prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import cv2 from PIL import Image import numpy as np import pydensecrf.densecrf as dcrf import multiprocessing import os from os.path import exists palette = [0,0,0, 128,0,0, 0,128,0, 128,128,0, 0,0,128, 128,0,128, 0,128,128, 128,128,128, 64,0,0, 192,0,0, 64,128,0, 192,128,0, 64,0,128, 192,0,128, 64,128,128, 192,128,128, 0,64,0, 128,64,0, 0,192,0, 128,192,0, 0,64,128] cats = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tv'] # prepare data data_path = 'data/VOCdevkit/VOC2012/' train_lst_path = data_path + 'ImageSets/Segmentation/train_cls.txt' im_path = data_path + 'JPEGImages/' sal_path = data_path + 'saliency_aug/' att_path = data_path + 'feat_1/' save_path = data_path + 'proxy_label_1/' if not exists(save_path): os.makedirs(save_path) with open(train_lst_path) as f: lines = f.readlines() # generate proxy labels def gen_gt(index): line = lines[index] line = line[:-1] fields = line.split() name = fields[0] im_name = im_path + name + '.jpg' bg_name = sal_path + name + '.png' img = cv2.imread(im_name) sal = cv2.imread(bg_name, 0) height, width = sal.shape gt = np.zeros((21, height, width), dtype=np.float32) sal = np.array(sal, dtype=np.float32) conflict = 0.9 bg_thr = 32 att_thr = 0.8 gt[0] = (1 - (sal / 255)) init_gt = np.zeros((height, width), dtype=float) sal_att = sal.copy() for i in range(len(fields) - 1): k = i + 1 cls = int(fields[k]) att_name = att_path + name + '_' + str(cls) + '.png' if not exists(att_name): continue att = cv2.imread(att_name, 0) att = (att - np.min(att)) / (np.max(att) - np.min(att) + 1e-8) gt[cls+1] = att.copy() sal_att = np.maximum(sal_att, (att > att_thr) *255) bg =
np.array(gt > conflict, dtype=np.uint8)
numpy.array
import numba import numpy as np from sklearn.base import BaseEstimator, RegressorMixin from random_state import ensure_random_state njit_cached = numba.njit(cache=True) @njit_cached def _score_split(y, partition): """Return the mean squared error of a potential split partition. Parameters ---------- y : (num_samples,) ndarray The vector of targets in the current node. partition : tuple A 2-tuple of boolean masks to index left and right samples in ``y``. """ mask_left, mask_right = partition y_left = y[mask_left] y_right = y[mask_right] return (np.sum((y_left - y_left.mean()) ** 2) + np.sum((y_right - y_right.mean()) ** 2)) @njit_cached def _find_best_split(x, y): """Find the best split for a vector of samples. Determine the threshold in `x` which optimizes the split score by minimizing the mean squared error of the target. Parameters ---------- x : (num_samples,) ndarray The vector of observations of a particular feature. y : (num_samples,) ndarray The vector of targets. Returns ------- split_configuration : dict A dictionary with the best `score`, `threshold` and `partition`. """ best_score = np.inf best_threshold = None best_partition = None for threshold in x: # Obtain binary masks for all samples whose feature values are # below (left) or above (right) the split threshold. mask_left = x < threshold mask_right = x >= threshold # If we can't split the samples based on `threshold', move on. if not mask_left.any() or not mask_right.any(): continue # Score the candidate split. partition = (mask_left, mask_right) score = _score_split(y, partition) if score < best_score: best_score = score best_threshold = threshold best_partition = partition return best_score, best_threshold, best_partition class Tree: """The fundamental data structure representing a binary decision tree. Parameters ---------- max_depth : int or None The maximum allowed tree depth. In general, this requires pruning the tree to select the best subtree configuration. min_samples_split : int The minimum number of samples required to split an internal node. max_features : int or None The size of the randomly selected subset of features to consider when splitting an internal node. random_state : numpy.random.Generator or int or None The random state of the estimator to allow reproducible tree construction when `max_features` is not None. Attributes ---------- left : Tree or None The left node of the tree or None if the current node is a leaf. right : Tree or None The right node of the tree or None if the current node is a leaf. feature_index: int The column index of the feature to split on in the current node. threshold : float or None The feature value to split by or None if the node is a leaf. prediction : float or None The prediction value if the node is a leaf or None. """ def __init__(self, max_depth=None, min_samples_split=2, max_features=None, random_state=None): self._max_depth = max_depth self._min_samples_split = min_samples_split self._max_features = max_features self._random_state = random_state if self._max_depth is None: self._max_depth = np.inf if self._max_features is not None: assert self._random_state is not None, "No random state provided" self.left = None self.right = None self.feature_index = None self.threshold = None self.prediction = None def construct_tree(self, X, y, depth=0): """Construct the binary decision tree via recursive splitting. Parameters ---------- X : (num_samples, num_features) ndarray The matrix of observations. y : (num_samples,) ndarray The vector of targets corresponding to the observations `X`. """ num_samples, num_features = X.shape # Too few samples to split, so turn the node into a leaf. if num_samples < self._min_samples_split or depth >= self._max_depth: self.prediction = y.mean() return random_state = ensure_random_state(self._random_state) if self._max_features is not None: feature_indices = random_state.integers( num_features, size=min(self._max_features, num_features)) else: feature_indices =
np.arange(num_features)
numpy.arange
import os from pathlib import Path from unittest import TestCase import numpy as np import pytest import s3fs import zarr from easepy import EaseGrid path = Path(__file__) BASE_FILE_LOCATION = "s3://public-test-data/easepy/" class TestEasepy(TestCase): def setUp(self): pass @pytest.mark.unit def test_ease_north_hemi_geodetic2ease_array(self): ease = EaseGrid(12000, "NorthHemi") lats = np.array([75, 85, 89.99]) lons =
np.array([-175, 7, 155])
numpy.array
from soxs.instrument import make_background, AuxiliaryResponseFile, \ instrument_simulator, make_background_file, simulate_spectrum, \ RedistributionMatrixFile from soxs.background.foreground import hm_astro_bkgnd from soxs.background.instrument import acisi_particle_bkgnd from soxs.background.spectra import ConvolvedBackgroundSpectrum from numpy.random import RandomState from numpy.testing import assert_allclose import astropy.io.fits as pyfits import tempfile import os import shutil import numpy as np prng = RandomState(24) def test_uniform_bkgnd_scale(): hdxi_arf = AuxiliaryResponseFile("xrs_hdxi_3x10.arf") events, event_params = make_background((50, "ks"), "hdxi", [30., 45.], foreground=True, instr_bkgnd=True, ptsrc_bkgnd=False, prng=prng) ncts = np.logical_and(events["energy"] >= 0.7, events["energy"] <= 2.0).sum() t_exp = event_params["exposure_time"] fov = (event_params["fov"]*60.0)**2 S = ncts/t_exp/fov dS = np.sqrt(ncts)/t_exp/fov foreground = ConvolvedBackgroundSpectrum(hm_astro_bkgnd, hdxi_arf) f_sum = foreground.get_flux_in_band(0.7, 2.0)[0] i_sum = acisi_particle_bkgnd.get_flux_in_band(0.7, 2.0)[0] b_sum = (f_sum+i_sum).to("ph/(arcsec**2*s)").value assert np.abs(S-b_sum) < 1.645*dS def test_simulate_bkgnd_spectrum(): tmpdir = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(tmpdir) prng = RandomState(29) hdxi_arf = AuxiliaryResponseFile("xrs_hdxi_3x10.arf") hdxi_rmf = RedistributionMatrixFile("xrs_hdxi.rmf") exp_time = 50000.0 fov = 3600.0 simulate_spectrum(None, "hdxi", exp_time, "test_bkgnd.pha", instr_bkgnd=True, foreground=True, prng=prng, overwrite=True, bkgnd_area=(fov, "arcsec**2")) ch_min = hdxi_rmf.e_to_ch(0.7)-hdxi_rmf.cmin ch_max = hdxi_rmf.e_to_ch(2.0)-hdxi_rmf.cmin f = pyfits.open("test_bkgnd.pha") ncts = f["SPECTRUM"].data["COUNTS"][ch_min:ch_max].sum() f.close() S = ncts/exp_time/fov dS = np.sqrt(ncts)/exp_time/fov foreground = ConvolvedBackgroundSpectrum(hm_astro_bkgnd, hdxi_arf) f_sum = foreground.get_flux_in_band(0.7, 2.0)[0] i_sum = acisi_particle_bkgnd.get_flux_in_band(0.7, 2.0)[0] b_sum = (f_sum+i_sum).to("ph/(arcsec**2*s)").value assert np.abs(S-b_sum) < 1.645*dS os.chdir(curdir) shutil.rmtree(tmpdir) def test_add_background(): tmpdir = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(tmpdir) prng1 = RandomState(29) prng2 = RandomState(29) ra0 = 30.0 dec0 = 45.0 ra1 = 22.0 dec1 = 22.0 exp_time = 50000.0 ra = np.array([]) dec = np.array([]) e =
np.array([])
numpy.array
from .common_setup import * import numpy as np import tensorflow as tf from astropy import time as at from bayes_filter import float_type from bayes_filter.coord_transforms import itrs_to_enu_6D, tf_coord_transform, itrs_to_enu_with_references, ITRSToENUWithReferences from bayes_filter.feeds import IndexFeed, TimeFeed, CoordinateFeed, init_feed from bayes_filter.misc import make_coord_array def test_itrs_to_enu_6D(tf_session, time_feed, lofar_array): # python test times =
np.arange(2)
numpy.arange
import numpy as np class one_fsq_noise(object): def __init__(self): self.buffer =
np.array([0.])
numpy.array
#!/usr/bin/env python # coding: utf-8 """ This script loads a template file and fills in IDs in columns where they are missing author: <NAME> for Knocean Inc., 22 September 2020 """ import pandas as pd import numpy as np from pathlib import Path from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument( "-t", "--template", dest="template_file", help="Template file", metavar="FILE", required=True ) parser.add_argument( "-m", "--metadata-table", dest="metadata_table_path", help="Path to the IHCC metadata table", metavar="FILE", ) parser.add_argument( "-l", "--length-id", dest="length_of_id", help="How many characters should your id by at most?", metavar="FILE", default=7, ) args = parser.parse_args() # Get the data dictionary id. If a metada data file is supplied, # get it from there, else use the path to uppercase if args.metadata_table_path: df = pd.read_csv(args.metadata_table_path, header=None, sep="\t") dd_id = df[df.iloc[:, 0] == "Cohort ID"].iloc[:, 1].iloc[0] else: dd_id = Path(args.template_file).stem dd_id = dd_id.upper() print("Generating IDs for data dictionary: %s" % dd_id) NUM_PADDED_ZERO = args.length_of_id MAX_ID = int("9" * NUM_PADDED_ZERO) PREFIX = "%s:" % dd_id COL_TERM_ID = "Term ID" COL_LABEL = "Label" df = pd.read_csv(args.template_file, sep="\t", dtype=str) len_pre = len(df) highest_current_id = 0 if COL_TERM_ID in df.columns: df_nn = df[df[COL_TERM_ID].notnull()] ids = df_nn[df_nn[COL_TERM_ID].str.startswith(PREFIX)][COL_TERM_ID].tolist() ids = [i.replace(PREFIX, "") for i in ids] ids_int = [int(i) for i in ids if i.isdigit()] if ids_int: highest_current_id = max(ids_int) else: df[COL_TERM_ID] = "" for index, row in df.iterrows(): value = row[COL_TERM_ID] if row[COL_LABEL] or (value.dtype == float and not
np.isnan(value)
numpy.isnan
import random import cv2 import numpy as np from scipy.ndimage.filters import gaussian_filter from aug import Operation, perform_randomly, utils @perform_randomly class PerspectiveDistortion(Operation): def __init__(self, max_warp=0.2, input_mtx=None, return_mtx=False): self._max_warp = max_warp self._mtx = input_mtx self._return_mtx = return_mtx def get_mtx(self, im_height, im_width): b = int(min(im_height, im_width) * self._max_warp) r = random.randint pts2 = np.float32([[0, 0], [im_width - 1, 0], [0, im_height - 1], [im_width - 1, im_height - 1]]) pts1 = np.float32([[r(0, b), r(0, b)], [im_width - 1 - r(0, b), r(0, b)], [r(0, b), im_height - 1 - r(0, b)], [im_width - 1 - r(0, b), im_height - 1 - r(0, b)]]) return cv2.getPerspectiveTransform(pts1, pts2) def transform_perspective_and_get_matrix(self, img): """ Find four random points within image and apply perspective transformation Args: img: input image max_warp: limiter of points positions mtx: perspective matrix """ im_height, im_width = img.shape[:2] if self._mtx is None: self._mtx = self.get_mtx(im_height, im_width) return cv2.warpPerspective(img, self._mtx, (im_width, im_height)), self._mtx def apply_on_image(self, img): image, mtx = self.transform_perspective_and_get_matrix(img) if self._return_mtx: return image, mtx return image def apply_on_annotations(self, annotations): """Apply transformation on set of points. """ if self._mtx is not None and annotations is not None: annotations = annotations.astype(np.float32) annotations = cv2.perspectiveTransform(annotations, self._mtx) return annotations def apply_on_masks(self, masks): return np.array([self.apply_on_image(mask) for mask in list(masks)]) @perform_randomly class ElasticDistortion(Operation): """ Based on: https://github.com/albu/albumentations/blob/master/albumentations/augmentations/functional.py """ def __init__(self, alpha=100., sigma=10., alpha_affine_range=10., interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101): self._alpha = alpha self._sigma = sigma self._alpha_affine = alpha_affine_range self._interpolation = interpolation self._border_mode = border_mode self._alpha = float(self._alpha) self._sigma = float(self._sigma) self._alpha_affine = float(self._alpha_affine) self._mapx = None self._mapy = None self._matrix = None def apply_on_image(self, image): h, w = image.shape[:2] if self._mapx is not None and self._mapy is not None and self._matrix is not None: image = cv2.warpAffine(image, self._matrix, (w, h), flags=self._interpolation, borderMode=self._border_mode) return cv2.remap(image, self._mapx, self._mapy, self._interpolation, borderMode=self._border_mode) # If method is called first time: center_square = np.float32((h, w)) // 2 # Random affine square_size = min((h, w)) // 3 pts1 = np.float32([ center_square + square_size, [center_square[0] + square_size, center_square[1] - square_size], center_square - square_size ]) pts2 = pts1 + np.random.uniform( -self._alpha_affine, self._alpha_affine, size=pts1.shape).astype(np.float32) self._matrix = cv2.getAffineTransform(pts1, pts2) image = cv2.warpAffine(image, self._matrix, (w, h), flags=self._interpolation, borderMode=self._border_mode) dx = gaussian_filter((np.random.rand(h, w) * 2 - 1), self._sigma) dx = np.float32(dx * self._alpha) dy = gaussian_filter((np.random.rand(h, w) * 2 - 1), self._sigma) dy = np.float32(dy * self._alpha) x, y = np.meshgrid(np.arange(w), np.arange(h)) self._mapx = np.float32(x + dx) self._mapy = np.float32(y + dy) return cv2.remap(image, self._mapx, self._mapy, self._interpolation, borderMode=self._border_mode) def apply_on_masks(self, masks): return np.array([self.apply_on_image(mask) for mask in list(masks)]) @perform_randomly class GridDistortion(Operation): """ Based on: https://github.com/albu/albumentations/blob/master/albumentations/augmentations/functional.py """ def __init__(self, num_steps=(10, 10), distort_limit=(.1, 2.), interpolation=cv2.INTER_LINEAR, maintain_size=True): self._num_steps = num_steps self._xsteps = [ 1 + random.uniform(distort_limit[0], distort_limit[1]) for _ in range(num_steps[0] + 1) ] self._ysteps = [ 1 + random.uniform(distort_limit[0], distort_limit[1]) for _ in range(num_steps[1] + 1) ] self._interpolation = interpolation self._maintain_size = maintain_size def apply_on_image(self, img): h, w = img.shape[:2] x_step = w // self._num_steps[0] xx = np.zeros(w, np.float32) prev = 0 for idx, x in enumerate(range(0, w, x_step)): start = x end = x + x_step if end > w: end = w cur = w else: cur = prev + x_step * self._xsteps[idx] xx[start:end] = np.linspace(prev, cur, end - start) prev = cur y_step = h // self._num_steps[1] yy = np.zeros(h, np.float32) prev = 0 for idx, y in enumerate(range(0, h, y_step)): start = y end = y + y_step if end > h: end = h cur = h else: cur = prev + y_step * self._ysteps[idx] yy[start:end] = np.linspace(prev, cur, end - start) prev = cur map_x, map_y = np.meshgrid(xx, yy) map_x = map_x.astype(np.float32) map_y = map_y.astype(np.float32) img = cv2.remap(img, map_x, map_y, interpolation=self._interpolation, borderMode=cv2.BORDER_CONSTANT) img = 255 - utils.fit_borders(255 - img) if self._maintain_size: img = cv2.resize(img, (w, h)) return img @perform_randomly class OpticalDistortion(Operation): """ Based on: https://github.com/albu/albumentations/blob/master/albumentations/augmentations/functional.py """ def __init__(self, distort_limit_x=(-.003, .003), distort_limit_y=(-.003, .003), shift_limit=(-.1, .1), interpolation=cv2.INTER_LINEAR, border_color=(0, 0, 0)): self._shift_limit = shift_limit self._interpolation = interpolation self._border_color = border_color self._k_x = random.uniform(*distort_limit_x) self._k_y = random.uniform(*distort_limit_y) self._dx = random.uniform(*shift_limit) self._dy = random.uniform(*shift_limit) def apply_on_image(self, img): h, w = img.shape[:2] dx = round(w * self._dx) dy = round(h * self._dy) k_x = self._k_x * w k_y = self._k_y * h fx = w fy = w cx = w * 0.5 + dx cy = h * 0.5 + dy camera_matrix =
np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32)
numpy.array
import numpy as np from scipy.constants import mu_0 # TODO: make this to take a vector rather than a single frequency def rTEfunfwd(n_layer, f, lamda, sig, chi, depth, HalfSwitch): """ Compute reflection coefficients for Transverse Electric (TE) mode. Only one for loop for multiple layers. Parameters ---------- n_layer : int The number layers f : complex, ndarray Frequency (Hz); size = (n_frequency x n_filter) lamda : complex, ndarray Frequency (Hz); size = (n_frequency x n_filter) sig: compelx, ndarray Conductivity (S/m); size = (n_layer x n_frequency x n_filter) chi: compelx, ndarray Susceptibility (SI); size = (n_layer,) depth: float, ndarray Top boundary of the layers; size = (n_ayer,) HalfSwitch: bool Switch for halfspace Returns ------- rTE: compex, ndarray Reflection coefficients; size = (n_frequency x n_lamba) """ n_frequency, n_filter = lamda.shape Mtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp10 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp01 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp11 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum00 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum10 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum01 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum11 = np.zeros((n_frequency, n_filter), dtype=complex) thick = -np.diff(depth) w = 2*np.pi*f rTE = np.zeros((n_frequency, n_filter), dtype=complex) utemp0 = np.zeros((n_frequency, n_filter), dtype=complex) utemp1 = np.zeros((n_frequency, n_filter), dtype=complex) const = np.zeros((n_frequency, n_filter), dtype=complex) utemp0 = lamda utemp1 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[0])*sig[0, :, :]) const = mu_0*utemp1/(mu_0*(1+chi[0])*utemp0) Mtemp00 = 0.5*(1+const) Mtemp10 = 0.5*(1-const) Mtemp01 = 0.5*(1-const) Mtemp11 = 0.5*(1+const) # may be store these and reuse for sensitivity? M00 = [] M10 = [] M01 = [] M11 = [] M0sum00 = Mtemp00 M0sum10 = Mtemp10 M0sum01 = Mtemp01 M0sum11 = Mtemp11 if HalfSwitch: M1sum00 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum10 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum01 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum11 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum00 = M0sum00 M1sum10 = M0sum10 M1sum01 = M0sum01 M1sum11 = M0sum11 else: for j in range(n_layer-1): utemp0 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[j])*sig[j, :, :]) utemp1 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[j+1])*sig[j+1, :, :]) const = mu_0*(1+chi[j])*utemp1/(mu_0*(1+chi[j+1])*utemp0) h0 = thick[j] Mtemp00 = 0.5*(1.+const)*np.exp(-2.*utemp0*h0) Mtemp10 = 0.5*(1.-const) Mtemp01 = 0.5*(1.-const)*np.exp(-2.*utemp0*h0) Mtemp11 = 0.5*(1.+const) M1sum00 = M0sum00*Mtemp00 + M0sum01*Mtemp10 M1sum10 = M0sum10*Mtemp00 + M0sum11*Mtemp10 M1sum01 = M0sum00*Mtemp01 + M0sum01*Mtemp11 M1sum11 = M0sum10*Mtemp01 + M0sum11*Mtemp11 M0sum00 = M1sum00 M0sum10 = M1sum10 M0sum01 = M1sum01 M0sum11 = M1sum11 rTE = M1sum01/M1sum11 return rTE def matmul(a00, a10, a01, a11, b00, b10, b01, b11): """ Compute 2x2 matrix mutiplication in vector way C = A*B C = [a00 a01] * [b00 b01] = [c00 c01] [a10 a11] [b10 b11] [c10 c11] """ c00 = a00*b00 + a01*b10 c10 = a10*b00 + a11*b10 c01 = a00*b01 + a01*b11 c11 = a10*b01 + a11*b11 return c00, c10, c01, c11 # TODO: make this to take a vector rather than a single frequency def rTEfunjac(n_layer, f, lamda, sig, chi, depth, HalfSwitch): """ Compute sensitivity of reflection coefficients for Transverse Electric (TE) mode with regard to conductivity Parameters ---------- n_layer : int The number layers f : complex, ndarray Frequency (Hz); size = (n_frequency x n_finlter) lamda : complex, ndarray Frequency (Hz); size = (n_frequency x n_finlter) sig: compelx, ndarray Conductivity (S/m); size = (n_layer x 1) chi: compelx, ndarray Susceptibility (SI); size = (n_layer x 1) depth: float, ndarray Top boundary of the layers HalfSwitch: bool Switch for halfspace Returns ------- rTE: compex, ndarray Derivative of reflection coefficients; size = (n_frequency x n_layer x n_finlter) """ # Initializing arrays n_frequency, n_filter = lamda.shape Mtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp10 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp01 = np.zeros((n_frequency, n_filter), dtype=complex) Mtemp11 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum00 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum10 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum01 = np.zeros((n_frequency, n_filter), dtype=complex) M1sum11 = np.zeros((n_frequency, n_filter), dtype=complex) M0sum00 = np.zeros((n_frequency, n_filter), dtype=complex) M0sum10 = np.zeros((n_frequency, n_filter), dtype=complex) M0sum01 = np.zeros((n_frequency, n_filter), dtype=complex) M0sum11 = np.zeros((n_frequency, n_filter), dtype=complex) dMtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) dMtemp10 = np.zeros((n_frequency, n_filter), dtype=complex) dMtemp01 = np.zeros((n_frequency, n_filter), dtype=complex) dMtemp11 = np.zeros((n_frequency, n_filter), dtype=complex) dj0temp00 = np.zeros((n_frequency, n_filter), dtype=complex) dj0temp10 = np.zeros((n_frequency, n_filter), dtype=complex) dj0temp01 = np.zeros((n_frequency, n_filter), dtype=complex) dj0temp11 = np.zeros((n_frequency, n_filter), dtype=complex) dj1temp00 = np.zeros((n_frequency, n_filter), dtype=complex) dj1temp10 = np.zeros((n_frequency, n_filter), dtype=complex) dj1temp01 = np.zeros((n_frequency, n_filter), dtype=complex) dj1temp11 = np.zeros((n_frequency, n_filter), dtype=complex) thick = -np.diff(depth) w = 2*np.pi*f rTE = np.zeros((n_frequency, n_filter), dtype=complex) drTE = np.zeros((n_layer, n_frequency, n_filter), dtype=complex) utemp0 = np.zeros((n_frequency, n_filter), dtype=complex) utemp1 = np.zeros((n_frequency, n_filter), dtype=complex) const = np.zeros((n_frequency, n_filter), dtype=complex) utemp0 = lamda utemp1 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[0])*sig[0, :, :]) const = mu_0*utemp1/(mu_0*(1+chi[0])*utemp0) # Compute M1 Mtemp00 = 0.5*(1+const) Mtemp10 = 0.5*(1-const) Mtemp01 = 0.5*(1-const) Mtemp11 = 0.5*(1+const) utemp0 = lamda utemp1 = np.sqrt(lamda**2+1j*w*mu_0*(1+chi[0])*sig[0, :, :]) const = mu_0*utemp1/(mu_0*(1+chi[0])*utemp0) # Compute dM1du1 dj0Mtemp00 = 0.5*(mu_0/(mu_0*(1+chi[0])*utemp0)) dj0Mtemp10 = -0.5*(mu_0/(mu_0*(1+chi[0])*utemp0)) dj0Mtemp01 = -0.5*(mu_0/(mu_0*(1+chi[0])*utemp0)) dj0Mtemp11 = 0.5*(mu_0/(mu_0*(1+chi[0])*utemp0)) # TODO: for computing Jacobian M00 = [] M10 = [] M01 = [] M11 = [] dJ00 = [] dJ10 = [] dJ01 = [] dJ11 = [] M00.append(Mtemp00) M01.append(Mtemp01) M10.append(Mtemp10) M11.append(Mtemp11) M0sum00 = Mtemp00.copy() M0sum10 = Mtemp10.copy() M0sum01 = Mtemp01.copy() M0sum11 = Mtemp11.copy() if HalfSwitch or n_layer == 1: M1sum00 = M0sum00.copy() M1sum10 = M0sum10.copy() M1sum01 = M0sum01.copy() M1sum11 = M0sum11.copy() else: for j in range(n_layer-1): dJ_10Mtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) dJ_10Mtemp10 = np.zeros((n_frequency, n_filter), dtype=complex) dJ_10Mtemp01 = np.zeros((n_frequency, n_filter), dtype=complex) dJ_10Mtemp11 = np.zeros((n_frequency, n_filter), dtype=complex) dJ01Mtemp00 = np.zeros((n_frequency, n_filter), dtype=complex) dJ01Mtemp10 =
np.zeros((n_frequency, n_filter), dtype=complex)
numpy.zeros
from __future__ import print_function import numpy as np from openmdao.api import ExplicitComponent class EvalVelocities(ExplicitComponent): def initialize(self): self.options.declare('surfaces', types=list) self.options.declare('eval_name', types=str) self.options.declare('num_eval_points', types=int) def setup(self): surfaces = self.options['surfaces'] eval_name = self.options['eval_name'] num_eval_points = self.options['num_eval_points'] system_size = 0 for surface in surfaces: ny = surface['num_y'] nx = surface['num_x'] name = surface['name'] system_size += (nx - 1) * (ny - 1) self.system_size = system_size velocities_name = '{}_velocities'.format(eval_name) self.add_input('inflow_velocities', shape=(system_size, 3), units='m/s') self.add_input('circulations', shape=system_size, units='m**2/s') self.add_output(velocities_name, shape=(num_eval_points, 3), units='m/s') circulations_indices = np.arange(system_size) velocities_indices = np.arange(num_eval_points * 3).reshape((num_eval_points, 3)) self.declare_partials(velocities_name, 'circulations', rows=np.einsum('ik,j->ijk', velocities_indices, np.ones(system_size, int)).flatten(), cols=np.einsum('ik,j->ijk', np.ones((num_eval_points, 3), int), circulations_indices).flatten(), ) self.declare_partials(velocities_name, 'inflow_velocities', val=1., rows=np.arange(3 * num_eval_points), cols=np.arange(3 * num_eval_points), ) ind_1 = 0 ind_2 = 0 for surface in surfaces: ny = surface['num_y'] nx = surface['num_x'] name = surface['name'] num = (nx - 1) * (ny - 1) ind_2 += num vel_mtx_name = '{}_{}_vel_mtx'.format(name, eval_name) self.add_input(vel_mtx_name, shape=(num_eval_points, nx - 1, ny - 1, 3), units='1/m') vel_mtx_indices = np.arange(num_eval_points * num * 3).reshape( (num_eval_points, num, 3)) self.declare_partials(velocities_name, vel_mtx_name, rows=np.einsum('ik,j->ijk', velocities_indices, np.ones(num, int)).flatten(), cols=vel_mtx_indices.flatten(), ) ind_1 += num def compute(self, inputs, outputs): surfaces = self.options['surfaces'] eval_name = self.options['eval_name'] num_eval_points = self.options['num_eval_points'] system_size = self.system_size velocities_name = '{}_velocities'.format(eval_name) outputs[velocities_name] = inputs['inflow_velocities'] ind_1 = 0 ind_2 = 0 for surface in surfaces: ny = surface['num_y'] nx = surface['num_x'] name = surface['name'] num = (nx - 1) * (ny - 1) ind_2 += num vel_mtx_name = '{}_{}_vel_mtx'.format(name, eval_name) outputs[velocities_name] += np.einsum('ijk,j->ik', inputs[vel_mtx_name].reshape((num_eval_points, num, 3)), inputs['circulations'][ind_1:ind_2], ) tmp = np.einsum('ijk,j->ik', inputs[vel_mtx_name].reshape((num_eval_points, num, 3)), inputs['circulations'][ind_1:ind_2], ) ind_1 += num def compute_partials(self, inputs, partials): surfaces = self.options['surfaces'] eval_name = self.options['eval_name'] num_eval_points = self.options['num_eval_points'] system_size = self.system_size velocities_name = '{}_velocities'.format(eval_name) dv_dcirc = np.zeros((num_eval_points, system_size, 3)) ind_1 = 0 ind_2 = 0 for surface in surfaces: ny = surface['num_y'] nx = surface['num_x'] name = surface['name'] num = (nx - 1) * (ny - 1) ind_2 += num vel_mtx_name = '{}_{}_vel_mtx'.format(name, eval_name) partials[velocities_name, vel_mtx_name] = np.einsum('ijk,j->ijk',
np.ones((num_eval_points, num, 3))
numpy.ones
import functools import itertools import joblib import numba import numpy as np def calculate_cic( y00, y01, y10, y11, quantiles=np.linspace(.1, .9, 9), moments=None, n_bootstraps=99, n_draws=1000, n_jobs=None, use_corrections=False ): r""" Estimates a model using the Changes-In-Changes estimator. This function estimates non-linear treatments effects using the Athey & Imbens [1]_ changes-in-changes estimator. Only the case with continuous data is supported. `calculate_cic` calculates quantile treatment effects, as well as treatment effects on arbitrary user-specified functions of the distribution. The latter are calculated by simulating from the counterfactual distribution. Standard errors are computed using the bootstrap. Parameters ---------- y00 : array_like Observations in the untreated group before the intervention. y01 : array_like Observations in the untreated group after the intervention. y10 : array_like Observations in the treated group before the intervention. y11 : array_like Observations in the treated group after the intervention. quantiles : array_like, optional Quantiles at which quantile treatment effects are calculated. Default is {.1, .2, ..., .9}. moments : sequence, optional A sequence of user-defined functions. These functions can be used to calculate the treatment effect on arbitrary "moments" of the distribution. Every element should take a single argument, which is a (simulated or observed) sample for which the moment should be calculated, and should return a single number, which is the calculated moment. n_bootstraps : int, optional Number of bootstrap simulations to calculate standard errors. Set to 0 to prevent bootstrapping. In this case, calculated standard errors will equal zero. n_draws : int, optional Number of draws from the counterfactual distribution to calculate the treatment effect of user-supplied moments. Only relevant if ``moments is not None``. n_jobs : int, optional Number of parallel jobs to use for bootstrapping standard errors. When None (the default), bootstrap serially. Otherwise, this interpreted in as in joblib.Parallel, i.e. specify a positive int to run that many jobs and a negative int to run ``num_cpu + 1 + n_jobs`` jobs. use_corrections : bool, optional Use numerical corrections when calculating CDF's and inverse CDF's as in the original code by Athey & Imbens. Set to True to obtain quantile treatment effects that are numerically equivalent to those calculated using the original codes. In general, using this parameter is unnecessary and discouraged, see the notes below. Returns ------- estimated_quantile_effects : array_like Estimated quantile treatment effects for every point in `quantiles` in order. bootstrap_quantile_se : array_like Bootstrapped standard errors for every point in `quantiles` in order. estimated_moment_effects : array_like, optional Estimated treatment effects for every function specified in `moments`. Only returned when ``moments is not None``. bootstrap_moment_se : array_like, optional Bootstrapped standard errors for every function specified in `moments`. Only returned when ``moments is not None``. Notes ----- `calculate_cic` calculates the exact counterfactual distribution, :math:`\bar{F}_{11}`, using .. math:: \bar{F}_{11}(x) = \hat{F}_{10}(\hat{F}_{00}^{-1}(\hat{F}_{01}(x))), where :math:`\hat{F}_{it}` is the empirical cdf of group :math:`i` in period :math:`t`. Quantile treatment effects are calculated using the generalized inverse cdf: .. math:: \begin{align*} F^{-1}(p) &= \inf\{x \in \mathbb{R} : F(x) \ge p\} \\ \text{qte}(p) &= \hat{F}_{11}^{-1}(p) - \bar{F}_{11}^{-1}(p) \end{align*} Moments are calculated by using a probability integral transform to sample from :math:`\bar{F}_{11}`. In general, `calculate_cic` does not give numerically equivalent results to the original code used by Athey & Imbens [2]_. The reason is that their code makes small numerical adjustments when calculating cdf's and inverse cdf's. In particular, they calculate cdf's as :math:`F(x) = P(X \le x + 0.00001)` and inverse cdf's as :math:`F^{-1}(x) = \inf\{x : F(x) \ge p - 0.000001\}`. (Not that the correction factors differ by a factor 10!) According to the comments, this is to "prevent numerical problems". Presumably, this is because in general floating point comparison is a bad idea. However, because during the calculation of counterfactual cdf's floats are only copied and not modified, there is no reason to be afraid of floating point comparisons in this case. Nevertheless, the user can provide the parameter `use_corrections` to use the same corrections as the Athey & Imbey codes. In this case, the calculated quantile treatment effects will be numerically equivalent. This option is included mainly to enable unit testing, users are discouraged from using it because it will in general lead to slightly wrong results. References ---------- .. [1] Athey, Susan, and <NAME>. Imbens. 2006. "Identification and Inference in nonlinear difference‐in‐differences models." *Econometrica* 74 (2): 431-497. .. [2] Athey, Susan and <NAME>ens. 2006. "CIC Code". Accessed April 11, 2019. https://athey.people.stanford.edu/research. """ if use_corrections: cdf_corr = 0.00001 inv_corr = 0.000001 else: cdf_corr = inv_corr = 0 # Use the same draws for calculating moments during effect size # calculation as during bootstrapping draws = np.random.uniform(size=n_draws) # Quantiles and draws need to be sorted for get_quantiles() quantiles.sort() draws.sort() estimated_quantile_effects, estimated_moment_effects = calculate_effects( y00, y01, y10, y11, quantiles, moments, draws, cdf_corr, inv_corr) # Bootstrap standard errors if n_jobs is None: # Run sequentially bootstrap_quantile_eff, bootstrap_moment_eff = zip(*map( lambda _: bootstrap_sample(y00, y01, y10, y11, quantiles, moments, draws, cdf_corr, inv_corr), range(n_bootstraps))) else: # Run on multiple cores # Use threads a background since most of the time will be # spent in NumPy routines, which release the GIL ret = joblib.Parallel(n_jobs=n_jobs, prefer='threads')( joblib.delayed(bootstrap_sample)(y00, y01, y10, y11, quantiles, moments, draws, cdf_corr, inv_corr) for _ in range(n_bootstraps) ) bootstrap_quantile_eff, bootstrap_moment_eff = zip(*ret) # Concatenate into a single numpy array bootstrap_quantile_eff = np.concatenate([ x[np.newaxis] for x in bootstrap_quantile_eff ], axis=0) bootstrap_moment_eff = np.concatenate([ x[np.newaxis] for x in bootstrap_moment_eff ], axis=0) if n_bootstraps > 0: bootstrap_quantile_se = np.std(bootstrap_quantile_eff, axis=0) bootstrap_moment_se = np.std(bootstrap_moment_eff, axis=0) else: bootstrap_quantile_se = np.zeros(quantiles.shape[0]) n_moments = len(moments) if moments is not None else 0 bootstrap_moment_se = np.zeros(n_moments) if moments is None: return estimated_quantile_effects, bootstrap_quantile_se else: return (estimated_quantile_effects, bootstrap_quantile_se, estimated_moment_effects, bootstrap_moment_se) class CICModel: def __init__( self, y, g, t, treat, quantiles=np.linspace(.1, .9, 9), moments=None, n_draws=1000, n_bootstraps=99, n_jobs=None ): self.quantiles = quantiles n_obs = y.shape[0] n_groups = treat.shape[0] n_periods = treat.shape[1] if t.shape[0] != n_obs: raise ValueError('len(y) should equal len(t).') if g.shape[0] != n_obs: raise ValueError('len(y) should equal len(g).') if t.max() >= n_periods: raise ValueError('Invalid period provided for some observations.') if g.max() >= n_groups: raise ValueError('Invalid group provided for some observations.') if np.any((~treat[:, 1:]) & (treat[:, 1:] ^ treat[:, :-1])): raise ValueError('A group cannot become untreated after becoming' ' treated.') self.g = g self.t = t # Use the same draws for calculating moments during effect size # calculation as during bootstrapping draws = np.random.uniform(size=n_draws) # Quantiles and draws need to be sorted for get_quantiles() quantiles.sort() draws.sort() # Calculate the effect using all possible combinations of treatment # and control possible_combinations = tuple(filter( lambda x: valid_combination(treat, *x), itertools.product(range(n_groups), range(n_periods), repeat=2))) self.effects = calculate_multiple_effects( y, g, t, possible_combinations, quantiles, moments, draws) # Bootstrap the covariance matrix of the treatments effects calc_bootstrap = functools.partial( self._bootstrap_multiple_effects, y, g, t, treat, quantiles, moments, possible_combinations, draws ) if n_jobs is None: bootstrap_effects = np.empty((n_bootstraps, self.effects.shape[0], self.effects.shape[1])) for i in range(n_bootstraps): bootstrap_effects[i] = calc_bootstrap() else: bootstrap_effects = joblib.Parallel(n_jobs, prefer='threads', verbose=11)( joblib.delayed(calc_bootstrap)() for _ in range(n_bootstraps) ) # bootstrap_effects is a list of ndarray's, make it a single # ndarray bootstrap_effects = np.concatenate([ x[np.newaxis] for x in bootstrap_effects ], axis=0) # Calculate the combined effect self.n_treatment_effects = treat.sum() self.treatment_for = np.empty((self.n_treatment_effects, 2)) # The matrix A maps `effects` into the (g, t)-treatment effect self.A = np.zeros((len(possible_combinations), self.n_treatment_effects)) i = 0 for g1, t1 in itertools.product(range(n_groups), range(n_periods)): if treat[g1, t1]: self.A[:, i] = tuple(map( lambda x: x[2] == g1 and x[3] == t1, possible_combinations )) self.treatment_for[i] = g1, t1 i += 1 effect = np.empty((self.n_treatment_effects, self.effects.shape[1])) effect_se = np.empty_like(effect) self.cov_inv = np.empty((self.effects.shape[1], len(possible_combinations), len(possible_combinations))) for effect_ind in range(self.effects.shape[1]): # TODO: The covariance of the bootstrap sample is not necessarily a # good estimator of the covariance matrix! Perhaps try also using # the percentile method. See Machado, <NAME>. and <NAME>. # 2005. "Bootstrap estimation of covariance matrices via the # percentile method." Econometrics Journal 8: 70-78. cov = np.cov(bootstrap_effects[:, :, effect_ind], rowvar=False, bias=True) if self.effects.shape[0] == 1: # In this case np.cov() returns a scalar. Invert it and make # it a matrix. cov_inv = (1 / cov)[np.newaxis, np.newaxis] else: cov_inv = np.linalg.pinv(cov) self.cov_inv[effect_ind] = cov_inv effect[:, effect_ind] = np.linalg.solve( self.A.T @ cov_inv @ self.A, self.A.T @ cov_inv @ self.effects[:, effect_ind]) effect_cov = np.linalg.inv(self.A.T @ cov_inv @ self.A) effect_se[:, effect_ind] = np.sqrt(np.diag(effect_cov)) self.all_effect = effect self.all_se = effect_se self.quantile_effect = effect[:, :quantiles.shape[0]] self.quantile_se = effect_se[:, :quantiles.shape[0]] if moments is None: self.moment_effect = np.empty((self.n_treatment_effects, 0)) self.moment_se = np.empty_like(self.moment_effect) else: self.moment_effect = effect[:, quantiles.shape[0]:] self.moment_se = effect_se[:, quantiles.shape[0]:] def treatment_quantile(self, g, t): ind = self._treatment_ind(g, t) return self.quantile_effect[ind], self.quantile_se[ind] def treatment_moment(self, g, t): ind = self._treatment_ind(g, t) return self.moment_effect[ind], self.moment_se[ind] def _treatment_ind(self, g, t): row_match = (self.treatment_for == np.array([g, t])).all(axis=1) return np.nonzero(row_match)[0][0] def test_model_based_on_quantile(self, quantile_ind): effects_ind = quantile_ind mean_diff = (self.effects[:, effects_ind] - self.A @ self.quantile_effect[:, quantile_ind]) cov_inv = self.cov_inv[effects_ind] test_stat = mean_diff.T @ cov_inv @ mean_diff # We need the rank of V here, and cov is the psuedo-inverse of V. # However, the rank of the pseudo-inverse is the same as of the # original matrix so there is no problem here. rank_dist = (np.linalg.matrix_rank(cov_inv) - self.n_treatment_effects) return test_stat, rank_dist def test_model_based_on_moment(self, moment_ind): effects_ind = moment_ind + self.quantiles.shape[0] mean_diff = (self.effects[:, effects_ind] - self.A @ self.moment_effect[:, moment_ind]) cov_inv = self.cov_inv[effects_ind] test_stat = mean_diff.T @ cov_inv @ mean_diff # We need the rank of V here, and cov is the psuedo-inverse of V. # However, the rank of the pseudo-inverse is the same as of the # original matrix so there is no problem here. rank_dist = (np.linalg.matrix_rank(cov_inv) - self.n_treatment_effects) return test_stat, rank_dist def combine_effects(self, effects_for, weigh_by='n'): n_effects = self.all_effect.shape[1] weights = np.zeros((n_effects, self.n_treatment_effects, 1)) if weigh_by == 'n': for i in range(self.n_treatment_effects): g, t = self.treatment_for[i] if (g, t) in effects_for: weights[:, i] = np.sum((self.g == g) & (self.t == t)) weights /= weights[0].sum() elif weigh_by == 'cov': target = np.zeros((self.n_treatment_effects, 1), dtype=np.bool_) for i in range(self.n_treatment_effects): g, t = self.treatment_for[i] if (g, t) in effects_for: target[i] = True for effect_ind in range(n_effects): weights[effect_ind] = np.linalg.solve( target.T @ self.A.T @ self.cov_inv[effect_ind] @ self.A @ target, target.T @ self.A.T @ self.cov_inv[effect_ind] @ self.A ).T else: raise ValueError('Invalid value for weigh_by, use n or cov.') weighed_effects = np.empty(n_effects) weighed_se = np.empty_like(weighed_effects) for effect_ind in range(n_effects): weighed_effects[effect_ind] = (weights[effect_ind].T @ self.all_effect[:, effect_ind]) weighed_cov = weights[effect_ind].T @ np.linalg.solve( self.A.T @ self.cov_inv[effect_ind] @ self.A, weights[effect_ind]) weighed_se[effect_ind] = np.sqrt(np.diag(weighed_cov)) quantile_combined = weighed_effects[:self.quantiles.shape[0]] quantile_combined_se = weighed_se[:self.quantiles.shape[0]] moment_combined = weighed_effects[self.quantiles.shape[0]:] moment_combined_se = weighed_se[self.quantiles.shape[0]:] return (quantile_combined, quantile_combined_se, moment_combined, moment_combined_se) def _bootstrap_multiple_effects( self, y, g, t, treat, quantiles, moments, possible_combinations, draws ): y_resample = np.empty_like(y) n_groups = treat.shape[0] n_periods = treat.shape[1] for j, k in itertools.product(range(n_groups), range(n_periods)): target = (g == j) & (t == k) y_resample[target] = np.random.choice(y[target], target.sum(), replace=True) return calculate_multiple_effects( y_resample, g, t, possible_combinations, quantiles, moments, draws ) def calculate_effects( y00, y01, y10, y11, quantiles, moments, draws, cdf_corr, inv_corr ): # Calculate quantile treatment effects observed_quantiles = get_quantiles(*cdf_support(y11, cdf_corr), quantiles, inv_corr) cf_cdf, cf_support = calc_cf_cdf(y00, y01, y10, cdf_corr, inv_corr) cf_quantiles = get_quantiles(cf_cdf, cf_support, quantiles, inv_corr) quantile_effects = observed_quantiles - cf_quantiles if moments is not None: observed_moments = np.array([f(y11) for f in moments]) cf_draws = sample_from_cdf(cf_cdf, cf_support, draws) cf_moments = np.array([f(cf_draws) for f in moments]) moment_effects = observed_moments - cf_moments return quantile_effects, moment_effects else: return quantile_effects, None def calculate_multiple_effects( y, g, t, possible_combinations, quantiles, moments, draws ): n_targets = quantiles.shape[0] if moments is not None: n_targets += len(moments) effects = np.empty((len(possible_combinations), n_targets)) for i, (g0, t0, g1, t1) in enumerate(possible_combinations): y00 = y[(g == g0) & (t == t0)] y01 = y[(g == g0) & (t == t1)] y10 = y[(g == g1) & (t == t0)] y11 = y[(g == g1) & (t == t1)] # calculate_effects returns None as second element if moments is None. # When moments is not None, we want to concatenate the return elements. effects[i] = np.concatenate([ x for x in calculate_effects(y00, y01, y10, y11, quantiles, moments, draws, 0, 0) if x is not None]) return effects def bootstrap_sample( y00, y01, y10, y11, quantiles, moments, draws, cdf_corr, inv_corr ): y00_resample = np.random.choice(y00, y00.shape[0], replace=True) y01_resample = np.random.choice(y01, y01.shape[0], replace=True) y10_resample = np.random.choice(y10, y10.shape[0], replace=True) y11_resample =
