecule in enumerate(slab_molecules): if is_isomorphic(bulk_molecule, slab_molecule): delete_list.append(i) tmp = [x for i, x in enumerate(slab_molecules) if i not in delete_list] return tmp def print_run_time(func): """ One wrapper that output the run_time of a funtion. """ @wraps(func) def wrapper(*args, **kw): local_time = time.time() func(*args, **kw) print('Current Function [%s] run time is %.2fs' % (func.__name__, time.time() - local_time)) return wrapper def updatePOSCAR(output_file): """This function is used to correct the output file (POSCAR) of ase. Parameters: ---------- output_file : str The file of surface written by the write function of ase. Returns: ------- file : str The file that is corrected. """ with open(output_file, 'r') as original_file: lines = original_file.readlines() line1 = lines[0] lines.insert(5, " " + line1) with open(output_file, 'w') as final_file_1: for i in range(len(lines)): final_file_1.writelines(lines[i]) structure = mg.Structure.from_file(output_file) lattice = Lattice(structure.lattice.matrix) frac_coords = lattice.get_fractional_coords(structure.cart_coords) for i in range(frac_coords.shape[0]): for j in range(frac_coords.shape[1]): if abs(frac_coords[i][j] - 1) < 1e-5: frac_coords[i][j] = 1 if abs(frac_coords[i][j] - 0) < 1e-5: frac_coords[i][j] = 0 with open(output_file, 'r') as final_file_2: lines = final_file_2.readlines() lines[7] = 'Direct' + '\n' for i in range(np.array(frac_coords).shape[0]): lines[8 + i] = " " + str(np.array(frac_coords)[i, :][0]) + ' ' + str(np.array(frac_coords)[i, :][1]) +\ ' ' + str(np.array(frac_coords)[i, :][2]) + '\n' with open(output_file, 'w') as final_file: for i in range(len(lines)): final_file.writelines(lines[i]) def edge_match(e1, e2): """the strategy for edge matching in is_isomorphic. Parameters: ---------- e1, e2 : edge). Returns: ------- True or false : bool based on whether the length of bonds are the same or close to each other. """ return abs(e1['weight'] - e2['weight']) / e2['weight'] < 1e-5 def get_bulk_subgraphs(bulk_structure_sg): """ Get all subgraphs of molecules that within or crosses the boundary of original bulk. Parameters: ----------- bulk_structure_sg: StructureGraph. The structure graph of bulk with local env strategy. Returns: -------- super_graphs : List[graph]. Represent the subgraphs of molecules that within or crosses the boundary of original bulk. molecules : List[molecule]. Molecules that are correlated to the subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) super_subgraphs = [] for subgraph in all_super_subgraphs: in_boundary = any([d['to_jimage'] == (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if in_boundary: super_subgraphs.append(subgraph) for subgraph in super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) for subgraph in super_subgraphs: if len(subgraph) == 1 and "H" in [str(bulk_structure_sg.structure[n].specie) for n in subgraph.nodes()]: super_subgraphs.remove(subgraph) continue molecules = [] for subgraph in super_subgraphs: coords = [bulk_structure_sg.structure[n].coords for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return super_subgraphs, molecules def get_bulk_subgraphs_v2(bulk_structure_sg): """ Get all subgraphs of molecules that within or crosses the boundary of original bulk. Parameters: ----------- bulk_structure_sg: StructureGraph. The structure graph of bulk with local env strategy. Returns: -------- super_graphs : List[graph]. Represent the subgraphs of molecules that within or crosses the boundary of original bulk. molecules : List[molecule]. Molecules that are correlated to the subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) for subgraph in all_super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) molecules = [] for subgraph in all_super_subgraphs: coords = [bulk_structure_sg.structure[n].coords for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return all_super_subgraphs, molecules def get_bulk_subgraphs_v3(slab_first, bulk_structure_sg): """ Get all subgraphs of molecules that within or crosses the boundary of original bulk and generate HashGraph to modify atoms' positions. Parameters: ----------- slab_first: pymatgen structure. Original slab structure that cleaved by ASE bulk_structure_sg: StructureGraph. The structure graph of bulk with local env strategy. Returns: -------- delta_cart: List[float]. c_difference between two adajacent layers. super_graphs : List[graph]. Represent the subgraphs of molecules that within or crosses the boundary of original bulk. molecules : List[molecule]. Molecules that are correlated to the subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) for subgraph in all_super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) frac_coods = [0] * len(bulk_structure_sg.structure) initial_index = -100 molecules = [] for subgraph in all_super_subgraphs: HashGraph = {} for u, v, d in subgraph.edges(data=True): change_z = list(d['to_jimage'])[-1] if change_z != 0: change_z = 1 if slab_first.lattice.get_fractional_coords(bulk_structure_sg.structure[u].coords)[-1] > slab_first.lattice.get_fractional_coords(bulk_structure_sg.structure[v].coords)[-1] else -1 try: HashGraph[str(u)].append([str(v), change_z]) except KeyError: HashGraph[str(u)] = [initial_index, [str(v), change_z]] try: HashGraph[str(v)].append([str(u), -change_z]) except KeyError: HashGraph[str(v)] = [initial_index, [str(u), -change_z]] first_node = list(HashGraph.keys())[0] count = 1 HashGraph[first_node][0] = 0 Pending_node = [first_node] Pending_node_2 = [] while(count < len(list(HashGraph.keys()))): for node in Pending_node: for value in HashGraph[node][1: ]: if HashGraph[value[0]][0] == initial_index: count += 1 HashGraph[value[0]][0] = HashGraph[node][0] + value[1] Pending_node_2.append(value[0]) Pending_node = deepcopy(Pending_node_2) Pending_node_2 = [] # min_z = min([value[0] for value in HashGraph.values()]) min_z = int(Counter([value[0] for value in HashGraph.values()]).most_common(1)[0][0]) delta = np.array(slab_first.lattice.matrix[-1]) for key in HashGraph.keys(): HashGraph[key][0] -= min_z coords = [bulk_structure_sg.structure[n].coords + delta * HashGraph[str(n)][0] for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return delta, all_super_subgraphs, molecules def get_bulk_subgraphs_unique(bulk_structure_sg): """ get unique subgraphs of bulk based on graph algorithm. This function would only return unique molecules and its graphs, but not any duplicates present in the crystal. (A duplicate defined as an isomorphic crystals. Parameters: ----------- bulk_structure_sg : nx.SturctureGraph class, this one is actually the supercell one that is equal to(3, 3, 3) * unit cell. Returns: -------- unique_super_graphs : (list) [graph, ...], represent the unique subgraphs in the supercell and expecially in the boundary of supercell. molecules : (list) [molecule, ...], represent the molecules that are correlated to the unque subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) super_subgraphs = [] for subgraph in all_super_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: super_subgraphs.append(subgraph) for subgraph in super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) unique_super_subgraphs = [] for subgraph in super_subgraphs: if len(subgraph) == 1 and "H" in [str(bulk_structure_sg.structure[n].specie) for n in subgraph.nodes()]: continue already_present = [nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_super_subgraphs] if not any(already_present): unique_super_subgraphs.append(subgraph) molecules = [] for subgraph in unique_super_subgraphs: coords = [bulk_structure_sg.structure[n].coords for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return unique_super_subgraphs, molecules def get_slab_different_subgraphs(slab_supercell_sg, unique_super_bulk_subgraphs): """this function is used to find all the subgraphs in slab that are different from those in bulk. Parameters: ---------- slab_supercell_sg : nx.StructureGraph, the graph of the whole slabs. Note: In order to thoughtoutly describe the graph, the slab_supercell_sg = (3, 3, 1) * slab_sg unique_super_bulk_subgraphs : list. Returns: ------- different_subgraphs : list [different_subgraph, ...], which is the list of subgraphs that are different from those in bulk. In this function, we would only find the different subgraphs based on its species. slab_molecules : list [slab_molecule, ...], slab_molecule is the mg.Molecule of diffenert_subgraphs. """ slab_supercell_sg_graph = nx.Graph(slab_supercell_sg.graph) all_subgraphs = list(nx.connected_component_subgraphs (slab_supercell_sg_graph)) molecule_subgraphs = [] for subgraph in all_subgraphs: intersets_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersets_boundary: molecule_subgraphs.append(subgraph) #print("molecule_subgraphs : ", len(molecule_subgraphs)) for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str( slab_supercell_sg.structure[n].specie)) nm = iso.categorical_node_match("specie", "ERROR") different_subgraphs = [] for subgraph in molecule_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=nm) for g in unique_super_bulk_subgraphs] if not any(already_present): different_subgraphs.append(subgraph) slab_molecules = [] for subgraph in different_subgraphs: coords = [slab_supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [slab_supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) slab_molecules.append(molecule) return different_subgraphs, slab_molecules def belong_to(species1, species2): """ Determine whether species1 are totally included by species2. """ if len(species1) > len(species2): return False i = 0 species_1 = species1[:] species_2 = species2[:] while i < len(species_1): find = False for j in range(len(species_2)): if species_1[i] == species_2[j]: del species_1[i] find = True del species_2[j] break if find is False: return False return True def length_belong_to(weights1, weights2): """ Determine whether weights1 are totally included by weights2 weights are the list [weight, weight, ...] of one node """ if len(weights1) > len(weights2): return False i = 0 weights_1 = weights1[:] weights_2 = weights2[:] while i < len(weights_1): find = False for j in range(len(weights_2)): if abs((weights_1[i] - weights_2[j]) / weights_2[j]) < 1e-5: del weights_1[i] find = True del weights_2[j] break if find is False: return False return True def weights_all_belong_to(all_weight1, all_weight2, species1, species2): """ Determine whether one graph is totally included by another graph by comparing species and weights. """ if len(all_weight1) > len(all_weight2): return False i = 0 account = 0 total = len(all_weight1) all_weight_1 = all_weight1[:] all_weight_2 = all_weight2[:] species_1 = species1[:] species_2 = species2[:] while i < len(all_weight_1): find = False for j in range(len(all_weight_2)): if length_belong_to(all_weight_1[i], all_weight_2[j]) and species_1[i] == species_2[j]: del all_weight_1[i] del species_1[i] del species_2[j] account += 1 del all_weight_2[j] find = True break if not find: i += 1 if account >= 2.0 / 3.0 * total: return True return False def brokenMolecules_and_corresspoundingIntactMolecules(new_different_subgraphs, unique_super_subgraphs): """ NOT used in current reconstruction method!!! Determine the intact molecules that each molecule (broken or intact) belongs to by compcomparing the species and weights of broken molecules and intact molecules. Parameters: ----------- new_different_subgraphs: List[subgraph]. Subgraphs of all molecules. unique_super_subgraphs: List[subgraph]. Subgraphs of all bulk's unique molecules. Returns: -------- qualified_subgraphs: List[subgraph]. List of subgraph of molecules in the raw slab. unique_super_subgraphs: List[subgraph]. List of subgraph of corresspounding intact molecules. The length of qualified_unique_subgraphs should be the same as the length of qualified_subgraphs. """ qualified_subgraphs = [] qualified_unique_subgraphs = [] # account = 1 #print("trying to find the connection between broken molecules " # "and intact molecules") for subgraph in new_different_subgraphs: subgraph_species = [] weights_all = [] for n, nbrs in subgraph.adjacency(): subgraph_species.append(subgraph.node[n]['specie']) weights = [] for nbr, eattr in nbrs.items(): weights.append(eattr['weight']) weights_all.append(weights) find = False for unique_subgraph in unique_super_subgraphs: unique_subgraph_species = [] unique_weights_all = [] for n, nbrs in unique_subgraph.adjacency(): unique_subgraph_species.append( unique_subgraph.node[n]['specie']) weights = [] for nbr, eattr in nbrs.items(): weights.append(eattr['weight']) unique_weights_all.append(weights) if not belong_to(subgraph_species, unique_subgraph_species): continue else: if not weights_all_belong_to(weights_all, unique_weights_all, subgraph_species, unique_subgraph_species): continue else: find = True qualified_subgraphs.append(subgraph) qualified_unique_subgraphs.append(unique_subgraph) break if find is False: print("can't find the qualified subgraphs") sys.exit() return qualified_subgraphs, qualified_unique_subgraphs def fix_broken_molecules(qualified_subgraphs, qualified_unique_subgraphs, bulk_super_structure_sg, slab_supercell_sg, slab, c_frac_min, fixed_c_negative=False): """ NOT used in the current reconstruction method!!! Fix broken molecules based on graph theory. After determine the affiliation between all molecules in raw slabs and intact molecules in the original bulk, this function would replace those broken molecules with intact molecules. Parameters: ----------- qualified_subgraphs: List[subgraph]. List of subgraphs of all molecules in the raw molecules. qualified_unique_subgraphs: List[subgraph]. Each element in the list is the subgraph of corresspounding intact molecule of "qualified_subgraphs" in the previous list. bulk_super_structure_sg: StructureGraph. Structure Graph of supercell (3 x 3 x 3) of original bulk. slab_supercell_sg: StructureGraph. Structure Graph of supercell (3 x 3 x 3) of raw slab. slab: ASE structure. Raw slab after ASE cleaving. c_frac_min: float. Fractional coordinate of the lowest atom in raw slabs in c direction. fixed_c_negative: bool Fix the broken molecules in the lower side or not? Default option is False. Returns: -------- slab: pymatgen structure. Slab after reconstruction. """ molecules_new = [] #print("trying to fix the broken molecules...") for i in range(len(qualified_subgraphs)): qualified_subgraphs_species = [] qualified_subgraphs_nodes_neibs = [] qualified_subgraphs_all_weights = [] nodes_qualified_subgraphs = [] for n, nbrs in qualified_subgraphs[i].adjacency(): nodes_qualified_subgraphs.append(n) neibs = [] weights = [] qualified_subgraphs_species.append( qualified_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) qualified_subgraphs_nodes_neibs.append(neibs) qualified_subgraphs_all_weights.append(weights) qualified_unique_subgraphs_species = [] qualified_unique_subgraphs_nodes_neibs = [] qualified_unique_subgraphs_all_weights = [] nodes_qualified_unique_subgraphs = [] for n, nbrs in qualified_unique_subgraphs[i].adjacency(): nodes_qualified_unique_subgraphs.append(n) neibs = [] weights = [] qualified_unique_subgraphs_species.append( qualified_unique_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) qualified_unique_subgraphs_all_weights.append(weights) qualified_unique_subgraphs_nodes_neibs.append(neibs) node1 = [] node2 = [] account = 0 for t in range(len(qualified_subgraphs_species)): account = 0 for k in range(len(qualified_unique_subgraphs_species)): account = 0 if qualified_subgraphs_species[t] == qualified_unique_subgraphs_species[k] \ and length_belong_to(qualified_subgraphs_all_weights[t], qualified_unique_subgraphs_all_weights[k]) \ and len(qualified_subgraphs_all_weights[t]) == 3: node1 = [nodes_qualified_subgraphs[t]] node2 = [nodes_qualified_unique_subgraphs[k]] account = 0 for a_index, a_weight in enumerate(qualified_subgraphs_all_weights[t]): for index, weight in enumerate(qualified_unique_subgraphs_all_weights[k]): has1 = qualified_subgraphs_nodes_neibs[t][a_index] in node1 has2 = qualified_unique_subgraphs_nodes_neibs[k][index] in node2 if abs(weight - a_weight) / weight < 1e-5 and has1 is False and has2 is False: node1.append( qualified_subgraphs_nodes_neibs[t][a_index]) node2.append( qualified_unique_subgraphs_nodes_neibs[k][index]) account += 1 break if account >= 3: break if account >= 3: break if account < 3: print("can't find the corresspounding point") sys.exit() coords1 = [slab_supercell_sg.structure[n].coords for n in node1] coords2 = [bulk_super_structure_sg.structure[n].coords for n in node2] relative1 = np.array([np.array(coords1[n]) - np.array(coords1[0]) for n in list(range(1, 4))]) relative2 = np.array([np.array(coords2[n]) - np.array(coords2[0]) for n in list(range(1, 4))]) try: rotationMatrix = np.dot(relative1.T, np.linalg.inv(relative2.T)) except np.linalg.LinAlgError as err: if 'Singular matrix' in str(err): for m in range(relative1.shape[0]): if relative1[m, 0] == 0 and relative1[m, 1] == 0 and relative1[m, 2] == 0: relative1[m, 0] = 1e-9 relative1[m, 2] = -1e-9 for m in range(relative1.shape[1]): if relative1[0, m] == 0 and relative1[1, m] == 0 and relative1[2, m] == 0: relative1[0, m] = 1e-9 relative1[2, m] = -1e-9 for m in range(relative2.shape[0]): if relative2[m, 0] == 0 and relative2[m, 1] == 0 and relative2[m, 2] == 0: relative2[m, 0] = 1e-9 relative2[m, 2] = -1e-9 for m in range(relative2.shape[1]): if relative2[0, m] == 0 and relative2[1, m] == 0 and relative2[2, m] == 0: relative2[0, m] = 1e-9 relative2[2, m] = -1e-9 rotationMatrix = np.dot( relative1.T, np.linalg.inv(relative2.T)) else: print('failed') sys.exit() relative = np.array([np.array(bulk_super_structure_sg.structure[n].coords) - np.array(coords2[0]) for n in qualified_unique_subgraphs[i].nodes()]) new_relatives = np.dot(rotationMatrix, relative.T).T coords = [np.array(coords1[0]) + new_relative for new_relative in new_relatives] species = [bulk_super_structure_sg.structure[n].specie for n in qualified_unique_subgraphs[i].nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules_new.append(molecule) sites = [] molecules_new_backup = list(molecules_new) if not fixed_c_negative: i = 0 while i < len(molecules_new): under = False for curr_site in molecules_new[i]: curr_site = mg.PeriodicSite(curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) if curr_site.frac_coords[2] < c_frac_min: del molecules_new[i] under = True break if under is False: i += 1 if len(molecules_new) == 0: molecules_new = molecules_new_backup for molecule in molecules_new: for curr_site in molecule: curr_site = mg.PeriodicSite(curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) tmp = [curr_site.is_periodic_image(site) for site in sites] if not any(tmp): sites.append(curr_site) for site in sites: slab.append(species=site.specie, coords=site.coords, coords_are_cartesian=True) return slab def put_everyatom_into_cell(slab): """ Some atoms might be out of the boundary of slab. Put all atoms into the boundary in the case that atoms don't overlap. """ coords = slab.frac_coords for i in range(coords.shape[0]): for j in range(coords.shape[1]): coords[i, j] = coords[i, j] % 1 species = slab.species molecule = mg.Molecule(species, coords) sites = [] for site in molecule: site = mg.PeriodicSite(site.specie, site.coords, slab.lattice) tmp = [site.is_periodic_image(item, tolerance=1e-5) for item in sites] if not any(tmp): sites.append(site) delete_list = [] for i, atom in enumerate(slab): delete_list.append(i) slab.remove_sites(delete_list) for site in sites: slab.append(species=site.specie, coords=site.coords, coords_are_cartesian=True) return slab def less_fix_broken_molecules(less_broken_subgraphs, less_intact_subgraphs, bulk_super_structure_sg, slab_supercell_sg, slab, c_frac_min, fixed_c_negative=True): """ NOT used in the current reconstruction method!!! An optimized function of fix_broken_molecules() but does exactly the same thing. It can deal with more small broken molecules. """ molecules_new = [] for i in range(len(less_broken_subgraphs)): broken_subgraphs_species = [] broken_subgraphs_nodes_neibs = [] broken_subgraphs_weights = [] nodes_broken_subgraphs = [] for n, nbrs in less_broken_subgraphs[i].adjacency(): nodes_broken_subgraphs.append(n) neibs = [] weights = [] broken_subgraphs_species.append( less_broken_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) broken_subgraphs_nodes_neibs.append(neibs) broken_subgraphs_weights.append(weights) intact_subgraphs_species = [] intact_subgraphs_nodes_neibs = [] intact_subgraphs_weights = [] nodes_intact_subgraphs = [] for n, nbrs in less_intact_subgraphs[i].adjacency(): nodes_intact_subgraphs.append(n) neibs = [] weights = [] intact_subgraphs_species.append( less_intact_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) intact_subgraphs_nodes_neibs.append(neibs) intact_subgraphs_weights.append(weights) Find = False nodes1 = [] nodes2 = [] for j in range(len(broken_subgraphs_species)): if len(broken_subgraphs_nodes_neibs[j]) == 2: nodes1 = [] weights1 = [] nodes1.append(nodes_broken_subgraphs[j]) for index, neib in enumerate(broken_subgraphs_nodes_neibs[j]): nodes1.append(neib) weights1.append(broken_subgraphs_weights[j][index]) nodes2 = [] for k in range(len(intact_subgraphs_species)): if broken_subgraphs_species[j] == intact_subgraphs_species[k]\ and length_belong_to(broken_subgraphs_weights[j], intact_subgraphs_weights[k]): nodes2.append(nodes_intact_subgraphs[k]) for index, weight in enumerate(weights1): for index_intact, weight_intact in enumerate(intact_subgraphs_weights[k]): if abs(weight - weight_intact) / weight_intact < 1e-5\ and less_broken_subgraphs[i].\ node[nodes1[index + 1]]['specie'] == less_intact_subgraphs[i].\ node[intact_subgraphs_nodes_neibs[k][index_intact]]['specie']: nodes2.append( intact_subgraphs_nodes_neibs[k][index_intact]) if len(nodes2) == 3: Find = True break if Find is True: # print('Find it') break if Find is False: #print("Sucks") sys.exit() rest_item = -1 rest_index = -1 for index, item in enumerate(nodes_broken_subgraphs): if item not in nodes1: rest_item = item rest_index = index nodes1.append(rest_item) Find = False for j in range(len(intact_subgraphs_species)): if intact_subgraphs_species[j] == broken_subgraphs_species[rest_index]\ and length_belong_to(broken_subgraphs_weights[rest_index], intact_subgraphs_weights[j]): neibs = intact_subgraphs_nodes_neibs[j] temp = [neib == node2 for neib in neibs for node2 in nodes2] if any(temp): nodes2.append(nodes_intact_subgraphs[j]) Find = True break if Find is not True: print("didn't find the fourth one!") sys.exit() node1, node2 = nodes1, nodes2 coords1 = [slab_supercell_sg.structure[n].coords for n in node1] coords2 = [bulk_super_structure_sg.structure[n].coords for n in node2] relative1 = np.array([np.array(coords1[n]) - np.array(coords1[0]) for n in list(range(1, 4))]) relative2 = np.array([np.array(coords2[n]) - np.array(coords2[0]) for n in list(range(1, 4))]) try: rotationMatrix = np.dot(relative1.T, np.linalg.inv(relative2.T)) except np.linalg.LinAlgError as err: if 'Singular matrix' in str(err): for m in range(relative1.shape[0]): if relative1[m, 0] == 0 and relative1[m, 1] == 0 and relative1[m, 2] == 0: relative1[m, 0] = 1e-9 relative1[m, 2] = -1e-9 for m in range(relative1.shape[1]): if relative1[0, m] == 0 and relative1[1, m] == 0 and relative1[2, m] == 0: relative1[0, m] = 1e-9 relative1[2, m] = -1e-9 for m in range(relative2.shape[0]): if relative2[m, 0] == 0 and relative2[m, 1] == 0 and relative2[m, 2] == 0: relative2[m, 0] = 1e-9 relative2[m, 2] = -1e-9 for m in range(relative2.shape[1]): if relative2[0, m] == 0 and relative2[1, m] == 0 and relative2[2, m] == 0: relative2[0, m] = 1e-9 relative2[2, m] = -1e-9 rotationMatrix = np.dot( relative1.T, np.linalg.inv(relative2.T)) else: print('failed') sys.exit() relative = np.array([np.array(bulk_super_structure_sg.structure[n].coords) - np.array(coords2[0]) for n in less_intact_subgraphs[i].nodes()]) new_relatives =
np.dot(rotationMatrix, relative.T)
numpy.dot
import code.book_plots as bp import code.gh_internal as gh import matplotlib.pyplot as plt import numpy as np; import time from pylab import * from drawnow import drawnow, figure from filterpy.discrete_bayes import normalize from filterpy.discrete_bayes import predict from filterpy.discrete_bayes import update from scipy.ndimage import measurements import filterpy.stats as stats from filterpy.stats import gaussian, multivariate_gaussian from numpy.random import randn,seed from code.DogSimulation import DogSimulation from code import kf_internal from filterpy.kalman import predict, update from filterpy.kalman import KalmanFilter from filterpy.common import Q_discrete_white_noise from code.mkf_internal import plot_track class Chapter06_25(object): def __init__(self): pass def pos_vel_filter(self, x, P, R, Q=0., dt=1.0): """ Returns a KalmanFilter which implements a constant velocity model for a state [x dx].T """ kf = KalmanFilter(dim_x=2, dim_z=1) kf.x = np.array([x[0], x[1]]) # location and velocity kf.F = np.array([[1., dt], [0., 1.]]) # state transition matrix kf.H = np.array([[1., 0]]) # Measurement function kf.R *= R # measurement uncertainty if np.isscalar(P): kf.P *= P # covariance matrix else: kf.P[:] = P # [:] makes deep copy if np.isscalar(Q): kf.Q = Q_discrete_white_noise(dim=2, dt=dt, var=Q) else: kf.Q[:] = Q return kf def compute_dog_data(self, z_var, process_var, count=1, dt=1.): "returns track, measurements 1D ndarrays" x, vel = 0., 1. z_std = math.sqrt(z_var) p_std = math.sqrt(process_var) xs, zs = [], [] for _ in range(count): v = vel + (randn() * p_std * dt) x += v*dt xs.append(x) zs.append(x + randn() * z_std) return np.array(xs), np.array(zs) def draw_fig1(self): plt.scatter(self.sc1X, self.sc1Y) plt.scatter(self.sc2X,self.sc2Y) def run(self,x0=(0.,0.), P=500, R=0, Q=0, dt=1.0, track=None, zs=None, count=0, do_plot=True, **kwargs): """ track is the actual position of the dog, zs are the corresponding measurements. """ # Simulate dog if no data provided. if zs is None: track, zs = self.compute_dog_data(R, Q, count) # create the Kalman filter kf = self.pos_vel_filter(x0, R=R, P=P, Q=Q, dt=dt) # run the kalman filter and store the results xs, cov = [], [] for z in zs: kf.predict() kf.update(z) xs.append(kf.x) cov.append(kf.P) xs, cov = np.array(xs),
np.array(cov)
numpy.array
import helpers import numpy import pytest import toughio write_read = lambda x, **kwargs: helpers.write_read( "INFILE", x, toughio.write_input, toughio.read_input, **kwargs ) write_read_tough = lambda x: write_read( x, writer_kws={"file_format": "tough"}, reader_kws={"file_format": "tough"}, ) write_read_json = lambda x: write_read( x, writer_kws={"file_format": "json"}, reader_kws={"file_format": "json"}, ) @pytest.mark.parametrize( "write_read, single", [ (write_read_tough, True), (write_read_tough, False), (write_read_json, True), (write_read_json, False), ], ) def test_title(write_read, single): parameters_ref = { "title": ( helpers.random_string(80) if single else [helpers.random_string(80) for _ in range(numpy.random.randint(5) + 2)] ), } parameters = write_read(parameters_ref) assert parameters_ref["title"] == parameters["title"] @pytest.mark.parametrize("write_read", [write_read_tough, write_read_json]) def test_rocks(write_read): keys = [ "density", "porosity", "permeability", "conductivity", "specific_heat", "compressibility", "expansivity", "conductivity_dry", "tortuosity", "klinkenberg_parameter", "distribution_coefficient_3", "distribution_coefficient_4", ] parameters_ref = { "rocks": { helpers.random_string(5): {key: numpy.random.rand() for key in keys[:5]}, helpers.random_string(5): { key: numpy.random.rand() if key != "permeability" else numpy.random.rand(3) for key in keys[:5] }, helpers.random_string(5): {key: numpy.random.rand() for key in keys}, helpers.random_string(5): {key: numpy.random.rand() for key in keys}, helpers.random_string(5): {key: numpy.random.rand() for key in keys}, helpers.random_string(5): {key: numpy.random.rand() for key in keys}, } } names = list(parameters_ref["rocks"].keys()) parameters_ref["rocks"][names[-1]].update( { "relative_permeability": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, } ) parameters_ref["rocks"][names[-2]].update( { "capillarity": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, } ) parameters_ref["rocks"][names[-3]].update( { "relative_permeability": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, "capillarity": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, } ) parameters = write_read(parameters_ref) assert sorted(parameters_ref["rocks"].keys()) == sorted(parameters["rocks"].keys()) for k, v in parameters_ref["rocks"].items(): for kk, vv in v.items(): if not isinstance(vv, dict): assert numpy.allclose(vv, parameters["rocks"][k][kk], atol=1.0e-5) else: helpers.allclose_dict(vv, parameters["rocks"][k][kk], atol=1.0e-4) @pytest.mark.parametrize( "write_read, rpcap", [ (write_read_tough, "rp"), (write_read_tough, "cap"), (write_read_tough, "both"), (write_read_json, "rp"), (write_read_json, "cap"), (write_read_json, "both"), ], ) def test_rpcap(write_read, rpcap): parameters_ref = {"default": {}} if rpcap in {"rp", "both"}: parameters_ref["default"]["relative_permeability"] = { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), } if rpcap in {"cap", "both"}: parameters_ref["default"]["capillarity"] = { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), } parameters = write_read(parameters_ref) for k, v in parameters_ref["default"].items(): helpers.allclose_dict(v, parameters["default"][k], atol=1.0e-4) @pytest.mark.parametrize("write_read", [write_read_tough, write_read_json]) def test_flac(write_read): parameters_ref = { "flac": { "creep": bool(numpy.random.randint(2)), "porosity_model": numpy.random.randint(10), "version": numpy.random.randint(10), }, "rocks": { helpers.random_string(5): { "permeability_model": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, "equivalent_pore_pressure": { "id": numpy.random.randint(10), "parameters": numpy.random.rand(numpy.random.randint(7) + 1), }, } for _ in numpy.random.rand(10) + 1 }, } parameters = write_read(parameters_ref) helpers.allclose_dict(parameters_ref["flac"], parameters["flac"]) for k, v in parameters_ref["rocks"].items(): for kk, vv in v.items(): helpers.allclose_dict(vv, parameters["rocks"][k][kk], atol=1.0e-4) @pytest.mark.parametrize( "write_read, isothermal", [(write_read_tough, True), (write_read_tough, False)], ) def test_multi(write_read, isothermal): import random from toughio._io.input.tough._common import eos parameters_ref = { "eos": random.choice( [k for k in eos.keys() if k not in {"eos7", "eos8", "eos9"}] ), "isothermal": isothermal, } parameters = write_read(parameters_ref) multi = [ parameters["n_component"], parameters["n_component"] + 1, parameters["n_phase"], 6, ] multi_ref = eos[parameters_ref["eos"]] assert multi_ref == multi assert parameters_ref["isothermal"] == parameters["isothermal"] @pytest.mark.parametrize("write_read", [write_read_tough, write_read_json]) def test_solvr(write_read): parameters_ref = { "solver": { "method": numpy.random.randint(10), "z_precond": helpers.random_string(2), "o_precond": helpers.random_string(2), "rel_iter_max": numpy.random.rand(), "eps": numpy.random.rand(), }, } parameters = write_read(parameters_ref) assert parameters_ref["solver"]["method"] == parameters["solver"]["method"] assert parameters_ref["solver"]["z_precond"] == parameters["solver"]["z_precond"] assert parameters_ref["solver"]["o_precond"] == parameters["solver"]["o_precond"] assert numpy.allclose( parameters_ref["solver"]["rel_iter_max"], parameters["solver"]["rel_iter_max"], atol=1.0e-5, ) assert numpy.allclose( parameters_ref["solver"]["eps"], parameters["solver"]["eps"], atol=1.0e-5 ) @pytest.mark.parametrize( "write_read, t_steps, num_pvars", [ (write_read_tough, numpy.random.rand(), 4), (write_read_tough, numpy.random.rand(numpy.random.randint(100) + 1), 4), (write_read_tough, numpy.random.rand(numpy.random.randint(100) + 1), 6), (write_read_json, numpy.random.rand(), 4), (write_read_json, numpy.random.rand(numpy.random.randint(100) + 1), 4), (write_read_json, numpy.random.rand(
numpy.random.randint(100)
numpy.random.randint
""" Solutions to the Cryptopals Crypto Challenge All crypto functions take and return numpy arrays of uint8; convenience functions are provided to convert to and from this format. You will need the datafiles from the challenges to run the tests. """ from base64 import b64encode as base64_encode from base64 import b64decode as base64_decode from base64 import b16decode import itertools from functools import partial from collections import defaultdict, OrderedDict import numpy as np from scipy import linalg from Crypto.Cipher import AES import pytest np.set_printoptions(formatter={'int': hex}) skip = pytest.mark.skip # # # Utilities # # # hex_decode = partial(b16decode, casefold=True) def base64_from_hex(hex_str): """Set 1 - Challenge 1""" return base64_encode(hex_decode(hex_str)) def array_from_hex(hex_str): return np.frombuffer(hex_decode(hex_str), dtype=np.uint8) afh = array_from_hex def hex_from_array(arr): return ''.join(hex(v)[2:] for v in arr) hfa = hex_from_array def bytes_from_array(arr): return arr.tobytes() bfa = bytes_from_array def array_from_bytes(s): return np.frombuffer(s, dtype=np.uint8) afb = array_from_bytes def line_array_from_hex_file(path): """Returns a (potentially) ragged array of arrays.""" lines = [] with open(path) as fh: for line in fh: lines.append(array_from_hex(line.strip())) return np.array(lines) def array_from_base64(s): data = base64_decode(s) return np.frombuffer(data, np.uint8) afb64 = array_from_base64 def hamming_distance(d0, d1): return np.unpackbits(d0 ^ d1).sum() # # # Tests for Utilities # # # def test_base64_from_hex(): hex_data = b"49276d206b696c6c696e6720796f757220627261696e206c696b65206120706f69736f6e6f7573206d757368726f6f6d" base64_result = b"SS<KEY>" assert base64_from_hex(hex_data) == base64_result def test_array_from_hex(): hex_data = b"4927abcd" expected = np.array([0x49, 0x27, 0xab, 0xcd], dtype=np.uint8) result = array_from_hex(hex_data) assert np.all(result == expected) def test_hex_from_array(): data = np.array([0x49, 0x27, 0xab, 0xcd], dtype=np.uint8) expected = "4927abcd" result = hex_from_array(data) assert result == expected def test_bytes_from_array(): data = np.array([104, 101, 108, 108, 111], dtype=np.uint8) expected = b'hello' assert bytes_from_array(data) == expected def test_array_from_bytes(): data = b'hello' expected = np.array([104, 101, 108, 108, 111], dtype=np.uint8) assert np.all(array_from_bytes(data) == expected) def test_hamming_distance(): s0 = b"this is a test" s1 = b"wokka wokka!!!" assert hamming_distance(afb(s0), afb(s1)) == 37 # # # Crypto # # # letters = map(ord, 'abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ') letter_probabilities = \ [0.0651738, 0.0124248, 0.0217339, 0.0349835, 0.1041442, 0.0197881, 0.0158610, 0.0492888, 0.0558094, 0.0009033, 0.0050529, 0.0331490, 0.0202124, 0.0564513, 0.0596302, 0.0137645, 0.0008606, 0.0497563, 0.0515760, 0.0729357, 0.0225134, 0.0082903, 0.0171272, 0.0013692, 0.0145984, 0.0007836, 0.1918182, 0.0651738, 0.0124248, 0.0217339, 0.0349835, 0.1041442, 0.0197881, 0.0158610, 0.0492888, 0.0558094, 0.0009033, 0.0050529, 0.0331490, 0.0202124, 0.0564513, 0.0596302, 0.0137645, 0.0008606, 0.0497563, 0.0515760, 0.0729357, 0.0225134, 0.0082903, 0.0171272, 0.0013692, 0.0145984, 0.0007836] probability_from_char = defaultdict(float, zip(letters, letter_probabilities)) def _score_char(c): return probability_from_char[c] score_char = np.vectorize(_score_char) def decrypt_single_byte_xor(plaintext, return_score=False): """Set 1 - Challenge 3 Discover the single-byte key and return plaintext. If `return_score` is True, also return a 2-element array where element 0 is the message and element 1 is the score. """ data = plaintext.reshape(1, -1) keys = np.arange(256, dtype=np.uint8).reshape(-1, 1) messages = data ^ keys scores = score_char(messages) message_scores = scores.sum(axis=1) best_message_index = message_scores.argmax() best_message = messages[best_message_index] best_message_score = message_scores[best_message_index] if return_score: return np.array([best_message, best_message_score]) else: return best_message def detect_single_byte_xor(ciphertext_lines): """Set 1 - Challenge 4 ciphertext_lines: ragged array returned from line_array_from_hex_file """ messages = np.array([decrypt_single_byte_xor(line, return_score=True) for line in ciphertext_lines]) best_idx = messages[:, 1].argmax() return messages[best_idx][0] def encrypt_repeating_key_xor(data, key): """Set 1 - Challenge 5""" key_arr = np.array(list(itertools.islice(itertools.cycle(key), len(data)))) return data ^ key_arr def normalized_hamming(data, keysize): """Hamming distance divided by keysize""" h0 = hamming_distance(data[0*keysize:3*keysize], data[3*keysize:6*keysize]) return h0 / keysize def find_likely_keysizes(data): """Returns a sorted list of (keysize, score), sorted by score""" keysizes = range(2, 41) norm_distances = [] for keysize in keysizes: norm_distances.append(normalized_hamming(data, keysize)) size_and_score = list(zip(keysizes, norm_distances)) return sorted(size_and_score, key=lambda ss: ss[1]) def _decrypt_repeating_key_xor(data): keysizes = find_likely_keysizes(data) for keysize, _ in keysizes: pad_len, padded_data = pkcs7(data, keysize, return_len=True) padded_data.shape = (-1, keysize) decrypted = np.apply_along_axis(decrypt_single_byte_xor, axis=0, arr=padded_data) decrypted.shape = (-1,) if pad_len > 0: decrypted = decrypted[:-pad_len] yield decrypted def decrypt_repeating_key_xor(data): """Set 1 - Challenge 6""" candidates = _decrypt_repeating_key_xor(data) return next(candidates) def decrypt_aes_ecb(ciphertext, key=afb(b'YELLOW SUBMARINE'), blocksize=16): """Set 1 - Challenge 7""" padded_cipher = pkcs7(ciphertext, blocksize) padded_key = pkcs7(key, blocksize) decrypter = AES.new(padded_key, AES.MODE_ECB) plaintext = afb(decrypter.decrypt(padded_cipher)) return plaintext def detect_aes_ecb(data, blocksize=16): """Set 1 - Challenge 8 Returns index of AES ECB encoded row. """ row_scores = [] for i, row in enumerate(data): blocks = row.view(dtype=np.dtype([('data', (np.uint8, blocksize))])) counts = np.unique(blocks, return_counts=True)[1] most_repetition = counts.max() row_scores.append((i, most_repetition)) return max(row_scores, key=lambda index_count: index_count[1]) def pkcs7(data, blocksize=16, return_len=False): """Set 1 - Challenge 9 Pad an array to `blocksize` with a constant value: the number of bytes needed to complete the last block. `return_len`, if set to True, will also return the pad value used. """ pad_remainder = data.size % blocksize pad_len = (blocksize - pad_remainder) % blocksize padded_data = np.pad(data, (0, pad_len), mode='constant', constant_values=pad_len) if return_len: return pad_len, padded_data else: return padded_data def encrypt_aes_ecb(data, key, blocksize=16): """Set 2 - Challenge 10""" data = pkcs7(data, blocksize) key = pkcs7(key, blocksize) encrypter = AES.new(key, AES.MODE_ECB) return np.frombuffer(encrypter.encrypt(data), dtype=np.uint8) def encrypt_aes_cbc(plaintext, key, iv, blocksize=16): plain = pkcs7(plaintext, blocksize=blocksize) plain.shape = (-1, blocksize) cipher = np.empty_like(plain) for i, _ in enumerate(cipher): if i == 0: cipher[i] = encrypt_aes_ecb(plain[i] ^ iv, key=key) else: cipher[i] = encrypt_aes_ecb(plain[i] ^ cipher[i-1], key=key) cipher.shape = (-1,) return cipher def decrypt_aes_cbc_serial(ciphertext, key, iv, blocksize=16): """Set 2 - Challenge 10""" cipher = pkcs7(ciphertext, blocksize=blocksize) cipher.shape = (-1, blocksize) plain = np.empty_like(cipher) for i, _ in enumerate(cipher): if i == 0: plain[i] = decrypt_aes_ecb(cipher[i], key=key) ^ iv else: plain[i] = decrypt_aes_ecb(cipher[i], key=key) ^ cipher[i-1] plain.shape = (-1,) return strip_pkcs7(plain, blocksize=blocksize) def decrypt_aes_cbc(ciphertext, key, iv, blocksize=16): """Set 2 - Challenge 10 Vectorized. """ # decrypt cipher = pkcs7(ciphertext, blocksize=blocksize) plain = afb(decrypt_aes_ecb(ciphertext, key=key, blocksize=blocksize)) # XOR plaintext blocks with previous ciphertext blocks # (iv for 0th block) plain = plain ^ np.hstack((iv, cipher[:-1]))[:plain.size] return strip_pkcs7(plain, blocksize=blocksize) def random_aes_key(blocksize=16): """Set 2 - Challenge 11""" return afb(np.random.bytes(blocksize)) def encryption_oracle(plaintext, blocksize=16, force_mode=None): """Set 2 - Challenge 11 Encrypt data using a random key, with random padding, in ECB or CBC mode (randomly). For testing, you can force the mode to be 'ECB' or 'CBC', with force_mode='ECB' or force_mode='CBC' """ left_pad, right_pad =