np.random.choice(y11, y11.shape[0], replace=True)
numpy.random.choice
#!/usr/bin/env python """ @package ion_functions.data.msp_functions @file ion_functions/data/msp_functions.py @author <NAME> @brief Module containing MASSP instrument related functions and wrapper functions MASSP L1 Data Products Data Product Specification for Dissolved Gas Concentrations (DISSGAS) from the MASSP Instrument. Document Control Number 1341-00240. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00240_DPS_DISSGAS.pdf) The OOI Level 1 Dissolved Gas Concentrations (DISSGAS) core data product is produced by the MASSP instrument class. The data for the computation of this L1 core data product are derived from the Residual Gas Analyzer (RGA) integrated in the MASSP instrument. The resulting L1 DISSGAS core data product is calculated from the L0 Mass Spectral Intensities and the sample temperature, also measured by the MASSP instrument, and is composed of the dissolved concentrations (uM) of the individual gases: methane, ethane, hydrogen, argon, hydrogen sulfide, oxygen and carbon dioxide. NOTE: For methane, the Nafion mode data is used, while for the rest of the gasses, Direct mode data is used. Function Name L1 DP Name Description calc_dissgas_smpmethcon DISSGAS-SMPMETHCON Dissolved Methane Conc. (uM) in Sample calc_dissgas_smpethcon DISSGAS-SMPETHNCON Dissolved Ethane Conc. (uM) in Sample calc_dissgas_smph2con DISSGAS-SMPH2CON Dissolved Hydrogen Conc. (uM) in Sample calc_dissgas_smparcon DISSGAS-SMPARCON Dissolved Argon Conc. (uM) in Sample calc_dissgas_smph2scon DISSGAS-SMPH2SCON Dissolved Hydrogen Sulfide Conc. (uM) in Sample calc_dissgas_smpo2con DISSGAS-SMPO2CON Dissolved Oxygen Conc. (uM) in Sample calc_dissgas_smpco2con DISSGAS-SMPCO2CON Dissolved Carbon Dioxide Conc. (uM) in Sample calc_dissgas_bkgmethcon DISSGAS-BKGMETHCON Dissolved Methane Conc. (uM) in Background Water calc_dissgas_bkgethcon DISSGAS-BKGETHNCON Dissolved Ethane Conc. (uM) in Background Water calc_dissgas_bkgh2con DISSGAS-BKGH2CON Dissolved H2 Conc. (uM) in Background Water calc_dissgas_bkgarcon DISSGAS-BKGARCON Dissolved AR Conc. (uM) in Background Water calc_dissgas_bkgh2scon DISSGAS-BKGH2SCON Dissolved Hydrogen Sulfide Conc. (uM) in Background Water calc_dissgas_bkgo2con DISSGAS-BKGCO2CON Dissolved Carbon Dioxide Conc. (uM) in Background Water calc_dissgas_bkgco2con DISSGAS-BKGO2CON Dissolved Oxygen Conc. (uM) in Background Water calc_dissgas_cal1methcon DISSGAS-CA1METHCON Dissolved Methane Conc. (uM) in Calibration Solution 1 calc_dissgas_cal1co2con DISSGAS-CA1CO2CON Dissolved Carbon Dioxide Conc. (uM) in Calibration Solution 1 calc_dissgas_cal2methcon DISSGAS-CA2METHCON Dissolved Methane Conc. (uM) in Calibration Solution 2 calc_dissgas_cal2co2con DISSGAS-CA2CO2CON Dissolved Carbon Dioxide Conc. (uM) in Calibration Solution 2 ................................................................................... The auxiliary data product MASSP Calibration Range (CALRANG) is the collection of parameters associated with the quality status for each gas concentration. A value of 0 indicates that both the intensity and temperature used are within the calibration range. A value of -1 indicates that the intensity used was below the minimum of the calibration range. A value of 1 indicates that the intensity was higher than the maximum of the calibration range, but the temperature was within the calibration range. A value of 2 indicates that the intensity was within the calibration range, but that the temperature was above the calibration range. A value of 3 indicates that both the intensity and the temperature were above the calibration range. Function Name AUX L1 DP Name Description calc_calrang_smpmethcon CALRANG-SMPMETH Quality status for the Methane conc. in the sample water calc_calrang_smpethcon CALRANG-SMPETHN Quality status for the Ethane conc. in the sample water calc_calrang_smph2con CALRANG-SMPH2 Quality status for the Hydrogen conc. in the sample water calc_calrang_smparcon CALRANG-SMPAR Quality status for the Argon conc. in the sample water calc_calrang_smph2scon CALRANG-SMPH2S Quality status for the H2S conc. in the sample water calc_calrang_smpo2con CALRANG-SMPO2 Quality status for the oxygen conc. in the sample water calc_calrang_smpco2con CALRANG-SMPCO2 Quality status for the CO2 conc. in the sample water calc_calrang_bkgmethcon CALRANG-BKGMETH Quality status for the Methane conc. in the background water calc_calrang_bkgethcon CALRANG-BKGETHN Quality status for the Ethane conc. in the background water calc_calrang_bkgh2con CALRANG-BKGH2 Quality status for the Hydrogen conc. in the background water calc_calrang_bkgarcon CALRANG-BKGAR Quality status for the Argon conc. in the background water calc_calrang_bkgh2scon CALRANG-BKGH2S Quality status for the H2S conc. in the background water calc_calrang_bkgo2con CALRANG-BKGO2 Quality status for the oxygen conc. in the background water calc_calrang_bkgco2con CALRANG-BKGCO2 Quality status for the CO2 conc. in the background water calc_calrang_cal1methcon CALRANG-CAL1METH Quality status for the Methane conc. in the calibration fluid 1 water calc_calrang_cal1co2con CALRANG-CAL1CO2 Quality status for the CO2 conc. in the calibration fluid 1 water calc_calrang_cal2methcon CALRANG-CAL2METH Quality status for the Methane conc. in the calibration fluid 2 water calc_calrang_cal2co2con CALRANG-CAL2CO2 Quality status for the CO2 conc. in the calibration fluid 2 water ................................................................................... The auxiliary data product MASSP Time Stamp (TSTAMP) is the collection of parameters associated with the time stamp for each gas concentration. Function Name AUX L1 DP Name Description calc_timestamp_smpmethcon TSTAMP-SMPMETH Time stamp for the Methane conc. in the sample water calc_timestamp_smpethcon TSTAMP-SMPETHN Time stamp for the Ethane conc. in the sample water calc_timestamp_smph2con TSTAMP-SMPH2 Time stamp for the Hydrogen conc. in the sample water calc_timestamp_smparcon TSTAMP-SMPAR Time stamp for the Argon conc. in the sample water calc_timestamp_smph2scon TSTAMP-SMPH2S Time stamp for the H2S conc. in the sample water calc_timestamp_smpo2con TSTAMP-SMPO2 Time stamp for the oxygen conc. in the sample water calc_timestamp_smpco2con TSTAMP-SMPCO2 Time stamp for the CO2 conc. in the sample water calc_timestamp_bkgmethcon TSTAMP-BKGMETH Time stamp for the Methane conc. in the background water calc_timestamp_bkgethcon TSTAMP-BKGETHN Time stamp for the Ethane conc. in the background water calc_timestamp_bkgh2con TSTAMP-BKGH2 Time stamp for the Hydrogen conc. in the background water calc_timestamp_bkgarcon TSTAMP-BKGAR Time stamp for the Argon conc. in the background water calc_timestamp_bkgh2scon TSTAMP-BKGH2S Time stamp for the H2S conc. in the background water calc_timestamp_bkgo2con TSTAMP-BKGO2 Time stamp for the oxygen conc. in the background water calc_timestamp_bkgco2con TSTAMP-BKGCO2 Time stamp for the CO2 conc. in the background water calc_timestamp_cal1methcon TSTAMP-CAL1METH Time stamp for the Methane conc. in the calibration fluid 1 water calc_timestamp_cal1co2con TSTAMP-CAL1CO2 Time stamp for the CO2 conc. in the calibration fluid 1 water calc_timestamp_cal2methcon TSTAMP-CAL2METH Time stamp for the Methane conc. in the calibration fluid 2 water calc_timestamp_cal2co2con TSTAMP-CAL2CO2 Time stamp for the CO2 conc. in the calibration fluid 2 water ................................................................................... Functions that calculate all addtional L1 auxiliary data products are listed below. The auxiliary data product MASSP Sample Inlet (MSINLET) is the collection of parameters associated with measurement of sample properties at the time of gas equilibration across the gas permeable membrane. Function Name AUX L1 DP Name Description calc_msinlet_smpphint MSINLET-SMPPHINT Sample pH Intensity calc_msinlet_smpphint_timestamp TSTAMP-SMPPHINT Time stamp of Sample pH Intensity calc_msinlet_bkgphint MSINLET-BKGPHINT Background Water pH Intensity calc_msinlet_bkgphint_timestamp TSTAMP-BKGPHINT Time stamp of Background Water pH Intensity calc_msinlet_cal1phint MSINLET-CA1PHINT Calibration Solution 1 pH Intensity calc_msinlet_cal1phint_timestamp TSTAMP-CA1PHINT Time stamp of Calibration Solution 1 pH Intensity calc_msinlet_cal2phint MSINLET-CA2PHINT Calibration Solution 2 pH Intensity calc_msinlet_cal1phint_timestamp TSTAMP-CA2PHINT Time stamp of Calibration Solution 2 pH Intensity calc_smpnafeff NAFEFF Nafion Drier Efficiency calc_smpnafeff_timestamp TSTAMP-NAFEFF Time stamp of Nafion Drier Efficiency ................................................................................... ................................................................................... ................................................................................... MASSP L2 Data Products Data Product Specification for Dissolved Gas Concentrations (TOTLGAS) from the MASSP Instrument. Document Control Number 1341-00XXX. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00XXX_DPS_TOTLGAS.pdf) The OOI Level 2 Dissolved Gas Concentration (DISSGAS) core data product is produced by the MASSP instrument class. The data for the computation of this L2 core data product are derived from the L1 core data product DISSGAS. The resulting L2 TOTLGAS core data product is calculated from the individual dissolved gas concentrations, the inlet fluid temperature, and the pH of the fluid also measured by the MASSP instrument, and is composed of the total concentrations (uM) of the individual gases: hydrogen sulfide and carbon dioxide. Function Name L2 DP Name Description calc_l2_totlgas_smph2scon TOTLGAS-SMPH2SCON Total Hydrogen Sulfide Conc. (uM) in Sample Water calc_l2_totlgas_smpco2con TOTLGAS-SMPCO2CON Total Carbon Dioxide Conc. (uM) in Sample Water calc_l2_totlgas_bkgh2scon TOTLGAS-BKGH2SCON Total Hydrogen Sulfide Conc. (uM) in Background Water calc_l2_totlgas_bkgco2con TOTLGAS-BKGCO2CON Total Carbon Dioxide Conc. (uM) in Background Water ................................................................................... The auxiliary data product MASSP Time Stamp (TSTAMP) is the collection of parameters associated with the time stamp for each gas concentration. Function Name AUX L2 DP Name Description calc_timestamp_totlgas_smph2scon TSTAMP-SMPH2SCON Time stamp for the total H2S conc. in the sample water calc_timestamp_totlgas_smpco2con TSTAMP-SMPCO2CON Time stamp for the total CO2 conc. in the sample water calc_timestamp_totlgas_bkgh2scon TSTAMP-BKGH2SCON Time stamp for the total H2S conc. in the background water calc_timestamp_totlgas_bkgco2con TSTAMP-BKGCO2CON Time stamp for the total CO2 conc. in the background water ................................................................................... Functions that calculate all addtional L2 auxiliary data products are listed below: The auxiliary data product MASSP Equilibrated Water (MSWATER) is the collection of higher level products describing the pH state of the sampled and background water at equilibration and measurement by the Residual Gas Analyzer (RGA), onboard the MASSP instrument. These functions are required to calculate the above L2 data products namely TOTLGAS-SMPH2SCON, TOTLGAS-SMPCO2CON, TOTLGAS-BKGH2SCON, and TOTLGAS-BKGCO2CON. Function Name AUX L2 DP Name Description calc_l2_mswater_smpphval MSWATER-SMPPHVAL Mass Spectrometer Equilibrated Sample Water pH Value calc_l2_mswater_bkgphval MSWATER-BKGPHVAL Mass Spectrometer Equilibrated Background Water pH Value ................................................................................... ................................................................................... ................................................................................... The core functions used by all of the wrapper functions described above are listed below. Note that the mass-to-charge ratio is denoted as mz. Function Name Description SamplePreProcess This subroutine takes in the SAMPLEINT array and produces intermediary variables sample-mz2, sample-mz18, sample-mz30, sample-mz32, sample-mz40, sample-mz44, sample-mz15 and sample-mz18Naf, sample-Tnaf, sample-Tdir as well as MSINLET-SMPPHINT AUX data products. BackgroundPreProcess This subroutine takes in the BKGNDINT array and produces intermediary variables bckgnd-mz2, bckgnd-mz30, bckgnd-mz32, bckgnd-mz40, bckgnd-mz44, bckgnd-mz15, bckgnd-Tnaf, bckgnd-Tdir, as well as MSINLET-BKGPHINT AUX data products. Cal1PreProcess This subroutine takes in the DISSGAS-CALINT01 array and produces intermediary variables cal1-mz44, cal1-mz15, cal1-Tnaf, cal1-Tdir as well as MSINLET-CA1PHINT AUX data product. Cal2PreProcess This subroutine takes in the DISSGAS-CALINT02 array and produces intermediary variables cal2-mz44, cal2-mz15, cal2-Tnaf, cal2-Tdir as well as MSINLET-CA2PHINT AUX data product. gas_concentration This sub-routine takes in a column range from DPS Table 1 (refered as to c1, c2, c3, c4), a corrected intensity (referred as x, from the Deconvolution subroutine), an averaged temperature (referred as T, see DPS Table 1), the pressure P of the sampling site, and calculate the final concentration used for L1 DISSGAS data products. This subroutine also assigns a value to the corresponding CALRANG parameter (see DPS Table 1) identifying the quality of the concentration value (indicate if it is out of calibration range for concentration and/or temperature). The subroutine also uses a temporary variable, tempCalRang used to compute the final value of CALRANG. average_mz This subroutine takes in an mz as parameter (M), parameter w from the calibration table and a subset of n scans. deconvolution_correction This sub-routine takes in a main variable (see DPS Table 1), a second variable (see DPS Table 1), and a calibration lookup table (DPS Table 2) column range (see Table 1). GasModeDetermination Takes in the values of sample_valve1, sample_valve2, sample_valve3, and sample_valve4 and returns the GASMODE array. SmpModeDetermination Takes in the values of external_valve1_status, external_valve2_status, external_valve3_status, external_valve4_status, and external_valve5_status and returns the SMPMODE array. """ # import main python modules import numpy as np #Block of functions that calculate the L2 data products def calc_l2_totlgas_smph2scon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table, sensor_depth, salinity): ''' Below are the steps for calculating L2 TOTLGAS- SMPH2SCON and L2 TOTLGAS- BKGH2SCON core data products from L1 DISSGAS-SMPH2SCON and DISSGAS-BKGH2SCON, the L1 auxilliary data MSINLET-TEMP, the pressure at the site P and the value S from the calibration table, and the higher auxiliary data product MSWATER-SMPPHVAL and MSWATER-BKGPHVAL ''' ph_temp_array = calc_l2_mswater_smpphval(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table) t = ph_temp_array[1] ph = ph_temp_array[0] smph2scon = calc_dissgas_smph2scon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth) #Converth depth (meters) to pressure (psi) pressure = (sensor_depth * 0.099204 + 1) * 14.695 #estimated salinity == 35 PSU = salinity k1T = 10**(-19.83 - (930.8 / (t+273.15)) + (2.8 * np.log(t + 273.15)) - (np.sqrt(PSU) * (-0.2391 + 35.685 / (t+273.15))) - (PSU * (0.0109 - (0.3776 / (t+273.15))))) r = ((11.07 + 0.009 * t + 0.000942 * t**2) * 0.0689475729 * pressure + (-6.869 * 10**(-6) + 1.2835 * 10**(-7) * t) * pressure**2) / ((t+273.15) * 83.131) k1 = np.exp(r) * k1T beta = 1 + (k1 / 10**-ph) totlgas_smph2scon = beta * smph2scon return totlgas_smph2scon def calc_l2_totlgas_smpco2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table, sensor_depth, salinity): ''' Below are the steps for calculating L2 TOTLGAS- SMPCO2CON and L2 TOTLGAS- BKGCO2CON core data products from L1 DISSGAS-SMPCO2CON and DISSGAS-BKGCO2CON, the L1 auxiliary data MSINLET-TEMP, the pressure at the site P and the value S from the calibration table and the higher auxiliary data MSWATER-SMPPHVAL and MSWATER-BKGPHVAL ''' ph_temp_array = calc_l2_mswater_smpphval(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table) t = ph_temp_array[1] ph = ph_temp_array[0] smpco2con = calc_dissgas_smpco2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth) #Converth depth (meters) to pressure (psi) pressure = (sensor_depth * 0.099204 + 1) * 14.695 #estimated salinity == 35 PSU = salinity K1T = np.exp((2.83655 - 2307.1266 / (t + 273.15) - 1.5529413 * np.log(t + 273.15) - (0.20760841 * 4.0484 / (t + 273.15)) * np.sqrt(PSU) + 0.0846834 * PSU - 0.00654208 * np.sqrt(PSU**3) + np.log(1 - 0.001005 * PSU))) K2T = np.exp((-9.226508 - 3351.616 / (t + 273.15) - 0.2005743 * np.log(t + 273.15) - (0.106901773 * 23.9722 / (t + 273.15)) * np.sqrt(PSU) + 0.1130822 * PSU - 0.00846934 * np.sqrt(PSU**3) + np.log(1 - 0.001005 * PSU))) r1 = (pressure * (1.758163 - 0.008763 * t - pressure * ((7.32 * 10**-6) - (2.0845 * 10**-7 * t))) / ((t + 273.15) * 83.131)) r2 = (pressure * (1.09075 + 0.00151 * t + pressure * ((2.69 * 10**-6) - (3.506 * 10**-7 * t))) / ((t + 273.15) * 83.131)) K1 = np.exp(r1) * K1T K2 = np.exp(r2) * K2T alpha = 1 + (K1 / (10**-ph)) + ((K1 * K2) / (10**-ph)**2) totlgas_smpco2con = alpha * smpco2con return totlgas_smpco2con def calc_timestamp_totlgas_smph2scon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved hydrogen sulfide in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 15th element of the preprocess_array array smp_direct_timestamp = preprocess_array[14] return smp_direct_timestamp def calc_timestamp_totlgas_smpco2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved carbon dioxide in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 15th element of the preprocess_array array smp_direct_timestamp = preprocess_array[14] return smp_direct_timestamp def calc_l2_totlgas_bkgh2scon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table, sensor_depth, salinity): ''' Below are the steps for calculating L2 TOTLGAS- SMPH2SCON and L2 TOTLGAS- BKGH2SCON core data products from L1 DISSGAS-SMPH2SCON and DISSGAS-BKGH2SCON, the L1 auxilliary data MSINLET-TEMP, the pressure at the site P and the value S from the calibration table, and the higher auxiliary data product MSWATER-SMPPHVAL and MSWATER-BKGPHVAL ''' ph_temp_array = calc_l2_mswater_bkgphval(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table) t = ph_temp_array[1] ph = ph_temp_array[0] bkgh2scon = calc_dissgas_bkgh2scon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth) #Converth depth (meters) to pressure (psi) pressure = (sensor_depth * 0.099204 + 1) * 14.695 #estimated salinity == 35 PSU = salinity k1T = 10**(-19.83 - (930.8 / (t+273.15)) + (2.8 * np.log(t + 273.15)) - (np.sqrt(PSU) * (-0.2391 + 35.685 / (t+273.15))) - (PSU * (0.0109 - (0.3776 / (t+273.15))))) r = ((11.07 + 0.009 * t + 0.000942 * t**2) * 0.0689475729 * pressure + (-6.869 * 10**(-6) + 1.2835 * 10**(-7) * t) * pressure**2) / ((t+273.15) * 83.131) k1 = np.exp(r) * k1T beta = 1 + (k1 / 10**-ph) totlgas_bkgh2scon = beta * bkgh2scon return totlgas_bkgh2scon def calc_l2_totlgas_bkgco2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table, sensor_depth, salinity): ''' Below are the steps for calculating L2 TOTLGAS- SMPCO2CON and L2 TOTLGAS- BKGCO2CON core data products from L1 DISSGAS-SMPCO2CON and DISSGAS-BKGCO2CON, the L1 auxiliary data MSINLET-TEMP, the pressure at the site P and the value S from the calibration table and the higher auxiliary data MSWATER-SMPPHVAL and MSWATER-BKGPHVAL ''' ph_temp_array = calc_l2_mswater_bkgphval(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table) t = ph_temp_array[1] ph = ph_temp_array[0] bkgco2con = calc_dissgas_bkgco2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth) #Converth depth (meters) to pressure (psi) pressure = (sensor_depth * 0.099204 + 1) * 14.695 #estimated salinity == 35 PSU = salinity K1T = np.exp((2.83655 - 2307.1266 / (t + 273.15) - 1.5529413 * np.log(t + 273.15) - (0.20760841 * 4.0484 / (t + 273.15)) * np.sqrt(PSU) + 0.0846834 * PSU - 0.00654208 * np.sqrt(PSU**3) + np.log(1 - 0.001005 * PSU))) K2T = np.exp((-9.226508 - 3351.616 / (t + 273.15) - 0.2005743 * np.log(t + 273.15) - (0.106901773 * 23.9722 / (t + 273.15)) * np.sqrt(PSU) + 0.1130822 * PSU - 0.00846934 * np.sqrt(PSU**3) + np.log(1 - 0.001005 * PSU))) r1 = (pressure * (1.758163 - 0.008763 * t - pressure * ((7.32 * 10**-6) - (2.0845 * 10**-7 * t))) / ((t + 273.15) * 83.131)) r2 = (pressure * (1.09075 + 0.00151 * t + pressure * ((2.69 * 10**-6) - (3.506 * 10**-7 * t))) / ((t + 273.15) * 83.131)) K1 = np.exp(r1) * K1T K2 = np.exp(r2) * K2T alpha = 1 + (K1 / (10**-ph)) + ((K1 * K2) / (10**-ph)**2) totlgas_bkgco2con = alpha * bkgco2con return totlgas_bkgco2con def calc_timestamp_totlgas_bkgh2scon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved hydrogen sulfide in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 12th element of the preprocess_array array bkg_direct_timestamp = preprocess_array[11] return bkg_direct_timestamp def calc_timestamp_totlgas_bkgco2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved carbon dioxide in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 12th element of the preprocess_array array bkg_direct_timestamp = preprocess_array[11] return bkg_direct_timestamp #Block of wrapper functions for calculating the pH intensity auxiliary data products and associated timestamps def calc_l2_mswater_smpphval(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table): ''' Below are the steps for processing the auxiliary products MSINLET-TEMP, MSINLET-SMPPHINT and MSINLET-BKGPHINT into the higher level auxiliary products MSWATER-SMPPHVAL MSWATER-BKGPHVAL. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #msinlet_temp is the 12th element of the preprocess_array array msinlet_temp = preprocess_array[11] #msinlet_smpphint is the 13th element of the preprocess_array array msinlet_smpphint = preprocess_array[12] A0 = l2_ph_calibration_table[0] A1 = l2_ph_calibration_table[1] A2 = l2_ph_calibration_table[2] a0 = l2_ph_calibration_table[4] a1 = l2_ph_calibration_table[3] a2 = l2_ph_calibration_table[5] pH = (A0 + (A1 * msinlet_temp) + (A2 * msinlet_temp**2)) * ((a2 * msinlet_smpphint**2) + (a1 * msinlet_smpphint) + a0 + 7) if pH < 2 or pH > 12: l2_msinlet_smpphint = -9999999.0 else: l2_msinlet_smpphint = pH return l2_msinlet_smpphint, msinlet_temp def calc_l2_mswater_bkgphval(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, l2_ph_calibration_table): ''' Below are the steps for processing the auxiliary products MSINLET-TEMP, MSINLET-SMPPHINT and MSINLET-BKGPHINT into the higher level auxiliary products MSWATER-SMPPHVAL MSWATER-BKGPHVAL. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #msinlet_temp is the 9th element of the preprocess_array array msinlet_temp = preprocess_array[8] #msinlet_bkgphint is the 10th element of the preprocess_array array msinlet_bkgphint = preprocess_array[9] A0 = l2_ph_calibration_table[0] A1 = l2_ph_calibration_table[1] A2 = l2_ph_calibration_table[2] a0 = l2_ph_calibration_table[4] a1 = l2_ph_calibration_table[3] a2 = l2_ph_calibration_table[5] pH = (A0 + (A1 * msinlet_temp) + (A2 * msinlet_temp**2)) * ((a2 * msinlet_bkgphint**2) + (a1 * msinlet_bkgphint) + a0 + 7) if pH < 2 or pH > 12: l2_msinlet_bkgphint = -9999999.0 else: l2_msinlet_bkgphint = pH return l2_msinlet_bkgphint, msinlet_temp def calc_msinlet_smpphint(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' Sample pH intensity is output by a sensor onboard the MASSP instrument. It is the pH signal intensity of the Sample Water at the time of dissolved gas measurement. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #msinlet_smpphint is the 13th element of the preprocess_array array msinlet_smpphint = preprocess_array[12] return msinlet_smpphint def calc_msinlet_smpphint_timestamp(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' This is a wrapper function to calculate the MASSP timestamp while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 15th element of the preprocess_array array smp_direct_timestamp = preprocess_array[14] return smp_direct_timestamp def calc_msinlet_bkgphint(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' Background Water pH intensity is output by a sensor onboard the MASSP instrument. It is the pH signal intensity of Background Water at the time of dissolved gas measurement ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #msinlet_bkgphint is the 10th element of the preprocess_array array msinlet_bkgphint = preprocess_array[9] return msinlet_bkgphint def calc_msinlet_bkgphint_timestamp(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' This is a wrapper function to calculate the MASSP timestamp while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the nafion mode timestamp is the 11th element of the preprocess_array array bkg_nafion_timestamp = preprocess_array[10] return bkg_nafion_timestamp def calc_msinlet_cal1phint(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' Calibration Solution 1 pH intensity is output by a sensor onboard the MASSP instrument. It is the pH signal intensity of Calibration Solution 1 at the time of dissolved gas measurement ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal1PreProcess(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, mass_table, calibration_table) #msinlet_cal1phint is the 5th element of the preprocess_array array msinlet_cal1phint = preprocess_array[4] return msinlet_cal1phint def calc_msinlet_cal1phint_timestamp(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' This is a wrapper function to calculate the MASSP timestamp while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal1PreProcess(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, mass_table, calibration_table) #the nafion mode timestamp is the 6th element of the preprocess_array array cal1_nafion_timestamp = preprocess_array[5] return cal1_nafion_timestamp def calc_msinlet_cal2phint(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' Calibration Solution 2 pH intensity is output by a sensor onboard the MASSP instrument. It is the pH signal intensity of Calibration Solution 2 at the time of dissolved gas measurement ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal2PreProcess(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, mass_table, calibration_table) #msinlet_cal2phint is the 5th element of the preprocess_array array msinlet_cal2phint = preprocess_array[4] return msinlet_cal2phint def calc_msinlet_cal2phint_timestamp(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' This is a wrapper function to calculate the MASSP timestamp while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal2PreProcess(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, mass_table, calibration_table) #the direct mode timestamp is the 7th element of the preprocess_array array cal2_direct_timestamp = preprocess_array[6] return cal2_direct_timestamp #Block of wrapper functions for calculating the nafion drier efficiency auxiliary data product and associated timestamp def calc_smpnafeff(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The auxiliary data product Nafion Drier Efficiency (NAFEFF) is an indicator of the drying efficiency of the nafion drier. The efficiency is represented as the percentage of water signal in nafion mode compared to direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #smpnafeff is the 10th element of the preprocess_array array smpnafeff = preprocess_array[9] return smpnafeff def calc_smpnafeff_timestamp(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' This is a wrapper function to calculate the MASSP timestamp while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the nafion mode timestamp is the 14th element of the preprocess_array array smp_nafion_timestamp = preprocess_array[13] return smp_nafion_timestamp #Block of wrapper functions for calculating the L1 data products def calc_dissgas_smpmethcon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' This is a wrapper function to calculate the in situ concentration (uM) of dissolved methane in the sample water as measured by the MASSP instrument, while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz15 is the first element of the preprocess_array array intermediate_mass_ratio = preprocess_array[0] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 0 last_column = 4 #average inlet temperature (nafion mode) is the 11th element of the preprocess_array array average_temperature = preprocess_array[10] smpmethcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smpmethcon = smpmethcon[0] return smpmethcon def calc_dissgas_smpethcon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' This is a wrapper function to calculate the in situ concentration (uM) of dissolved ethane in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz30 is the 5th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[4] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 4 last_column = 8 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smpethcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smpethcon = smpethcon[0] return smpethcon def calc_dissgas_smph2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' This is a wrapper function to calculate the in situ concentration (uM) of dissolved hydrogen in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz2 is the 3rd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[2] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 8 last_column = 12 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smph2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smph2con = smph2con[0] return smph2con def calc_dissgas_smparcon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved argon in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz40 is the 8th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[7] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 12 last_column = 16 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smparcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smparcon = smparcon[0] return smparcon def calc_dissgas_smph2scon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved hydrogen sulfide in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz34 is the 7th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[6] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 16 last_column = 20 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smph2scon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smph2scon = smph2scon[0] return smph2scon def calc_dissgas_smpo2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved oxygen in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz32 is the 6th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[5] #sample_mz34 is the 7th element of the preprocess_array array deconvolution_variable = preprocess_array[6] #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 20 last_column = 24 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smpo2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smpo2con = smpo2con[0] return smpo2con def calc_dissgas_smpco2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved carbon dioxide in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz44 is the 9th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[8] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 24 last_column = 28 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smpco2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smpco2con = smpco2con[0] return smpco2con def calc_dissgas_bkgmethcon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved methane in the background water as measured by the MASSP instrument, while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz15 is the 2nd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[1] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 0 last_column = 4 #average inlet temperature (nafion mode) is the 8th element of the preprocess_array array average_temperature = preprocess_array[7] bkgmethcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgmethcon = bkgmethcon[0] return bkgmethcon def calc_dissgas_bkgethcon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved ethane in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz30 is the 3rd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[2] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 4 last_column = 8 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgethcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgethcon = bkgethcon[0] return bkgethcon def calc_dissgas_bkgh2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved hydrogen in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz2 is the 1st element of the preprocess_array array intermediate_mass_ratio = preprocess_array[0] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 8 last_column = 12 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgh2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgh2con = bkgh2con[0] return bkgh2con def calc_dissgas_bkgarcon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved argon in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz40 is the 6th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[5] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 12 last_column = 16 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgarcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgarcon = bkgarcon[0] return bkgarcon def calc_dissgas_bkgh2scon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved hydrogen sulfide in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz34 is the 5th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[4] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 16 last_column = 20 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgh2scon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgh2scon = bkgh2scon[0] return bkgh2scon def calc_dissgas_bkgo2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved oxygen in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz32 is the 4th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[3] #sample_mz34 is the 5th element of the preprocess_array array deconvolution_variable = preprocess_array[4] #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 20 last_column = 24 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgo2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgo2con = bkgo2con[0] return bkgo2con def calc_dissgas_bkgco2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved carbon dioxide in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz44 is the 7th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[6] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 24 last_column = 28 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgco2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgco2con = bkgco2con[0] return bkgco2con def calc_dissgas_cal1methcon(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved methane in the Calibration Solution 1 water as measured by the MASSP instrument, while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal1PreProcess(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, mass_table, calibration_table) #cal1_mz15 is the first element of the preprocess_array array intermediate_mass_ratio = preprocess_array[0] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 0 last_column = 4 #average inlet temperature (nafion mode) is the 3rd element of the preprocess_array array average_temperature = preprocess_array[2] cal1methcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange cal1methcon = cal1methcon[0] return cal1methcon def calc_dissgas_cal1co2con(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved carbon dioxide in the Calibration Solution 1 water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal1PreProcess(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, mass_table, calibration_table) #cal1_mz44 is the 2nd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[1] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 24 last_column = 28 #average inlet temperature (direct mode) is the 4th element of the preprocess_array array average_temperature = preprocess_array[3] cal1co2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange cal1co2con = cal1co2con[0] return cal1co2con def calc_dissgas_cal2methcon(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved methane in the Calibration Solution 2 water as measured by the MASSP instrument, while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal2PreProcess(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, mass_table, calibration_table) #Cal2_mz15 is the first element of the preprocess_array array intermediate_mass_ratio = preprocess_array[0] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 0 last_column = 4 #average inlet temperature (nafion mode) is the 3rd element of the preprocess_array array average_temperature = preprocess_array[2] cal2methcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange cal2methcon = cal2methcon[0] return cal2methcon def calc_dissgas_cal2co2con(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The in situ concentration (uM) of dissolved carbon dioxide in the Calibration Solution 2 water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal2PreProcess(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, mass_table, calibration_table) #Cal2_mz44 is the 2nd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[1] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 24 last_column = 28 #average inlet temperature (direct mode) is the 4th element of the preprocess_array array average_temperature = preprocess_array[3] cal2co2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange cal2co2con = cal2co2con[0] return cal2co2con #Block of wrapper functions for calculating the timestamps of the L1 data products def calc_timestamp_smpmethcon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' This is a wrapper function to calculate the timestamp of the in situ concentration (uM) of dissolved methane in the sample water as measured by the MASSP instrument, while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the nafion mode timestamp is the 14th element of the preprocess_array array smp_nafion_timestamp = preprocess_array[13] return smp_nafion_timestamp def calc_timestamp_smpethcon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' This is a wrapper function to calculate the timestamp of the in situ concentration (uM) of dissolved ethane in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 15th element of the preprocess_array array smp_direct_timestamp = preprocess_array[14] return smp_direct_timestamp def calc_timestamp_smph2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' This is a wrapper function to calculate the timestamp of the in situ concentration (uM) of dissolved hydrogen in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 15th element of the preprocess_array array smp_direct_timestamp = preprocess_array[14] return smp_direct_timestamp def calc_timestamp_smparcon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved argon in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 15th element of the preprocess_array array smp_direct_timestamp = preprocess_array[14] return smp_direct_timestamp def calc_timestamp_smph2scon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved hydrogen sulfide in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 15th element of the preprocess_array array smp_direct_timestamp = preprocess_array[14] return smp_direct_timestamp def calc_timestamp_smpo2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved oxygen in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 15th element of the preprocess_array array smp_direct_timestamp = preprocess_array[14] return smp_direct_timestamp def calc_timestamp_smpco2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved carbon dioxide in the sample water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 15th element of the preprocess_array array smp_direct_timestamp = preprocess_array[14] return smp_direct_timestamp def calc_timestamp_bkgmethcon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved methane in the background water as measured by the MASSP instrument, while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the nafion mode timestamp is the 11th element of the preprocess_array array bkg_nafion_timestamp = preprocess_array[10] return bkg_nafion_timestamp def calc_timestamp_bkgethcon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved ethane in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 12th element of the preprocess_array array bkg_direct_timestamp = preprocess_array[11] return bkg_direct_timestamp def calc_timestamp_bkgh2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved hydrogen in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 12th element of the preprocess_array array bkg_direct_timestamp = preprocess_array[11] return bkg_direct_timestamp def calc_timestamp_bkgarcon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved argon in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 12th element of the preprocess_array array bkg_direct_timestamp = preprocess_array[11] return bkg_direct_timestamp def calc_timestamp_bkgh2scon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved hydrogen sulfide in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 12th element of the preprocess_array array bkg_direct_timestamp = preprocess_array[11] return bkg_direct_timestamp def calc_timestamp_bkgo2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved oxygen in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 12th element of the preprocess_array array bkg_direct_timestamp = preprocess_array[11] return bkg_direct_timestamp def calc_timestamp_bkgco2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved carbon dioxide in the background water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #the direct mode timestamp is the 12th element of the preprocess_array array bkg_direct_timestamp = preprocess_array[11] return bkg_direct_timestamp def calc_timestamp_cal1methcon(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved methane in the Calibration Solution 1 water as measured by the MASSP instrument, while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal1PreProcess(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, mass_table, calibration_table) #the nafion mode timestamp is the 6th element of the preprocess_array array cal1_nafion_timestamp = preprocess_array[5] return cal1_nafion_timestamp def calc_timestamp_cal1co2con(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved carbon dioxide in the Calibration Solution 1 water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal1PreProcess(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, mass_table, calibration_table) #the direct mode timestamp is the 7th element of the preprocess_array array cal1_direct_timestamp = preprocess_array[6] return cal1_direct_timestamp def calc_timestamp_cal2methcon(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved methane in the Calibration Solution 2 water as measured by the MASSP instrument, while in Nafion mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal2PreProcess(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, mass_table, calibration_table) #the nafion mode timestamp is the 6th element of the preprocess_array array cal2_nafion_timestamp = preprocess_array[5] return cal2_nafion_timestamp def calc_timestamp_cal2co2con(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table): ''' The timestamp of the in situ concentration (uM) of dissolved carbon dioxide in the Calibration Solution 2 water as measured by the MASSP instrument, while in Direct mode. ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal2PreProcess(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, mass_table, calibration_table) #the direct mode timestamp is the 7th element of the preprocess_array array cal2_direct_timestamp = preprocess_array[6] return cal2_direct_timestamp #Block of wrapper functions for calculating the calibration ranges of the L1 data products def calc_calrang_smpmethcon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' The auxiliary data product MASSP Calibration Range (CALRANG) is the collection of parameters associated with the quality status for each gas concentration. A value of 0 indicates that both the intensity and temperature used are within the calibration range. A value of -1 indicates that the intensity used was below the minimum of the calibration range. A value of 1 indicates that the intensity was higher than the maximum of the calibration range, but the temperature was within the calibration range. A value of 2 indicates that the intensity was within the calibration range, but that the temperature was above the calibration range. A value of 3 indicates that both the intensity and the temperature were above the calibration range. Quality status for the Methane concentration in the sample water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz15 is the first element of the preprocess_array array intermediate_mass_ratio = preprocess_array[0] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 0 last_column = 4 #average inlet temperature (nafion mode) is the 11th element of the preprocess_array array average_temperature = preprocess_array[10] smpmethcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smpmethcon = smpmethcon[1] return smpmethcon def calc_calrang_smpethcon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the Ethane concentration in the sample water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz30 is the 5th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[4] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 4 last_column = 8 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smpethcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smpethcon = smpethcon[1] return smpethcon def calc_calrang_smph2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the Hydrogen concentration in the sample water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz2 is the 3rd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[2] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 8 last_column = 12 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smph2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smph2con = smph2con[1] return smph2con def calc_calrang_smparcon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the Argon concentration in the sample water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz40 is the 8th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[7] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 12 last_column = 16 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smparcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smparcon = smparcon[1] return smparcon def calc_calrang_smph2scon(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the H2S concentration in the sample water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz34 is the 7th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[6] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 16 last_column = 20 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smph2scon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smph2scon = smph2scon[1] return smph2scon def calc_calrang_smpo2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the oxygen concentration in the sample water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz32 is the 6th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[5] #sample_mz34 is the 7th element of the preprocess_array array deconvolution_variable = preprocess_array[6] #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 20 last_column = 24 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smpo2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smpo2con = smpo2con[1] return smpo2con def calc_calrang_smpco2con(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the CO2 concentration in the sample water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table) #sample_mz44 is the 9th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[8] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 24 last_column = 28 #average inlet temperature (direct mode) is the 12th element of the preprocess_array array average_temperature = preprocess_array[11] smpco2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange smpco2con = smpco2con[1] return smpco2con def calc_calrang_bkgmethcon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the Methane concentration in the background water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz15 is the 2nd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[1] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 0 last_column = 4 #average inlet temperature (nafion mode) is the 8th element of the preprocess_array array average_temperature = preprocess_array[7] bkgmethcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgmethcon = bkgmethcon[1] return bkgmethcon def calc_calrang_bkgethcon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the Ethane concentration in the background water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz30 is the 3rd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[2] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 4 last_column = 8 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgethcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgethcon = bkgethcon[1] return bkgethcon def calc_calrang_bkgh2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the Hydrogen concentration in the background water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz2 is the 1st element of the preprocess_array array intermediate_mass_ratio = preprocess_array[0] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 8 last_column = 12 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgh2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgh2con = bkgh2con[1] return bkgh2con def calc_calrang_bkgarcon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the Argon concentration in the background water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz40 is the 6th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[5] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 12 last_column = 16 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgarcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgarcon = bkgarcon[1] return bkgarcon def calc_calrang_bkgh2scon(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the H2S concentration in the background water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz34 is the 5th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[4] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 16 last_column = 20 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgh2scon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgh2scon = bkgh2scon[1] return bkgh2scon def calc_calrang_bkgo2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the oxygen concentration in the background water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz32 is the 4th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[3] #sample_mz34 is the 5th element of the preprocess_array array deconvolution_variable = preprocess_array[4] #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 20 last_column = 24 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgo2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgo2con = bkgo2con[1] return bkgo2con def calc_calrang_bkgco2con(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the CO2 concentration in the background water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table) #sample_mz44 is the 7th element of the preprocess_array array intermediate_mass_ratio = preprocess_array[6] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 24 last_column = 28 #average inlet temperature (direct mode) is the 9th element of the preprocess_array array average_temperature = preprocess_array[8] bkgco2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange bkgco2con = bkgco2con[1] return bkgco2con def calc_calrang_cal1methcon(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the Methane concentration in the calibration fluid 1 water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal1PreProcess(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, mass_table, calibration_table) #cal1_mz15 is the first element of the preprocess_array array intermediate_mass_ratio = preprocess_array[0] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 0 last_column = 4 #average inlet temperature (nafion mode) is the 3rd element of the preprocess_array array average_temperature = preprocess_array[2] ca1methcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange ca1methcon = ca1methcon[1] return ca1methcon def calc_calrang_cal1co2con(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the CO2 concentration in the calibration fluid 1 water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal1PreProcess(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, mass_table, calibration_table) #cal1_mz44 is the 2nd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[1] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 24 last_column = 28 #average inlet temperature (direct mode) is the 4th element of the preprocess_array array average_temperature = preprocess_array[3] ca1co2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange ca1co2con = ca1co2con[1] return ca1co2con def calc_calrang_cal2methcon(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the Methane concentration in the calibration fluid 2 water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal2PreProcess(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, mass_table, calibration_table) #Cal2_mz15 is the first element of the preprocess_array array intermediate_mass_ratio = preprocess_array[0] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 0 last_column = 4 #average inlet temperature (nafion mode) is the 3rd element of the preprocess_array array average_temperature = preprocess_array[2] ca2methcon = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange ca2methcon = ca2methcon[1] return ca2methcon def calc_calrang_cal2co2con(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu, calibration_table, sensor_depth): ''' Quality status for the CO2 concentration in the calibration fluid 2 water ''' mass_table = rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu) preprocess_array = Cal2PreProcess(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, mass_table, calibration_table) #Cal2_mz44 is the 2nd element of the preprocess_array array intermediate_mass_ratio = preprocess_array[1] deconvolution_variable = 0 #first and last column for this particular gas in the calibration table #This information is in table 1 of the DPS first_column = 24 last_column = 28 #average inlet temperature (direct mode) is the 4th element of the preprocess_array array average_temperature = preprocess_array[3] ca2co2con = gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature) #the first element of the array if the gas conc. the second is the calrange ca2co2con = ca2co2con[1] return ca2co2con #Block of subfunctions called by the above wrapper functions that calculate the L1 and auxiliary data products def gas_concentration(intermediate_mass_ratio, deconvolution_variable, calibration_table, first_column, last_column, sensor_depth, average_temperature): ''' This sub-routine takes in a column. range from Table 1 (refered as to c1, c2, c3, c4), a corrected intensity (referred as x, from the Deconvolution subroutine), an averaged temperature (referred as T, see Table 1), the pressure P of the sampling site, and calculate the final concentration used for L1 DISSGAS data products. This subroutine also assigns a value to the corresponding CALRANG parameter (see Table 1) identifying the quality of the concentration value (indicate if it is out of calibration range for concentration and/or temperature). The subroutine also uses a temporary variable, tempCalRang used to compute the final value of CALRANG. The following vars will be hard coded for each of the wrapper functions deconvolution_variable, calibration_table, first_column, last_column ''' #Converth depth (meters) to pressure (psi) pressure = (sensor_depth * 0.099204 + 1) * 14.695 #extract the four columns of the cal table that I need for a particular gas. calibration_table = calibration_table[:, first_column:last_column] #Check to see if one of the 4 calibration temperatures == the averaged inlet temperature ind = np.where(calibration_table[0, :] == average_temperature)[0] if np.size(ind) == 1: ct1 = np.where(calibration_table[0, :] == average_temperature)[0][0] tempCalRange = 1 #Check to see if the averaged inlet temperature is greater than the highest calibration temperatures elif average_temperature >= calibration_table[0, 3]: ct1 = 3 tempCalRange = 2 #Otherwise figure out which two columns in the calibration table are needed. else: #find first column ct1 = np.where(calibration_table[0, :] < average_temperature)[0][-1] #find second column ct2 = np.where(calibration_table[0, :] > average_temperature)[0][0] concT2_flag = 1 tempCalRange = 0 corrected_intensity = deconvolution_correction(intermediate_mass_ratio, deconvolution_variable, calibration_table) #Check to see if the corrected intensity falls within the calibration values #Minimum values, row 4 in the cal table if corrected_intensity < calibration_table[3, ct1] or corrected_intensity < calibration_table[3, ct2]: calrange = -1 #Maximum values, row 5 in the cal table elif corrected_intensity > calibration_table[4, ct1] or corrected_intensity > calibration_table[4, ct2]: calrange = tempCalRange + 1 else: calrange = tempCalRange #P0 is row 6 (with row 0 being the first row) in the cal table if corrected_intensity < calibration_table[5, ct1]: alpha = calibration_table[6, ct1] + (calibration_table[7, ct1] * pressure) + (calibration_table[8, ct1] * pressure**2) + (calibration_table[9, ct1] * pressure**3) beta = calibration_table[14, ct1] + (calibration_table[15, ct1] * pressure) + (calibration_table[16, ct1] * pressure**2) + (calibration_table[17, ct1] * pressure**3) delta = calibration_table[22, ct1] + (calibration_table[23, ct1] * pressure) + (calibration_table[24, ct1] * pressure**2) + (calibration_table[25, ct1] * pressure**3) gamma = calibration_table[28, ct1] + (calibration_table[29, ct1] * pressure) + (calibration_table[30, ct1] * pressure**2) + (calibration_table[31, ct1] * pressure**3) zeta = calibration_table[36, ct1] + (calibration_table[37, ct1] * pressure) + (calibration_table[38, ct1] * pressure**2) + (calibration_table[39, ct1] * pressure**3) elif corrected_intensity >= calibration_table[5, ct1]: alpha = calibration_table[10, ct1] + (calibration_table[11, ct1] * pressure) + (calibration_table[12, ct1] * pressure**2) + (calibration_table[13, ct1] * pressure**3) beta = calibration_table[18, ct1] + (calibration_table[19, ct1] * pressure) + (calibration_table[20, ct1] * pressure**2) + (calibration_table[21, ct1] * pressure**3) delta = calibration_table[26, ct1] * np.exp(calibration_table[26, ct1] * pressure) gamma = calibration_table[32, ct1] + (calibration_table[33, ct1] * pressure) + (calibration_table[34, ct1] * pressure**2) + (calibration_table[35, ct1] * pressure**3) zeta = calibration_table[40, ct1] + (calibration_table[41, ct1] * pressure) + (calibration_table[42, ct1] * pressure**2) + (calibration_table[43, ct1] * pressure**3) #Calculate concT1 concT1 = (alpha * corrected_intensity**2) + (beta * corrected_intensity) + (delta * np.exp(zeta * corrected_intensity)) + gamma if concT2_flag == 1: if corrected_intensity < calibration_table[5, ct2]: alpha = calibration_table[6, ct2] + (calibration_table[7, ct2] * pressure) + (calibration_table[8, ct2] * pressure**2) + (calibration_table[9, ct2] * pressure**3) beta = calibration_table[14, ct2] + (calibration_table[15, ct2] * pressure) + (calibration_table[16, ct2] * pressure**2) + (calibration_table[17, ct2] * pressure**3) delta = calibration_table[22, ct2] + (calibration_table[23, ct2] * pressure) + (calibration_table[24, ct2] * pressure**2) + (calibration_table[25, ct2] * pressure**3) gamma = calibration_table[28, ct2] + (calibration_table[29, ct2] * pressure) + (calibration_table[30, ct2] * pressure**2) + (calibration_table[31, ct2] * pressure**3) zeta = calibration_table[36, ct2] + (calibration_table[37, ct2] * pressure) + (calibration_table[38, ct2] * pressure**2) + (calibration_table[39, ct2] * pressure**3) elif corrected_intensity >= calibration_table[5, ct2]: alpha = calibration_table[10, ct2] + (calibration_table[11, ct2] * pressure) + (calibration_table[12, ct2] * pressure**2) + (calibration_table[13, ct2] * pressure**3) beta = calibration_table[18, ct2] + (calibration_table[19, ct2] * pressure) + (calibration_table[20, ct2] * pressure**2) + (calibration_table[21, ct2] * pressure**3) delta = calibration_table[26, ct2] * np.exp(calibration_table[26, ct2] * pressure) gamma = calibration_table[32, ct2] + (calibration_table[33, ct2] * pressure) + (calibration_table[34, ct2] * pressure**2) + (calibration_table[35, ct2] * pressure**3) zeta = calibration_table[40, ct2] + (calibration_table[41, ct2] * pressure) + (calibration_table[42, ct2] * pressure**2) + (calibration_table[43, ct2] * pressure**3) #Calculate concT2 concT2 = (alpha * corrected_intensity**2) + (beta * corrected_intensity) + (delta * np.exp(zeta * corrected_intensity)) + gamma #Calculate concT concT = concT1 + ((concT2 - concT1) * (average_temperature - calibration_table[0, ct1])) / (calibration_table[0, ct2] - calibration_table[0, ct1]) else: #Calculate concT concT = concT1 if calrange == -1: final_conc = 0 else: final_conc = calibration_table[44, ct1] * (concT - calibration_table[45, ct1]) return final_conc, calrange def average_mz(mz, data_in, mass_table, window): ''' This subroutine takes in a mass-to-charge ratio mz, a subset of n scans and the mass_table and returns an intermediate mz (mass-to-charge) ratio. ''' #find mz +/- window in the mass_table. The window value comes from the L1 Cal Table mz_ind = np.where((mass_table >= mz - window) & (mass_table <= mz + window)) #subset the data_in array so that we are just dealing with the mz values #within the time period of interest temp_array = np.array(data_in[:, mz_ind]) temp_array = np.squeeze(temp_array) #sort the array so that I can find the median of the three highest #values for each scan temp_array = np.sort(temp_array) #grab the median values median_array = temp_array[:, -2] #find and replace any negative values with zero median_ind = np.where(median_array < 0) median_array[median_ind] = 0 #calculate the mean of the median values intermediate_mass_ratio = np.nanmean(median_array) return intermediate_mass_ratio def deconvolution_correction(intermediate_mass_ratio, deconvolution_variable, calibration_table): ''' This sub-routine takes in a main variable (intermediate_mass_ratio: see DPS Table 1), a second variable (deconvolution_variable: see DPS Table 1), and a calibration lookup table (DPS Table 2) and calculates a corrected intensity. ''' #Equ 4 on page 13 of the DPS corrected_intensity = intermediate_mass_ratio - (calibration_table[2, 0] * deconvolution_variable) - calibration_table[1, 0] return corrected_intensity def rga_status_process(massp_rga_initial_mass, massp_rga_final_mass, massp_rga_steps_per_amu): ''' This subroutine takes in the values of rga_final_mass, rga_initial_mass, and rga_steps_per_amu, calculates the value for Tnb (Total number of values) and returns a table of the masses. ''' Tnb = np.int(((massp_rga_final_mass - massp_rga_initial_mass) * massp_rga_steps_per_amu) + 1) mass_table = np.ones(Tnb) mass_table[0] = massp_rga_initial_mass for x in range(1, Tnb): mass_table[x] = mass_table[x-1] + (1 / np.float(massp_rga_steps_per_amu)) mass_table = np.around(mass_table, decimals=1) return mass_table def SamplePreProcess(port_timestamp_sampleint, L0_dissgas_sampleint, gas_mode_sampleint, port_timestamp_sampleint_mcu, ph_meter_sampleint_mcu, inlet_temp_sampleint_mcu, mass_table, calibration_table): ''' This subroutine takes in L0 DISSGAS-SAMPLEINT and produces intermediary variables sample-mz2, sample-mz18, sample-mz30, sample-mz32, sample-mz40, sample-mz44, sample-mz15 and sample-mz18Naf, sample-Tnaf, sample-Tdir as well as MSINLET-SMPPHINT AUX data products. This subroutine groups the scans into two subsets corresponding to nafion and direct mode, and then extracts the mass data needed for L1 computations. Definitions: port_timestamp = time stamps associated with L0_dissgas_sampleint, gas_mode and sample_mode. L0_dissgas_sampleint = mass spectral data set for sample fluid (array, 10-16 ampere). gas_mode = The auxiliary data product Gas Measurement Mode (GASMODE) indicates the operating mode of the MASSP instrument and can have integer values of 0 and 1 for Direct and Nafion modes, respectively, or value of -1 if the instrument is in another operating mode. inlet_temp = Sample Temperature (oC) is output by a sensor onboard the MASSP instrument. It is the temperature of the Sample Water at the time of dissolved gas measurement. The value is set to -9999 when the instrument is not sampling. ph_meter = Sample pH intensity is output by a sensor onboard the MASSP instrument. It is the pH signal intensity (no unit) of the Sample Water at the time of dissolved gas measurement. mz = Mass to charge ratio sample-mz2 = Intensity returned by the averaging subroutine for mz 2 within DISSGAS-SAMPLEINT sample-mz15 = Intensity returned by the averaging subroutine for mz 15 within DISSGAS-SAMPLEINT sample-mz18Naf = Intensity returned by the averaging subroutine for mz 18 in nafion mode within DISSGAS-SAMPLEINT sample-mz18 = Intensity returned by the averaging subroutine for mz 18 within DISSGAS-SAMPLEINT sample-mz30 = Intensity returned by the averaging subroutine for mz 30 within DISSGAS-SAMPLEINT sample-mz32 = Intensity returned by the averaging subroutine for mz 32 within DISSGAS-SAMPLEINT sample-mz34 = Intensity returned by the averaging subroutine for mz 34 within DISSGAS-SAMPLEINT sample-mz40 = Intensity returned by the averaging subroutine for mz 40 within DISSGAS-SAMPLEINT sample-mz44 = Intensity returned by the averaging subroutine for mz 44 within DISSGAS-SAMPLEINT sample-Tdir = Averaged temperature in Sample fluid direct mode sample-Tnaf = Averaged temperature in Sample fluid nafion mode nafeff = The auxiliary data product Nafion Drier Efficiency (NAFEFF) is an indicator of the drying efficiency of the nafion drier. The efficiency is represented as the percentage of water signal in nafion mode compared to direct mode. ''' #replace bad data with nans inlet_temp_sampleint_mcu[inlet_temp_sampleint_mcu == -127] = np.nan inlet_temp_sampleint_mcu[inlet_temp_sampleint_mcu == 85] = np.nan #find gas_mode_sampleint == 0 (direct mode) ind_direct = np.where(gas_mode_sampleint == 0)[0] Tchange = port_timestamp_sampleint_mcu[ind_direct[0]] Tlast = port_timestamp_sampleint_mcu[ind_direct[-1]] #find gas_mode_sampleint == 1 (nafion mode) ind_nafion = np.where(gas_mode_sampleint == 1)[0] TlastScanNafion = port_timestamp_sampleint_mcu[ind_nafion[-1]] #ID timestamp closest to TlastScanNafion - 180 idx = (np.abs(port_timestamp_sampleint-(TlastScanNafion - 180))).argmin() #subset the data collected in nafion mode nafion_samples_ind = np.where((port_timestamp_sampleint >= port_timestamp_sampleint[idx]) & (port_timestamp_sampleint <= TlastScanNafion)) nafion_samples = np.squeeze(np.array(L0_dissgas_sampleint[nafion_samples_ind, :])) #DPS says to exclude the last scan at TlastScanNafion. This subsetted array then gets fed into the ave. routine. nafion_samples = nafion_samples[:-1, ] #calculate nafion mode timestamp nafion_mode_timestamp = np.squeeze(np.array(port_timestamp_sampleint[nafion_samples_ind])) #DPS says to exclude the last scan at TlastScanNafion. nafion_mode_timestamp = np.around(np.nanmean(nafion_mode_timestamp[:-1, ])) mass_charge_ratio = 15 window = round(calibration_table[-1, 0], 1) sample_mz15 = average_mz(mass_charge_ratio, nafion_samples, mass_table, window) mass_charge_ratio = 18 #not sure that this window of 0.5 is OK but the 18mz window is not specified in the cal table window = round(calibration_table[-1, 8], 1) sample_mz18naf = average_mz(mass_charge_ratio, nafion_samples, mass_table, window) #average MSINLET-TEMP for nafion time period nafion_samples_ind = np.squeeze(np.where((port_timestamp_sampleint_mcu >= port_timestamp_sampleint[idx]) & (port_timestamp_sampleint_mcu <= TlastScanNafion))) sample_Tnaf = np.nanmean(inlet_temp_sampleint_mcu[nafion_samples_ind[:-1]]) #ID timestamp closest to Tlast - 180 idx = (np.abs(port_timestamp_sampleint-(Tlast - 180))).argmin() #subset the data collected in direct mode direct_samples_ind = np.where((port_timestamp_sampleint >= port_timestamp_sampleint[idx]) & (port_timestamp_sampleint <= Tlast)) direct_samples = np.squeeze(np.array(L0_dissgas_sampleint[direct_samples_ind, :])) #calculate direct mode timestamp direct_mode_timestamp = np.array(port_timestamp_sampleint[direct_samples_ind]) direct_mode_timestamp = np.around(np.nanmean(np.squeeze(direct_mode_timestamp))) mass_charge_ratio = 2 window = round(calibration_table[-1, 8], 1) sample_mz2 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 18 #not sure that this window is true but the window is not specified in the cal table window = round(calibration_table[-1, 8], 1) sample_mz18 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 30 window = round(calibration_table[-1, 4], 1) sample_mz30 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 32 window = round(calibration_table[-1, 20], 1) sample_mz32 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 34 window = round(calibration_table[-1, 16], 1) sample_mz34 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 40 window = round(calibration_table[-1, 12], 1) sample_mz40 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 44 window = round(calibration_table[-1, 24], 1) sample_mz44 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) #average MSINLET-TEMP for direct time period here, call it sample-Tdir direct_samples_ind = np.where((port_timestamp_sampleint_mcu >= port_timestamp_sampleint[idx]) & (port_timestamp_sampleint_mcu <= Tlast)) sample_Tdir = np.nanmean(inlet_temp_sampleint_mcu[direct_samples_ind]) #average ph_meter_value for time period Tlast-1min:Tlast, call it msinlet_smpphint direct_samples_ind = np.where((port_timestamp_sampleint_mcu >= Tlast - 60) & (port_timestamp_sampleint_mcu <= Tlast)) msinlet_smpphint = np.absolute(np.nanmean(ph_meter_sampleint_mcu[direct_samples_ind])) #Calculate NAFEFF, which is an indicator of the drying efficiency of the nafion drier nafeff = np.int(100 * (sample_mz18naf / sample_mz18)) return (sample_mz15, sample_mz18naf, sample_mz2, sample_mz18, sample_mz30, sample_mz32, sample_mz34, sample_mz40, sample_mz44, nafeff, sample_Tnaf, sample_Tdir, msinlet_smpphint, nafion_mode_timestamp, direct_mode_timestamp) def BackgroundPreProcess(port_timestamp_bkgndint, L0_dissgas_bkgndint, gas_mode_bkgndint, port_timestamp_bkgndint_mcu, ph_meter_bkgndint_mcu, inlet_temp_bkgndint_mcu, mass_table, calibration_table): ''' This subroutine takes in L0 BKGNDINT and produces intermediary variables bckgnd-mz2, bckgnd-mz30, bckgnd -mz32, bckgnd -mz40, bckgnd -mz44, bckgnd -mz15, bckgnd-Tnaf, bckgnd-Tdir, as well as MSINLET-BKGPHINT AUX data products. This subroutine groups the scans into two subsets corresponding to nafion and direct mode, and then extracts the mass data needed for L1 computations. ''' #replace bad data with nans inlet_temp_bkgndint_mcu[inlet_temp_bkgndint_mcu == -127] = np.nan inlet_temp_bkgndint_mcu[inlet_temp_bkgndint_mcu == 85] = np.nan #find gas_mode_bkgndint == 0 (direct mode) ind_direct = np.where(gas_mode_bkgndint == 0)[0] Tchange = port_timestamp_bkgndint_mcu[ind_direct[0]] Tlast = port_timestamp_bkgndint_mcu[ind_direct[-1]] #ID timestamp closest to Tlast - 180 idx = (np.abs(port_timestamp_bkgndint-(Tlast - 180))).argmin() #subset the data collected in direct mode direct_samples_ind = np.where((port_timestamp_bkgndint >= port_timestamp_bkgndint[idx]) & (port_timestamp_bkgndint <= Tlast)) direct_samples = np.squeeze(np.array(L0_dissgas_bkgndint[direct_samples_ind, :])) #DPS says to exclude the last scan at TlastScanDirect. This subsetted array then gets fed into the ave. routine. direct_samples = direct_samples[:-1, ] #calculate direct mode timestamp direct_mode_timestamp = np.squeeze(np.array(port_timestamp_bkgndint[direct_samples_ind])) #DPS says to exclude the last scan at TlastScanDirect. direct_mode_timestamp = np.around(np.nanmean(direct_mode_timestamp[:-1, ])) mass_charge_ratio = 2 window = round(calibration_table[-1, 8], 1) bckgnd_mz2 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 30 window = round(calibration_table[-1, 4], 1) bckgnd_mz30 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 32 window = round(calibration_table[-1, 20], 1) bckgnd_mz32 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 34 window = round(calibration_table[-1, 16], 1) bckgnd_mz34 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 40 window = round(calibration_table[-1, 12], 1) bckgnd_mz40 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) mass_charge_ratio = 44 window = round(calibration_table[-1, 24], 1) bckgnd_mz44 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) #average MSINLET-TEMP for direct time period here, call it bckgnd-Tdir direct_samples_ind = np.squeeze(np.where((port_timestamp_bkgndint_mcu >= port_timestamp_bkgndint[idx]) & (port_timestamp_bkgndint_mcu <= Tlast))) bckgnd_Tdir = np.nanmean(inlet_temp_bkgndint_mcu[direct_samples_ind[:-1]]) #find gas_mode_bkgndint == 1 (nafion mode) ind_nafion = np.where(gas_mode_bkgndint == 1)[0] TlastScanNafion = port_timestamp_bkgndint_mcu[ind_nafion[-1]] #ID timestamp closest to TlastScanNafion - 180 idx = (np.abs(port_timestamp_bkgndint-(TlastScanNafion - 180))).argmin() #subset the data collected in nafion mode nafion_samples_ind = np.where((port_timestamp_bkgndint >= port_timestamp_bkgndint[idx]) & (port_timestamp_bkgndint <= TlastScanNafion)) nafion_samples = np.squeeze(np.array(L0_dissgas_bkgndint[nafion_samples_ind, :])) #calculate nafion mode timestamp nafion_mode_timestamp = np.array(port_timestamp_bkgndint[nafion_samples_ind]) nafion_mode_timestamp = np.around(np.nanmean(np.squeeze(nafion_mode_timestamp))) mass_charge_ratio = 15 window = round(calibration_table[-1, 0], 1) bckgnd_mz15 = average_mz(mass_charge_ratio, nafion_samples, mass_table, window) #average MSINLET-TEMP for nafion time period here, call it bckgnd-Tnaf nafion_samples_ind = np.where((port_timestamp_bkgndint_mcu >= port_timestamp_bkgndint[idx]) & (port_timestamp_bkgndint_mcu <= TlastScanNafion)) bckgnd_Tnaf = np.nanmean(inlet_temp_bkgndint_mcu[nafion_samples_ind]) #average ph_meter_value for time period TlastScanNafion-1min:TlastScanNafion, call it msinlet_bkgphint nafion_samples_ind = np.where((port_timestamp_bkgndint_mcu >= TlastScanNafion - 60) & (port_timestamp_bkgndint_mcu <= TlastScanNafion)) msinlet_bkgphint = np.absolute(np.nanmean(ph_meter_bkgndint_mcu[nafion_samples_ind])) return (bckgnd_mz2, bckgnd_mz15, bckgnd_mz30, bckgnd_mz32, bckgnd_mz34, bckgnd_mz40, bckgnd_mz44, bckgnd_Tnaf, bckgnd_Tdir, msinlet_bkgphint, nafion_mode_timestamp, direct_mode_timestamp) def Cal1PreProcess(port_timestamp_calint01, L0_dissgas_calint01, gas_mode_calint01, port_timestamp_calint01_mcu, ph_meter_calint01_mcu, inlet_temp_calint01_mcu, mass_table, calibration_table): ''' This subroutine takes in L0 DISSGAS-CALINT01 and produces intermediary variables cal1-mz44, cal1-mz15, cal1-Tnaf, cal1-Tdir as well as MSINLET-CA1PHINT AUX data product. This subroutine groups the scans into two subsets corresponding to nafion and direct mode, and then extracts the mass data needed for L1 computations. This subroutine is very similar to the BackgroundPreProcess subroutine, with just different intermediary variable assignations. ''' #replace bad data with nans inlet_temp_calint01_mcu[inlet_temp_calint01_mcu == -127] = np.nan inlet_temp_calint01_mcu[inlet_temp_calint01_mcu == 85] = np.nan #find gas_mode_calint01 == 0 (direct mode) ind_direct = np.where(gas_mode_calint01 == 0)[0] Tchange = port_timestamp_calint01_mcu[ind_direct[0]] Tlast = port_timestamp_calint01_mcu[ind_direct[-1]] #ID timestamp closest to Tlast - 60 idx = (np.abs(port_timestamp_calint01-(Tlast - 60))).argmin() #subset the data collected in direct mode direct_samples_ind = np.where((port_timestamp_calint01 >= port_timestamp_calint01[idx]) & (port_timestamp_calint01 <= Tlast)) direct_samples = np.squeeze(np.array(L0_dissgas_calint01[direct_samples_ind, :])) #DPS says to exclude the last scan at TlastScanDirect. This subsetted array then gets fed into the ave. routine. direct_samples = direct_samples[:-1, ] #calculate direct mode timestamp direct_mode_timestamp = np.squeeze(np.array(port_timestamp_calint01[direct_samples_ind])) #DPS says to exclude the last scan at TlastScanDirect. direct_mode_timestamp = np.around(np.nanmean(direct_mode_timestamp[:-1, ])) mass_charge_ratio = 44 window = round(calibration_table[-1, 24], 1) cal1_mz44 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) #average MSINLET-TEMP for direct time period here, call it cal1-Tdir direct_samples_ind = np.squeeze(np.where((port_timestamp_calint01_mcu >= port_timestamp_calint01[idx]) & (port_timestamp_calint01_mcu <= Tlast))) cal1_Tdir = np.nanmean(inlet_temp_calint01_mcu[direct_samples_ind[:-1]]) #find gas_mode_calint01 == 1 (nafion mode) ind_nafion = np.where(gas_mode_calint01 == 1)[0] TlastScanNafion = port_timestamp_calint01_mcu[ind_nafion[-1]] #ID timestamp closest to TlastScanNafion - 60 idx = (np.abs(port_timestamp_calint01-(TlastScanNafion - 60))).argmin() #subset the data collected in nafion mode nafion_samples_ind = np.where((port_timestamp_calint01 >= port_timestamp_calint01[idx]) & (port_timestamp_calint01 <= TlastScanNafion)) nafion_samples = np.squeeze(np.array(L0_dissgas_calint01[nafion_samples_ind, :])) #calculate nafion mode timestamp nafion_mode_timestamp = np.array(port_timestamp_calint01[nafion_samples_ind]) nafion_mode_timestamp = np.around(np.nanmean(np.squeeze(nafion_mode_timestamp))) mass_charge_ratio = 15 window = round(calibration_table[-1, 0], 1) cal1_mz15 = average_mz(mass_charge_ratio, nafion_samples, mass_table, window) #average MSINLET-TEMP for nafion time period here, call it cal1-Tnaf nafion_samples_ind = np.where((port_timestamp_calint01_mcu >= port_timestamp_calint01[idx]) & (port_timestamp_calint01_mcu <= TlastScanNafion)) cal1_Tnaf = np.nanmean(inlet_temp_calint01_mcu[nafion_samples_ind]) #average ph_meter_value for time period TlastScanNafion-1min:TlastScanNafion, call it msinlet_cal1phint nafion_samples_ind = np.where((port_timestamp_calint01_mcu >= TlastScanNafion - 60) & (port_timestamp_calint01_mcu <= TlastScanNafion)) msinlet_cal1phint = np.absolute(np.nanmean(ph_meter_calint01_mcu[nafion_samples_ind])) return (cal1_mz15, cal1_mz44, cal1_Tnaf, cal1_Tdir, msinlet_cal1phint, nafion_mode_timestamp, direct_mode_timestamp) def Cal2PreProcess(port_timestamp_calint02, L0_dissgas_calint02, gas_mode_calint02, port_timestamp_calint02_mcu, ph_meter_calint02_mcu, inlet_temp_calint02_mcu, mass_table, calibration_table): ''' This subroutine takes in L0 DISSGAS-CALINT02 and produces intermediary variables cal2-mz44, cal2-mz15, cal2-Tnaf, cal2-Tdir as well as MSINLET-CA2PHINT AUX data product. This subroutine groups the scans into two subsets corresponding to nafion and direct mode, and then extracts the mass data needed for L1 computations. This subroutine is very similar to the SamplePreProcess subroutine, with just different intermediary variable assignations. ''' #replace bad data with nans inlet_temp_calint02_mcu[inlet_temp_calint02_mcu == -127] = np.nan inlet_temp_calint02_mcu[inlet_temp_calint02_mcu == 85] = np.nan #find gas_mode_calint02 == 0 (direct mode) ind_direct = np.where(gas_mode_calint02 == 0)[0] Tchange = port_timestamp_calint02_mcu[ind_direct[0]] Tlast = port_timestamp_calint02_mcu[ind_direct[-1]] #find gas_mode_calint02 == 1 (nafion mode) ind_nafion = np.where(gas_mode_calint02 == 1)[0] TlastScanNafion = port_timestamp_calint02_mcu[ind_nafion[-1]] #ID timestamp closest to TlastScanNafion - 60 idx = (np.abs(port_timestamp_calint02-(TlastScanNafion - 60))).argmin() #subset the data collected in nafion mode nafion_samples_ind = np.where((port_timestamp_calint02 >= port_timestamp_calint02[idx]) & (port_timestamp_calint02 <= TlastScanNafion)) nafion_samples = np.squeeze(np.array(L0_dissgas_calint02[nafion_samples_ind, :])) #DPS says to exclude the last scan at TlastScanNafion. This subsetted array then gets fed into the ave. routine. nafion_samples = nafion_samples[:-1, ] #calculate nafion mode timestamp nafion_mode_timestamp = np.squeeze(np.array(port_timestamp_calint02[nafion_samples_ind])) #DPS says to exclude the last scan at TlastScanNafion. nafion_mode_timestamp = np.around(np.nanmean(nafion_mode_timestamp[:-1, ])) mass_charge_ratio = 15 window = round(calibration_table[-1, 0], 1) cal2_mz15 = average_mz(mass_charge_ratio, nafion_samples, mass_table, window) #average MSINLET-TEMP for nafion time period nafion_samples_ind = np.squeeze(np.where((port_timestamp_calint02_mcu >= port_timestamp_calint02[idx]) & (port_timestamp_calint02_mcu <= TlastScanNafion))) cal2_Tnaf = np.nanmean(inlet_temp_calint02_mcu[nafion_samples_ind[:-1]]) #ID timestamp closest to Tlast - 60 idx = (np.abs(port_timestamp_calint02-(Tlast - 60))).argmin() #subset the data collected in direct mode direct_samples_ind = np.where((port_timestamp_calint02 >= port_timestamp_calint02[idx]) & (port_timestamp_calint02 <= Tlast)) direct_samples = np.squeeze(np.array(L0_dissgas_calint02[direct_samples_ind, :])) #calculate direct mode timestamp direct_mode_timestamp = np.array(port_timestamp_calint02[direct_samples_ind]) direct_mode_timestamp = np.around(np.nanmean(np.squeeze(direct_mode_timestamp))) mass_charge_ratio = 44 window = round(calibration_table[-1, 24], 1) cal2_mz44 = average_mz(mass_charge_ratio, direct_samples, mass_table, window) #average MSINLET-TEMP for direct time period here, call it cal2-Tdir direct_samples_ind = np.where((port_timestamp_calint02_mcu >= port_timestamp_calint02[idx]) & (port_timestamp_calint02_mcu <= Tlast)) cal2_Tdir = np.nanmean(inlet_temp_calint02_mcu[direct_samples_ind]) #average ph_meter_value for time period Tlast-1min:Tlast, call it msinlet_cal2phint direct_samples_ind = np.where((port_timestamp_calint02_mcu >= Tlast - 60) & (port_timestamp_calint02_mcu <= Tlast)) msinlet_cal2phint = np.absolute(np.nanmean(ph_meter_calint02_mcu[direct_samples_ind])) #associate msinlet_smpphint with cal2_mz44 time stamp return (cal2_mz15, cal2_mz44, cal2_Tnaf, cal2_Tdir, msinlet_cal2phint, nafion_mode_timestamp, direct_mode_timestamp) def GasModeDetermination(sample_valve1, sample_valve2, sample_valve3, sample_valve4): ''' This subroutine takes in the values of sample_valve1, sample_valve2, sample_valve3, and sample_valve4 and returns the value for the AUX GASMODE data product. ''' data_array_size = np.shape(sample_valve1) gasmode_array =
np.ones(data_array_size[0])
numpy.ones
#!/usr/bin/env python3 # # Copyright 2015 Signal Processing Devices Sweden AB. All rights reserved. # # Description: ADQ14 OCT test script # Documentation: # import numpy as np import ctypes as ct import matplotlib.pyplot as plt import sys import time import os sys.path.insert(1, os.path.dirname(os.path.realpath(__file__))+'/..') from modules.example_helpers import * # Record settings # Setting stream_number_of_records to 2^32-1 means we want infinite number of records stream_number_of_records = 2**32-1 samples_per_record = 500 OCTCount = 100 # separate parameter for how many we collect in this script before plotting number_of_records = min([stream_number_of_records, 50]) pretrig = 0; #offset collected samples to before trigger point holdoff = 0; #offset collected samples to after trigger point # Plot data if set to True plot_data = True # DMA transfer buffer settings transfer_buffer_size = 1024 num_transfer_buffers = 8 # DMA flush timeout in seconds flush_timeout = 0.5 # Target buffers in software (Must be 4) num_sw_buffers = 4; # Load ADQAPI ADQAPI = adqapi_load() # Create ADQControlUnit adq_cu = ct.c_void_p(ADQAPI.CreateADQControlUnit()) # Enable error logging from ADQAPI ADQAPI.ADQControlUnit_EnableErrorTrace(adq_cu, 3, '.') # Find ADQ devices ADQAPI.ADQControlUnit_FindDevices(adq_cu) n_of_ADQ = ADQAPI.ADQControlUnit_NofADQ(adq_cu) print('Number of ADQ found: {}'.format(n_of_ADQ)) # Exit if no devices were found if n_of_ADQ < 1: print('No ADQ connected.') ADQAPI.DeleteADQControlUnit(adq_cu) adqapi_unload(ADQAPI) sys.exit(1) # Select ADQ if n_of_ADQ > 1: adq_num = int(input('Select ADQ device 1-{:d}: '.format(n_of_ADQ))) else: adq_num = 1 print('Reseting device ') ADQAPI.ADQ_ResetDevice(adq_cu, adq_num, 16) # Delete ADQ device handle ADQAPI.ADQControlUnit_DeleteADQ(adq_cu, adq_num) # Find ADQ devices ADQAPI.ADQControlUnit_FindDevices(adq_cu) n_of_ADQ = ADQAPI.ADQControlUnit_NofADQ(adq_cu) print('Number of ADQ found: {}'.format(n_of_ADQ)) # Exit if no devices were found if n_of_ADQ < 1: print('No ADQ connected.') ADQAPI.DeleteADQControlUnit(adq_cu) adqapi_unload(ADQAPI) sys.exit(1) # Select ADQ if n_of_ADQ > 1: adq_num = int(input('Select ADQ device 1-{:d}: '.format(n_of_ADQ))) else: adq_num = 1 print_adq_device_revisions(ADQAPI, adq_cu, adq_num) # Set clock source ADQ_CLOCK_INT_INTREF = 0 ADQAPI.ADQ_SetClockSource(adq_cu, adq_num, ADQ_CLOCK_INT_INTREF) # Set OCT parameters #trig_type = 1 #software trigger trig_type = 7 #oct trigger #ADQAPI.ADQ_OCTDebug(adq_cu, adq_num, 0x5e72f039, 1, 0) #use debug data instead of analog inputs ADQAPI.ADQ_OCTSetTriggerCount(adq_cu, adq_num, OCTCount) #set OCT frame count ADQAPI.ADQ_SetTriggerMode(adq_cu, adq_num, 1) #first set software trigger to clear OCT counters ADQAPI.ADQ_SetTriggerMode(adq_cu, adq_num, trig_type) #set triggering mode # Setup acquisition # Use 0 in the last two arguments since they are currently unsupported, we use separate calls afterwards to set pretrig and holdoff. ADQAPI.ADQ_TriggeredStreamingSetup(adq_cu, adq_num, stream_number_of_records, samples_per_record, 0, 0); ADQAPI.ADQ_SetPreTrigSamples(adq_cu, adq_num, pretrig); ADQAPI.ADQ_SetTriggerHoldOffSamples(adq_cu, adq_num, holdoff); # Setup streaming mode ADQAPI.ADQ_SetStreamStatus(adq_cu, adq_num, 2) # Get number of channels from device number_of_channels = ADQAPI.ADQ_GetNofChannels(adq_cu, adq_num) # Setup size of transfer buffers print('Setting up streaming...') ADQAPI.ADQ_SetTransferBuffers(adq_cu, adq_num, num_transfer_buffers, transfer_buffer_size) ADQAPI.ADQ_PDSetupStreaming(adq_cu, adq_num, 0xf) # Start streaming print('Collecting data, please wait...') ADQAPI.ADQ_StopStreaming(adq_cu, adq_num) ADQAPI.ADQ_StartStreaming(adq_cu, adq_num) # Allocate target buffers for intermediate data storage target_buffers = (ct.POINTER(ct.c_int16*transfer_buffer_size)*num_sw_buffers)() for bufp in target_buffers: bufp.contents = (ct.c_int16*transfer_buffer_size)() # Create some buffers for the full records data_16bit = [np.array([], dtype=np.int16), np.array([], dtype=np.int16), np.array([], dtype=np.int16),
np.array([], dtype=np.int16)
numpy.array
import torch import argparse from torch.utils.data import DataLoader from torch import nn, optim from torchvision.transforms import transforms from unet import Unet from dataset import FundusDataset import cv2 import time import copy from torch.optim import lr_scheduler import numpy as np from PIL import Image import matplotlib.pyplot as plt from attunet import AttUNet from resunet import Resnet34_Unet from resunets import ResNet, resnet34 from RAUNet import RAUNet, RAUNet34 from torchvision.transforms import Compose, CenterCrop, ToTensor, Resize # 是否使用cuda device = torch.device("cuda" if torch.cuda.is_available() else "cpu") x_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) # mask只需要转换为tensor y_transforms = transforms.ToTensor() #定义空列表 Loss_list_train = [] Accuracy_list_train = [] IOU_list_train = [] Loss_list_val = [] Accuracy_list_val = [] IOU_list_val = [] def performance_index_calculation_ACC(img1,img2): ret1, thresh1 = cv2.threshold(img1 * 255, 127, 255, cv2.THRESH_BINARY) ret2, thresh2 = cv2.threshold(img2 * 255, 50, 255, cv2.THRESH_BINARY) erosion1 = cv2.dilate(thresh1, kernel=np.ones((3, 3), np.uint8)) dst1 = cv2.erode(erosion1, kernel=np.ones((3, 3), np.uint8)).astype(np.uint8) erosion2 = cv2.dilate(thresh2, kernel=np.ones((3, 3), np.uint8)) dst2 = cv2.erode(erosion2, kernel=np.ones((3, 3), np.uint8)).astype(np.uint8) dstj = cv2.bitwise_and(dst1, dst2) area1 = areal = 0 contours, hierarchy = cv2.findContours(dst1, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) if len(contours) != 0: for i in range(len(contours)): areal += cv2.contourArea(contours[i]) contours1, hierarchy1 = cv2.findContours(dstj, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) if len(contours1) != 0: for i in range(len(contours1)): area1 += cv2.contourArea(contours1[i]) if (areal!= 0): ACC = area1/areal if (areal == 0): ACC = 1.0 return ACC def performance_index_calculation_IOU(img1,img2): ret1, thresh1 = cv2.threshold(img1 * 255, 127, 255, cv2.THRESH_BINARY) ret2, thresh2 = cv2.threshold(img2 * 255, 50, 255, cv2.THRESH_BINARY) erosion1 = cv2.dilate(thresh1, kernel=np.ones((3, 3), np.uint8)) dst1 = cv2.erode(erosion1, kernel=np.ones((3, 3), np.uint8)).astype(np.uint8) erosion2 = cv2.dilate(thresh2, kernel=np.ones((3, 3), np.uint8)) dst2 = cv2.erode(erosion2, kernel=
np.ones((3, 3), np.uint8)
numpy.ones
""" Copyright 2017 <NAME>, <NAME> Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy as np import scipy as sp import math import matplotlib.pyplot as plt from . import solver from . import project_simplex_box from . import pgd import llops as yp import llops.operators as ops from llops.solvers import iterative, objectivefunctions from llops import iFt, Ft from llops.config import default_backend, default_dtype eps = 1e-13 def dnf(x): if len(x) == 0: return 0 else: # x = x / np.sum(x) x_fft = np.fft.fft(x) sigma_x = np.abs(x_fft) ** 2 return np.sqrt(1 / len(x) * np.sum(np.max(sigma_x) / sigma_x)) def cond(x): if len(x) == 0: return 0 else: # x = x / np.sum(x) x_fft = np.fft.fft(x) sigma_x = np.abs(x_fft) return np.max(sigma_x) / np.min(sigma_x) def vector(pulse_count, kernel_length=None, method='random_phase', n_tests=100, metric='dnf', dtype=None, backend=None): """ This is a helper function for solving for a blur vector in terms of it's condition # """ # Parse dtype and backend dtype = dtype if dtype is not None else yp.config.default_dtype backend = backend if backend is not None else yp.config.default_backend # Calculate kernel length if not provided if kernel_length is None: kernel_length = 2 * pulse_count # Compute many kernels kernel_list = [] for _ in range(n_tests): # Generate blur kernel if method == 'random_phase': # Ensure first and last time point are illuminated indicies = np.random.choice(kernel_length, size=(pulse_count - 2), replace=False) illum = np.zeros(kernel_length) illum[indicies] = 1.0 illum[0], illum[-1] = 1.0, 1.0 elif method == 'random': illum = np.random.uniform(size=kernel_length) else: raise ValueError('Invalid kernel generation method %s' % method) # Append kernel to list kernel_list.append(illum) ## Choose best kernel if metric == 'cond': # Determine kernel with best condition # metric_best = 1e10 kernel_best = [] for kernel in kernel_list: kappa = cond(kernel) if kappa < metric_best: kernel_best = kernel metric_best = kappa elif metric == 'dnf': # Determine kernel with best dnf metric_best = 1e10 kernel_best = [] for kernel in kernel_list: _dnf = dnf(kernel) if _dnf < metric_best: kernel_best = kernel metric_best = _dnf else: raise ValueError # Normalize kernel kernel_best /= np.sum(kernel_best) # Cast kernel_best = yp.cast(kernel_best, dtype, backend) return (kernel_best, metric_best) def kernel(shape, pulse_count, kernel_length=None, method='random_phase', n_tests=100, metric='dnf', axis=1, position='center'): # Generate blur vector blur_vector, _ = vector(pulse_count, kernel_length=kernel_length, method=method, n_tests=n_tests, metric=metric) # Generate kernel from vector return fromVector(blur_vector, shape=shape, axis=axis, position=position) def generate(shape, blur_kernel_length, method='random_phase', axis=1, blur_illumination_fraction=0.5, position='center',normalize=True): # Generate blur kernel if method == 'constant': illum = yp.ones(blur_kernel_length) * blur_illumination_fraction elif method == 'random_phase' or method == 'coded': illum, _ = genRandInitialization(blur_kernel_length, blur_illumination_fraction) elif method == 'random' or method == 'uniform': illum = np.random.uniform(size=blur_kernel_length) else: assert False, "method " + method + " unrecognized" # Generate kernel kernel = fromVector(illum, shape, axis, position, normalize=normalize) # Return kernel return kernel def fromVector(blur_vector, shape, axis=1, position='center', normalize=True, reverse=False, interpolation_factor=1.0): """Converts a blur vector to a blur kernel.""" # Get length of kernel blur_kernel_length = yp.size(blur_vector) # Find correct dimension ndims = len(shape) # Expand illum to 2D and ensure it's in the correct direction blur_vector = yp.expandDims(blur_vector, ndims) # Reverse blur vector if requested if reverse: blur_vector = yp.flip(blur_vector) # Ensure blur vector is 1D blur_vector = yp.vec(blur_vector) # Apply interpolation if interpolation_factor != 1.0: interpolated_length = int(np.round(interpolation_factor * len(blur_vector))) blur_vector = yp.real(yp.iFt(yp.pad(yp.Ft(blur_vector), interpolated_length, center=True))) # Ensure blur kernel has the correct dimensions blur_vector = yp.expandDims(blur_vector, ndims) # Rotate if necessary if axis == 1: blur_vector = blur_vector.T # Position kernel in image if position == 'center': kernel = yp.pad(blur_vector, shape, center=True) elif position == 'center_left': roll_amount = [0, 0] roll_amount[axis] = -blur_kernel_length // 2 kernel = yp.roll(yp.pad(blur_vector, shape, center=True), roll_amount) elif position == 'center_right': roll_amount = [0, 0] roll_amount[axis] = blur_kernel_length // 2 kernel = yp.roll(yp.pad(blur_vector, shape, center=True), roll_amount) elif position == 'origin': kernel = yp.pad(blur_vector, shape, crop_start=(0, 0)) else: raise ValueError('Invalid position %s' % position) # Center kernel after pad. This is a hack. roll_values = [1] * yp.ndim(kernel) kernel = yp.roll(kernel, roll_values) # Normalize kernel if normalize: kernel /= yp.scalar(yp.sum(kernel)) return kernel ###################################################################################################### ################################ UTILITIES FOR READING FROM DATA ##################################### ###################################################################################################### def blurVectorsFromDataset(dataset, dtype=None, backend=None, debug=False, use_phase_ramp=False, corrections={}): """ This function generates the object size, image size, and blur kernels from a comptic dataset object. Args: dataset: An io.Dataset object dtype [np.float32]: Which datatype to use for kernel generation (All numpy datatypes supported) Returns: object_size: The object size this dataset can recover image_size: The computed image size of the dataset blur_kernel_list: A dictionary of blur kernels lists, one key per color channel. """ dtype = dtype if dtype is not None else yp.config.default_dtype backend = backend if backend is not None else yp.config.default_backend # Calculate effective pixel size if necessaey if dataset.metadata.system.eff_pixel_size_um is None: dataset.metadata.system.eff_pixel_size_um = dataset.metadata.camera.pixel_size_um / \ (dataset.metadata.objective.mag * dataset.metadata.system.mag) # Recover and store position and illumination list blur_vector_roi_list = [] position_list, illumination_list = [], [] frame_segment_map = [] for frame_index in range(len(dataset.frame_list)): frame_state = dataset.frame_state_list[frame_index] # Store which segment this measurement uses frame_segment_map.append(frame_state['position']['common']['linear_segment_index']) # Extract list of illumination values for each time point if 'illumination' in frame_state: illumination_list_frame = [] for time_point in frame_state['illumination']['states']: illumination_list_time_point = [] for illumination in time_point: illumination_list_time_point.append( {'index': illumination['index'], 'value': illumination['value']}) illumination_list_frame.append(illumination_list_time_point) else: raise ValueError('Frame %d does not contain illumination information' % frame_index) # Extract list of positions for each time point if 'position' in frame_state: position_list_frame = [] for time_point in frame_state['position']['states']: position_list_time_point = [] for position in time_point: if 'units' in position['value']: if position['value']['units'] == 'mm': ps_um = dataset.metadata.system.eff_pixel_size_um position_list_time_point.append( [1000 * position['value']['y'] / ps_um, 1000 * position['value']['x'] / ps_um]) elif position['value']['units'] == 'um': position_list_time_point.append( [position['value']['y'] / ps_um, position['value']['x'] / ps_um]) elif position['value']['units'] == 'pixels': position_list_time_point.append([position['value']['y'], position['value']['x']]) else: raise ValueError('Invalid units %s for position in frame %d' % (position['value']['units'], frame_index)) else: # print('WARNING: Could not find posiiton units in metadata, assuming mm') ps_um = dataset.metadata.system.eff_pixel_size_um position_list_time_point.append( [1000 * position['value']['y'] / ps_um, 1000 * position['value']['x'] / ps_um]) position_list_frame.append(position_list_time_point[0]) # Assuming single time point for now. # Define positions and position indicies used positions_used, position_indicies_used = [], [] for index, pos in enumerate(position_list_frame): for color in illumination_list_frame[index][0]['value']: if any([illumination_list_frame[index][0]['value'][color] > 0 for color in illumination_list_frame[index][0]['value']]): position_indicies_used.append(index) positions_used.append(pos) # Generate ROI for this blur vector blur_vector_roi = getPositionListBoundingBox(positions_used) # Append to list blur_vector_roi_list.append(blur_vector_roi) # Crop illumination list to values within the support used illumination_list.append([illumination_list_frame[index] for index in range(min(position_indicies_used), max(position_indicies_used) + 1)]) # Store corresponding positions position_list.append(positions_used) # Apply kernel scaling or compression if necessary if 'scale' in corrections: for index in range(len(position_list)): _positions = np.asarray(position_list[index]) for ax in range(yp.shape(_positions)[1]): _positions[:, ax] = ((_positions[:, ax] - yp.min(_positions[:, ax])) * corrections['scale'] + yp.min(_positions[:, ax])) position_list[index] = _positions.tolist() blur_vector_roi_list[index].shape = [corrections['scale'] * sh for sh in blur_vector_roi_list[index].shape] # Synthesize blur vectors blur_vector_list = [] for frame_index in range(len(dataset.frame_list)): # Generate blur vectors if use_phase_ramp: kernel_shape = [yp.fft.next_fast_len(max(sh, 1)) for sh in blur_vector_roi_list[frame_index].shape] offset = yp.cast([sh // 2 + st for (sh, st) in zip(kernel_shape, blur_vector_roi_list[frame_index].start)], 'complex32') # Create phase ramp and calculate offset R = ops.PhaseRamp(kernel_shape, dtype='complex32') # Generate blur vector blur_vector = yp.zeros(R.M) for pos, illum in zip(position_list[frame_index], illumination_list[frame_index]): blur_vector += (R * (yp.cast(pos, 'complex32') - offset)) # Take inverse Fourier Transform blur_vector = yp.abs(yp.cast(yp.iFt(blur_vector)), 0.0) else: blur_vector = yp.asarray([illum[0]['value']['w'] for illum in illumination_list[frame_index]], dtype=dtype, backend=backend) # Normalize illuminaiton vectors blur_vector /= yp.scalar(yp.sum(blur_vector)) # Append to list blur_vector_list.append(blur_vector) # Subtract mininum of frame_segment_map frame_segment_map = [segment - min(frame_segment_map) for segment in frame_segment_map] # Return return blur_vector_list, blur_vector_roi_list, frame_segment_map, position_list, illumination_list def blurKernelRecoveryFromStatic(blurred, static, solver='iterative', reg=None, iteration_count=10, system_otf=None, threshold=0.2): static_mean = np.mean(static) if static_mean > 1e-4: static = (static.copy() - static_mean) / static_mean blurred_mean = np.mean(blurred) if blurred_mean > 1e-4: blurred = (blurred.copy() - blurred_mean) / blurred_mean # if system_otf is not None: # static = iFt(Ft(static) * system_otf) if solver == 'iterative': A = ops.Convolution(blurred.shape, static, mode='windowed') y = blurred.reshape(-1).astype(np.complex64) # Initialization: choosing a "good" coefficient value will help in convergence initialization = np.ones(y.shape, y.dtype) # Define cost function objective = objectivefunctions.L2(A, y, l2_reg=reg) #, reg=5e-3) # Gradient descent implementation kernel_recovered = iterative.GradientDescent(objective).solve(initialization=initialization, step_size=1e-3, nesterov_enabled=True, iteration_count=iteration_count, display_type='text', display_iteration_delta=max((iteration_count // 10),1)) else: if reg is None: reg = 0 kernel_recovered = iFt((np.conj(Ft(static)) * Ft(blurred)) / (np.abs(Ft(static)) ** 2 + reg)) # Take real part kernel_recovered = np.real(kernel_recovered).reshape(static.shape) # Subtract low-frequency information kernel_recovered -= scipy.ndimage.filters.gaussian_filter(np.real(kernel_recovered.reshape(blurred.shape)), 10) # Filter by OTF support, threshold if system_otf is not None: kernel_recovered = np.real(iFt(Ft(kernel_recovered.reshape(blurred.shape)) * system_otf)) kernel_recovered *= (kernel_recovered > threshold * np.max(kernel_recovered)) return(kernel_recovered) def registerDatasetImages(dataset, roi=None): from comptic.registration import registerImage shift_list = [] image_list = [] for index in range(1, len(dataset.frame_list)): if roi is not None: shift_list.append(registerImage(dataset.frame_list[index - 1][roi.slice], dataset.frame_list[index][roi.slice])) image_list.append((dataset.frame_list[index - 1][roi.slice], dataset.frame_list[index][roi.slice])) else: shift_list.append(registerImage(dataset.frame_list[index - 1], dataset.frame_list[index])) print(shift_list) print("Registered image %d of %d, shift was (%d, %d) pixels" % (index, len(dataset.frame_list), shift_list[-1][0], shift_list[-1])) return(shift_list, image_list) def cropAndCenterKernel(kernel_recovered, kernel_size): # Center maximum value in blur kernel max_pos = np.unravel_index(np.argmax(kernel_recovered), kernel_recovered.shape) kernel_centered = np.roll(kernel_recovered, -np.asarray(max_pos) + np.asarray(kernel_recovered.shape) //2) # Crop to 2x blur kernel fov kernel_zeroed = np.zeros(kernel_centered.shape, dtype=kernel_centered.dtype) kernel_zeroed[kernel_centered.shape[0] // 2 - kernel_size[0]:kernel_centered.shape[0] // 2 + kernel_size[0], kernel_centered.shape[1] // 2 - kernel_size[1]:kernel_centered.shape[1] // 2 + kernel_size[1]] = \ kernel_centered[kernel_centered.shape[0] // 2 - kernel_size[0]:kernel_centered.shape[0] // 2 + kernel_size[0], kernel_centered.shape[1] // 2 - kernel_size[1]:kernel_centered.shape[1] // 2 + kernel_size[1]] # Center at middle of blur kernel p = np.where(kernel_zeroed > 0) kernel_centered = np.roll(kernel_zeroed, -np.round(np.asarray((np.mean(p[0]), np.mean(p[1]))) + np.asarray(kernel_zeroed.shape) // 2).astype(np.int)) kernel_size_small = kernel_size //2 # Zero everything outside a resonable shift range kernel_zeroed_crop = np.zeros(kernel_centered.shape, dtype=kernel_centered.dtype) kernel_zeroed_crop[kernel_centered.shape[0] // 2 - kernel_size_small[0]:kernel_centered.shape[0] // 2 + kernel_size_small[0], kernel_centered.shape[1] // 2 - kernel_size_small[1]:kernel_centered.shape[1] // 2 + kernel_size_small[1]] = \ kernel_centered[kernel_centered.shape[0] // 2 - kernel_size_small[0]:kernel_centered.shape[0] // 2 + kernel_size_small[0], kernel_centered.shape[1] // 2 - kernel_size_small[1]:kernel_centered.shape[1] // 2 + kernel_size_small[1]] return(kernel_zeroed_crop) def plotBlurKernelList(blur_kernel_list, max_count_to_show=5, measurement_list=None, figsize=None): """ Plots a list of blur kernels and (optionally) corresponding measurements """ count_to_show = min(max_count_to_show, len(blur_kernel_list)) if figsize is None: plt.figure(figsize=(count_to_show * 2.5, 4 * (1 + int(measurement_list is not None)))) else: plt.figure(figsize=figsize) for i in range(count_to_show): plt.subplot(1 + int(measurement_list is not None), count_to_show, i + 1) plt.imshow(blur_kernel_list[i], interpolation='bilinear') plt.title('Blur Kernel ' + str(i)) def illustrateMultiFrameKernel(blur_kernel_list, filename): """ Function which illustrates a multi-frame blur kernel and saves it to the disk""" image_c = np.zeros((blur_kernel_list[0].shape[0], blur_kernel_list[0].shape[1], 3)) color_list = ['r', 'g', 'c', 'm', 'w', 'y'] for index, blur_kernel in enumerate(blur_kernel_list): rgb = matplotlib.colors.to_rgb(color_list[index]) image_c[:, :, 0] += blur_kernel * rgb[0] image_c[:, :, 1] += blur_kernel * rgb[1] image_c[:, :, 2] += blur_kernel * rgb[2] image_c /= np.amax(image_c) plt.figure() plt.imshow(image_c, interpolation='bilinear') plt.xticks([], []) plt.yticks([], []) plt.tight_layout() plt.savefig(filename, transparent=True) def genSamplingComb(object_size, image_size, dtype=np.complex64): """ Generates a comb function corresponding with seperation defined by image_size, centered at the center of object_size """ sampling = np.floor(((np.asarray(object_size) / 2) / np.asarray(image_size))) sampling_comb = np.zeros(object_size, dtype=dtype) yy, xx = np.meshgrid(np.arange(-sampling[0], sampling[0] + 1), np.arange(-sampling[1], sampling[1] + 1)) positions_0 = np.hstack((yy.ravel()[:, np.newaxis], xx.ravel()[:, np.newaxis])).astype(np.int) positions = np.zeros(positions_0.shape, dtype=positions_0.dtype) positions[:, 0] = object_size[0] // 2 + positions_0[:, 0] * image_size[0] positions[:, 1] = object_size[1] // 2 + positions_0[:, 1] * image_size[1] for position in positions: sampling_comb[position[0], position[1]] = 1 positions -= np.asarray(object_size) // 2 return((sampling_comb, positions)) def genConvolutionSupportList(blur_kernel_list, image_size, threshold=0.05): """ This function generates a list of images defining the support of a windowed convolution operation. """ object_size = blur_kernel_list[0].shape W = ops.Crop(object_size, image_size) kernel_support_mask = [] object_support_mask = [] print(W.dtype) window_mask = np.abs(W.H * W * np.ones(W.shape[1], dtype=np.complex64)).reshape(object_size) for blur_kernel in blur_kernel_list: C = ops.Convolution((blur_kernel > threshold).astype(np.complex64), mode='windowed', pad_value=0, pad_size=int(object_size[0] / 2)) kernel_support_mask += [((C * (window_mask.reshape(-1).astype(np.complex64))).reshape(object_size) > threshold)] object_support_mask.append(kernel_support_mask[-1]) for dim in range(kernel_support_mask[-1].ndim): object_support_mask[-1] = np.flip(object_support_mask[-1], dim) return (kernel_support_mask, object_support_mask) def blurKernelFromPositions(object_size, position_list, illum_list, flip_kernels=False, use_phase_ramp=False, pos_perturbation=None, dtype=default_dtype, backend=default_backend): """ This function generates a single blur kernel from a list of positions and illuminations. not multiframe. """ # Initialize blur kernels blur_kernel = np.zeros(object_size, dtype=np.complex64) for position_index, position in enumerate(position_list): y = position[0] x = position[1] if pos_perturbation is not None: y = y + pos_perturbation[position_index, 0] x = x + pos_perturbation[position_index, 1] if not use_phase_ramp: x = int(round(x)) y = int(round(y)) # Assign illumination values if illum_list[position_index] > 0: if not use_phase_ramp: blur_kernel[y, x] += illum_list[position_index] else: R = ops.PhaseRamp(blur_kernel.shape, dtype=dtype, backend=backend) x_ = yp.astype(np.asarray((y - object_size[0] // 2, x - object_size[1] // 2)), R.dtype) ramp = yp.reshape(R * x_, blur_kernel.shape) blur_kernel += (ramp * illum_list[position_index]) if use_phase_ramp: blur_kernel = iFt(blur_kernel) blur_kernel[blur_kernel < 1e-8] = 0.0 if flip_kernels: blur_kernel = np.fliplr(blur_kernel) if np.sum(blur_kernel) > 0: blur_kernel /= np.sum(blur_kernel) return blur_kernel def positionListToBlurKernelMap(kernel_size, position_list, return_fourier=True): """Function which converts a list of positions in a blur kernel to a full (non-sparse) blur kernel map. Args: kernel_size: Size of first two dimensions in blur_kernel_map position_list: List of x,y tuples which are the locaitons of each position in the blur kernel. return_fourier: Optional, enables return of blur kernels in frequency (Fourier) domain. Returns: A 2D blur_kernel_map, which has dimensions (kernel_size[0], kernel_size[1], size(position_list,1)) """ # TODO redundant print("can this be replaced with blurKernelFromPositions?") n_positions = np.size(position_list, 0) blur_kernel_map = np.zeros((n_positions, kernel_size[0], kernel_size[1])) for pos in np.arange(0, n_positions): blur_kernel_map[pos, position_list[pos, 0], position_list[pos, 1]] = 1 if return_fourier: blur_kernel_map = Ft(blur_kernel_map.astype(np.complex64)) return(blur_kernel_map) def pointListToBlurKernel(kernel_size, position_list, illumination_vector): """Converts point list and illuminaiton vector to blur kernel""" # TODO redundant print("can this be replaced with blurKernelFromPositions?") position_count = np.size(position_list, 0) blur_kernel = np.zeros((kernel_size[0], kernel_size[1])) assert position_count == len(illumination_vector) for index, position in enumerate(position_list): blur_kernel[position[0], position[1]] = illumination_vector[index] return(blur_kernel) def colorBlurKernelsToMonochrome(blur_kernel_list_color): """ This function converts a list of color blur kernels to monochrome, assuming no optical effects. Args: blur_kernel_list_color: A dictionary of blur kernel lists, where each key indicates the illumination color channel of that kernel. Returns: A list of blur kernels which is the sum of the lists of each key in blur_kernel_list_color """ blur_kernel_list = [] for index, blur_kernel in enumerate(blur_kernel_list_color): first_channel = list(blur_kernel.keys())[0] new_kernel = np.zeros(blur_kernel[first_channel].shape, dtype=blur_kernel[first_channel].dtype) for channel in blur_kernel: new_kernel += blur_kernel[channel] blur_kernel_list.append(new_kernel) return(blur_kernel_list) def getPositionListBoundingBox(kernel_position_list, use_mean=False): """ This function returns the bounding box of a single blur kernel or list of blur kernels, defined as a list of positions Args: kernel_position_list: list of points (y,x) Returns: A list of the extreme values in the blur kernel in the format [y_min, y_max, x_min, x_max] """ bounding_box = [1e10, -1e10, 1e10, -1e10] assert type(kernel_position_list) in [list, np.ndarray] # Make a single kernel_position_list a list with one element if type(kernel_position_list[0][0]) not in [list, np.ndarray, tuple]: kernel_position_list = [kernel_position_list] for position in kernel_position_list: if type(position[0][0]) in [np.ndarray, list, tuple]: # TODO: This will break if we blur by more than one pixel during each pixel motion if not use_mean: max_y, max_x = np.max(np.asarray(position), axis=0)[0] min_y, min_x = np.min(np.asarray(position), axis=0)[0] else: mean_y, mean_x = np.mean(np.asarray(position), axis=0)[0] else: if not use_mean: max_y, max_x = np.max(np.asarray(position), axis=0) min_y, min_x = np.min(np.asarray(position), axis=0) else: mean_y, mean_x = np.mean(np.asarray(position), axis=0) if not use_mean: bounding_box = [min(min_y, bounding_box[0]), max(max_y, bounding_box[1]), min(min_x, bounding_box[2]), max(max_x, bounding_box[3])] else: bounding_box = [min(mean_y, bounding_box[0]), max(mean_y, bounding_box[1]), min(mean_x, bounding_box[2]), max(mean_x, bounding_box[3])] # Create ROI object kernel_support_roi = yp.Roi(start=(int(round(bounding_box[0])), int(round(bounding_box[2]))), end=(int(round(bounding_box[1])), int(round(bounding_box[3])))) return(kernel_support_roi) ###################################################################################################### ##################################### AUTOCALIBRATION ################################################ ###################################################################################################### class BsplineND(): # from http://pythology.blogspot.com/2017/07/nd-b-spline-basis-functions-with-scipy.html def __init__(self, knots, degree=3, periodic=False): """ :param knots: a list of the spline knots with ndim = len(knots) TODO (sarah) incorporate 2d aspect? """ self.ndim = len(knots) self.splines = [] self.knots = knots self.degree = degree for idim, knots1d in enumerate(knots): nknots1d = len(knots1d) y_dummy = np.zeros(nknots1d) knots1d, coeffs, degree = sp.interpolate.splrep(knots1d, y_dummy, k=degree, per=periodic) self.splines.append((knots1d, coeffs, degree)) self.ncoeffs = [len(coeffs) for knots, coeffs, degree in self.splines] def evaluate_independent(self, position): """ :param position: a numpy array with size [ndim, npoints] :returns: a numpy array with size [nspl1, nspl2, ..., nsplN, npts] with the spline basis evaluated at the input points """ ndim, npts = position.shape values_shape = self.ncoeffs + [npts] values = np.empty(values_shape) ranges = [range(icoeffs) for icoeffs in self.ncoeffs] for icoeffs in itertools.product(*ranges): values_dim = np.empty((ndim, npts)) for idim, icoeff in enumerate(icoeffs): coeffs = [1.0 if ispl == icoeff else 0.0 for ispl in range(self.ncoeffs[idim])] values_dim[idim] = sp.interpolate.splev( position[idim], (self.splines[idim][0], coeffs, self.degree)) values[icoeffs] = np.product(values_dim, axis=0) return values def evaluate(self, position): assert self.weights is not None, "Must specify coefficients with set_coeffs()" values = self.evaluate_independent(position) return self.weights.dot(values) def set_weights(self, weights): assert len(weights) == self.ncoeffs[0], "must input correct number of weights" self.weights = weights def get_basis_splines(extent, num_basis_fn): knotsx =
np.linspace(0,extent-1,num_basis_fn)
numpy.linspace
from summit import Runner from summit.utils.multiobjective import pareto_efficient, hypervolume from neptune.sessions import Session, HostedNeptuneBackend import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import matplotlib as mpl from matplotlib.colors import ListedColormap, LinearSegmentedColormap import plotly.graph_objects as go import plotly.express as px from pandas.plotting import parallel_coordinates import os import zipfile import shutil import warnings from textwrap import wrap import collections def flatten(d, parent_key="", sep="_"): items = [] for k, v in d.items(): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(flatten(v, new_key, sep=sep).items()) else: items.append((new_key, v)) return dict(items) COLORS = [ (165, 0, 38), (215, 48, 39), (244, 109, 67), (253, 174, 97), (254, 224, 144), (255, 255, 191), (224, 243, 248), (171, 217, 233), (116, 173, 209), (69, 117, 180), (49, 54, 149), ] COLORS = np.array(COLORS) / 256 CMAP = ListedColormap(COLORS) class PlotExperiments: """Make plots from benchmarks tracked on Neptune Parameters ---------- project : str, optional The name of the Neptune.ai project experiment_ids : list of str, optional A list of experiment ids to pull from Neptune.ai csv_filename : str, optional Name of the CSV filename tag : list of str, optional A list of tags used as filters state : str, optional The state of the experiments. Must be succeeded, failed, running or aborted. trajectory_length : int, optional The maximum number of iterations for each experiment. Defaults to 50. num_repeats : int, optional The number of repeats required for each hyperparameter combination.s """ def __init__( self, project: str = None, experiment_ids: list = None, csv_filename: str = None, tag: list = None, state: list = None, trajectory_length=50, num_repeats=20, ): self.session = Session(backend=HostedNeptuneBackend()) self.proj = self.session.get_project(project) self.runners = {} self.experiment_ids = experiment_ids self.tag = tag self.state = state self.trajectory_length = trajectory_length self.num_repeats = num_repeats self._restore_runners() self._create_param_df() def _restore_runners(self): """Restore runners from Neptune Artifacts""" # Download artifacts n_experiments = len(self.experiment_ids) experiments = [] if n_experiments > 100: for i in range(n_experiments // 100): experiments += self.proj.get_experiments( id=self.experiment_ids[i * 100 : (i + 1) * 100], tag=self.tag, state=self.state, ) remainder = n_experiments % 100 experiments += self.proj.get_experiments( id=self.experiment_ids[(i + 1) * 100 : (i + 1) * 100 + remainder], tag=self.tag, state=self.state, ) else: experiments = self.proj.get_experiments( id=self.experiment_ids, tag=self.tag, state=self.state ) for experiment in experiments: path = f"data/{experiment.id}" try: os.mkdir( path, ) except FileExistsError: pass experiment.download_artifacts(destination_dir=path) # Unzip somehow files = os.listdir(path) with zipfile.ZipFile(path + "/" + files[0], "r") as zip_ref: zip_ref.extractall(path) # Get filename path += "/output" files = os.listdir(path) files_json = [f for f in files if ".json" in f] if len(files_json) == 0: warnings.warn(f"{experiment.id} has no file attached.") continue # Restore runner r = Runner.load(path + "/" + files_json[0]) self.runners[experiment.id] = r # Remove file shutil.rmtree(f"data/{experiment.id}") def _create_param_df(self, reference=[-2957, 10.7]): """Create a parameters dictionary Parameters ---------- reference : array-like, optional Reference for the hypervolume calculatio """ records = [] for experiment_id, r in self.runners.items(): record = {} record["experiment_id"] = experiment_id # Transform transform_name = r.strategy.transform.__class__.__name__ transform_params = r.strategy.transform.to_dict()["transform_params"] record["transform_name"] = transform_name if transform_name == "Chimera": hierarchy = transform_params["hierarchy"] for objective_name, v in hierarchy.items(): key = f"{objective_name}_tolerance" record[key] = v["tolerance"] elif transform_name == "MultitoSingleObjective": record.update(transform_params) # Strategy record["strategy_name"] = r.strategy.__class__.__name__ # Batch size record["batch_size"] = r.batch_size # Number of initial experiments try: record["num_initial_experiments"] = r.n_init except AttributeError: pass # Terminal hypervolume data = r.experiment.data[["sty", "e_factor"]].to_numpy() data[:, 0] *= -1 # make it a minimzation problem y_front, _ = pareto_efficient( data[: self.trajectory_length, :], maximize=False ) hv = hypervolume(y_front, ref=reference) record["terminal_hypervolume"] = hv # Computation time time = ( r.experiment.data["computation_t"] .iloc[0 : self.trajectory_length] .sum() ) record["computation_t"] = time record["noise_level"] = r.experiment.noise_level records.append(record) # Make pandas dataframe self.df = pd.DataFrame.from_records(records) return self.df def _create_label(self, unique): transform_text = unique["transform_name"] chimera_params = f" (STY tol.={unique['sty_tolerance']}, E-factor tol.={unique['e_factor_tolerance']})" transform_text += ( chimera_params if unique["transform_name"] == "Chimera" else "" ) return f"{unique['strategy_name']}, {transform_text}, {unique['num_initial_experiments']} initial experiments" def best_pareto_grid(self, ncols=3, figsize=(20, 40)): """Make a grid of pareto plots Only includes the run with the maximum terminal hypervolume for each unique hyperparameter combination. Parameters ---------- ncols : int, optional The number of columns in the grid. Defaults to 3 figsize : tuple, optional The figure size. Defaults to 20 wide x 40 high """ # Group experiment repeats df = self.df.copy() df = df.set_index("experiment_id") df = df.drop(columns=["terminal_hypervolume", "computation_t"]) uniques = df.drop_duplicates(keep="last") # This actually groups them uniques = uniques.sort_values(by=["strategy_name", "transform_name"]) df_new = self.df.copy() nrows = len(uniques) // ncols nrows += 1 if len(uniques) % ncols != 0 else 0 fig = plt.figure(figsize=figsize) fig.subplots_adjust(wspace=0.2, hspace=0.5) i = 1 # Loop through groups of repeats for index, unique in uniques.iterrows(): # Find number of matching rows to this unique row temp_df = df_new.merge(unique.to_frame().transpose(), how="inner") # Find experiment with maximum hypervolume max_hv_index = temp_df["terminal_hypervolume"].argmax() experiment_id = temp_df.iloc[max_hv_index]["experiment_id"] # Get runner r = self.runners[experiment_id] # Create pareto plot ax = plt.subplot(nrows, ncols, i) old_data = r.experiment._data.copy() r.experiment._data = r.experiment.data.iloc[: self.trajectory_length, :] r.experiment.pareto_plot(ax=ax) r.experiment._data = old_data title = self._create_label(unique) title = "\n".join(wrap(title, 30)) ax.set_title(title) ax.set_xlabel(r"Space Time Yield / $kg \; m^{-3} h^{-1}$") ax.set_ylabel("E-factor") ax.set_xlim(0.0, float(1.2e4)) ax.set_ylim(0.0, 300.0) ax.ticklabel_format(axis="x", style="scientific") i += 1 return fig def plot_hv_trajectories( self, reference=[-2957, 10.7], plot_type="matplotlib", include_experiment_ids=False, min_terminal_hv_avg=0, ax=None, ): """Plot the hypervolume trajectories with repeats as 95% confidence interval Parameters ---------- reference : array-like, optional Reference for the hypervolume calculation. Defaults to -2957, 10.7 plot_type : str, optional Plotting backend to use: matplotlib or plotly. Defaults to matplotlib. include_experiment_ids : bool, optional Whether to include experiment ids in the plot labels min_terminal_hv_avg : float, optional` Minimum terminal average hypervolume cutoff for inclusion in the plot. Defaults to 0. """ # Create figure if plot_type == "matplotlib": if ax is not None: fig = None else: fig, ax = plt.subplots(1) elif plot_type == "plotly": fig = go.Figure() else: raise ValueError( f"{plot_type} is not a valid plot type. Must be matplotlib or plotly." ) # Group experiment repeats df = self.df.copy() df = df.set_index("experiment_id") df = df.drop(columns=["terminal_hypervolume", "computation_t"]) uniques = df.drop_duplicates(keep="last") # This actually groups them df_new = self.df.copy() if plot_type == "plotly": colors = px.colors.qualitative.Plotly else: colors = COLORS cycle = len(colors) c_num = 0 self.hv = {} for index, unique in uniques.iterrows(): # Find number of matching rows to this unique row temp_df = df_new.merge(unique.to_frame().transpose(), how="inner") ids = temp_df["experiment_id"].values # Calculate hypervolume trajectories ids = ids if len(ids) < self.num_repeats else ids[: self.num_repeats] hv_trajectories = np.zeros([self.trajectory_length, len(ids)]) for j, experiment_id in enumerate(ids): r = self.runners[experiment_id] data = r.experiment.data[["sty", "e_factor"]].to_numpy() data[:, 0] *= -1 # make it a minimzation problem for i in range(self.trajectory_length): y_front, _ = pareto_efficient(data[0 : i + 1, :], maximize=False) hv_trajectories[i, j] = hypervolume(y_front, ref=reference) # Mean and standard deviation hv_mean_trajectory =
np.mean(hv_trajectories, axis=1)
numpy.mean