np.random.randint(5, 11, 2)
numpy.random.randint
import pandas as pd import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from matplotlib import cm, colors from astropy.modeling import models, fitting # Reading in all data files at once import glob path_normal ='/projects/p30137/ageller/testing/EBLSST/add_m5/output_files' allFiles_normal = glob.glob(path_normal + "/*.csv") path_fast = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/output_files' allFiles_fast = glob.glob(path_fast + "/*.csv") path_obsDist = '/projects/p30137/ageller/testing/EBLSST/add_m5/fast/old/obsDist/output_files' allFiles_obsDist = glob.glob(path_obsDist + "/*.csv") N_totalnormal_array = [] N_totalobservablenormal_array = [] N_totalrecoverablenormal_array = [] N_totalnormal_array_03 = [] N_totalobservablenormal_array_03 = [] N_totalrecoverablenormal_array_03 = [] N_totalnormal_array_1 = [] N_totalobservablenormal_array_1 = [] N_totalrecoverablenormal_array_1 = [] N_totalnormal_array_10 = [] N_totalobservablenormal_array_10 = [] N_totalrecoverablenormal_array_10 = [] N_totalnormal_array_30 = [] N_totalobservablenormal_array_30 = [] N_totalrecoverablenormal_array_30 = [] N_totalnormal_array_100 = [] N_totalobservablenormal_array_100 = [] N_totalrecoverablenormal_array_100 = [] N_totalnormal_array_1000 = [] N_totalobservablenormal_array_1000 = [] N_totalrecoverablenormal_array_1000 = [] N_totalnormal22_array = [] N_totalobservablenormal22_array = [] N_totalrecoverablenormal22_array = [] N_totalnormal22_array_03 = [] N_totalobservablenormal22_array_03 = [] N_totalrecoverablenormal22_array_03 = [] N_totalnormal22_array_1 = [] N_totalobservablenormal22_array_1 = [] N_totalrecoverablenormal22_array_1 = [] N_totalnormal22_array_10 = [] N_totalobservablenormal22_array_10 = [] N_totalrecoverablenormal22_array_10 = [] N_totalnormal22_array_30 = [] N_totalobservablenormal22_array_30 = [] N_totalrecoverablenormal22_array_30 = [] N_totalnormal22_array_100 = [] N_totalobservablenormal22_array_100 = [] N_totalrecoverablenormal22_array_100 = [] N_totalnormal22_array_1000 = [] N_totalobservablenormal22_array_1000 = [] N_totalrecoverablenormal22_array_1000 = [] N_totalnormal195_array = [] N_totalobservablenormal195_array = [] N_totalrecoverablenormal195_array = [] N_totalnormal195_array_03 = [] N_totalobservablenormal195_array_03 = [] N_totalrecoverablenormal195_array_03 = [] N_totalnormal195_array_1 = [] N_totalobservablenormal195_array_1 = [] N_totalrecoverablenormal195_array_1 = [] N_totalnormal195_array_10 = [] N_totalobservablenormal195_array_10 = [] N_totalrecoverablenormal195_array_10 = [] N_totalnormal195_array_30 = [] N_totalobservablenormal195_array_30 = [] N_totalrecoverablenormal195_array_30 = [] N_totalnormal195_array_100 = [] N_totalobservablenormal195_array_100 = [] N_totalrecoverablenormal195_array_100 = [] N_totalnormal195_array_1000 = [] N_totalobservablenormal195_array_1000 = [] N_totalrecoverablenormal195_array_1000 = [] N_totalfast_array = [] N_totalobservablefast_array = [] N_totalrecoverablefast_array = [] N_totalfast_array_03 = [] N_totalobservablefast_array_03 = [] N_totalrecoverablefast_array_03 = [] N_totalfast_array_1 = [] N_totalobservablefast_array_1 = [] N_totalrecoverablefast_array_1 = [] N_totalfast_array_10 = [] N_totalobservablefast_array_10 = [] N_totalrecoverablefast_array_10 = [] N_totalfast_array_30 = [] N_totalobservablefast_array_30 = [] N_totalrecoverablefast_array_30 = [] N_totalfast_array_100 = [] N_totalobservablefast_array_100 = [] N_totalrecoverablefast_array_100 = [] N_totalfast_array_1000 = [] N_totalobservablefast_array_1000 = [] N_totalrecoverablefast_array_1000 = [] N_totalfast22_array = [] N_totalobservablefast22_array = [] N_totalrecoverablefast22_array = [] N_totalfast22_array_03 = [] N_totalobservablefast22_array_03 = [] N_totalrecoverablefast22_array_03 = [] N_totalfast22_array_1 = [] N_totalobservablefast22_array_1 = [] N_totalrecoverablefast22_array_1 = [] N_totalfast22_array_10 = [] N_totalobservablefast22_array_10 = [] N_totalrecoverablefast22_array_10 = [] N_totalfast22_array_30 = [] N_totalobservablefast22_array_30 = [] N_totalrecoverablefast22_array_30 = [] N_totalfast22_array_100 = [] N_totalobservablefast22_array_100 = [] N_totalrecoverablefast22_array_100 = [] N_totalfast22_array_1000 = [] N_totalobservablefast22_array_1000 = [] N_totalrecoverablefast22_array_1000 = [] N_totalfast195_array = [] N_totalobservablefast195_array = [] N_totalrecoverablefast195_array = [] N_totalfast195_array_03 = [] N_totalobservablefast195_array_03 = [] N_totalrecoverablefast195_array_03 = [] N_totalfast195_array_1 = [] N_totalobservablefast195_array_1 = [] N_totalrecoverablefast195_array_1 = [] N_totalfast195_array_10 = [] N_totalobservablefast195_array_10 = [] N_totalrecoverablefast195_array_10 = [] N_totalfast195_array_30 = [] N_totalobservablefast195_array_30 = [] N_totalrecoverablefast195_array_30 = [] N_totalfast195_array_100 = [] N_totalobservablefast195_array_100 = [] N_totalrecoverablefast195_array_100 = [] N_totalfast195_array_1000 = [] N_totalobservablefast195_array_1000 = [] N_totalrecoverablefast195_array_1000 = [] N_totalobsDist_array = [] N_totalobservableobsDist_array = [] N_totalrecoverableobsDist_array = [] N_totalobsDist_array_03 = [] N_totalobservableobsDist_array_03 = [] N_totalrecoverableobsDist_array_03 = [] N_totalobsDist_array_1 = [] N_totalobservableobsDist_array_1 = [] N_totalrecoverableobsDist_array_1 = [] N_totalobsDist_array_10 = [] N_totalobservableobsDist_array_10 = [] N_totalrecoverableobsDist_array_10 = [] N_totalobsDist_array_30 = [] N_totalobservableobsDist_array_30 = [] N_totalrecoverableobsDist_array_30 = [] N_totalobsDist_array_100 = [] N_totalobservableobsDist_array_100 = [] N_totalrecoverableobsDist_array_100 = [] N_totalobsDist_array_1000 = [] N_totalobservableobsDist_array_1000 = [] N_totalrecoverableobsDist_array_1000 = [] N_totalobsDist22_array = [] N_totalobservableobsDist22_array = [] N_totalrecoverableobsDist22_array = [] N_totalobsDist22_array_03 = [] N_totalobservableobsDist22_array_03 = [] N_totalrecoverableobsDist22_array_03 = [] N_totalobsDist22_array_1 = [] N_totalobservableobsDist22_array_1 = [] N_totalrecoverableobsDist22_array_1 = [] N_totalobsDist22_array_10 = [] N_totalobservableobsDist22_array_10 = [] N_totalrecoverableobsDist22_array_10 = [] N_totalobsDist22_array_30 = [] N_totalobservableobsDist22_array_30 = [] N_totalrecoverableobsDist22_array_30 = [] N_totalobsDist22_array_100 = [] N_totalobservableobsDist22_array_100 = [] N_totalrecoverableobsDist22_array_100 = [] N_totalobsDist22_array_1000 = [] N_totalobservableobsDist22_array_1000 = [] N_totalrecoverableobsDist22_array_1000 = [] N_totalobsDist195_array = [] N_totalobservableobsDist195_array = [] N_totalrecoverableobsDist195_array = [] N_totalobsDist195_array_03 = [] N_totalobservableobsDist195_array_03 = [] N_totalrecoverableobsDist195_array_03 = [] N_totalobsDist195_array_1 = [] N_totalobservableobsDist195_array_1 = [] N_totalrecoverableobsDist195_array_1 = [] N_totalobsDist195_array_10 = [] N_totalobservableobsDist195_array_10 = [] N_totalrecoverableobsDist195_array_10 = [] N_totalobsDist195_array_30 = [] N_totalobservableobsDist195_array_30 = [] N_totalrecoverableobsDist195_array_30 = [] N_totalobsDist195_array_100 = [] N_totalobservableobsDist195_array_100 = [] N_totalrecoverableobsDist195_array_100 = [] N_totalobsDist195_array_1000 = [] N_totalobservableobsDist195_array_1000 = [] N_totalrecoverableobsDist195_array_1000 = [] def fitRagfb(): x = [0.05, 0.1, 1, 8, 15] #estimates of midpoints in bins, and using this: https:/sites.uni.edu/morgans/astro/course/Notes/section2/spectralmasses.html y = [0.20, 0.35, 0.50, 0.70, 0.75] init = models.PowerLaw1D(amplitude=0.5, x_0=1, alpha=-1.) fitter = fitting.LevMarLSQFitter() fit = fitter(init, x, y) return fit fbFit= fitRagfb() mbins = np.arange(0,10, 0.1, dtype='float') cutP = 0.10 #condition on recoverability/tolerance for filenormal_ in sorted(allFiles_normal): filename = filenormal_[60:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datnormal = pd.read_csv(filenormal_, sep = ',', header=2) PeriodIn = datnormal['p'] # input period -- 'p' in data file ########################################################## datnormal1 = pd.read_csv(filenormal_, sep = ',', header=0, nrows=1) N_tri = datnormal1["NstarsTRILEGAL"][0] #print("N_tri = ", N_tri) Nall = len(PeriodIn) m1hAll0, m1b = np.histogram(datnormal["m1"], bins=mbins) dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/Nall*fbFit(m1val)) N_mult = N_tri*fb ########################################################## if len(PeriodIn) == 0.: continue if N_tri == 0: continue else: PeriodOut = datnormal['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean = datnormal['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) observable = datnormal.loc[PeriodOut != -999].index observable_03 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999)].index observable_1 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999)].index observable_10 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999)].index observable_30 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999)].index observable_100 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999)].index observable_1000 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999)].index observable_22 = datnormal.loc[(PeriodOut != -999) & (appMagMean <= 22.)].index observable_03_22 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1_22 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_10_22 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_30_22 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_100_22 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1000_22 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_195 = datnormal.loc[(PeriodOut != -999) & (appMagMean <= 19.5)].index observable_03_195 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1_195 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_10_195 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_30_195 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_100_195 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1000_195 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 19.5)].index fullP = abs(PeriodOut - PeriodIn)/PeriodIn halfP = abs(PeriodOut - 0.5*PeriodIn)/(0.5*PeriodIn) twiceP = abs(PeriodOut - 2*PeriodIn)/(2*PeriodIn) recoverable = datnormal.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_03 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_10 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_30 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_100 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1000 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_22 = datnormal.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_03_22 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1_22 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_10_22 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_30_22 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_100_22 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1000_22 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_195 = datnormal.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_03_195 = datnormal.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1_195 = datnormal.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_10_195 = datnormal.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_30_195 = datnormal.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_100_195 = datnormal.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1000_195 = datnormal.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index P03 = datnormal.loc[PeriodIn <= 0.3].index P1 = datnormal.loc[PeriodIn <= 1].index P10 = datnormal.loc[PeriodIn <= 10].index P30 = datnormal.loc[PeriodIn <= 30].index P100 = datnormal.loc[PeriodIn <= 100].index P1000 = datnormal.loc[PeriodIn <= 1000].index P_22 = datnormal.loc[appMagMean <= 22.].index P03_22 = datnormal.loc[(PeriodIn <= 0.3) & (appMagMean <= 22.)].index P1_22 = datnormal.loc[(PeriodIn <= 1) & (appMagMean <= 22.)].index P10_22 = datnormal.loc[(PeriodIn <= 10) & (appMagMean <= 22.)].index P30_22 = datnormal.loc[(PeriodIn <= 30) & (appMagMean <= 22.)].index P100_22 = datnormal.loc[(PeriodIn <= 100) & (appMagMean <= 22.)].index P1000_22 = datnormal.loc[(PeriodIn <= 1000) & (appMagMean <= 22.)].index P_195 = datnormal.loc[appMagMean <= 19.5].index P03_195 = datnormal.loc[(PeriodIn <= 0.3) & (appMagMean <= 19.5)].index P1_195 = datnormal.loc[(PeriodIn <= 1) & (appMagMean <= 19.5)].index P10_195 = datnormal.loc[(PeriodIn <= 10) & (appMagMean <= 19.5)].index P30_195 = datnormal.loc[(PeriodIn <= 30) & (appMagMean <= 19.5)].index P100_195 = datnormal.loc[(PeriodIn <= 100) & (appMagMean <= 19.5)].index P1000_195 = datnormal.loc[(PeriodIn <= 1000) & (appMagMean <= 19.5)].index N_all = (len(PeriodIn)/len(PeriodIn))*N_mult N_all03 = (len(P03)/len(PeriodIn))*N_mult N_all1 = (len(P1)/len(PeriodIn))*N_mult N_all10 = (len(P10)/len(PeriodIn))*N_mult N_all30 = (len(P30)/len(PeriodIn))*N_mult N_all100 = (len(P100)/len(PeriodIn))*N_mult N_all1000 = (len(P1000)/len(PeriodIn))*N_mult N_all_22 = (len(P_22)/len(PeriodIn))*N_mult N_all03_22 = (len(P03_22)/len(PeriodIn))*N_mult N_all1_22 = (len(P1_22)/len(PeriodIn))*N_mult N_all10_22 = (len(P10_22)/len(PeriodIn))*N_mult N_all30_22 = (len(P30_22)/len(PeriodIn))*N_mult N_all100_22 = (len(P100_22)/len(PeriodIn))*N_mult N_all1000_22 = (len(P1000_22)/len(PeriodIn))*N_mult N_all_195 = (len(P_195)/len(PeriodIn))*N_mult N_all03_195 = (len(P03_195)/len(PeriodIn))*N_mult N_all1_195 = (len(P1_195)/len(PeriodIn))*N_mult N_all10_195 = (len(P10_195)/len(PeriodIn))*N_mult N_all30_195 = (len(P30_195)/len(PeriodIn))*N_mult N_all100_195 = (len(P100_195)/len(PeriodIn))*N_mult N_all1000_195 = (len(P1000_195)/len(PeriodIn))*N_mult N_obs = (len(observable)/len(PeriodIn))*N_mult N_obs03 = (len(observable_03)/len(PeriodIn))*N_mult N_obs1 = (len(observable_1)/len(PeriodIn))*N_mult N_obs10 = (len(observable_10)/len(PeriodIn))*N_mult N_obs30 = (len(observable_30)/len(PeriodIn))*N_mult N_obs100 = (len(observable_100)/len(PeriodIn))*N_mult N_obs1000 = (len(observable_1000)/len(PeriodIn))*N_mult N_obs_22 = (len(observable_22)/len(PeriodIn))*N_mult N_obs03_22 = (len(observable_03_22)/len(PeriodIn))*N_mult N_obs1_22 = (len(observable_1_22)/len(PeriodIn))*N_mult N_obs10_22 = (len(observable_10_22)/len(PeriodIn))*N_mult N_obs30_22 = (len(observable_30_22)/len(PeriodIn))*N_mult N_obs100_22 = (len(observable_100_22)/len(PeriodIn))*N_mult N_obs1000_22 = (len(observable_1000_22)/len(PeriodIn))*N_mult N_obs_195 = (len(observable_195)/len(PeriodIn))*N_mult N_obs03_195 = (len(observable_03_195)/len(PeriodIn))*N_mult N_obs1_195 = (len(observable_1_195)/len(PeriodIn))*N_mult N_obs10_195 = (len(observable_10_195)/len(PeriodIn))*N_mult N_obs30_195 = (len(observable_30_195)/len(PeriodIn))*N_mult N_obs100_195 = (len(observable_100_195)/len(PeriodIn))*N_mult N_obs1000_195 = (len(observable_1000_195)/len(PeriodIn))*N_mult N_rec = (len(recoverable)/len(PeriodIn))*N_mult N_rec03 = (len(recoverable_03)/len(PeriodIn))*N_mult N_rec1 = (len(recoverable_1)/len(PeriodIn))*N_mult N_rec10 = (len(recoverable_10)/len(PeriodIn))*N_mult N_rec30 = (len(recoverable_30)/len(PeriodIn))*N_mult N_rec100 = (len(recoverable_100)/len(PeriodIn))*N_mult N_rec1000 = (len(recoverable_1000)/len(PeriodIn))*N_mult N_rec_22 = (len(recoverable_22)/len(PeriodIn))*N_mult N_rec03_22 = (len(recoverable_03_22)/len(PeriodIn))*N_mult N_rec1_22 = (len(recoverable_1_22)/len(PeriodIn))*N_mult N_rec10_22 = (len(recoverable_10_22)/len(PeriodIn))*N_mult N_rec30_22 = (len(recoverable_30_22)/len(PeriodIn))*N_mult N_rec100_22 = (len(recoverable_100_22)/len(PeriodIn))*N_mult N_rec1000_22 = (len(recoverable_1000_22)/len(PeriodIn))*N_mult N_rec_195 = (len(recoverable_195)/len(PeriodIn))*N_mult N_rec03_195 = (len(recoverable_03_195)/len(PeriodIn))*N_mult N_rec1_195 = (len(recoverable_1_195)/len(PeriodIn))*N_mult N_rec10_195 = (len(recoverable_10_195)/len(PeriodIn))*N_mult N_rec30_195 = (len(recoverable_30_195)/len(PeriodIn))*N_mult N_rec100_195 = (len(recoverable_100_195)/len(PeriodIn))*N_mult N_rec1000_195 = (len(recoverable_1000_195)/len(PeriodIn))*N_mult N_totalnormal_array.append(float(N_all)) N_totalobservablenormal_array.append(float(N_obs)) N_totalrecoverablenormal_array.append(float(N_rec)) N_totalnormal_array_03.append(float(N_all03)) N_totalobservablenormal_array_03.append(float(N_obs03)) N_totalrecoverablenormal_array_03.append(float(N_rec03)) N_totalnormal_array_1.append(float(N_all1)) N_totalobservablenormal_array_1.append(float(N_obs1)) N_totalrecoverablenormal_array_1.append(float(N_rec1)) N_totalnormal_array_10.append(float(N_all10)) N_totalobservablenormal_array_10.append(float(N_obs10)) N_totalrecoverablenormal_array_10.append(float(N_rec10)) N_totalnormal_array_30.append(float(N_all30)) N_totalobservablenormal_array_30.append(float(N_obs30)) N_totalrecoverablenormal_array_30.append(float(N_rec30)) N_totalnormal_array_100.append(float(N_all100)) N_totalobservablenormal_array_100.append(float(N_obs100)) N_totalrecoverablenormal_array_100.append(float(N_rec100)) N_totalnormal_array_1000.append(float(N_all1000)) N_totalobservablenormal_array_1000.append(float(N_obs1000)) N_totalrecoverablenormal_array_1000.append(float(N_rec1000)) N_totalnormal22_array.append(float(N_all_22)) N_totalobservablenormal22_array.append(float(N_obs_22)) N_totalrecoverablenormal22_array.append(float(N_rec_22)) N_totalnormal22_array_03.append(float(N_all03_22)) N_totalobservablenormal22_array_03.append(float(N_obs03_22)) N_totalrecoverablenormal22_array_03.append(float(N_rec03_22)) N_totalnormal22_array_1.append(float(N_all1_22)) N_totalobservablenormal22_array_1.append(float(N_obs1_22)) N_totalrecoverablenormal22_array_1.append(float(N_rec1_22)) N_totalnormal22_array_10.append(float(N_all10_22)) N_totalobservablenormal22_array_10.append(float(N_obs10_22)) N_totalrecoverablenormal22_array_10.append(float(N_rec10_22)) N_totalnormal22_array_30.append(float(N_all30_22)) N_totalobservablenormal22_array_30.append(float(N_obs30_22)) N_totalrecoverablenormal22_array_30.append(float(N_rec30_22)) N_totalnormal22_array_100.append(float(N_all100_22)) N_totalobservablenormal22_array_100.append(float(N_obs100_22)) N_totalrecoverablenormal22_array_100.append(float(N_rec100_22)) N_totalnormal22_array_1000.append(float(N_all1000_22)) N_totalobservablenormal22_array_1000.append(float(N_obs1000_22)) N_totalrecoverablenormal22_array_1000.append(float(N_rec1000_22)) N_totalnormal195_array.append(float(N_all_195)) N_totalobservablenormal195_array.append(float(N_obs_195)) N_totalrecoverablenormal195_array.append(float(N_rec_195)) N_totalnormal195_array_03.append(float(N_all03_195)) N_totalobservablenormal195_array_03.append(float(N_obs03_195)) N_totalrecoverablenormal195_array_03.append(float(N_rec03_195)) N_totalnormal195_array_1.append(float(N_all1_195)) N_totalobservablenormal195_array_1.append(float(N_obs1_195)) N_totalrecoverablenormal195_array_1.append(float(N_rec1_195)) N_totalnormal195_array_10.append(float(N_all10_195)) N_totalobservablenormal195_array_10.append(float(N_obs10_195)) N_totalrecoverablenormal195_array_10.append(float(N_rec10_195)) N_totalnormal195_array_30.append(float(N_all30_195)) N_totalobservablenormal195_array_30.append(float(N_obs30_195)) N_totalrecoverablenormal195_array_30.append(float(N_rec30_195)) N_totalnormal195_array_100.append(float(N_all100_195)) N_totalobservablenormal195_array_100.append(float(N_obs100_195)) N_totalrecoverablenormal195_array_100.append(float(N_rec100_195)) N_totalnormal195_array_1000.append(float(N_all1000_195)) N_totalobservablenormal195_array_1000.append(float(N_obs1000_195)) N_totalrecoverablenormal195_array_1000.append(float(N_rec1000_195)) N_totalnormal = np.sum(N_totalnormal_array) N_totalnormal_03 = np.sum(N_totalnormal_array_03) N_totalnormal_1 = np.sum(N_totalnormal_array_1) N_totalnormal_10 = np.sum(N_totalnormal_array_10) N_totalnormal_30 = np.sum(N_totalnormal_array_30) N_totalnormal_100 = np.sum(N_totalnormal_array_100) N_totalnormal_1000 = np.sum(N_totalnormal_array_1000) N_totalobservablenormal = np.sum(N_totalobservablenormal_array) N_totalobservablenormal_03 = np.sum(N_totalobservablenormal_array_03) N_totalobservablenormal_1 = np.sum(N_totalobservablenormal_array_1) N_totalobservablenormal_10 = np.sum(N_totalobservablenormal_array_10) N_totalobservablenormal_30 = np.sum(N_totalobservablenormal_array_30) N_totalobservablenormal_100 = np.sum(N_totalobservablenormal_array_100) N_totalobservablenormal_1000 = np.sum(N_totalobservablenormal_array_1000) N_totalrecoverablenormal = np.sum(N_totalrecoverablenormal_array) N_totalrecoverablenormal_03 = np.sum(N_totalrecoverablenormal_array_03) N_totalrecoverablenormal_1 = np.sum(N_totalrecoverablenormal_array_1) N_totalrecoverablenormal_10 = np.sum(N_totalrecoverablenormal_array_10) N_totalrecoverablenormal_30 = np.sum(N_totalrecoverablenormal_array_30) N_totalrecoverablenormal_100 = np.sum(N_totalrecoverablenormal_array_100) N_totalrecoverablenormal_1000 = np.sum(N_totalrecoverablenormal_array_1000) N_totalnormal22 = np.sum(N_totalnormal22_array) N_totalnormal22_03 = np.sum(N_totalnormal22_array_03) N_totalnormal22_1 = np.sum(N_totalnormal22_array_1) N_totalnormal22_10 = np.sum(N_totalnormal22_array_10) N_totalnormal22_30 = np.sum(N_totalnormal22_array_30) N_totalnormal22_100 = np.sum(N_totalnormal22_array_100) N_totalnormal22_1000 = np.sum(N_totalnormal22_array_1000) N_totalobservablenormal22 = np.sum(N_totalobservablenormal22_array) N_totalobservablenormal22_03 = np.sum(N_totalobservablenormal22_array_03) N_totalobservablenormal22_1 = np.sum(N_totalobservablenormal22_array_1) N_totalobservablenormal22_10 = np.sum(N_totalobservablenormal22_array_10) N_totalobservablenormal22_30 = np.sum(N_totalobservablenormal22_array_30) N_totalobservablenormal22_100 = np.sum(N_totalobservablenormal22_array_100) N_totalobservablenormal22_1000 = np.sum(N_totalobservablenormal22_array_1000) N_totalrecoverablenormal22 = np.sum(N_totalrecoverablenormal22_array) N_totalrecoverablenormal22_03 = np.sum(N_totalrecoverablenormal22_array_03) N_totalrecoverablenormal22_1 = np.sum(N_totalrecoverablenormal22_array_1) N_totalrecoverablenormal22_10 = np.sum(N_totalrecoverablenormal22_array_10) N_totalrecoverablenormal22_30 = np.sum(N_totalrecoverablenormal22_array_30) N_totalrecoverablenormal22_100 = np.sum(N_totalrecoverablenormal22_array_100) N_totalrecoverablenormal22_1000 = np.sum(N_totalrecoverablenormal22_array_1000) N_totalnormal195 = np.sum(N_totalnormal195_array) N_totalnormal195_03 = np.sum(N_totalnormal195_array_03) N_totalnormal195_1 = np.sum(N_totalnormal195_array_1) N_totalnormal195_10 = np.sum(N_totalnormal195_array_10) N_totalnormal195_30 = np.sum(N_totalnormal195_array_30) N_totalnormal195_100 = np.sum(N_totalnormal195_array_100) N_totalnormal195_1000 = np.sum(N_totalnormal195_array_1000) N_totalobservablenormal195 = np.sum(N_totalobservablenormal195_array) N_totalobservablenormal195_03 = np.sum(N_totalobservablenormal195_array_03) N_totalobservablenormal195_1 = np.sum(N_totalobservablenormal195_array_1) N_totalobservablenormal195_10 = np.sum(N_totalobservablenormal195_array_10) N_totalobservablenormal195_30 = np.sum(N_totalobservablenormal195_array_30) N_totalobservablenormal195_100 = np.sum(N_totalobservablenormal195_array_100) N_totalobservablenormal195_1000 = np.sum(N_totalobservablenormal195_array_1000) N_totalrecoverablenormal195 = np.sum(N_totalrecoverablenormal195_array) N_totalrecoverablenormal195_03 = np.sum(N_totalrecoverablenormal195_array_03) N_totalrecoverablenormal195_1 = np.sum(N_totalrecoverablenormal195_array_1) N_totalrecoverablenormal195_10 = np.sum(N_totalrecoverablenormal195_array_10) N_totalrecoverablenormal195_30 = np.sum(N_totalrecoverablenormal195_array_30) N_totalrecoverablenormal195_100 = np.sum(N_totalrecoverablenormal195_array_100) N_totalrecoverablenormal195_1000 = np.sum(N_totalrecoverablenormal195_array_1000) wholerecoverypercent_normal = (N_totalrecoverablenormal/N_totalobservablenormal)*100 wholerecoverypercent_normal_03 = (N_totalrecoverablenormal_03/N_totalobservablenormal_03)*100 wholerecoverypercent_normal_1 = (N_totalrecoverablenormal_1/N_totalobservablenormal_1)*100 wholerecoverypercent_normal_10 = (N_totalrecoverablenormal_10/N_totalobservablenormal_10)*100 wholerecoverypercent_normal_30 = (N_totalrecoverablenormal_30/N_totalobservablenormal_30)*100 wholerecoverypercent_normal_100 = (N_totalrecoverablenormal_100/N_totalobservablenormal_100)*100 wholerecoverypercent_normal_1000 = (N_totalrecoverablenormal_1000/N_totalobservablenormal_1000)*100 sigmanormal = ((N_totalrecoverablenormal**(1/2))/N_totalobservablenormal)*100 sigmanormal_03 = ((N_totalrecoverablenormal_03**(1/2))/N_totalobservablenormal_03)*100 sigmanormal_1 = ((N_totalrecoverablenormal_1**(1/2))/N_totalobservablenormal_1)*100 sigmanormal_10 = ((N_totalrecoverablenormal_10**(1/2))/N_totalobservablenormal_10)*100 sigmanormal_30 = ((N_totalrecoverablenormal_30**(1/2))/N_totalobservablenormal_30)*100 sigmanormal_100 = ((N_totalrecoverablenormal_100**(1/2))/N_totalobservablenormal_100)*100 sigmanormal_1000 = ((N_totalrecoverablenormal_1000**(1/2))/N_totalobservablenormal_1000)*100 overallrecoverypercent_normal = (N_totalrecoverablenormal/N_totalnormal)*100 overallrecoverypercent_normal_03 = (N_totalrecoverablenormal_03/N_totalnormal_03)*100 overallrecoverypercent_normal_1 = (N_totalrecoverablenormal_1/N_totalnormal_1)*100 overallrecoverypercent_normal_10 = (N_totalrecoverablenormal_10/N_totalnormal_10)*100 overallrecoverypercent_normal_30 = (N_totalrecoverablenormal_30/N_totalnormal_30)*100 overallrecoverypercent_normal_100 = (N_totalrecoverablenormal_100/N_totalnormal_100)*100 overallrecoverypercent_normal_1000 = (N_totalrecoverablenormal_1000/N_totalnormal_1000)*100 overallsigmanormal = ((N_totalrecoverablenormal**(1/2))/N_totalnormal)*100 overallsigmanormal_03 = ((N_totalrecoverablenormal_03**(1/2))/N_totalnormal_03)*100 overallsigmanormal_1 = ((N_totalrecoverablenormal_1**(1/2))/N_totalnormal_1)*100 overallsigmanormal_10 = ((N_totalrecoverablenormal_10**(1/2))/N_totalnormal_10)*100 overallsigmanormal_30 = ((N_totalrecoverablenormal_30**(1/2))/N_totalnormal_30)*100 overallsigmanormal_100 = ((N_totalrecoverablenormal_100**(1/2))/N_totalnormal_100)*100 overallsigmanormal_1000 = ((N_totalrecoverablenormal_1000**(1/2))/N_totalnormal_1000)*100 wholerecoverypercent_normal22 = (N_totalrecoverablenormal22/N_totalobservablenormal22)*100 wholerecoverypercent_normal22_03 = (N_totalrecoverablenormal22_03/N_totalobservablenormal22_03)*100 wholerecoverypercent_normal22_1 = (N_totalrecoverablenormal22_1/N_totalobservablenormal22_1)*100 wholerecoverypercent_normal22_10 = (N_totalrecoverablenormal22_10/N_totalobservablenormal22_10)*100 wholerecoverypercent_normal22_30 = (N_totalrecoverablenormal22_30/N_totalobservablenormal22_30)*100 wholerecoverypercent_normal22_100 = (N_totalrecoverablenormal22_100/N_totalobservablenormal22_100)*100 wholerecoverypercent_normal22_1000 = (N_totalrecoverablenormal22_1000/N_totalobservablenormal22_1000)*100 sigmanormal22 = ((N_totalrecoverablenormal22**(1/2))/N_totalobservablenormal22)*100 sigmanormal22_03 = ((N_totalrecoverablenormal22_03**(1/2))/N_totalobservablenormal22_03)*100 sigmanormal22_1 = ((N_totalrecoverablenormal22_1**(1/2))/N_totalobservablenormal22_1)*100 sigmanormal22_10 = ((N_totalrecoverablenormal22_10**(1/2))/N_totalobservablenormal22_10)*100 sigmanormal22_30 = ((N_totalrecoverablenormal22_30**(1/2))/N_totalobservablenormal22_30)*100 sigmanormal22_100 = ((N_totalrecoverablenormal22_100**(1/2))/N_totalobservablenormal22_100)*100 sigmanormal22_1000 = ((N_totalrecoverablenormal22_1000**(1/2))/N_totalobservablenormal22_1000)*100 overallrecoverypercent_normal22 = (N_totalrecoverablenormal22/N_totalnormal22)*100 overallrecoverypercent_normal22_03 = (N_totalrecoverablenormal22_03/N_totalnormal22_03)*100 overallrecoverypercent_normal22_1 = (N_totalrecoverablenormal22_1/N_totalnormal22_1)*100 overallrecoverypercent_normal22_10 = (N_totalrecoverablenormal22_10/N_totalnormal22_10)*100 overallrecoverypercent_normal22_30 = (N_totalrecoverablenormal22_30/N_totalnormal22_30)*100 overallrecoverypercent_normal22_100 = (N_totalrecoverablenormal22_100/N_totalnormal22_100)*100 overallrecoverypercent_normal22_1000 = (N_totalrecoverablenormal22_1000/N_totalnormal22_1000)*100 overallsigmanormal22 = ((N_totalrecoverablenormal22**(1/2))/N_totalnormal22)*100 overallsigmanormal22_03 = ((N_totalrecoverablenormal22_03**(1/2))/N_totalnormal22_03)*100 overallsigmanormal22_1 = ((N_totalrecoverablenormal22_1**(1/2))/N_totalnormal22_1)*100 overallsigmanormal22_10 = ((N_totalrecoverablenormal22_10**(1/2))/N_totalnormal22_10)*100 overallsigmanormal22_30 = ((N_totalrecoverablenormal22_30**(1/2))/N_totalnormal22_30)*100 overallsigmanormal22_100 = ((N_totalrecoverablenormal22_100**(1/2))/N_totalnormal22_100)*100 overallsigmanormal22_1000 = ((N_totalrecoverablenormal22_1000**(1/2))/N_totalnormal22_1000)*100 wholerecoverypercent_normal195 = (N_totalrecoverablenormal195/N_totalobservablenormal195)*100 wholerecoverypercent_normal195_03 = (N_totalrecoverablenormal195_03/N_totalobservablenormal195_03)*100 wholerecoverypercent_normal195_1 = (N_totalrecoverablenormal195_1/N_totalobservablenormal195_1)*100 wholerecoverypercent_normal195_10 = (N_totalrecoverablenormal195_10/N_totalobservablenormal195_10)*100 wholerecoverypercent_normal195_30 = (N_totalrecoverablenormal195_30/N_totalobservablenormal195_30)*100 wholerecoverypercent_normal195_100 = (N_totalrecoverablenormal195_100/N_totalobservablenormal195_100)*100 wholerecoverypercent_normal195_1000 = (N_totalrecoverablenormal195_1000/N_totalobservablenormal195_1000)*100 sigmanormal195 = ((N_totalrecoverablenormal195**(1/2))/N_totalobservablenormal195)*100 sigmanormal195_03 = ((N_totalrecoverablenormal195_03**(1/2))/N_totalobservablenormal195_03)*100 sigmanormal195_1 = ((N_totalrecoverablenormal195_1**(1/2))/N_totalobservablenormal195_1)*100 sigmanormal195_10 = ((N_totalrecoverablenormal195_10**(1/2))/N_totalobservablenormal195_10)*100 sigmanormal195_30 = ((N_totalrecoverablenormal195_30**(1/2))/N_totalobservablenormal195_30)*100 sigmanormal195_100 = ((N_totalrecoverablenormal195_100**(1/2))/N_totalobservablenormal195_100)*100 sigmanormal195_1000 = ((N_totalrecoverablenormal195_1000**(1/2))/N_totalobservablenormal195_1000)*100 overallrecoverypercent_normal195 = (N_totalrecoverablenormal195/N_totalnormal195)*100 overallrecoverypercent_normal195_03 = (N_totalrecoverablenormal195_03/N_totalnormal195_03)*100 overallrecoverypercent_normal195_1 = (N_totalrecoverablenormal195_1/N_totalnormal195_1)*100 overallrecoverypercent_normal195_10 = (N_totalrecoverablenormal195_10/N_totalnormal195_10)*100 overallrecoverypercent_normal195_30 = (N_totalrecoverablenormal195_30/N_totalnormal195_30)*100 overallrecoverypercent_normal195_100 = (N_totalrecoverablenormal195_100/N_totalnormal195_100)*100 overallrecoverypercent_normal195_1000 = (N_totalrecoverablenormal195_1000/N_totalnormal195_1000)*100 overallsigmanormal195 = ((N_totalrecoverablenormal195**(1/2))/N_totalnormal195)*100 overallsigmanormal195_03 = ((N_totalrecoverablenormal195_03**(1/2))/N_totalnormal195_03)*100 overallsigmanormal195_1 = ((N_totalrecoverablenormal195_1**(1/2))/N_totalnormal195_1)*100 overallsigmanormal195_10 = ((N_totalrecoverablenormal195_10**(1/2))/N_totalnormal195_10)*100 overallsigmanormal195_30 = ((N_totalrecoverablenormal195_30**(1/2))/N_totalnormal195_30)*100 overallsigmanormal195_100 = ((N_totalrecoverablenormal195_100**(1/2))/N_totalnormal195_100)*100 overallsigmanormal195_1000 = ((N_totalrecoverablenormal195_1000**(1/2))/N_totalnormal195_1000)*100\ print("N_totalnormal = ", N_totalnormal, "and in log = ", np.log10(N_totalnormal), "**** N_totalobservablenormal = ", N_totalobservablenormal, "and in log = ", np.log10(N_totalobservablenormal), "**** N_totalrecoverablenormal = ", N_totalrecoverablenormal, "and in log = ", np.log10(N_totalrecoverablenormal)) print("N_totalnormal_03 = ", N_totalnormal_03, "and in log = ", np.log10(N_totalnormal_03), "**** N_totalobservablenormal_03 = ", N_totalobservablenormal_03, "and in log = ", np.log10(N_totalobservablenormal_03), "**** N_totalrecoverablenormal_03 = ", N_totalrecoverablenormal_03, "and in log = ", np.log10(N_totalrecoverablenormal_03)) print("N_totalnormal_1 = ", N_totalnormal_1, "and in log = ", np.log10(N_totalnormal_1), "**** N_totalobservablenormal_1 = ", N_totalobservablenormal_1, "and in log = ", np.log10(N_totalobservablenormal_1), "**** N_totalrecoverablenormal_1 = ", N_totalrecoverablenormal_1, "and in log = ", np.log10(N_totalrecoverablenormal_1)) print("N_totalnormal_10 = ", N_totalnormal_10, "and in log = ", np.log10(N_totalnormal_10), "**** N_totalobservablenormal_10 = ", N_totalobservablenormal_10, "and in log = ", np.log10(N_totalobservablenormal_10), "**** N_totalrecoverablenormal_10 = ", N_totalrecoverablenormal_10, "and in log = ", np.log10(N_totalrecoverablenormal_10)) print("N_totalnormal_30 = ", N_totalnormal_30, "and in log = ", np.log10(N_totalnormal_30), "**** N_totalobservablenormal_30 = ", N_totalobservablenormal_30, "and in log = ", np.log10(N_totalobservablenormal_30), "**** N_totalrecoverablenormal_30 = ", N_totalrecoverablenormal_30, "and in log = ", np.log10(N_totalrecoverablenormal_30)) print("N_totalnormal_100 = ", N_totalnormal_100, "and in log = ", np.log10(N_totalnormal_100), "**** N_totalobservablenormal_100 = ", N_totalobservablenormal_100, "and in log = ", np.log10(N_totalobservablenormal_100), "**** N_totalrecoverablenormal_100 = ", N_totalrecoverablenormal_100, "and in log = ", np.log10(N_totalrecoverablenormal_100)) print("N_totalnormal_1000 = ", N_totalnormal_1000, "and in log = ", np.log10(N_totalnormal_1000), "**** N_totalobservablenormal_1000 = ", N_totalobservablenormal_1000, "and in log = ", np.log10(N_totalobservablenormal_1000), "**** N_totalrecoverablenormal_1000 = ", N_totalrecoverablenormal_1000, "and in log = ", np.log10(N_totalrecoverablenormal_1000)) print("********************************") print("wholerecoverypercent_normal = $", wholerecoverypercent_normal, "/pm", sigmanormal, "$") print("wholerecoverypercent_normal_03 = $", wholerecoverypercent_normal_03, "/pm", sigmanormal_03, "$") print("wholerecoverypercent_normal_1 = $", wholerecoverypercent_normal_1, "/pm", sigmanormal_1, "$") print("wholerecoverypercent_normal_10 = $", wholerecoverypercent_normal_10, "/pm", sigmanormal_10, "$") print("wholerecoverypercent_normal_30 = $", wholerecoverypercent_normal_30, "/pm", sigmanormal_30, "$") print("wholerecoverypercent_normal_100 = $", wholerecoverypercent_normal_100, "/pm", sigmanormal_100, "$") print("wholerecoverypercent_normal_1000 = $", wholerecoverypercent_normal_1000, "/pm", sigmanormal_1000, "$") print("********************************") print("overallrecoverypercent_normal = $", overallrecoverypercent_normal, "/pm", overallsigmanormal) print("overallrecoverypercent_normal_03 = $", overallrecoverypercent_normal_03, "/pm", overallsigmanormal_03) print("overallrecoverypercent_normal_1 = $", overallrecoverypercent_normal_1, "/pm", overallsigmanormal_1) print("overallrecoverypercent_normal_10 = $", overallrecoverypercent_normal_10, "/pm", overallsigmanormal_10) print("overallrecoverypercent_normal_30 = $", overallrecoverypercent_normal_30, "/pm", overallsigmanormal_30) print("overallrecoverypercent_normal_100 = $", overallrecoverypercent_normal_100, "/pm", overallsigmanormal_100) print("overallrecoverypercent_normal_1000 = $", overallrecoverypercent_normal_1000, "/pm", overallsigmanormal_1000) print("################################") print("N_totalnormal22 = ", N_totalnormal22, "and in log = ", np.log10(N_totalnormal22), "**** N_totalobservablenormal22 = ", N_totalobservablenormal22, "and in log = ", np.log10(N_totalobservablenormal22), "**** N_totalrecoverablenormal22 = ", N_totalrecoverablenormal22, "and in log = ", np.log10(N_totalrecoverablenormal22)) print("N_totalnormal22_03 = ", N_totalnormal22_03, "and in log = ", np.log10(N_totalnormal22_03), "**** N_totalobservablenormal22_03 = ", N_totalobservablenormal22_03, "and in log = ", np.log10(N_totalobservablenormal22_03), "**** N_totalrecoverablenormal22_03 = ", N_totalrecoverablenormal22_03, "and in log = ", np.log10(N_totalrecoverablenormal22_03)) print("N_totalnormal22_1 = ", N_totalnormal22_1, "and in log = ", np.log10(N_totalnormal22_1), "**** N_totalobservablenormal22_1 = ", N_totalobservablenormal22_1, "and in log = ", np.log10(N_totalobservablenormal22_1), "**** N_totalrecoverablenormal22_1 = ", N_totalrecoverablenormal22_1, "and in log = ", np.log10(N_totalrecoverablenormal22_1)) print("N_totalnormal22_10 = ", N_totalnormal22_10, "and in log = ", np.log10(N_totalnormal22_10), "**** N_totalobservablenormal22_10 = ", N_totalobservablenormal22_10, "and in log = ", np.log10(N_totalobservablenormal22_10), "**** N_totalrecoverablenormal22_10 = ", N_totalrecoverablenormal22_10, "and in log = ", np.log10(N_totalrecoverablenormal22_10)) print("N_totalnormal22_30 = ", N_totalnormal22_30, "and in log = ", np.log10(N_totalnormal22_30), "**** N_totalobservablenormal22_30 = ", N_totalobservablenormal22_30, "and in log = ", np.log10(N_totalobservablenormal22_30), "**** N_totalrecoverablenormal22_30 = ", N_totalrecoverablenormal22_30, "and in log = ", np.log10(N_totalrecoverablenormal22_30)) print("N_totalnormal22_100 = ", N_totalnormal22_100, "and in log = ", np.log10(N_totalnormal22_100), "**** N_totalobservablenormal22_100 = ", N_totalobservablenormal22_100, "and in log = ", np.log10(N_totalobservablenormal22_100), "**** N_totalrecoverablenormal22_100 = ", N_totalrecoverablenormal22_100, "and in log = ", np.log10(N_totalrecoverablenormal22_100)) print("N_totalnormal22_1000 = ", N_totalnormal22_1000, "and in log = ", np.log10(N_totalnormal22_1000), "**** N_totalobservablenormal22_1000 = ", N_totalobservablenormal22_1000, "and in log = ", np.log10(N_totalobservablenormal22_1000), "**** N_totalrecoverablenormal22_1000 = ", N_totalrecoverablenormal22_1000, "and in log = ", np.log10(N_totalrecoverablenormal22_1000)) print("********************************") print("wholerecoverypercent_normal22 = $", wholerecoverypercent_normal22, "/pm", sigmanormal22, "$") print("wholerecoverypercent_normal22_03 = $", wholerecoverypercent_normal22_03, "/pm", sigmanormal22_03, "$") print("wholerecoverypercent_normal22_1 = $", wholerecoverypercent_normal22_1, "/pm", sigmanormal22_1, "$") print("wholerecoverypercent_normal22_10 = $", wholerecoverypercent_normal22_10, "/pm", sigmanormal22_10, "$") print("wholerecoverypercent_normal22_30 = $", wholerecoverypercent_normal22_30, "/pm", sigmanormal22_30, "$") print("wholerecoverypercent_normal22_100 = $", wholerecoverypercent_normal22_100, "/pm", sigmanormal22_100, "$") print("wholerecoverypercent_normal22_1000 = $", wholerecoverypercent_normal22_1000, "/pm", sigmanormal22_1000, "$") print("********************************") print("overallrecoverypercent_normal22 = $", overallrecoverypercent_normal22, "/pm", overallsigmanormal22, "$") print("overallrecoverypercent_normal22_03 = $", overallrecoverypercent_normal22_03, "/pm", overallsigmanormal22_03, "$") print("overallrecoverypercent_normal22_1 = $", overallrecoverypercent_normal22_1, "/pm", overallsigmanormal22_1, "$") print("overallrecoverypercent_normal22_10 = $", overallrecoverypercent_normal22_10, "/pm", overallsigmanormal22_10, "$") print("overallrecoverypercent_normal22_30 = $", overallrecoverypercent_normal22_30, "/pm", overallsigmanormal22_30, "$") print("overallrecoverypercent_normal22_100 = $", overallrecoverypercent_normal22_100, "/pm", overallsigmanormal22_100, "$") print("overallrecoverypercent_normal22_1000 = $", overallrecoverypercent_normal22_1000, "/pm", overallsigmanormal22_1000, "$") print("###############################") print("N_totalnormal195 = ", N_totalnormal195, "and in log = ", np.log10(N_totalnormal195), "**** N_totalobservablenormal195 = ", N_totalobservablenormal195, "and in log = ", np.log10(N_totalobservablenormal195), "**** N_totalrecoverablenormal195 = ", N_totalrecoverablenormal195, "and in log = ", np.log10(N_totalrecoverablenormal195)) print("N_totalnormal195_03 = ", N_totalnormal195_03, "and in log = ", np.log10(N_totalnormal195_03), "**** N_totalobservablenormal195_03 = ", N_totalobservablenormal195_03, "and in log = ", np.log10(N_totalobservablenormal195_03), "**** N_totalrecoverablenormal195_03 = ", N_totalrecoverablenormal195_03, "and in log = ", np.log10(N_totalrecoverablenormal195_03)) print("N_totalnormal195_1 = ", N_totalnormal195_1, "and in log = ", np.log10(N_totalnormal195_1), "**** N_totalobservablenormal195_1 = ", N_totalobservablenormal195_1, "and in log = ", np.log10(N_totalobservablenormal195_1), "**** N_totalrecoverablenormal195_1 = ", N_totalrecoverablenormal195_1, "and in log = ", np.log10(N_totalrecoverablenormal195_1)) print("N_totalnormal195_10 = ", N_totalnormal195_10, "and in log = ", np.log10(N_totalnormal195_10), "**** N_totalobservablenormal195_10 = ", N_totalobservablenormal195_10, "and in log = ", np.log10(N_totalobservablenormal195_10), "**** N_totalrecoverablenormal195_10 = ", N_totalrecoverablenormal195_10, "and in log = ", np.log10(N_totalrecoverablenormal195_10)) print("N_totalnormal195_30 = ", N_totalnormal195_30, "and in log = ", np.log10(N_totalnormal195_30), "**** N_totalobservablenormal195_30 = ", N_totalobservablenormal195_30, "and in log = ", np.log10(N_totalobservablenormal195_30), "**** N_totalrecoverablenormal195_30 = ", N_totalrecoverablenormal195_30, "and in log = ", np.log10(N_totalrecoverablenormal195_30)) print("N_totalnormal195_100 = ", N_totalnormal195_100, "and in log = ", np.log10(N_totalnormal195_100), "**** N_totalobservablenormal195_100 = ", N_totalobservablenormal195_100, "and in log = ", np.log10(N_totalobservablenormal195_100), "**** N_totalrecoverablenormal195_100 = ", N_totalrecoverablenormal195_100, "and in log = ", np.log10(N_totalrecoverablenormal195_100)) print("N_totalnormal195_1000 = ", N_totalnormal195_1000, "and in log = ", np.log10(N_totalnormal195_1000), "**** N_totalobservablenormal195_1000 = ", N_totalobservablenormal195_1000, "and in log = ", np.log10(N_totalobservablenormal195_1000), "**** N_totalrecoverablenormal195_1000 = ", N_totalrecoverablenormal195_1000, "and in log = ", np.log10(N_totalrecoverablenormal195_1000)) print("********************************") print("wholerecoverypercent_normal195 = $", wholerecoverypercent_normal195, "/pm", sigmanormal195, "$") print("wholerecoverypercent_normal195_03 = $", wholerecoverypercent_normal195_03, "/pm", sigmanormal195_03, "$") print("wholerecoverypercent_normal195_1 = $", wholerecoverypercent_normal195_1, "/pm", sigmanormal195_1, "$") print("wholerecoverypercent_normal195_10 = $", wholerecoverypercent_normal195_10, "/pm", sigmanormal195_10, "$") print("wholerecoverypercent_normal195_30 = $", wholerecoverypercent_normal195_30, "/pm", sigmanormal195_30, "$") print("wholerecoverypercent_normal195_100 = $", wholerecoverypercent_normal195_100, "/pm", sigmanormal195_100, "$") print("wholerecoverypercent_normal195_1000 = $", wholerecoverypercent_normal195_1000, "/pm", sigmanormal195_1000, "$") print("********************************") print("overallrecoverypercent_normal195 = $", overallrecoverypercent_normal195, "/pm", overallsigmanormal195, "$") print("overallrecoverypercent_normal195_03 = $", overallrecoverypercent_normal195_03, "/pm", overallsigmanormal195_03, "$") print("overallrecoverypercent_normal195_1 = $", overallrecoverypercent_normal195_1, "/pm", overallsigmanormal195_1, "$") print("overallrecoverypercent_normal195_10 = $", overallrecoverypercent_normal195_10, "/pm", overallsigmanormal195_10, "$") print("overallrecoverypercent_normal195_30 = $", overallrecoverypercent_normal195_30, "/pm", overallsigmanormal195_30, "$") print("overallrecoverypercent_normal195_100 = $", overallrecoverypercent_normal195_100, "/pm", overallsigmanormal195_100, "$") print("overallrecoverypercent_normal195_1000 = $", overallrecoverypercent_normal195_1000, "/pm", overallsigmanormal195_1000, "$") print("#############################") print("binarypercent_22 = $", (N_totalnormal22/N_totalnormal)*100, "/pm", ((N_totalnormal22**(1/2))/N_totalnormal)*100, "$") print("binarypercent_195 = $", (N_totalnormal195/N_totalnormal)*100, "/pm", ((N_totalnormal195**(1/2))/N_totalnormal)*100, "$") print("binarypercent_03 = $", (N_totalnormal_03/N_totalnormal)*100, "/pm", ((N_totalnormal_03**(1/2))/N_totalnormal)*100, "$") print("binarypercent_1 = $", (N_totalnormal_1/N_totalnormal)*100, "/pm", ((N_totalnormal_1**(1/2))/N_totalnormal)*100, "$") print("binarypercent_10 = $", (N_totalnormal_10/N_totalnormal)*100, "/pm", ((N_totalnormal_10**(1/2))/N_totalnormal)*100, "$") print("binarypercent_30 = $", (N_totalnormal_30/N_totalnormal)*100, "/pm", ((N_totalnormal_30**(1/2))/N_totalnormal)*100, "$") print("binarypercent_100 = $", (N_totalnormal_100/N_totalnormal)*100, "/pm", ((N_totalnormal_100**(1/2))/N_totalnormal)*100, "$") print("binarypercent_1000 = $", (N_totalnormal_1000/N_totalnormal)*100, "/pm", ((N_totalnormal_1000**(1/2))/N_totalnormal)*100, "$") print("observablepercent_03 = $", (N_totalobservablenormal_03/N_totalnormal_03)*100, "/pm", ((N_totalobservablenormal_03**(1/2))/N_totalnormal_03)*100, "$") print("observablepercent_1 = $", (N_totalobservablenormal_1/N_totalnormal_1)*100, "/pm", ((N_totalobservablenormal_1**(1/2))/N_totalnormal_1)*100, "$") print("observablepercent_10 = $", (N_totalobservablenormal_10/N_totalnormal_10)*100, "/pm", ((N_totalobservablenormal_10**(1/2))/N_totalnormal_10)*100, "$") print("observablepercent_30 = $", (N_totalobservablenormal_30/N_totalnormal_30)*100, "/pm", ((N_totalobservablenormal_30**(1/2))/N_totalnormal_30)*100, "$") print("observablepercent_100 = $", (N_totalobservablenormal_100/N_totalnormal_100)*100, "/pm", ((N_totalobservablenormal_100**(1/2))/N_totalnormal_100)*100, "$") print("observablepercent_1000 = $", (N_totalobservablenormal_1000/N_totalnormal_1000)*100, "/pm", ((N_totalobservablenormal_1000**(1/2))/N_totalnormal_1000)*100, "$") print("observablepercent = $", (N_totalobservablenormal/N_totalnormal)*100, "/pm", ((N_totalobservablenormal**(1/2))/N_totalnormal)*100, "$") print("observablepercent22 = $", (N_totalobservablenormal22/N_totalnormal22)*100, "/pm", ((N_totalobservablenormal22**(1/2))/N_totalnormal22)*100, "$") print("observablepercent195 = $", (N_totalobservablenormal195/N_totalnormal195)*100, "/pm", ((N_totalobservablenormal195**(1/2))/N_totalnormal195)*100, "$") for filefast_ in sorted(allFiles_fast): filename = filefast_[69:] #when file path no longer has /old in it, will be filefast_[65:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datfast = pd.read_csv(filefast_, sep = ',', header=2) PeriodIn = datfast['p'] # input period -- 'p' in data file ########################################################## datfast1 = pd.read_csv(filefast_, sep = ',', header=0, nrows=1) N_tri = datfast1["NstarsTRILEGAL"][0] Nall = len(PeriodIn) m1hAll0, m1b = np.histogram(datfast["m1"], bins=mbins) dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/Nall*fbFit(m1val)) N_mult = N_tri*fb ########################################################## if len(PeriodIn) == 0.: continue if N_tri == 0: continue else: PeriodOut = datfast['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean = datfast['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) observable = datfast.loc[PeriodOut != -999].index observable_03 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999)].index observable_1 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999)].index observable_10 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999)].index observable_30 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999)].index observable_100 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999)].index observable_1000 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999)].index observable_22 = datfast.loc[(PeriodOut != -999) & (appMagMean <= 22.)].index observable_03_22 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1_22 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_10_22 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_30_22 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_100_22 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1000_22 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_195 = datfast.loc[(PeriodOut != -999) & (appMagMean <= 19.5)].index observable_03_195 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1_195 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_10_195 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_30_195 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_100_195 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1000_195 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 19.5)].index fullP = abs(PeriodOut - PeriodIn)/PeriodIn halfP = abs(PeriodOut - 0.5*PeriodIn)/(0.5*PeriodIn) twiceP = abs(PeriodOut - 2*PeriodIn)/(2*PeriodIn) recoverable = datfast.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_03 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_10 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_30 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_100 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1000 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_22 = datfast.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_03_22 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1_22 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_10_22 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_30_22 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_100_22 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1000_22 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_195 = datfast.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_03_195 = datfast.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1_195 = datfast.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_10_195 = datfast.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_30_195 = datfast.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_100_195 = datfast.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1000_195 = datfast.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index P03 = datfast.loc[PeriodIn <= 0.3].index P1 = datfast.loc[PeriodIn <= 1].index P10 = datfast.loc[PeriodIn <= 10].index P30 = datfast.loc[PeriodIn <= 30].index P100 = datfast.loc[PeriodIn <= 100].index P1000 = datfast.loc[PeriodIn <= 1000].index P_22 = datfast.loc[appMagMean <= 22.].index P03_22 = datfast.loc[(PeriodIn <= 0.3) & (appMagMean <= 22.)].index P1_22 = datfast.loc[(PeriodIn <= 1) & (appMagMean <= 22.)].index P10_22 = datfast.loc[(PeriodIn <= 10) & (appMagMean <= 22.)].index P30_22 = datfast.loc[(PeriodIn <= 30) & (appMagMean <= 22.)].index P100_22 = datfast.loc[(PeriodIn <= 100) & (appMagMean <= 22.)].index P1000_22 = datfast.loc[(PeriodIn <= 1000) & (appMagMean <= 22.)].index P_195 = datfast.loc[appMagMean <= 19.5].index P03_195 = datfast.loc[(PeriodIn <= 0.3) & (appMagMean <= 19.5)].index P1_195 = datfast.loc[(PeriodIn <= 1) & (appMagMean <= 19.5)].index P10_195 = datfast.loc[(PeriodIn <= 10) & (appMagMean <= 19.5)].index P30_195 = datfast.loc[(PeriodIn <= 30) & (appMagMean <= 19.5)].index P100_195 = datfast.loc[(PeriodIn <= 100) & (appMagMean <= 19.5)].index P1000_195 = datfast.loc[(PeriodIn <= 1000) & (appMagMean <= 19.5)].index N_all = (len(PeriodIn)/len(PeriodIn))*N_mult N_all03 = (len(P03)/len(PeriodIn))*N_mult N_all1 = (len(P1)/len(PeriodIn))*N_mult N_all10 = (len(P10)/len(PeriodIn))*N_mult N_all30 = (len(P30)/len(PeriodIn))*N_mult N_all100 = (len(P100)/len(PeriodIn))*N_mult N_all1000 = (len(P1000)/len(PeriodIn))*N_mult N_all_22 = (len(P_22)/len(PeriodIn))*N_mult N_all03_22 = (len(P03_22)/len(PeriodIn))*N_mult N_all1_22 = (len(P1_22)/len(PeriodIn))*N_mult N_all10_22 = (len(P10_22)/len(PeriodIn))*N_mult N_all30_22 = (len(P30_22)/len(PeriodIn))*N_mult N_all100_22 = (len(P100_22)/len(PeriodIn))*N_mult N_all1000_22 = (len(P1000_22)/len(PeriodIn))*N_mult N_all_195 = (len(P_195)/len(PeriodIn))*N_mult N_all03_195 = (len(P03_195)/len(PeriodIn))*N_mult N_all1_195 = (len(P1_195)/len(PeriodIn))*N_mult N_all10_195 = (len(P10_195)/len(PeriodIn))*N_mult N_all30_195 = (len(P30_195)/len(PeriodIn))*N_mult N_all100_195 = (len(P100_195)/len(PeriodIn))*N_mult N_all1000_195 = (len(P1000_195)/len(PeriodIn))*N_mult N_obs = (len(observable)/len(PeriodIn))*N_mult N_obs03 = (len(observable_03)/len(PeriodIn))*N_mult N_obs1 = (len(observable_1)/len(PeriodIn))*N_mult N_obs10 = (len(observable_10)/len(PeriodIn))*N_mult N_obs30 = (len(observable_30)/len(PeriodIn))*N_mult N_obs100 = (len(observable_100)/len(PeriodIn))*N_mult N_obs1000 = (len(observable_1000)/len(PeriodIn))*N_mult N_obs_22 = (len(observable_22)/len(PeriodIn))*N_mult N_obs03_22 = (len(observable_03_22)/len(PeriodIn))*N_mult N_obs1_22 = (len(observable_1_22)/len(PeriodIn))*N_mult N_obs10_22 = (len(observable_10_22)/len(PeriodIn))*N_mult N_obs30_22 = (len(observable_30_22)/len(PeriodIn))*N_mult N_obs100_22 = (len(observable_100_22)/len(PeriodIn))*N_mult N_obs1000_22 = (len(observable_1000_22)/len(PeriodIn))*N_mult N_obs_195 = (len(observable_195)/len(PeriodIn))*N_mult N_obs03_195 = (len(observable_03_195)/len(PeriodIn))*N_mult N_obs1_195 = (len(observable_1_195)/len(PeriodIn))*N_mult N_obs10_195 = (len(observable_10_195)/len(PeriodIn))*N_mult N_obs30_195 = (len(observable_30_195)/len(PeriodIn))*N_mult N_obs100_195 = (len(observable_100_195)/len(PeriodIn))*N_mult N_obs1000_195 = (len(observable_1000_195)/len(PeriodIn))*N_mult N_rec = (len(recoverable)/len(PeriodIn))*N_mult N_rec03 = (len(recoverable_03)/len(PeriodIn))*N_mult N_rec1 = (len(recoverable_1)/len(PeriodIn))*N_mult N_rec10 = (len(recoverable_10)/len(PeriodIn))*N_mult N_rec30 = (len(recoverable_30)/len(PeriodIn))*N_mult N_rec100 = (len(recoverable_100)/len(PeriodIn))*N_mult N_rec1000 = (len(recoverable_1000)/len(PeriodIn))*N_mult N_rec_22 = (len(recoverable_22)/len(PeriodIn))*N_mult N_rec03_22 = (len(recoverable_03_22)/len(PeriodIn))*N_mult N_rec1_22 = (len(recoverable_1_22)/len(PeriodIn))*N_mult N_rec10_22 = (len(recoverable_10_22)/len(PeriodIn))*N_mult N_rec30_22 = (len(recoverable_30_22)/len(PeriodIn))*N_mult N_rec100_22 = (len(recoverable_100_22)/len(PeriodIn))*N_mult N_rec1000_22 = (len(recoverable_1000_22)/len(PeriodIn))*N_mult N_rec_195 = (len(recoverable_195)/len(PeriodIn))*N_mult N_rec03_195 = (len(recoverable_03_195)/len(PeriodIn))*N_mult N_rec1_195 = (len(recoverable_1_195)/len(PeriodIn))*N_mult N_rec10_195 = (len(recoverable_10_195)/len(PeriodIn))*N_mult N_rec30_195 = (len(recoverable_30_195)/len(PeriodIn))*N_mult N_rec100_195 = (len(recoverable_100_195)/len(PeriodIn))*N_mult N_rec1000_195 = (len(recoverable_1000_195)/len(PeriodIn))*N_mult N_totalfast_array.append(float(N_all)) N_totalobservablefast_array.append(float(N_obs)) N_totalrecoverablefast_array.append(float(N_rec)) N_totalfast_array_03.append(float(N_all03)) N_totalobservablefast_array_03.append(float(N_obs03)) N_totalrecoverablefast_array_03.append(float(N_rec03)) N_totalfast_array_1.append(float(N_all1)) N_totalobservablefast_array_1.append(float(N_obs1)) N_totalrecoverablefast_array_1.append(float(N_rec1)) N_totalfast_array_10.append(float(N_all10)) N_totalobservablefast_array_10.append(float(N_obs10)) N_totalrecoverablefast_array_10.append(float(N_rec10)) N_totalfast_array_30.append(float(N_all30)) N_totalobservablefast_array_30.append(float(N_obs30)) N_totalrecoverablefast_array_30.append(float(N_rec30)) N_totalfast_array_100.append(float(N_all100)) N_totalobservablefast_array_100.append(float(N_obs100)) N_totalrecoverablefast_array_100.append(float(N_rec100)) N_totalfast_array_1000.append(float(N_all1000)) N_totalobservablefast_array_1000.append(float(N_obs1000)) N_totalrecoverablefast_array_1000.append(float(N_rec1000)) N_totalfast22_array.append(float(N_all_22)) N_totalobservablefast22_array.append(float(N_obs_22)) N_totalrecoverablefast22_array.append(float(N_rec_22)) N_totalfast22_array_03.append(float(N_all03_22)) N_totalobservablefast22_array_03.append(float(N_obs03_22)) N_totalrecoverablefast22_array_03.append(float(N_rec03_22)) N_totalfast22_array_1.append(float(N_all1_22)) N_totalobservablefast22_array_1.append(float(N_obs1_22)) N_totalrecoverablefast22_array_1.append(float(N_rec1_22)) N_totalfast22_array_10.append(float(N_all10_22)) N_totalobservablefast22_array_10.append(float(N_obs10_22)) N_totalrecoverablefast22_array_10.append(float(N_rec10_22)) N_totalfast22_array_30.append(float(N_all30_22)) N_totalobservablefast22_array_30.append(float(N_obs30_22)) N_totalrecoverablefast22_array_30.append(float(N_rec30_22)) N_totalfast22_array_100.append(float(N_all100_22)) N_totalobservablefast22_array_100.append(float(N_obs100_22)) N_totalrecoverablefast22_array_100.append(float(N_rec100_22)) N_totalfast22_array_1000.append(float(N_all1000_22)) N_totalobservablefast22_array_1000.append(float(N_obs1000_22)) N_totalrecoverablefast22_array_1000.append(float(N_rec1000_22)) N_totalfast195_array.append(float(N_all_195)) N_totalobservablefast195_array.append(float(N_obs_195)) N_totalrecoverablefast195_array.append(float(N_rec_195)) N_totalfast195_array_03.append(float(N_all03_195)) N_totalobservablefast195_array_03.append(float(N_obs03_195)) N_totalrecoverablefast195_array_03.append(float(N_rec03_195)) N_totalfast195_array_1.append(float(N_all1_195)) N_totalobservablefast195_array_1.append(float(N_obs1_195)) N_totalrecoverablefast195_array_1.append(float(N_rec1_195)) N_totalfast195_array_10.append(float(N_all10_195)) N_totalobservablefast195_array_10.append(float(N_obs10_195)) N_totalrecoverablefast195_array_10.append(float(N_rec10_195)) N_totalfast195_array_30.append(float(N_all30_195)) N_totalobservablefast195_array_30.append(float(N_obs30_195)) N_totalrecoverablefast195_array_30.append(float(N_rec30_195)) N_totalfast195_array_100.append(float(N_all100_195)) N_totalobservablefast195_array_100.append(float(N_obs100_195)) N_totalrecoverablefast195_array_100.append(float(N_rec100_195)) N_totalfast195_array_1000.append(float(N_all1000_195)) N_totalobservablefast195_array_1000.append(float(N_obs1000_195)) N_totalrecoverablefast195_array_1000.append(float(N_rec1000_195)) N_totalfast = np.sum(N_totalfast_array) N_totalfast_03 = np.sum(N_totalfast_array_03) N_totalfast_1 = np.sum(N_totalfast_array_1) N_totalfast_10 = np.sum(N_totalfast_array_10) N_totalfast_30 = np.sum(N_totalfast_array_30) N_totalfast_100 = np.sum(N_totalfast_array_100) N_totalfast_1000 = np.sum(N_totalfast_array_1000) N_totalobservablefast = np.sum(N_totalobservablefast_array) N_totalobservablefast_03 = np.sum(N_totalobservablefast_array_03) N_totalobservablefast_1 = np.sum(N_totalobservablefast_array_1) N_totalobservablefast_10 = np.sum(N_totalobservablefast_array_10) N_totalobservablefast_30 = np.sum(N_totalobservablefast_array_30) N_totalobservablefast_100 = np.sum(N_totalobservablefast_array_100) N_totalobservablefast_1000 = np.sum(N_totalobservablefast_array_1000) N_totalrecoverablefast = np.sum(N_totalrecoverablefast_array) N_totalrecoverablefast_03 = np.sum(N_totalrecoverablefast_array_03) N_totalrecoverablefast_1 = np.sum(N_totalrecoverablefast_array_1) N_totalrecoverablefast_10 = np.sum(N_totalrecoverablefast_array_10) N_totalrecoverablefast_30 = np.sum(N_totalrecoverablefast_array_30) N_totalrecoverablefast_100 = np.sum(N_totalrecoverablefast_array_100) N_totalrecoverablefast_1000 = np.sum(N_totalrecoverablefast_array_1000) N_totalfast22 = np.sum(N_totalfast22_array) N_totalfast22_03 = np.sum(N_totalfast22_array_03) N_totalfast22_1 = np.sum(N_totalfast22_array_1) N_totalfast22_10 = np.sum(N_totalfast22_array_10) N_totalfast22_30 = np.sum(N_totalfast22_array_30) N_totalfast22_100 = np.sum(N_totalfast22_array_100) N_totalfast22_1000 = np.sum(N_totalfast22_array_1000) N_totalobservablefast22 = np.sum(N_totalobservablefast22_array) N_totalobservablefast22_03 = np.sum(N_totalobservablefast22_array_03) N_totalobservablefast22_1 = np.sum(N_totalobservablefast22_array_1) N_totalobservablefast22_10 = np.sum(N_totalobservablefast22_array_10) N_totalobservablefast22_30 = np.sum(N_totalobservablefast22_array_30) N_totalobservablefast22_100 = np.sum(N_totalobservablefast22_array_100) N_totalobservablefast22_1000 = np.sum(N_totalobservablefast22_array_1000) N_totalrecoverablefast22 = np.sum(N_totalrecoverablefast22_array) N_totalrecoverablefast22_03 = np.sum(N_totalrecoverablefast22_array_03) N_totalrecoverablefast22_1 = np.sum(N_totalrecoverablefast22_array_1) N_totalrecoverablefast22_10 = np.sum(N_totalrecoverablefast22_array_10) N_totalrecoverablefast22_30 = np.sum(N_totalrecoverablefast22_array_30) N_totalrecoverablefast22_100 = np.sum(N_totalrecoverablefast22_array_100) N_totalrecoverablefast22_1000 = np.sum(N_totalrecoverablefast22_array_1000) N_totalfast195 = np.sum(N_totalfast195_array) N_totalfast195_03 = np.sum(N_totalfast195_array_03) N_totalfast195_1 = np.sum(N_totalfast195_array_1) N_totalfast195_10 = np.sum(N_totalfast195_array_10) N_totalfast195_30 = np.sum(N_totalfast195_array_30) N_totalfast195_100 = np.sum(N_totalfast195_array_100) N_totalfast195_1000 = np.sum(N_totalfast195_array_1000) N_totalobservablefast195 = np.sum(N_totalobservablefast195_array) N_totalobservablefast195_03 = np.sum(N_totalobservablefast195_array_03) N_totalobservablefast195_1 = np.sum(N_totalobservablefast195_array_1) N_totalobservablefast195_10 = np.sum(N_totalobservablefast195_array_10) N_totalobservablefast195_30 = np.sum(N_totalobservablefast195_array_30) N_totalobservablefast195_100 = np.sum(N_totalobservablefast195_array_100) N_totalobservablefast195_1000 = np.sum(N_totalobservablefast195_array_1000) N_totalrecoverablefast195 = np.sum(N_totalrecoverablefast195_array) N_totalrecoverablefast195_03 = np.sum(N_totalrecoverablefast195_array_03) N_totalrecoverablefast195_1 = np.sum(N_totalrecoverablefast195_array_1) N_totalrecoverablefast195_10 = np.sum(N_totalrecoverablefast195_array_10) N_totalrecoverablefast195_30 = np.sum(N_totalrecoverablefast195_array_30) N_totalrecoverablefast195_100 = np.sum(N_totalrecoverablefast195_array_100) N_totalrecoverablefast195_1000 = np.sum(N_totalrecoverablefast195_array_1000) wholerecoverypercent_fast = (N_totalrecoverablefast/N_totalobservablefast)*100 wholerecoverypercent_fast_03 = (N_totalrecoverablefast_03/N_totalobservablefast_03)*100 wholerecoverypercent_fast_1 = (N_totalrecoverablefast_1/N_totalobservablefast_1)*100 wholerecoverypercent_fast_10 = (N_totalrecoverablefast_10/N_totalobservablefast_10)*100 wholerecoverypercent_fast_30 = (N_totalrecoverablefast_30/N_totalobservablefast_30)*100 wholerecoverypercent_fast_100 = (N_totalrecoverablefast_100/N_totalobservablefast_100)*100 wholerecoverypercent_fast_1000 = (N_totalrecoverablefast_1000/N_totalobservablefast_1000)*100 sigmafast = ((N_totalrecoverablefast**(1/2))/N_totalobservablefast)*100 sigmafast_03 = ((N_totalrecoverablefast_03**(1/2))/N_totalobservablefast_03)*100 sigmafast_1 = ((N_totalrecoverablefast_1**(1/2))/N_totalobservablefast_1)*100 sigmafast_10 = ((N_totalrecoverablefast_10**(1/2))/N_totalobservablefast_10)*100 sigmafast_30 = ((N_totalrecoverablefast_30**(1/2))/N_totalobservablefast_30)*100 sigmafast_100 = ((N_totalrecoverablefast_100**(1/2))/N_totalobservablefast_100)*100 sigmafast_1000 = ((N_totalrecoverablefast_1000**(1/2))/N_totalobservablefast_1000)*100 overallrecoverypercent_fast = (N_totalrecoverablefast/N_totalfast)*100 overallrecoverypercent_fast_03 = (N_totalrecoverablefast_03/N_totalfast_03)*100 overallrecoverypercent_fast_1 = (N_totalrecoverablefast_1/N_totalfast_1)*100 overallrecoverypercent_fast_10 = (N_totalrecoverablefast_10/N_totalfast_10)*100 overallrecoverypercent_fast_30 = (N_totalrecoverablefast_30/N_totalfast_30)*100 overallrecoverypercent_fast_100 = (N_totalrecoverablefast_100/N_totalfast_100)*100 overallrecoverypercent_fast_1000 = (N_totalrecoverablefast_1000/N_totalfast_1000)*100 overallsigmafast = ((N_totalrecoverablefast**(1/2))/N_totalfast)*100 overallsigmafast_03 = ((N_totalrecoverablefast_03**(1/2))/N_totalfast_03)*100 overallsigmafast_1 = ((N_totalrecoverablefast_1**(1/2))/N_totalfast_1)*100 overallsigmafast_10 = ((N_totalrecoverablefast_10**(1/2))/N_totalfast_10)*100 overallsigmafast_30 = ((N_totalrecoverablefast_30**(1/2))/N_totalfast_30)*100 overallsigmafast_100 = ((N_totalrecoverablefast_100**(1/2))/N_totalfast_100)*100 overallsigmafast_1000 = ((N_totalrecoverablefast_1000**(1/2))/N_totalfast_1000)*100 wholerecoverypercent_fast22 = (N_totalrecoverablefast22/N_totalobservablefast22)*100 wholerecoverypercent_fast22_03 = (N_totalrecoverablefast22_03/N_totalobservablefast22_03)*100 wholerecoverypercent_fast22_1 = (N_totalrecoverablefast22_1/N_totalobservablefast22_1)*100 wholerecoverypercent_fast22_10 = (N_totalrecoverablefast22_10/N_totalobservablefast22_10)*100 wholerecoverypercent_fast22_30 = (N_totalrecoverablefast22_30/N_totalobservablefast22_30)*100 wholerecoverypercent_fast22_100 = (N_totalrecoverablefast22_100/N_totalobservablefast22_100)*100 wholerecoverypercent_fast22_1000 = (N_totalrecoverablefast22_1000/N_totalobservablefast22_1000)*100 sigmafast22 = ((N_totalrecoverablefast22**(1/2))/N_totalobservablefast22)*100 sigmafast22_03 = ((N_totalrecoverablefast22_03**(1/2))/N_totalobservablefast22_03)*100 sigmafast22_1 = ((N_totalrecoverablefast22_1**(1/2))/N_totalobservablefast22_1)*100 sigmafast22_10 = ((N_totalrecoverablefast22_10**(1/2))/N_totalobservablefast22_10)*100 sigmafast22_30 = ((N_totalrecoverablefast22_30**(1/2))/N_totalobservablefast22_30)*100 sigmafast22_100 = ((N_totalrecoverablefast22_100**(1/2))/N_totalobservablefast22_100)*100 sigmafast22_1000 = ((N_totalrecoverablefast22_1000**(1/2))/N_totalobservablefast22_1000)*100 overallrecoverypercent_fast22 = (N_totalrecoverablefast22/N_totalfast22)*100 overallrecoverypercent_fast22_03 = (N_totalrecoverablefast22_03/N_totalfast22_03)*100 overallrecoverypercent_fast22_1 = (N_totalrecoverablefast22_1/N_totalfast22_1)*100 overallrecoverypercent_fast22_10 = (N_totalrecoverablefast22_10/N_totalfast22_10)*100 overallrecoverypercent_fast22_30 = (N_totalrecoverablefast22_30/N_totalfast22_30)*100 overallrecoverypercent_fast22_100 = (N_totalrecoverablefast22_100/N_totalfast22_100)*100 overallrecoverypercent_fast22_1000 = (N_totalrecoverablefast22_1000/N_totalfast22_1000)*100 overallsigmafast22 = ((N_totalrecoverablefast22**(1/2))/N_totalfast22)*100 overallsigmafast22_03 = ((N_totalrecoverablefast22_03**(1/2))/N_totalfast22_03)*100 overallsigmafast22_1 = ((N_totalrecoverablefast22_1**(1/2))/N_totalfast22_1)*100 overallsigmafast22_10 = ((N_totalrecoverablefast22_10**(1/2))/N_totalfast22_10)*100 overallsigmafast22_30 = ((N_totalrecoverablefast22_30**(1/2))/N_totalfast22_30)*100 overallsigmafast22_100 = ((N_totalrecoverablefast22_100**(1/2))/N_totalfast22_100)*100 overallsigmafast22_1000 = ((N_totalrecoverablefast22_1000**(1/2))/N_totalfast22_1000)*100 wholerecoverypercent_fast195 = (N_totalrecoverablefast195/N_totalobservablefast195)*100 wholerecoverypercent_fast195_03 = (N_totalrecoverablefast195_03/N_totalobservablefast195_03)*100 wholerecoverypercent_fast195_1 = (N_totalrecoverablefast195_1/N_totalobservablefast195_1)*100 wholerecoverypercent_fast195_10 = (N_totalrecoverablefast195_10/N_totalobservablefast195_10)*100 wholerecoverypercent_fast195_30 = (N_totalrecoverablefast195_30/N_totalobservablefast195_30)*100 wholerecoverypercent_fast195_100 = (N_totalrecoverablefast195_100/N_totalobservablefast195_100)*100 wholerecoverypercent_fast195_1000 = (N_totalrecoverablefast195_1000/N_totalobservablefast195_1000)*100 sigmafast195 = ((N_totalrecoverablefast195**(1/2))/N_totalobservablefast195)*100 sigmafast195_03 = ((N_totalrecoverablefast195_03**(1/2))/N_totalobservablefast195_03)*100 sigmafast195_1 = ((N_totalrecoverablefast195_1**(1/2))/N_totalobservablefast195_1)*100 sigmafast195_10 = ((N_totalrecoverablefast195_10**(1/2))/N_totalobservablefast195_10)*100 sigmafast195_30 = ((N_totalrecoverablefast195_30**(1/2))/N_totalobservablefast195_30)*100 sigmafast195_100 = ((N_totalrecoverablefast195_100**(1/2))/N_totalobservablefast195_100)*100 sigmafast195_1000 = ((N_totalrecoverablefast195_1000**(1/2))/N_totalobservablefast195_1000)*100 overallrecoverypercent_fast195 = (N_totalrecoverablefast195/N_totalfast195)*100 overallrecoverypercent_fast195_03 = (N_totalrecoverablefast195_03/N_totalfast195_03)*100 overallrecoverypercent_fast195_1 = (N_totalrecoverablefast195_1/N_totalfast195_1)*100 overallrecoverypercent_fast195_10 = (N_totalrecoverablefast195_10/N_totalfast195_10)*100 overallrecoverypercent_fast195_30 = (N_totalrecoverablefast195_30/N_totalfast195_30)*100 overallrecoverypercent_fast195_100 = (N_totalrecoverablefast195_100/N_totalfast195_100)*100 overallrecoverypercent_fast195_1000 = (N_totalrecoverablefast195_1000/N_totalfast195_1000)*100 overallsigmafast195 = ((N_totalrecoverablefast195**(1/2))/N_totalfast195)*100 overallsigmafast195_03 = ((N_totalrecoverablefast195_03**(1/2))/N_totalfast195_03)*100 overallsigmafast195_1 = ((N_totalrecoverablefast195_1**(1/2))/N_totalfast195_1)*100 overallsigmafast195_10 = ((N_totalrecoverablefast195_10**(1/2))/N_totalfast195_10)*100 overallsigmafast195_30 = ((N_totalrecoverablefast195_30**(1/2))/N_totalfast195_30)*100 overallsigmafast195_100 = ((N_totalrecoverablefast195_100**(1/2))/N_totalfast195_100)*100 overallsigmafast195_1000 = ((N_totalrecoverablefast195_1000**(1/2))/N_totalfast195_1000)*100\ print("N_totalfast = ", N_totalfast, "and in log = ", np.log10(N_totalfast), "**** N_totalobservablefast = ", N_totalobservablefast, "and in log = ", np.log10(N_totalobservablefast), "**** N_totalrecoverablefast = ", N_totalrecoverablefast, "and in log = ", np.log10(N_totalrecoverablefast)) print("N_totalfast_03 = ", N_totalfast_03, "and in log = ", np.log10(N_totalfast_03), "**** N_totalobservablefast_03 = ", N_totalobservablefast_03, "and in log = ", np.log10(N_totalobservablefast_03), "**** N_totalrecoverablefast_03 = ", N_totalrecoverablefast_03, "and in log = ", np.log10(N_totalrecoverablefast_03)) print("N_totalfast_1 = ", N_totalfast_1, "and in log = ", np.log10(N_totalfast_1), "**** N_totalobservablefast_1 = ", N_totalobservablefast_1, "and in log = ", np.log10(N_totalobservablefast_1), "**** N_totalrecoverablefast_1 = ", N_totalrecoverablefast_1, "and in log = ", np.log10(N_totalrecoverablefast_1)) print("N_totalfast_10 = ", N_totalfast_10, "and in log = ", np.log10(N_totalfast_10), "**** N_totalobservablefast_10 = ", N_totalobservablefast_10, "and in log = ", np.log10(N_totalobservablefast_10), "**** N_totalrecoverablefast_10 = ", N_totalrecoverablefast_10, "and in log = ", np.log10(N_totalrecoverablefast_10)) print("N_totalfast_30 = ", N_totalfast_30, "and in log = ", np.log10(N_totalfast_30), "**** N_totalobservablefast_30 = ", N_totalobservablefast_30, "and in log = ", np.log10(N_totalobservablefast_30), "**** N_totalrecoverablefast_30 = ", N_totalrecoverablefast_30, "and in log = ", np.log10(N_totalrecoverablefast_30)) print("N_totalfast_100 = ", N_totalfast_100, "and in log = ", np.log10(N_totalfast_100), "**** N_totalobservablefast_100 = ", N_totalobservablefast_100, "and in log = ", np.log10(N_totalobservablefast_100), "**** N_totalrecoverablefast_100 = ", N_totalrecoverablefast_100, "and in log = ", np.log10(N_totalrecoverablefast_100)) print("N_totalfast_1000 = ", N_totalfast_1000, "and in log = ", np.log10(N_totalfast_1000), "**** N_totalobservablefast_1000 = ", N_totalobservablefast_1000, "and in log = ", np.log10(N_totalobservablefast_1000), "**** N_totalrecoverablefast_1000 = ", N_totalrecoverablefast_1000, "and in log = ", np.log10(N_totalrecoverablefast_1000)) print("********************************") print("wholerecoverypercent_fast = $", wholerecoverypercent_fast, "/pm", sigmafast, "$") print("wholerecoverypercent_fast_03 = $", wholerecoverypercent_fast_03, "/pm", sigmafast_03, "$") print("wholerecoverypercent_fast_1 = $", wholerecoverypercent_fast_1, "/pm", sigmafast_1, "$") print("wholerecoverypercent_fast_10 = $", wholerecoverypercent_fast_10, "/pm", sigmafast_10, "$") print("wholerecoverypercent_fast_30 = $", wholerecoverypercent_fast_30, "/pm", sigmafast_30, "$") print("wholerecoverypercent_fast_100 = $", wholerecoverypercent_fast_100, "/pm", sigmafast_100, "$") print("wholerecoverypercent_fast_1000 = $", wholerecoverypercent_fast_1000, "/pm", sigmafast_1000, "$") print("********************************") print("overallrecoverypercent_fast = $", overallrecoverypercent_fast, "/pm", overallsigmafast, "$") print("overallrecoverypercent_fast_03 = $", overallrecoverypercent_fast_03, "/pm", overallsigmafast_03, "$") print("overallrecoverypercent_fast_1 = $", overallrecoverypercent_fast_1, "/pm", overallsigmafast_1, "$") print("overallrecoverypercent_fast_10 = $", overallrecoverypercent_fast_10, "/pm", overallsigmafast_10, "$") print("overallrecoverypercent_fast_30 = $", overallrecoverypercent_fast_30, "/pm", overallsigmafast_30, "$") print("overallrecoverypercent_fast_100 = $", overallrecoverypercent_fast_100, "/pm", overallsigmafast_100, "$") print("overallrecoverypercent_fast_1000 = $", overallrecoverypercent_fast_1000, "/pm", overallsigmafast_1000, "$") print("################################") print("N_totalfast22 = ", N_totalfast22, "and in log = ", np.log10(N_totalfast22), "**** N_totalobservablefast22 = ", N_totalobservablefast22, "and in log = ", np.log10(N_totalobservablefast22), "**** N_totalrecoverablefast22 = ", N_totalrecoverablefast22, "and in log = ", np.log10(N_totalrecoverablefast22)) print("N_totalfast22_03 = ", N_totalfast22_03, "and in log = ", np.log10(N_totalfast22_03), "**** N_totalobservablefast22_03 = ", N_totalobservablefast22_03, "and in log = ", np.log10(N_totalobservablefast22_03), "**** N_totalrecoverablefast22_03 = ", N_totalrecoverablefast22_03, "and in log = ", np.log10(N_totalrecoverablefast22_03)) print("N_totalfast22_1 = ", N_totalfast22_1, "and in log = ", np.log10(N_totalfast22_1), "**** N_totalobservablefast22_1 = ", N_totalobservablefast22_1, "and in log = ", np.log10(N_totalobservablefast22_1), "**** N_totalrecoverablefast22_1 = ", N_totalrecoverablefast22_1, "and in log = ", np.log10(N_totalrecoverablefast22_1)) print("N_totalfast22_10 = ", N_totalfast22_10, "and in log = ", np.log10(N_totalfast22_10), "**** N_totalobservablefast22_10 = ", N_totalobservablefast22_10, "and in log = ", np.log10(N_totalobservablefast22_10), "**** N_totalrecoverablefast22_10 = ", N_totalrecoverablefast22_10, "and in log = ", np.log10(N_totalrecoverablefast22_10)) print("N_totalfast22_30 = ", N_totalfast22_30, "and in log = ", np.log10(N_totalfast22_30), "**** N_totalobservablefast22_30 = ", N_totalobservablefast22_30, "and in log = ", np.log10(N_totalobservablefast22_30), "**** N_totalrecoverablefast22_30 = ", N_totalrecoverablefast22_30, "and in log = ", np.log10(N_totalrecoverablefast22_30)) print("N_totalfast22_100 = ", N_totalfast22_100, "and in log = ", np.log10(N_totalfast22_100), "**** N_totalobservablefast22_100 = ", N_totalobservablefast22_100, "and in log = ", np.log10(N_totalobservablefast22_100), "**** N_totalrecoverablefast22_100 = ", N_totalrecoverablefast22_100, "and in log = ", np.log10(N_totalrecoverablefast22_100)) print("N_totalfast22_1000 = ", N_totalfast22_1000, "and in log = ", np.log10(N_totalfast22_1000), "**** N_totalobservablefast22_1000 = ", N_totalobservablefast22_1000, "and in log = ", np.log10(N_totalobservablefast22_1000), "**** N_totalrecoverablefast22_1000 = ", N_totalrecoverablefast22_1000, "and in log = ", np.log10(N_totalrecoverablefast22_1000)) print("********************************") print("wholerecoverypercent_fast22 = $", wholerecoverypercent_fast22, "/pm", sigmafast22, "$") print("wholerecoverypercent_fast22_03 = $", wholerecoverypercent_fast22_03, "/pm", sigmafast22_03, "$") print("wholerecoverypercent_fast22_1 = $", wholerecoverypercent_fast22_1, "/pm", sigmafast22_1, "$") print("wholerecoverypercent_fast22_10 = $", wholerecoverypercent_fast22_10, "/pm", sigmafast22_10, "$") print("wholerecoverypercent_fast22_30 = $", wholerecoverypercent_fast22_30, "/pm", sigmafast22_30, "$") print("wholerecoverypercent_fast22_100 = $", wholerecoverypercent_fast22_100, "/pm", sigmafast22_100, "$") print("wholerecoverypercent_fast22_1000 = $", wholerecoverypercent_fast22_1000, "/pm", sigmafast22_1000, "$") print("********************************") print("overallrecoverypercent_fast22 = $", overallrecoverypercent_fast22, "/pm", overallsigmafast22, "$") print("overallrecoverypercent_fast22_03 = $", overallrecoverypercent_fast22_03, "/pm", overallsigmafast22_03, "$") print("overallrecoverypercent_fast22_1 = $", overallrecoverypercent_fast22_1, "/pm", overallsigmafast22_1, "$") print("overallrecoverypercent_fast22_10 = $", overallrecoverypercent_fast22_10, "/pm", overallsigmafast22_10, "$") print("overallrecoverypercent_fast22_30 = $", overallrecoverypercent_fast22_30, "/pm", overallsigmafast22_30, "$") print("overallrecoverypercent_fast22_100 = $", overallrecoverypercent_fast22_100, "/pm", overallsigmafast22_100, "$") print("overallrecoverypercent_fast22_1000 = $", overallrecoverypercent_fast22_1000, "/pm", overallsigmafast22_1000, "$") print("###############################") print("N_totalfast195 = ", N_totalfast195, "and in log = ", np.log10(N_totalfast195), "**** N_totalobservablefast195 = ", N_totalobservablefast195, "and in log = ", np.log10(N_totalobservablefast195), "**** N_totalrecoverablefast195 = ", N_totalrecoverablefast195, "and in log = ", np.log10(N_totalrecoverablefast195)) print("N_totalfast195_03 = ", N_totalfast195_03, "and in log = ", np.log10(N_totalfast195_03), "**** N_totalobservablefast195_03 = ", N_totalobservablefast195_03, "and in log = ", np.log10(N_totalobservablefast195_03), "**** N_totalrecoverablefast195_03 = ", N_totalrecoverablefast195_03, "and in log = ", np.log10(N_totalrecoverablefast195_03)) print("N_totalfast195_1 = ", N_totalfast195_1, "and in log = ", np.log10(N_totalfast195_1), "**** N_totalobservablefast195_1 = ", N_totalobservablefast195_1, "and in log = ", np.log10(N_totalobservablefast195_1), "**** N_totalrecoverablefast195_1 = ", N_totalrecoverablefast195_1, "and in log = ", np.log10(N_totalrecoverablefast195_1)) print("N_totalfast195_10 = ", N_totalfast195_10, "and in log = ", np.log10(N_totalfast195_10), "**** N_totalobservablefast195_10 = ", N_totalobservablefast195_10, "and in log = ", np.log10(N_totalobservablefast195_10), "**** N_totalrecoverablefast195_10 = ", N_totalrecoverablefast195_10, "and in log = ", np.log10(N_totalrecoverablefast195_10)) print("N_totalfast195_30 = ", N_totalfast195_30, "and in log = ", np.log10(N_totalfast195_30), "**** N_totalobservablefast195_30 = ", N_totalobservablefast195_30, "and in log = ", np.log10(N_totalobservablefast195_30), "**** N_totalrecoverablefast195_30 = ", N_totalrecoverablefast195_30, "and in log = ", np.log10(N_totalrecoverablefast195_30)) print("N_totalfast195_100 = ", N_totalfast195_100, "and in log = ", np.log10(N_totalfast195_100), "**** N_totalobservablefast195_100 = ", N_totalobservablefast195_100, "and in log = ", np.log10(N_totalobservablefast195_100), "**** N_totalrecoverablefast195_100 = ", N_totalrecoverablefast195_100, "and in log = ", np.log10(N_totalrecoverablefast195_100)) print("N_totalfast195_1000 = ", N_totalfast195_1000, "and in log = ", np.log10(N_totalfast195_1000), "**** N_totalobservablefast195_1000 = ", N_totalobservablefast195_1000, "and in log = ", np.log10(N_totalobservablefast195_1000), "**** N_totalrecoverablefast195_1000 = ", N_totalrecoverablefast195_1000, "and in log = ", np.log10(N_totalrecoverablefast195_1000)) print("********************************") print("wholerecoverypercent_fast195 = $", wholerecoverypercent_fast195, "/pm", sigmafast195, "$") print("wholerecoverypercent_fast195_03 = $", wholerecoverypercent_fast195_03, "/pm", sigmafast195_03, "$") print("wholerecoverypercent_fast195_1 = $", wholerecoverypercent_fast195_1, "/pm", sigmafast195_1, "$") print("wholerecoverypercent_fast195_10 = $", wholerecoverypercent_fast195_10, "/pm", sigmafast195_10, "$") print("wholerecoverypercent_fast195_30 = $", wholerecoverypercent_fast195_30, "/pm", sigmafast195_30, "$") print("wholerecoverypercent_fast195_100 = $", wholerecoverypercent_fast195_100, "/pm", sigmafast195_100, "$") print("wholerecoverypercent_fast195_1000 = $", wholerecoverypercent_fast195_1000, "/pm", sigmafast195_1000, "$") print("********************************") print("overallrecoverypercent_fast195 = $", overallrecoverypercent_fast195, "/pm", overallsigmafast195, "$") print("overallrecoverypercent_fast195_03 = $", overallrecoverypercent_fast195_03, "/pm", overallsigmafast195_03, "$") print("overallrecoverypercent_fast195_1 = $", overallrecoverypercent_fast195_1, "/pm", overallsigmafast195_1, "$") print("overallrecoverypercent_fast195_10 = $", overallrecoverypercent_fast195_10, "/pm", overallsigmafast195_10, "$") print("overallrecoverypercent_fast195_30 = $", overallrecoverypercent_fast195_30, "/pm", overallsigmafast195_30, "$") print("overallrecoverypercent_fast195_100 = $", overallrecoverypercent_fast195_100, "/pm", overallsigmafast195_100, "$") print("overallrecoverypercent_fast195_1000 = $", overallrecoverypercent_fast195_1000, "/pm", overallsigmafast195_1000, "$") print("#############################") print("binarypercent_22 = $", (N_totalfast22/N_totalfast)*100, "/pm", ((N_totalfast22**(1/2))/N_totalfast)*100, "$") print("binarypercent_195 = $", (N_totalfast195/N_totalfast)*100, "/pm", ((N_totalfast195**(1/2))/N_totalfast)*100, "$") print("binarypercent_03 = $", (N_totalfast_03/N_totalfast)*100, "/pm", ((N_totalfast_03**(1/2))/N_totalfast)*100, "$") print("binarypercent_1 = $", (N_totalfast_1/N_totalfast)*100, "/pm", ((N_totalfast_1**(1/2))/N_totalfast)*100, "$") print("binarypercent_10 = $", (N_totalfast_10/N_totalfast)*100, "/pm", ((N_totalfast_10**(1/2))/N_totalfast)*100, "$") print("binarypercent_30 = $", (N_totalfast_30/N_totalfast)*100, "/pm", ((N_totalfast_30**(1/2))/N_totalfast)*100, "$") print("binarypercent_100 = $", (N_totalfast_100/N_totalfast)*100, "/pm", ((N_totalfast_100**(1/2))/N_totalfast)*100, "$") print("binarypercent_1000 = $", (N_totalfast_1000/N_totalfast)*100, "/pm", ((N_totalfast_1000**(1/2))/N_totalfast)*100, "$") print("observablepercent_03 = $", (N_totalobservablefast_03/N_totalfast_03)*100, "/pm", ((N_totalobservablefast_03**(1/2))/N_totalfast_03)*100, "$") print("observablepercent_1 = $", (N_totalobservablefast_1/N_totalfast_1)*100, "/pm", ((N_totalobservablefast_1**(1/2))/N_totalfast_1)*100, "$") print("observablepercent_10 = $", (N_totalobservablefast_10/N_totalfast_10)*100, "/pm", ((N_totalobservablefast_10**(1/2))/N_totalfast_10)*100, "$") print("observablepercent_30 = $", (N_totalobservablefast_30/N_totalfast_30)*100, "/pm", ((N_totalobservablefast_30**(1/2))/N_totalfast_30)*100, "$") print("observablepercent_100 = $", (N_totalobservablefast_100/N_totalfast_100)*100, "/pm", ((N_totalobservablefast_100**(1/2))/N_totalfast_100)*100, "$") print("observablepercent_1000 = $", (N_totalobservablefast_1000/N_totalfast_1000)*100, "/pm", ((N_totalobservablefast_1000**(1/2))/N_totalfast_1000)*100, "$") print("observablepercent = $", (N_totalobservablefast/N_totalfast)*100, "/pm", ((N_totalobservablefast**(1/2))/N_totalfast)*100, "$") print("observablepercent22 = $", (N_totalobservablefast22/N_totalfast22)*100, "/pm", ((N_totalobservablefast22**(1/2))/N_totalfast22)*100, "$") print("observablepercent195 = $", (N_totalobservablefast195/N_totalfast195)*100, "/pm", ((N_totalobservablefast195**(1/2))/N_totalfast195)*100, "$") for fileobsDist_ in sorted(allFiles_obsDist): filename = fileobsDist_[77:] #when file path no longer has /old in it, will be fileobsDist_[73:] fileid = filename.strip('output_file.csv') print ("I'm starting " + fileid) datobsDist = pd.read_csv(fileobsDist_, sep = ',', header=2) PeriodIn = datobsDist['p'] # input period -- 'p' in data file ########################################################## datobsDist1 = pd.read_csv(fileobsDist_, sep = ',', header=0, nrows=1) N_tri = datobsDist1["NstarsTRILEGAL"][0] Nall = len(PeriodIn) m1hAll0, m1b = np.histogram(datobsDist["m1"], bins=mbins) dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/Nall*fbFit(m1val)) N_mult = N_tri*fb ########################################################## if len(PeriodIn) == 0.: continue if N_tri == 0: continue else: PeriodOut = datobsDist['LSM_PERIOD'] #LSM_PERIOD in data file appMagMean = datobsDist['appMagMean'] #apparent magnitude, will use to make cuts for 24 (default), 22, and then Kepler's range (?? -- brighter than LSST can manage-- to 19) OR 19.5 (SNR = 10) observable = datobsDist.loc[PeriodOut != -999].index observable_03 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999)].index observable_1 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999)].index observable_10 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999)].index observable_30 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999)].index observable_100 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999)].index observable_1000 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999)].index observable_22 = datobsDist.loc[(PeriodOut != -999) & (appMagMean <= 22.)].index observable_03_22 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1_22 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_10_22 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_30_22 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_100_22 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_1000_22 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 22.)].index observable_195 = datobsDist.loc[(PeriodOut != -999) & (appMagMean <= 19.5)].index observable_03_195 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1_195 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_10_195 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_30_195 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_100_195 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & (appMagMean <= 19.5)].index observable_1000_195 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & (appMagMean <= 19.5)].index fullP = abs(PeriodOut - PeriodIn)/PeriodIn halfP = abs(PeriodOut - 0.5*PeriodIn)/(0.5*PeriodIn) twiceP = abs(PeriodOut - 2*PeriodIn)/(2*PeriodIn) recoverable = datobsDist.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_03 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_10 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_30 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_100 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_1000 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP))].index recoverable_22 = datobsDist.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_03_22 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1_22 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_10_22 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_30_22 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_100_22 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_1000_22 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 22.)].index recoverable_195 = datobsDist.loc[(PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_03_195 = datobsDist.loc[(PeriodIn <= 0.3) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1_195 = datobsDist.loc[(PeriodIn <= 1) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_10_195 = datobsDist.loc[(PeriodIn <= 10) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_30_195 = datobsDist.loc[(PeriodIn <= 30) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_100_195 = datobsDist.loc[(PeriodIn <= 100) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index recoverable_1000_195 = datobsDist.loc[(PeriodIn <= 1000) & (PeriodOut != -999) & ((fullP < cutP) | (halfP < cutP) | (twiceP < cutP)) & (appMagMean <= 19.5)].index P03 = datobsDist.loc[PeriodIn <= 0.3].index P1 = datobsDist.loc[PeriodIn <= 1].index P10 = datobsDist.loc[PeriodIn <= 10].index P30 = datobsDist.loc[PeriodIn <= 30].index P100 = datobsDist.loc[PeriodIn <= 100].index P1000 = datobsDist.loc[PeriodIn <= 1000].index P_22 = datobsDist.loc[appMagMean <= 22.].index P03_22 = datobsDist.loc[(PeriodIn <= 0.3) & (appMagMean <= 22.)].index P1_22 = datobsDist.loc[(PeriodIn <= 1) & (appMagMean <= 22.)].index P10_22 = datobsDist.loc[(PeriodIn <= 10) & (appMagMean <= 22.)].index P30_22 = datobsDist.loc[(PeriodIn <= 30) & (appMagMean <= 22.)].index P100_22 = datobsDist.loc[(PeriodIn <= 100) & (appMagMean <= 22.)].index P1000_22 = datobsDist.loc[(PeriodIn <= 1000) & (appMagMean <= 22.)].index P_195 = datobsDist.loc[appMagMean <= 19.5].index P03_195 = datobsDist.loc[(PeriodIn <= 0.3) & (appMagMean <= 19.5)].index P1_195 = datobsDist.loc[(PeriodIn <= 1) & (appMagMean <= 19.5)].index P10_195 = datobsDist.loc[(PeriodIn <= 10) & (appMagMean <= 19.5)].index P30_195 = datobsDist.loc[(PeriodIn <= 30) & (appMagMean <= 19.5)].index P100_195 = datobsDist.loc[(PeriodIn <= 100) & (appMagMean <= 19.5)].index P1000_195 = datobsDist.loc[(PeriodIn <= 1000) & (appMagMean <= 19.5)].index N_all = (len(PeriodIn)/len(PeriodIn))*N_mult N_all03 = (len(P03)/len(PeriodIn))*N_mult N_all1 = (len(P1)/len(PeriodIn))*N_mult N_all10 = (len(P10)/len(PeriodIn))*N_mult N_all30 = (len(P30)/len(PeriodIn))*N_mult N_all100 = (len(P100)/len(PeriodIn))*N_mult N_all1000 = (len(P1000)/len(PeriodIn))*N_mult N_all_22 = (len(P_22)/len(PeriodIn))*N_mult N_all03_22 = (len(P03_22)/len(PeriodIn))*N_mult N_all1_22 = (len(P1_22)/len(PeriodIn))*N_mult N_all10_22 = (len(P10_22)/len(PeriodIn))*N_mult N_all30_22 = (len(P30_22)/len(PeriodIn))*N_mult N_all100_22 = (len(P100_22)/len(PeriodIn))*N_mult N_all1000_22 = (len(P1000_22)/len(PeriodIn))*N_mult N_all_195 = (len(P_195)/len(PeriodIn))*N_mult N_all03_195 = (len(P03_195)/len(PeriodIn))*N_mult N_all1_195 = (len(P1_195)/len(PeriodIn))*N_mult N_all10_195 = (len(P10_195)/len(PeriodIn))*N_mult N_all30_195 = (len(P30_195)/len(PeriodIn))*N_mult N_all100_195 = (len(P100_195)/len(PeriodIn))*N_mult N_all1000_195 = (len(P1000_195)/len(PeriodIn))*N_mult N_obs = (len(observable)/len(PeriodIn))*N_mult N_obs03 = (len(observable_03)/len(PeriodIn))*N_mult N_obs1 = (len(observable_1)/len(PeriodIn))*N_mult N_obs10 = (len(observable_10)/len(PeriodIn))*N_mult N_obs30 = (len(observable_30)/len(PeriodIn))*N_mult N_obs100 = (len(observable_100)/len(PeriodIn))*N_mult N_obs1000 = (len(observable_1000)/len(PeriodIn))*N_mult N_obs_22 = (len(observable_22)/len(PeriodIn))*N_mult N_obs03_22 = (len(observable_03_22)/len(PeriodIn))*N_mult N_obs1_22 = (len(observable_1_22)/len(PeriodIn))*N_mult N_obs10_22 = (len(observable_10_22)/len(PeriodIn))*N_mult N_obs30_22 = (len(observable_30_22)/len(PeriodIn))*N_mult N_obs100_22 = (len(observable_100_22)/len(PeriodIn))*N_mult N_obs1000_22 = (len(observable_1000_22)/len(PeriodIn))*N_mult N_obs_195 = (len(observable_195)/len(PeriodIn))*N_mult N_obs03_195 = (len(observable_03_195)/len(PeriodIn))*N_mult N_obs1_195 = (len(observable_1_195)/len(PeriodIn))*N_mult N_obs10_195 = (len(observable_10_195)/len(PeriodIn))*N_mult N_obs30_195 = (len(observable_30_195)/len(PeriodIn))*N_mult N_obs100_195 = (len(observable_100_195)/len(PeriodIn))*N_mult N_obs1000_195 = (len(observable_1000_195)/len(PeriodIn))*N_mult N_rec = (len(recoverable)/len(PeriodIn))*N_mult N_rec03 = (len(recoverable_03)/len(PeriodIn))*N_mult N_rec1 = (len(recoverable_1)/len(PeriodIn))*N_mult N_rec10 = (len(recoverable_10)/len(PeriodIn))*N_mult N_rec30 = (len(recoverable_30)/len(PeriodIn))*N_mult N_rec100 = (len(recoverable_100)/len(PeriodIn))*N_mult N_rec1000 = (len(recoverable_1000)/len(PeriodIn))*N_mult N_rec_22 = (len(recoverable_22)/len(PeriodIn))*N_mult N_rec03_22 = (len(recoverable_03_22)/len(PeriodIn))*N_mult N_rec1_22 = (len(recoverable_1_22)/len(PeriodIn))*N_mult N_rec10_22 = (len(recoverable_10_22)/len(PeriodIn))*N_mult N_rec30_22 = (len(recoverable_30_22)/len(PeriodIn))*N_mult N_rec100_22 = (len(recoverable_100_22)/len(PeriodIn))*N_mult N_rec1000_22 = (len(recoverable_1000_22)/len(PeriodIn))*N_mult N_rec_195 = (len(recoverable_195)/len(PeriodIn))*N_mult N_rec03_195 = (len(recoverable_03_195)/len(PeriodIn))*N_mult N_rec1_195 = (len(recoverable_1_195)/len(PeriodIn))*N_mult N_rec10_195 = (len(recoverable_10_195)/len(PeriodIn))*N_mult N_rec30_195 = (len(recoverable_30_195)/len(PeriodIn))*N_mult N_rec100_195 = (len(recoverable_100_195)/len(PeriodIn))*N_mult N_rec1000_195 = (len(recoverable_1000_195)/len(PeriodIn))*N_mult N_totalobsDist_array.append(float(N_all)) N_totalobservableobsDist_array.append(float(N_obs)) N_totalrecoverableobsDist_array.append(float(N_rec)) N_totalobsDist_array_03.append(float(N_all03)) N_totalobservableobsDist_array_03.append(float(N_obs03)) N_totalrecoverableobsDist_array_03.append(float(N_rec03)) N_totalobsDist_array_1.append(float(N_all1)) N_totalobservableobsDist_array_1.append(float(N_obs1)) N_totalrecoverableobsDist_array_1.append(float(N_rec1)) N_totalobsDist_array_10.append(float(N_all10)) N_totalobservableobsDist_array_10.append(float(N_obs10)) N_totalrecoverableobsDist_array_10.append(float(N_rec10)) N_totalobsDist_array_30.append(float(N_all30)) N_totalobservableobsDist_array_30.append(float(N_obs30)) N_totalrecoverableobsDist_array_30.append(float(N_rec30)) N_totalobsDist_array_100.append(float(N_all100)) N_totalobservableobsDist_array_100.append(float(N_obs100)) N_totalrecoverableobsDist_array_100.append(float(N_rec100)) N_totalobsDist_array_1000.append(float(N_all1000)) N_totalobservableobsDist_array_1000.append(float(N_obs1000)) N_totalrecoverableobsDist_array_1000.append(float(N_rec1000)) N_totalobsDist22_array.append(float(N_all_22)) N_totalobservableobsDist22_array.append(float(N_obs_22)) N_totalrecoverableobsDist22_array.append(float(N_rec_22)) N_totalobsDist22_array_03.append(float(N_all03_22)) N_totalobservableobsDist22_array_03.append(float(N_obs03_22)) N_totalrecoverableobsDist22_array_03.append(float(N_rec03_22)) N_totalobsDist22_array_1.append(float(N_all1_22)) N_totalobservableobsDist22_array_1.append(float(N_obs1_22)) N_totalrecoverableobsDist22_array_1.append(float(N_rec1_22)) N_totalobsDist22_array_10.append(float(N_all10_22)) N_totalobservableobsDist22_array_10.append(float(N_obs10_22)) N_totalrecoverableobsDist22_array_10.append(float(N_rec10_22)) N_totalobsDist22_array_30.append(float(N_all30_22)) N_totalobservableobsDist22_array_30.append(float(N_obs30_22)) N_totalrecoverableobsDist22_array_30.append(float(N_rec30_22)) N_totalobsDist22_array_100.append(float(N_all100_22)) N_totalobservableobsDist22_array_100.append(float(N_obs100_22)) N_totalrecoverableobsDist22_array_100.append(float(N_rec100_22)) N_totalobsDist22_array_1000.append(float(N_all1000_22)) N_totalobservableobsDist22_array_1000.append(float(N_obs1000_22)) N_totalrecoverableobsDist22_array_1000.append(float(N_rec1000_22)) N_totalobsDist195_array.append(float(N_all_195)) N_totalobservableobsDist195_array.append(float(N_obs_195)) N_totalrecoverableobsDist195_array.append(float(N_rec_195)) N_totalobsDist195_array_03.append(float(N_all03_195)) N_totalobservableobsDist195_array_03.append(float(N_obs03_195)) N_totalrecoverableobsDist195_array_03.append(float(N_rec03_195)) N_totalobsDist195_array_1.append(float(N_all1_195)) N_totalobservableobsDist195_array_1.append(float(N_obs1_195)) N_totalrecoverableobsDist195_array_1.append(float(N_rec1_195)) N_totalobsDist195_array_10.append(float(N_all10_195)) N_totalobservableobsDist195_array_10.append(float(N_obs10_195)) N_totalrecoverableobsDist195_array_10.append(float(N_rec10_195)) N_totalobsDist195_array_30.append(float(N_all30_195)) N_totalobservableobsDist195_array_30.append(float(N_obs30_195)) N_totalrecoverableobsDist195_array_30.append(float(N_rec30_195)) N_totalobsDist195_array_100.append(float(N_all100_195)) N_totalobservableobsDist195_array_100.append(float(N_obs100_195)) N_totalrecoverableobsDist195_array_100.append(float(N_rec100_195)) N_totalobsDist195_array_1000.append(float(N_all1000_195)) N_totalobservableobsDist195_array_1000.append(float(N_obs1000_195)) N_totalrecoverableobsDist195_array_1000.append(float(N_rec1000_195)) N_totalobsDist = np.sum(N_totalobsDist_array) N_totalobsDist_03 = np.sum(N_totalobsDist_array_03) N_totalobsDist_1 = np.sum(N_totalobsDist_array_1) N_totalobsDist_10 = np.sum(N_totalobsDist_array_10) N_totalobsDist_30 = np.sum(N_totalobsDist_array_30) N_totalobsDist_100 = np.sum(N_totalobsDist_array_100) N_totalobsDist_1000 = np.sum(N_totalobsDist_array_1000) N_totalobservableobsDist = np.sum(N_totalobservableobsDist_array) N_totalobservableobsDist_03 = np.sum(N_totalobservableobsDist_array_03) N_totalobservableobsDist_1 = np.sum(N_totalobservableobsDist_array_1) N_totalobservableobsDist_10 = np.sum(N_totalobservableobsDist_array_10) N_totalobservableobsDist_30 = np.sum(N_totalobservableobsDist_array_30) N_totalobservableobsDist_100 = np.sum(N_totalobservableobsDist_array_100) N_totalobservableobsDist_1000 = np.sum(N_totalobservableobsDist_array_1000) N_totalrecoverableobsDist = np.sum(N_totalrecoverableobsDist_array) N_totalrecoverableobsDist_03 = np.sum(N_totalrecoverableobsDist_array_03) N_totalrecoverableobsDist_1 = np.sum(N_totalrecoverableobsDist_array_1) N_totalrecoverableobsDist_10 = np.sum(N_totalrecoverableobsDist_array_10) N_totalrecoverableobsDist_30 = np.sum(N_totalrecoverableobsDist_array_30) N_totalrecoverableobsDist_100 = np.sum(N_totalrecoverableobsDist_array_100) N_totalrecoverableobsDist_1000 = np.sum(N_totalrecoverableobsDist_array_1000) N_totalobsDist22 = np.sum(N_totalobsDist22_array) N_totalobsDist22_03 = np.sum(N_totalobsDist22_array_03) N_totalobsDist22_1 = np.sum(N_totalobsDist22_array_1) N_totalobsDist22_10 = np.sum(N_totalobsDist22_array_10) N_totalobsDist22_30 = np.sum(N_totalobsDist22_array_30) N_totalobsDist22_100 = np.sum(N_totalobsDist22_array_100) N_totalobsDist22_1000 = np.sum(N_totalobsDist22_array_1000) N_totalobservableobsDist22 = np.sum(N_totalobservableobsDist22_array) N_totalobservableobsDist22_03 = np.sum(N_totalobservableobsDist22_array_03) N_totalobservableobsDist22_1 = np.sum(N_totalobservableobsDist22_array_1) N_totalobservableobsDist22_10 = np.sum(N_totalobservableobsDist22_array_10) N_totalobservableobsDist22_30 = np.sum(N_totalobservableobsDist22_array_30) N_totalobservableobsDist22_100 = np.sum(N_totalobservableobsDist22_array_100) N_totalobservableobsDist22_1000 = np.sum(N_totalobservableobsDist22_array_1000) N_totalrecoverableobsDist22 = np.sum(N_totalrecoverableobsDist22_array) N_totalrecoverableobsDist22_03 = np.sum(N_totalrecoverableobsDist22_array_03) N_totalrecoverableobsDist22_1 = np.sum(N_totalrecoverableobsDist22_array_1) N_totalrecoverableobsDist22_10 = np.sum(N_totalrecoverableobsDist22_array_10) N_totalrecoverableobsDist22_30 =
np.sum(N_totalrecoverableobsDist22_array_30)
numpy.sum
from pynput.keyboard import Key, Controller from random import randint import random import numpy as np from PIL import ImageGrab as ig import cv2 import time from .components import info from keras.models import Sequential from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten, Dropout from keras.optimizers import SGD model_built = False load_saved = False save_current_pool = 1 current_pool = [] fitness = [] total_models = 12 generation = 1 def save_pool(): for xi in range(total_models): current_pool[xi].save_weights("Current_Model_Pool/model_new" + str(xi) + ".keras") print("Saved current pool!") def model_crossover(model_idx1, model_idx2): global current_pool weights1 = current_pool[model_idx1].get_weights() weights2 = current_pool[model_idx2].get_weights() weightsnew1 = weights1 weightsnew2 = weights2 weightsnew1[0] = weights2[0] weightsnew2[0] = weights1[0] return np.asarray([weightsnew1, weightsnew2]) def model_mutate(weights): for xi in range(len(weights)): for yi in range(len(weights[xi])): if random.uniform(0, 1) > 0.85: change = random.uniform(-0.5,0.5) weights[xi][yi] += change return weights def predict_action(neural_input, model_num): neural_input =
np.expand_dims(neural_input,axis=3)
numpy.expand_dims
# -*- coding: utf-8 -*- """ Copyright 2018 <NAME> and <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Please acknowledge the authors when re-using this code and maintain this notice intact. Code written by <NAME>, implementing ideas from 'Projective simulation with generalization' <NAME>, <NAME>, <NAME> & <NAME> Scientific Reports 7, Article number: 14430 (2017) doi:10.1038/s41598-017-14740-y and 'Projective simulation for artificial intelligence' <NAME> & <NAME> Scientific Reports 2, Article number: 400 (2012) doi:10.1038/srep00400 """ import __future__ import numpy as np from scipy.sparse import lil_matrix class PSAgent(object): """ PS agent implementation """ """ parameters: """ """ num_actions - number of available actions, constant """ """ num_percepts_list - number of percepts in each category, list of constants """ """ generalization - True/False """ """ ps_gamma, ps_eta - constants """ """ policy_type - 'standard' or 'softmax' """ """ ps_alpha - constant """ """ hash_hash_bool - True/False """ """ majority_vote - True/False """ """ majority_time - specifies a trial, after which majorite voting is on """ """ number_votes - number of votes in majority voting """ def __init__(self, num_actions, num_percepts_list, generalization, gamma_damping, eta_glow_damping, policy_type, beta_softmax, hash_hash_bool, majority_vote, majority_time, number_votes): self.num_actions = num_actions self.num_categories = len(num_percepts_list) self.num_percepts_list = num_percepts_list self.n_percepts = np.prod(num_percepts_list) self.generalization = generalization self.hash_hash_bool = hash_hash_bool self.majority_vote = majority_vote self.majority_time = majority_time self.number_votes = number_votes self.gamma_damping = gamma_damping self.eta_glow_damping = eta_glow_damping self.policy_type = policy_type self.beta_softmax = beta_softmax self.time = 0 # internal time for majority voting if self.generalization: self.max_number_hash_clips = np.prod(np.array(self.num_percepts_list) + 1) self.adjacency_mat_dim = self.n_percepts + self.max_number_hash_clips + self.num_actions self.percept_encoding =
np.zeros([self.n_percepts, self.num_categories])
numpy.zeros