# -*- coding: utf-8 -*- # run in py3 !! import os os.environ["CUDA_VISIBLE_DEVICES"] = "1"; import tensorflow as tf config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction=0.5 config.gpu_options.allow_growth = True tf.Session(config=config) import numpy as np from sklearn import preprocessing import tensorflow as tf import time import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import pandas as pd from keras import backend as K import keras.layers.convolutional as conv from keras.layers import merge from keras.wrappers.scikit_learn import KerasRegressor from keras import utils from keras.layers.pooling import MaxPooling1D, MaxPooling2D from keras.layers import pooling from keras.models import Sequential, Model from keras.regularizers import l1, l2 from keras import layers from keras.layers import Dense, Dropout, Activation, Flatten, Input, Convolution1D, Convolution2D, LSTM from keras.optimizers import SGD, RMSprop from keras.layers.normalization import BatchNormalization from keras import initializers from keras.callbacks import EarlyStopping from keras import callbacks from keras import backend as K from keras.utils import to_categorical from keras.callbacks import EarlyStopping, ModelCheckpoint, Callback from keras.models import Model from keras import initializers, layers from keras.optimizers import SGD, Adadelta, Adam from keras.regularizers import l1, l2 from keras import regularizers import sys sys.path.append('.') from hist_figure import his_figures if len(sys.argv) > 1: prefix = sys.argv[1] else: prefix = time.time() DATAPATH = '5fold/' RESULT_PATH = './results/' feature_num = 25 batch_num = 2 # batch_size = 32 batch_size = 512 SEQ_LENGTH = 20 STATEFUL = False scaler = None # tmp, for fit_transform # id,usage,date,com_date,week,month,year # com_date,date,id,month,usage,week,year def get_data(path_to_dataset='df_dh.csv', sequence_length=20, stateful=False, issplit=True): fold_index = 1 ### dtypes = {'sub': 'float', 'super': 'float', 'error': 'float', 'com_date': 'int', 'week': 'str', 'month': 'str', 'year': 'str', 'numbers': 'int', 'log': 'float', 'id': 'str', 'usage': 'float'} parse_dates = ['date'] print(path_to_dataset) df = pd.read_csv(DATAPATH + path_to_dataset, header=0, dtype=dtypes, parse_dates=parse_dates, encoding="utf-8") # print(path_to_dataset) print(df.columns) df = df[df['error'] >= 0] # df_test = pd.read_csv(DATAPATH+"test"+str(fold_index)+".csv", header = 0, dtype=dtypes, parse_dates=parse_dates,encoding="utf-8") def helper(x): split = list(map(int, x.strip('[').strip(']').split(','))) d = {} for counter, value in enumerate(split): k = str(len(split)) + "-" + str(counter) d[k] = value return d # df_train_temp = df_train['week'].apply(helper).apply(pd.Series) df_week = df['week'].apply(helper).apply(pd.Series).as_matrix() # 7 df_month = df['month'].apply(helper).apply(pd.Series).as_matrix() # 12 df_year = df['year'].apply(helper).apply(pd.Series).as_matrix() # 3 df_empty = df[['super', 'com_date', 'error', 'numbers']].copy() # print(df_empty) df_super = df_empty.ix[:, [0]] df_com_date = df_empty.ix[:, [1]] df_error = df_empty.ix[:, [2]] df_numbers = df_empty.ix[:, [3]] X_train_ = np.column_stack((df_super, df_com_date, df_numbers, df_week, df_month)) Y_train_ = df_error.as_matrix() ss_x = preprocessing.MaxAbsScaler() ss_y = preprocessing.MaxAbsScaler() global scaler scaler = ss_y # ss_x = preprocessing.StandardScaler() array_new = ss_x.fit_transform(df_empty.ix[:, [0]]) df_super = pd.DataFrame(array_new) array_new = ss_x.fit_transform(df_empty.ix[:, [1]]) df_com_date = pd.DataFrame(array_new) array_new = ss_x.fit_transform(df_empty.ix[:, [3]]) df_numbers = pd.DataFrame(array_new) array_new = ss_y.fit_transform(df_empty.ix[:, [2]]) df_error = pd.DataFrame(array_new) df_week = ss_x.fit_transform(df_week) df_week = pd.DataFrame(df_week) df_month = ss_x.fit_transform(df_month) df_month = pd.DataFrame(df_month) X_train = np.column_stack((df_super, df_com_date, df_numbers, df_week, df_month)) Y_train = df_error.as_matrix() print('Xshape:' + str(X_train.shape)) print('Yshape:' + str(Y_train.shape)) y_arr = Y_train.T.tolist() # print(y_arr) try: y_arr = ss_y.inverse_transform(y_arr) #draw_error_line(y_arr[0], df) #draw_error_bar(y_arr[0]) except Exception as e: print(e) if not issplit: print('Xshape:' + str(X_train.shape)) print('Yshape:' + str(Y_train.shape)) X_train, X_test, Y_train, Y_test = train_test_split(X_train_, Y_train_, test_size=0.1, shuffle=False) X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.1, shuffle=False) return X_train, Y_train, X_test, Y_test, X_val, Y_val else: return split_CV(X_train, Y_train, sequence_length=sequence_length, stateful=False) import datetime def get_data_single_user(path_to_dataset='df_dh.csv', sequence_length=20, stateful=False, issplit=True): fold_index = 1 ### dtypes = {'sub': 'float', 'super': 'float', 'error': 'float', 'com_date': 'int', 'week': 'str', 'month': 'str', 'year': 'str', 'numbers': 'int', 'log': 'float', 'id': 'str', 'usage': 'float'} parse_dates = ['date'] print('$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$' + path_to_dataset) df = pd.read_csv(DATAPATH + path_to_dataset, header=0, dtype=dtypes, parse_dates=parse_dates, encoding="utf-8") # print(path_to_dataset) print(df.columns) df = df[df['usage'] >= 0] # df_test = pd.read_csv(DATAPATH+"test"+str(fold_index)+".csv", header = 0, dtype=dtypes, parse_dates=parse_dates,encoding="utf-8") def helper(x): split = list(map(int, x.strip('[').strip(']').split(','))) d = {} for counter, value in enumerate(split): k = str(len(split)) + "-" + str(counter) d[k] = value return d # df_train_temp = df_train['week'].apply(helper).apply(pd.Series) df_week = df['week'].apply(helper).apply(pd.Series).as_matrix() # 7 df_month = df['month'].apply(helper).apply(pd.Series).as_matrix() # 12 df_year = df['year'].apply(helper).apply(pd.Series).as_matrix() # 3 df_empty = df[['com_date', 'usage']].copy() # print(df_empty) df_com_date = df_empty.ix[:, [0]] df_usage = df_empty.ix[:, [1]] ss_x = preprocessing.MaxAbsScaler() ss_y = preprocessing.MaxAbsScaler() global scaler scaler = ss_y # ss_x = preprocessing.StandardScaler() array_new = ss_x.fit_transform(df_empty.ix[:, [0]]) df_com_date = pd.DataFrame(array_new) array_new = ss_y.fit_transform(df_empty.ix[:, [1]]) df_usage = pd.DataFrame(array_new) df_week = ss_x.fit_transform(df_week) df_week = pd.DataFrame(df_week) df_month = ss_x.fit_transform(df_month) df_month = pd.DataFrame(df_month) X_train = np.column_stack((df_week, df_month)) Y_train = df_usage.as_matrix() print(X_train) print(Y_train.shape) y_arr = Y_train.T.tolist() # print(y_arr) print(df) y_arr = ss_y.inverse_transform(y_arr) draw_error_line(y_arr[0], df) draw_error_bar(y_arr[0]) # try: # # except Exception as e: # print(e) if not issplit: return X_train, Y_train else: return split_CV(X_train, Y_train, sequence_length=sequence_length, stateful=False) def inverse_xy_transform(scaler, *para): temp = [] for i in para: print(i.reshape(-1, 1)) temp.append(scaler.inverse_transform(i.reshape(-1, 1))) return temp def split_CV(X_train, Y_train, sequence_length=20, stateful=False): """return ndarray """ print(X_train) print(Y_train.shape[0]) result_x = [] result_y = [] for index in range(len(Y_train) - sequence_length): result_x.append(X_train[index: index + sequence_length]) # result_y.append(Y_train[index: index + sequence_length]) result_y.append(Y_train[index + sequence_length]) X_train = np.array(result_x) Y_train = np.array(result_y) print(X_train.shape) # (705, 20, 24) print(Y_train.shape) # (705, 1) print('##################################################################') if stateful == True: # X_train, X_test, Y_train, Y_test = train_test_split(X_train, Y_train, test_size=0.1,shuffle=False) cp_X_train = X_train.copy() cp_Y_train = Y_train.copy() X_train = cp_X_train[:640, ...] X_test = cp_X_train[640:, ...] Y_train = cp_Y_train[:640, ...] Y_test = cp_Y_train[640:, ...] print(X_test.shape[0]) # print(Y_test.shape[0]) # X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.1, shuffle=False) print('##################################################################') if stateful == False: X_train, X_test, Y_train, Y_test = train_test_split(X_train, Y_train, test_size=0.1, shuffle=False) X_train, X_val, Y_train, Y_val = train_test_split(X_train, Y_train, test_size=0.1, shuffle=False) # print(X_train.shape)#(705, 20, 24) # print(Y_train.shape)#(705, 1) # train_x_disorder = X_train.reshape((X_train.shape[0],X_train.shape[1] , feature_num)) # test_x_disorder = X_test.reshape((X_test.shape[0],X_test.shape[1], feature_num )) # X_val = X_val.reshape((X_val.shape[0], X_val.shape[1] , feature_num)) # print(train_x_disorder.dtype) train_y_disorder = Y_train.reshape(-1, 1) test_y_disorder = Y_test.reshape(-1, 1) Y_val = Y_val.reshape(-1, 1) print(X_train.shape[0]) # (705, 20, 24) print(Y_train.shape[0]) # (705, 1) print('@' * 40) # print(X_test) print(train_y_disorder.shape) print('@' * 40) return [X_train, train_y_disorder, X_test, test_y_disorder, X_val, Y_val] # ndarray def LSTM2(X_train): model = Sequential() # layers = [1, 50, 100, 1] layers = [1, 30, 30, 1] if STATEFUL == False: model.add(LSTM( layers[1], input_shape=(X_train.shape[1], X_train.shape[2]), stateful=STATEFUL, return_sequences=True, kernel_initializer='he_normal' # , kernel_regularizer=l2(0.01) )) else: model.add(LSTM( layers[1], # input_shape=(X_train.shape[1], X_train.shape[2]), batch_input_shape=(batch_size, X_train.shape[1], X_train.shape[2]), stateful=STATEFUL, return_sequences=True, kernel_initializer='he_normal' # , kernel_regularizer=l2(0.01) )) # model.add(Dropout(0.2)) model.add(LSTM( layers[2], stateful=STATEFUL, return_sequences=False, kernel_initializer='he_normal' # ,kernel_regularizer=l2(0.01) )) model.add(Dropout(0.2)) # model.add(Flatten()) model.add(Dense( layers[3] , kernel_initializer='he_normal' , kernel_regularizer=l2(0.01) , activity_regularizer=l1(0.01) )) model.add(BatchNormalization()) model.add(Activation("linear")) start = time.time() sgd = SGD(lr=1e-3, decay=1e-8, momentum=0.9, nesterov=True) ada = Adadelta(lr=1e-4, rho=0.95, epsilon=1e-6) rms = RMSprop(lr=0.001, rho=0.9, epsilon=1e-6, decay=1e-8) adam = Adam(lr=1e-3) # model.compile(loss="mse", optimizer=sgd) # try: # model.load_weights("./lstm.h5") # except Exception as ke: # print(str(ke)) model.compile(loss="mse", optimizer=adam) print("Compilation Time : ", time.time() - start) return model def draw_error_bar(y_array): fig = plt.figure() axes = fig.add_subplot(1, 1, 1) x = list(range(len(y_array))) plt.bar(x, y_array, label='error') # plt.legend(handles=[line1, line2,line3]) plt.legend() plt.title('error bar') # plt.show() axes.grid() fig.tight_layout() fig.savefig(RESULT_PATH + str(batch_size) + 'bar_error.png', dpi=300) def draw_error_line(y_array, df): fig = plt.figure() axes = fig.add_subplot(1, 1, 1) x = list(range(len(y_array))) plt.plot(x, y_array, label='error') x = list(range(len(df['error']))) plt.plot(x, df['error'], label='error') # plt.legend(handles=[line1, line2,line3]) plt.legend() plt.title('error plot') # plt.show() axes.grid() fig.tight_layout() fig.savefig(RESULT_PATH + str(batch_size) + 'line_error.png', dpi=300) def draw_scatter(predicted, y_test, X_test, x_train, y_train, data_file): fig = plt.figure() axes = fig.add_subplot(1, 1, 1) x = list(range(len(predicted))) total_width, n = 0.8, 2 width = total_width / n plt.bar(x, y_test.T[0], width=width, label='truth', fc='y') for i in range(len(x)): x[i] = x[i] + width plt.bar(x, predicted, width=width, label='predict', fc='r') # plt.legend(handles=[line1, line2,line3]) plt.legend() plt.title('lstm') # plt.show() axes.grid() fig.tight_layout() fig.savefig(RESULT_PATH + str(batch_size) + data_file + str(prefix) + 'bar_lstm.png', dpi=300) fig = plt.figure() plt.scatter(y_test.T[0], predicted) # plt.plot(y_test.T[0], predicted, linewidth =0.3, color='red') plt.xlim(0, 1) plt.ylim(0, 1) plt.xlabel('truth') plt.ylabel('predict') # plt.show() fig.savefig(RESULT_PATH + str(batch_size) + data_file + str(prefix) + '_scatter_lstm.png', dpi=300) def draw_line(predicted, y_test, X_test, x_train, y_train, data_file): fig = plt.figure() axes = fig.add_subplot(1, 1, 1) x = list(range(len(predicted))) total_width, n = 0.8, 2 width = total_width / n plt.bar(x, y_test.T[0], width=width, label='True', fc='y') for i in range(len(x)): x[i] = x[i] + width plt.bar(x, predicted, width=width, label='Predicted', fc='r') # plt.legend(handles=[line1, line2,line3]) plt.legend() plt.title('lstm') # plt.show() axes.grid() axes = fig.add_subplot(1, 1, 1) fig.tight_layout() fig.savefig(RESULT_PATH + str(batch_size) + data_file + str(prefix) + 'bar_lstm.png', dpi=300) fig = plt.figure() plt.scatter(y_test.T[0], predicted) # plt.plot(y_test.T[0], predicted, linewidth =0.3, color='red') plt.xlim(0, 1) plt.ylim(0, 1) plt.xlabel('True') plt.ylabel('Predicted') # plt.show() fig.savefig(RESULT_PATH + str(batch_size) + data_file + str(prefix) + '_scatter_lstm.png', dpi=300) fig = plt.figure() axes = fig.add_subplot(1, 1, 1) plt.plot(x, y_test.T[0], label='True') for i in range(len(x)): x[i] = x[i] + width plt.plot(x, predicted, label='Predicted') plt.legend() axes.grid() fig.tight_layout() fig.savefig(RESULT_PATH + str(batch_size) + data_file + str(prefix) + 'line_lstm.png', dpi=300) def stat_metrics(X_test, y_test, predicted): predicted = np.reshape(predicted, y_test.shape[0]) train_error = np.abs(y_test - predicted) mean_error = np.mean(train_error) min_error = np.min(train_error) max_error = np.max(train_error) std_error = np.std(train_error) print(predicted) print(y_test.T[0]) print(
np.mean(X_test)
numpy.mean
import json import os import random import cv2 import numpy as np import torch import torch.utils.data from tqdm import tqdm def collate_function_seq(batch): dem_frames = torch.stack([item[0] for item in batch]) dem_actions = torch.stack([item[1] for item in batch]) dem_lens = [item[2] for item in batch] query_frames = torch.stack([item[3] for item in batch]) target_actions = torch.stack([item[4] for item in batch]) return [dem_frames, dem_actions, dem_lens, query_frames, target_actions] def index_data(json_list, path_list): print(f'processing files {len(json_list)}') data_tuples = [] for j, v in tqdm(zip(json_list, path_list)): with open(j, 'r') as f: state = json.load(f) ep_lens = [len(x) for x in state] past_len = 0 for e, l in enumerate(ep_lens): data_tuples.append([]) # skip first 30 frames and last 83 frames for f in range(30, l - 83): # find action taken; f0x, f0y = state[e][f]['agent'][0] f1x, f1y = state[e][f + 1]['agent'][0] dx = (f1x - f0x) / 2. dy = (f1y - f0y) / 2. action = [dx, dy] # action = ACTION_LIST.index([dx, dy]) data_tuples[-1].append((v, past_len + f, action)) assert len(data_tuples[-1]) > 0 past_len += l return data_tuples class TransitionDataset(torch.utils.data.Dataset): """ Training dataset class for the behavior cloning mlp model. Args: path: path to the dataset types: list of video types to include size: size of the frames to be returned mode: train, val num_context: number of context state-action pairs num_test: number of test state-action pairs num_trials: number of trials in an episode action_range: number of frames to skip; actions are combined over these number of frames (displcement) of the agent process_data: whether to the videos or not (skip if already processed) __getitem__: returns: (dem_frames, dem_actions, query_frames, target_actions) dem_frames: (num_context, 3, size, size) dem_actions: (num_context, 2) query_frames: (num_test, 3, size, size) target_actions: (num_test, 2) """ def __init__(self, path, types=None, size=None, mode="train", num_context=30, num_test=1, num_trials=9, action_range=10, process_data=0): self.path = path self.types = types self.size = size self.mode = mode self.num_trials = num_trials self.num_context = num_context self.num_test = num_test self.action_range = action_range self.ep_combs = self.num_trials * (self.num_trials - 2) # 9p2 - 9 self.eps = [[x, y] for x in range(self.num_trials) for y in range(self.num_trials) if x != y] types_str = '_'.join(self.types) self.path_list = [] self.json_list = [] # get video paths and json file paths for t in types: print(f'reading files of type {t} in {mode}') paths = [os.path.join(self.path, t, x) for x in os.listdir(os.path.join(self.path, t)) if x.endswith(f'.mp4')] jsons = [os.path.join(self.path, t, x) for x in os.listdir(os.path.join(self.path, t)) if x.endswith(f'.json') and 'index' not in x] paths = sorted(paths) jsons = sorted(jsons) if mode == 'train': self.path_list += paths[:int(0.8 * len(jsons))] self.json_list += jsons[:int(0.8 * len(jsons))] elif mode == 'val': self.path_list += paths[int(0.8 * len(jsons)):] self.json_list += jsons[int(0.8 * len(jsons)):] else: self.path_list += paths self.json_list += jsons self.data_tuples = [] if process_data: # index the videos in the dataset directory. This is done to speed up the retrieval of videos. # frame index, action tuples are stored self.data_tuples = index_data(self.json_list, self.path_list) # tuples of frame index and action (displacement of agent) index_dict = {'data_tuples': self.data_tuples} with open(os.path.join(self.path, f'index_bib_{mode}_{types_str}.json'), 'w') as fp: json.dump(index_dict, fp) else: # read pre-indexed data with open(os.path.join(self.path, f'index_bib_{mode}_{types_str}.json'), 'r') as fp: index_dict = json.load(fp) self.data_tuples = index_dict['data_tuples'] self.tot_trials = len(self.path_list) * 9 def _get_frame(self, video, frame_idx): cap = cv2.VideoCapture(video) # read frame at id and resize cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx) _, frame = cap.read() if self.size is not None: assert frame is not None, f'frame is empty {frame_idx}, {video}' frame = cv2.resize(frame, self.size) frame = torch.tensor(frame).permute(2, 0, 1) # return frames as a torch tensor f x c x w x h frame = frame.to(torch.float32) / 255. cap.release() return frame def get_trial(self, trials, num_transitions, step=1): # retrieve state embeddings and actions from cached file states = [] actions = [] trial_len = [] for t in trials: trial_len += [(t, n) for n in range(0, len(self.data_tuples[t]), step)] random.shuffle(trial_len) if len(trial_len) < num_transitions: return None, None, False for t, n in trial_len[:num_transitions]: video = self.data_tuples[t][n][0] states.append(self._get_frame(video, self.data_tuples[t][n][1])) # actions are pooled over frames if len(self.data_tuples[t]) > n + self.action_range: actions_xy = [d[2] for d in self.data_tuples[t][n:n + self.action_range]] else: actions_xy = [d[2] for d in self.data_tuples[t][n:]] actions_xy = np.array(actions_xy) actions_xy = np.mean(actions_xy, axis=0) actions.append(actions_xy) states = torch.stack(states, dim=0) actions = torch.tensor(np.array(actions)) return states, actions, True def __getitem__(self, idx): # retrieve expert trajectories dem = False test = False # dem and test check for valid trajectory samples while not dem or not test: ep_trials = [idx * self.num_trials + t for t in range(self.num_trials)] random.shuffle(ep_trials) dem_states, dem_actions, dem = self.get_trial(ep_trials[:-1], self.num_context) test_states, test_actions, test = self.get_trial([ep_trials[-1]], self.num_test, step=self.action_range) return dem_states, dem_actions, test_states, test_actions def __len__(self): return self.tot_trials // self.num_trials class TestTransitionDataset(torch.utils.data.Dataset): """ Test dataset class for the behavior cloning mlp model. This dataset is used to test the model on the eval data. This class is used to compare plausible and implausible episodes. Args: path: path to the dataset types: video type to evaluate on size: size of the frames to be returned mode: test num_context: number of context state-action pairs num_test: number of test state-action pairs num_trials: number of trials in an episode action_range: number of frames to skip; actions are combined over these number of frames (displcement) of the agent process_data: whether to the videos or not (skip if already processed) __getitem__: returns: (expected_dem_frames, expected_dem_actions, expected_query_frames, expected_target_actions, unexpected_dem_frames, unexpected_dem_actions, unexpected_query_frames, unexpected_target_actions) dem_frames: (num_context, 3, size, size) dem_actions: (num_context, 2) query_frames: (num_test, 3, size, size) target_actions: (num_test, 2) """ def __init__(self, path, task_type=None, size=None, mode="test", num_context=30, num_test=1, num_trials=9, action_range=10, process_data=0): self.path = path self.task_type = task_type self.size = size self.mode = mode self.num_trials = num_trials self.num_context = num_context self.num_test = num_test self.action_range = action_range self.ep_combs = self.num_trials * (self.num_trials - 2) # 9p2 - 9 self.eps = [[x, y] for x in range(self.num_trials) for y in range(self.num_trials) if x != y] self.path_list_exp = [] self.json_list_exp = [] self.path_list_un = [] self.json_list_un = [] print(f'reading files of type {task_type} in {mode}') paths_expected = sorted([os.path.join(self.path, task_type, x) for x in os.listdir(os.path.join(self.path, task_type)) if x.endswith(f'e.mp4')]) jsons_expected = sorted([os.path.join(self.path, task_type, x) for x in os.listdir(os.path.join(self.path, task_type)) if x.endswith(f'e.json') and 'index' not in x]) paths_unexpected = sorted([os.path.join(self.path, task_type, x) for x in os.listdir(os.path.join(self.path, task_type)) if x.endswith(f'u.mp4')]) jsons_unexpected = sorted([os.path.join(self.path, task_type, x) for x in os.listdir(os.path.join(self.path, task_type)) if x.endswith(f'u.json') and 'index' not in x]) self.path_list_exp += paths_expected self.json_list_exp += jsons_expected self.path_list_un += paths_unexpected self.json_list_un += jsons_unexpected self.data_unexpected = [] self.data_expected = [] if process_data: # index data. This is done speed up video retrieval. # frame index, action tuples are stored self.data_expected = self.index_data(self.json_list_exp, self.path_list_exp) index_dict = {'data_tuples': self.data_expected} with open(os.path.join(self.path, f'index_bib_test_{task_type}e.json'), 'w') as fp: json.dump(index_dict, fp) self.data_unexpected = self.index_data(self.json_list_un, self.path_list_un) index_dict = {'data_tuples': self.data_unexpected} with open(os.path.join(self.path, f'index_bib_test_{task_type}u.json'), 'w') as fp: json.dump(index_dict, fp) else: # load pre-indexed data with open(os.path.join(self.path, f'index_bib_test_{task_type}e.json'), 'r') as fp: index_dict = json.load(fp) self.data_expected = index_dict['data_tuples'] with open(os.path.join(self.path, f'index_bib_test_{task_type}u.json'), 'r') as fp: index_dict = json.load(fp) self.data_unexpected = index_dict['data_tuples'] def _get_frame(self, video, frame_idx): cap = cv2.VideoCapture(video) # read frame at id and resize cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx) _, frame = cap.read() if self.size is not None: assert frame is not None, f'frame is empty {frame_idx}, {video}' frame = cv2.resize(frame, self.size) frame = torch.tensor(frame).permute(2, 0, 1) # return frames as a torch tensor f x c x w x h frame = frame.to(torch.float32) / 255. cap.release() return frame def get_trial(self, trials, data, step=1, shuffle=False): # retrieve state embeddings and actions from cached file states = [] actions = [] trial_len = [] for t in trials: trial_len += [(t, n) for n in range(0, len(data[t]), step)] if shuffle: random.shuffle(trial_len) trial_len = trial_len[:100] for t, n in trial_len: video = data[t][n][0] states.append(self._get_frame(video, data[t][n][1])) actions_xy = [d[2] for d in data[t][n:n + self.action_range]] actions_xy = np.array(actions_xy) actions_xy = np.mean(actions_xy, axis=0) actions.append(actions_xy) states = torch.stack(states, dim=0) actions = torch.tensor(np.array(actions)) return states, actions def __getitem__(self, idx): # retrieve expert trajectories ep_trials = [idx * self.num_trials + t for t in range(self.num_trials)] # retrieve complete fam trajectories fam_expected_states, fam_expected_actions = self.get_trial(ep_trials[:-1], self.data_expected, shuffle=True) fam_unexpected_states, fam_unexpected_actions = self.get_trial(ep_trials[:-1], self.data_unexpected, shuffle=True) # retrieve complete test trajectories test_expected_states, test_expected_actions = self.get_trial([ep_trials[-1]], self.data_expected, step=self.action_range) test_unexpected_states, test_unexpected_actions = self.get_trial([ep_trials[-1]], self.data_unexpected, step=self.action_range) return fam_expected_states, fam_expected_actions, test_expected_states, test_expected_actions, \ fam_unexpected_states, fam_unexpected_actions, test_unexpected_states, test_unexpected_actions def __len__(self): return len(self.data_expected) // 9 class TransitionDatasetSequence(torch.utils.data.Dataset): """ Training dataset class for the behavior cloning mlp model. Args: path: path to the dataset types: list of video types to include size: size of the frames to be returned mode: train, val num_context: number of context state-action pairs num_test: number of test state-action pairs num_trials: number of trials in an episode action_range: number of frames to skip; actions are combined over these number of frames (displcement) of the agent process_data: whether to the videos or not (skip if already processed) max_len: maximum length of the sequence __getitem__: returns: (dem_frames, dem_actions, dem_lens, query_frames, target_actions) dem_frames: (num_context, 3, size, size) dem_actions: (num_context, max_len, 2) dem_lens: (num_context) query_frames: (num_test, 3, size, size) target_actions: (num_test, 2) """ def __init__(self, path, types=None, size=None, mode="train", num_context=30, num_test=1, num_trials=9, action_range=10, process_data=0, max_len=30): self.path = path self.types = types self.size = size self.mode = mode self.num_trials = num_trials self.num_context = num_context self.num_test = num_test self.action_range = action_range self.max_len = max_len self.ep_combs = self.num_trials * (self.num_trials - 2) # 9p2 - 9 self.eps = [[x, y] for x in range(self.num_trials) for y in range(self.num_trials) if x != y] types_str = '_'.join(self.types) self.path_list = [] self.json_list = [] for t in types: print(f'reading files of type {t} in {mode}') paths = [os.path.join(self.path, t, x) for x in os.listdir(os.path.join(self.path, t)) if x.endswith(f'.mp4')] jsons = [os.path.join(self.path, t, x) for x in os.listdir(os.path.join(self.path, t)) if x.endswith(f'.json') and 'index' not in x] paths = sorted(paths) jsons = sorted(jsons) if mode == 'train': self.path_list += paths[:int(0.8 * len(jsons))] self.json_list += jsons[:int(0.8 * len(jsons))] elif mode == 'val': self.path_list += paths[int(0.8 * len(jsons)):] self.json_list += jsons[int(0.8 * len(jsons)):] else: self.path_list += paths self.json_list += jsons self.data_tuples = [] if process_data: # index the videos for quicker video retrieval. self.data_tuples = index_data(self.json_list, self.path_list) index_dict = {'data_tuples': self.data_tuples} with open(os.path.join(self.path, f'index_bib_{mode}_{types_str}.json'), 'w') as fp: json.dump(index_dict, fp) else: # load pre-existing index with open(os.path.join(self.path, f'index_bib_{mode}_{types_str}.json'), 'r') as fp: index_dict = json.load(fp) self.data_tuples = index_dict['data_tuples'] self.tot_trials = len(self.path_list) * 9 def _get_frame(self, video, frame_idx): cap = cv2.VideoCapture(video) # read frame at id and resize cap.set(cv2.CAP_PROP_POS_FRAMES, frame_idx) _, frame = cap.read() if self.size is not None: assert frame is not None, f'frame is empty {frame_idx}, {video}' frame = cv2.resize(frame, self.size) frame = torch.tensor(frame).permute(2, 0, 1) # return frames as a torch tensor f x c x w x h frame = frame.to(torch.float32) / 255. cap.release() return frame def get_trial(self, trials, step=10): # retrieve state embeddings and actions from cached file states = [] actions = [] trial_len = [] lens = [] for t in trials: tl = [(t, n) for n in range(0, len(self.data_tuples[t]), step)] if len(tl) > self.max_len: tl = tl[:self.max_len] trial_len.append(tl) for tl in trial_len: states.append([]) actions.append([]) lens.append(len(tl)) for t, n in tl: video = self.data_tuples[t][n][0] states[-1].append(self._get_frame(video, self.data_tuples[t][n][1])) if len(self.data_tuples[t]) > n + self.action_range: actions_xy = [d[2] for d in self.data_tuples[t][n:n + self.action_range]] else: actions_xy = [d[2] for d in self.data_tuples[t][n:]] actions_xy = np.array(actions_xy) actions_xy =
np.mean(actions_xy, axis=0)
numpy.mean
import pytest import numpy as np from lumicks.pylake.detail.image import reconstruct_image, reconstruct_num_frames, save_tiff, ImageMetadata, line_timestamps_image def test_metadata_from_json(): json = { 'cereal_class_version': 1, 'fluorescence': True, 'force': False, 'scan count': 0, 'scan volume': {'center point (um)': {'x': 58.075877109272604, 'y': 31.978375270573267, 'z': 0}, 'cereal_class_version': 1, 'pixel time (ms)': 0.5, 'scan axes': [{'axis': 0, 'cereal_class_version': 1, 'num of pixels': 240, 'pixel size (nm)': 150, 'scan time (ms)': 0, 'scan width (um)': 36.07468112612217}]}} image_metadata = ImageMetadata.from_dataset(json) res = image_metadata.resolution assert np.isclose(res[0], 1e7 / 150) assert np.isclose(res[1], 1e7 / 150) assert res[2] == 'CENTIMETER' assert np.isclose(image_metadata.metadata['PixelTime'], .0005) assert image_metadata.metadata['PixelTimeUnit'] == 's' def test_timestamps_image(): infowave = np.array([0, 1, 0, 1, 1, 0, 2, 1, 0, 1, 0, 0, 1, 2, 1, 1, 1, 2]) time = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]) line_stamps = line_timestamps_image(time, infowave, 5) assert line_stamps.shape == (1,) assert np.all(line_stamps == [1]) line_stamps = line_timestamps_image(time, infowave, 2) assert line_stamps.shape == (2,) assert np.all(line_stamps == [1, 15]) def test_reconstruct(): infowave = np.array([0, 1, 0, 1, 1, 0, 2, 1, 0, 1, 0, 0, 1, 2, 1, 1, 1, 2]) the_data = np.array([1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3]) image = reconstruct_image(the_data, infowave, 5) assert image.shape == (1, 5) assert np.all(image == [4, 8, 12, 0, 0]) image = reconstruct_image(the_data, infowave, 2) assert image.shape == (2, 2) assert np.all(image == [[4, 8], [12, 0]]) def test_reconstruct_multiframe(): size = 100 infowave = np.ones(size) infowave[9::10] = 2 the_data = np.arange(size) assert reconstruct_image(the_data, infowave, 5).shape == (2, 5) assert reconstruct_image(the_data, infowave, 2).shape == (5, 2) assert reconstruct_image(the_data, infowave, 1).shape == (10, 1) assert reconstruct_image(the_data, infowave, 2, 2).shape == (3, 2, 2) assert reconstruct_image(the_data, infowave, 2, 3).shape == (2, 3, 2) assert reconstruct_image(the_data, infowave, 2, 5).shape == (5, 2) assert reconstruct_num_frames(infowave, 2, 2) == 3 assert reconstruct_num_frames(infowave, 2, 3) == 2 assert reconstruct_num_frames(infowave, 2, 5) == 1 def test_int_tiff(tmpdir): def grab_tags(file): import tifffile from ast import literal_eval with tifffile.TiffFile(file) as tif: tiff_tags = {} for tag in tif.pages[0].tags.values(): name, value = tag.name, tag.value try: tiff_tags[name] = literal_eval(value) except (ValueError, SyntaxError): tiff_tags[name] = value return tiff_tags image16 = np.ones(shape=(10, 10, 3)) *
np.iinfo(np.uint16)
numpy.iinfo
from ctapipe.utils import get_dataset_path import numpy as np import pytest import os import shutil import pandas as pd from lstchain.io.io import dl1_params_lstcam_key, dl2_params_lstcam_key from lstchain.reco.utils import filter_events import astropy.units as u test_dir = 'testfiles' os.makedirs(test_dir, exist_ok=True) mc_gamma_testfile = get_dataset_path('gamma_test_large.simtel.gz') dl1_file = os.path.join(test_dir, 'dl1_gamma_test_large.h5') dl2_file = os.path.join(test_dir, 'dl2_gamma_test_large.h5') fake_dl2_proton_file = os.path.join(test_dir, 'dl2_fake_proton.simtel.h5') fake_dl1_proton_file = os.path.join(test_dir, 'dl1_fake_proton.simtel.h5') file_model_energy = os.path.join(test_dir, 'reg_energy.sav') file_model_disp = os.path.join(test_dir, 'reg_disp_vector.sav') file_model_gh_sep = os.path.join(test_dir, 'cls_gh.sav') custom_config = { "events_filters": { "intensity": [0.3, np.inf], "width": [0, 10], "length": [0, 10], "wl": [0, 1], "r": [0, 1], "leakage2_intensity": [0, 1] }, "tailcut": { "picture_thresh":6, "boundary_thresh":2, "keep_isolated_pixels": True, "min_number_picture_neighbors": 1 }, "random_forest_regressor_args": { "max_depth": 5, "min_samples_leaf": 2, "n_jobs": 4, "n_estimators": 15, }, "random_forest_classifier_args": { "max_depth": 5, "min_samples_leaf": 2, "n_jobs": 4, "n_estimators": 10, }, "regression_features": [ "intensity", "width", "length", "x", "y", "wl", "skewness", "kurtosis", ], "classification_features": [ "intensity", "width", "length", "x", "y", "log_reco_energy", "reco_disp_dx", "reco_disp_dy" ], "allowed_tels": [1, 2, 3, 4], "image_extractor": "GlobalPeakWindowSum", "image_extractor_config": {}, "gain_selector": "ThresholdGainSelector", "gain_selector_config": { "threshold": 4094 } } def test_import_calib(): from lstchain import calib def test_import_reco(): from lstchain import reco def test_import_visualization(): from lstchain import visualization def test_import_lstio(): from lstchain import io @pytest.mark.run(order=1) def test_r0_to_dl1(): from lstchain.reco.r0_to_dl1 import r0_to_dl1 infile = mc_gamma_testfile r0_to_dl1(infile, custom_config=custom_config, output_filename=dl1_file) def test_get_source_dependent_parameters(): from lstchain.reco.dl1_to_dl2 import get_source_dependent_parameters dl1_params = pd.read_hdf(dl1_file, key=dl1_params_lstcam_key) src_dep_df = get_source_dependent_parameters(dl1_params, custom_config) @pytest.mark.run(order=2) def test_build_models(): from lstchain.reco.dl1_to_dl2 import build_models infile = dl1_file reg_energy, reg_disp, cls_gh = build_models(infile, infile, custom_config=custom_config, save_models=False) import joblib joblib.dump(reg_energy, file_model_energy) joblib.dump(reg_disp, file_model_disp) joblib.dump(cls_gh, file_model_gh_sep) @pytest.mark.run(order=3) def test_apply_models(): from lstchain.reco.dl1_to_dl2 import apply_models import joblib dl1 = pd.read_hdf(dl1_file, key=dl1_params_lstcam_key) dl1 = filter_events(dl1, filters=custom_config["events_filters"]) reg_energy = joblib.load(file_model_energy) reg_disp = joblib.load(file_model_disp) reg_cls_gh = joblib.load(file_model_gh_sep) dl2 = apply_models(dl1, reg_cls_gh, reg_energy, reg_disp, custom_config=custom_config) dl2.to_hdf(dl2_file, key=dl2_params_lstcam_key) def produce_fake_dl1_proton_file(): """ Produce a fake dl2 proton file by copying the dl2 gamma test file and changing mc_type """ events = pd.read_hdf(dl1_file, key=dl1_params_lstcam_key) events.mc_type = 101 events.to_hdf(fake_dl1_proton_file, key=dl1_params_lstcam_key) def produce_fake_dl2_proton_file(): """ Produce a fake dl2 proton file by copying the dl2 gamma test file and changing mc_type """ events = pd.read_hdf(dl2_file, key=dl2_params_lstcam_key) events.mc_type = 101 events.to_hdf(fake_dl2_proton_file, key=dl2_params_lstcam_key) @pytest.mark.run(after='produce_fake_dl2_proton_file') def test_sensitivity(): from lstchain.mc.sensitivity import find_best_cuts_sensitivity, sensitivity produce_fake_dl2_proton_file() nfiles_gammas = 1 nfiles_protons = 1 eb = 10 # Number of energy bins gb = 11 # Number of gammaness bins tb = 10 # Number of theta2 bins obstime = 50 * 3600 * u.s noff = 2 E, best_sens, result, units, gcut, tcut = find_best_cuts_sensitivity(dl1_file, dl1_file, dl2_file, fake_dl2_proton_file, 1, 1, eb, gb, tb, noff, obstime) E, best_sens, result, units, dl2 = sensitivity(dl1_file, dl1_file, dl2_file, fake_dl2_proton_file, 1, 1, eb, gcut, tcut * (u.deg ** 2), noff, obstime) @pytest.mark.last def test_clean_test_files(): """ Function to clean the test files created by the previous test """ import shutil shutil.rmtree(test_dir) def test_disp_vector(): from lstchain.reco.disp import disp_vector dx = np.cos(np.pi/3 * np.ones(3)) dy = np.sin(np.pi/3 * np.ones(3)) disp_angle = np.pi/3 * np.ones(3) disp_norm =
np.ones(3)
numpy.ones
import os import numpy as np from pySDC.helpers.stats_helper import filter_stats, sort_stats from pySDC.implementations.collocation_classes.gauss_radau_right import CollGaussRadau_Right from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI from pySDC.implementations.problem_classes.AllenCahn_2D_FD import allencahn_fullyimplicit from pySDC.implementations.problem_classes.AllenCahn_2D_FFT import allencahn2d_imex from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order from pySDC.playgrounds.Allen_Cahn.AllenCahn_monitor import monitor # http://www.personal.psu.edu/qud2/Res/Pre/dz09sisc.pdf def setup_parameters(): """ Helper routine to fill in all relevant parameters Note that this file will be used for all versions of SDC, containing more than necessary for each individual run Returns: description (dict) controller_params (dict) """ # initialize level parameters level_params = dict() level_params['restol'] = 1E-11 level_params['dt'] = 1E-05 level_params['nsweeps'] = [1] # initialize sweeper parameters sweeper_params = dict() sweeper_params['collocation_class'] = CollGaussRadau_Right sweeper_params['num_nodes'] = [5] sweeper_params['QI'] = ['LU'] sweeper_params['initial_guess'] = 'zero' # This comes as read-in for the problem class problem_params = dict() problem_params['nu'] = 2 problem_params['nvars'] = [(128, 128)] problem_params['eps'] = [0.04] problem_params['newton_maxiter'] = 100 problem_params['newton_tol'] = 1E-12 problem_params['lin_tol'] = 1E-12 problem_params['lin_maxiter'] = 100 problem_params['radius'] = 0.25 # initialize step parameters step_params = dict() step_params['maxiter'] = 50 # initialize controller parameters controller_params = dict() controller_params['logger_level'] = 20 # controller_params['hook_class'] = monitor # fill description dictionary for easy step instantiation description = dict() description['problem_class'] = allencahn_fullyimplicit # pass problem class description['problem_params'] = problem_params # pass problem parameters description['sweeper_class'] = generic_implicit # pass sweeper (see part B) description['sweeper_params'] = sweeper_params # pass sweeper parameters description['level_params'] = level_params # pass level parameters description['step_params'] = step_params # pass step parameters return description, controller_params def setup_parameters_FFT(): """ Helper routine to fill in all relevant parameters Note that this file will be used for all versions of SDC, containing more than necessary for each individual run Returns: description (dict) controller_params (dict) """ # initialize level parameters level_params = dict() level_params['restol'] = 1E-11 level_params['dt'] = 1E-04 level_params['nsweeps'] = [1] # initialize sweeper parameters sweeper_params = dict() sweeper_params['collocation_class'] = CollGaussRadau_Right sweeper_params['num_nodes'] = [5] sweeper_params['QI'] = ['LU'] sweeper_params['initial_guess'] = 'zero' # This comes as read-in for the problem class problem_params = dict() problem_params['nu'] = 2 problem_params['nvars'] = [(128, 128)] problem_params['eps'] = [0.04] problem_params['newton_maxiter'] = 100 problem_params['newton_tol'] = 1E-12 problem_params['lin_tol'] = 1E-12 problem_params['lin_maxiter'] = 100 problem_params['radius'] = 0.25 # initialize step parameters step_params = dict() step_params['maxiter'] = 50 # initialize controller parameters controller_params = dict() controller_params['logger_level'] = 20 controller_params['hook_class'] = monitor # fill description dictionary for easy step instantiation description = dict() description['problem_class'] = allencahn2d_imex # pass problem class description['problem_params'] = problem_params # pass problem parameters description['sweeper_class'] = imex_1st_order # pass sweeper (see part B) description['sweeper_params'] = sweeper_params # pass sweeper parameters description['level_params'] = level_params # pass level parameters description['step_params'] = step_params # pass step parameters return description, controller_params def run_reference(Tend): """ Routine to run particular SDC variant Args: Tend (float): end time for dumping """ # load (incomplete) default parameters description, controller_params = setup_parameters_FFT() # setup parameters "in time" t0 = 0 # instantiate controller controller = controller_nonMPI(num_procs=1, controller_params=controller_params, description=description) # get initial values on finest level P = controller.MS[0].levels[0].prob uinit = P.u_exact(t0) # call main function to get things done... uend, stats = controller.run(u0=uinit, t0=t0, Tend=Tend) # filter statistics by variant (number of iterations) filtered_stats = filter_stats(stats, type='niter') # convert filtered statistics to list of iterations count, sorted by process iter_counts = sort_stats(filtered_stats, sortby='time') # compute and print statistics niters =
np.array([item[1] for item in iter_counts])
numpy.array