import os.path import os import pickle import time import numpy as np from numpy.testing import assert_almost_equal, assert_equal, assert_allclose import scipy.stats as stats # Before removing what appear to be unused imports think twice. # Some of the tests use eval, which requires the imports. import refnx.reflect._reflect as _reflect from refnx.analysis import ( Transform, Objective, CurveFitter, Parameter, Interval, Parameters, ) from refnx.reflect import ( SLD, ReflectModel, MixedReflectModel, reflectivity, Structure, Slab, FresnelTransform, choose_dq_type, use_reflect_backend, ) import refnx.reflect.reflect_model as reflect_model from refnx.dataset import ReflectDataset from refnx._lib import MapWrapper BACKENDS = reflect_model.available_backends() class TestReflect(object): def setup_method(self): self.pth = os.path.dirname(os.path.abspath(__file__)) sio2 = SLD(3.47, name="SiO2") air = SLD(0, name="air") si = SLD(2.07, name="Si") d2o = SLD(6.36, name="D2O") polymer = SLD(1, name="polymer") self.structure = air | sio2(100, 2) | si(0, 3) theoretical = np.loadtxt(os.path.join(self.pth, "theoretical.txt")) qvals, rvals = np.hsplit(theoretical, 2) self.qvals = qvals.flatten() self.rvals = rvals.flatten() # e361 is an older dataset, but well characterised self.structure361 = si | sio2(10, 4) | polymer(200, 3) | d2o(0, 3) self.model361 = ReflectModel(self.structure361, bkg=2e-5) self.model361.scale.vary = True self.model361.bkg.vary = True self.model361.scale.range(0.1, 2) self.model361.bkg.range(0, 5e-5) # d2o self.structure361[-1].sld.real.vary = True self.structure361[-1].sld.real.range(6, 6.36) self.structure361[1].thick.vary = True self.structure361[1].thick.range(5, 20) self.structure361[2].thick.vary = True self.structure361[2].thick.range(100, 220) self.structure361[2].sld.real.vary = True self.structure361[2].sld.real.range(0.2, 1.5) e361 = ReflectDataset(os.path.join(self.pth, "e361r.txt")) self.qvals361, self.rvals361, self.evals361 = ( e361.x, e361.y, e361.y_err, ) def test_abeles(self): slabs = self.structure.slabs()[..., :4] for backend in BACKENDS: # test reflectivity calculation with values generated from Motofit with use_reflect_backend(backend) as abeles: calc = abeles(self.qvals, slabs) assert_almost_equal(calc, self.rvals) def test_noncontig_abeles(self): # test for non-contiguous Q values tempq = self.qvals[0::5] slabs = self.structure.slabs()[..., :4] assert tempq.flags["C_CONTIGUOUS"] is False for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc = abeles(tempq, slabs) assert_almost_equal(calc, self.rvals[0::5]) def test_abeles_multithreaded(self): slabs = self.structure.slabs()[..., :4] for backend in BACKENDS: # test reflectivity calculation with values generated from Motofit with use_reflect_backend(backend) as abeles: calc = abeles(self.qvals, slabs, threads=4) assert_almost_equal(calc, self.rvals) def test_available_backends(self): assert "python" in BACKENDS assert "c" in BACKENDS import refnx.reflect._creflect as _creflect import refnx.reflect._reflect as _reflect assert _reflect.__file__ != _creflect.__file__ if "cython" in BACKENDS: import refnx.reflect._cyreflect as _cyreflect assert _creflect.__file__ != _cyreflect.__file__ def test_first_principles(self): # Test a first principles reflectivity calculation, rather than # relying on a previous calculation from Motofit code. # Here we only examine Fresnel reflectivity from an infinitely # sharp interface, we do not examine a rough surface. This is # tested by profile slicing in test_structure. def kn(q, sld_layer, sld_fronting): # wave vector in a given layer kvec = np.zeros_like(q, np.complex128) sld = complex(sld_layer - sld_fronting) * 1.0e-6 kvec[:] = np.sqrt(q[:] ** 2.0 / 4.0 - 4.0 * np.pi * sld) return kvec q = np.linspace(0.001, 1.0, 1001) # Is the fresnel reflectivity correct? sld1 = 2.07 sld2 = 6.36 # first principles calcn kf = kn(q, sld1, sld1) kb = kn(q, sld2, sld1) reflectance = (kf - kb) / (kf + kb) reflectivity = reflectance * np.conj(reflectance) # now from refnx code struct = SLD(sld1)(0, 0) | SLD(sld2)(0, 0) slabs = struct.slabs()[..., :4] for backend in BACKENDS: with use_reflect_backend(backend) as abeles: assert_allclose(abeles(q, slabs), reflectivity, rtol=1e-14) # reverse the direction kf = kn(q, sld2, sld2) kb = kn(q, sld1, sld2) reflectance = (kf - kb) / (kf + kb) reflectivity = reflectance * np.conj(reflectance) # now from refnx code struct = SLD(sld2)(0, 0) | SLD(sld1)(0, 0) slabs = struct.slabs()[..., :4] for backend in BACKENDS: with use_reflect_backend(backend) as abeles: assert_allclose(abeles(q, slabs), reflectivity, rtol=1e-14) def test_scale_bkg_abeles(self): s = self.structure.slabs()[..., :4] calcs = [] for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc = abeles(self.qvals, s, scale=2.0) calcs.append(calc) for calc in calcs[1:]: assert_allclose(calc, calcs[0]) calcs = [] for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc = abeles(self.qvals, s, scale=0.5, bkg=0.1) calcs.append(calc) for calc in calcs[1:]: assert_allclose(calc, calcs[0]) calcs = [] for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc = abeles(self.qvals, s, scale=0.5, bkg=0.1, threads=2) calcs.append(calc) for calc in calcs[1:]: assert_allclose(calc, calcs[0]) """ @np.testing.decorators.knownfailure def test_cabeles_parallelised(self): # I suppose this could fail if someone doesn't have a multicore # computer if not TEST_C_REFLECT: return coefs = np.array([[0, 0, 0, 0], [300, 3, 1e-3, 3], [10, 3.47, 1e-3, 3], [0, 6.36, 0, 3]]) x = np.linspace(0.01, 0.2, 1000000) pstart = time.time() _creflect.abeles(x, coefs, threads=0) pfinish = time.time() sstart = time.time() _creflect.abeles(x, coefs, threads=1) sfinish = time.time() print(sfinish - sstart, pfinish - pstart) assert_(0.7 * (sfinish - sstart) > (pfinish - pstart)) """ def test_compare_abeles0(self): # test one layer system against the python implementation layer0 = np.array([[0, 2.07, 0.01, 3], [0, 6.36, 0.1, 3]]) with use_reflect_backend("python") as abeles: calc1 = abeles(self.qvals, layer0, scale=0.99, bkg=1e-8) for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc2 = abeles(self.qvals, layer0, scale=0.99, bkg=1e-8) assert_almost_equal(calc1, calc2) # test a negative background with use_reflect_backend("python") as abeles: calc1 = abeles(self.qvals, layer0, scale=0.99, bkg=-5e-7) for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc2 = abeles(self.qvals, layer0, scale=0.99, bkg=-5e-7) assert_almost_equal(calc1, calc2) def test_compare_abeles2(self): # test two layer system against the python implementation layer2 = np.array( [ [0, 2.07, 0.01, 3], [10, 3.47, 0.01, 3], [100, 1.0, 0.01, 4], [0, 6.36, 0.1, 3], ] ) with use_reflect_backend("python") as abeles: calc1 = abeles(self.qvals, layer2, scale=0.99, bkg=1e-8) for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc2 = abeles(self.qvals, layer2, scale=0.99, bkg=1e-8) assert_almost_equal(calc1, calc2) def test_abeles_absorption(self): # https://github.com/andyfaff/refl1d_analysis/tree/master/notebooks q = np.linspace(0.008, 0.05, 500) depth = [0, 850, 0] rho = [2.067, 4.3, 6.0] irho_zero = [0.0, 0.1, 0.0] refnx_sigma = [np.nan, 35, 5.0] w_zero = np.c_[depth, rho, irho_zero, refnx_sigma] with use_reflect_backend("python") as abeles: calc1 = abeles(q, w_zero) for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc2 = abeles(q, w_zero) assert_almost_equal(calc1, calc2) def test_abeles_absorption2(self): # https://github.com/andyfaff/refl1d_analysis/tree/master/notebooks # this has an appreciable notch just below the critical edge refl1d = np.load(os.path.join(self.pth, "absorption.npy")) q = np.geomspace(0.005, 0.3, 201) depth = [0, 1200, 0] rho = [2.07, 4.66, 6.36] irho = [0, 0.016, 0] refnx_sigma = [np.nan, 10, 3] slabs = np.c_[depth, rho, irho, refnx_sigma] for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc = abeles(q, slabs) assert_almost_equal(calc, refl1d[1]) def test_compare_refl1d(self): # refl1d calculated with: # from refl1d import abeles # x = np.linspace(0.005, 0.5, 1001) # z = abeles.refl(x / 2, # [0, 100, 200, 0], # [2.07, 3.45, 5., 6.], # irho=[0.0, 0.1, 0.01, 0], # sigma=[3, 1, 5, 0]) # a = z.real ** 2 + z.imag ** 2 layers = np.array( [ [0, 2.07, 0, 0], [100, 3.45, 0.1, 3], [200, 5.0, 0.01, 1], [0, 6.0, 0, 5], ] ) x = np.linspace(0.005, 0.5, 1001) refl1d = np.load(os.path.join(self.pth, "refl1d.npy")) for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc = abeles(x, layers) assert_almost_equal(calc, refl1d) def test_multilayer(self): x = np.geomspace(0.005, 0.5, 101) air = np.array([0, 0, 0, 0]) unit_cell = np.array([[30, -2.0, 0, 3], [70, 8.0, 0, 3]]) backing = np.array([0, 2.07, 0.0001, 3]) def get_w(repeats=1): if repeats: filling = np.vstack([unit_cell] * repeats) return np.vstack([air, filling, backing]) else: return np.vstack([air, backing]) backends = list(BACKENDS) backends.remove("python") f_python = reflect_model.get_reflect_backend("python") for i in range(40): w = get_w(i) canonical_r = f_python(x, w) for backend in backends: with use_reflect_backend(backend) as abeles: calc = abeles(x, w) try: assert_allclose( calc, canonical_r, atol=5.0e-15, rtol=8.0e-15 ) except AssertionError as e: print(backend, i) raise e def test_use_reflectivity_backend(self): import refnx.reflect._creflect as _creflect import refnx.reflect._reflect as _reflect reflect_model.abeles = _reflect.abeles with use_reflect_backend("c") as f: assert f == _creflect.abeles assert reflect_model.abeles == _creflect.abeles assert reflect_model.abeles == _reflect.abeles # this shouldn't error if pyopencl is not installed # it should just fall back to 'c' reflect_model.use_reflect_backend("pyopencl") def test_reverse(self): # check that the structure reversal works. sio2 = SLD(3.47, name="SiO2") air = SLD(0, name="air") si = SLD(2.07, name="Si") structure = si | sio2(100, 3) | air(0, 2) structure.reverse_structure = True assert_equal(structure.slabs(), self.structure.slabs()) calc = structure.reflectivity(self.qvals) assert_almost_equal(calc, self.rvals) def test_abeles_reshape(self): # reflectivity should be able to deal with multidimensional input s = self.structure.slabs()[..., :4] reshaped_q = np.reshape(self.qvals, (2, 250)) reshaped_r = self.rvals.reshape(2, 250) for backend in BACKENDS: with use_reflect_backend(backend) as abeles: calc = abeles(reshaped_q, s) assert_equal(calc.shape, reshaped_r.shape) assert_almost_equal(calc, reshaped_r, 15) def test_reflectivity_model(self): # test reflectivity calculation with values generated from Motofit rff = ReflectModel(self.structure, dq=0) # the default for number of threads should be -1 assert rff.threads == -1 model = rff.model(self.qvals) assert_almost_equal(model, self.rvals) def test_mixed_reflectivity_model(self): # test that mixed area model works ok. # should be same as data generated from Motofit sio2 = SLD(3.47, name="SiO2") air = SLD(0, name="air") si = SLD(2.07, name="Si") s1 = air | sio2(100, 2) | si(0, 3) s2 = air | sio2(100, 2) | si(0, 3) mixed_model = MixedReflectModel([s1, s2], [0.4, 0.3], dq=0) assert_almost_equal(mixed_model(self.qvals), self.rvals * 0.7) # now try out the mixed model compared to sum of individual models # with smearing, but no background. s1 = air | sio2(100, 2) | si(0, 2) s2 = air | sio2(50, 3) | si(0, 1) mixed_model = MixedReflectModel([s1, s2], [0.4, 0.3], dq=5, bkg=0) indiv1 = ReflectModel(s1, bkg=0) indiv2 = ReflectModel(s2, bkg=0) assert_almost_equal( mixed_model(self.qvals), (0.4 * indiv1(self.qvals) + 0.3 * indiv2(self.qvals)), ) # now try out the mixed model compared to sum of individual models # with smearing, and background. mixed_model.bkg.value = 1e-7 assert_almost_equal( mixed_model(self.qvals), (0.4 * indiv1(self.qvals) + 0.3 * indiv2(self.qvals) + 1e-7), ) def test_parallel_calculator(self): # test that parallel abeles work with a mapper q = np.linspace(0.01, 0.5, 1000).reshape(20, 50) p0 = np.array( [ [0, 2.07, 0, 0], [100, 3.47, 0, 3], [500, -0.5, 1e-3, 3], [0, 6.36, 0, 3], ] ) for backend in BACKENDS: if backend == "pyopencl": # can't do pyopencl in a multiprocessing.Pool continue with use_reflect_backend(backend) as abeles: wf = Wrapper_fn(abeles, p0) y = map(wf, q) with MapWrapper(2) as f: z = f(wf, q) assert_equal(z, np.array(list(y))) def test_parallel_objective(self): # check that a parallel objective works without issue # (it could be possible that parallel evaluation fails at a higher # level in e.g. emcee or in scipy.optimize.differential_evolution) model = self.model361 model.threads = 2 objective = Objective( model, (self.qvals361, self.rvals361, self.evals361), transform=Transform("logY"), ) p0 = np.array(objective.varying_parameters()) cov = objective.covar() walkers = np.random.multivariate_normal( np.atleast_1d(p0), np.atleast_2d(cov), size=(100) ) map_logl = np.array(list(map(objective.logl, walkers))) map_chi2 = np.array(list(map(objective.chisqr, walkers))) wf = Wrapper_fn2(model.model, p0) map_mod = np.array(list(map(wf, walkers))) with MapWrapper(2) as g: mapw_mod = g(wf, walkers) mapw_logl = g(objective.logl, walkers) mapw_chi2 = g(objective.chisqr, walkers) assert_allclose(mapw_logl, map_logl) assert_allclose(mapw_chi2, map_chi2) assert_allclose(mapw_mod, map_mod) def test_reflectivity_fit(self): # a smoke test to make sure the reflectivity fit proceeds model = self.model361 objective = Objective( model, (self.qvals361, self.rvals361, self.evals361), transform=Transform("logY"), ) fitter = CurveFitter(objective) with np.errstate(invalid="raise"): fitter.fit("differential_evolution") def test_model_pickle(self): model = self.model361 model.dq = 5.0 model.dq_type = "constant" pkl = pickle.dumps(model) unpkl = pickle.loads(pkl) assert isinstance(unpkl, ReflectModel) for param in unpkl.parameters.flattened(): try: assert isinstance(param, Parameter) except AssertionError: raise AssertionError(type(param)) assert unpkl.dq_type == "constant" def test_reflectivity_emcee(self): model = self.model361 model.dq = 5.0 objective = Objective( model, (self.qvals361, self.rvals361, self.evals361), transform=Transform("logY"), ) fitter = CurveFitter(objective, nwalkers=100) assert len(objective.generative().shape) == 1 assert len(objective.residuals().shape) == 1 res = fitter.fit("least_squares") res_mcmc = fitter.sample( steps=5, nthin=10, random_state=1, verbose=False ) mcmc_val = [mcmc_result.median for mcmc_result in res_mcmc]
assert_allclose(mcmc_val, res.x, rtol=0.05)
numpy.testing.assert_allclose
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 4 18:51:20 2018 @author: cham """ import emcee # %pylab qt5 import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import interp1d from scipy.stats import skewtest, skew, anderson """ teff, logg, feh, mags(W1) varpi, sigma_varpi """ def parallax_to_distance(varpi): """ :param varpi: :return: """ pass def dmod_to_parallax(m, M=0.): """convert distance modulus to parallax :param m: apparent mag :param M: absolute mag :return varpi: parallax [mas] """ return 10. ** (2 - 0.2 * (m - M)) def grid_to_pdf(combined_iso, p_post, colnames=["teff", "logg"], q=(16, 50, 84)): # n_quantile x n_colnames result = np.zeros((len(q), len(colnames)), float) for i, colname in enumerate(colnames): # calculate unique values u_y, inv_ind = np.unique( combined_iso[colname], return_inverse=True) # calclulate CDF u_y = np.append(u_y, u_y[-1] * 2 - u_y[-2]) u_p_post = np.zeros_like(u_y, float) # u_p_post[inv_ind] = u_p_post[inv_ind] + p_post for j, _ in enumerate(inv_ind): u_p_post[_:_ + 2] += 0.5 * p_post[j] result[:, i] = interp1d(np.cumsum(u_p_post) / np.sum(u_p_post), u_y)(q) return result # %% """ In this section, I do some tests on normality of varpi(mag). """ def lnprob_gauss(x, ivar): return -0.5 * np.sum(ivar * x ** 2) def ezchain_gauss(ivar, n_dim=2, n_walkers=100, n_burnin=100, n_chain=1000): """ get a mcmc-based gaussian sample Example ------- >>> import matplotlib.pyplot as plt >>> c = ezchain_gauss(1, n_dim=1, n_walkers=100, n_chain=1000) >>> plt.figure() >>> plt.hist(c.flatchain) """ assert n_walkers >= 2 * n_dim # run MCMC p0 = [np.random.rand(n_dim) for i in range(n_walkers)] sampler = emcee.EnsembleSampler(n_walkers, n_dim, lnprob_gauss, args=[ivar]) pos, prob, state = sampler.run_mcmc(p0, n_burnin) sampler.reset() sampler.run_mcmc(pos, n_chain) return sampler def test_skewness(dmod=8., test_sigma_mag=np.logspace(-3, 0, 50)): # sample a gauss # sampler = ezchain_gauss(1, n_dim=1, n_walkers=100, n_chain=1000) # flatchain = sampler.flatchain flatchain = np.random.randn(100000) # test skewness skewness_dmod = np.zeros_like(test_sigma_mag) skewness_varpi = np.zeros_like(test_sigma_mag) # pvalue pvalue_dmod =
np.zeros_like(test_sigma_mag)
numpy.zeros_like
""" This module is used to call Quantum Espresso simulation and parse its output The user need to supply a complete input script with single-point scf calculation, CELL_PARAMETERS, ATOMIC_POSITIONS, nat, ATOMIC_SPECIES arguments. It is case sensitive. and the nat line should be the first argument of the line it appears. The user can also opt to the ASE interface instead. This module will copy the input template to a new file with "_run" suffix, edit the atomic coordination in the ATOMIC_POSITIONS block and run the similation with the parallel set up given. """ import os from subprocess import call import time import numpy as np from flare import struc from typing import List name = "QE" def run_dft_par( dft_input, structure, dft_loc, n_cpus=1, dft_out="pwscf.out", npool=None, mpi="mpi", **dft_kwargs, ): """run DFT calculation with given input template and atomic configurations. if n_cpus == 1, it executes serial run. :param dft_input: input template file name :param structure: atomic configuration :param dft_loc: relative/absolute executable of the DFT code :param n_cpus: # of CPU for mpi :param dft_out: output file name :param npool: not used :param mpi: not used :param **dft_wargs: not used :return: forces """ newfilename = edit_dft_input_positions(dft_input, structure) if npool is None: dft_command = f"{dft_loc} -i {newfilename}" else: dft_command = f"{dft_loc} -nk {npool} -i {newfilename}" if n_cpus > 1: if mpi == "mpi": dft_command = f"mpirun -np {n_cpus} {dft_command}" else: dft_command = f"srun -n {n_cpus} --mpi=pmi2 {dft_command}" with open(dft_out, "w+") as fout: call(dft_command.split(), stdout=fout) os.remove(newfilename) return parse_dft_forces(dft_out) def run_dft_en_par(dft_input, structure, dft_loc, n_cpus): """run DFT calculation with given input template and atomic configurations. This function is not used atm if n_cpus == 1, it executes serial run. :param dft_input: input template file name :param structure: atomic configuration :param dft_loc: relative/absolute executable of the DFT code :param n_cpus: # of CPU for mpi :param dft_out: output file name :param npool: not used :param mpi: not used :param **dft_wargs: not used :return: forces, energy """ run_qe_path = dft_input edit_dft_input_positions(run_qe_path, structure) qe_command = "mpirun -np {n_cpus} {dft_loc} -i {run_qe_path}" with open("pwscf.out", "w+") as fout: call(qe_command.split(), stdout=fout) forces, energy = parse_dft_forces_and_energy("pwscf.out") return forces, energy def run_dft_en_npool(qe_input, structure, dft_loc, npool): run_qe_path = qe_input edit_dft_input_positions(run_qe_path, structure) qe_command = "mpirun {0} -npool {1} < {2} > {3}".format( dft_loc, npool, run_qe_path, "pwscf.out" ) call(qe_command, shell=True) forces, energy = parse_dft_forces_and_energy("pwscf.out") return forces, energy def parse_dft_input(dft_input: str): """parse the input to get information of atomic configuration :param dft_input: input file name :return: positions, species, cell, masses """ positions = [] species = [] cell = [] with open(dft_input) as f: lines = f.readlines() # Find the cell and positions in the output file cell_index = None positions_index = None nat = None species_index = None for i, line in enumerate(lines): if "CELL_PARAMETERS" in line: cell_index = int(i + 1) if "ATOMIC_POSITIONS" in line: positions_index = int(i + 1) if "nat" in line: nat = int(line.split("=")[1]) if "ATOMIC_SPECIES" in line: species_index = int(i + 1) assert cell_index is not None, "Failed to find cell in input" assert positions_index is not None, "Failed to find positions in input" assert nat is not None, "Failed to find number of atoms in input" assert species_index is not None, "Failed to find atomic species in input" # Load cell for i in range(cell_index, cell_index + 3): cell_line = lines[i].strip() cell.append(np.fromstring(cell_line, sep=" ")) cell = np.array(cell) # Check cell IO assert len(cell) != 0, "Cell failed to load" assert np.shape(cell) == (3, 3), "Cell failed to load correctly" # Load positions for i in range(positions_index, positions_index + nat): line_string = lines[i].strip().split() species.append(line_string[0]) pos_string = " ".join(line_string[1:4]) positions.append(
np.fromstring(pos_string, sep=" ")
numpy.fromstring
import script_tools as st import registration as reg import numpy as np import landmarks import dist_table as dt # Windows #dataset_path = "C:/cygwin64/home/johan/itkAlphaCut/assets/01.png" #bin_path = "C:/cygwin64/home/johan/itkAlphaCut-release/Release/" # Linux dataset_path = "/home/johof680/work/itkAlphaAMD/images/cilia_public_cut_out.png" bin_path = "/home/johof680/work/itkAlphaAMD-build/" def main(USE_PYRAMIDS, RANDOMIZE_TRANSFORMS, DO_AFFINE_REGISTRATION, DO_TRANSFORM_LANDMARKS, EVAL_LANDMARKS, metric_name, transformation_size, noise_level, reverse): out_path = dataset_path # image extension im_ext = "tif" # number of registrations to perform count = 1000 # create registration object parallel_count = 6 image_dimensions = 2 r = reg.Registration(parallel_count, bin_path, dim = image_dimensions, enable_logging = True) out_path1 = "/home/johof680/work/itkAlphaAMD-build/cilia/" + transformation_size + "/" + noise_level + "/" # Generate random transforms if RANDOMIZE_TRANSFORMS: rnd_param = r.get_random_transforms_param_defaults() if noise_level == "none": rnd_param["noise"] = "0.0" elif noise_level == "large": rnd_param["noise"] = "0.1" else: raise "Illegal noise level." if transformation_size == "small": rnd_param["rotation"] = "10" rnd_param["translation"] = "10" rnd_param["min_rotation"] = "0" rnd_param["min_translation"] = "0" elif transformation_size == "medium": rnd_param["rotation"] = "20" rnd_param["translation"] = "20" rnd_param["min_rotation"] = "10" rnd_param["min_translation"] = "10" elif transformation_size == "large": rnd_param["rotation"] = "30" rnd_param["translation"] = "30" rnd_param["min_rotation"] = "20" rnd_param["min_translation"] = "20" elif transformation_size == "all": rnd_param["rotation"] = "30" rnd_param["translation"] = "30" rnd_param["min_rotation"] = "0" rnd_param["min_translation"] = "0" else: raise "Illegal transformation size." r.random_transforms(dataset_path, out_path1, count, rnd_param) st.create_directory(out_path1) r.run("Random transformations") in_path = out_path1 if reverse: out_path1 = out_path1 + metric_name + "_reverse/" else: out_path1 = out_path1 + metric_name + "/" st.create_directory(out_path1) # Do the registrations def register(rp, input1_path, input2_path, output_path, metric, cnt): for i in xrange(cnt): pth = output_path + ("registration_%d/" % (i+1)) rpar = rp.get_register_param_defaults() rpar.pop("weights1", None) rpar.pop("weights2", None) msk2 = input2_path + "transformed_mask_%d.%s" % (i+1, im_ext) if reverse: rpar["mask2"] = "circle" rpar["mask1"] = msk2 in2 = input1_path + "ref_image_%d.%s" %(i+1, im_ext) in1 = input2_path + "transformed_image_%d.%s" % (i+1, im_ext) else: rpar["mask1"] = "circle" rpar["mask2"] = msk2 in1 = input1_path + "ref_image_%d.%s" %(i+1, im_ext) in2 = input2_path + "transformed_image_%d.%s" % (i+1, im_ext) if USE_PYRAMIDS: rpar["multiscale_sampling_factors"] = "4x2x1" rpar["multiscale_smoothing_sigmas"] = "5x3x0" else: rpar["multiscale_sampling_factors"] = "1" rpar["multiscale_smoothing_sigmas"] = "0" rpar["metric"] = metric rpar["learning_rate"] = "0.5" rpar["alpha_outlier_rejection"] = "0.0" rpar["sampling_fraction"] = "0.1" rpar["normalization"] = "0.05" rp.register_affine(in1, in2, pth, rpar) #def landmark_transform(self, landmarks_in_path, out_path, out_name, transform_path): def transform_landmarks(rp, landmark_path, landmark_prefix, transform_path_base, cnt): for i in xrange(cnt): transform_path = transform_path_base + ("registration_%d/transform_complete.txt" % (i+1)) if reverse: input_path = landmark_path + landmark_prefix + ".csv" else: input_path = landmark_path + landmark_prefix + "_%d.csv" % (i + 1) out_name = "registered_landmarks_%d.csv" % (i + 1) rp.landmark_transform(input_path, transform_path_base, out_name, transform_path) if DO_AFFINE_REGISTRATION: register(r, in_path, in_path, out_path1, metric_name, count) r.run("Affine Registration") if DO_TRANSFORM_LANDMARKS: if reverse: transform_landmarks(r, in_path, "ref_landmarks", out_path1, count) else: transform_landmarks(r, in_path, "transformed_landmarks", out_path1, count) r.run("Transform Landmarks") def eval_landmarks(ref_landmark_path, output_path, cnt): if reverse: dists = np.zeros(cnt) for i in xrange(cnt): ref_lm = landmarks.read_csv(in_path + "transformed_landmarks_%d.csv" % (i+1), False) #csv_2_np.read_csv(out1_path + "ref_landmarks.csv", False) tra_lm = landmarks.read_csv(output_path + "registered_landmarks_%d.csv" % (i+1)) dists[i] = landmarks.mean_euclidean(ref_lm, tra_lm) return (np.mean(dists), np.std(dists), dists, dt.make_distribution(dists)) else: ref_lm = landmarks.read_csv(ref_landmark_path + "ref_landmarks.csv", False) #csv_2_np.read_csv(out1_path + "ref_landmarks.csv", False) dists =
np.zeros(cnt)
numpy.zeros
#!/usr/bin/env python import os #os.environ["CUDA_VISIBLE_DEVICES"]="-1" import numpy as np from math import sqrt from numpy import zeros import re import math from .batch_object import batch_object from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import pdb import random import time from numpy import genfromtxt #from scipy.spatial import distance #from PIL import Image #import pickle from pathlib import Path import time from random import randint import gc import csv from . import datadir #os.environ['CUDA_VISIBLE_DEVICES'] = '' np.random.seed(2504) def main(): import apetype as at class CLI_Settings(at.ConfigBase): seq_len: int # Sequence length tr_dir: str # Directory with training data '.ct' files settings = CLI_Settings() # Import tensorflow, after processing CLI_Settings as it prints warnings import tensorflow as tf from tensorflow.python.saved_model import builder as saved_model_builder def conv1d(input, pname, name, kshape, stride=1): with tf.name_scope(name): W = tf.get_variable(name=pname+'w_'+name, shape=kshape) b = tf.get_variable(name=pname+'bias_' + name, shape=[kshape[2]]) out = tf.nn.conv1d(input,W,stride=stride, padding='SAME') out = tf.nn.bias_add(out, b) out = tf.nn.leaky_relu(out) #out = tf.nn.relu(out) return out def fullyConnected(input, name, output_size): with tf.name_scope(name): input_size = input.shape[1:] input_size = int(np.prod(input_size)) W = tf.get_variable(name='w_'+name, shape=[input_size, output_size]) b = tf.get_variable(name='bias_'+name, shape=[output_size]) input = tf.reshape(input, [-1, input_size]) out = tf.add(tf.matmul(input, W), b) out = tf.nn.leaky_relu(out) #out = tf.maximum(out, 0.01 * out, name = "forsoft") return out def model(x, y, keep_ratio1, keep_ratio2): dpi = tf.nn.dropout(x, keep_ratio1) filter_size = 5 lc1 = conv1d(dpi, 'fre_','lc1', [filter_size, 2*max_features, 64]) lc2 = conv1d(lc1, 'fre_', 'lc2', [filter_size, 64, 128]) lc3 = conv1d(lc2, 'fre_', 'lc3', [filter_size, 128, 256]) lc4 = conv1d(lc3, 'fre_', 'lc4', [filter_size, 256, 512]) lc5 = conv1d(lc4, 'fre_', 'lc5', [filter_size, 512, 1024]) lc6 = conv1d(lc5, 'fre_', 'lc6', [filter_size, 1024, 2048]) ml = tf.contrib.layers.flatten(lc6) dp = tf.nn.dropout(ml, keep_ratio2) out = fullyConnected(dp, "output_p", seq_len * seq_len) loss = tf.reduce_mean(tf.squared_difference( y, out)) #vars = tf.trainable_variables() #l2_loss = tf.add_n([ tf.nn.l2_loss(v) for v in vars if 'bias' not in v.name ]) #loss = tf.add(loss, 0.000001*l2_loss) return out, loss def clean_seq(s): ns = s.upper() pattern = re.compile(r'\s+') ns = re.sub(pattern, '', ns) ns = re.sub(r'[^a-zA-Z]{1}', 'N', ns) return ns def encode(ns): ns = ns.replace("A", "1,0,0,0,") ns = ns.replace("U", "0,1,0,0,") ns = ns.replace("G", "0,0,1,0,") ns = ns.replace("C", "0,0,0,1,") if re.search('[a-zA-Z]', ns): #print(s) #print('Non-standard symbol in sequence - changed to A.') ns = re.sub("[a-zA-Z]", "0,0,0,0,", ns) return ns[:-1] def brun(sess, x, y, a, keep_prob1, keep_prob2): preds = [] batch_size = 128 number_of_full_batch=int(math.ceil(float(len(a))/batch_size)) for i in range(number_of_full_batch): preds += list(sess.run(y, feed_dict={x: np.asarray(a[i*batch_size:(i+1)*batch_size]), keep_prob1: 1.0, keep_prob2: 1.0})) return preds max_features = 4 seq_len = settings.seq_len # int(sys.argv[1]) tr_dir = settings.tr_dir # sys.argv[2] pos_seq = [] raw_seq = [] used_seq = set(['N'*seq_len + '_' + 'N'*seq_len]) dup = 0 seq = "" small_classes = [] with open(os.path.join(datadir,'small_classes.csv')) as file: for line in file: small_classes.append(line.strip()) t_classes = [] with open(os.path.join(datadir,'t_classes.csv')) as file: for line in file: t_classes.append(line.strip()) directory = os.fsencode(tr_dir) x_data = [] y_data = [] y_raw = [] filenames = [] steps = [] ctp = 0 rms = 0 for file in os.listdir(directory): filename = os.fsdecode(file) skip_file = False if filename.endswith(".ct"): seq="" prev_nuc = 0 pairs = [] first = True with open(tr_dir + "/" + filename) as fp: for cnt, line in enumerate(fp): if(line.startswith("#")): continue if(first): first = False continue values = line.split() seq = seq + values[1] if(int(values[0]) != prev_nuc + 1): rms = rms + 1 skip_file = True break prev_nuc = int(values[0]) if(int(values[4])>0): pairs.append([int(values[2]), int(values[4]) - 1]) if(skip_file): continue seq = clean_seq(seq) #if(len(seq) <= 140): # continue a = seq_len - 1 nseq = 'N'*(a) + seq + 'N'*(a) pos_seq.append(np.fromstring(encode(nseq), dtype=int, sep=",").reshape(-1, 4)) raw_seq.append(nseq) square_size = len(nseq) y_cm =
zeros((square_size, square_size))
numpy.zeros
from __future__ import print_function import numpy as np import sys import regreg.api as rr from selection.tests.instance import logistic_instance, gaussian_instance from selection.approx_ci.selection_map import threshold_score_map from selection.approx_ci.ci_approx_density import approximate_conditional_density from selection.randomized.query import naive_confidence_intervals def approximate_inference(X, y, true_mean, sigma, threshold = 2., seed_n = 0, lam_frac = 1., loss='gaussian', randomization_scale = 1.): from selection.api import randomization n, p = X.shape np.random.seed(seed_n) if loss == "gaussian": lam = lam_frac * np.mean(np.fabs(np.dot(X.T, np.random.standard_normal((n, 2000)))).max(0)) * sigma loss = rr.glm.gaussian(X, y) elif loss == "logistic": lam = lam_frac * np.mean(np.fabs(np.dot(X.T, np.random.binomial(1, 1. / 2, (n, 10000)))).max(0)) loss = rr.glm.logistic(X, y) active_bool = np.zeros(p, np.bool) inactive_bool = ~active_bool randomization = randomization.isotropic_gaussian((p,), scale=randomization_scale) TS = threshold_score_map(loss, threshold, randomization, active_bool, inactive_bool, randomization_scale) TS.solve_approx() active = TS._overall active_set = np.asarray([i for i in range(p) if active[i]]) nactive = np.sum(active) sys.stderr.write("number of active selected by thresholding" + str(nactive) + "\n") sys.stderr.write("Active set selected by thresholding" + str(active_set) + "\n") sys.stderr.write("Observed target" + str(TS.target_observed) + "\n") if nactive == 0: return None else: true_vec = np.linalg.inv(X[:, active].T.dot(X[:, active])).dot(X[:, active].T).dot(true_mean) sys.stderr.write("True target to be covered" + str(true_vec) + "\n") ci_naive = naive_confidence_intervals(np.diag(TS.target_cov), TS.target_observed) naive_covered = np.zeros(nactive) naive_risk = np.zeros(nactive) ci = approximate_conditional_density(TS) ci.solve_approx() ci_sel =
np.zeros((nactive, 2))
numpy.zeros
from controller import Robot, Motor, DistanceSensor import math import cv2 import time import numpy as np robot = Robot() RightMotor = robot.getDevice('right wheel motor') LeftMotor = robot.getDevice('left wheel motor') RightMotor.setPosition(float('inf')) LeftMotor.setPosition(float('inf')) RightMotor.setVelocity(0.0) LeftMotor.setVelocity(0.0) TimeGap = int(robot.getBasicTimeStep()) Distance_sensor = [robot.getDevice('ps0'), robot.getDevice('ps2'), robot.getDevice('ps5'), robot.getDevice('ps7')] robot.getDevice('ps0').enable(TimeGap) robot.getDevice('ps2').enable(TimeGap) robot.getDevice('ps5').enable(TimeGap) robot.getDevice('ps7').enable(TimeGap) camera = robot.getDevice('camera') camera.enable(TimeGap) def front_distance_1(): return robot.getDevice('ps0').getValue() def front_distance_2(): return robot.getDevice('ps7').getValue() def right_distance(): return robot.getDevice('ps2').getValue() def left_distance(): return robot.getDevice('ps5').getValue() def green(): lower =
np.array([56, 175, 0])
numpy.array
import re import os import cv2 import numpy as np import matplotlib.pyplot as plt def create_z_stack(path, x1, x2, y1, y2, alpha=1): Z_stack = np.asarray([None, None]) num_slices = 0 # search for existing stack, else create try: print("Trying to load existing Z Stack.") Z_stack[0] = np.load(path + 'c1/0Z_STACK_c1.npy') Z_stack[1] = np.load(path + 'c2/0Z_STACK_c2.npy') except IOError: print("Z Stack doesn't exist. Creating now.") slices = [[],[]] slices[0] = sorted(os.listdir(path+'c1/'), key=lambda z: (int(re.sub('\D', '', z)), z)) slices[1] = sorted(os.listdir(path+'c2/'), key=lambda z: (int(re.sub('\D', '', z)), z)) print(np.asarray(slices).shape) # loops through slices to create stack using np.vstack for idx, _ in enumerate(slices): f_name = "" if idx == 0: print("C1 Stack") f_name = path + "c1/0Z_STACK_c1.npy" img_path = path + "c1/" else: print("C2 Stack") f_name = path + "c2/0Z_STACK_c2.npy" img_path = path + "c2/" for ind, i in enumerate(slices[idx]): num_slices = len(slices[idx]) if i.endswith('.jpeg') or i.endswith('.png'): img_name = img_path + i img = cv2.imread(img_name)[:, :, 0] img = cv2.bilateralFilter(img, 5, 50, 50) # img = cv2.erode(img, kernel=cv2.getStructuringElement(cv2.MORPH_ERODE, (3, 3))) # img = cv2.dilate(img, kernel=cv2.getStructuringElement(cv2.MORPH_DILATE, (3, 3))) if Z_stack[idx] is None: Z_stack[idx] = np.expand_dims(img, axis=0) else: Z_stack[idx] = np.vstack((Z_stack[idx], np.expand_dims(img, axis=0))) print("Progress: ", Z_stack[idx].shape, " [%d%%]" % (((ind + 1) / (1.0 * num_slices)) * 100), end="\r") np.save(f_name, Z_stack[idx], allow_pickle=True) num_slices = Z_stack[0].shape[0] yz_cross_sec = {"c1": np.asarray(Z_stack[0][:, :, (x1 + x2) // 2]), "c2": np.asarray(Z_stack[1][:, :, (x1 + x2) // 2])} xz_cross_sec = {"c1": np.asarray(Z_stack[0][:, (y1 + y2) // 2, :]), "c2": np.asarray(Z_stack[1][:, (y1 + y2) // 2, :])} roi1 = yz_cross_sec["c1"][:, y1:y2] roi2 = xz_cross_sec["c1"][:, x1:x2] roi1 = cv2.bilateralFilter(roi1, 3, 50, 50) roi2 = cv2.bilateralFilter(roi2, 3, 50, 50) ret, thresh_roi1 = cv2.threshold(roi1, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) ret, thresh_roi2 = cv2.threshold(roi2, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) window_size1 = int(alpha * thresh_roi1.shape[1] - 1) window_size2 = int(alpha * thresh_roi2.shape[1] - 1) thresh_roi1[:, window_size1:thresh_roi1.shape[1] - 1 - window_size1] = 0 thresh_roi2[:, window_size2:thresh_roi2.shape[1] - 1 - window_size2] = 0 analyse_stack1 = thresh_roi1[:, 0:window_size1] analyse_stack2 = thresh_roi2[:, 0:window_size2] analyse_stack3 = thresh_roi1[:, thresh_roi1.shape[1] - window_size1:thresh_roi1.shape[1]] analyse_stack4 = thresh_roi2[:, thresh_roi2.shape[1] - window_size2:thresh_roi2.shape[1]] analyse_stack1 = (np.sum(analyse_stack1, axis=1) / 255) >= (0.3 * window_size1) a_s1_2 = np.roll(analyse_stack1, -1) a_s1_3 = np.roll(analyse_stack1, -2) stack1 = np.bitwise_and(analyse_stack1, a_s1_2) stack1 = np.bitwise_and(stack1, a_s1_3) stack1[-1] = True val1 = num_slices - np.argmax(np.flip(stack1[:-3], 0)) analyse_stack2 = (np.sum(analyse_stack2, axis=1) / 255) >= (0.3 * window_size2) a_s2_2 = np.roll(analyse_stack2, -1) a_s2_3 = np.roll(analyse_stack2, -2) stack2 = np.bitwise_and(analyse_stack2, a_s2_2) stack2 = np.bitwise_and(stack2, a_s2_3) stack2[-1] = True val2 = num_slices - np.argmax(np.flip(stack2[:-3], 0)) analyse_stack3 = (np.sum(analyse_stack3, axis=1) / 255) >= (0.3 * window_size1) a_s3_2 = np.roll(analyse_stack3, -1) a_s3_3 = np.roll(analyse_stack3, -2) stack3 = np.bitwise_and(analyse_stack3, a_s3_2) stack3 = np.bitwise_and(stack3, a_s3_3) stack3[-1] = True val3 = num_slices - np.argmax(
np.flip(stack3[:-3], 0)
numpy.flip
#!/usr/bin/env python3 import sys import logging import yaml import pandas as pd import numpy as np from collections import defaultdict from sklearn.model_selection import train_test_split from sklearn.ensemble import IsolationForest from sklearn.impute import SimpleImputer from anoflows.hpo import find_best_flows from data_loading import load_data logging.getLogger().setLevel(logging.INFO) if len(sys.argv) == 1: logging.error("YAML data specification missing from the command line arguments") exit(1) spec_file = sys.argv[1] df, spec = load_data(spec_file) max_rows = min(len(df), spec.get("max_rows", 40000)) novelty_detection = spec.get("novelty", True) normal_classes = spec["normal_classes"] precision = defaultdict(list) for rounds in range(spec.get("rounds", 1)): # random sampling df = df.sample(n=max_rows, replace=False) label_col = spec["label_column"] y = df[label_col].values other = df.drop(label_col, inplace=False, axis=1) X = other.values # imputing X = SimpleImputer(copy=False).fit_transform(X) # train/test split X_train, X_test, y_train, y_test = \ train_test_split(X, y, shuffle=False, test_size=0.5) if novelty_detection: keep = np.where(np.isin(y_train, normal_classes))[0] X_train = X_train[keep, :] y_train = y_train[keep] # training #flows, loss = find_best_flows(X_train, device='cpu', n_trials=1) from anoflows.anoflow_bagging import AnoFlowBagging flows = AnoFlowBagging() flows.fit(X_train) iforest = IsolationForest().fit(X_train) # prediction pred = { "anoflows": flows.likelihood(X_test), "iforest": iforest.decision_function(X_test) } # evaluation y_true = np.where(np.isin(y_test, spec["anomaly_classes"]))[0] ref = np.zeros(len(y_test)) ref[y_true] = 1 k = len(y_true) for name, y_pred in pred.items(): anomaly_indices = y_pred.argsort()[:k] prec = ref[anomaly_indices].sum() / k logging.info("%s: %.1f%% (%d anomalies / %d rows)" % (name, 100*prec, k, len(y_test))) precision[name].append(prec) logging.info("* SUMMARY %s", spec_file) for name, prec in precision.items(): prec = 100 *
np.array(prec)
numpy.array
try: import os if os.environ['BOARD'] == 'Ultra96': os.environ["DISPLAY"] = ":1" except KeyError: pass import cv2 import time import signal import threading import numpy as np import multiprocessing __author__ = "<NAME>" __email__ = "<EMAIL>" # this file contains definations for camera controllers font = cv2.FONT_HERSHEY_SIMPLEX class SimpleCameraController: def __init__(self, state_ptr=None, scale=1): print("[SimpleCameraController] Attaching Camera Handle for adding Disturbance") self.running = True self.scale = scale self.state_ptr = state_ptr self.camera = cv2.VideoCapture(0) (_, self.frame) = self.camera.read() h, w = self.frame.shape[:2] self.frame = cv2.resize(self.frame, (w//2, h//2)) # w = 320, h = 240 self.ih, self.iw = self.frame.shape[:2] self.dead_radius = 60//2 self.kernelopen = np.ones((5,5)) self.kernelclose = np.ones((10,10)) # hsv value for the object of interest self.low = np.array([100, 130, 0]) self.high = np.array([120, 255, 255]) self.camera_handle = threading.Thread(target=self.run) self.camera_handle.start() # convert xy to polar coordinates def xy2pol(self, x,y): dis = np.sqrt(x**2 + y**2) angle = np.arctan2(y, x)*180/np.pi return dis, angle # get frame and apply a morphological operation def get_morph_frame(self): (_, frame) = self.camera.read() frame = cv2.resize(frame, (self.iw, self.ih)) self.frame = cv2.flip(frame, 1) hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, self.low, self.high) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, self.kernelopen) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, self.kernelclose) return mask # get polar coordinates for a contour having the max area def get_max_cont_polar(self, conts): c = max(conts, key=cv2.contourArea) x,y,w,h = cv2.boundingRect(c) cx, cy = x+w//2, y+h//2 cv2.rectangle(self.frame,(x,y),(x+w,y+h), (0,255,0), 2) cv2.circle(self.frame, (cx, cy), 5, (0, 0, 255), 2) cx = cx - self.iw//2 cy = self.ih//2 - cy dis, angle = self.xy2pol(cx, cy) return dis, angle # main thread function def run(self): while self.running: temp_frame = self.get_morph_frame() conts = cv2.findContours(temp_frame.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) conts = conts[0] if len(conts) == 2 else conts[1] if len(conts) != 0: dis, angle = self.get_max_cont_polar(conts) if (dis > self.dead_radius) and (-45 <= angle < 45): # print("Right") self.state_ptr[1] -= self.scale elif (dis > self.dead_radius) and (45 <= angle < 90+45): # print("Up") self.state_ptr[2] -= self.scale elif (dis > self.dead_radius) and (angle >= 90+45 or angle < -180+45): # print("Left") self.state_ptr[1] += self.scale elif (dis > self.dead_radius) and (-180+45 <= angle < -45): # print("down") self.state_ptr[2] += self.scale cv2.circle(self.frame, (self.iw//2, self.ih//2), self.dead_radius, (255, 0, 0), 2) def close(self): if self.running: self.running = False self.camera_handle.join() self.camera.release() cv2.destroyAllWindows() print("[SimpleCameraController] Camera Handle Closed...") class HandGestureCameraController: def __init__(self, scale=1): print("[HandGestureCameraController] Attaching Camera Handle for position control") self.running = True self.scale = scale self.x_dot = 0. self.y_dot = 0. self.z_dot = 0. self.yaw_rate = 0. self.camera = cv2.VideoCapture(0) (_, self.frame) = self.camera.read() h, w = self.frame.shape[:2] self.frame = cv2.resize(self.frame, (w//2, h//2)) # w = 320, h = 240 self.ih, self.iw = self.frame.shape[:2] filt_size = 5 self.kernelopen =