''' ############################################################################### "MajoranaNanowire" Python3 Module v 1.0 (2020) Created by <NAME> (2018) ############################################################################### "H_class/Lutchyn_Oreg/builders" submodule This sub-package builds Lutchyn-Oreg Hamiltonians. ############################################################################### ''' #%%############################################################################ ######################## Required Packages ############################ ############################################################################### import numpy as np import scipy.sparse import scipy.sparse.linalg import scipy.linalg import scipy.constants as cons from MajoranaNanowires.Functions import diagonal #%% def LO_1D_builder(N,dis,m_eff,mu,B,aR,d, space='position', k_vec=np.nan ,sparse='no'): """ 1D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 1D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: int or arr Number of sites. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is an array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is an array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is an array with the on-site Rashba couplings in the direction i. d: float or arr Superconductor paring amplitud. -If d is a float, d is the Rashba coupling along the y-direction, with the same value in every site. -If d is an array, each element of the array is the on-site superconducting paring amplitud space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones(N) if np.isscalar(mu): mu = mu * np.ones(N) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRy=np.zeros(N) aRz=aR*np.ones(N)/(2*dis) elif np.ndim(aR)==1: if len(aR)==3: aRy=aR[1]*np.ones(N)/(2*dis) aRz=aR[2]*np.ones(N)/(2*dis) else: aRy=np.zeros(N) aRz=aR/(2*dis) else: aRy=aR[1]/(2*dis) aRz=aR[2]/(2*dis) if np.isscalar(d): d = d * np.ones(N) if space=='momentum': n_k=len(k_vec) #Obtain the hopping and on-site energies: t=cons.hbar**2/(2*m_eff*cons.m_e*(dis*1e-9)**2)/cons.e*1e3 e = 2 * t - mu ##Build the Hamiltonian: if sparse=='no': H = np.zeros((int(4 * N), int(4 * N)),dtype=complex) elif sparse=='yes': H=scipy.sparse.dok_matrix((int(4*N),int(4*N)),dtype=complex) t, aRy, Bz = np.repeat(t,2), np.repeat(aRy,2), np.repeat(Bz,2) Bz[1::2], aRy[1::2] = -Bz[::2], -aRy[::2] for i in range(2): H[diagonal(2*N*(i+1),init=2*N*i,k=1,step=2)], H[diagonal(2*N*(i+1),init=2*N*i,k=-1,step=2)] = (-1)**(i)*Bx-1j*By, (-1)**(i)*Bx+1j*By H[diagonal(2*N*(i+1),init=2*N*i)] = (-1)**i*(Bz+np.repeat(e,2)) H[diagonal(2*N*(i+1),init=2*N*i,k=-2)] = -1*(-1)**i*t[2::]+1j*aRy[2::] H[diagonal(2*N*(i+1),init=2*N*i,k=2)] = -1*(-1)**i*t[2::]-1j*aRy[2::] H[diagonal(2*N*(i+1),k=1,step=2,init=1+2*N*i)] += -1*(-1)**i*aRz[1::] H[diagonal(2*N*(i+1),k=-1,step=2,init=1+2*N*i)] += -1*(-1)**i*aRz[1::] H[diagonal(2*N*(i+1),init=2*N*i,k=3,step=2)] += (-1)**i*aRz[1::] H[diagonal(2*N*(i+1),init=2*N*i,k=-3,step=2)] += (-1)**i*aRz[1::] H[diagonal(4*N,k=2*N+1,step=2)], H[diagonal(4*N,k=-2*N-1,step=2)] = -np.conj(d), -d H[diagonal(4*N,k=2*N-1,step=2,init=1)], H[diagonal(4*N,k=-2*N+1,step=2,init=1)] = np.conj(d), d #Build it in momentum space if required: if space=='momentum': if sparse=='no': H_k = np.zeros((int(4 * N), int(4 * N), int(n_k)),dtype=complex) for i in range(n_k): H_k[:,:,i]=H H_k[2 * (N - 1):2 * (N - 1) + 2, 0: 2,i] += np.array([[-t[2]-1j*aRy[2], aRz[1]], [-aRz[1], -t[2]+1j*aRy[2]]])*np.exp(-1j*k_vec[i]*N) H_k[2 * (N - 1)+2*N:2 * (N - 1) + 2+2*N, 2*N: 2+2*N,i] += -np.array([[-t[2]+1j*aRy[2], aRz[1]], [-aRz[1], -t[2]-1j*aRy[2]]])*np.exp(1j*k_vec[i]*N) H_k[0: 2, 2 * (N - 1):2 * (N - 1) + 2,i] += np.array([[-t[2]+1j*aRy[2], -aRz[1]], [aRz[1], -t[2]-1j*aRy[2]]])*np.exp(1j*k_vec[i]*N) H_k[2*N: 2+2*N, 2 * (N - 1)+2*N:2 * (N - 1) + 2+2*N,i] += -np.array([[-t[2]-1j*aRy[2], -aRz[1]], [aRz[1], -t[2]+1j*aRy[2]]])*np.exp(-1j*k_vec[i]*N) return (H_k) elif sparse=='yes': return(H) else: return (H) #%% def LO_1D_builder_NoSC(N,dis,m_eff,mu,B,aR, space='position', k_vec=np.nan ,sparse='no'): """ 1D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 1D Lutchy-Oreg chain without superconductivity. Parameters ---------- N: int or arr Number of sites. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is an array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is an array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is an array with the on-site Rashba couplings in the direction i. space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones(N) if np.isscalar(mu): mu = mu * np.ones(N) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRy=np.zeros(N) aRz=aR*np.ones(N)/(2*dis) elif np.ndim(aR)==1: if len(aR)==3: aRy=aR[1]*np.ones(N)/(2*dis) aRz=aR[2]*np.ones(N)/(2*dis) else: aRy=np.zeros(N) aRz=aR/(2*dis) else: aRy=aR[1]/(2*dis) aRz=aR[2]/(2*dis) if space=='momentum': n_k=len(k_vec) #Obtain the hopping and the on-site energies: t=cons.hbar**2/(2*m_eff*cons.m_e*(dis*1e-9)**2)/cons.e*1e3 e = 2 * t - mu ##Build the Hamiltonian: if sparse=='no': H = np.zeros((int(2 * N), int(2 * N)),dtype=complex) elif sparse=='yes': H=scipy.sparse.dok_matrix((int(2*N),int(2*N)),dtype=complex) Bz,Bx,By=np.repeat(Bz,2),np.repeat(Bx,2), 1j*np.repeat(By,2) Bx[1::2], By[1::2], Bz[1::2] = 0, 0, -Bz[::2] H[diagonal(2*N,k=1)], H[diagonal(2*N,k=-1)] = Bx[:-1]-By[:-1], Bx[:-1]+By[:-1] H[diagonal(2*N)]=Bz+np.repeat(e,2) t=-np.repeat(t,2) aRy=np.repeat(aRy,2) aRy[1::2]= -aRy[::2] H[diagonal(2*N,k=-2)], H[diagonal(2*N,k=2)] = t[2::]+1j*aRy[2::], t[2::]-1j*aRy[2::] H[diagonal(2*N,k=1,step=2,init=1)] += -aRz[1::] H[diagonal(2*N,k=-1,step=2,init=1)] += -aRz[1::] H[diagonal(2*N,k=3,step=2)] += aRz[1::] H[diagonal(2*N,k=-3,step=2)] += aRz[1::] #Build it in momentum space if required: if space=='momentum': if sparse=='no': H_k = np.zeros((int(2 * N), int(2 * N), int(n_k)),dtype=complex) for i in range(n_k): H_k[:,:,i]=H H_k[2 * (N - 1):2 * (N - 1) + 2, 0: 2,i] += np.array([[-t[2]-1j*aRy[2], aRz[1]], [-aRz[1], -t[2]+1j*aRy[2]]])*np.exp(-1j*k_vec[i]*N) H_k[0: 2, 2 * (N - 1):2 * (N - 1) + 2,i] += np.array([[-t[2]+1j*aRy[2], -aRz[1]], [aRz[1], -t[2]-1j*aRy[2]]])*np.exp(1j*k_vec[i]*N) return (H_k) elif sparse=='yes': return (H) else: return (H) #%% def LO_2D_builder(N,dis,m_eff,mu,B,aR, d, space='position', k_vec=np.nan ,sparse='no'): """ 2D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 2D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 2D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 2D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 2D array with the on-site Rashba couplings in the direction i. d: float or arr Superconductor paring amplitud. -If d is a float, d is the Rashba coupling along the y-direction, with the same value in every site. -If d is a 2D array, each element of the array is the on-site superconducting paring amplitud space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Ny, Nz = N[0], N[1] if np.ndim(dis)==0: dis_y, dis_z = dis, dis else: dis_y, dis_z = dis[0], dis[1] m = 4 * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*np.ones(N) aRy=aR[1]*np.ones(N) aRz=aR[2]*np.ones(N) else: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) else: aRx=aR[0] aRy=aR[1] aRz=aR[2] if np.isscalar(d): d = d * np.ones(N) #Obtain the eigenenergies: ty=cons.hbar**2/(2*(m_eff[1::,:]+m_eff[:-1,:])/2*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3 tz=cons.hbar**2/(2*(m_eff[:,1::]+m_eff[:,:-1])/2*cons.m_e*(dis_z*1e-9)**2)/cons.e*1e3 e = - mu e += np.append(2*ty[0,:].reshape(1,Nz),np.append(ty[1::,:]+ty[:-1,:],2*ty[-1,:].reshape(1,Nz),axis=0),axis=0) e += np.append(2*tz[:,0].reshape(Ny,1),np.append(tz[:,1::]+tz[:,:-1],2*tz[:,-1].reshape(Ny,1),axis=1),axis=1) #Build the Hamiltonian: if sparse=='no': H = np.zeros((int(m), int(m)),dtype=complex) elif sparse=='yes': H = scipy.sparse.dok_matrix((int(m),int(m)),dtype=complex) e,d,Bx,By,Bz=e.flatten(),d.flatten(),Bx.flatten(),By.flatten(),Bz.flatten() Bz=np.repeat(Bz,2) Bz[1::2] = -Bz[::2] ty, aRx_ky, aRz_ky = np.repeat(ty.flatten(),2), np.repeat(((aRx[1::,:]+aRx[:-1,:])/(4*dis_y)).flatten(),2), ((aRz[1::,:]+aRz[:-1,:])/(4*dis_y)).flatten() tz, aRx_kz, aRy_kz = np.repeat(tz.flatten(),2), ((aRx[:,1::]+aRx[:,:-1])/(4*dis_z)).flatten(), ((aRy[:,1::]+aRy[:,:-1])/(4*dis_z)).flatten() aRx_ky[1::2] = -aRx_ky[::2] tz, aRx_kz, aRy_kz=np.insert(tz,np.repeat(np.arange(2*(Nz-1),2*(Nz-1)*Ny,2*(Nz-1)),2),np.zeros(2*(Ny-1))), np.insert(aRx_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))), np.insert(aRy_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))) for i in range(2): H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1,step=2)], H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1,step=2)] = (-1)**(i)*Bx-1j*By, (-1)**(i)*Bx+1j*By H[diagonal(int(m/2)*(i+1),init=int(m/2)*i)] = (-1)**(i)*(np.repeat(e,2) + Bz) H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2*Nz)] = -1*(-1)**(i)*ty+1j*aRx_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2*Nz)] = -1*(-1)**(i)*ty-1j*aRx_ky H[diagonal(int(m/2)*(i+1),k=2*Nz-1,step=2,init=1+int(m/2)*i)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),k=-2*Nz+1,step=2,init=1+int(m/2)*i)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1+2*Nz,step=2)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1-2*Nz,step=2)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),k=1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),k=-1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=3,step=2)] += -1*(-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-3,step=2)] += -1*(-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(m,k=int(m/2)+1,step=2)], H[diagonal(m,k=-int(m/2)-1,step=2)] = -np.conj(d), -d H[diagonal(m,k=int(m/2)-1,step=2,init=1)], H[diagonal(m,k=-int(m/2)+1,step=2,init=1)] = np.conj(d), d return (H) #%% def LO_2D_builder_NoSC(N,dis,m_eff,mu,B,aR, space='position', k_vec=np.nan ,sparse='no'): """ 2D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 2D Lutchy-Oreg chain without superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 2D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 2D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 2D array with the on-site Rashba couplings in the direction i. space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Ny, Nz = N[0], N[1] if np.ndim(dis)==0: dis_y, dis_z = dis, dis else: dis_y, dis_z = dis[0], dis[1] m = 2 * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*np.ones(N) aRy=aR[1]*np.ones(N) aRz=aR[2]*np.ones(N) else: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) else: aRx=aR[0] aRy=aR[1] aRz=aR[2] #Obtain the eigenenergies: ty=cons.hbar**2/(2*(m_eff[1::,:]+m_eff[:-1,:])/2*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3 tz=cons.hbar**2/(2*(m_eff[:,1::]+m_eff[:,:-1])/2*cons.m_e*(dis_z*1e-9)**2)/cons.e*1e3 e = - mu e += np.append(2*ty[0,:].reshape(1,Nz),np.append(ty[1::,:]+ty[:-1,:],2*ty[-1,:].reshape(1,Nz),axis=0),axis=0) e += np.append(2*tz[:,0].reshape(Ny,1),np.append(tz[:,1::]+tz[:,:-1],2*tz[:,-1].reshape(Ny,1),axis=1),axis=1) #Build the Hamiltonian: if sparse=='no': H = np.zeros((int(m), int(m)),dtype=complex) elif sparse=='yes': H = scipy.sparse.dok_matrix((int(m),int(m)),dtype=complex) e,Bx,By,Bz=e.flatten(),Bx.flatten(),By.flatten(),Bz.flatten() Bz=np.repeat(Bz,2) Bz[1::2] = -Bz[::2] ty, aRx_ky, aRz_ky = np.repeat(ty.flatten(),2), np.repeat(((aRx[1::,:]+aRx[:-1,:])/(4*dis_y)).flatten(),2), ((aRz[1::,:]+aRz[:-1,:])/(4*dis_y)).flatten() tz, aRx_kz, aRy_kz = np.repeat(tz.flatten(),2), ((aRx[:,1::]+aRx[:,:-1])/(4*dis_z)).flatten(), ((aRy[:,1::]+aRy[:,:-1])/(4*dis_z)).flatten() aRx_ky[1::2] = -aRx_ky[::2] H[diagonal(m,k=1,step=2)], H[diagonal(m,k=-1,step=2)] = Bx-1j*By, Bx+1j*By H[diagonal(m)] = np.repeat(e,2) + Bz H[diagonal(m,k=2*Nz)] = -ty+1j*aRx_ky H[diagonal(m,k=-2*Nz)] = -ty-1j*aRx_ky H[diagonal(m,k=2*Nz-1,step=2,init=1)] += -1j*aRz_ky H[diagonal(m,k=-2*Nz+1,step=2,init=1)] += 1j*aRz_ky H[diagonal(m,k=1+2*Nz,step=2)] += -1j*aRz_ky H[diagonal(m,k=-1-2*Nz,step=2)] += 1j*aRz_ky tz, aRx_kz, aRy_kz=np.insert(tz,np.repeat(np.arange(2*(Nz-1),2*(Nz-1)*Ny,2*(Nz-1)),2),np.zeros(2*(Ny-1))), np.insert(aRx_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))), np.insert(aRy_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))) H[diagonal(m,k=2)] = -tz H[diagonal(m,k=-2)] = -tz H[diagonal(m,k=1,step=2,init=1)] += aRx_kz+1j*aRy_kz H[diagonal(m,k=-1,step=2,init=1)] += aRx_kz-1j*aRy_kz H[diagonal(m,k=3,step=2)] += -aRx_kz+1j*aRy_kz H[diagonal(m,k=-3,step=2)] += -aRx_kz-1j*aRy_kz return (H) #%% def LO_3D_builder(N,dis,m_eff,mu,B,aR,d, space='position', k_vec=np.nan ,sparse='yes'): """ 3D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 3D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 3D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 3D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 3D array with the on-site Rashba couplings in the direction i. d: float or arr Superconductor paring amplitud. -If d is a float, d is the Rashba coupling along the y-direction, with the same value in every site. -If d is a 3D array, each element of the array is the on-site superconducting paring amplitud space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Nx, Ny, Nz = N[0], N[1], N[2] if np.ndim(dis)==0: dis_x, dis_y, dis_z = dis, dis, dis else: dis_x, dis_y, dis_z = dis[0], dis[1], dis[2] m = 4 * Nx * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Nx,Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Nx,Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*
np.ones(N)
numpy.ones
# Copyright (c) 2012-2020 Jicamarca Radio Observatory # All rights reserved. # # Distributed under the terms of the BSD 3-clause license. """Spectra processing Unit and operations Here you will find the processing unit `SpectraProc` and several operations to work with Spectra data type """ import time import itertools import numpy from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation from schainpy.model.data.jrodata import Spectra from schainpy.model.data.jrodata import hildebrand_sekhon from schainpy.utils import log class SpectraProc(ProcessingUnit): def __init__(self): ProcessingUnit.__init__(self) self.buffer = None self.firstdatatime = None self.profIndex = 0 self.dataOut = Spectra() self.id_min = None self.id_max = None self.setupReq = False #Agregar a todas las unidades de proc def __updateSpecFromVoltage(self): self.dataOut.timeZone = self.dataIn.timeZone self.dataOut.dstFlag = self.dataIn.dstFlag self.dataOut.errorCount = self.dataIn.errorCount self.dataOut.useLocalTime = self.dataIn.useLocalTime try: self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() except: pass self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() self.dataOut.channelList = self.dataIn.channelList self.dataOut.heightList = self.dataIn.heightList self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) self.dataOut.nProfiles = self.dataOut.nFFTPoints self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock self.dataOut.utctime = self.firstdatatime self.dataOut.flagDecodeData = self.dataIn.flagDecodeData self.dataOut.flagDeflipData = self.dataIn.flagDeflipData self.dataOut.flagShiftFFT = False self.dataOut.nCohInt = self.dataIn.nCohInt self.dataOut.nIncohInt = 1 self.dataOut.windowOfFilter = self.dataIn.windowOfFilter self.dataOut.frequency = self.dataIn.frequency self.dataOut.realtime = self.dataIn.realtime self.dataOut.azimuth = self.dataIn.azimuth self.dataOut.zenith = self.dataIn.zenith self.dataOut.beam.codeList = self.dataIn.beam.codeList self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList self.dataOut.beam.zenithList = self.dataIn.beam.zenithList def __getFft(self): """ Convierte valores de Voltaje a Spectra Affected: self.dataOut.data_spc self.dataOut.data_cspc self.dataOut.data_dc self.dataOut.heightList self.profIndex self.buffer self.dataOut.flagNoData """ fft_volt = numpy.fft.fft( self.buffer, n=self.dataOut.nFFTPoints, axis=1) fft_volt = fft_volt.astype(numpy.dtype('complex')) dc = fft_volt[:, 0, :] # calculo de self-spectra fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) spc = fft_volt * numpy.conjugate(fft_volt) spc = spc.real blocksize = 0 blocksize += dc.size blocksize += spc.size cspc = None pairIndex = 0 if self.dataOut.pairsList != None: # calculo de cross-spectra cspc = numpy.zeros( (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') for pair in self.dataOut.pairsList: if pair[0] not in self.dataOut.channelList: raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( str(pair), str(self.dataOut.channelList))) if pair[1] not in self.dataOut.channelList: raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( str(pair), str(self.dataOut.channelList))) cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ numpy.conjugate(fft_volt[pair[1], :, :]) pairIndex += 1 blocksize += cspc.size self.dataOut.data_spc = spc self.dataOut.data_cspc = cspc self.dataOut.data_dc = dc self.dataOut.blockSize = blocksize self.dataOut.flagShiftFFT = False def run(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None, shift_fft=False): if self.dataIn.type == "Spectra": self.dataOut.copy(self.dataIn) if shift_fft: #desplaza a la derecha en el eje 2 determinadas posiciones shift = int(self.dataOut.nFFTPoints/2) self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) if self.dataOut.data_cspc is not None: #desplaza a la derecha en el eje 2 determinadas posiciones self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) if pairsList: self.__selectPairs(pairsList) elif self.dataIn.type == "Voltage": self.dataOut.flagNoData = True if nFFTPoints == None: raise ValueError("This SpectraProc.run() need nFFTPoints input variable") if nProfiles == None: nProfiles = nFFTPoints if ippFactor == None: self.dataOut.ippFactor = 1 self.dataOut.nFFTPoints = nFFTPoints if self.buffer is None: self.buffer = numpy.zeros((self.dataIn.nChannels, nProfiles, self.dataIn.nHeights), dtype='complex') if self.dataIn.flagDataAsBlock: nVoltProfiles = self.dataIn.data.shape[1] if nVoltProfiles == nProfiles: self.buffer = self.dataIn.data.copy() self.profIndex = nVoltProfiles elif nVoltProfiles < nProfiles: if self.profIndex == 0: self.id_min = 0 self.id_max = nVoltProfiles self.buffer[:, self.id_min:self.id_max, :] = self.dataIn.data self.profIndex += nVoltProfiles self.id_min += nVoltProfiles self.id_max += nVoltProfiles else: raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) self.dataOut.flagNoData = True else: self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() self.profIndex += 1 if self.firstdatatime == None: self.firstdatatime = self.dataIn.utctime if self.profIndex == nProfiles: self.__updateSpecFromVoltage() if pairsList == None: self.dataOut.pairsList = [pair for pair in itertools.combinations(self.dataOut.channelList, 2)] else: self.dataOut.pairsList = pairsList self.__getFft() self.dataOut.flagNoData = False self.firstdatatime = None self.profIndex = 0 else: raise ValueError("The type of input object '%s' is not valid".format( self.dataIn.type)) def __selectPairs(self, pairsList): if not pairsList: return pairs = [] pairsIndex = [] for pair in pairsList: if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: continue pairs.append(pair) pairsIndex.append(pairs.index(pair)) self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] self.dataOut.pairsList = pairs return def selectFFTs(self, minFFT, maxFFT ): """ Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango minFFT<= FFT <= maxFFT """ if (minFFT > maxFFT): raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) if (minFFT < self.dataOut.getFreqRange()[0]): minFFT = self.dataOut.getFreqRange()[0] if (maxFFT > self.dataOut.getFreqRange()[-1]): maxFFT = self.dataOut.getFreqRange()[-1] minIndex = 0 maxIndex = 0 FFTs = self.dataOut.getFreqRange() inda = numpy.where(FFTs >= minFFT) indb = numpy.where(FFTs <= maxFFT) try: minIndex = inda[0][0] except: minIndex = 0 try: maxIndex = indb[0][-1] except: maxIndex = len(FFTs) self.selectFFTsByIndex(minIndex, maxIndex) return 1 def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): newheis = numpy.where( self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) if hei_ref != None: newheis = numpy.where(self.dataOut.heightList > hei_ref) minIndex = min(newheis[0]) maxIndex = max(newheis[0]) data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] heightList = self.dataOut.heightList[minIndex:maxIndex + 1] # determina indices nheis = int(self.dataOut.radarControllerHeaderObj.txB / (self.dataOut.heightList[1] - self.dataOut.heightList[0])) avg_dB = 10 * \ numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) beacon_dB = numpy.sort(avg_dB)[-nheis:] beacon_heiIndexList = [] for val in avg_dB.tolist(): if val >= beacon_dB[0]: beacon_heiIndexList.append(avg_dB.tolist().index(val)) #data_spc = data_spc[:,:,beacon_heiIndexList] data_cspc = None if self.dataOut.data_cspc is not None: data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] #data_cspc = data_cspc[:,:,beacon_heiIndexList] data_dc = None if self.dataOut.data_dc is not None: data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] #data_dc = data_dc[:,beacon_heiIndexList] self.dataOut.data_spc = data_spc self.dataOut.data_cspc = data_cspc self.dataOut.data_dc = data_dc self.dataOut.heightList = heightList self.dataOut.beacon_heiIndexList = beacon_heiIndexList return 1 def selectFFTsByIndex(self, minIndex, maxIndex): """ """ if (minIndex < 0) or (minIndex > maxIndex): raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) if (maxIndex >= self.dataOut.nProfiles): maxIndex = self.dataOut.nProfiles-1 #Spectra data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] data_cspc = None if self.dataOut.data_cspc is not None: data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] data_dc = None if self.dataOut.data_dc is not None: data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] self.dataOut.data_spc = data_spc self.dataOut.data_cspc = data_cspc self.dataOut.data_dc = data_dc self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] return 1 def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): # validacion de rango if minHei == None: minHei = self.dataOut.heightList[0] if maxHei == None: maxHei = self.dataOut.heightList[-1] if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): print('minHei: %.2f is out of the heights range' % (minHei)) print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) minHei = self.dataOut.heightList[0] if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): print('maxHei: %.2f is out of the heights range' % (maxHei)) print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) maxHei = self.dataOut.heightList[-1] # validacion de velocidades velrange = self.dataOut.getVelRange(1) if minVel == None: minVel = velrange[0] if maxVel == None: maxVel = velrange[-1] if (minVel < velrange[0]) or (minVel > maxVel): print('minVel: %.2f is out of the velocity range' % (minVel)) print('minVel is setting to %.2f' % (velrange[0])) minVel = velrange[0] if (maxVel > velrange[-1]) or (maxVel < minVel): print('maxVel: %.2f is out of the velocity range' % (maxVel)) print('maxVel is setting to %.2f' % (velrange[-1])) maxVel = velrange[-1] # seleccion de indices para rango minIndex = 0 maxIndex = 0 heights = self.dataOut.heightList inda = numpy.where(heights >= minHei) indb = numpy.where(heights <= maxHei) try: minIndex = inda[0][0] except: minIndex = 0 try: maxIndex = indb[0][-1] except: maxIndex = len(heights) if (minIndex < 0) or (minIndex > maxIndex): raise ValueError("some value in (%d,%d) is not valid" % ( minIndex, maxIndex)) if (maxIndex >= self.dataOut.nHeights): maxIndex = self.dataOut.nHeights - 1 # seleccion de indices para velocidades indminvel = numpy.where(velrange >= minVel) indmaxvel = numpy.where(velrange <= maxVel) try: minIndexVel = indminvel[0][0] except: minIndexVel = 0 try: maxIndexVel = indmaxvel[0][-1] except: maxIndexVel = len(velrange) # seleccion del espectro data_spc = self.dataOut.data_spc[:, minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] # estimacion de ruido noise = numpy.zeros(self.dataOut.nChannels) for channel in range(self.dataOut.nChannels): daux = data_spc[channel, :, :] sortdata = numpy.sort(daux, axis=None) noise[channel] = hildebrand_sekhon(sortdata, self.dataOut.nIncohInt) self.dataOut.noise_estimation = noise.copy() return 1 class removeDC(Operation): def run(self, dataOut, mode=2): self.dataOut = dataOut jspectra = self.dataOut.data_spc jcspectra = self.dataOut.data_cspc num_chan = jspectra.shape[0] num_hei = jspectra.shape[2] if jcspectra is not None: jcspectraExist = True num_pairs = jcspectra.shape[0] else: jcspectraExist = False freq_dc = int(jspectra.shape[1] / 2) ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc ind_vel = ind_vel.astype(int) if ind_vel[0] < 0: ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof if mode == 1: jspectra[:, freq_dc, :] = ( jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION if jcspectraExist: jcspectra[:, freq_dc, :] = ( jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 if mode == 2: vel = numpy.array([-2, -1, 1, 2]) xx = numpy.zeros([4, 4]) for fil in range(4): xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) xx_inv = numpy.linalg.inv(xx) xx_aux = xx_inv[0, :] for ich in range(num_chan): yy = jspectra[ich, ind_vel, :] jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) junkid = jspectra[ich, freq_dc, :] <= 0 cjunkid = sum(junkid) if cjunkid.any(): jspectra[ich, freq_dc, junkid.nonzero()] = ( jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 if jcspectraExist: for ip in range(num_pairs): yy = jcspectra[ip, ind_vel, :] jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) self.dataOut.data_spc = jspectra self.dataOut.data_cspc = jcspectra return self.dataOut class removeInterference(Operation): def removeInterference2(self): cspc = self.dataOut.data_cspc spc = self.dataOut.data_spc Heights = numpy.arange(cspc.shape[2]) realCspc =
numpy.abs(cspc)
numpy.abs
#! /usr/bin/env python3 """ fekete - Estimation of Fekete points on a unit sphere This module implements the core algorithm put forward in [1], allowing users to estimate the locations of N equidistant points on a unit sphere. [1] <NAME>., <NAME>., <NAME>., & <NAME>. Estimation of Fekete points (2007), J Comp. Phys. 225, pp 2354--2376 https://doi.org/10.1016/j.jcp.2007.03.017 """ # Created: Sat Jun 19, 2021 06:21pm Last modified: Sat Jun 19, 2021 06:21pm # # Copyright (C) 2021 <NAME> <<EMAIL>> This # program is free software: you can redistribute it and/or modify it under the # terms of the GNU Affero General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. # ----------------------------------------------------------------------------- import numpy as np from scipy.spatial.distance import pdist from tqdm import tqdm from numba import jit from scipy.spatial import SphericalVoronoi from mpl_toolkits.mplot3d.art3d import Poly3DCollection import climnet.utils.general_utils as gut G = 6.67408 * 1E-11 # m^3 / kg / s^2 def bendito(N=100, a=1., X=None, maxiter=1000, break_th=0.001, verbose=True): """ Return the Fekete points according to the Bendito et al. (2007) algorithm. Parameters ---------- N : int Number of points to be distributed on the surface of the unit sphere. Default is `N = 100`. a : float Positive scalar that weights the advance direction in accordance with the kernel under consideration and the surface (cf. Eq. 4 and Table 1 of Bendito et al., 2007). Default is `a = 1` which corresponds to the Newtonian kernel. X : numpy.nadarray, with shape (N, 3) Initial configuration of points. The array consists of N observations (rows) of 3-D (x, y, z) locations of the points. If provided, `N` is overriden and set to `X.shape[0]`. Default is `None`. maxiter : int Maximum number of iterations to carry out. Since the error of the configuration continues to decrease exponentially after a certain number of iterations, a saturation / convergence criterion is not implemented. Users are advised to check until the regime of exponential decreased is reach by trying out different high values of `maxiter`. Default is 1000. verbose : bool Show progress bar. Default is `True`. Returns ------- X_new : numpy.ndarray, with shape (N, 3) Final configuration of `N` points on the surface of the sphere after `maxiter` iterations. Each row contains the (x, y, z) coordinates of the points. If `X` is provided, the `X_new` has the same shape as `X`. dq : numpy.ndarray, with shape (maxiter,) Maximum disequilibrium degree after each iteration. This is defined as the maximum of the modulus of the disequilibrium vectors at each point location. Intuitively, this can be understood as a quantity that is proportional to the total potential energy of the current configuration of points on the sphere's surface. """ # parse inputs if X is None or len(X) == 0: print("Initial configuration not provided. Generating random one ...") X = points_on_sphere(N) # initial random configuration else: N = X.shape[0] # core loop # intializ parameters dq = [] w = np.zeros(X.shape) # set up progress bar pb_fmt = "{desc:<5.5}{percentage:3.0f}%|{bar:30}{r_bar}" pb_desc = "Estimating Fekete points ..." # iterate for k in tqdm(range(maxiter), bar_format=pb_fmt, desc=pb_desc, disable=not verbose): # Core steps from Bendito et al. (2007), pg 6 bottom # 1.a. Advance direction for i in range(len(X)): w[i] = descent_direction_i(X, i) # 1.b. Error as max_i |w_i| mod_w = np.sqrt((w ** 2).sum(axis=1)) max_w = np.max(mod_w) dq.append(
np.max(mod_w)
numpy.max
from logging import log import numpy as np import pandas as pd from scipy import interpolate import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2Tk) from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure from matplotlib.font_manager import FontProperties from matplotlib.ticker import ScalarFormatter from flask import Flask, render_template, request from tkinter import * from tkinter import ttk import sys import os import shutil import random from matplotlib.ticker import MaxNLocator from pathlib import Path import math import copy #from decimal import Decimal, ROUND_HALF_UP def readinput(filename): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") symbol = csv_input['Symbol'] value = csv_input['Value'] unit = csv_input['Unit'] valueDict = {} unitDict = {} for i, j, k in zip(symbol, value, unit): valueDict[i] = float(j) unitDict[i] = str(k) return valueDict, unitDict def CeqLHVFunc(filename,fuelName): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") fuelType = csv_input['Fuel type'] CeqLHV = csv_input['CeqLHV'] fuelDict = {} for i, j in zip(fuelType, CeqLHV): fuelDict[i] = float(j) return fuelDict[fuelName] def Cco2Func(filename,fuelName): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") fuelType = csv_input['Fuel type'] Cco2 = csv_input['Cco2'] Cco2Dict = {} for i, j in zip(fuelType, Cco2): Cco2Dict[i] = float(j) return Cco2Dict[fuelName] def initialFleetFunc(filename): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") year = csv_input['Year'] TEU = csv_input['TEU'] iniFleetDict = {} k = 0 for i, j in zip(year, TEU): iniFleetDict.setdefault(k,{}) iniFleetDict[k]['year'] = int(i) iniFleetDict[k]['TEU'] = float(j) k += 1 return iniFleetDict def decisionListFunc(filename): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",").fillna(0) Year = csv_input['Year'] Order = csv_input['Order'] fuelType = csv_input['Fuel type'] WPS = csv_input['WPS'] SPS = csv_input['SPS'] CCS = csv_input['CCS'] CAP = csv_input['CAP'] Speed = csv_input['Speed'] Fee = csv_input['Fee'] valueDict = {} for i, j, k, l, m, n, o, p, q in zip(Year, Order, fuelType, WPS, SPS, CCS, CAP, Speed, Fee): valueDict.setdefault(int(i),{}) valueDict[int(i)]['Order'] = int(j) valueDict[int(i)]['fuelType'] = k valueDict[int(i)]['WPS'] = int(l) valueDict[int(i)]['SPS'] = int(m) valueDict[int(i)]['CCS'] = int(n) valueDict[int(i)]['CAP'] = float(o) valueDict[int(i)]['Speed'] = float(p) valueDict[int(i)]['Fee'] = float(q) return valueDict def fleetPreparationFunc(fleetAll,initialFleetFile,numCompany,startYear,lastYear,elapsedYear,tOpSch,tbid,valueDict,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5): fleetAll.setdefault(numCompany,{}) fleetAll[numCompany].setdefault('total',{}) fleetAll[numCompany]['total']['sale'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['g'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['gTilde'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costTilde'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['saleTilde'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['cta'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['overDi'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costShipBasicHFO'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costShip'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costFuel'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['dcostFuel'] =
np.zeros(lastYear-startYear+1)
numpy.zeros
# -*- coding: utf-8 -*- """ # @file name : camvid_dataset.py # @author : JLChen # @date : 2019-08-21 10:08:00 # @brief : CamVid数据集的Dataset定义 """ import os import torch from PIL import Image from torch.utils.data import Dataset import torchvision.transforms.functional as ff import torchvision.transforms as transforms from torch.utils.data import DataLoader import numpy as np import pandas as pd class LabelProcessor: """对标签图像的编码""" def __init__(self, file_path): self.colormap = self.read_color_map(file_path) # 读取csv,获得label对应的rgb值, csv --> rgb self.cm2lbl = self.encode_label_pix(self.colormap) # 对label的rgb值制作映射矩阵,rgb --> cls index self.names = pd.read_csv(file_path, sep=',').name.tolist() # 静态方法装饰器, 可以理解为定义在类中的普通函数,可以用self.<name>方式调用 # 在静态方法内部不可以示例属性和实列对象,即不可以调用self.相关的内容 # 使用静态方法的原因之一是程序设计的需要(简洁代码,封装功能等) @staticmethod def read_color_map(file_path): # data process and load.ipynb: 处理标签文件中colormap的数据 """ 读取csv中信息,获得各类别标签的rgb像素,以list形式返回 :param file_path: :return: list, list[0] == [128, 128, 128] ... """ pd_label_color = pd.read_csv(file_path, sep=',') colormap = [] for i in range(len(pd_label_color.index)): tmp = pd_label_color.iloc[i] color = [tmp['r'], tmp['g'], tmp['b']] colormap.append(color) return colormap @staticmethod def encode_label_pix(colormap): """ 生成标签编码,返回哈希表 key是像素值的编码,编码公式:(cm[0] * 256 + cm[1]) * 256 + cm[2] value是类别,0,1,2,3,...,11 :param colormap: :return: ndarray, shape = (16777216,) """ cm2lbl = np.zeros(256 ** 3) for i, cm in enumerate(colormap): cm2lbl[(cm[0] * 256 + cm[1]) * 256 + cm[2]] = i return cm2lbl def encode_label_img(self, img): """ 将rgb像素转换为 0-11 的标签形式 :param img: :return: """ data =
np.array(img, dtype='int32')
numpy.array
# -*- coding: utf-8 -*- """Main module.""" simulation = True import sys import copy import math import time import numpy as np import pandas as pd from sklearn.cluster import DBSCAN # from sample import Sample # from cluster import Cluster # from microCluster import MicroCluster class Sample(): """ Each record of the stream has to be declared as a `Sample` class. :param value: the `values` of the current sample. :param timestamp: the `timestamp` of current sample. """ def __init__(self, value, timestamp: int): self.value = value self.timestamp = 0 self.realTimestamp = timestamp def getValue(self): """ :return: :attr:`value` """ return self.value def setTimestamp(self, timestamp: int): """ :set: :attr:`timestamp` """ self.timestamp = timestamp def setRealTimestamp(self, timestamp): self.realTimestamp = timestamp def setMicroClusterNumber(self, microClusterNumber: int): """ Assign to each sample the microClusterNumber in which was merged. :set: :attr:`microClusterNumber` """ self.microClusterNumber = microClusterNumber def computeReductionFactor(lamb, steps): return math.pow(2, -lamb * steps) class MicroCluster(): """ Micro-Cluster class :param currenttimestamp: the `timestamp` in which the cluster is created. :param lamb: the `lamb` parameter used as decay factor. :param clusterNumber: the `number` of the micro-cluster. """ def __init__(self, currenttimestamp, lamb, clusterNumber): self.dimensions = None self.creationTimeStamp = currenttimestamp self.lamb = lamb self.reductionFactor = computeReductionFactor(self.lamb, 1) self.clusterNumber = clusterNumber def insertSample(self, sample, timestamp=0): """ Adds a sample to a micro-cluster. Updates the variables of the micro-cluster with :meth:`updateRealTimeWeight` and :meth:`updateRealTimeLSandSS` :param sample: the `sample` object :param timestamp: deprecated, not needed anymore. Will be removed in the next versions. """ if self.dimensions == None: if isinstance(sample.value, type(list)): self.dimensions = len(sample.value) elif isinstance(sample.value, float): self.dimensions = 1 elif isinstance(sample.value, np.ndarray): self.dimensions = len(sample.value) else: print ('Received {}'.format(sample.value)) print ('Type {}'.format(type(sample.value))) sys.exit('Error instance sample.value type') ### incremental parameteres ### self.N = 0 self.weight = 0 self.LS = np.zeros(self.dimensions) self.SS = np.zeros(self.dimensions) self.center = np.zeros(self.dimensions) self.radius = 0 self.N += 1 self.updateRealTimeWeight() self.updateRealTimeLSandSS(sample) def updateRealTimeWeight(self): """ Updates the Weight of the micro-cluster by the fading factor and increases it by 1. """ self.weight *= self.reductionFactor self.weight += 1 def updateRealTimeLSandSS(self, sample): """ Updates the `Weighted Linear Sum` (WLS), the `Weighted Squared Sum` (WSS), the `center` and the `radius` of the micro-cluster when a new sample is merged. :param sample: the `sample` to merge into the micro-cluster. """ sample = np.array(sample.value) self.LS = np.multiply(self.LS, self.reductionFactor) self.SS = np.multiply(self.SS, self.reductionFactor) self.LS = self.LS + sample self.SS = self.SS + np.power(sample, 2) self.center = np.divide(self.LS, float(self.weight)) LSd = np.power(self.center, 2) SSd = np.divide(self.SS, float(self.weight)) maxRad = np.nanmax(np.sqrt(SSd.astype(float)-LSd.astype(float))) # maxRad = np.nanmax(np.lib.scimath.sqrt(SSd-LSd)) self.radius = maxRad def noNewSamples(self): """ Updates the `Weighted Linear Sum` (WLS), the `Weighted Squared Sum` (WSS) and the weight of the micro-cluster when no new samples are merged. """ self.LS =
np.multiply(self.LS, self.reductionFactor)
numpy.multiply
''' PlotTrace.py Executable for plotting trace stats of learning algorithm progress, including * objective function (ELBO) vs laps thru data * number of active components vs laps thru data * hamming distance vs laps thru data Usage (command-line) ------- python -m bnpy.viz.PlotTrace dataName jobpattern [kwargs] ''' from builtins import * import numpy as np import argparse import glob import os import scipy.io from .PlotUtil import pylab from bnpy.ioutil import BNPYArgParser from bnpy.ioutil.CountReader import loadKeffForTask from .JobFilter import filterJobs taskidsHelpMsg = "ids of trials/runs to plot from given job." + \ " Example: '4' or '1,2,3' or '2-6'." Colors = [(0, 0, 0), # black (0, 0, 1), # blue (1, 0, 0), # red (0, 1, 0.25), # green (darker) (1, 0, 1), # magenta (0, 1, 1), # cyan (1, 0.6, 0), # orange ] LabelMap = dict(laps='num pass thru data', iters='num alg steps', times='elapsed time (sec)', K='num topics K', evidence='train objective', ) LabelMap['laps-saved-params'] = 'num pass thru data' LabelMap['hamming-distance'] = 'Hamming dist.' LabelMap['Keff'] = 'num topics K' def plotJobsThatMatchKeywords(jpathPattern='/tmp/', **kwargs): ''' Create line plots for jobs matching pattern and provided kwargs ''' if not jpathPattern.startswith(os.path.sep): jpathPattern = os.path.join(os.environ['BNPYOUTDIR'], jpathPattern) jpaths, legNames = filterJobs(jpathPattern, **kwargs) plotJobs(jpaths, legNames, **kwargs) def plotJobs(jpaths, legNames, styles=None, density=2, xvar='laps', yvar='evidence', loc='upper right', xmin=None, xmax=None, taskids=None, savefilename=None, tickfontsize=None, bbox_to_anchor=None, **kwargs): ''' Create line plots for provided jobs. ''' nLines = len(jpaths) if nLines == 0: raise ValueError('Empty job list. Nothing to plot.') nLeg = len(legNames) for lineID in range(nLines): if styles is None: curStyle = dict(colorID=lineID) else: curStyle = styles[lineID] task_kwargs = dict(**kwargs) task_kwargs.update(curStyle) plot_all_tasks_for_job(jpaths[lineID], legNames[lineID], xvar=xvar, yvar=yvar, taskids=taskids, density=density, **task_kwargs) # Y-axis limit determination # If we have "enough" data about the run beyond two full passes of dataset, # we zoom in on the region of data beyond lap 2 if xvar == 'laps' and yvar == 'evidence': xmax = 0 ymin = np.inf ymin2 = np.inf ymax = -np.inf allRunsHaveXBeyond1 = True for line in pylab.gca().get_lines(): xd = line.get_xdata() yd = line.get_ydata() if xd.size < 3: allRunsHaveXBeyond1 = False continue posLap1 = np.searchsorted(xd, 1.0) posLap2 = np.searchsorted(xd, 2.0) if posLap1 < xd.size: ymin = np.minimum(ymin, yd[posLap1]) ymax = np.maximum(ymax, yd[posLap1:].max()) if posLap2 < xd.size: ymin2 = np.minimum(ymin2, yd[posLap2]) xmax = np.maximum(xmax, xd.max()) if xd.max() <= 1: allRunsHaveXBeyond1 = False if allRunsHaveXBeyond1 and xmax > 1.5: # If all relevant curves extend beyond x=1, only show that part xmin = 1.0 - 1e-5 else: xmin = 0 if allRunsHaveXBeyond1 and ymin2 < ymax: range1 = ymax - ymin range2 = ymax - ymin2 if 10 * range2 < range1: # Y values jump from lap1 to lap2 is enormous, # so let's just show y values from lap2 onward... ymin = ymin2 if (not np.allclose(ymax, ymin)) and allRunsHaveXBeyond1: pylab.ylim([ymin, ymax + 0.1 * (ymax - ymin)]) pylab.xlim([xmin, xmax + .05 * (xmax - xmin)]) if loc is not None and len(jpaths) > 1: pylab.legend(loc=loc, bbox_to_anchor=bbox_to_anchor) if tickfontsize is not None: pylab.tick_params(axis='both', which='major', labelsize=tickfontsize) if savefilename is not None: try: pylab.show(block=False) except TypeError: pass # when using IPython notebook pylab.savefig(savefilename, bbox_inches='tight', pad_inches=0) else: try: pylab.show(block=True) except TypeError: pass # when using IPython notebook def plot_all_tasks_for_job(jobpath, label, taskids=None, color=None, colorID=0, density=2, yvar='evidence', markersize=10, linewidth=2, linestyle='-', drawLineToXMax=None, showOnlyAfterLap=0, xvar='laps', **kwargs): ''' Create line plot in current figure for each task/run of jobpath ''' if not os.path.exists(jobpath): if not jobpath.startswith(os.path.sep): jobpath_tmp = os.path.join(os.environ['BNPYOUTDIR'], jobpath) if not os.path.exists(jobpath_tmp): raise ValueError("PATH NOT FOUND: %s" % (jobpath)) jobpath = jobpath_tmp if color is None: color = Colors[colorID % len(Colors)] taskids = BNPYArgParser.parse_task_ids(jobpath, taskids) if yvar == 'hamming-distance': yspfile = os.path.join(jobpath, taskids[0], yvar + '-saved-params.txt') if xvar == 'laps' and os.path.isfile(yspfile): xvar = 'laps-saved-params' for tt, taskid in enumerate(taskids): xs = None ys = None laps = None try: var_ext = '' ytxtfile = os.path.join(jobpath, taskid, yvar + '.txt') if not os.path.isfile(ytxtfile): var_ext = '-saved-params' ytxtfile = os.path.join( jobpath, taskid, yvar + var_ext + '.txt') ys = np.loadtxt(ytxtfile) if ytxtfile.count('saved-params'): laptxtfile = os.path.join(jobpath, taskid, 'laps-saved-params.txt') else: laptxtfile = os.path.join(jobpath, taskid, 'laps.txt') except IOError as e: # TODO: when is this code needed? # xs, ys = loadXYFromTopicModelFiles(jobpath, taskid) try: if isinstance(xs, np.ndarray) and yvar.count('Keff'): ys = loadKeffForTask( os.path.join(jobpath, taskid), **kwargs) assert xs.size == ys.size else: # Heldout metrics xs, ys = loadXYFromTopicModelSummaryFiles( jobpath, taskid, xvar=xvar, yvar=yvar) if showOnlyAfterLap and showOnlyAfterLap > 0: laps, _ = loadXYFromTopicModelSummaryFiles( jobpath, taskid, xvar='laps', yvar=yvar) except ValueError: try: xs, ys = loadXYFromTopicModelSummaryFiles(jobpath, taskid) except ValueError: raise e if yvar == 'hamming-distance' or yvar == 'Keff': if xvar == 'laps-saved-params': # fix off-by-one error, if we save an extra dist on final lap if xs.size == ys.size - 1: ys = ys[:-1] elif ys.size == xs.size - 1: xs = xs[:-1] # fix off-by-one error, if we quit early elif xs.size != ys.size: # Try to subsample both time series at laps where they # intersect laps_x = np.loadtxt(os.path.join(jobpath, taskid, 'laps.txt')) laps_y = np.loadtxt(os.path.join(jobpath, taskid, 'laps-saved-params.txt')) assert xs.size == laps_x.size if ys.size == laps_y.size - 1: laps_y = laps_y[:-1] xs = xs[np.in1d(laps_x, laps_y)] ys = ys[
np.in1d(laps_y, laps_x)
numpy.in1d
""" Team name: ThE raNDom WALkERS Members: <NAME>, <NAME>, <NAME> """ import pandas as pd import numpy as np from typing import Union import pandas as pd import numpy as np from typing import Union def compute_beta_vec(bo, epsilon_vec): """Compute beta from distribution of f.""" sorted_f_vec = np.sort(bo.f_vec) f0 = sorted_f_vec[0] N0 = ((sorted_f_vec - f0) == 0).sum() f1_index = np.where((sorted_f_vec - f0) > 0)[0][0] f1 = sorted_f_vec[f1_index] N1 = ((sorted_f_vec - f1) == 0).sum() beta_vec = np.log(N1 / (N0 * epsilon_vec)) / (f1 - f0) return beta_vec def get_optimal_betas_df(lambda_vec, epsilon_vec, lambda_arrays_list, model_string='G1'): """Return a dataframe containing the optimal values for beta.""" running_list = [] model_repeated = np.repeat(model_string, len(epsilon_vec)) for i, lambda_array in enumerate(lambda_arrays_list): lambda_repeated = np.repeat(lambda_vec[i], len(epsilon_vec)) l = list(zip(model_repeated, lambda_repeated, epsilon_vec, np.median(lambda_array, axis=0))) for item in l: running_list.append(item) optimal_betas_df = pd.DataFrame.from_dict(running_list).rename(columns={0: 'model', 1: 'lambda', 2: 'epsilon', 3: 'beta'}) return optimal_betas_df def getOptBetaSeq(generator_name: str, lambda_: Union[int, float, str]): beta_lookup_table = pd.read_csv('generated_data/G1_and_G2_optimal_betas.csv') if generator_name in ('G1', 'G2'): aval_lambdas = pd.unique(beta_lookup_table[beta_lookup_table.model == generator_name]['lambda']) correct_lambda = aval_lambdas[np.argmin(np.abs(aval_lambdas - lambda_))] print(f'Original lambda is {round(lambda_, 2)} Corrected one is {round(correct_lambda, 2)}') betas = beta_lookup_table.query("(model == @generator_name) & (`lambda` == @correct_lambda)") return sorted(betas.beta) else: aval_lambdas = pd.unique(beta_lookup_table[beta_lookup_table.model == 'G1']['lambda']) correct_lambda = aval_lambdas[np.argmin(np.abs(aval_lambdas - lambda_))] betas1 = beta_lookup_table.query("(model == 'G1') & (`lambda` == @correct_lambda)") aval_lambdas = pd.unique(beta_lookup_table[beta_lookup_table.model == 'G2']['lambda']) correct_lambda = aval_lambdas[np.argmin(np.abs(aval_lambdas - lambda_))] betas2 = beta_lookup_table.query("(model == 'G2') & (`lambda` == @correct_lambda)") allbeta = np.array([sorted(betas1.beta), sorted(betas2.beta)]) return np.mean(allbeta, axis=0) def interpBetas(betas, steps, smooth=True): if steps <= len(betas): return betas if smooth: # least square x = np.linspace(0, steps - 1, num=len(betas), endpoint=True) A = np.vstack([x, np.ones(len(x))]).T y = np.log(betas) coef, _, _, _ = np.linalg.lstsq(A, y, rcond=None) smoothed = np.exp(coef[0] * np.arange(steps) + coef[1]) return smoothed else: # interpolation xp = np.linspace(0, steps - 1, num=len(betas)) xp = np.int32(xp) beta_full = np.interp(np.arange(steps), xp, betas) return beta_full def getMaxVal(val, num_cities): max_obj_val =
np.max(val)
numpy.max