np.ones((filt_size,filt_size))
numpy.ones
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den =
N.array([1,1,1])
numpy.array
import pickle import json from collections import OrderedDict from math import log from sklearn.metrics.pairwise import cosine_similarity from numpy.linalg import norm from datasets import DATASET import datetime import os.path import numpy as np class TFIDFVectorizer(): def __init__(self, k=1.5, b=0.75): self.k = k self.b = b def tf(self,word,doc, doc_list): all_num=sum([doc[key] for key in doc]) avg = 0 for vb in doc_list: avg += sum([vb[key] for key in vb]) avg = avg/len(doc_list) return (doc[word]*(self.k + 1))/(doc[word] + self.k*(1 - self.b + self.b*all_num/avg)) def idf(self, word,doc_list): all_num=len(doc_list) word_count=0 for doc in doc_list: if word in doc: word_count+=1 return log((all_num+1)/(word_count+0.5)) def tfidf(self, word,doc,doc_list): score = self.tf(word,doc, doc_list)*self.idf(word,doc_list) return score def compute_tfidf_summary(self, bug_reports): vocab = [] docs = [] for report in bug_reports.values(): doc = {} for word in report.summary['unstemmed']: if word not in vocab: vocab.append(word) if word in doc.keys(): doc[word] += 1 else: doc[word] = 1 for word in report.description['unstemmed']: if word not in vocab: vocab.append(word) if word in doc.keys(): doc[word] += 1 else: doc[word] = 1 docs.append(doc) x_tfidf = [] for doc in docs: for word in doc: doc[word] = self.tfidf(word,doc,docs) row = [] for f in vocab: if f in doc.keys(): row.append(doc[word]) else: row.append(0) x_tfidf.append(row) # should save sparse matrix return x_tfidf def compute_similarity(self, x_tfidf, y_tfidf): """ compute similarity """ n = len(x_tfidf) size = len(x_tfidf[n-1]) x_tfidf = np.asarray(x_tfidf) x_similarity = np.empty((n, n), dtype=object) for i in range(n): for j in range(n): x_similarity[i][j] = cosine_similarity(x_tfidf[i].reshape(1,size), y_tfidf[j].reshape(1,size))[0][0] return x_similarity def similar_report_scores(src_files, bug_reports): # duyệt từng bug tf = TFIDFVectorizer() x_tfidf = tf.compute_tfidf_summary(bug_reports) n = len(x_tfidf) size = len(x_tfidf[n-1]) x_tfidf = np.asarray(x_tfidf) similarity_report_scores = [] for r1, report in enumerate(bug_reports.values()): print(r1) scores = [] input_bug_report = int(report.opendate) # x là tập B x = [] for rep in bug_reports.values(): fixed_date_bug = int(rep.fixdate) if (input_bug_report > fixed_date_bug): x.append(rep) # duyệt từng file for src in src_files.values(): if(len(x) != 0): simi_score = 0 # duyệt b trong B for i, relevant_commit in enumerate(x): files = [r.split('.')[-2] for r in relevant_commit.fixed_files] # duyệt từng file f trong b để tìm đc file tương ứng for f in files: f = f.split('\\')[-1] exact_file_name = src.exact_file_name.split(' ')[-1] if(exact_file_name == f): # print(relevant_commit.summary['unstemmed']) # print(report.summary['unstemmed']) # tc = (input_bug_report - datetime.datetime.strptime( # relevant_commit.fixdate, '%Y-%m-%d %H:%M:%S').timestamp()) / 60/60/24 # tc = (input_bug_report - int(relevant_commit.fixdate)) / 60 / 60 / 24 simi_score += cosine_similarity(x_tfidf[r1].reshape(1,size), x_tfidf[i].reshape(1,size))[0][0] scores.append(simi_score) else: scores.append(0) similarity_report_scores.append(scores) return similarity_report_scores def main(): # custom max rank = 10 and add set C with open('../preprocess_data/preprocessed_src.pickle', 'rb') as file: src_files = pickle.load(file) with open('../preprocess_data/preprocessed_reports.pickle', 'rb') as file: bug_reports = pickle.load(file) scores = similar_report_scores(src_files, bug_reports) print(len(scores)) print(len(scores[0])) max_score =
np.max(scores)
numpy.max
from __future__ import print_function, division import matplotlib #matplotlib.use('Agg') import numpy as np import scipy as sp from operator import truediv import math, time import matplotlib.pyplot as plt import matplotlib.cm as cm from itertools import groupby import sisl as si from numbers import Integral # I don't know why, but the lines below were # fucking up my routine "makeTB_FrameOutside", on the "contruct" command #try: # from itertools import izip as zip #except: # pass def dagger(M): return np.conjugate(np.transpose(M)) def displaySparse(m, filename, dpi=300): if not isinstance(m, sp.sparse.coo_matrix): m = sp.sparse.coo_matrix(m) fig = plt.figure() ax = fig.add_subplot(111, axisbg='black') ax.plot(m.col, m.row, 's', color='white', ms=10) ax.set_xlim(0, m.shape[1]) ax.set_ylim(0, m.shape[0]) ax.set_aspect('equal') for spine in ax.spines.values(): spine.set_visible(False) ax.invert_yaxis() ax.set_aspect('equal') ax.set_xticks([]) ax.set_yticks([]) plt.savefig(filename, facecolor='black', edgecolor='black', dpi=dpi) return ax def get_potential(TSHS, iio, atoms): """ iio: index (0-based) of orbital in basis set (i.e., pz in SZP: iio = 2) """ orbs = TSHS.a2o(atoms)+iio on = TSHS.Hk(dtype=np.float64, format='array')[orbs, orbs] return on def check_Dirac(ts, mp, displacement=[0,0,0]): mp = si.MonkhorstPack(ts, mp, displacement=displacement) print('Check that Dirac is in here: ') print(mp.k) print('Check that this is in *.KP file : {}'.format(mp.tocartesian([0., 1./3, 0]) * si.unit.siesta.unit_convert('Bohr', 'Ang'))) i_dirac = (np.logical_and(mp.k[:,1] == 1./3, mp.k[:,0] == 0.)).nonzero()[0] if len(i_dirac) != 1: print('Dirac point is not in the grid') exit(1) else: print('Dirac point is at kindex: {}'.format(i_dirac[0])) def get_Dirac(hs, mp, displacement=[0,0,0]): #check_Dirac(hs.geom, mp, displacement) ens_dirac = hs.eigh(k=[0., 1./3, 0]) i_dirac = hs.na * 2 - 1 return np.average(ens_dirac[i_dirac:i_dirac+2]) def plot_PotDiff(TSHS, TSHS_0, ia, axis, iio, o_dev, o_inner): # include option for frame! on, yy, atoms = get_potential(TSHS, ia, axis, iio) on0 = get_potential(TSHS_0, ia, axis, iio)[0] on0 = np.array([np.mean(on0)]*len(on)) # Check print('y (Ang)\t\tPot (eV)\tPot0 (eV)\tPot-Pot0 (eV)') a_dev = TSHS.o2a(o_dev, unique=True) a_inner = TSHS.o2a(o_inner, unique=True) for iia, y, o, o0 in zip(atoms, yy, on, on0): if iia in a_inner: print('{:7.4f}\t\t{:7.4f}\t\t{:7.4f}\t\t{:7.4f}\t\t(inner)'.format(y,o,o0,o-o0)) else: print('{:7.4f}\t\t{:7.4f}\t\t{:7.4f}\t\t{:7.4f}'.format(y,o,o0,o-o0)) # Subtract pristine potential PotDiff = on-on0 # Write to file with open('PotDiff.dat', 'w') as pf: for yc, pd in zip(yy, PotDiff): pf.write('{}\t\t{}\n'.format(yc, pd)) # Plot figure() plot(yy, PotDiff, 'b') md, Md = np.amin(TSHS.xyz[a_dev, axis]), np.amax(TSHS.xyz[a_dev, axis]) axvline(md, color='k', linestyle='dashed', linewidth=2) axvline(Md, color='k', linestyle='dashed', linewidth=2) tmp_dev = TSHS.geom.sub(a_dev); tmp_inner = tmp_dev.sub(a_inner) mi, Mi = np.amin(tmp_inner.xyz[a_inner, axis]), np.amax(tmp_inner.xyz[a_inner, axis]) axvspan(mi, Mi, alpha=0.3, facecolor='blue', edgecolor='none') ylabel(r'$H_{p_z}-H^0_{p_z}\, (e{\rm V})$', fontsize=20) xlabel(r'$y\, (\AA)$', fontsize=20) xlim(0, TSHS.cell[axis, axis]) #xlim(TSHS.center(what='cell')[1], TSHS.cell[1,1]) legend(loc=0); savefig('PotDiff.pdf', bbox_inches='tight') def get_potential_profile(TSHS, ia, axis, iio): """ ia: atom crossed by the line axis: direction of the line iio: index (0-based) of orbital in basis set (i.e., pz in SZP: iio = 2) """ # Find atoms in line passing by center of xyz0, xyz = TSHS.xyz[ia, axis%1], TSHS.xyz[:, axis%1] atoms = np.where(np.logical_and(xyz0-1.43 < xyz, xyz < xyz0+1.43))[0] v = TSHS.geom.copy(); v.atom[atoms] = si.Atom(8, R=[1.43]); v.write('checkPot.xyz') orbs = TSHS.a2o(atoms)+iio on = TSHS.Hk(dtype=np.float64, format='array')[orbs, orbs] ylist = TSHS.xyz[atoms, axis] idxs = np.argsort(ylist) on, ylist = on[idxs], ylist[idxs] return on, ylist, atoms def xyz2polar(tbt, origin=0): na = tbt.na # radii from origin if isinstance(origin, Integral): origin = tbt.xyz[origin] _, r = tbt.geom.close_sc(origin, R=np.inf, ret_rij=True) # angles from origin transl = tbt.geom.translate(-origin) y = transl.xyz[:,1] i_ypos = np.where(y >= 0)[0] i_yneg = np.setdiff1d(np.arange(na), i_ypos) t = np.zeros(na) t[i_ypos] = transl.angle(i_ypos, dir=(1., 0, 0), rad=True) t[i_yneg] = transl.angle(i_yneg, dir=(-1., 0, 0), rad=True) +np.pi return r, t def radial_T_from_bc(tbt, elec, E=None, kavg=True, origin=0, thetamin=0., thetamax=2*np.pi, ntheta=360, Rmin=5., Rmax=999999999, dr=40., input=None, save='radial_T_from_bc.txt', saveinput='rt.txt'): if E: Eidx = tbt.Eindex(E) en = tbt.E[Eidx] else: en = tbt.E[0] print('Using E = {} eV'.format(en)) na = tbt.na if isinstance(origin, Integral): origin = tbt.xyz[origin] # (x, y) ----> (r, t) if input: r, t = np.loadtxt(input, delimiter='\t', usecols=(1, 2), unpack=True, skiprows=1) else: r, t = xyz2polar(tbt, origin=origin) f = open(saveinput, 'w') f.write('ia\tr (Angstrom)\tangle (radians; center {})\n'.format(origin)) for ia, rr, tt in zip(np.arange(na), r, t): f.write('{}\t{}\t{}\n'.format(ia, rr, tt)) f.close() print('(x,y) ---> (r,t): DONE') # theta bins thetas = np.linspace(thetamin, thetamax, ntheta, endpoint=False) dtheta = thetas[1]-thetas[0] print(len(thetas), dtheta, thetas) # Digitize t into thetas inds = np.digitize(t, thetas) -1 # First bin is associated to 0.0 rad print('Digitize theta: DONE') # radii[i] is the radius of the interface between 2 crowns centered at the position of the tip newRmax = np.amin(np.absolute(np.array([origin[0], origin[1], (origin-tbt.cell[0]-tbt.cell[1])[0], (origin-tbt.cell[0]-tbt.cell[1])[1]]))) radii = np.arange(np.amax([Rmin, dr]), np.amin([Rmax, newRmax])+2*dr, dr) nradii = len(radii) print(nradii, dr, radii) # indices of atom within the various shells # atoms in list ishell[i] belong to [radii[i], radii[i+1]] ishell = tbt.geom.close_sc(origin, R=radii, idx=tbt.a_dev) print('Close: DONE') # Read bond-current bc = tbt.bond_current(0, en, kavg=kavg, only='all', uc=True) print('bc: DONE') Tavg = np.zeros(ntheta*nradii) thetas_toplot = Tavg.copy() radii_toplot = Tavg.copy() j=0 for id in np.arange(ntheta): # Loop over unique angles print(' Doing theta #{} of {} ({} rad)'.format(id+1, ntheta, thetas[id])) idx_intheta = np.where(inds == id)[0] # find indices of atoms whose t is in sector theta for id_r in np.arange(1,nradii-1): # Loop over unique radii print(' Doing radius #{} of {} ({} Ang)'.format(id_r, nradii, radii[id_r])) idx_1_indr = ishell[id_r] # Indices of atoms within internal shell mask = np.in1d(idx_1_indr, idx_intheta) idx_1 = idx_1_indr[mask] # Indices of atoms in internal shell AND sector theta idx_2 = ishell[id_r+1] # # Indices of atoms within external shell Tavg[j] = bc[idx_1.reshape(-1, 1), idx_2.reshape(1, -1)].sum() thetas_toplot[j] = thetas[id] radii_toplot[j] = radii[id_r] #print(' ({} Ang, {} rad) --> {}'.format(radii_toplot[j], thetas_toplot[j], Tavg[j])) j+=1 # Write f = open(save, 'w') f.write('center {}\n'.format(origin)) f.write('radius (Ang), \t theta (rad), \tT from radial bond current\n') for rr, theta, ttt in zip(radii_toplot, thetas_toplot, Tavg): f.write('{}\t{}\t{}\n'.format(rr, theta, ttt)) f.close() return radii_toplot, thetas_toplot, Tavg def atom_current_radial(tbt, elec, E, kavg=True, activity=True, origin=0, thetamin=0., thetamax=2*np.pi, ntheta=360, Rmin=5., Rmax=999999999, dr=40., input=None, save='atom_current_radial.txt', saveinput='ac_input.txt'): if E: Eidx = tbt.Eindex(E) en = tbt.E[Eidx] else: en = tbt.E[0] print('Using E = {} eV'.format(en)) na = tbt.na if isinstance(origin, Integral): origin = tbt.xyz[origin] # (x, y) ----> (r, t) if input: r, t, ac = np.loadtxt(input, delimiter='\t', usecols=(1, 2, 3), unpack=True, skiprows=1) else: r, t = xyz2polar(tbt, origin=origin) print('start extraction of atom_current...') ac = tbt.atom_current(elec, E, kavg, activity) print('...end extraction of atom_current') f = open(saveinput, 'w') f.write('ia\tr (Ang)\tangle (rad; center {})\tatom current\n'.format(origin)) for ia, rr, tt, a in zip(np.arange(na), r, t, ac): f.write('{}\t{}\t{}\t{}\n'.format(ia, rr, tt, a)) f.close() print('(x,y) ---> (r,t): DONE') # theta bins thetas = np.linspace(thetamin, thetamax, ntheta, endpoint=False) dtheta = thetas[1]-thetas[0] print('Thetas entries:') print(len(thetas), dtheta, thetas) # Digitize t into thetas inds = np.digitize(t, thetas) -1 # First bin is associated to 0.0 rad print('Digitize theta: DONE') # radii[i] is the radius of the interface between 2 crowns centered at the position of the tip newRmax = np.amin(np.absolute(np.array([origin[0], origin[1], (origin-tbt.cell[0]-tbt.cell[1])[0], (origin-tbt.cell[0]-tbt.cell[1])[1]]))) radii = np.arange(np.amax([Rmin, dr]), np.amin([Rmax, newRmax])+dr, dr) nradii = len(radii) print('Radii entries:') print(nradii, dr, radii) # indices of atom within the various shells # atoms in list ishell[i] belong to [radii[i], radii[i+1]] #ishell = tbt.geom.close_sc(origin, R=radii, idx=tbt.a_dev) #print('Close: DONE') current_r = np.zeros((nradii, ntheta)) for ir, rr in enumerate(radii): # Loop over unique radii current_t = np.zeros(ntheta) counts_t = current_t.copy() inR = np.where(r < rr)[0] for id, a in zip(inds[inR], ac[inR]): current_t[id] += a counts_t[id] += 1 current_r[ir, :] = np.divide(current_t, counts_t) # Write np.savetxt(save, np.transpose(np.vstack([thetas, current_r])), delimiter='\t', newline='\n', comments='', header=', '.join(str(e) for e in radii)) return radii, thetas, current_r def plot_LDOS(geom, LDOS, figname='figure.png', vmin=None, vmax=None): import matplotlib.collections as collections from matplotlib.colors import LogNorm from mpl_toolkits.axes_grid1 import make_axes_locatable x, y = geom.xyz[:,0], geom.xyz[:,1] fig, ax = plt.subplots() ax.set_aspect('equal') vmin, vmax = vmin, vmax if vmin is None: vmin = np.min(LDOS) if vmax is None: vmax = np.max(LDOS) colors = LDOS area = 15 image = ax.scatter(x, y, c=colors, s=area, marker='o', edgecolors='None', cmap='viridis') image.set_clim(vmin, vmax) image.set_array(LDOS) ax.autoscale() ax.margins(0.1) plt.xlabel('$x (\AA)$') plt.ylabel('$y (\AA)$') plt.gcf() divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) axcb = plt.colorbar(image, cax=cax, format='%1.2f', ticks=[vmin, vmax]) plt.savefig(figname, bbox_inches='tight', transparent=True, dpi=300) print('Successfully plotted to "{}"'.format(figname)) def CAP(geometry, side, dz_CAP=30, write_xyz=True, zaxis=2): # Determine orientation if zaxis == 2: xaxis, yaxis = 0, 1 elif zaxis == 0: xaxis, yaxis = 1, 2 elif zaxis == 1: xaxis, yaxis = 0, 2 # Natural units (see "http://superstringtheory.com/unitsa.html") hbar = 1 m = 0.511e6 # eV c = 2.62 print('\nSetting up CAP regions: {}'.format(side)) print('Width of absorbing walls = {} Angstrom'.format(dz_CAP)) Wmax = 100 dH_CAP = si.Hamiltonian(geometry, dtype='complex128') CAP_list = [] ### EDGES if 'right' in side: print('Setting at right') z, y = geometry.xyz[:, xaxis], geometry.xyz[:, yaxis] z2 = np.max(geometry.xyz[:, xaxis]) + 1. z1 = z2 - dz_CAP idx = np.where(np.logical_and(z1 <= z, z < z2))[0] fz = (4/(c**2)) * ((dz_CAP/(z2-2*z1+z[idx]))**2 + (dz_CAP/(z2-z[idx]))**2 - 2 ) Wz = ((hbar**2)/(2*m)) * (2*np.pi/(dz_CAP/2000))**2 * fz orbs = dH_CAP.geom.a2o(idx) # if you have just 1 orb per atom, then orb = ia for orb,wz in zip(orbs, Wz): dH_CAP[orb, orb] = complex(0, -wz) CAP_list.append(idx) #print(list2range_TBTblock(idx)) if 'left' in side: print('Setting at left') z, y = geometry.xyz[:, xaxis], geometry.xyz[:, yaxis] z2 = np.min(geometry.xyz[:, xaxis]) - 1. z1 = z2 + dz_CAP idx = np.where(np.logical_and(z2 < z, z <= z1))[0] fz = (4/(c**2)) * ((dz_CAP/(z2-2*z1+z[idx]))**2 + (dz_CAP/(z2-z[idx]))**2 - 2 ) Wz = ((hbar**2)/(2*m)) * (2*np.pi/(dz_CAP/2000))**2 * fz orbs = dH_CAP.geom.a2o(idx) # if you have just 1 orb per atom, then orb = ia for orb,wz in zip(orbs, Wz): dH_CAP[orb, orb] = complex(0, -wz) CAP_list.append(idx) #print(list2range_TBTblock(idx)) if 'top' in side: print('Setting at top') z, y = geometry.xyz[:, xaxis], geometry.xyz[:, yaxis] y2 = np.max(geometry.xyz[:, yaxis]) + 1. y1 = y2 - dz_CAP idx = np.where(np.logical_and(y1 <= y, y < y2))[0] fz = (4/(c**2)) * ( (dz_CAP/(y2-2*y1+y[idx]))**2 + (dz_CAP/(y2-y[idx]))**2 - 2 ) Wz = ((hbar**2)/(2*m)) * (2*np.pi/(dz_CAP/2000))**2 * fz orbs = dH_CAP.geom.a2o(idx) # if you have just 1 orb per atom, then orb = ia for orb,wz in zip(orbs, Wz): dH_CAP[orb, orb] = complex(0, -wz) CAP_list.append(idx) #print(list2range_TBTblock(idx)) if 'bottom' in side: print('Setting at bottom') z, y = geometry.xyz[:, xaxis], geometry.xyz[:, yaxis] y2 = np.min(geometry.xyz[:, yaxis]) - 1. y1 = y2 + dz_CAP idx = np.where(np.logical_and(y2 < y, y <= y1))[0] fz = (4/(c**2)) * ( (dz_CAP/(y2-2*y1+y[idx]))**2 + (dz_CAP/(y2-y[idx]))**2 - 2 ) Wz = ((hbar**2)/(2*m)) * (2*np.pi/(dz_CAP/2000))**2 * fz orbs = dH_CAP.geom.a2o(idx) # if you have just 1 orb per atom, then orb = ia for orb,wz in zip(orbs, Wz): dH_CAP[orb, orb] = complex(0, -wz) CAP_list.append(idx) #print(list2range_TBTblock(idx)) CAP_list = np.concatenate(CAP_list).ravel().tolist() if write_xyz: # visualize CAP regions visualize = geometry.copy() visualize.atom[CAP_list] = si.Atom(8, R=[1.44]) visualize.write('CAP.xyz') return dH_CAP def read_fullTSHS(HSfilename, geomFDFfilename): """ Read Hamiltonian and Geometry objects and update Atoms properties of 'TSHS' from 'FDF' """ if isinstance(HSfilename, str): HSfile = si.get_sile(HSfilename).read_hamiltonian() else: HSfile = HSfilename.copy() if isinstance(geomFDFfilename, str): geomFDF = si.get_sile(geomFDFfilename).read_geometry(True) else: geomFDF = geomFDFfilename.copy() # Update species for ia, (a, afdf) in enumerate(zip(HSfile.atom, geomFDF.atom)): A = si.Atom(afdf.Z, a.orbital, afdf.mass, afdf.tag) HSfile.atom[ia] = A HSfile.reduce() return HSfile def T_from_bc(tbt, elec, idx_1, idx_2, E=None, kavg=True, write_xyz=None): if write_xyz: # visualize regions visualize = tbt.geom.copy() visualize.atom[idx_1] = si.Atom(8, R=[1.44]) visualize.atom[idx_2] = si.Atom(9, R=[1.44]) visualize.write('{}.xyz'.format(write_xyz)) if E: Eidx = tbt.Eindex(E) energies = np.array([tbt.E[Eidx]]) else: energies = tbt.E T = np.zeros(len(energies)) for ie,e in enumerate(energies): print('Doing E # {} of {} ({} eV)'.format(ie+1, len(energies), e)) bc = tbt.bond_current(elec, e, kavg=kavg, only='all', uc=True) T[ie] += bc[idx_1.reshape(-1, 1), idx_2.reshape(1, -1)].sum() return T def T_from_bc_from_orbital(tbt, elec, o_idx, idx_1, idx_2, E=None, kavg=True, write_xyz=None): if write_xyz: # visualize regions visualize = tbt.geom.copy() visualize.atom[idx_1] = si.Atom(8, R=[1.44]) visualize.atom[idx_2] = si.Atom(9, R=[1.44]) visualize.write('{}.xyz'.format(write_xyz)) if E: Eidx = tbt.Eindex(E) energies = np.array([tbt.E[Eidx]]) else: energies = tbt.E T = np.zeros(len(energies)) for ie,e in enumerate(energies): print('Doing E # {} of {} ({} eV)'.format(ie+1, len(energies), e)) Jij = tbt.orbital_current(elec, e, kavg=kavg) orbs_1 = tbt.geom.a2o(idx_1) + o_idx orbs_2 = tbt.geom.a2o(idx_2) + o_idx T[ie] = Jij[orbs_1.reshape(-1, 1), orbs_2.reshape(1, -1)].sum() #bc = tbt.bond_current(elec, e, kavg=kavg, only='all', uc=True) return T def list2range_TBTblock(lst): """ Convert a list of elements into a string of ranges Examples -------- >>> list2range([2, 4, 5, 6]) 2, 4-6 >>> list2range([2, 4, 5, 6, 8, 9]) 2, 4-6, 8-9 """ lst = [el+1 for el in lst] lst.sort() # Create positions pos = [j - i for i, j in enumerate(lst)] t = 0 rng = '' for _, els in groupby(pos): ln = len(list(els)) el = lst[t] if t > 0: rng += '\n' t += ln if ln == 1: rng += ' atom ['+str(el)+']' else: rng += ' atom [{} -- {}]'.format(el, el+ln-1) return rng def create_kpath(Nk): G2K = (0.4444444444444444 + 0.1111111111111111) ** 0.5 K2M = ((0.6666666666666666 - 0.5) ** 2 + (0.3333333333333333 - 0.5) ** 2) ** 0.5 M2G = (0.25 + 0.25) ** 0.5 Kdist = G2K + K2M + M2G NG2K = int(Nk / Kdist * G2K) NK2M = int(Nk / Kdist * K2M) NM2G = int(Nk / Kdist * M2G) def from_to(N, f, t): full = np.empty([N, 3]) ls = np.linspace(0, 1, N, endpoint=False) for i in range(3): full[:, i] = f[i] + (t[i] - f[i]) * ls return full kG2K = from_to(NG2K, [0.0, 0.0, 0.0], [0.6666666666666666, 0.3333333333333333, 0]) kK2M = from_to(NK2M, [0.6666666666666666, 0.3333333333333333, 0], [0.5, 0.5, 0.0]) kM2G = from_to(NM2G, [0.5, 0.5, 0.0], [0.0, 0.0, 0.0]) xtick = [0, NG2K - 1, NG2K + NK2M - 1, NG2K + NK2M + NM2G - 1] label = ['G', 'K', 'M', 'G'] return ([xtick, label], np.vstack((kG2K, kK2M, kM2G))) def plot_bandstructure(H, Nk, ymin=None, ymax=None, style='.', color='k', label=None): if type(H) is str: H = si.get_sile(H).read_hamiltonian() ticks, k = create_kpath(Nk) eigs = np.empty([len(k), H.no], np.float64) for ik, k in enumerate(k): print('{} / {}'.format(ik+1, Nk), end='\r') eigs[ik, :] = H.eigh(k=k, eigvals_only=True) ax = plt.gca() for n in range(H.no): print('{} / {}'.format(n+1, H.no), end='\r') ax.plot(eigs[:, n], style, color=color, label=label if n == 0 else "") ax.xaxis.set_ticks(ticks[0]) ax.set_xticklabels(ticks[1]) if ymin is None: ymin = ax.get_ylim()[0] if ymax is None: ymax = ax.get_ylim()[1] ax.set_ylim(ymin, ymax) for tick in ticks[0]: ax.plot([tick, tick], [ymin, ymax], 'k') return ax def list2colors(inp, colormap, vmin=None, vmax=None): norm = plt.Normalize(vmin, vmax) return colormap(norm(inp)) def get_dft_param(tshs, ia, iio, jjo, unique=False, onlynnz=False, idx=None): """ Read Hamiltonian and get coupling constants between 'iio'-th orbital of atom 'ia' and 'jjo'-th orbital of all other atoms """ # Read Hamiltonian if isinstance(tshs, str): tshs = si.get_sile(tshs).read_hamiltonian() HS = tshs.copy() # Index of iio-th orbital of ia-th atom io = HS.a2o(ia) + iio # Coupling elements (all orbitals) edges = HS.edges(orbital=io, exclude=-1) # Remove non-jjo connections # convert to atoms (only unique values) edges = HS.o2a(edges, unique=True) if idx is not None: mask = np.in1d(edges, idx) edges = edges[mask] # backconvert to the jjo'th orbital on the connecting atoms edges = HS.a2o(edges) + jjo r = HS.orij(io, edges) couplings = HS[io, edges] # Sort according to r idx_sorted = np.argsort(r) r = r[idx_sorted] couplings = couplings[idx_sorted, :] if unique: idx_uniq, cnt_uniq = np.unique(r.round(decimals=2), return_index=True, return_counts=True)[1:] r = r[idx_uniq] couplings = np.array([np.average(couplings[iu:(iu+cu), :], axis=0) for iu,cu in zip(idx_uniq, cnt_uniq)]) return r, couplings def get_R_hop(tshs, tbt, xyz_tip, pzidx, nn, z_gr=None, return_S=False): a_dev = tbt.a_dev tshs_dev = tshs.sub(a_dev) if z_gr == None: z_gr = tshs_dev.xyz[0, 2] C_list = (tshs_dev.xyz[:, 2] == z_gr).nonzero()[0] # Check that we have selected only carbon atoms for ia, a in zip(C_list, tshs_dev.atom[C_list]): if a.Z != 6: print('WARNING: Some atoms are not carbons in the graphene plane: {} {}'.format(ia, tshs_dev.xyz[ia])) # Get distances of all C atoms from tip (x,y) position # (notice that tshs_dev.xyz = tshs.xyz, so we need to use xyz_tip wrt full geom) #xyz_tip_dev = xyz_tip - tshs_dev.xyz[0] #xyz_tip_dev[2] = tshs_dev.xyz[0, 2] _, distance = tshs_dev.geom.close_sc(xyz_tip, R=np.inf, idx=C_list, ret_rij=True) # Get onsite and couplings for each of the atoms, up to the 3rd nn hoppings = np.empty((len(distance), nn+1)) if return_S: overlaps = np.empty((len(distance), nn+1)) for ia in C_list: # Extracting only pz-projected parameters from TSHS of graphene with tip _, tmp = get_dft_param(tshs_dev, ia, pzidx, pzidx, unique=True, onlynnz=True, idx=C_list) for i in range(nn+1): hoppings[ia, i] = tmp[i][0] if return_S: overlaps[ia, i] = tmp[i][1] # Write sorted data for future usage isort = np.argsort(distance) si.io.TableSile('couplings.txt', 'w').write_data(distance[isort], *hoppings[isort].T) if return_S: return distance[isort], hoppings[isort].T, overlaps[isort].T return distance[isort], hoppings[isort].T def plot_couplings_dft2tb(tshs_pristine, tshs, tbt, xyz_tip, pzidx=2, figname='dH.pdf'): """ Compare onsite and couplings of pristine graphene with those of a dirty graphene system. Plots both raw data and relative difference. # # param0[i][j] # i=0: on-site # i=1: 1nn coupling # i=2: 2nn coupling # i=3: 3nn coupling # j=0 : Hamiltonian matrix # j=1 : Overlap matrix Example: import sisl as si from tbtncTools import plot_couplings_dft2tb tshs_pristine = si.get_sile('../../pristine_300kpt/GR.TSHS').read_hamiltonian() tshs = si.get_sile('../../tip_atop_szp/z1.8/GR.TSHS').read_hamiltonian() tbt = si.get_sile('../../tip_atop_szp/z1.8/siesta.TBT.nc') xyz_tip = tshs.xyz[-1, :] plot_couplings_dft2tb(tshs_pristine, tshs, tbt, xyz_tip, pzidx=2, figname='dH.pdf') """ # Plot reference lines for well converged pristine graphene system fig = plt.figure() ax = fig.add_subplot(111) # Extracting only pz-projected parameters from TSHS of perfect graphene _, param0 = get_dft_param(tshs_pristine, 0, pzidx, pzidx, unique=True, onlynnz=True) # Plot ax.axhline(y=param0[0][0], label='On-site', c='k', ls='-') ax.axhline(y=param0[1][0], label='1nn coupling', c='g', ls='-') ax.axhline(y=param0[2][0], label='2nn coupling', c='r', ls='-') ax.axhline(y=param0[3][0], label='3nn coupling', c='b', ls='-') # Plot onsite and couplings for well converged "dirty" graphene system distance, param = get_R_hop(tshs, tbt, xyz_tip, pzidx) # Plot ax.scatter(distance, param[0], label='On-site (tip)', c='k')#, ls='--') ax.scatter(distance, param[1], label='1nn coupling (tip)', c='g')#, ls='--') ax.scatter(distance, param[2], label='2nn coupling (tip)', c='r')#, ls='--') ax.scatter(distance, param[3], label='3nn coupling (tip)', c='b')#, ls='--') # Mark the distance between the tip (x,y) and the closest distance from outmost frame atoms rM01 = np.absolute(np.amax(tshs.xyz[:, 0]) - xyz_tip[0]) rM02 = np.absolute(np.amin(tshs.xyz[:, 0]) - xyz_tip[0]) rM11 = np.absolute(np.amax(tshs.xyz[:, 1]) - xyz_tip[1]) rM12 = np.absolute(np.amin(tshs.xyz[:, 1]) - xyz_tip[1]) rM = np.amin([rM01, rM02, rM11, rM12]) ax.axvline(x=rM, c='k', ls='--') # General plot settings plt.xlim(0., np.amax(distance)) ax.set_xlabel('$r-r_{\mathrm{tip}}\,(\AA)$') ax.set_ylabel('E (eV)') plt.legend(loc=4, fontsize=10, ncol=2) plt.tight_layout() for o in fig.findobj(): o.set_clip_on(False) plt.savefig(figname) # Plot relative difference f, axes = plt.subplots(4, sharex=True) f.subplots_adjust(hspace=0) axes[0].scatter(distance, param[0]-np.full(len(distance), param0[0][0]), label='On-site', c='k') axes[1].scatter(distance, param[1]-np.full(len(distance), param0[1][0]), label='1nn coupling', c='g') axes[2].scatter(distance, param[2]-np.full(len(distance), param0[2][0]), label='2nn coupling', c='r') axes[3].scatter(distance, param[3]-np.full(len(distance), param0[3][0]), label='3nn coupling', c='b') # Mark the distance between the tip (x,y) and the closest distance from outmost frame atoms for a in axes: a.axhline(y=0., c='lightgrey', ls='-') a.axvline(x=rM, c='k', ls='--') #a.autoscale() a.set_xlim(0., np.amax(distance)) a.set_ylim(a.get_ylim()[0], 0.) a.yaxis.set_major_locator(plt.MaxNLocator(3)) # General plot settings axes[-1].set_xlabel('$r-r_{\mathrm{tip}}\,(\AA)$') f.text(0.025, 0.5, '$\Delta E $ (eV)', ha="center", va="center", rotation=90) #for o in f.findobj(): # o.set_clip_on(False) plt.setp([a.get_xticklabels() for a in f.axes[:-1]], visible=False) plt.savefig('diff_'+figname) def sc_xyz_shift(geom, axis): return (geom.cell[axis,axis] - (np.amax(geom.xyz[:,axis]) - np.amin(geom.xyz[:,axis])))/2 #def Delta(TSHS, HS_TB, shape='Cuboid', z_graphene=None, ext_offset=None, center=None, def Delta(TSHS, shape='Cuboid', z_graphene=None, ext_offset=None, center=None, thickness=None, zaxis=2, atoms=None, segment_dir=None): # z coordinate of graphene plane if z_graphene is None: print('\n\nPlease provide a value for z_graphene in Delta routine') exit(1) # Center of shape in TSHS if center is None: center = TSHS.center(atom=(TSHS.xyz[:,zaxis] == z_graphene).nonzero()[0]) center = np.asarray(center) # Thickness in Ang if thickness is None: thickness = 6. # Ang #thickness = HS_TB.maxR()+0.01 thickness = np.asarray(thickness, np.float64) # Cuboid or Ellissoid? if zaxis == 2: size = .5*np.diagonal(TSHS.cell) + [0,0,300] # default radius is half the cell size elif zaxis == 0: size = .5*np.diagonal(TSHS.cell) + [300,0,0] # default radius is half the cell size elif zaxis == 1: size = .5*np.diagonal(TSHS.cell) + [0,300,0] # default radius is half the cell size if shape == 'Ellipsoid' or shape == 'Sphere': mkshape = si.shape.Ellipsoid elif shape == 'Cuboid' or shape == 'Cube': mkshape = si.shape.Cuboid # In this case it's the full perimeter so we double size *= 2 thickness *= 2 if ext_offset is not None: ext_offset = np.asarray(ext_offset, np.float64).copy() ext_offset *= 2 elif shape == 'Segment': mkshape = si.shape.Cuboid # In this case it's the full perimeter so we double size *= 2 area_tot = mkshape(size, center=TSHS.center(atom=(TSHS.xyz[:,zaxis] == z_graphene).nonzero()[0])) size[segment_dir] = thickness if ext_offset is not None: ext_offset = np.asarray(ext_offset, np.float64).copy() else: print('\n shape = "{}" is not implemented...'.format(shape)) exit(1) if shape == 'Segment': # ADD COMPLEMENTARY AREA... # Areas Delta = mkshape(size, center=center) # Atoms within Delta and complementary area a_Delta = Delta.within_index(TSHS.xyz) if atoms is not None: a_Delta = a_Delta[np.in1d(a_Delta, atoms)] # Check v = TSHS.geom.copy(); v.atom[a_Delta] = si.Atom(8, R=[1.43]); v.write('a_Delta.xyz') return a_Delta, Delta else: # External boundary area_ext = mkshape(size, center=center) # Adjust with ext_offset if necessary if ext_offset is not None: ext_offset = np.asarray(ext_offset, np.float64) area_ext = area_ext.expand(-ext_offset) # Force it to be Cube or Sphere (side = ext_offset) if necessary if shape == 'Sphere' or shape == 'Cube': if len(ext_offset.nonzero()[0]) > 1: print('Offset is in both axes. Please set "shape" to Cuboid or Ellipsoid') exit(1) axis = ext_offset.nonzero()[0][0] print('Offset is non-zero along axis: {}...complementary is {}'.format(axis, int(axis<1))) new_ext_offset = np.zeros(3); new_ext_offset[int(axis<1)] = ext_offset[axis] area_ext = area_ext.expand(-new_ext_offset) #a_ext = area_ext.within_index(TSHS.xyz) # Internal boundary area_int = area_ext.expand(-thickness) # Disjuction composite shape Delta = area_ext - area_int # Atoms within Delta and internal boundary a_Delta = Delta.within_index(TSHS.xyz) a_int = area_int.within_index(TSHS.xyz) if atoms is not None: a_Delta = a_Delta[np.in1d(a_Delta, atoms)] # Check v = TSHS.geom.copy(); v.atom[a_Delta] = si.Atom(8, R=[1.43]); v.write('a_Delta.xyz') return a_Delta, a_int, Delta, area_ext, area_int def makeTB(TSHS_0, pzidx, nn, WW, LL, elec=None, save=True, return_bands=False): """ TSHS_0: tbtncSile object from "pristine graphene" reference calculation pzidx: index of pz orbitals in the basis set used to create 'TSHS_0' nn: no. of neighbours to be used in the TB model W: width of TB geometry (Angstrom) - transverse direction: 0 - L: length of TB geometry (Angstrom) - transport direction: 1 - elec: tbtncSile object from electrode calculation """ ########################## From PERFECT graphene reference TSHS dR = 0.005 # Check for a in TSHS_0.atom.atom: if a.Z != 6: print('ERROR: cannot build TB model because the provided geometry \ is not a pristine graphene') exit(1) # Extracting only pz-projected parameters from TSHS of perfect graphene r, param = get_dft_param(TSHS_0, 0, pzidx, pzidx, unique=True, onlynnz=True) print('\nEffective no. of neighbors per atom from TSHS_0: {}'.format(len(r)-1)) print('\nr ({}; Angstrom)\t param ({}; eV):'.format(len(r), len(param))) for ri, ci in zip(r, param): print('{:.5f} \t '.format(ri), ci) def get_graphene_H(radii, param, dR=dR): # In order to get the correct radii of the orbitals it is # best to define them explicitly. # This enables one to "optimize" the number of supercells # subsequently. # Define the radii of the orbital to be the maximum C = si.Atom(6, R=radii[-1] + dR) # Define graphene g = si.geom.graphene(radii[1], C, orthogonal=True) g.optimize_nsc() # Now create Hamiltonian H = si.Hamiltonian(g, orthogonal=False) # Define primitive also for check of bandstructure g_s = si.geom.graphene(radii[1], C) g_s.optimize_nsc() H_s = si.Hamiltonian(g_s, orthogonal=False) if len(param.shape) == 1: # Create a new fake parameter # with overlap elements new_param = np.zeros([len(param), 2], dtype=np.float64) new_param[:, 0] = param new_param[0, 1] = 1. # on-site, everything else, zero param = new_param H.construct((radii+dR, param)) H_s.construct((radii+dR, param)) return H, H_s # Setup the Hamiltonian building block if nn is 'all': print('WARNING: you are retaining ALL interactions from DFT model') H0, H0_s = get_graphene_H(r, param) else: print('WARNING: you are retaining only interactions up to {} neighbours'.format(nn)) H0, H0_s = get_graphene_H(r[:nn+1], param[:nn+1]) print('\nBuilding block for TB model:\n', H0) # Setup TB model W, L = int(round(WW/H0.cell[0,0])), int(round(LL/H0.cell[1,1])) # ELECTRODE if elec is not None: n_el = int(round(elec.cell[1,1]/H0.cell[1,1])) else: n_el = 2 HS_elec = H0.tile(W, 0).tile(n_el, 1) HS_elec.write('HS_ELEC.nc') HS_elec.geom.write('HS_ELEC.fdf') HS_elec.geom.write('HS_ELEC.xyz') # DEVICE + ELECTRODES (to be written ONLY after selection and rearranging of GF/dSE area) HS_dev = H0.tile(W, 0).tile(L, 1) if save: HS_dev.write('HS_DEV_0.nc') HS_dev.geom.write('HS_DEV_0.fdf') HS_dev.geom.write('HS_DEV_0.xyz') # Check bands with primitive cell if return_bands: # Open figure outside and bands will automatically be added to the plot plot_bandstructure(H0_s, 400, ymin=-3, ymax=3, style='-', color='k', label='Pristine $p_z$ parameters') return HS_dev def makeTB_FrameOutside(tshs, tbt, center, TSHS_0, pzidx, nn, WW, LL, elec=None, save=True, return_bands=False, z_graphene=None): """ tshs: TSHS object from "dirty graphene" calculation tbt: tbtncSile object from tbtrans calculation with HS: "tshs" TSHS_0: TSHS object from "pristine graphene" reference calculation pzidx: index of pz orbitals in the basis set used to create 'TSHS_0' nn: no. of neighbours to be used in the TB model WW: width of TB geometry (Angstrom) - transverse direction: 0 - LL: length of TB geometry (Angstrom) - transport direction: 1 - TSHS_elec: tbtncSile object from electrode calculation save: True will store device region netcdf files for usage in tbtrans """ ########################## From PERFECT graphene reference TSHS dR = 0.005 # Check that TSHS_0 has only carbon atoms for a in TSHS_0.atom.atom: if a.Z != 6: print('ERROR: cannot build TB model because the provided geometry\n\tis not a pristine graphene') exit(1) # Extracting only pz-projected parameters from TSHS of perfect graphene r, param = get_dft_param(TSHS_0, 0, pzidx, pzidx, unique=True, onlynnz=True) print('\nEffective no. of neighbors per atom from TSHS_0: {}'.format(len(r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(r), len(param))) for ri, ci in zip(r, param): print('{:.5f} \t '.format(ri), ci) # Setup the Hamiltonian building block if nn is 'all': nn = len(r)-1 # The reference values we wish to target (pristine graphene) ref_r, ref_hop, ref_over = r[:nn+1], param[:nn+1, 0], param[:nn+1, 1] print('Targeted no. of neighbors per atom from TSHS_0: {}'.format(len(ref_r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(ref_r), len(ref_hop))) for ri, ci, oi in zip(ref_r, ref_hop, ref_over): print('{:.5f} \t '.format(ri), ci, oi) # R and hopping from tshs, center is the coordinates of the tip apex # This works Only if the frame is the outmost atoms in tbt.a_dev # Maybe it's better to define a shape here! if z_graphene is None: print('\n\nPlease provide a value for z_graphene') exit(1) if center is None: center = tshs.center(atom=(tshs.xyz[:,2] == z_graphene).nonzero()[0]) print('makeTB: you are considering this as center: {}'.format(center)) distances, hop = get_R_hop(tshs, tbt, center, pzidx, nn, z_gr=z_graphene) hop_atframe = [np.average(hop[i, np.arange(-10, 0)]) for i in range(nn+1)] # r's to plot r2plot = np.linspace(0, np.amax(distances), 1000) f, ax = plt.subplots(nn+1, sharex=True) for i in range(nn+1): ax[i].scatter(distances, hop[i, :]) # Plot lines ax[i].plot([r2plot.min(), r2plot.max()], [ref_hop[i], ref_hop[i]], '--') ymin = np.amin([ref_hop[i], hop_atframe[i]]) - 0.1 ymax = np.amax([ref_hop[i], hop_atframe[i]]) + 0.1 ax[i].set_ylim(ymin, ymax) ax[i].set_xlim(r2plot.min(), r2plot.max()) f.savefig('shifting_data.pdf') plt.close(f) ###### Create device Hamiltonian bond = ref_r[1] # to make it fit in a smaller unit-cell C = si.Atom(6, R=ref_r[-1] + dR) g0 = si.geom.graphene(bond, C, orthogonal=True) g0.optimize_nsc() H0 = si.Hamiltonian(g0, orthogonal=False) print('\nNo. of neighbors per atom: {}'.format(len(ref_r)-1)) print('r ({}; Angstrom)\t Final parameters from frame ({}; eV):'.format(len(ref_r), len(hop_atframe))) for ri, ci, oi in zip(ref_r, hop_atframe, ref_over): print('{:.5f} \t '.format(ri), ci, oi) # Construct TB. onsite is the same as tip tshs, while couplings are the same as pristine H0.construct((ref_r+dR, zip(hop_atframe, ref_over)), eta=True) # DEVICE + ELECTRODES geometry # Width and length of device W, L = int(round(WW/g0.cell[0,0])), int(round(LL/g0.cell[1,1])) print('Device is {} x {} supercell of the unit orthogonal cell'.format(W, L)) # (nc files should be written ONLY after selection and rearranging of GF/dSE area) HS_dev = H0.tile(W, 0).tile(L, 1) if save: HS_dev.write('HS_DEV.nc') HS_dev.geom.write('HS_DEV.fdf') HS_dev.geom.write('HS_DEV.xyz') # ELECTRODE if elec is not None: n_el = int(round(elec.cell[1,1]/H0.cell[1,1])) else: n_el = 2 HS_elec = H0.tile(W, 0).tile(n_el, 1) HS_elec.write('HS_ELEC.nc') HS_elec.geom.write('HS_ELEC.fdf') HS_elec.geom.write('HS_ELEC.xyz') # Check bands with primitive cell if return_bands: g0_s = si.geom.graphene(bond, C) g0_s.optimize_nsc() H0_s = si.Hamiltonian(g0_s, orthogonal=False) H0_s.construct((ref_r+dR, zip(hop_atframe, ref_over))) # Open figure outside and bands will automatically be added to the plot plot_bandstructure(H0_s, 400, ymin=-3, ymax=3, style='--', color='r', label='Pristine w/ tip $p_z$ onsite') return HS_dev def interp1d(x, y, y0, y1): """ Create an interpolation function from x, y. The resulting function has these properties: x < x.min(): f(x) = y0 x.min() < x < x.max(): f(x) = y x.max() < x: f(x) = y1 """ return sp.interpolate.interp1d(x, y, bounds_error=False, fill_value=(y0, y1)) def func_smooth_fermi(x, y, first_x, second_x, y1, delta=8): """ Return an interpolation function with the following properties: x < first_x: f(x) = y(first_x) first_x < x < second_x: f(x) = y second_x < x f(x) = y1 `delta` determines the amount of the smearing width that is between `first_x` and `second_x`. Parameters ---------- x, y : numpy.ndarray x/y-data points first_x : float the point of cut-off for the x-values. In this approximation we assume the `y` data-points has a plateau in the neighbourhood of `first_x` second_x : float above this `x` value all values will be `y1`. y1 : float second boundary value delta : float, optional amount of smearing parameter in between `first_x` and `second_x` (should not be below 6!). """ # First we will find the first flat plateau # We do this considering values -3 : +3 Ang if first_x < np.amax(x): raise ValueError("first_x has to be larger than maximum, interpolation x value") # First we will find the first flat plateau # We do this considering values -3 : r_max Ang idx = (np.amax(x) - x > -3.).nonzero()[0] y0 = np.average(y[idx]) # We already have the second plateau. # So all we have to do is calculate the smearing # to capture the smoothing range mid_x = (first_x + second_x) / 2 sigma = (second_x - first_x) / delta if y0 < y1: sigma = - sigma b = y0 else: b = y1 # Now we can create the function dd = delta / 2. + 1. ## Now calculate function parameters used for interpolation #x = np.arange(first_x - dd , second_x + dd, 0.01) # 0.01 Ang precision #y = abs(y1 - y0) / (np.exp((x - mid_x) / sigma) + 1) + b #return interp1d(x, y, y0, y1) # Now we can create the function dd = delta / 2. + 1. # Now calculate function parameters used for interpolation xff = np.arange(first_x, second_x + 2 * dd, 0.01) # 0.01 Ang precision yff = abs(y1 - y0) / (np.exp((x - mid_x) / sigma) + 1) + b return interp1d(np.append(x, xff), np.append(y, yff), y[0], y1) def func_smooth_linear(x, y): return sp.interpolate.interp1d(x, y, kind='cubic', fill_value=(y[0], y[-1]), bounds_error=False) def func_smooth(x, y, first_x=None, second_x=None, y1=None, delta=8, what='linear'): if what is None: what = 'linear' if what == 'fermi': return func_smooth_fermi(x, y, first_x, second_x, y1, delta) elif what == 'linear': return func_smooth_linear(x, y) def makeTB_InterpFrame(tshs, tbt, xyz_tip, TSHS_0, pzidx, nn, WW, LL, elec=None, save=True, return_bands=False, avg=False): """ tshs: TSHS object from "dirty graphene" calculation tbt: tbtncSile object from tbtrans calculation with HS: "tshs" TSHS_0: TSHS object from "pristine graphene" reference calculation pzidx: index of pz orbitals in the basis set used to create 'TSHS_0' nn: no. of neighbours to be used in the TB model WW: width of TB geometry (Angstrom) - transverse direction: 0 - LL: length of TB geometry (Angstrom) - transport direction: 1 - TSHS_elec: tbtncSile object from electrode calculation save: True will store device region netcdf files for usage in tbtrans """ ########################## From PERFECT graphene reference TSHS dR = 0.005 # Check that TSHS_0 has only carbon atoms for a in TSHS_0.atom.atom: if a.Z != 6: print('ERROR: cannot build TB model because the provided geometry\n\tis not a pristine graphene') exit(1) # Extracting only pz-projected parameters from TSHS of perfect graphene r, param = get_dft_param(TSHS_0, 0, pzidx, pzidx, unique=True, onlynnz=True) print('\nEffective no. of neighbors per atom from TSHS_0: {}'.format(len(r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(r), len(param))) for ri, ci in zip(r, param): print('{:.5f} \t '.format(ri), ci) # Setup the Hamiltonian building block if nn is 'all': nn = len(r)-1 # The reference values we wish to target (pristine graphene) ref_r, ref_hop, ref_over = r[:nn+1], param[:nn+1, 0], param[:nn+1, 1] print('Targeted no. of neighbors per atom from TSHS_0: {}'.format(len(ref_r)-1)) print('r ({}; Angstrom)\t param ({}; eV):'.format(len(ref_r), len(ref_hop))) for ri, ci, oi in zip(ref_r, ref_hop, ref_over): print('{:.5f} \t '.format(ri), ci, oi) # Get distance from tip and relative hoppings, sorted distances, hop = get_R_hop(tshs, tbt, xyz_tip, pzidx, nn) if avg: hop_atframe = [np.average(hop[i, np.arange(-10, 0)]) for i in range(nn+1)] else: fit = [func_smooth(distances, hop[i, :]) for i in range(nn+1)] # r's to plot r2plot =
np.linspace(0, 1.2*distances[-1], 1000)
numpy.linspace
""" Newton Raphson Power Flow Solution Author: <NAME> Date: 06/09/2021 """ import numpy as np import matplotlib.pyplot as plt import pandas as pd class PowerFlow: """ Class description database, call the xlsx file that store database system, """ def __init__(self, database): self._database = 'C:\\Users\\Luis\\Documents\\Python Scripts\\SteadyStatePowerSystem\\Database\\' +database # Current directory + database def get_database(self): self._bus = pd.read_excel(self._database, 'bus', header= None).to_numpy() self._line = pd.read_excel(self._database, 'line', header= None).to_numpy() def compute_ybus(self): self.nbus, self.nline = len(self._bus), len(self._line) z = self._line[:,2] +self._line[:,3]*1j #impedance line, R+jX y, y_bus = 1/z, self._bus[:,7] + self._bus[:,8]*1j # Admitance line, bus a, b = self._line[:,5 ], self._line[:,4]*1j # turns ratio, capacitive susceptance ssend, eend = self._line[:,0].astype(int), self._line[:,1].astype(int) self.Ybus = np.zeros((self.nbus,self.nbus), dtype= complex) for i in range(self.nline): #Off diagonal elements if a[i] != 0: #with transformation ratio self.Ybus[ssend[i]-1, eend[i]-1] += -y[i]/a[i] self.Ybus[eend[i]-1, ssend[i]-1] = self.Ybus[ssend[i]-1, eend[i]-1] else: self.Ybus[ssend[i]-1, eend[i]-1] += -y[i] self.Ybus[eend[i]-1, ssend[i]-1] = self.Ybus[ssend[i]-1, eend[i]-1] for j in range(self.nbus): # Add shunt admitances to diagonal elements of Ybus self.Ybus[j,j] += y_bus[j] for k in range(self.nline): if ssend[k] == j+1 or eend[k] == j+1: if a[j] != 0 and a[j] != 1: if ssend[k] == j+1: self.Ybus[j,j] += y[k]/a[k] + b[k]/2 \ + (1/a[k])*(1/a[k]-1)*y[k] elif eend[k] == j+1: self.Ybus[j,j] += y[k]/a[k] + b[k]/2 \ + (1-1/a[k])*y[k] else: self.Ybus[j,j] += y[k]/a[k] + b[k]/2 return self.Ybus def compute_pq(self, v, ang): P, Q = np.zeros(self.nbus), np.zeros(self.nbus) dP, dQ = np.zeros(self.nbus), np.zeros(self.nbus) for i in range(self.nbus): P[i] = v[i]*sum(v*np.abs(self.Ybus[:,i])*np.cos(np.angle(self.Ybus[:,i])-ang[i]+ang)) Q[i] = -v[i]*sum(v*np.abs(self.Ybus[:,i])*np.sin(np.angle(self.Ybus[:,i])-ang[i]+ang)) if self._bus[i, 9] == 2: dP[i] = self._bus[i,3] - self._bus[i,5] - P[i] elif self._bus[i, 9] == 3: dP[i] = self._bus[i,3] - self._bus[i,5] - P[i] dQ[i] = self._bus[i,4] - self._bus[i,6] - Q[i] return P, Q, dP, dQ def jacobian(self, v, ang, P, Q): """ comput Jacobian with the current voltajes and angles ------------ Input ----------------- v: current voltaje ang: angle of nodes P: real power of nodes Q: reactive power at each nodes ------------ Output ---------------- J: jacobian with dimensions (nbus + nload -1)x(nbus + nload -1) """ nload = np.count_nonzero(self._bus[:,9]==3) j1, j2 = np.zeros((self.nbus-1,self.nbus-1)), np.zeros((self.nbus-1, nload)) j3, j4 =
np.zeros((nload,self.nbus-1))
numpy.zeros
# <NAME> # 3/18/2019 # General object to run empirical sr actflow process # For group-level/cross-subject analyses import numpy as np import os import multiprocessing as mp import scipy.stats as stats import nibabel as nib import os os.environ['OMP_NUM_THREADS'] = str(1) import sklearn from scipy import signal import h5py import sys sys.path.append('glmScripts/') import glmScripts.taskGLMPipeline_v2 as tgp import sys import pandas as pd import pathlib import calculateFC as fc import tools # Using final partition networkdef = np.loadtxt('/home/ti61/f_mc1689_1/NetworkDiversity/data/network_partition.txt') networkorder = np.asarray(sorted(range(len(networkdef)), key=lambda k: networkdef[k])) networkorder.shape = (len(networkorder),1) # network mappings for final partition set networkmappings = {'fpn':7, 'vis1':1, 'vis2':2, 'smn':3, 'aud':8, 'lan':6, 'dan':5, 'con':4, 'dmn':9, 'pmulti':10, 'none1':11, 'none2':12} networks = networkmappings.keys() ## General parameters/variables nParcels = 360 class Model(): """ Class to perform empirical actflow for a given subject (stimulus-to-response) """ def __init__(self,projectdir='/home/ti61/f_mc1689_1/SRActFlow/',ruletype='12',n_hiddenregions=10,randomize=False,scratchfcdir=None): """ instantiate: indices for condition types indices for specific condition instances betas """ #### Set up basic model parameters self.projectdir = projectdir # Excluding 084 self.subjNums = ['013','014','016','017','018','021','023','024','026','027','028','030','031','032','033', '034','035','037','038','039','040','041','042','043','045','046','047','048','049','050', '053','055','056','057','058','062','063','066','067','068','069','070','072','074','075', '076','077','081','085','086','087','088','090','092','093','094','095','097','098','099', '101','102','103','104','105','106','108','109','110','111','112','114','115','117','119', '120','121','122','123','124','125','126','127','128','129','130','131','132','134','135', '136','137','138','139','140','141'] self.inputtypes = ['RED','VERTICAL','CONSTANT','HIGH'] self.ruletype = ruletype #### Load in atlas glasserfile2 = projectdir + 'data/Q1-Q6_RelatedParcellation210.LR.CorticalAreas_dil_Colors.32k_fs_RL.dlabel.nii' glasser2 = nib.load(glasserfile2).get_data() glasser2 = np.squeeze(glasser2) self.glasser2 = glasser2 #### # Define hidden units if n_hiddenregions!=None: ####################################### #### Select hidden layer regions hiddendir = projectdir + 'data/results/MAIN/RSA/' hiddenregions = np.loadtxt(hiddendir + 'RSA_Similarity_SortedRegions2.txt',delimiter=',') ####################################### #### Output directory if randomize: print("Constructing model with", n_hiddenregions, "randomly selected hidden regions") fcdir = scratchfcdir #### Necessary to optimize amarel pathlib.Path(fcdir).mkdir(parents=True, exist_ok=True) # Make sure directory exists hiddenregions = np.random.choice(hiddenregions,size=n_hiddenregions,replace=False) else: print("Constructing model with", n_hiddenregions, "hidden regions") fcdir = projectdir + 'data/results/MAIN/fc/LayerToLayerFC_' + str(n_hiddenregions) + 'Hidden/' pathlib.Path(fcdir).mkdir(parents=True, exist_ok=True) # Make sure directory exists # Select hidden layer if n_hiddenregions < 0: hiddenregions = hiddenregions[n_hiddenregions:] else: hiddenregions = hiddenregions[:n_hiddenregions] ## Set object attributes self.n_hiddenregions = n_hiddenregions self.hiddenregions = np.squeeze(hiddenregions) self.fcdir = fcdir self.hidden = True # Set this variable to true - indicates to run sr simulations with a hidden layer #### identify hidden region vertex indices hidden_ind = [] for roi in hiddenregions: hidden_ind.extend(np.where(self.glasser2==roi+1)[0]) self.hidden_ind = hidden_ind else: print("Constructing model with NO hidden layers") fcdir = projectdir + 'data/results/MAIN/fc/LayerToLayerFC_NoHidden/' pathlib.Path(fcdir).mkdir(parents=True, exist_ok=True) # Make sure directory exists self.hidden = False # Set this variable to true - indicates to run sr simulations with a hidden layer self.fcdir = fcdir self.hiddenregions = None self.n_hiddenregions = n_hiddenregions #### # Define task rule (input) layer ruledir = self.projectdir + 'data/results/MAIN/RuleDecoding/' if ruletype=='12': rule_regions = np.loadtxt(ruledir + self.ruletype + 'Rule_Regions.csv',delimiter=',') elif ruletype=='fpn': rule_regions = [] rule_regions.extend(np.where(networkdef==networkmappings['fpn'])[0]) rule_regions = np.asarray(rule_regions) elif ruletype=='nounimodal': allrule_regions = np.loadtxt(ruledir + '12Rule_Regions.csv',delimiter=',') unimodal_nets = ['vis1','aud'] unimodal_regions = [] for net in unimodal_nets: unimodal_regions.extend(np.where(networkdef==networkmappings[net])[0]) # only include regions that are in allrule_regions but also NOT in unimodal_regions rule_regions = [] for roi in allrule_regions: if roi in unimodal_regions: continue else: rule_regions.append(roi) rule_regions = np.asarray(rule_regions) rule_ind = [] for roi in rule_regions: rule_ind.extend(np.where(self.glasser2==roi+1)[0]) self.rule_ind = rule_ind #### # Define motor regions # Set indices for layer-by-layer vertices targetdir = projectdir + 'data/results/MAIN/MotorResponseDecoding/' motor_resp_regions_LH = np.loadtxt(targetdir + 'MotorResponseRegions_LH.csv',delimiter=',') motor_resp_regions_RH = np.loadtxt(targetdir + 'MotorResponseRegions_RH.csv',delimiter=',') targetROIs = np.hstack((motor_resp_regions_LH,motor_resp_regions_RH)) # Define all motor_ind motor_ind = [] for roi in targetROIs: roi_ind = np.where(glasser2==roi+1)[0] motor_ind.extend(roi_ind) motor_ind = np.asarray(motor_ind).copy() self.motor_ind = motor_ind #### override -- only pick the motor parcel with the greatest response decoding motor_ind_lh = [] for roi in motor_resp_regions_LH: # only include left hand responses in the right hemisphere if roi>=180: roi_ind = np.where(glasser2==roi+1)[0] motor_ind_lh.extend(roi_ind) motor_ind_rh = [] for roi in motor_resp_regions_RH: # only include left hand responses in the right hemisphere if roi<180: roi_ind = np.where(glasser2==roi+1)[0] motor_ind_rh.extend(roi_ind) # motor_ind_rh = np.asarray(motor_ind_rh).copy() motor_ind_lh = np.asarray(motor_ind_lh).copy() self.motor_ind_rh = motor_ind_rh self.motor_ind_lh = motor_ind_lh #### Load model task set filename= projectdir + 'data/results/MAIN/EmpiricalSRActFlow_AllTrialKeys_15stims_v3.csv' # Great self.trial_metadata = pd.read_csv(filename) def computeGroupFC(self,n_components=500,nproc='max'): """ Function that wraps _computeSubjFC() to compute FC for all subjs, and computes averaged groupFC """ if nproc=='max': nproc=mp.cpu_count() inputs = [] for subj in self.subjNums: inputs.append((subj,n_components)) pool = mp.Pool(processes=nproc) if self.hidden: pool.starmap_async(self._computeSubjFC,inputs) else: pool.starmap_async(self._computeSubjFC_NoHidden,inputs) pool.close() pool.join() #### Compute group FC for inputtype in self.inputtypes: if self.hidden: fc.computeGroupFC(inputtype,self.fcdir) else: fc.computeGroupFC_NoHidden(inputtype,self.fcdir) if self.hidden: fc.computeGroupFC(self.ruletype,self.fcdir) else: fc.computeGroupFC_NoHidden(self.ruletype,self.fcdir) def loadRealMotorResponseActivations(self,vertexmasks=True): #### Load motor response activations localized in output vertices only (for faster loading) if vertexmasks: print('Load real motor responses in output vertices') self.data_task_rh, self.data_task_lh = tools.loadMotorResponsesOutputMask() else: print('Load real motor responses in output parcels -- inefficient since need to load all vertices first') data_task_rh = [] data_task_lh = [] for subj in self.subjNums: tmp_rh = tools.loadMotorResponses(subj,hand='Right') tmp_lh = tools.loadMotorResponses(subj,hand='Left') data_task_rh.append(tmp_rh[self.motor_ind_rh,:].copy().T) data_task_lh.append(tmp_lh[self.motor_ind_lh,:].copy().T) self.data_task_rh = np.asarray(data_task_rh).T self.data_task_lh = np.asarray(data_task_lh).T def loadModelFC(self): if self.hidden: print('Load Model FC weights') fcdir = self.fcdir self.fc_input2hidden = {} self.eig_input2hidden = {} for inputtype in ['VERTICAL','RED','HIGH','CONSTANT']: self.fc_input2hidden[inputtype], self.eig_input2hidden[inputtype] = tools.loadGroupActFlowFC(inputtype,fcdir) # Load rule to hidden self.fc_12rule2hidden, self.eig_12rule2hidden = tools.loadGroupActFlowFC(self.ruletype,fcdir) # Load hidden to motor resp mappings self.fc_hidden2motorresp, self.eig_hidden2motorresp = tools.loadGroupActFlowFC('hidden2out',fcdir) else: print('Load Model FC weights -- No hidden layer') fcdir = self.fcdir self.fc_input2output = {} self.eig_input2output = {} for inputtype in ['VERTICAL','RED','HIGH','CONSTANT']: self.fc_input2output[inputtype], self.eig_input2output[inputtype] = tools.loadGroupActFlowFC_NoHidden(inputtype,fcdir) # Load rule to hidden self.fc_12rule2output, self.eig_12rule2output = tools.loadGroupActFlowFC_NoHidden('12',fcdir) def simulateGroupActFlow(self,thresh=0,nproc='max',vertexmasks=True): """ Simulate group level actflow (all subject simulations) """ if nproc=='max': nproc=mp.cpu_count() inputs = [] for subj in self.subjNums: inputs.append((subj,thresh)) if nproc == 1: results = [] for input1 in inputs: results.append(self._simulateSubjActFlow(input1[0],input1[1])) else: pool = mp.Pool(processes=nproc) results = pool.starmap_async(self._simulateSubjActFlow,inputs).get() pool.close() pool.join() actflow_predictions = np.zeros((len(self.subjNums),len(self.motor_ind),4)) #actflow_predictions_noReLU = np.zeros((len(self.subjNums),len(self.motor_ind),4)) scount = 0 for result in results: # actflow_predictions[scount,:,:] = result[0] # actflow_predictions_noReLU[scount,:,:] = result[1] actflow_predictions[scount,:,:] = result scount += 1 ## Reformat to fit shape of actual data array actflow_rh = np.zeros((len(self.glasser2),2,len(self.subjNums))) actflow_lh = np.zeros((len(self.glasser2),2,len(self.subjNums))) for scount in range(len(self.subjNums)): # RMID actflow_rh[self.motor_ind,0,scount] = actflow_predictions[scount,:,2] # RIND actflow_rh[self.motor_ind,1,scount] = actflow_predictions[scount,:,3] # LMID actflow_lh[self.motor_ind,0,scount] = actflow_predictions[scount,:,0] # LIND actflow_lh[self.motor_ind,1,scount] = actflow_predictions[scount,:,1] #### Now save out only relevant output mask vertices if vertexmasks: tmp = np.squeeze(nib.load(self.projectdir + 'data/results/MAIN/MotorRegionsMasksPerSubj/sractflow_smn_outputRH_mask.dscalar.nii').get_data()) rh_ind = np.where(tmp==True)[0] actflow_rh = actflow_rh[rh_ind,:,:] tmp = np.squeeze(nib.load(self.projectdir + 'data/results/MAIN/MotorRegionsMasksPerSubj/sractflow_smn_outputLH_mask.dscalar.nii').get_data()) lh_ind = np.where(tmp==True)[0] actflow_lh = actflow_lh[lh_ind,:,:].copy() else: actflow_rh = actflow_rh[self.motor_ind_rh,:,:].copy() actflow_lh = actflow_lh[self.motor_ind_lh,:,:].copy() return actflow_rh, actflow_lh def actflowDecoding(self,trainset,testset,outputfile, nbootstraps=1000,featsel=False,nproc='max',null=False,verbose=True): if nproc=='max': nproc=mp.cpu_count() # Decoding for i in range(nbootstraps): distances_baseline = np.zeros((1,len(self.subjNums)*2)) # subjs * nlabels distances_baseline[0,:],rmatch,rmismatch, confusion_mats = tools.actflowDecodings(testset,trainset, effects=True, featsel=featsel,confusion=True,permutation=null, ncvs=1, nproc=nproc) ##### Save out and append file # Open/create file filetxt = open(outputfile,"a+") # Write out to file print(np.mean(distances_baseline),file=filetxt) # Close file filetxt.close() if i%100==0 and verbose==True: print('Permutation', i) print('\tDecoding accuracy:', np.mean(distances_baseline), '| R-match:', np.mean(rmatch), '| R-mismatch:', np.mean(rmismatch)) def extractSubjActivations(self, subj, df_trials): """ extract activations for a sample subject, including motor response """ ## Set up data parameters X = tgp.loadTaskTiming(subj,'ALL') self.stimIndex = np.asarray(X['stimIndex']) self.stimCond = np.asarray(X['stimCond']) datadir = self.projectdir + 'data/postProcessing/hcpPostProcCiric/' h5f = h5py.File(datadir + subj + '_glmOutput_data.h5','r') self.betas = h5f['taskRegression/ALL_24pXaCompCorXVolterra_taskReg_betas_canonical'][:].copy() h5f.close() ## Set up task parameters self.logicRules = ['BOTH', 'NOTBOTH', 'EITHER', 'NEITHER'] self.sensoryRules = ['RED', 'VERTICAL', 'HIGH', 'CONSTANT'] self.motorRules = ['LMID', 'LIND', 'RMID', 'RIND'] self.colorStim = ['RED', 'BLUE'] self.oriStim = ['VERTICAL', 'HORIZONTAL'] self.pitchStim = ['HIGH', 'LOW'] self.constantStim = ['CONSTANT','ALARM'] # Begin extraction for specific trials n_trials = len(df_trials) stimData = np.zeros((n_trials,self.betas.shape[0])) logicRuleData = np.zeros((n_trials,self.betas.shape[0])) sensoryRuleData = np.zeros((n_trials,self.betas.shape[0])) motorRuleData = np.zeros((n_trials,self.betas.shape[0])) respData = np.zeros((n_trials,self.betas.shape[0])) sensoryRuleIndices = [] motorRespAll = [] for trial in range(n_trials): logicRule = df_trials.iloc[trial].logicRule sensoryRule = df_trials.iloc[trial].sensoryRule motorRule = df_trials.iloc[trial].motorRule motorResp = df_trials.iloc[trial].motorResp stim1 = df_trials.iloc[trial].stim1 stim2 = df_trials.iloc[trial].stim2 # if verbose: # print 'Running actflow predictions for:', logicRule, sensoryRule, motorRule, 'task' logicKey = 'RuleLogic_' + logicRule sensoryKey = 'RuleSensory_' + sensoryRule motorKey = 'RuleMotor_' + motorRule stimKey = 'Stim_' + stim1 + stim2 motorResp = solveInputs(logicRule, sensoryRule, motorRule, stim1, stim2, printTask=False) respKey = 'Response_' + motorResp stimKey_ind = np.where(self.stimCond==stimKey)[0] logicRule_ind = np.where(self.stimCond==logicKey)[0] sensoryRule_ind = np.where(self.stimCond==sensoryKey)[0] motorRule_ind = np.where(self.stimCond==motorKey)[0] respKey_ind = np.where(self.stimCond==respKey)[0] stimData[trial,:] = np.real(self.betas[:,stimKey_ind].copy()[:,0]) logicRuleData[trial,:] = np.real(self.betas[:,logicRule_ind].copy()[:,0]) sensoryRuleData[trial,:] = np.real(self.betas[:,sensoryRule_ind].copy()[:,0]) motorRuleData[trial,:] = np.real(self.betas[:,motorRule_ind].copy()[:,0]) respData[trial,:] = np.real(self.betas[:,respKey_ind].copy()[:,0]) motorRespAll.append(motorResp) sensoryRuleIndices.append(sensoryRule) self.motorRespAll = motorRespAll self.stimData = stimData self.logicRuleData = logicRuleData self.sensoryRuleData = sensoryRuleData self.motorRuleData = motorRuleData self.respData = respData self.sensoryRuleIndices = sensoryRuleIndices def extractSubjHiddenRSMActivations(self, subj): """ extract activations for a sample subject, including motor response """ ## Set up data parameters X = tgp.loadTaskTiming(subj,'ALL') self.stimIndex = np.asarray(X['stimIndex']) self.stimCond = np.asarray(X['stimCond']) datadir = self.projectdir + 'data/postProcessing/hcpPostProcCiric/' h5f = h5py.File(datadir + subj + '_glmOutput_data.h5','r') self.betas = h5f['taskRegression/ALL_24pXaCompCorXVolterra_taskReg_betas_canonical'][:].copy() h5f.close() ## Set up task parameters self.logicRules = ['BOTH', 'NOTBOTH', 'EITHER', 'NEITHER'] self.sensoryRules = ['RED', 'VERTICAL', 'HIGH', 'CONSTANT'] self.motorRules = ['LMID', 'LIND', 'RMID', 'RIND'] self.colorStim = ['RED', 'BLUE'] self.oriStim = ['VERTICAL', 'HORIZONTAL'] self.pitchStim = ['HIGH', 'LOW'] self.constantStim = ['CONSTANT','ALARM'] total_conds = 28 # 12 rules + 16 stimulus pairings rsm_activations = np.zeros((28,self.betas.shape[0])) labels = [] condcount = 0 ## # START for cond in self.logicRules: labels.append(cond) key = 'RuleLogic_' + cond ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond in self.sensoryRules: labels.append(cond) key = 'RuleSensory_' + cond ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond in self.motorRules: labels.append(cond) key = 'RuleMotor_' + cond ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition # This is nested for loop since stimuli come in pairs for cond1 in self.colorStim: for cond2 in self.colorStim: labels.append(cond1 + cond2) key = 'Stim_' + cond1 + cond2 ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond1 in self.oriStim: for cond2 in self.oriStim: labels.append(cond1 + cond2) key = 'Stim_' + cond1 + cond2 ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond1 in self.pitchStim: for cond2 in self.pitchStim: labels.append(cond1 + cond2) key = 'Stim_' + cond1 + cond2 ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond1 in self.constantStim: for cond2 in self.constantStim: labels.append(cond1 + cond2) key = 'Stim_' + cond1 + cond2 ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition return rsm_activations, labels def generateHiddenUnitRSMPredictions(self,thresh=0,n_hiddenregions=10,filename='',verbose=False): """ Run all predictions for all 64 tasks """ hidden_ind = self.hidden_ind rule_ind = self.rule_ind all_actflow_unthresh = [] all_actflow_thresh = [] all_true_activity = [] for subj in self.subjNums: print('Predicting hidden layer activations for subject', subj) rsm_activations, labels = self.extractSubjHiddenRSMActivations(subj) tmp_actflow_unthresh = [] tmp_actflow_thresh = [] tmp_true_activity = [] labelcount = 0 for label in labels: # Dissociate sensory rules from sensory stimuli since stimuli have two stimulus words (e.g., 'REDRED') if label in ['BOTH', 'NOTBOTH', 'EITHER', 'NEITHER', 'RED', 'VERTICAL', 'HIGH', 'CONSTANT', 'LMID', 'LIND', 'RMID', 'RIND']: input_units = 'rule' if label in ['REDRED', 'REDBLUE', 'BLUERED', 'BLUEBLUE']: input_units = 'RED' # specify sensory rules for sensory activations if label in ['VERTICALVERTICAL', 'VERTICALHORIZONTAL', 'HORIZONTALVERTICAL', 'HORIZONTALHORIZONTAL']: input_units = 'VERTICAL' # this is the sensory rule if label in ['HIGHHIGH', 'HIGHLOW', 'LOWHIGH', 'LOWLOW']: input_units = 'HIGH' if label in ['CONSTANTCONSTANT', 'CONSTANTALARM', 'ALARMCONSTANT', 'ALARMALARM']: input_units = 'CONSTANT' if input_units!='rule': input_ind = self._getStimIndices(input_units) # Identify the vertices for stimulus layer of the ANN unique_input_ind = np.where(np.in1d(input_ind,hidden_ind)==False)[0] fc = self.fc_input2hidden[input_units] pc_act = np.matmul(rsm_activations[labelcount,:][unique_input_ind],self.eig_input2hidden[input_units].T) # Unthresholded actflow actflow_unthresh = np.matmul(pc_act,fc) # Thresholded actflow actflow_thresh = np.multiply(actflow_unthresh,actflow_unthresh>thresh) if input_units=='rule': unique_input_ind = np.where(np.in1d(rule_ind,hidden_ind)==False)[0] fc = self.fc_12rule2hidden pc_act = np.matmul(rsm_activations[labelcount,:][unique_input_ind],self.eig_12rule2hidden.T) # Unthresholded actflow actflow_unthresh = np.matmul(pc_act,fc) # Thresholded actflow actflow_thresh =
np.multiply(actflow_unthresh,actflow_unthresh>thresh)
numpy.multiply
#! /usr/bin/env python3 import numpy as np import argparse from sklearn.metrics import adjusted_rand_score as ARI import dcsbm ## PARSER to give parameter values formatter = argparse.ArgumentDefaultsHelpFormatter parser = argparse.ArgumentParser(formatter_class=formatter) ## Set tolerance parser.add_argument("-t","--tol", type=float, dest="tolerance", default=1e-5, const=True, nargs="?",\ help="Float: convergence criterion (relative difference in average predictive log-likelihood)") ## Set maximum number of iterations parser.add_argument("-i","--maxiter", type=int, dest="max_iter", default=150, const=True, nargs="?",\ help="Integer: maximum number of iterations for the variational inference algorithm") ## Model type parser.add_argument("-M", "--model", dest="model", default = 2, type=int, help="Model: 0 for standard, 1 for normalised, 2 for spherical.") ## Maximum dimension for the embedding parser.add_argument("-m", "--dimension", dest="dimension", default=50, type=int, help="Initial dimension of the embedding.") ## Maximum values in the grid search parser.add_argument("-d", dest="d", default=20, type=int, help="Maximum value of d in the grid search.") parser.add_argument("-K", dest="K", default=20, type=int, help="Maximum value of K in the grid search.") ## Graph type parser.add_argument("-g", "--graph", dest="graph", default = 'icl2', type=str, help="Type of graph: icl1, icl2 or icl3.") ## Use the approximated inference procedure parser.add_argument("-a", "--approx", dest="approx", action='store_true', help='Use the approximated inference procedure (fast).') ## Parse arguments args = parser.parse_args() tolerance = args.tolerance max_iter = args.max_iter model = args.model graph = args.graph m = args.dimension d_max = args.d K_max = args.K ## Import data if graph == 'icl1': true_labs = np.loadtxt('Data/labs1.csv', delimiter=',') X = np.load('Data/X_icl1_emb.npy')[:,:m] elif graph == 'icl2': true_labs = np.loadtxt('Data/labs2.csv', delimiter=',') X = np.load('Data/X_icl2_emb.npy')[:,:m] elif graph == 'icl3': true_labs = np.loadtxt('Data/labs3.csv', delimiter=',') X = np.load('Data/X_icl3_emb.npy')[:,:m] else: raise ValueError('Invalid graph.') ## Obtain X_tilde X_tilde = np.divide(X, np.linalg.norm(X,axis=1)[:,np.newaxis]) ## Obtain Theta Theta = dcsbm.theta_transform(X) ## Calculate the BIC for some combinations of models mod = ['X','X_tilde','Theta','SCORE'][model] ## Determine the model type if mod == 'Theta': mod_type = 'theta' elif mod == 'X_tilde': mod_type = 'normalised' elif mod == 'SCORE': mod_type = 'score' else: mod_type = None ## BIC and ARI bic = np.zeros((d_max,K_max-1)) ari =
np.zeros((d_max,K_max-1))
numpy.zeros
from time import time import numpy as np class Tree(object): def __init__(self, root_node): self.active_nodes = [root_node] # end-point nodes self.integral_nodes = [] self.infeasible_nodes = [] self.selected_node = None self.optimal_node = None self.ub = None self.lb = None self.finished = None self._verbose = 0 def solve(self): start = time() iteration = 1 print(f"[Branch and Bound]".center(100, "=")) print(f"# of integer variables : {self.active_nodes[0].int_var.size}") while not self.finished: iter_start_time = time() if self._verbose >= 2: print(f"[Iteration {iteration}: {iter_start_time - start:.2f} seconds]".center(100, "-")) print(f"Solving unsolved active nodes...") # check if no more active nodes; terminate if yes if not self.active_nodes: self.finished = True for node in self.integral_nodes: if self.ub <= node.ub: self.ub = node.ub self.optimal_node = node return self.optimal_node # solve active nodes (nodes are smart to not re-solve when already solved) for node in self.active_nodes: node.solve() if self._verbose >= 3: print(f"[Node {node.node_id}]".center(80, "-")) print(f"Upper bound: {node.ub}") print(f"Lower bound: {node.lb}") # classify active nodes for node in self.active_nodes: if not node.feasible: if self._verbose >= 2: print(f"Found infeasible node") self.infeasible_nodes.append(node) elif node.integral: if self._verbose >= 2: print(f"Found integral node : {node.ub}") self.integral_nodes.append(node) # remove active nodes that have been classified from self.active_nodes self.active_nodes = [node for node in self.active_nodes if node.feasible] self.active_nodes = [node for node in self.active_nodes if not node.integral] # select most promising active node if self.active_nodes: self.selected_node = self.active_nodes[ np.argmax([node.ub for node in self.active_nodes]) ] else: self.selected_node = self.integral_nodes[ np.argmax([node.ub for node in self.integral_nodes]) ] if self._verbose >= 2: print(f"Complete in {time() - iter_start_time:.2f} CPU seconds.") print(f"".center(100, ".")) print(f"# of active nodes : {len(self.active_nodes)}") print(f"# of integral nodes : {len(self.integral_nodes)}") print(f"# of infeasible nodes : {len(self.infeasible_nodes)}") print(f"Tightest upper bound : {
np.max(self.selected_node.ub)
numpy.max
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME>, CWI, Amsterdam <EMAIL> TODO fhe full data of one of the data sets described in "A Cone-Beam X-Ray CT Data Collection Designed for Machine Learning" by <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> """ import numpy as np import astra import os import imageio import time import matplotlib.pyplot as plt import nesterov_gradient from scipy.interpolate import RegularGridInterpolator as rgi def rotate_astra_vec_geom(vecs, theta): s = np.asmatrix(vecs[:,0:3]) d =
np.asmatrix(vecs[:,3:6])
numpy.asmatrix