#!/usr/bin/env python # PROGRAM: plot_sst.py # ---------------------------------------------------------------------------------- # Version 0.18 # 19 August, 2019 # michael.taylor AT reading DOT ac DOT uk # PYTHON DEBUGGER CONTROL: #------------------------ # import os; os._exit(0) # import ipdb # ipdb.set_trace() import os.path import optparse from optparse import OptionParser import sys import numpy as np import xarray import pandas as pd from pandas import Series, DataFrame, Panel import seaborn as sns; sns.set(style="darkgrid") import datetime import matplotlib import matplotlib.pyplot as plt; plt.close("all") #import typhon #from typhon.plots import plot_bitfield #cmap = 'tab20c' # https://matplotlib.org/users/colormaps def calc_median(counts,bins): """ # ------------------------------- # CALCULATE MEDIUM FROM HISTOGRAM # ------------------------------- # M_estimated ~ L_m + [ ( N/2 - F_{m-1} ) / f_m] * c # # where, # # L_m =lower limit of the median bar # N = is the total number of observations # F_{m-1} = cumulative frequency (total number of observations) in all bars below the median bar # f_m = frequency of the median bar # c = median bar width """ M = 0 counts_cumsum = counts.cumsum() counts_half = counts_cumsum[-1]/2.0 for i in np.arange(0,bins.shape[0]-1): counts_l = counts_cumsum[i] counts_r = counts_cumsum[i+1] if (counts_half >= counts_l) & (counts_half < counts_r): c = bins[1]-bins[0] L_m = bins[i+1] F_m_minus_1 = counts_cumsum[i] f_m = counts[i+1] M = L_m + ( (counts_half - F_m_minus_1) / f_m ) * c return M def plot_n_sst(times,n_sst_q3,n_sst_q4,n_sst_q5): """ # --------------------------------------- # PLOT CUMULATIVE SST OBSERVATION DENSITY # --------------------------------------- """ ocean_area = 361900000.0 t = np.array(times, dtype=np.datetime64) years = (t[-1] - t[0]).astype('timedelta64[D]') / np.timedelta64(1, 'D') / 365.0 Q3 = pd.Series(n_sst_q3, index=times).fillna(0) / ocean_area / years Q4 = pd.Series(n_sst_q4, index=times).fillna(0) / ocean_area / years Q5 = pd.Series(n_sst_q5, index=times).fillna(0) / ocean_area / years df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = df['QL=4'] + df['QL=5'] df = df.mask(np.isinf(df)) fig = plt.figure() plt.plot(times,df['QL=4 & 5'].cumsum(), drawstyle='steps') plt.plot(times,df['QL=3'].cumsum(), drawstyle='steps') plt.tick_params(labelsize=12) plt.ylabel("Observation density / $\mathrm{km^{-2} \ yr^{-1}}$", fontsize=12) title_str = ' ' + 'QL=3:max=' + "{0:.5f}".format(df['QL=3'].cumsum().max()) + ' ' + 'QL=4 & 5:max=' + "{0:.5f}".format(df['QL=4 & 5'].cumsum().max()) print(title_str) plt.legend(loc='best') plt.savefig('n_sst.pdf') # plt.savefig('n_sst.png', dpi=600) # plt.savefig('n_sst.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_n_sst_lat(lat_vec,n_sst_q3_lat,n_sst_q4_lat,n_sst_q5_lat): """ # ------------------------------------------ # PLOT SST OBSERVATION DENSITY WITH LATITUDE # ------------------------------------------ """ interpolation = np.arange(-90,90,1) multiplier = 1.0 Q3 = multiplier * pd.Series(np.interp(interpolation,lat_vec,n_sst_q3_lat), index=interpolation) Q4 = multiplier * pd.Series(np.interp(interpolation,lat_vec,n_sst_q4_lat), index=interpolation) Q5 = multiplier * pd.Series(np.interp(interpolation,lat_vec,n_sst_q5_lat), index=interpolation) df = pd.DataFrame({'QL=3':Q3, 'QL=4':Q4, 'QL=5':Q5}) df['QL=4 & 5'] = df['QL=4'] + df['QL=5'] df['QL=3 & 4 & 5'] = df['QL=3'] + df['QL=4'] + df['QL=5'] df = df.mask(np.isinf(df)) fig = plt.figure() plt.fill_between(interpolation, df['QL=4 & 5'], step="post", alpha=0.4) plt.fill_between(interpolation, df['QL=3'], step="post", alpha=0.4) plt.plot(interpolation, df['QL=4 & 5'], drawstyle='steps-post', label='QL=4 & 5') plt.plot(interpolation, df['QL=3'], drawstyle='steps-post', label='QL=3') ax = plt.gca() ax.set_xlim([-90,90]) ticks = ax.get_xticks() ax.set_xticks(np.linspace(-90, 90, 7)) plt.tick_params(labelsize=12) plt.xlabel("Latitude / $\mathrm{\degree N}$", fontsize=12) plt.ylabel("Observation density / $\mathrm{km^{-2} \ yr^{-1}}$", fontsize=12) plt.legend(loc='best') plt.savefig('n_sst_lat.pdf') # plt.savefig('n_sst_lat.png', dpi=600) # plt.savefig('n_sst_lat.eps', format='eps', rasterized=True, dpi=1200) plt.close('all') def plot_histogram_sst(sst_midpoints,sst_q3_hist,sst_q4_hist,sst_q5_hist): """ # ------------------------------ # PLOT HISTOGRAM OF SST + MEDIAN # ------------------------------ """ # interpolation = np.arange(260.05,319.95,0.1) # original bin midpoints i = np.arange(260,320,0.1) # bin edges n = len(i) m = 1.0 q3 = m * pd.Series(np.interp(i,sst_midpoints,sst_q3_hist), index=i) q4 = m * pd.Series(np.interp(i,sst_midpoints,sst_q4_hist), index=i) q5 = m * pd.Series(np.interp(i,sst_midpoints,sst_q5_hist), index=i) dq = pd.DataFrame({'QL=3':q3, 'QL=4':q4, 'QL=5':q5}) dq['QL=4 & 5'] = 0.5 * (dq['QL=4'] + dq['QL=5']) # dq = dq.mask(np.isinf(df)) M3 = calc_median(dq['QL=3'].values,i[0:n]) M4_5 = calc_median(dq['QL=4 & 5'].values,i[0:n]) interpolation = np.arange(260,320,1) # 10x original resolution n = len(interpolation) multiplier = 10.0 Q3 = multiplier * pd.Series(
np.interp(interpolation,sst_midpoints,sst_q3_hist)
numpy.interp
from pathlib import Path from numpy import arange, array, ceil, empty, floor, isnan, linspace, \ log10, meshgrid, nan, tile, transpose, where from numpy.ma import masked_where from matplotlib.pyplot import clf, close, cm, colorbar, figure, savefig, show from mpl_toolkits.basemap import Basemap from os.path import dirname, isdir, join, realpath from os import mkdir import pyapex, seaborn from scipy.interpolate import interp2d#, RectBivariateSpline # from pyigrf.pyigrf import GetIGRF from pyiri2016 import IRI2016 from pyiri2016 import IRI2016Profile from pyiri2016.iriweb import irisubgl, firisubl from timeutil import TimeUtilities # cwd = Path(__file__).parent DataFolder = cwd / 'data' class IRI2016_2DProf(IRI2016Profile): #def __init__(self): # pass #def _GetTitle(self): # IRI2016Profile()._GetTitle(__self__) def HeightVsTime(self, FIRI=False, hrlim=[0., 24.], hrstp=1.): self.option = 1 nhrstp = int((hrlim[1] + hrstp - hrlim[0]) / hrstp) + 1 hrbins = list(map(lambda x: hrlim[0] + float(x) * hrstp, range(nhrstp))) Ne = empty((nhrstp, self.numstp)) if FIRI: NeFIRI = empty((nhrstp, self.numstp)) Te = empty((nhrstp, self.numstp)) Ti = empty((nhrstp, self.numstp)) for i in range(nhrstp): self.hour = hrbins[i] self.HeiProfile() Ne[i, :] = self.a[0, range(self.numstp)] if FIRI: NeFIRI[i, :] = self.a[12, range(self.numstp)] Te[i, :] = self.a[3, range(self.numstp)] Ti[i, :] = self.a[2, range(self.numstp)] # self._GetTitle() altbins = arange(self.vbeg, self.vend + self.vstp, self.vstp) self.data2D = {'alt' : altbins, 'hour' : hrbins, \ 'Ne' : Ne, 'Te' : Te, 'Ti' : Ti, \ 'title1' : self.title1, 'title2' : self.title2} if FIRI: self.FIRI2D = {'alt' : altbins, 'hour' : hrbins, \ 'Ne' : NeFIRI, \ 'title1' : self.title1, 'title2' : self.title2} # # End of 'HeightVsTime' ##### def LatVsLon(self, lonlim=[-180., 180.], lonstp=20.): self.option = 2 nlonstp = int((lonlim[1] + lonstp - lonlim[0]) / lonstp) + 1 lonbins = list(map(lambda x: lonlim[0] + float(x) * lonstp, range(nlonstp))) NmF2 = empty((nlonstp, self.numstp)) hmF2 = empty((nlonstp, self.numstp)) B0 = empty((nlonstp, self.numstp)) dip = empty((nlonstp, self.numstp)) for i in range(nlonstp): self.lon = lonbins[i] self.HeiProfile() NmF2[i, :] = self.b[0, range(self.numstp)] hmF2[i, :] = self.b[1, range(self.numstp)] B0[i, :] = self.b[9, range(self.numstp)] dip[i, :] = self.b[24, range(self.numstp)] latbins = arange(self.vbeg, self.vend + self.vstp, self.vstp) self.data2D = {'lat' : latbins, 'lon' : lonbins, \ 'NmF2' : NmF2, 'hmF2' : hmF2, 'B0' : B0, 'dip' : dip, \ 'title' : self.title3} # # End of 'LatVsLon' ##### def LatVsFL(self, date=[2003, 11, 21], FIRI=False, IGRF=False, time=[23, 15, 0], \ gc=[-77.76, -11.95], \ hlim=[80., 200.], hstp=1., mlatlim=[-10., 10.], mlatstp=.1): # # INPUTS # # Date year, month, day = date # Time hour, minute, second = time # Geog. Coord. dlon, dlat = gc # hlim -> Height range at equator, in km # hstp -> height resolution at equator, in km # mlatlim -> Geom. latitude range, in degrees # mlatstp -> Geom. latitude resolution, in degrees # ### doy = TimeUtilities().CalcDOY(year, month, day) date2 = year + doy / (365 + 1 if TimeUtilities().IsLeapYear else 0) # f = figure(figsize=(16,6)) # pn = f.add_subplot(111) self.coordl, self.qdcoordl = [], [] for h in arange(hlim[0], hlim[1] + hstp, hstp): gc, qc = pyapex.ApexFL().getFL(date=date2, dlon=dlon, dlat=dlat, \ hateq=h, mlatRange=mlatlim, mlatSTP=mlatstp) # x, y, z = gc['lat'], gc['alt'], gc['lon'] # ind = where(y < hlim[0]) # if len(ind) > 0: x[ind], y[ind], z[ind] = nan, nan, nan # pn.plot(x, y) self.coordl.append([gc['lon'], gc['alt'], gc['lat']]) self.qdcoordl.append([qc['lon'], gc['alt'], qc['lat']]) # pn.invert_xaxis() # show() jf = IRI2016().Switches() jmag = 0 mmdd = int(month * 100) + day hour2 = hour + minute / 60 + second / 3600 self.coordl = array(self.coordl) self.qdcoordl = array(self.qdcoordl) # nfl -> No. of field-line (or height) # nc -> No. of coord. (0 -> lon, 1 -> alt, 2 -> lat) # np -> No. of points per field-line nfl, nc, np = self.coordl.shape self.ne, self.te = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.ti, self.tn = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.nHe, self.nO = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.nN2, self.nO2 = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.nAr, self.nH = tile(nan, (np, nfl)), tile(nan, (np, nfl)) self.nN, self.babs = tile(nan, (np, nfl)), tile(nan, (np, nfl)) if FIRI: self.neFIRI = tile(nan, (np, nfl)) for fl in range(nfl): curr_coordl = transpose(self.coordl[fl, :, :]) ind = where(curr_coordl[:, 1] >= (hlim[0] - 10.)) if len(ind[0]) > 0: outf, oarr = irisubgl(jf, jmag, year, mmdd, hour2, \ curr_coordl[ind[0], :], DataFolder) self.ne[ind[0], fl] = outf[0, :] self.tn[ind[0], fl] = outf[1, :] self.ti[ind[0], fl] = outf[2, :] self.te[ind[0], fl] = outf[3, :] if FIRI: self.neFIRI[ind[0], fl], ierr = firisubl(year, doy, hour2, \ curr_coordl[ind[0], :], DataFolder) self.nHe[ind[0], fl] = outf[20, :] self.nO[ind[0], fl] = outf[21, :] self.nN2[ind[0], fl] = outf[22, :] self.nO2[ind[0], fl] = outf[23, :] self.nAr[ind[0], fl] = outf[24, :] self.nH[ind[0], fl] = outf[26, :] self.nN[ind[0], fl] = outf[27, :] self.babs[ind[0], fl] = list(self.getIGRF(curr_coordl[ind[0], :], date2)) \ if IGRF else outf[19, :] self.hlim = hlim self.date, self.time = date, time self.f107cm = oarr[40, 0] self.ap, self.Ap = oarr[50, 0], oarr[51, 0] # # End of 'LatVsFL' ##### def _Get_Title(self): dateStr = 'DATE: {:4d}/{:02d}/{:02d}'.format(self.date[0], self.date[1], self.date[2]) timeStr = 'TIME: {:02d}:{:02d} UT'.format(self.time[0], self.time[1]) f107Str = 'F107: {:6.2f}'.format(self.f107cm) apStr = 'ap: {:3d}'.format(int(self.ap)) ApStr = 'Ap: {:3d}'.format(int(self.Ap)) gmlon = self.qdcoordl[0, 0, 0] gmlonStr = '{:7.2f} {:s}'.format(abs(gmlon), 'E' if gmlon > 0. else 'W') self._title1 = '{:s} - {:s} - MAG. LON.:{:s}'.format(dateStr, timeStr, gmlonStr) self._title2 = '{:s} - {:s}'.format(f107Str, ApStr) # # End of '_GetTitle' ###### def getIGRF(self, coordl, year): for lon, alt, lat in coordl: bn, be, bd, xl, icode = GetIGRF(lat, lon, alt, year) # Horizontal component bh = (bn**2 + be**2)**.5 yield bh def PlotLatVsFL(self): self._Get_Title() nrow, ncol = 2, 2 spID = nrow * 100 + ncol * 10 counter = 0 X, Y = transpose(self.coordl[:, 2, :]), transpose(self.coordl[:, 1, :]) f = figure(figsize=(16, 6)) for ir in range(nrow): for ic in range(ncol): pn = f.add_subplot(spID + (counter + 1)) if counter == 0: Z = log10(self.ne) vmin, vmax, nc = 8, 12, 32+1 zlabel = 'Log$_{10}$N$_e$(m$^{-3}$)' elif counter == 1: Z = log10(self.nHe) vmin, vmax, nc = 5, 9, 32+1 zlabel = 'Log$_{10}$H$_e$(m$^{-3}$)' elif counter == 2: Z = self.te vmin, vmax, nc = 100, 1200, 36+1 zlabel = 'T$_e$($^\circ$)' elif counter == 3: Z = self.tn vmin, vmax, nc = 100, 1200, 36+1 zlabel = 'T$_n$($^\circ$)' Z_masked = masked_where(isnan(Z), Z) C = linspace(vmin, vmax, nc, endpoint=True) ipc = pn.contourf(X, Y, Z_masked, C, cmap=cm.jet, extent='both', origin='lower') if counter == 0: pn.set_title(self._title1) if counter == 1: pn.set_title(self._title2) if counter > 1: pn.set_xlabel('Geog. Lat. ($^\circ$)') pn.set_ylabel('Altitude (km)') pn.set_ylim(self.hlim) pn.invert_xaxis() pn.grid() cp = colorbar(ipc) cp.set_label(zlabel) counter += 1 show() # # End of 'PlotLatVsFL' ##### def PlotLatVsFLFIRI(self, save=False, verbose=False): self._Get_Title() nrow, ncol = 1, 1 spID = nrow * 100 + ncol * 10 counter = 0 X, Y = transpose(self.coordl[:, 2, :]), transpose(self.coordl[:, 1, :]) f = figure(figsize=(16, 6)) for ir in range(nrow): for ic in range(ncol): pn = f.add_subplot(spID + (counter + 1)) if counter == 0: Z = log10(self.neFIRI) vmin, vmax, nc = 9, 12, 24+1 zlabel = 'Log$_{10}$N$_e$(m$^{-3}$)' #Z_masked = masked_where(isnan(Z), Z) Z[where(Z < vmin)] = vmin C = linspace(vmin, vmax, nc, endpoint=True) ipc = pn.contourf(X, Y, Z, C, cmap=cm.jet, extent='both', origin='lower') if counter == 0: pn.set_title(self._title1) #if counter == 1: pn.set_title(self._title2) pn.set_xlabel('Geog. Lat. ($^\circ$)') pn.set_ylabel('Altitude (km)') pn.set_ylim(self.hlim) pn.invert_xaxis() pn.grid() cp = colorbar(ipc) cp.set_label(zlabel) counter += 1 if not save: show() else: gpath = '../figures/' + '{:04d}{:02d}{:02d}/'.format(self.year, self.month, self.dom) if not isdir(gpath): mkdir(gpath) self.figname = gpath + 'firi-{:02d}{:02d}.jpg'.format(self.time[0], self.time[1]) if verbose: print('Saving at: {:s}'.format(self.figname)) savefig(self.figname, bbox_inches='tight', format='jpg', dpi=100) clf() close() # # End of 'PlotLatVsFL' ##### def Plot2D(self): f = figure(figsize=(24, 6)) if self.option == 1: pn = f.add_subplot(131) X, Y = meshgrid(self.data2D['hour'], self.data2D['alt']) ipc = pn.pcolor(X, Y, transpose(log10(self.data2D['Ne'])), cmap=cm.jet, vmax=13, vmin=9) pn.set_title(self.data2D['title1']) pn.set_xlabel('Hour (UT)') pn.set_ylabel('Altitude (km)') cp1 = colorbar(ipc) cp1.set_label('Log$_{10}$N$_e$(m$^{-3}$)') pn = f.add_subplot(132) ipc = pn.pcolor(X, Y, transpose(self.data2D['Te']), cmap=cm.jet, vmax=4000, vmin=100) pn.set_title(self.data2D['title2']) pn.set_xlabel('Hour (UT)') pn.set_ylabel('Altitude (km)') cp1 = colorbar(ipc) cp1.set_label('T$_e$ ($^\circ$)') pn = f.add_subplot(133) ipc = pn.pcolor(X, Y, transpose(self.data2D['Ti']), cmap=cm.jet, vmax=4000, vmin=100) pn.set_xlabel('Hour (UT)') pn.set_ylabel('Altitude (km)') cp1 = colorbar(ipc) cp1.set_label('T$_i$ ($^\circ$)') elif self.option == 2: pn1 = f.add_subplot(111) m = Basemap(llcrnrlon=self.data2D['lon'][0], llcrnrlat=self.data2D['lat'][0], \ urcrnrlon=self.data2D['lon'][-1], urcrnrlat=self.data2D['lat'][-1], \ resolution='l') m.drawcoastlines() parallelsLim = self._RoundLim([self.data2D['lat'][0], self.data2D['lat'][-1]]) m.drawparallels(arange(parallelsLim[0], parallelsLim[1], 20.), \ labels=[True, False, False, True]) meridiansLim = self._RoundLim([self.data2D['lon'][0], self.data2D['lon'][-1]]) m.drawmeridians(arange(meridiansLim[0], meridiansLim[1], 30.), \ labels=[True, False, False, True]) X, Y = meshgrid(self.data2D['lon'], self.data2D['lat']) ipc = m.pcolor(X, Y,
transpose(9.*self.data2D['NmF2']**.5 * 1e-6)
numpy.transpose
""" Implements pipelines to track a sequence: Obtain costs, solve the instance (global or instance wise) """ import torch import numpy as np from scipy.sparse import csc_matrix from tqdm import tqdm import math import os from src.TrackingModel import TrackingModel from src.datasets import Data, SplittedDataloader from src.utilities.conversions import to_numpy ''' Cost update functions ''' def temporal_decay(delta_time): """ creates a temporal decay factor based on the temporal distance """ return 1 / (10 * delta_time.clamp(0, 2) + 0.1) def induce_soft_constraints(data, result): """ Induces Soft-constraints by adding High cost value to hingh confident edges. """ if "high_confident" in data["edges"].keys(): high_confidention_cost = -1000 result['edge_costs'] = result['edge_costs'] + data["edges"]["high_confident"] * high_confidention_cost return result ''' The tracker class to solve instances ''' class Tracker: node_cost_keys = ['out_costs', 'in_costs', 'node_costs'] dataloader_cfg = dict(shuffle=False, num_workers=0, pin_memory=False, batch_size=1) @staticmethod def track(model: TrackingModel, dataset: Data): if not model.solver.solve_instance_wise: return Tracker.track_global(model, dataset) else: return Tracker.track_instance_wise(model, dataset) @staticmethod def track_global(model: TrackingModel, dataset: Data): """ This function infers and associates the data set with a given model :param model: The model to evaluate :param dataset: The dataset of class data. BE SURE THAT ONLY ONE SEQUENCE IS LOADED! :return Dictionariers with numpy arrays """ model.eval() seq = dataset.sequences_for_inference[0] ''' Create global graph for the sequence''' full_graph_data = dataset.return_batch_with_full_graph(seq) number_of_nodes = full_graph_data["nodes"]["frame"].shape[0] node_row = full_graph_data["nodes"]["row"].cpu().numpy().astype(int) node_row_to_index_mapping = np.ones(np.max(node_row) + 1) node_row_to_index_mapping[node_row] = np.arange(node_row.shape[0]) node_row_to_index_mapping = node_row_to_index_mapping.astype(int) ''' Create edge cost and node cost container ''' node_costs = dict() for key in Tracker.node_cost_keys: node_costs[key] = torch.zeros_like(full_graph_data["nodes"]["id"][None, :]) edge_cost_matrix = csc_matrix((number_of_nodes, number_of_nodes), dtype=np.float32) edge_calculations = csc_matrix((number_of_nodes, number_of_nodes), dtype=np.int16) node_calculations = np.zeros(number_of_nodes, dtype=np.int16) ''' Iterate over dataset and fill cost container with cost values ''' dataset_cfg = dict(sequences=[seq], is_inference=True) dataloader = SplittedDataloader(dataset, dataset_cfg, Tracker.dataloader_cfg, total_parts=25) with torch.no_grad(): progress_bar = tqdm(iter(dataloader), desc="Track sequence with global graph") for data in progress_bar: if data["edges"]["sink"].numel() == 0: continue result = model.calculate_costs(data['nodes'], data['edges']) result = induce_soft_constraints(data, result) _rows, _sources, _sinks = \ data["nodes"]["row"].cpu().numpy().astype(int)[0], \ data["edges"]["source"].cpu().numpy().astype(int)[0], \ data["edges"]["sink"].cpu().numpy().astype(int)[0] # Map detection_rows, sinks and sources to indices of the global graph detection_indices = node_row_to_index_mapping[_rows] _sources, _sinks = detection_indices[_sources], detection_indices[_sinks] node_calculations[detection_indices] += 1 for key in Tracker.node_cost_keys: node_costs[key][0, detection_indices] += result[key][0] edge_calculations[_sources, _sinks] += 1 edge_cost_matrix[_sources, _sinks] += result["edge_costs"][0].numpy().astype(np.float32) ''' Convert aggregated edge costs to solver format ''' edge_counter = edge_calculations[ full_graph_data["edges"]["source"].numpy().astype(int), full_graph_data["edges"]["sink"].numpy().astype(int)] global_edge_costs = edge_cost_matrix[ full_graph_data["edges"]["source"].numpy().astype(int), full_graph_data["edges"]["sink"].numpy().astype(int)] global_edge_costs = global_edge_costs / np.maximum(1, edge_counter) node_calculations = torch.from_numpy(node_calculations[None, :]) for key in Tracker.node_cost_keys: node_costs[key] /= node_calculations.clamp(1, 10000) costs = dict( node_frames=full_graph_data["nodes"]["frame"][None, :], node_costs=node_costs['node_costs'], edge_sources=full_graph_data["edges"]["source"][None, :], out_costs=node_costs['out_costs'], edge_sinks=full_graph_data["edges"]["sink"][None, :], edge_costs=torch.from_numpy(global_edge_costs), in_costs=node_costs['in_costs'], ) ''' Weight costs with the time ''' delta_time = \ (costs['node_frames'][0][costs['edge_sinks']] - costs['node_frames'][0][costs['edge_sources']]).float() / \ seq["fps"] weight = temporal_decay(delta_time) costs['edge_costs'] = costs['edge_costs'][0] * weight ''' Solve global instance and return full graph data ''' with torch.no_grad(): result = model.run_solver(costs=costs) full_graph_data["prediction"] = result full_graph_data["edges"]["costs"] = costs['edge_costs'] full_graph_data = to_numpy(full_graph_data) return full_graph_data @staticmethod def track_instance_wise(model: TrackingModel, dataset: Data): """ Tracks a sequence splitted into instances """ solver = model.solver.instance_solver ''' Create dataset specific values ''' seq = dataset.sequences_for_inference[0] dataset_cfg = dict(sequences=[seq], is_inference=True) full_graph_data = dataset.return_batch_with_full_graph(seq, return_edges=False) number_of_nodes = full_graph_data["nodes"]["frame"].shape[0] fps = seq["fps"] datase_name = os.getenv("DATASET", "MOT17") batchsize = 3 * 50 if datase_name == "MOT20" else 3 * 60 node_row = full_graph_data["nodes"]["row"].cpu().numpy().astype(int) node_row_to_index_mapping = np.ones(np.max(node_row) + 1) node_row_to_index_mapping[node_row] = np.arange(node_row.shape[0]) node_row_to_index_mapping = node_row_to_index_mapping.astype(int) ''' Update solver parameter for "irregular" videos with different framerate than 30 ''' if datase_name == "MOT17" and fps != 30: new_len = str(int(math.floor(2 * fps))) params = {"MAX_TIMEGAP_BASE": new_len, "MAX_TIMEGAP_LIFTED": new_len, "MAX_TIMEGAP_COMPLETE": new_len} model.solver.batched_solver.update_params_map(params) def init_tracker_container(): """ Create data containers required for a tracking run """ node_costs = dict() for key in Tracker.node_cost_keys: node_costs[key] = torch.zeros_like(full_graph_data["nodes"]["id"][None, :]) dataloader = SplittedDataloader(dataset, dataset_cfg, Tracker.dataloader_cfg, total_parts=50) return dataloader, node_costs def prepare_local_instance( edge_calculations, edge_cost_matrix, node_calculations, node_costs, first_frame, last_frame ): """ Converts the sparse global graph to a local instance """ source, sink = edge_calculations.nonzero() frames = full_graph_data["nodes"]["frame"].numpy() if last_frame is not None: valid = (frames[source] <= last_frame) * (frames[sink] <= last_frame) source, sink = source[valid], sink[valid] if first_frame is not None: valid = (frames[source] >= first_frame) * (frames[sink] >= first_frame) source, sink = source[valid], sink[valid] edge_counter = edge_calculations[source, sink] global_edge_costs = edge_cost_matrix[source, sink] global_edge_costs = global_edge_costs / edge_counter node_calculations = torch.from_numpy(node_calculations[None, :]) for key in node_costs: node_costs[key] = node_costs[key] / node_calculations.float().clamp(1, 10000) # Convert to cost tensor costs = dict( node_frames=full_graph_data["nodes"]["frame"][None, :], edge_sources=torch.from_numpy(source)[None, :], edge_sinks=torch.from_numpy(sink)[None, :], edge_costs=torch.from_numpy(global_edge_costs), in_costs=node_costs['in_costs'], out_costs=node_costs['out_costs'], node_costs=node_costs['node_costs'] ) return costs def delete_old_nodes_and_edges( edge_calculations, edge_cost_matrix, node_calculations, node_costs, min_frame ): """ Removes entries from the sparse matrix for frames smaller than the current minimal frame""" frames_to_be_removed = np.where(full_graph_data["nodes"]["frame"] < min_frame)[0] edge_calculations[edge_calculations[frames_to_be_removed, :].nonzero()] = 0 edge_calculations[edge_calculations[:, frames_to_be_removed].nonzero()] = 0 edge_cost_matrix[edge_cost_matrix[frames_to_be_removed, :].nonzero()] = 0 edge_cost_matrix[edge_cost_matrix[:, frames_to_be_removed].nonzero()] = 0 edge_cost_matrix.eliminate_zeros() edge_calculations.eliminate_zeros() node_calculations[frames_to_be_removed] = 0 for key in node_costs.keys(): node_costs[key][0, frames_to_be_removed] = 0 return edge_calculations, edge_cost_matrix, node_calculations, node_costs def iterate_through_dataset(node_costs): """ Iterates over the sequence and solves batches""" ''' Create empty data container to accumulate costs ''' edge_cost_matrix, edge_calculations, node_calculations = \ csc_matrix((number_of_nodes, number_of_nodes), dtype=np.float32), \ csc_matrix((number_of_nodes, number_of_nodes), dtype=np.int16), \ np.zeros(number_of_nodes, dtype=np.int16) data_stack = list() ''' Iterate over sequence and calculate all edges ''' progress_bar = tqdm(iter(dataloader), desc="Track sequence batchwise graph") with torch.no_grad(): for datas in progress_bar: datas = [datas] if type(datas) != list else datas for data in datas: if data["edges"]["sink"].numel() == 0: continue l_bound, u_bound = solver.time_bounds[0], solver.time_bounds[1] ''' Do inference for current batch''' result = model.calculate_costs(data['nodes'], data['edges']) result = induce_soft_constraints(data, result) min_frame, max_frame = data["nodes"]["frame"].min().item(), data["nodes"]["frame"].max().item() if max_frame < l_bound: continue ''' Add calculated node and edge costs to accumulator ''' _rows, _sources, _sinks = \ data["nodes"]["row"].cpu().numpy().astype(int)[0], \ data["edges"]["source"].cpu().numpy().astype(int)[0], \ data["edges"]["sink"].cpu().numpy().astype(int)[0] # Map detection_rows, sinks and sources to indices of the global graph detection_indices = node_row_to_index_mapping[_rows] _sources, _sinks = detection_indices[_sources], detection_indices[_sinks] node_calculations[detection_indices] += 1 # Weight costs with time delta_time = data["edges"]["delta_t"] delta_time = delta_time.float() weight = temporal_decay(delta_time) result['edge_costs'][0] = result['edge_costs'][0] * weight for key in Tracker.node_cost_keys: node_costs[key][0, detection_indices] += result[key][0] # Aggregate some data, cause updateing the sparse matrix ist slow _ = result["edge_costs"][0].numpy().astype(np.float32) data_stack.append([_sources, _sinks, _]) ''' If all frames for the current batch are processed: Merge data and solve graph ''' solve = min_frame >= solver.time_bounds[1] if solve: ''' Update sparse matrix with collected data ''' _sources = np.concatenate([_[0] for _ in data_stack]) _sinks =
np.concatenate([_[1] for _ in data_stack])
numpy.concatenate
# Optimize.py # Created: Feb 2016, <NAME> # Modified: Nov 2016, <NAME> # Oct 2019, <NAME> # ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- import SUAVE from SUAVE.Core import Units, Data import numpy as np import vehicle_mf import procedure_mf import matplotlib.pyplot as plt from SUAVE.Optimization import Nexus, carpet_plot from SUAVE.Optimization.Package_Setups.additive_setup import Additive_Solver import SUAVE.Optimization.Package_Setups.TRMM.Trust_Region_Optimization as tro from SUAVE.Optimization.Package_Setups.TRMM.Trust_Region import Trust_Region import os # ---------------------------------------------------------------------- # Run the whole thing # ---------------------------------------------------------------------- def main(): np.random.seed(0) problem = setup() tol = 1e-8 def set_add_solver(): solver = Additive_Solver() solver.local_optimizer = 'SLSQP' solver.global_optimizer = 'SHGO' return solver ################### Basic Additive ################################################## # ------------------------------------------------------------------ # Inactive constraints # ------------------------------------------------------------------ solver = set_add_solver() problem.optimization_problem.constraints = np.array([ [ 'x1' , '>', -10., 1., 1*Units.less], [ 'x2' , '>', -50., 1., 1*Units.less], ],dtype=object) print('Checking basic additive with no active constraints...') outputs = solver.Additive_Solve(problem,max_iterations=10,num_samples=20,tolerance=1e-8,print_output=False) print(outputs) obj,x1,x2 = get_results(outputs) # ------------------------------------------------------------------ # Check Results # ------------------------------------------------------------------ assert( np.isclose(obj, 0, atol=1e-6) ) assert( np.isclose(x1 ,-.1, atol=1e-2) ) assert( np.isclose(x2 , 0, atol=1e-2) ) # ------------------------------------------------------------------ # Active constraint # ------------------------------------------------------------------ solver = set_add_solver() problem.optimization_problem.constraints = np.array([ [ 'x1' , '>', -10., 1., 1*Units.less], [ 'x2' , '>', 1., 1., 1*Units.less], ],dtype=object) print('Checking basic additive with one active constraint...') outputs = solver.Additive_Solve(problem,max_iterations=1000,num_samples=20,tolerance=1e-8,print_output=False) print(outputs) obj,x1,x2 = get_results(outputs) # ------------------------------------------------------------------ # Check Results # ------------------------------------------------------------------ assert( np.isclose(obj, 1, atol=1e-6) ) assert( np.isclose(x1 ,-.1, atol=1e-2) ) assert( np.isclose(x2 , 1, atol=1e-2) ) # ------------------------------------------------------------------ # Other active constraints # ------------------------------------------------------------------ solver = set_add_solver() problem.optimization_problem.constraints = np.array([ [ 'x1' , '=', 2., 1., 1*Units.less], [ 'x2' , '<', -1., 1., 1*Units.less], ],dtype=object) print('Checking basic additive with two active constraints...') outputs = solver.Additive_Solve(problem,max_iterations=1000,num_samples=20,tolerance=1e-8,print_output=False) print(outputs) obj,x1,x2 = get_results(outputs) # ------------------------------------------------------------------ # Check Results # ------------------------------------------------------------------ assert( np.isclose(obj,5.41, atol=1e-6) ) assert( np.isclose(x1 , 2, atol=1e-2) ) assert( np.isclose(x2 , -1, atol=1e-2) ) ################# Additive MEI ################################################## # ------------------------------------------------------------------ # Inactive constraints # ------------------------------------------------------------------ solver = set_add_solver() problem.optimization_problem.constraints = np.array([ [ 'x1' , '>', -10., 1., 1*Units.less], [ 'x2' , '>', -50., 1., 1*Units.less], ],dtype=object) print('Checking MEI additive with no active constraint...') outputs = solver.Additive_Solve(problem,max_iterations=10,num_samples=20,tolerance=tol,print_output=False,opt_type='MEI') print(outputs) obj,x1,x2 = get_results(outputs) # ------------------------------------------------------------------ # Check Results # ------------------------------------------------------------------ assert( np.isclose(obj, 0, atol=1e-6) ) assert( np.isclose(x1 ,-.1, atol=1e-2) ) assert( np.isclose(x2 , 0, atol=1e-2) ) # ------------------------------------------------------------------ # Active constraint # ------------------------------------------------------------------ solver = set_add_solver() problem.optimization_problem.constraints = np.array([ [ 'x1' , '>', -10., 1., 1*Units.less], [ 'x2' , '>', 1., 1., 1*Units.less], ],dtype=object) print('Checking MEI additive with one active constraint...') outputs = solver.Additive_Solve(problem,max_iterations=10,num_samples=20,tolerance=tol,print_output=False,opt_type='MEI') print(outputs) obj,x1,x2 = get_results(outputs) # ------------------------------------------------------------------ # Check Results # ------------------------------------------------------------------ assert( np.isclose(obj, 1, atol=1e-4) ) # optimizer does not reach exactly optimum here assert( np.isclose(x1 ,-.1, atol=1e-2) ) assert( np.isclose(x2 , 1, atol=1e-2) ) #------------------------------------------------------------------ # Other active constraints #------------------------------------------------------------------ solver = set_add_solver() problem.optimization_problem.constraints = np.array([ [ 'x1' , '=', 2., 1., 1*Units.less], [ 'x2' , '<', -1., 1., 1*Units.less], ],dtype=object) print('Checking MEI additive with two active constraints...') outputs = solver.Additive_Solve(problem,max_iterations=10,num_samples=20,tolerance=tol,print_output=False,opt_type='MEI') print(outputs) obj,x1,x2 = get_results(outputs) # ------------------------------------------------------------------ # Check Results # ------------------------------------------------------------------ assert( np.isclose(obj,5.41, atol=1e-6) ) assert( np.isclose(x1 , 2, atol=1e-6) ) assert( np.isclose(x2 , -1, atol=1e-6) ) ################# TRMM ################################################## tr_optimizer = 'SLSQP' # ------------------------------------------------------------------ # Inactive constraints # ------------------------------------------------------------------ problem.optimization_problem.constraints = np.array([ [ 'x1' , '>', -10., 1., 1*Units.less], [ 'x2' , '>', -50., 1., 1*Units.less], ],dtype=object) tr = Trust_Region() problem.trust_region = tr TRM_opt = tro.Trust_Region_Optimization() TRM_opt.trust_region_max_iterations = 20 TRM_opt.optimizer = tr_optimizer print('Checking TRMM with no active constraints...') outputs = TRM_opt.optimize(problem,print_output=False) print(outputs) obj,x1,x2 = get_results(outputs) # ------------------------------------------------------------------ # Check Results # ------------------------------------------------------------------ assert(
np.isclose(obj, 0, atol=1e-6)
numpy.isclose
# Copyright (c) 2012-2020 Jicamarca Radio Observatory # All rights reserved. # # Distributed under the terms of the BSD 3-clause license. """Definition of diferent Data objects for different types of data Here you will find the diferent data objects for the different types of data, this data objects must be used as dataIn or dataOut objects in processing units and operations. Currently the supported data objects are: Voltage, Spectra, SpectraHeis, Fits, Correlation and Parameters """ import copy import numpy import datetime import json import schainpy.admin from schainpy.utils import log from .jroheaderIO import SystemHeader, RadarControllerHeader from schainpy.model.data import _noise def getNumpyDtype(dataTypeCode): if dataTypeCode == 0: numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) elif dataTypeCode == 1: numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) elif dataTypeCode == 2: numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) elif dataTypeCode == 3: numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) elif dataTypeCode == 4: numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) elif dataTypeCode == 5: numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) else: raise ValueError('dataTypeCode was not defined') return numpyDtype def getDataTypeCode(numpyDtype): if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): datatype = 0 elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): datatype = 1 elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): datatype = 2 elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): datatype = 3 elif numpyDtype ==
numpy.dtype([('real', '<f4'), ('imag', '<f4')])
numpy.dtype
import numpy as np from desc.backend import put from desc.basis import FourierZernikeBasis def get_initial_guess_scale_bdry(axis, bdry, bdry_ratio, R_basis:FourierZernikeBasis, Z_basis:FourierZernikeBasis): """Generate initial guess by scaling boundary shape Parameters ---------- axis : ndarray, shape(Naxis,3) array of axis Fourier coeffs [n,Rcoeff, Zcoeff] bdry : ndarray, shape(Nbdry,4) array of boundary Fourier coeffs [m,n,Rcoeff, Zcoeff] OR array of real space coordinates, [theta,phi,R,Z] bdry_ratio : float fraction in range [0,1] of the full non-axisymmetric boundary to use R_basis : FourierZernikeBasis DESCRIPTION Z_basis : FourierZernikeBasis DESCRIPTION Returns ------- cR : ndarray, shape(N_coeffs,) Fourier-Zernike coefficients for R, following indexing given in zern_idx cZ : ndarray, shape(N_coeffs,) Fourier-Zernike coefficients for Z, following indexing given in zern_idx """ modes_R = R_basis.modes modes_Z = Z_basis.modes cR = np.zeros((R_basis.num_modes,)) cZ =
np.zeros((Z_basis.num_modes,))
numpy.zeros
""" Test nimare.meta.kernel (CBMA kernel estimators). """ import shutil import numpy as np from scipy.ndimage.measurements import center_of_mass from nimare.dataset import Dataset from nimare.meta import kernel from nimare import extract def test_alekernel_smoke(testdata_cbma): """ Smoke test for nimare.meta.kernel.ALEKernel """ # Manually override dataset coordinates file sample sizes # This column would be extracted from metadata and added to coordinates # automatically by the Estimator coordinates = testdata_cbma.coordinates.copy() coordinates["sample_size"] = 20 kern = kernel.ALEKernel() ma_maps = kern.transform(coordinates, testdata_cbma.masker, return_type="image") assert len(ma_maps) == len(testdata_cbma.ids) ma_maps = kern.transform(coordinates, testdata_cbma.masker, return_type="array") assert ma_maps.shape[0] == len(testdata_cbma.ids) # Test set_params kern.set_params(fwhm=10, sample_size=None) kern2 = kernel.ALEKernel(fwhm=10) ma_maps1 = kern.transform(coordinates, testdata_cbma.masker, return_type="array") ma_maps2 = kern2.transform(coordinates, testdata_cbma.masker, return_type="array") assert ma_maps1.shape[0] == ma_maps2.shape[0] == len(testdata_cbma.ids) assert np.array_equal(ma_maps1, ma_maps2) def test_alekernel_1mm(testdata_cbma): """ Peaks of ALE kernel maps should match the foci fed in (assuming focus isn't masked out). Test on 1mm template. """ # Manually override dataset coordinates file sample sizes # This column would be extracted from metadata and added to coordinates # automatically by the Estimator coordinates = testdata_cbma.coordinates.copy() coordinates["sample_size"] = 20 id_ = "pain_01.nidm-1" kern = kernel.ALEKernel() ma_maps = kern.transform(coordinates, testdata_cbma.masker, return_type="image") ijk = coordinates.loc[coordinates["id"] == id_, ["i", "j", "k"]] ijk = ijk.values.astype(int) kern_data = ma_maps[0].get_fdata() max_idx = np.where(kern_data == np.max(kern_data)) max_ijk = np.array(max_idx).T assert np.array_equal(ijk, max_ijk) def test_alekernel_2mm(testdata_cbma): """ Peaks of ALE kernel maps should match the foci fed in (assuming focus isn't masked out). Test on 2mm template. """ # Manually override dataset coordinates file sample sizes # This column would be extracted from metadata and added to coordinates # automatically by the Estimator coordinates = testdata_cbma.coordinates.copy() coordinates["sample_size"] = 20 id_ = "pain_01.nidm-1" kern = kernel.ALEKernel() ma_maps = kern.transform(coordinates, masker=testdata_cbma.masker, return_type="image") ijk = coordinates.loc[coordinates["id"] == id_, ["i", "j", "k"]] ijk = np.squeeze(ijk.values.astype(int)) kern_data = ma_maps[0].get_fdata() max_idx = np.array(np.where(kern_data == np.max(kern_data))).T max_ijk = np.squeeze(max_idx) assert np.array_equal(ijk, max_ijk) def test_alekernel_inputdataset_returnimages(testdata_cbma): """ Peaks of ALE kernel maps should match the foci fed in (assuming focus isn't masked out). Test on Dataset object. """ # Manually override dataset coordinates file sample sizes # This column would be extracted from metadata and added to coordinates # automatically by the Estimator testdata_cbma = testdata_cbma.copy() coordinates = testdata_cbma.coordinates.copy() coordinates["sample_size"] = 20 testdata_cbma.coordinates = coordinates id_ = "pain_01.nidm-1" kern = kernel.ALEKernel() ma_maps = kern.transform(testdata_cbma, return_type="image") ijk = coordinates.loc[coordinates["id"] == id_, ["i", "j", "k"]] ijk = np.squeeze(ijk.values.astype(int)) kern_data = ma_maps[0].get_fdata() max_idx = np.array(np.where(kern_data == np.max(kern_data))).T max_ijk = np.squeeze(max_idx) assert np.array_equal(ijk, max_ijk) def test_alekernel_fwhm(testdata_cbma): """ Peaks of ALE kernel maps should match the foci fed in (assuming focus isn't masked out). Test with explicit FWHM. """ coordinates = testdata_cbma.coordinates.copy() id_ = "pain_01.nidm-1" kern = kernel.ALEKernel(fwhm=10) ma_maps = kern.transform(coordinates, masker=testdata_cbma.masker, return_type="image") ijk = coordinates.loc[coordinates["id"] == id_, ["i", "j", "k"]] ijk = np.squeeze(ijk.values.astype(int)) kern_data = ma_maps[0].get_fdata() max_idx = np.array(np.where(kern_data == np.max(kern_data))).T max_ijk = np.squeeze(max_idx) assert np.array_equal(ijk, max_ijk) def test_alekernel_sample_size(testdata_cbma): """ Peaks of ALE kernel maps should match the foci fed in (assuming focus isn't masked out). Test with explicit sample size. """ coordinates = testdata_cbma.coordinates.copy() id_ = "pain_01.nidm-1" kern = kernel.ALEKernel(sample_size=20) ma_maps = kern.transform(coordinates, masker=testdata_cbma.masker, return_type="image") ijk = coordinates.loc[coordinates["id"] == id_, ["i", "j", "k"]] ijk = np.squeeze(ijk.values.astype(int)) kern_data = ma_maps[0].get_fdata() max_idx = np.array(np.where(kern_data == np.max(kern_data))).T max_ijk = np.squeeze(max_idx) assert np.array_equal(ijk, max_ijk) def test_alekernel_inputdataset_returndataset(testdata_cbma, tmp_path_factory): """ Check that the different return types produce equivalent results (minus the masking element). """ tmpdir = tmp_path_factory.mktemp("test_alekernel_inputdataset_returndataset") testdata_cbma.update_path(tmpdir) kern = kernel.ALEKernel(sample_size=20) ma_maps = kern.transform(testdata_cbma, return_type="image") ma_arr = kern.transform(testdata_cbma, return_type="array") dset = kern.transform(testdata_cbma, return_type="dataset") ma_maps_from_dset = kern.transform(dset, return_type="image") ma_arr_from_dset = kern.transform(dset, return_type="array") ma_maps_arr = testdata_cbma.masker.transform(ma_maps) ma_maps_from_dset_arr = dset.masker.transform(ma_maps_from_dset) dset_from_dset = kern.transform(dset, return_type="dataset") ma_maps_dset = testdata_cbma.masker.transform( dset.get_images(ids=dset.ids, imtype=kern.image_type) ) assert isinstance(dset_from_dset, Dataset) assert np.array_equal(ma_arr, ma_maps_arr) assert np.array_equal(ma_arr, ma_maps_dset) assert np.array_equal(ma_arr, ma_maps_from_dset_arr) assert np.array_equal(ma_arr, ma_arr_from_dset) def test_mkdakernel_smoke(testdata_cbma): """ Smoke test for nimare.meta.kernel.MKDAKernel, using Dataset object. """ kern = kernel.MKDAKernel() ma_maps = kern.transform(testdata_cbma, return_type="image") assert len(ma_maps) == len(testdata_cbma.ids) ma_maps = kern.transform(testdata_cbma.coordinates, testdata_cbma.masker, return_type="array") assert ma_maps.shape[0] == len(testdata_cbma.ids) def test_mkdakernel_1mm(testdata_cbma): """ COMs of MKDA kernel maps should match the foci fed in (assuming focus isn't masked out and spheres don't overlap). Test on 1mm template. """ id_ = "pain_01.nidm-1" kern = kernel.MKDAKernel(r=4, value=1) ma_maps = kern.transform(testdata_cbma.coordinates, testdata_cbma.masker, return_type="image") ijk = testdata_cbma.coordinates.loc[testdata_cbma.coordinates["id"] == id_, ["i", "j", "k"]] ijk = np.squeeze(ijk.values.astype(int)) kern_data = ma_maps[0].get_fdata() com = np.array(center_of_mass(kern_data)).astype(int).T com = np.squeeze(com) assert np.array_equal(ijk, com) def test_mkdakernel_2mm(testdata_cbma): """ COMs of MKDA kernel maps should match the foci fed in (assuming focus isn't masked out and spheres don't overlap). Test on 2mm template. """ id_ = "pain_01.nidm-1" kern = kernel.MKDAKernel(r=4, value=1) ma_maps = kern.transform(testdata_cbma.coordinates, testdata_cbma.masker, return_type="image") ijk = testdata_cbma.coordinates.loc[testdata_cbma.coordinates["id"] == id_, ["i", "j", "k"]] ijk = np.squeeze(ijk.values.astype(int)) kern_data = ma_maps[0].get_fdata() com = np.array(center_of_mass(kern_data)).astype(int).T com = np.squeeze(com) assert np.array_equal(ijk, com) def test_mkdakernel_inputdataset_returndataset(testdata_cbma, tmp_path_factory): """ Check that the different return types produce equivalent results (minus the masking element). """ tmpdir = tmp_path_factory.mktemp("test_mkdakernel_inputdataset_returndataset") testdata_cbma.update_path(tmpdir) kern = kernel.MKDAKernel(r=4, value=1) ma_maps = kern.transform(testdata_cbma, return_type="image") ma_arr = kern.transform(testdata_cbma, return_type="array") dset = kern.transform(testdata_cbma, return_type="dataset") ma_maps_from_dset = kern.transform(dset, return_type="image") ma_arr_from_dset = kern.transform(dset, return_type="array") dset_from_dset = kern.transform(dset, return_type="dataset") ma_maps_arr = testdata_cbma.masker.transform(ma_maps) ma_maps_from_dset_arr = dset.masker.transform(ma_maps_from_dset) ma_maps_dset = testdata_cbma.masker.transform( dset.get_images(ids=dset.ids, imtype=kern.image_type) ) assert isinstance(dset_from_dset, Dataset) assert np.array_equal(ma_arr, ma_maps_arr) assert np.array_equal(ma_arr, ma_maps_dset) assert np.array_equal(ma_arr, ma_maps_from_dset_arr) assert np.array_equal(ma_arr, ma_arr_from_dset) def test_kdakernel_smoke(testdata_cbma): """ Smoke test for nimare.meta.kernel.KDAKernel """ kern = kernel.KDAKernel() ma_maps = kern.transform(testdata_cbma.coordinates, testdata_cbma.masker, return_type="image") assert len(ma_maps) == len(testdata_cbma.ids) ma_maps = kern.transform(testdata_cbma.coordinates, testdata_cbma.masker, return_type="array") assert ma_maps.shape[0] == len(testdata_cbma.ids) def test_kdakernel_1mm(testdata_cbma): """ COMs of KDA kernel maps should match the foci fed in (assuming focus isn't masked out and spheres don't overlap). Test on 1mm template. """ id_ = "pain_01.nidm-1" kern = kernel.KDAKernel(r=4, value=1) ma_maps = kern.transform(testdata_cbma.coordinates, testdata_cbma.masker, return_type="image") ijk = testdata_cbma.coordinates.loc[testdata_cbma.coordinates["id"] == id_, ["i", "j", "k"]] ijk = np.squeeze(ijk.values.astype(int)) kern_data = ma_maps[0].get_fdata() com = np.array(center_of_mass(kern_data)).astype(int).T com =