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,1,0,1,0,0,0,0,-1])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This file contains the experiments in the active scenario of [Haddenhorst2021]. In order to rerun these, UNCOMMENT in "Part 4" below the corresponding lines and then execute this file. [Haddenhorst2021]: <NAME>, <NAME>, <NAME> and E.Hüllermeier, Testification of Condorcet Winners in Dueling Bandits, Proceedings of UAI, 2021 """ import ReciprocalRelations as rr import TestEnvironment as tenv import TestingComponent as tc import numpy as np import DeterministicTestingComponent as dtc import SELECT as select import math import matplotlib.pyplot as plt nr_items, decimal_precision = 5,3 np.set_printoptions(precision=3) ############################################################################### # PART 1: Define 'find_CW_with_symm_test', 'SELECT_then_verify' # and 'buf_SPRT' ############################################################################### def find_CW_with_symm_test(TE, h, gamma): """ This is an implementation of the Algorithm NTS from the paper. """ SymmTC = tc.Symmetric_TestingComponent(TE.N, TE.R, h=float(h), gamma=gamma) sampling_strategy = dtc.Optimal_Deterministic_CW_Tester(len(TE.N)) for t in range(500000): [i,j] = sampling_strategy.getQuery() while not SymmTC.G.has_edge(i,j) and not SymmTC.G.has_edge(j,i): feedback = TE.pullArmPair(i,j) SymmTC.update(i,j,feedback) if SymmTC.TC(): SymmTC.DC() return SymmTC.find_CW(), SymmTC.time sampling_strategy.giveFeedback(feedback) def SELECT_then_verify(TE,h,gamma, variant = "Hoeffding"): """ This is the implementation from SELECT-then-verify from the paper. The internal hypothesis test for verifying the output of SELECT can either be the non-sequential Hoeffding-bound test (with 'variant="Hoeffding"') or the corresponding SPRT (with 'variant="SPRT"'). """ assert variant=="Hoeffding" or variant=="SPRT", "'variant' has to be 'Hoeffding' or 'SPRT'" m = TE.P.m epsilon = -np.log(0.5*gamma)/np.log(np.log2(m)) m_h = math.floor((1+epsilon)*math.log(2)/2*math.log(math.log(m,2),2)/(h*h))+1 CW_M, itera = select.select(list(np.arange(m)), m_h, TE.pullArmPair) CW_M = int(CW_M) # print("Output of SELECT:",CW_M,"(after ",itera," iterations)") # TE.show() if variant=="Hoeffding": t0 = np.ceil(2/(h**2) * np.log(2*(m-1)/gamma)) w = np.zeros(m) for j in range(0,m): if CW_M is not j: for t in range(0,int(t0)): buf = TE.pullArmPair(CW_M,j) w[j] += buf #Increases by 1 if CW_M has won if w[j]/t0 < 0.5: # print("w",w) return(False) return(CW_M) if variant=="SPRT": for j in range(0,m): if CW_M is not j: winner = buf_SPRT(TE,h,gamma/(2*(m-1)),CW_M,j) if winner != CW_M: return(False) return(CW_M) def buf_SPRT(TE,h,gamma,i,j): """ This function conducts a SPRT (with parameters h,gamma) in order to decide whether the (i,j)-entry of TE.P is >1/2 or <1/2. """ N = 1 C = (1/(2*N)) * np.ceil(np.log( (1-gamma) / gamma ) / np.log( (0.5+h) / (0.5-h) )) w = TE.pullArmPair(i,j) while 0.5-C < w/N and w/N< 0.5+C: w += TE.pullArmPair(i,j) C = (1/(2*N)) * np.ceil(np.log( (1-gamma) / gamma ) / np.log( (0.5+h) / (0.5-h) )) N = N+1 if w/N >= 0.5+C: return(i) else: return(j) ############################################################################### # PART 3: Define the evaluation functions 'experiments_one', 'experiment_two' # 'experiment_three' as well as 'generate_main_figure'. ############################################################################### def experiments_one(m,h,gamma,nr_iterations=100, real_h = 0.05, has_CW = "No",verify_variant="SPRT"): """ This function compares NTS with SELECT-then-verify. It is required for the function "experiment_two". """ assert has_CW=="No" or has_CW=="Yes" or has_CW=="Both", "'has_CW' has to be 'Yes','No' or 'Both'." results = dict() results["NTS_output"] =list() results["NTS_time"] = list() results["S_t_verify_output"] = list() results["S_t_verify_time"] = list() results["Truth"] = list() for iteration in range(0,nr_iterations): # Step 1: Sample a reciprocal relation, create a TE and a dictionary to save results. if has_CW == "No": P, buf = rr.sampleCW_boundedFromOneHalf(m,real_h,decimal_precision=3) elif has_CW == "Yes": P = rr.sampleNotCW_boundedFromOneHalf(m,real_h,max_tries=10000,decimal_precision=3) else: P = rr.sampleReciprocal(m,decimal_precision=3) P = rr.__EnforceBoundedFromOneHalf__(P,real_h) results["Truth"].append(rr.get_CW(P)) # Step 2: Run and log our NTS TE = tenv.TestEnvironment(P) current_output = find_CW_with_symm_test(TE, h, gamma) results["NTS_output"].append(current_output[0]) results["NTS_time"].append(TE.time) # Step 3: Run and log SELECT_then_verify TE = tenv.TestEnvironment(P) current_output = SELECT_then_verify(TE, h, gamma,variant=verify_variant) results["S_t_verify_output"].append(current_output) results["S_t_verify_time"].append(TE.time) # Step 4: Calculate the accuracy of both algorithms and return the results nr_correct_NTS ,nr_correct_S_t_verify = 0,0 for i in range(0,nr_iterations): if results["Truth"][i] == results["NTS_output"][i]: nr_correct_NTS += 1 if results["Truth"][i] == results["S_t_verify_output"][i]: nr_correct_S_t_verify += 1 results["Acc_NTS"] = nr_correct_NTS / nr_iterations results["Acc_S_t_verify"] = nr_correct_S_t_verify / nr_iterations results["NTS_mean_time"] = np.mean(results["NTS_time"]) results["S_t_verify_mean_time"] = np.mean(results["S_t_verify_time"]) # print(results) # print("NTS: mean",np.mean(results["NTS_time"]),"\t std:",np.std(results["NTS_time"]), "\t Accuracy:", results["Acc_NTS"]) # print("SELECT_then_verify: mean",np.mean(results["S_t_verify_time"]),"\t std:",np.std(results["S_t_verify_time"]), "\t Accuracy:", results["Acc_S_t_verify"]) return(results) def experiment_two(m=5, real_h=0.1, h=0.3, file_name ="plot",nr_iterations =25000,has_CW = "No",verify_variant="SPRT"): """ This function compares NTS with SELECT-then-verify for the given parameters, saves the observed accuracies and averaged termination times and plots the results. """ gammas = [0.001,0.005,0.01,0.015,0.02,0.03,0.05,0.075,0.1,0.125,0.15,0.2,0.25,0.35,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.7,0.95,0.99] x_NTS = np.zeros(len(gammas)) y_NTS = np.zeros(len(gammas)) x_StV = np.zeros(len(gammas)) y_StV = np.zeros(len(gammas)) print("Progress for "+str(file_name)+" (.. out of "+str(len(gammas))+"): ") for i in range(0,len(gammas)): print(i,end=",") buf = experiments_one(m,h,gammas[i],nr_iterations,real_h=real_h,has_CW = has_CW) x_NTS[i] = buf["NTS_mean_time"] x_StV[i] = buf["S_t_verify_mean_time"] y_NTS[i] = buf["Acc_NTS"] y_StV[i] = buf["Acc_S_t_verify"] plt.plot(x_NTS,y_NTS, marker = "^", label="NTS") plt.plot(x_StV, y_StV, marker = "o", label="SELECT-then-verify") plt.xlabel("Iterations") plt.ylabel("Success Rate") plt.legend() plt.title("h="+str(h)) plt.savefig(str(file_name)+"_plot.png",dpi=300) plt.show() np.savetxt(str(file_name)+"_results.csv",np.asarray([x_NTS,y_NTS,x_StV,y_StV]),delimiter=",") # print(x_NTS,y_NTS) print("Done.") def experiment_three_help(m,h,gamma,nr_iterations=100, real_h = 0.05, has_CW = "No",verify_variant="SPRT"): """ This is an appropriate modification of 'experiments_one' from above Each line of code that has been modified is indicated with a comment '[CHANGE]', together with the original code. """ assert has_CW=="No" or has_CW=="Yes" or has_CW=="Both", "'has_CW' has to be 'Yes','No' or 'Both'." results = dict() results["NTS_output"] =list() results["NTS_time"] = list() results["S_t_verify_output"] = list() results["S_t_verify_time"] = list() results["Truth"] = list() for iteration in range(0,nr_iterations): # Step 1: Sample a reciprocal relation, create a TE and a dictionary to save results. if has_CW == "No": #P, buf = rr.sampleCW_boundedFromOneHalf(m,real_h,decimal_precision=3) [CHANGE] P, buf = rr.sampleCW_exactly_h(m,real_h,decimal_precision=3) elif has_CW == "Yes": # P = rr.sampleNotCW_boundedFromOneHalf(m,real_h,max_tries=10000,decimal_precision=3) [CHANGE] P = rr.sampleNotCW_exactly_h(m, real_h,max_tries = 100000,decimal_precision = 3) else: # P = rr.sampleReciprocal(m,decimal_precision=3) [CHANGE] # P = rr.__EnforceBoundedFromOneHalf__(P,real_h) [CHANGE] P = rr.sampleRecRel_exactly_h(m,real_h,decimal_precision = 3) results["Truth"].append(rr.get_CW(P)) # Step 2: Run and log our NTS TE = tenv.TestEnvironment(P) current_output = find_CW_with_symm_test(TE, h, gamma) results["NTS_output"].append(current_output[0]) results["NTS_time"].append(TE.time) # Step 3: Run and log SELECT_then_verify TE = tenv.TestEnvironment(P) current_output = SELECT_then_verify(TE, h, gamma,variant=verify_variant) results["S_t_verify_output"].append(current_output) results["S_t_verify_time"].append(TE.time) # Step 4: Calculate the accuracy of both algorithms and return the results nr_correct_NTS ,nr_correct_S_t_verify = 0,0 for i in range(0,nr_iterations): if results["Truth"][i] == results["NTS_output"][i]: nr_correct_NTS += 1 if results["Truth"][i] == results["S_t_verify_output"][i]: nr_correct_S_t_verify += 1 results["Acc_NTS"] = nr_correct_NTS / nr_iterations results["Acc_S_t_verify"] = nr_correct_S_t_verify / nr_iterations results["NTS_mean_time"] = np.mean(results["NTS_time"]) results["S_t_verify_mean_time"] = np.mean(results["S_t_verify_time"]) return(results) def experiment_three(m=5, gamma = 0.05, real_hs=[0.1,0.2,0.3,0.4], h=0.1, file_name ="plot",nr_iterations =25000,has_CW = "No",verify_variant="SPRT"): """ This is a simple modification of experiment_two. -- instead of modifying gamma, we modify the value of real_h. """ # gammas = [0.001,0.005,0.01,0.015,0.02,0.03,0.05,0.075,0.1,0.125,0.15,0.2,0.25,0.35,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.7,0.95,0.99] len_real_hs = len(real_hs) x_NTS = np.zeros(len_real_hs) y_NTS = np.zeros(len_real_hs) x_StV = np.zeros(len_real_hs) y_StV = np.zeros(len_real_hs) print("Progress for "+str(file_name)+" (.. out of "+str(len_real_hs)+"): ") for i in range(0,len_real_hs): print(i,end=",") buf = experiment_three_help(m,h,gamma,nr_iterations,real_h=real_hs[i],has_CW = has_CW) x_NTS[i] = buf["NTS_mean_time"] x_StV[i] = buf["S_t_verify_mean_time"] y_NTS[i] = buf["Acc_NTS"] y_StV[i] = buf["Acc_S_t_verify"] plt.plot(real_hs,x_NTS, marker = "^", label="NTS") plt.plot(real_hs, x_StV, marker = "o", label="SELECT-then-verify") plt.xlabel("real_h") plt.ylabel("Iterations") plt.legend() plt.title("h="+str(h)) plt.savefig(str(file_name)+"_plot.png",dpi=300) plt.show() np.savetxt(str(file_name)+"_results.csv",np.asarray([real_hs,x_NTS,y_NTS,x_StV,y_StV]),delimiter=",") print("Done.") # OUTPUT THE RESULTS AS A TABLE: print("The results in form of [h, T A^NTS, Acc. A^NTS, T^StV, Acc StV] are:") for i in range(0,len_real_hs): print(real_hs[i],x_NTS[i],y_NTS[i],x_StV[i],y_StV[i]) ############################################################################## # The following function helps to create Figure 1 of our paper. ############################################################################## def generate_main_figure(): a =
np.loadtxt("MAIN_h02_results.csv",delimiter=",")
numpy.loadtxt
# 2D quadratic function import math import numpy as np import numdifftools as nd from pystatreduce.quantity_of_interest import QuantityOfInterest class Paraboloid2D(QuantityOfInterest): def __init__(self, systemsize, tuple): QuantityOfInterest.__init__(self, systemsize) self.extra_args = tuple self.quadratic_matrix = np.diag([50,1]) def eval_QoI(self, mu, xi): theta = self.extra_args[0] # rotation_mat = [cos(theta) -sin(theta); # sin(theta) cos(theta)] rotation_mat = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) xi_hat = rotation_mat.dot(xi) fval = 50*(mu[0]+xi_hat[0])**2 + (mu[1] + xi_hat[1])**2 return fval def eval_QoIGradient(self, mu, xi): """ Use finite difference to compute gradient. """ def func(xi) : return self.eval_QoI(mu, xi) G = nd.Gradient(func)(xi) return G def eval_QoIHessian(self, mu, xi): """ Use finite difference to compute Hessian. """ def func(xi) : return self.eval_QoI(mu, xi) H = nd.Hessian(func)(xi) return H def eval_QoI_analyticalmean(self, mu, cov): assert self.extra_args[0] == 0.0, "This function only works for theta = 0" mu_j = np.trace(np.matmul(self.quadratic_matrix, cov)) \ + mu.dot(self.quadratic_matrix.dot(mu)) return mu_j class Paraboloid3D(QuantityOfInterest): def __init__(self, systemsize): QuantityOfInterest.__init__(self, systemsize) self.quadratic_matrix = np.diag([50, 25, 1]) def eval_QoI(self, mu, xi): return 50*(mu[0]+xi[0])**2 + 25*(mu[1] + xi[1])**2 + (mu[2] + xi[2])**2 def eval_QoIGradient(self, mu, xi): rv = mu + xi grad = np.array([100*rv[0], 50*rv[1], 2*rv[2]]) return grad def eval_QoIHessian(self, mu, xi): return np.diag([100, 50, 2]) def eval_QoI_analyticalmean(self, mu, cov): mu_j = np.trace(np.matmul(self.quadratic_matrix, cov)) \ + mu.dot(self.quadratic_matrix.dot(mu)) return mu_j def eval_QoI_analyticalvariance(self, mu, cov): mat1 = np.matmul(self.quadratic_matrix, cov) vec1 = self.quadratic_matrix.dot(cov.dot(self.quadratic_matrix.dot(mu))) var_j = 2*np.trace(np.matmul(mat1,mat1)) + 4*np.dot(mu, vec1) return var_j class Paraboloid5D(QuantityOfInterest): def __init__(self, systemsize): QuantityOfInterest.__init__(self, systemsize) self.quadratic_matrix =
np.diag([50, 40, 30, 20, 1])
numpy.diag
import numpy as np import random import pandas as pd from matplotlib import pyplot as plt ''' Perceptron algorithm that finds the idea weights given a data set and labels Parameters ---------- coords: data points in 2 dimensions ([x1, x2]) labels: binary target output for each data point (-1 or 1) epochs: number of iterations that needs to be run misclassifiedList Returns ------- w: resulting weight vector after learning the data points ''' def perceptron_algorithm(coords, labels, epochs, misclassifiedList): w = np.zeros((coords.shape[1]) + 1) for i in range(epochs): misclassified = 0 for x, y in zip(coords, labels): dotProd = np.dot(x, w[1:]) + w[0] target = 1.0 if (dotProd > 0.0) else -1.0 if(target != y): print(y, target, "classified incorrectly") misclassified += 1 w[1:] += y * x w[0] += x[0] else: print(y, target, "classified correctly") print("PRINTING W", w) misclassifiedList.append(misclassified) return w if __name__ == "__main__": # Set up the random generator seed np.random.seed(121232141) # Total number of random points total = 1000 # Create 20 random points that are linearly separable A = 2 * np.random.random_sample((total//2, 2)) + 0 B = 2 * np.random.random_sample((total//2, 2)) - 2 # Create the lists that hold the respective binary labels for the 20 points A1 = np.ones((total//2, 1)) B1 = np.negative(np.ones((total//2, 1))) x = np.linspace(-3, 3) y = -1 * x # Plot the scatter points and the target function, y = -x plt.plot(x, y, color="blue", label="target function f") plt.scatter(A[:,0], A[:,1], marker="o") plt.scatter(B[:,0], B[:,1], marker="x") plt.title("PLA Testing") plt.xlabel("x1") plt.ylabel("x2") coords =
np.concatenate((A, B))
numpy.concatenate
from __future__ import absolute_import, division, print_function, unicode_literals from banzai.utils import stats import numpy as np from numpy import ma np.random.seed(10031312) def test_median_axis_none_mask_none(): for i in range(25): size = np.random.randint(1, 10000) mean = np.random.uniform(-1000, 1000) sigma = np.random.uniform(0, 1000) a = np.random.normal(mean, sigma, size) expected = np.median(a.astype(np.float32)) actual = stats.median(a) assert np.float32(expected) == actual def test_median_2d_axis_none_mask_none(): for i in range(5): size1 = np.random.randint(1, 300) size2 = np.random.randint(1, 300) mean = np.random.uniform(-1000, 1000) sigma = np.random.uniform(0, 1000) a = np.random.normal(mean, sigma, size=(size1, size2)) expected = np.median(a.astype(np.float32)) actual = stats.median(a) assert np.float32(expected) == actual def test_median_3d_axis_none_mask_none(): for i in range(5): size1 = np.random.randint(1, 50) size2 = np.random.randint(1, 50) size3 = np.random.randint(1, 50) mean = np.random.uniform(-1000, 1000) sigma = np.random.uniform(0, 1000) a = np.random.normal(mean, sigma, size=(size1, size2, size3)) expected = np.median(a.astype(np.float32)) actual = stats.median(a) assert np.float32(expected) == actual def test_median_2d_axis_0_mask_none(): for i in range(5): size1 = np.random.randint(1, 300) size2 = np.random.randint(1, 300) mean = np.random.uniform(-1000, 1000) sigma = np.random.uniform(0, 1000) a = np.random.normal(mean, sigma, size=(size1, size2)) expected = np.median(a.astype(np.float32), axis=0) actual = stats.median(a, axis=0) np.testing.assert_allclose(actual, expected.astype(np.float32), atol=1e-6) def test_median_2d_axis_1_mask_none(): for i in range(5): size1 = np.random.randint(1, 300) size2 = np.random.randint(5, 300) mean = np.random.uniform(-1000, 1000) sigma = np.random.uniform(0, 1000) a = np.random.normal(mean, sigma, size=(size1, size2)) expected = np.median(a.astype(np.float32), axis=1) actual = stats.median(a, axis=1) np.testing.assert_allclose(actual, expected.astype(np.float32), atol=1e-6) def test_median_3d_axis_0_mask_none(): for i in range(5): size1 = np.random.randint(5, 50) size2 = np.random.randint(1, 50) size3 = np.random.randint(1, 50) mean = np.random.uniform(-1000, 1000) sigma = np.random.uniform(0, 1000) a = np.random.normal(mean, sigma, size=(size1, size2, size3)) expected = np.median(a.astype(np.float32), axis=0) actual = stats.median(a, axis=0) np.testing.assert_allclose(actual, expected.astype(np.float32), atol=1e-6) def test_median_3d_axis_1_mask_none(): for i in range(5): size1 = np.random.randint(1, 50) size2 = np.random.randint(5, 50) size3 = np.random.randint(1, 50) mean = np.random.uniform(-1000, 1000) sigma = np.random.uniform(0, 1000) a = np.random.normal(mean, sigma, size=(size1, size2, size3)) expected = np.median(a.astype(np.float32), axis=1) actual = stats.median(a, axis=1) np.testing.assert_allclose(actual, expected.astype(np.float32), atol=1e-6) def test_median_3d_axis_2_mask_none(): for i in range(5): size1 = np.random.randint(1, 50) size2 = np.random.randint(1, 50) size3 = np.random.randint(5, 50) mean = np.random.uniform(-1000, 1000) sigma = np.random.uniform(0, 1000) a = np.random.normal(mean, sigma, size=(size1, size2, size3)) expected = np.median(a.astype(np.float32), axis=2) actual = stats.median(a, axis=2) np.testing.assert_allclose(actual, expected.astype(np.float32), atol=1e-6) def test_median_axis_none_mask(): for i in range(25): size = np.random.randint(1, 10000) mean = np.random.uniform(-1000, 1000) sigma = np.random.uniform(0, 1000) a = np.random.normal(mean, sigma, size) value_to_mask = np.random.uniform(0, 1.0) mask = np.random.uniform(0, 1, size) < value_to_mask expected = ma.median(ma.array(a, mask=mask, dtype=np.float32)) actual = stats.median(a, mask=mask) assert np.float32(expected) == actual def test_median_2d_axis_none_mask(): for i in range(5): size1 = np.random.randint(1, 300) size2 =
np.random.randint(1, 300)
numpy.random.randint
import os import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt import warnings warnings.filterwarnings("ignore") def read_p1(problem_name): x = pd.read_csv(os.path.join("data", "p1", f"p1_{problem_name}_X.dat"), sep=" ", header=None, engine='python') y = pd.read_csv(os.path.join("data", "p1", f"p1_{problem_name}_y.dat"), header=None) y = y.values.reshape((-1,)) x = x.values return x, y def plot_points(x, y): sns.scatterplot( x=x[:, 0], y=x[:, 1], hue=y, palette=sns.color_palette("muted", n_colors=2) ) def plot_separator(w, bias): slope = -w[0] / w[1] intercept = -bias / w[1] limits = plt.axes().get_xlim() x =
np.arange(limits[0], limits[1])
numpy.arange
import numpy as np import time #from scipy.linalg import sqrtm ABSERR = 10E-10 def compute_psd_factorization(X,r,nIterates=100,method='multiplicative',Init = None,silent=False): n1,n2 = X.shape if Init is None: A = gen_psdlinmap(n1,r) B = gen_psdlinmap(n2,r) else: A,B = Init Errs = np.zeros((nIterates,)) start = time.process_time() if not(silent): print(' It. # | Error | Time Taken') for ii in range(nIterates): t_start = time.time() if method == 'multiplicative': try: B = update_multiplicative(A, B, X) except: print('d') B = update_multiplicative_damped(A, B, X) try: A = update_multiplicative(B, A, X.T) except: print('d') A = update_multiplicative_damped(B, A, X.T) if method == 'multiplicativeaccelerated': B = update_multiplicativeaccelerated(A, B, X) A = update_multiplicativeaccelerated(B, A, X.T) if method == 'fpgm': B = update_fpgm(A, B, X, 10) B = np.real(B) A = update_fpgm(B, A, X.T, 10) AB = linmap_dot(A, B) Errs[ii,] = np.linalg.norm(AB-X)/np.linalg.norm(X) elapsed_time = time.time() - t_start np.save('A.npy',A) np.save('B.npy',B) np.save('Errs.npy',Errs) if not(silent): print(str(ii+1) + ' | ' + str(Errs[ii,]) + ' | ' + str(elapsed_time)) time_elapsed = time.process_time() - start print('Average Iteration Time: ' + str(time_elapsed/nIterates)) print('Total Time: ' + str(time_elapsed)) return {'A': A, 'B': B, 'Errors' : Errs, 'ElapsedTime' : time_elapsed} def sqrtm(X): R_org = np.linalg.cholesky(X).T R = R_org.copy() ERR = 100.0 c = 0 while ERR > ABSERR: c += 1 Rnew = 0.5 * (R + np.linalg.inv(R).T) ERR = np.linalg.norm(Rnew-R) / np.linalg.norm(R) R = Rnew #print(c) Xhalf = R.T @ R_org return (Xhalf + Xhalf.T) / 2 def gen_psd(q): """ Random PSD matrix of size (q,q) from Wishart distribution """ G = np.random.randn(q,q) G = G @ G.T * (1/q) return G def gen_psdlinmap(d,q): """ Generate Random linear map of dimensions d,q,q Each "row" is a q x q random symmetric PSD matrix """ A = np.zeros((d,q,q)) for i in range(d): # The rows of A are PSD matrices A[i,:,:] = gen_psd(q) return A def gen_cpmap(d,q,sym=False): """ Generate random linear map of dimensions d,q,q Each row is a q x q random symmetric matrix """ # Random linear map A = np.random.randn(d,q,q) / np.sqrt(q*d) if sym==True: for i in range(d): A[i,:,:] = A[i,:,:] + A[i,:,:].T return A def applycpmap(A,X): d,q,_ = A.shape AX = np.zeros((q,q)) for i in range(d): W = A[i,:,:] W = (W @ X) @ W.T W = (W + W.T) / 2 AX += W return AX def linmap_dot(A,B): """ Given inputs two linear maps of size d_1,q,q and d_2,q,q Returns a matrix of size d1,d_2 by `contracting' these linear maps """ d1,_,_ = A.shape d2,_,_ = B.shape X = np.zeros((d1,d2)) for i in range(d1): for j in range(d2): X[i,j] = np.trace( A[i,:,:].T @ B[j,:,:] ) return X def applylinmap(A,X): """ Input A is a linear map of size d,q,q and X is a matrix of size q,q Output is A(X) a vector of size d """ d,q,_ = A.shape AX = np.zeros((d,)) for i in range(d): AX[i,] = np.trace(A[i,:,:].T @ X) return AX def applytransposelinmap(A,x): """ Input A is a linear map of size d,q,q and x is a vector of size d Output is A^T x a matrix of size q,q """ d,q,_ = A.shape AtX =
np.zeros((q,q))
numpy.zeros
import yaml from boids import Boids from copy import deepcopy import numpy as np boids = Boids() before = deepcopy(boids.boids) move_to_middle = 0.01 boids.fly_towards_the_middle(boids.boids,move_to_middle) after = boids.boids fixture = {"before": np.array(before).tolist(), "after": np.array(after).tolist(), "move_to_middle_strength": move_to_middle} fixture_file = open("fixture_fly_towards_the_middle.yml",'w') fixture_file.write(yaml.dump(fixture)) fixture_file.close() boids = Boids() before=deepcopy(boids.boids) alert_distance = 100 boids.fly_away_from_nearby_boids(boids.boids,alert_distance) after= boids.boids fixture={"before":np.array(before).tolist(), "after":
np.array(after)
numpy.array
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader import torchvision.models as torch_models import os.path as osp import os import time from datetime import datetime from collections import defaultdict as dd import utils import numpy as np def soft_cross_entropy(pred, soft_targets, weights=None): if weights is not None: return torch.mean(torch.sum(- soft_targets * F.log_softmax(pred, dim=1) * weights, 1)) else: return torch.mean(torch.sum(- soft_targets * F.log_softmax(pred, dim=1), 1)) def train_step(model, train_loader, criterion, optimizer, epoch, device, log_interval=10, writer=None): model.train() train_loss = 0. correct = 0 total = 0 train_loss_batch = 0 epoch_size = len(train_loader.dataset) t_start = time.time() for batch_idx, (inputs, targets) in enumerate(train_loader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() if writer is not None: pass train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) if len(targets.size()) == 2: # Labels could be a posterior probability distribution. Use argmax as a proxy. target_probs, target_labels = targets.max(1) else: target_labels = targets correct += predicted.eq(target_labels).sum().item() prog = total / epoch_size exact_epoch = epoch + prog - 1 acc = 100. * correct / total train_loss_batch = train_loss / total # if (batch_idx + 1) % log_interval == 0: # print('[Train] Epoch: {:.2f} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.1f} ({}/{})'.format( # exact_epoch, batch_idx * len(inputs), len(train_loader.dataset), 100. * batch_idx / len(train_loader), # loss.item(), acc, correct, total)) t_end = time.time() t_epoch = int(t_end - t_start) acc = 100. * correct / total return train_loss_batch, acc def test_step(model, test_loader, criterion, device, epoch=0., silent=True, writer=None, victimmodel = None): model.eval() test_loss = 0. correct = 0 correct2 = 0 total = 0 t_start = time.time() with torch.no_grad(): for inputs, targets in test_loader: inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) #loss = criterion(outputs, targets) nclasses = outputs.size(1) #test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() if victimmodel != None: outputs2 = victimmodel(inputs) _, predicted2 = outputs2.max(1) correct2 += predicted.eq(predicted2).sum().item() acc2 = 100. * correct2 / total t_end = time.time() t_epoch = int(t_end - t_start) acc = 100. * correct / total test_loss /= total if not silent: print('[Test] Epoch: {}\tLoss: {:.6f}\tAcc: {:.1f}% ({}/{})'.format(epoch, test_loss, acc, correct, total)) if writer is not None: writer.add_scalar('Loss/test', test_loss, epoch) writer.add_scalar('Accuracy/test', acc, epoch) if victimmodel == None: return test_loss, acc else: return test_loss, acc, acc2 def train_model(model, trainset, out_path, batch_size=64, criterion_train=None, criterion_test=None, testset=None, device=None, num_workers=10, lr=0.1, momentum=0.5, lr_step=30, lr_gamma=0.1, resume=None, epochs=100, log_interval=100, weighted_loss=False, checkpoint_suffix='', optimizer=None, scheduler=None, writer=None, filerawacc=None, filerawacc2 = None, length = None, victimmodel = None, **kwargs): if device is None: device = torch.device('cuda') run_id = str(datetime.now()) train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=True) if testset is not None: test_loader = testset else: test_loader = None if weighted_loss: if not isinstance(trainset.samples[0][1], int): print('Labels in trainset is of type: {}. Expected: {}.'.format(type(trainset.samples[0][1]), int)) class_to_count = dd(int) for _, y in trainset.samples: class_to_count[y] += 1 class_sample_count = [class_to_count[c] for c, cname in enumerate(trainset.classes)] print('=> counts per class: ', class_sample_count) weight =
np.min(class_sample_count)
numpy.min
import logging import os import numpy as np import pandas as pd import sqlalchemy from cached_property import cached_property from scipy.interpolate import interp1d from aqueduct.errors import Error class RiskService(object): def __init__(self, user_selections): # DB Connection self.engine = sqlalchemy.create_engine(os.getenv('POSTGRES_URL')) self.metadata = sqlalchemy.MetaData(bind=self.engine) self.metadata.reflect(self.engine) # BACKGROUND INFO self.flood_types = ["riverine", "coastal"] self.exposures = ["gdpexp", "popexp", "urban_damage_v2"] self.geogunits = ["geogunit_103", "geogunit_108"] self.scenarios = {"business as usual": ['rcp8p5', 'ssp2', "bau"], "pessimistic": ['rcp8p5', 'ssp3', "pes"], "optimistic": ['rcp4p5', 'ssp2', "opt"], "rcp8p5": ['rcp8p5', 'ssp3', "pes"], "rcp4p5": ['rcp8p5', 'ssp2', "bau"]} self.models = {"riverine": ["gf", "ha", "ip", "mi", "nr"], # "coastal": ["wt"]} "coastal": ["95", "50", "05"]} self.years = [2010., 2030., 2050., 2080.] self.ys = [str(x)[0:4] for x in self.years] self.rps = [2, 5, 10, 25, 50, 100, 250, 500, 1000] self.rps_names = ["rp" + str(x).zfill(5) for x in self.rps] # MANDATORY USER INPUTS self.flood = user_selections.get("flood") # Flood type self.exposure = user_selections.get("exposure") # Exposure type self.geogunit_unique_name = user_selections.get("geogunit_unique_name") # Unique geographical unit name self.sub_scenario = user_selections.get( "sub_scenario") # Subsidence option (Will always be no for Riverine floods) self.existing_prot = user_selections.get( "existing_prot") # User input for protection standard (triggers on-the-fly calculation) self.scenario = user_selections.get("scenario") self.geogunit, self.geogunit_name, self.geogunit_type, self.clim, self.socio, self.scen_abb, self.sub_abb, self.df_precalc, self.prot_pres, self.risk_analysis = self.user_selections() # Scenario abbreviation self.mods = self.models.get(self.flood) def user_selections(self): """ Purpose: Gather all necessary inputs to run any analysis Input: flood: Riverine of Coastal (User must select) Geogunit_unique_name: geographical unit name from website. (User must select) Website should use list of unique names to avoid selecting more than one unit Scenario: Business as usual, Pessimistic, Optimistic sub_scenario: Yes (defaul(t), No does the user want to consider subsidence? Only relevant for coastal) existing_prot: Default protection standard. User can input their own or, which will trigger on-the-fly calculations Output: geogunit unit - (geogunit_103 for cities, geogunit_108 for everything else) geogunit_name - original (ie non-unique) name geogunit_type - City, State, Country, Basin clim - rcp4p5, rcp8p4 (climate scenario associated with overall scenario) socio - base, ssp2, ssp3 (socioeconomic scenario associated with overall scenario) sub_scenario- Yes, No (Is subsidence included?) sub_abb - wtsub or nosub (code name for subsidence. wtsub = with sub) prot_pres - default protection standard for unit as a whole risk_analysis - can we use precalculated risk data, or do we need to calculate on-the-fly? """ # GEOGUNIT INFO fids, geogunit_name, geogunit_type = pd.read_sql_query( "SELECT fids, name, type FROM lookup_master where uniqueName = '{0}' ".format(self.geogunit_unique_name), self.engine).values[0] geogunit = "geogunit_103" if geogunit_type.lower() == "city" else "geogunit_108" # IMPACT DRIVER INFO (climate and socioeconomc scenarios clim, socio, scen_abb = self.scenarios.get(self.scenario) # SUBSIDENCE INFO # Make sure subsidence is turned off for river floods sub_abb = "wtsub" if self.sub_scenario else "nosub" # DEFAULT DATA defaultfn = "precalc_agg_{0}_{1}_{2}".format(self.flood, geogunit_type.lower(), sub_abb) logging.info(f'[RISK - user_selection]: {str(defaultfn)}') df_precalc = pd.read_sql_query("SELECT * FROM {0} where id like '{1}'".format(defaultfn, geogunit_name), self.engine, index_col='id') # PROTECTION STANDARDS and RISK ANALYSIS TYPE if not self.existing_prot: risk_analysis = "precalc" # Hardwire in the protection standards for the Netherlands or Average prot standard for a whole unit (i.e. country) # here self.exposure should be allways urban_damage_v2 prot_pres = (1000 if geogunit_name in ['Noord-Brabant, Netherlands', 'Zeeland, Netherlands', 'Zeeuwse meren, Netherlands', 'Zuid-Holland, Netherlands', 'Drenthe, Netherlands', 'Flevoland, Netherlands', 'Friesland, Netherlands', 'Gelderland, Netherlands', 'Groningen, Netherlands', 'IJsselmeer, Netherlands', 'Limburg, Netherlands', 'Noord-Holland, Netherlands', 'Overijssel, Netherlands', 'Utrecht, Netherlands', 'Netherlands'] else df_precalc[ ["_".join(['urban_damage_v2', '2010', scen_abb, "prot_avg"])]]) else: risk_analysis = "calc" prot_pres = self.existing_prot return geogunit, geogunit_name, geogunit_type.lower(), clim, socio, scen_abb, sub_abb, df_precalc, prot_pres, risk_analysis def lp_data(self): inFormat = 'raw_agg_{:s}_{:s}_{:s}'.format(self.flood, self.geogunit_type, self.exposure) cols = [ '{0} as {1}'.format(col, col.replace(self.clim, 'lp').replace(self.socio + "_" + self.sub_abb + "_", '')) for col in sqlalchemy.Table(inFormat, self.metadata).columns.keys() if (self.clim in col) and (self.socio in col) and (self.sub_abb in col)] df_temp = pd.read_sql_query( "SELECT {0} FROM {1} where id like '{2}'".format(', '.join(cols), inFormat, self.geogunit_name), self.engine) df_lpcurve = df_temp.T df1 = df_lpcurve.reset_index().rename(columns={"index": "index", 0: "y"}) df2 = df_lpcurve.reset_index()['index'].str.split('_', expand=True).rename( columns={0: "lp", 1: "c", 2: "year", 3: "x"}) logging.info('[RISK]: lp_curve') #logging.info(df1) #logging.info(df2) return pd.concat([df1, df2], axis=1).reindex(df1.index)[['c', 'year', 'y', 'x']].replace(self.rps_names, self.rps) #return pd.concat([df1, df2], axis=1, join_axes=[df1.index])[['c', 'year', 'y', 'x']].replace(self.rps_names, self.rps) def bench(self): defaultfn = "precalc_agg_{0}_{1}_{2}".format(self.flood, self.geogunit_type, self.sub_abb) print(defaultfn) # cols = ['{0} as {1}'.format(col, col.replace(self.exposure, 'bench').replace('urban_damage_v2', 'bench').replace("_"+ self.scen_abb, '')) for col in sqlalchemy.Table(defaultfn, self.metadata).columns.keys() if ((self.exposure in col) or ('urban_damage_v2' in col)) and (self.scen_abb in col) and ("cc" not in col) and ("soc" not in col) and ("sub" not in col) and ("avg" in col)] cols = ['{0} as {1}'.format(col, col.replace(self.exposure, 'bench').replace('urban_damage_v2', 'bench').replace( "_" + self.scen_abb, '')) for col in sqlalchemy.Table(defaultfn, self.metadata).columns.keys() if ((self.exposure in col) or ('prot' in col)) and (self.scen_abb in col) and ("cc" not in col) and ( "soc" not in col) and ("sub" not in col) and ("avg" in col)] benchData = pd.read_sql_query("SELECT id, {0} FROM {1}".format(', '.join(cols), defaultfn), self.engine, index_col='id') return benchData def format_risk(self, dataframe): datalist = ["tot_avg", "tot_min", "tot_max", "ast", "prot_avg", "per_avg", "per_min", "per_max", "cc_avg", "cc_min", "cc_max", "soc_avg", "sub_avg"] colNames = ["Annual_Damage_Avg", "Annual_Damage_Min", "Annual_Damage_Max", "Asset_Value", "Flood_Protection", "Percent_Damage_Avg", "Percent_Damage_Min", "Percent_Damage_Max", "CC_Driver_Avg", "CC_Driver_Min", "CC_Driver_Max", "Soc_Driver", "Sub_Driver"] df_final = pd.DataFrame(index=self.ys, columns=colNames) for d in range(0, len(datalist)): selData = dataframe[[col for col in dataframe.columns.tolist() if (datalist[d] in col)]] if len(selData.values[0]) == 3: df_final[colNames[d]][1:] = selData.values[0] else: df_final[colNames[d]] = selData.values[0] return df_final def find_assets(self): """ Purpose: Find total asset value Output: df_aggregate = Annual impacts for each year for user-selected geographical unit """ # Create term to filter out unnecessary results. Drop SSP2 data if scenario # is pessemistic. Else, drop SSP3 dropex = "ssp2" if self.scen_abb == "pes" else "ssp3" assts = self.df_precalc[[col for col in self.df_precalc.columns.tolist() if (self.exposure in col) and (self.scen_abb in col) and ("ast" in col) and ( dropex not in col)]] return assts.reset_index(drop=True) def run_stats(self, dataframe): """ Purpose: Finds the average, min, and max impact for all impact types Input: dataframe: Data associated with flood, geography, exposure type for all climate models Output: Dataframe with average impact data for each year for each impact type. Also includes min and max (uncertainity) """ # Create dataframe to hold final data df_final = pd.DataFrame(index=dataframe.index) # Define column field name structure colFormat = '{:s}_{:s}_{:s}_{:s}_{:s}'.format # Run following analysis for each year and impact type for y in self.ys: for t in ["cc", "soc", "sub", "tot", "prot"]: df_filt = dataframe[[col for col in dataframe.columns if (t in col) and (y in col)]] df_final[colFormat(self.exposure, y, self.scen_abb, t, "avg")] = df_filt.mean(axis=1) if y != '2010' and t == "tot" or y != '2010' and t == 'cc': df_final[colFormat(self.exposure, y, self.scen_abb, t, "min")] = df_filt.min(axis=1) df_final[colFormat(self.exposure, y, self.scen_abb, t, "max")] = df_filt.max(axis=1) df_final.replace(np.nan, 0, inplace=True) return df_final def ratio_to_total(self, dataframe): """ Purpose: Finds the impact attributed to climate change only, socioecon only, and subsidence only Input: inData: Annual expected impact data (found using default_risk function) mods: All possible climate models Output: Dataframe with final impact data for each year for each impact type. Column name also specifies given model """ # Create dataframe to hold final data df_final = pd.DataFrame(index=dataframe.index) # Run analysis for each climate model and each year past 2010 colFormat = '{:s}_{:s}_{:s}_{:s}_{:s}'.format df_final[colFormat(self.exposure, "2010", self.scen_abb, "prot", "avg")] = dataframe[ colFormat(self.exposure, "2010", self.scen_abb, "prot", "avg")] tot2010 = dataframe[colFormat(self.exposure, "2010", self.scen_abb, "tot", "avg")] df_final[colFormat(self.exposure, "2010", self.scen_abb, "tot", "avg")] = tot2010 for y in self.ys[1:]: # Filter data year df_filt = dataframe[[col for col in dataframe.columns if (y in col)]] # Total impact for selected year is already calculated df_final[colFormat(self.exposure, y, self.scen_abb, "tot", "avg")] = dataframe[ colFormat(self.exposure, y, self.scen_abb, "tot", "avg")] df_final[colFormat(self.exposure, y, self.scen_abb, "tot", "min")] = dataframe[ colFormat(self.exposure, y, self.scen_abb, "tot", "min")] df_final[colFormat(self.exposure, y, self.scen_abb, "tot", "max")] = dataframe[ colFormat(self.exposure, y, self.scen_abb, "tot", "max")] # Find the difference from each impact to the 2010 baseline data df_filt['tot_diff'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "tot", "avg")] - tot2010 # Total impact df_filt['cc_diff_avg'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "cc", "avg")] - tot2010 # Total impact df_filt['cc_diff_min'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "cc", "min")] - tot2010 # Total impact df_filt['cc_diff_max'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "cc", "max")] - tot2010 # Total impact df_filt['soc_diff'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "soc", "avg")] - tot2010 # Total impact#Soc only impact df_filt['sub_diff'] = dataframe[colFormat(self.exposure, y, self.scen_abb, "sub", "avg")] - tot2010 # Total impact #Subsidence only impact # Correct for values if impact is less than 2010 baseline data df_filt['cc_diff_avg'] = np.where(df_filt['tot_diff'] > 0, np.where(df_filt['cc_diff_avg'] < 0, 0, df_filt['cc_diff_avg']), np.where(df_filt['cc_diff_avg'] > 0, 0, df_filt['cc_diff_avg'])) df_filt['cc_diff_min'] = np.where(df_filt['tot_diff'] > 0, np.where(df_filt['cc_diff_min'] < 0, 0, df_filt['cc_diff_min']), np.where(df_filt['cc_diff_min'] > 0, 0, df_filt['cc_diff_min'])) df_filt['cc_diff_max'] = np.where(df_filt['tot_diff'] > 0, np.where(df_filt['cc_diff_max'] < 0, 0, df_filt['cc_diff_max']),
np.where(df_filt['cc_diff_max'] > 0, 0, df_filt['cc_diff_max'])
numpy.where
import numpy as np import matplotlib.pyplot as plt def boot(data, statistic, R): from numpy import zeros, arange, mean, std, loadtxt from numpy.random import randint from time import time t = zeros(R); n = len(data); inds = arange(n); t0 = time() # non-parametric bootstrap for i in range(R): t[i] = statistic(data[randint(0,n,n)]) return t def tsboot(data,statistic,R,l): from numpy import std, mean, concatenate, arange, loadtxt, zeros, ceil from numpy.random import randint from time import time t = zeros(R); n = len(data); k = int(ceil(float(n)/l)); inds =
arange(n)
numpy.arange
import os.path as op import glob import numpy as np import mne import matplotlib.pyplot as plt with open('./eeg_file_list.txt', 'r') as fid: file_list = fid.read().split('\n')[:-1] subjects = list({ff.split('_')[0] for ff in file_list}) out_path = op.expanduser('~/study_data/LEMON/EEG_Preprocessed') ref_info = mne.io.read_info("lemon-ref-info.fif") cov_fnames = glob.glob("./derivatives/sub-??????-alpha-cov.fif") cov_egivals = list() for fname in cov_fnames: cov = mne.read_cov(fname) eigvals =
np.linalg.svd(cov.data, full_matrices=True)
numpy.linalg.svd
import os import re import numpy as np def read_log_file(root_dir, file_name_list): losses = [] for file_name in file_name_list: i = 0 with open(os.path.join(root_dir, file_name), 'r') as log_file: for line in log_file: match_cost = re.findall('train_cost: [-+]?[0-9]*\.?[0-9]*', line) if len(match_cost) > 0: loss = float(match_cost[0].split(": ")[1]) losses.append(loss) return
np.array(losses)
numpy.array