np.squeeze(com)
numpy.squeeze
# *-* encoding: utf-8 *-* # Unit tests for ppn functions from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import numpy as np import tensorflow as tf from faster_particles.ppn_utils import generate_anchors, \ top_R_pixels, clip_pixels, \ compute_positives_ppn1, compute_positives_ppn2, assign_gt_pixels, \ include_gt_pixels, predicted_pixels, crop_pool_layer, \ all_combinations, slice_rois, \ nms_step, nms def generate_anchors_np(im_shape, repeat=1): dim = len(im_shape) anchors = np.indices(im_shape).transpose(tuple(range(1, dim+1)) + (0,)) anchors = anchors + 0.5 anchors = np.reshape(anchors, (-1, dim)) return np.repeat(anchors, repeat, axis=0) def clip_pixels_np(pixels, im_shape): """ pixels shape: [None, 2] Clip pixels (x, y) to [0, im_shape[0]) x [0, im_shape[1]) """ dim = len(im_shape) for i in range(dim): pixels[:, i] = np.clip(pixels[:, i], 0, im_shape[i]) return pixels class Test(unittest.TestCase): def generate_anchors(self, im_shape, repeat): anchors_np = generate_anchors_np(im_shape, repeat=repeat) with tf.Session(): anchors_tf = generate_anchors(im_shape, repeat=repeat) return np.array_equal(anchors_tf, anchors_np) def test_generate_anchors_2d(self): im_shape = (2, 2) repeat = 3 return self.generate_anchors(im_shape, repeat) def test_generate_anchors_3d(self): im_shape = (2, 2, 2) repeat = 3 return self.generate_anchors(im_shape, repeat) def clip_pixels(self, im_shape, proposals_np): pixels_np = clip_pixels_np(proposals_np, im_shape) with tf.Session() as sess: proposals = tf.constant(proposals_np, dtype=tf.float32) pixels = clip_pixels(proposals, im_shape) pixels_tf = sess.run(pixels) return np.allclose(pixels_np, pixels_tf) def test_clip_pixels_2d(self): im_shape = (3, 3) proposals_np = np.array([[-0.5, 1.0], [0.01, 3.4], [2.5, 2.99]]) return self.clip_pixels(im_shape, proposals_np) def test_clip_pixels_3d(self): im_shape = (2, 2, 2) proposals_np = np.random.rand(5, 3)*4-1 return self.clip_pixels(im_shape, proposals_np) def top_R_pixels(self, R, threshold, proposals_np, scores_np): threshold_indices = np.nonzero(scores_np > threshold) scores_np = scores_np[threshold_indices] proposals_np = proposals_np[threshold_indices] sorted_indices = np.argsort(scores_np) roi_scores_np = scores_np[sorted_indices][::-1][:R] rois_np = proposals_np[sorted_indices][::-1][:R] with tf.Session() as sess: proposals = tf.constant(proposals_np, dtype=tf.float32) scores = tf.constant(scores_np, dtype=tf.float32) rois, roi_scores = top_R_pixels(proposals, scores, R=R, threshold=threshold) rois_tf, roi_scores_tf = sess.run([rois, roi_scores]) return np.allclose(rois_tf, rois_np) and np.allclose(roi_scores_np, roi_scores_tf) def test_top_R_pixels_2d(self): R = 3 threshold = 0.5 # Shape N*N x 2 proposals_np = np.array([[0.0, 1.0], [0.5, 0.7], [0.3, 0.88], [-0.2, 0.76], [0.23, 0.47], [0.33, 0.56], [0.0, 0.4], [-0.6, 0.3], [0.27, -0.98]]) # Shape N*N x 1 scores_np = np.array([0.1, 0.5, 0.7, 0.45, 0.65, 0.01, 0.78, 0.98, 0.72]) return self.top_R_pixels(R, threshold, proposals_np, scores_np) def test_top_R_pixels_3d(self): R = 3 threshold = 0.5 # shape N*N x 3 proposals_np = np.array([[0.0, 1.0, 0.3], [0.87, 0.1, -0.34], [0.45, 0.68, 0.09], [0.34, 0.21, -0.6], [0.12, -0.4, 0.8], [0.48, 0.43, -0.79], [0.89, 0.05, -0.02], [0.9, 0.04, 1.0]]) # shape N*N x 1 scores_np = np.array([0.1, 0.5, 0.7, 0.45, 0.65, 0.01, 0.78, 0.98]) return self.top_R_pixels(R, threshold, proposals_np, scores_np) def predicted_pixels(self, im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np): dim = len(im_shape) anchors_np = generate_anchors_np(im_shape, repeat=repeat) scores = rpn_cls_prob_np[..., 1:] roi_scores_np = np.reshape(scores, (-1, scores.shape[-1])) anchors_np = np.reshape(anchors_np, (-1,) + (rpn_cls_prob_np.shape[1],) * dim + (dim,)) proposals = anchors_np + rpn_bbox_pred_np proposals = np.reshape(proposals, (-1, dim)) # clip predicted pixels to the image proposals = clip_pixels_np(proposals, im_shape) # FIXME np function rois_np = proposals.astype(float) with tf.Session() as sess: anchors_tf = generate_anchors(im_shape, repeat=repeat) rpn_cls_prob_tf = tf.constant(rpn_cls_prob_np, dtype=tf.float32) rpn_bbox_pred_tf = tf.constant(rpn_bbox_pred_np, dtype=tf.float32) rois, roi_scores = predicted_pixels(rpn_cls_prob_tf, rpn_bbox_pred_tf, anchors_tf, im_shape) rois_tf, roi_scores_tf = sess.run([rois, roi_scores]) return np.allclose(rois_tf, rois_np) and np.allclose(roi_scores_tf, roi_scores_np) def test_predicted_pixels1_2d(self): # for PPN1 im_shape = (2, 2) repeat = 1 # Shape [None, N, N, n] where n = 2 (background/signal) rpn_cls_prob_np = np.array([[[[0.1, 0.9], [0.3, 0.7]], [[0.5, 0.5], [0.8, 0.2]]]]) # Shape [None, N, N, 2] rpn_bbox_pred_np = np.array([[[[0.1, 0.1], [0.5, 0.2]], [[0.9, -0.5], [0.1, -0.4]]]]) return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def test_predicted_pixels1_3d(self): im_shape = (2, 2, 2) repeat = 1 rpn_cls_prob_np = np.random.rand(1, 2, 2, 2, 2) rpn_bbox_pred_np = np.random.rand(1, 2, 2, 2, 3)*2-1 return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def test_predicted_pixels2_2d(self): # for PPN2 im_shape = (2, 2) repeat = 1 # Shape [None, N, N, n] where n = num_classes rpn_cls_prob_np = np.array([[[[0.1, 0.8, 0.1], [0.3, 0.65, 0.05]], [[0.5, 0.02, 0.48], [0.8, 0.18, 0.02]]]]) # Shape [None, N, N, 2] rpn_bbox_pred_np = np.array([[[[0.1, 0.1], [0.5, 0.2]], [[0.9, -0.5], [0.1, -0.4]]]]) return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def test_predicted_pixels2_3d(self): im_shape = (2, 2, 2) repeat = 1 rpn_cls_prob_np = np.random.rand(1, 2, 2, 2, 3) rpn_bbox_pred_np = np.random.rand(1, 2, 2, 2, 3)*2-1 return self.predicted_pixels(im_shape, repeat, rpn_cls_prob_np, rpn_bbox_pred_np) def include_gt_pixels(self, rois_np, gt_pixels_np, dim1, dim2): dim = gt_pixels_np.shape[-1] # convert to F3 coordinates gt_pixels_coord = np.floor(gt_pixels_np / dim1) # Get 3x3 pixels around this in F3 gt_pixels_coord = gt_pixels_coord[:, np.newaxis, :] gt_pixels_coord = np.tile(gt_pixels_coord, [1, 3**dim, 1]) # shape N x 9 x 2 shifts = all_combinations(([-1, 0, 1],) * dim) update = np.tile(shifts[np.newaxis, :, :], [gt_pixels_coord.shape[0], 1, 1]) gt_pixels_coord = gt_pixels_coord + update gt_pixels_coord = np.reshape(gt_pixels_coord, (-1, dim)) # Shape N*9, 2 # Go back to F5 coordinates gt_pixels_coord = gt_pixels_coord / dim2 rois_result_np = np.vstack([np.floor(rois_np), gt_pixels_coord]) # shape [None, 2] with tf.Session() as sess: rois_tf = tf.constant(rois_np, dtype=tf.float32) gt_pixels_tf = tf.constant(gt_pixels_np, dtype=tf.float32) rois_tf = include_gt_pixels(rois_tf, gt_pixels_tf, dim1, dim2) rois_result_tf = sess.run(rois_tf) return np.allclose(rois_result_tf, rois_result_np) def test_include_gt_pixels_2d(self): dim1, dim2 = 8.0, 4.0 # [None, 2] in F5 coordinates rois_np = np.array([[0, 3], [15, 2], [3, 4], [5.6, 9.1]]) # [None, 2] gt_pixels_np = np.array([[2.4, 2.3], [3, 4], [6.4, 1.2]]) return self.include_gt_pixels(rois_np, gt_pixels_np, dim1, dim2) def test_include_gt_pixels_3d(self): dim1, dim2 = 8.0, 4.0 rois_np = np.random.rand(10, 3) gt_pixels_np = np.random.rand(4, 3)*dim1*dim2 return self.include_gt_pixels(rois_np, gt_pixels_np, dim1, dim2) def compute_positives_ppn1(self, gt_pixels_test, N3, dim1, dim2): dim =gt_pixels_test.shape[-1] classes_np = np.zeros((N3,)*dim) gt_pixels_np = np.floor(gt_pixels_test / (dim1 * dim2)).astype(int) gt_pixels_np = tuple(zip(*gt_pixels_np)) classes_np[gt_pixels_np] = 1. classes_mask_np = classes_np.reshape(-1,1).astype(bool) # shape (16*16, 1) with tf.Session() as sess: gt_pixels_tf = tf.constant(gt_pixels_test, dtype=tf.float32) classes_mask_tf = compute_positives_ppn1(gt_pixels_tf, N3, dim1, dim2) classes_mask_tf = sess.run([classes_mask_tf]) return np.allclose(classes_mask_np, classes_mask_tf) def test_compute_positives_ppn1_2d(self): dim1, dim2, N3 = 8.0, 4.0, 16 # Dummy input for testing, num of gt pixels = N = 3 gt_pixels_test = np.array([[5.5, 7.7], [511.1, 433.3], [320, 320]]) return self.compute_positives_ppn1(gt_pixels_test, N3, dim1, dim2) def test_compute_positives_ppn1_3d(self): dim1, dim2, N3 = 8.0, 4.0, 16 gt_pixels_test = np.array([[5.5, 7.7, 45.9], [511.1, 433.3, 5.6], [320, 320, 201]]) return self.compute_positives_ppn1(gt_pixels_test, N3, dim1, dim2) def compute_positives_ppn2(self, closest_gt_distance_test, thres_test): pixel_count = closest_gt_distance_test.shape[0] common_shape_np = np.array([pixel_count, 1]) mask_np = np.where(np.greater(closest_gt_distance_test, thres_test), False, True) mask_np[np.argmin(closest_gt_distance_test)] = True with tf.Session() as sess: mask_tf = compute_positives_ppn2(closest_gt_distance_test, threshold=thres_test) mask_tf = sess.run([mask_tf]) return np.allclose(mask_np, mask_tf) def test_compute_positives_ppn2_2d(self): nb_rois, N = 5, 16 closest_gt_distance_test = np.arange(nb_rois*N*N).reshape(-1, 1) thres_test = 2 return self.compute_positives_ppn2(closest_gt_distance_test, thres_test) def test_compute_positives_ppn2_3d(self): nb_rois, N = 5, 16 closest_gt_distance_test = np.arange(nb_rois*N*N*N).reshape(-1, 1) thres_test = 2 return self.compute_positives_ppn2(closest_gt_distance_test, thres_test) # TODO test rois option too def assign_gt_pixels(self, gt_pixels_np, proposals_np, dim1, dim2, rois=None): dim = proposals_np.shape[-1] gt_pixels = gt_pixels_np[:, :-1] gt_pixels = gt_pixels[np.newaxis, :, :] if rois is not None: proposals = (proposals_np * dim2 * rois) * dim1 else: proposals = proposals_np * dim1 * dim2 all_gt_pixels = np.tile(gt_pixels, [proposals_np.shape[0], 1, 1]) proposals = proposals[:, np.newaxis, :] distances = np.sqrt(np.sum(np.power(proposals - all_gt_pixels, 2), axis=2)) closest_gt = np.argmin(distances, axis=1) closest_gt_distance = np.amin(distances, axis=1) gt_pixels_labels = gt_pixels_np[:, -1] closest_gt_label = [gt_pixels_labels[i] for i in closest_gt] with tf.Session() as sess: gt_pixels_tf = tf.constant(gt_pixels_np, dtype=tf.float32) proposals_tf = tf.constant(proposals_np, dtype=tf.float32) closest_gt_tf, closest_gt_distance_tf, closest_gt_label_tf = assign_gt_pixels(gt_pixels_tf, proposals_tf, dim1, dim2, rois=rois) closest_gt_result, closest_gt_distance_result, closest_gt_label_result = sess.run([closest_gt_tf, closest_gt_distance_tf, closest_gt_label_tf]) return np.allclose(closest_gt_result, closest_gt) and np.allclose(closest_gt_distance_result, closest_gt_distance) and np.allclose(closest_gt_label_result, closest_gt_label) def test_assign_gt_pixels_2d(self): dim1, dim2 = 8.0, 4.0 gt_pixels_np = np.array([[0.5, 5.6, 1], [53, 76, 2]]) proposals_np = np.array([[1.0, 1.0], [7, 75], [98, 10], [5, 34]]) return self.assign_gt_pixels(gt_pixels_np, proposals_np, dim1, dim2) def test_assign_gt_pixels_3d(self): dim1, dim2 = 8.0, 4.0 gt_pixels_np = np.array([[0.5, 5.6, 45, 1], [53, 76, 102, 2]]) proposals_np = np.array([[1.0, 1.0, 0.43], [7, 75, 2.3], [98, 10, 45], [5, 34, 72]]) return self.assign_gt_pixels(gt_pixels_np, proposals_np, dim1, dim2) def crop_pool_layer(self, net, rois_np, dim2, dim): rois = np.array(rois_np * dim2).astype(int) nb_channels = net.shape[-1] if dim == 2: rois = [net[:, i[0], i[1], :] for i in rois] elif dim == 3: rois = [net[:, i[0], i[1], i[2], :] for i in rois] rois = np.reshape(rois, (-1,) + (1,) * dim + (nb_channels,)) with tf.Session() as sess: rois_tf = crop_pool_layer(tf.constant(net, dtype=tf.float32), tf.constant(rois_np, dtype=tf.float32), dim2, dim) rois_result = sess.run(rois_tf) return np.allclose(rois, rois_result) def test_crop_pool_layer_2d(self): dim2, dim = 4.0, 2 net = np.random.rand(1, 64, 64, 16) rois_np = np.random.rand(10, 2)*16 return self.crop_pool_layer(net, rois_np, dim2, dim) def test_crop_pool_layer_3d(self): dim2, dim = 4.0, 3 net = np.random.rand(1, 64, 64, 64, 16) rois_np = np.random.rand(10, 3)*16 return self.crop_pool_layer(net, rois_np, dim2, dim) def test_all_combinations(self): return np.allclose(all_combinations(([0, 1], [0, 1])), np.array([[0, 0], [0, 1], [1, 0], [1, 1]])) def slice_rois(self, rois_np, dim2): dim = rois_np.shape[-1] rois_slice = [] for i in range(dim): rois_slice.append(np.multiply(rois_np[:, i], dim2)) rois_slice = np.array(rois_slice)[..., np.newaxis, np.newaxis] indices = ([-2, -1, 0, 1],) * dim shifts = all_combinations(indices).T[:, np.newaxis, np.newaxis, :] all_rois = np.add(rois_slice, shifts) rois = np.reshape(all_rois, (-1, dim)) / dim2 with tf.Session() as sess: rois_tf = slice_rois(tf.constant(rois_np, dtype=tf.float32), dim2) rois_result = sess.run(rois_tf) return np.allclose(rois, rois_result) def test_slice_rois_2d(self): dim2 = 4.0 rois_np = np.random.rand(10, 2) * 64 return self.slice_rois(rois_np, dim2) def test_slice_rois_3d(self): dim2 = 4.0 rois_np = np.random.rand(10, 3) * 64 return self.slice_rois(rois_np, dim2) def test_nms_step(self): order = np.array([1, 2, 0]) x1 = np.array([0, 2, 3]) x2 = np.array([1, 3, 4]) y1 = np.array([0, 1, 0.5]) y2 = np.array([1, 2, 1.5]) areas = (x2 - x1 + 1) * (y2 - y1 + 1) with tf.Session() as sess: order = tf.constant(order, dtype=tf.int32) x1, x2, y1, y2 = tf.constant(x1, dtype=tf.float32), tf.constant(x2, dtype=tf.float32), tf.constant(y1, dtype=tf.float32), tf.constant(y2, dtype=tf.float32) keep = tf.Variable([0], dtype=tf.int32, name="keep") threshold = tf.constant(0.5) size = tf.constant(1.0) areas = tf.constant(areas, dtype=tf.float32) sess.run(tf.global_variables_initializer()) result = nms_step(order, x1, y1, x2, y2, areas, keep, threshold, size) result_np = sess.run(result) return np.allclose(result_np[-3],
np.array([0, 1])
numpy.array
import os import numpy as np import soundfile as sf # To read .flac files. import librosa # For the neural network. # Install PyBrain, e.g. pip install pybrain. from pybrain.datasets import ClassificationDataSet from pybrain.tools.shortcuts import buildNetwork from pybrain.supervised.trainers import BackpropTrainer from pybrain.structure.modules import SoftmaxLayer from pybrain.tools.customxml.networkreader import NetworkReader from pybrain.tools.customxml.networkwriter import NetworkWriter from pybrain.structure import FullConnection from pybrain.structure import FeedForwardNetwork from pybrain.structure import LinearLayer from pybrain.structure import SoftmaxLayer from pybrain.structure import TanhLayer # Read data from a folder into a list. def getData(division,speaker,datapath,audioType,durationCheck,deltaT,lim1,lim2,numFeatures,noisy,transform): #deltaT is the duration of the audio frame. Lim1 & Lim2 are the frequency ranges; each frequency is a feature. #Noisy sets the limit for pauses in speech #Division is the data, i.e. Train, CV, test fname = datapath+division+speaker subPaths = [v+"/" for v in os.listdir(fname) if v[0] != "."] dataFiles = [] for subPath in subPaths: files = [v for v in os.listdir(fname+subPath) if v[0] != "." and audioType in v] for fil in files: data,samplerate = sf.read(fname+subPath+fil) duration = len(data)*1./samplerate if duration >= durationCheck: dataFiles.append(fname+subPath+fil) chunksF = [] for fil in dataFiles: data,samplerate = sf.read(fil) duration = len(data)*1./samplerate # Divide audio data into frames, or chunks. numChunks = int(duration/deltaT) sizeChunk = int(len(data)/numChunks) for lp in range(0,numChunks): chunk = data[lp*sizeChunk:(lp+1)*sizeChunk] # get a chunk of speech. # np.fft.rfft computes the one-dimensional discrete Fourier Transform of the data if transform == 'Fourier': chunksF.append(np.abs(np.fft.rfft(chunk))[lim1:lim2]) # take the FFT. elif transform == 'Mel': S = librosa.feature.melspectrogram(y=chunk, sr=samplerate, n_mels=128, fmax=lim2) chunksF.append(np.abs(S)) # Delete quiet parts of speech, i.e. pauses. # Most of the power is in the bottom 50% of frequencies. mu = np.mean([
np.mean(chunksF[i][:numFeatures//2])
numpy.mean
import loader as ld import fun_basicas as fun import pandas as pd import matplotlib.pyplot as plt import numpy as np import scipy.optimize as opt from scipy.optimize import minimize def coste(theta1, theta2, X, Y, num_etiquetas): # Y preparada A1, A2, h = forward_prop(X, theta1, theta2) sum1 = Y * np.log(h) sum2 = (1 - Y) * np.log(1 - h + 1e-6) return (-1 / X.shape[0]) * np.sum(sum1 + sum2) def coste_reg(theta1, theta2, X, Y, num_etiquetas, Lambda): c = coste(theta1, theta2, X, Y, num_etiquetas) m = X.shape[0] e = sum(sum(theta1[:, 1:] ** 2)) + sum(sum(theta2[:, 1:] ** 2)) return c + (Lambda / (2 * m)) * e def forward_prop(X, theta1, theta2): n = X.shape[0] # Se añade una fila de unos a la matriz inicial X = np.hstack([np.ones([n, 1]), X]) # La capa oculta utiliza la primera matriz de pesos para crear sus neuronas y le añade una fila de unos Oculta = fun.sigmoide(np.dot(X, theta1.T)) Oculta = np.hstack([np.ones([n, 1]), Oculta]) # El resultado se calcula pasando por la segunda matriz de pesos todas las neuronas de la capa oculta Resultado = fun.sigmoide(np.dot(Oculta, theta2.T)) return X, Oculta, Resultado def gradiente(theta1, theta2, X, y): # Creamos los Delta con la forma de theta pero inicializados a cero Delta1 = np.zeros(np.shape(theta1)) Delta2 = np.zeros(np.shape(theta2)) m = len(y) # Se realiza la propagación hacia delante A1, A2, h = forward_prop(X, theta1, theta2) # Se realiza la propagación hacia atras para cada # elemento para comprobar el fallo for k in range(m): a1k = A1[k, :] a2k = A2[k, :] a3k = h[k, :] yk = y[k, :] d3 = a3k - yk g_prima = (a2k * (1 - a2k)) d2 = np.dot(theta2.T, d3) * g_prima Delta1 = Delta1 + np.dot(d2[1:, np.newaxis], a1k[np.newaxis, :]) Delta2 = Delta2 + np.dot(d3[:, np.newaxis], a2k[np.newaxis, :]) # Se devuelven los Deltas que corresponden al gradiente return Delta1 / m, Delta2 / m def gradiente_reg(theta1, theta2, X, y, Lambda): m = len(y) Delta1, Delta2 = gradiente(theta1, theta2, X, y) # A cada elemento del gradiente (menos la primera columna) se le añade el termino de regularización Lambda # multiplicado por cada elemento de las matriz theta 1 y theta2 Delta1[:, 1:] = Delta1[:, 1:] + (Lambda / m) * theta1[:, 1:] Delta2[:, 1:] = Delta2[:, 1:] + (Lambda / m) * theta2[:, 1:] return Delta1, Delta2 def backprop(params_rn, num_entradas, num_ocultas, num_etiquetas, X, y, reg): # backprop devuelve una tupla (coste, gradiente) con el coste y el gradiente de # una red neuronal de tres capas , con num_entradas , num_ocultas nodos en la capa # oculta y num_etiquetas nodos en la capa de salida. Si m es el numero de ejemplos # de entrenamiento, la dimensión de ’X’ es (m, num_entradas) y la de ’y’ es # (m, num_etiquetas) theta1 = np.reshape(params_rn[:num_ocultas * (num_entradas + 1)], (num_ocultas, (num_entradas + 1))) theta2 = np.reshape(params_rn[num_ocultas * (num_entradas + 1):], (num_etiquetas, (num_ocultas + 1))) m = len(y) D1, D2 = gradiente_reg(theta1, theta2, X, y, reg) coste = coste_reg(theta1, theta2, X, y, num_etiquetas, reg) gradiente = np.concatenate((np.ravel(D1), np.ravel(D2))) return coste, gradiente def prueba_neurona(X, y, theta1, theta2): """función que devuelve el porcentaje de acierto de una red neuronal utilizando unas matrices de pesos dadas""" n = len(y) y = np.ravel(y) _, _, result = forward_prop(X, theta1, theta2) result = np.argmax(result, axis=1) return (sum((result + 1)%4 == y) / n * 100) def validacion_redes(random_state, num_labels, iteraciones, hiddens, lambdas, colores = ['r', 'b' , 'g', 'm']): Ex, Ey, Vx, Vy, Px, Py = ld.carga_Numpy(random_state) y_onehot = fun.one_hot(Ey, 4) input_size = Ex.shape[1] INIT_EPSILON = 0.12 for hidden_size in hiddens: theta1 = np.random.random((hidden_size,(input_size + 1)))*(2*INIT_EPSILON) - INIT_EPSILON theta2 = np.random.random((num_labels,(hidden_size + 1)))*(2*INIT_EPSILON) - INIT_EPSILON params = np.concatenate((np.ravel(theta1), np.ravel(theta2))) plt.figure() i = 0 for reg in lambdas: percent = [] for iters in iteraciones: fmin = minimize(fun=backprop, x0=params, args=(input_size, hidden_size, num_labels, Ex, y_onehot, reg), method='TNC', jac=True, options={'maxiter': iters}) theta1 = np.reshape(fmin.x[:hidden_size*(input_size + 1)],(hidden_size,(input_size + 1))) theta2 = np.reshape(fmin.x[hidden_size * (input_size+1):],(num_labels,(hidden_size + 1))) p = prueba_neurona(Vx, Vy, theta1, theta2) print(p) percent.append(p) plt.plot(iteraciones, percent, c = colores[i] , label = ' lambda = {} '.format(reg)) i = i+1 plt.legend() plt.title("hidden sizes: {}".format(hidden_size)) plt.show() def prueba_redes(random_state, num_labels, iteraciones, hiddens, lambdas, colores = ['r', 'b' , 'g', 'm']): Ex, Ey, Vx, Vy, Px, Py = ld.carga_Numpy(random_state) y_onehot = fun.one_hot(Ey, 4) input_size = Ex.shape[1] INIT_EPSILON = 0.12 for hidden_size in hiddens: theta1 = np.random.random((hidden_size,(input_size + 1)))*(2*INIT_EPSILON) - INIT_EPSILON theta2 = np.random.random((num_labels,(hidden_size + 1)))*(2*INIT_EPSILON) - INIT_EPSILON params = np.concatenate((np.ravel(theta1), np.ravel(theta2))) plt.figure() i = 0 for reg in lambdas: percent1 = [] percent2 = [] for iters in iteraciones: fmin = minimize(fun=backprop, x0=params, args=(input_size, hidden_size, num_labels, Ex, y_onehot, reg), method='TNC', jac=True, options={'maxiter': iters}) theta1 = np.reshape(fmin.x[:hidden_size*(input_size + 1)],(hidden_size,(input_size + 1))) theta2 = np.reshape(fmin.x[hidden_size * (input_size+1):],(num_labels,(hidden_size + 1))) p1 = prueba_neurona(Vx, Vy, theta1, theta2) print("validación = {}".format(p1)) p2 = prueba_neurona(Px, Py, theta1, theta2) print("prueba = {}".format(p2)) percent1.append(p1) percent2.append(p2) plt.plot(iteraciones, percent1, c = colores[i] , label = 'validación') plt.plot(iteraciones, percent2, c = colores[i + 1] , label = 'prueba') i = i+1 plt.legend() plt.title("hidden sizes: {}".format(hidden_size)) plt.show() #### Para redes de dos capas ocultas(luego hare una para un numero de capas ocultas cualquiera) def coste2(theta1, theta2, theta3, X, Y, num_etiquetas): # Y preparada A1, A2, A3, h = forward_prop2(X, theta1, theta2, theta3) sum1 = Y * np.log(h) sum2 = (1 - Y) * np.log(1 - h + 1e-6) return (-1 / X.shape[0]) * np.sum(sum1 + sum2) def coste_reg2(theta1, theta2, theta3, X, Y, num_etiquetas, Lambda): c = coste2(theta1, theta2, theta3, X, Y, num_etiquetas) m = X.shape[0] e = sum(sum(theta1[:, 1:] ** 2)) + sum(sum(theta2[:, 1:] ** 2)) + sum(sum(theta3[:, 1:] ** 2)) return c + (Lambda / (2 * m)) * e def forward_prop2(X, theta1, theta2, theta3): n = X.shape[0] # Se añade una fila de unos a la matriz inicial X = np.hstack([np.ones([n, 1]), X]) # Las capas ocultas utilizan la primera y segunda matrices de pesos para crear sus neuronas y les añaden una fila de unos Oculta1 = fun.sigmoide(
np.dot(X, theta1.T)
numpy.dot
import math import numpy as np import matplotlib.pyplot as plt STATE_NUM = 1000 GROUP_NUM = 10 RUNS = 100 START = 500 END_L = 0 END_R = 1001 ALPHA = 0.8 class RandWalk_1000L: def __init__(self, _alpha=ALPHA, _runs=RUNS, _state_num=STATE_NUM): self.alpha = _alpha self.runs = _runs self.state_num = _state_num self.state = START self.weights =
np.zeros(GROUP_NUM)
numpy.zeros
import numpy as np import pytest from autolens.data.array import mask from autolens.data.array import interpolation from autolens.model.galaxy import galaxy from autolens.model.profiles import mass_profiles @pytest.fixture(name='scheme') def make_scheme(): return interpolation.InterpolationScheme(shape=(3, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) @pytest.fixture(name='geometry') def make_geometry(): return interpolation.InterpolationGeometry(y_min=-1.0, y_max=1.0, x_min=-1.0, x_max=1.0, y_pixel_scale=1.0, x_pixel_scale=1.0) @pytest.fixture(name='galaxy_no_profiles', scope='function') def make_galaxy_no_profiles(): return galaxy.Galaxy() @pytest.fixture(name="galaxy_mass_sis") def make_galaxy_mass_sis(): sis = mass_profiles.SphericalIsothermal(einstein_radius=1.0) return galaxy.Galaxy(mass_profile=sis) class TestInterpolationScheme(object): class TestConstructor: def test__sets_up_attributes_correctly(self): image_coords = np.array([[-1.0, -6.0], [-1.0, 0.0], [-4.0, 2.0], [-0.0, -1.0], [0.0, 0.0], [0.0, 1.0], [3.0, -1.0], [1.0, 0.0], [1.0, 1.0]]) interp = interpolation.InterpolationScheme(shape=(3, 3), image_coords=image_coords, image_pixel_scale=1.0) assert interp.shape == (3, 3) assert interp.pixels == 9 assert (interp.image_coords == image_coords).all() assert interp.geometry.y_min == -6.0 assert interp.geometry.y_max == 2.0 assert interp.geometry.x_min == -4.0 assert interp.geometry.x_max == 3.0 assert interp.geometry.y_pixel_scale == 1.0 assert interp.geometry.x_pixel_scale == 1.0 assert interp.geometry.x_size == 7.0 assert interp.geometry.y_size == 8.0 assert interp.geometry.x_start == -4.5 assert interp.geometry.y_start == -6.5 class TestNeighbors: def test___3x3_grid_neighbors_all_correct(self): # |0|1|2| # |3|4|5| # |6|7|8| interp = interpolation.InterpolationScheme(shape=(3, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 3, 4])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 4, 5])).all() assert (interp.bottom_right_neighbors[2] == np.array([-1, 5, -1])).all() assert (interp.bottom_right_neighbors[3] == np.array([4, 6, 7])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 7, 8])).all() assert (interp.bottom_right_neighbors[5] == np.array([-1, 8, -1])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, -1, -1])).all() assert (interp.bottom_right_neighbors[7] == np.array([8, -1, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 3])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 3, 4])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 4, 5])).all() assert (interp.bottom_left_neighbors[3] == np.array([-1, -1, 6])).all() assert (interp.bottom_left_neighbors[4] == np.array([3, 6, 7])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 7, 8])).all() assert (interp.bottom_left_neighbors[6] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, -1, -1])).all() assert (interp.bottom_left_neighbors[8] == np.array([7, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[3] == np.array([0, 1, 4])).all() assert (interp.top_right_neighbors[4] == np.array([1, 2, 5])).all() assert (interp.top_right_neighbors[5] == np.array([2, -1, -1])).all() assert (interp.top_right_neighbors[6] == np.array([3, 4, 7])).all() assert (interp.top_right_neighbors[7] == np.array([4, 5, 8])).all() assert (interp.top_right_neighbors[8] == np.array([5, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[4] == np.array([0, 1, 3])).all() assert (interp.top_left_neighbors[5] == np.array([1, 2, 4])).all() assert (interp.top_left_neighbors[6] == np.array([-1, 3, -1])).all() assert (interp.top_left_neighbors[7] == np.array([3, 4, 6])).all() assert (interp.top_left_neighbors[8] == np.array([4, 5, 7])).all() def test___3x4_grid_neighbors_all_correct(self): # |0|1| 2| 3| # |4|5| 6| 7| # |8|9|10|11| interp = interpolation.InterpolationScheme(shape=(3, 4), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 4, 5])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 5, 6])).all() assert (interp.bottom_right_neighbors[2] == np.array([3, 6, 7])).all() assert (interp.bottom_right_neighbors[3] == np.array([-1, 7, -1])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 8, 9])).all() assert (interp.bottom_right_neighbors[5] == np.array([6, 9, 10])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 10, 11])).all() assert (interp.bottom_right_neighbors[7] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([9, -1, -1])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, -1, -1])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, -1, -1])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 4])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 4, 5])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 5, 6])).all() assert (interp.bottom_left_neighbors[3] == np.array([2, 6, 7])).all() assert (interp.bottom_left_neighbors[4] == np.array([-1, -1, 8])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 8, 9])).all() assert (interp.bottom_left_neighbors[6] == np.array([5, 9, 10])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, 10, 11])).all() assert (interp.bottom_left_neighbors[8] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[9] == np.array([8, -1, -1])).all() assert (interp.bottom_left_neighbors[10] == np.array([9, -1, -1])).all() assert (interp.bottom_left_neighbors[11] == np.array([10, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, 3])).all() assert (interp.top_right_neighbors[3] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[4] == np.array([0, 1, 5])).all() assert (interp.top_right_neighbors[5] == np.array([1, 2, 6])).all() assert (interp.top_right_neighbors[6] == np.array([2, 3, 7])).all() assert (interp.top_right_neighbors[7] == np.array([3, -1, -1])).all() assert (interp.top_right_neighbors[8] == np.array([4, 5, 9])).all() assert (interp.top_right_neighbors[9] == np.array([5, 6, 10])).all() assert (interp.top_right_neighbors[10] == np.array([6, 7, 11])).all() assert (interp.top_right_neighbors[11] == np.array([7, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, -1, 2])).all() assert (interp.top_left_neighbors[4] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[5] == np.array([0, 1, 4])).all() assert (interp.top_left_neighbors[6] == np.array([1, 2, 5])).all() assert (interp.top_left_neighbors[7] == np.array([2, 3, 6])).all() assert (interp.top_left_neighbors[8] == np.array([-1, 4, -1])).all() assert (interp.top_left_neighbors[9] == np.array([4, 5, 8])).all() assert (interp.top_left_neighbors[10] == np.array([5, 6, 9])).all() assert (interp.top_left_neighbors[11] == np.array([6, 7, 10])).all() def test___4x3_grid_neighbors_all_correct(self): # |0| 1| 2| # |3| 4| 5| # |6| 7| 8| # |9|10|11| interp = interpolation.InterpolationScheme(shape=(4, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 3, 4])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 4, 5])).all() assert (interp.bottom_right_neighbors[2] == np.array([-1, 5, -1])).all() assert (interp.bottom_right_neighbors[3] == np.array([4, 6, 7])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 7, 8])).all() assert (interp.bottom_right_neighbors[5] == np.array([-1, 8, -1])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 9, 10])).all() assert (interp.bottom_right_neighbors[7] == np.array([8, 10, 11])).all() assert (interp.bottom_right_neighbors[8] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, -1, -1])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, -1, -1])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 3])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 3, 4])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 4, 5])).all() assert (interp.bottom_left_neighbors[3] == np.array([-1, -1, 6])).all() assert (interp.bottom_left_neighbors[4] == np.array([3, 6, 7])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 7, 8])).all() assert (interp.bottom_left_neighbors[6] == np.array([-1, -1, 9])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, 9, 10])).all() assert (interp.bottom_left_neighbors[8] == np.array([7, 10, 11])).all() assert (interp.bottom_left_neighbors[9] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[10] == np.array([9, -1, -1])).all() assert (interp.bottom_left_neighbors[11] == np.array([10, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[3] == np.array([0, 1, 4])).all() assert (interp.top_right_neighbors[4] == np.array([1, 2, 5])).all() assert (interp.top_right_neighbors[5] == np.array([2, -1, -1])).all() assert (interp.top_right_neighbors[6] == np.array([3, 4, 7])).all() assert (interp.top_right_neighbors[7] == np.array([4, 5, 8])).all() assert (interp.top_right_neighbors[8] == np.array([5, -1, -1])).all() assert (interp.top_right_neighbors[9] == np.array([6, 7, 10])).all() assert (interp.top_right_neighbors[10] == np.array([7, 8, 11])).all() assert (interp.top_right_neighbors[11] == np.array([8, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[4] == np.array([0, 1, 3])).all() assert (interp.top_left_neighbors[5] == np.array([1, 2, 4])).all() assert (interp.top_left_neighbors[6] == np.array([-1, 3, -1])).all() assert (interp.top_left_neighbors[7] == np.array([3, 4, 6])).all() assert (interp.top_left_neighbors[8] == np.array([4, 5, 7])).all() assert (interp.top_left_neighbors[9] == np.array([-1, 6, -1])).all() assert (interp.top_left_neighbors[10] == np.array([6, 7, 9])).all() assert (interp.top_left_neighbors[11] == np.array([7, 8, 10])).all() def test___4x4_grid_neighbors_all_correct(self): # | 0| 1| 2| 3| # | 4| 5| 6| 7| # | 8| 9|10|11| # |12|13|14|15| interp = interpolation.InterpolationScheme(shape=(4, 4), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 4, 5])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 5, 6])).all() assert (interp.bottom_right_neighbors[2] == np.array([3, 6, 7])).all() assert (interp.bottom_right_neighbors[3] == np.array([-1, 7, -1])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 8, 9])).all() assert (interp.bottom_right_neighbors[5] == np.array([6, 9, 10])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 10, 11])).all() assert (interp.bottom_right_neighbors[7] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([9, 12, 13])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, 13, 14])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, 14, 15])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, 15, -1])).all() assert (interp.bottom_right_neighbors[12] == np.array([13, -1, -1])).all() assert (interp.bottom_right_neighbors[13] == np.array([14, -1, -1])).all() assert (interp.bottom_right_neighbors[14] == np.array([15, -1, -1])).all() assert (interp.bottom_right_neighbors[15] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 4])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 4, 5])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 5, 6])).all() assert (interp.bottom_left_neighbors[3] == np.array([2, 6, 7])).all() assert (interp.bottom_left_neighbors[4] == np.array([-1, -1, 8])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 8, 9])).all() assert (interp.bottom_left_neighbors[6] == np.array([5, 9, 10])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, 10, 11])).all() assert (interp.bottom_left_neighbors[8] == np.array([-1, -1, 12])).all() assert (interp.bottom_left_neighbors[9] == np.array([8, 12, 13])).all() assert (interp.bottom_left_neighbors[10] == np.array([9, 13, 14])).all() assert (interp.bottom_left_neighbors[11] == np.array([10, 14, 15])).all() assert (interp.bottom_left_neighbors[12] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[13] == np.array([12, -1, -1])).all() assert (interp.bottom_left_neighbors[14] == np.array([13, -1, -1])).all() assert (interp.bottom_left_neighbors[15] == np.array([14, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, 3])).all() assert (interp.top_right_neighbors[3] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[4] == np.array([0, 1, 5])).all() assert (interp.top_right_neighbors[5] == np.array([1, 2, 6])).all() assert (interp.top_right_neighbors[6] == np.array([2, 3, 7])).all() assert (interp.top_right_neighbors[7] == np.array([3, -1, -1])).all() assert (interp.top_right_neighbors[8] == np.array([4, 5, 9])).all() assert (interp.top_right_neighbors[9] == np.array([5, 6, 10])).all() assert (interp.top_right_neighbors[10] == np.array([6, 7, 11])).all() assert (interp.top_right_neighbors[11] == np.array([7, -1, -1])).all() assert (interp.top_right_neighbors[12] == np.array([8, 9, 13])).all() assert (interp.top_right_neighbors[13] == np.array([9, 10, 14])).all() assert (interp.top_right_neighbors[14] == np.array([10, 11, 15])).all() assert (interp.top_right_neighbors[15] == np.array([11, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, -1, 2])).all() assert (interp.top_left_neighbors[4] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[5] == np.array([0, 1, 4])).all() assert (interp.top_left_neighbors[6] == np.array([1, 2, 5])).all() assert (interp.top_left_neighbors[7] == np.array([2, 3, 6])).all() assert (interp.top_left_neighbors[8] == np.array([-1, 4, -1])).all() assert (interp.top_left_neighbors[9] == np.array([4, 5, 8])).all() assert (interp.top_left_neighbors[10] ==
np.array([5, 6, 9])
numpy.array
import matplotlib matplotlib.use('Agg') import numpy as np import matplotlib.pyplot as plt from glob import glob from astropy.table import Table, join from os import chdir, system from scipy.stats import norm as gauss_norm from sys import argv from getopt import getopt # turn off polyfit ranking warnings import warnings warnings.filterwarnings('ignore') def _prepare_pdf_data(means, stds, range, norm=True): x_vals = np.linspace(range[0], range[1], 250) y_vals = np.zeros_like(x_vals) # create and sum all PDF of stellar abundances for d_m, d_s in zip(means, stds): if np.isfinite([d_m, d_s]).all(): y_vals += gauss_norm.pdf(x_vals, loc=d_m, scale=d_s) # return normalized summed pdf of all stars if norm and np.nansum(y_vals) > 0.: y_vals = 1. * y_vals/np.nanmax(y_vals) return x_vals, y_vals def _prepare_hist_data(d, bins, range, norm=True): heights, edges = np.histogram(d, bins=bins, range=range) width = np.abs(edges[0] - edges[1]) if norm: heights = 1.*heights / np.nanmax(heights) return edges[:-1], heights, width def _evaluate_abund_trend_fit(orig, fit, idx, sigma_low, sigma_high): # diffence to the original data diff = orig - fit std_diff = np.nanstd(diff[idx]) # select data that will be fitted idx_outlier = np.logical_or(diff < (-1. * std_diff * sigma_low), diff > (std_diff * sigma_high)) return np.logical_and(idx, ~idx_outlier) def fit_abund_trend(p_data, a_data, steps=3, sigma_low=2.5, sigma_high=2.5, order=5, window=10, n_min_perc=10.,func='poly'): idx_fit = np.logical_and(np.isfinite(p_data), np.isfinite(a_data)) data_len = np.sum(idx_fit) n_fit_points_prev = np.sum(idx_fit) if data_len <= order + 1: return None, None p_offset = np.nanmedian(p_data) for i_f in range(steps): # number of sigma clipping steps if func == 'cheb': coef = np.polynomial.chebyshev.chebfit(p_data[idx_fit] - p_offset, a_data[idx_fit], order) f_data = np.polynomial.chebyshev.chebval(p_data - p_offset, coef) if func == 'legen': coef = np.polynomial.legendre.legfit(p_data[idx_fit] - p_offset, a_data[idx_fit], order) f_data = np.polynomial.legendre.legval(p_data - p_offset, coef) if func == 'poly': coef = np.polyfit(p_data[idx_fit] - p_offset, a_data[idx_fit], order) f_data = np.poly1d(coef)(p_data - p_offset) if func == 'spline': coef = splrep(p_data[idx_fit] - p_offset, a_data[idx_fit], k=order, s=window) f_data = splev(p_data - p_offset, coef) idx_fit = _evaluate_abund_trend_fit(a_data, f_data, idx_fit, sigma_low, sigma_high) n_fit_points = np.sum(idx_fit) if 100.*n_fit_points/data_len < n_min_perc: break if n_fit_points == n_fit_points_prev: break else: n_fit_points_prev = n_fit_points a_std = np.nanstd(a_data - f_data) return [coef, p_offset], a_std def eval_abund_trend(p_data, m_data, func='poly'): coef, p_offset = m_data if func == 'cheb': f_data = np.polynomial.chebyshev.chebval(p_data - p_offset, coef) if func == 'legen': f_data = np.polynomial.legendre.legval(p_data - p_offset, coef) if func == 'poly': f_data = np.poly1d(coef)(p_data - p_offset) if func == 'spline': f_data = splev(p_data - p_offset, coef) return f_data simulation_dir = '/shared/data-camelot/cotar/' data_dir_clusters = simulation_dir+'GaiaDR2_open_clusters_2001_GALAH/' data_dir = '/shared/ebla/cotar/' USE_DR3 = True Q_FLAGS = True P_INDIVIDUAL = False suffix = '' if len(argv) > 1: # parse input options opts, args = getopt(argv[1:], '', ['dr3=', 'suffix=', 'flags=', 'individual=']) # set parameters, depending on user inputs print(opts) for o, a in opts: if o == '--dr3': USE_DR3 = int(a) > 0 if o == '--suffix': suffix += str(a) if o == '--flags': Q_FLAGS = int(a) > 0 if o == '--individual': P_INDIVIDUAL = int(a) > 0 CG_data = Table.read(data_dir+'clusters/Cantat-Gaudin_2018/members.fits') tails_data = Table.read(data_dir+'clusters/cluster_tails/members_open_gaia_tails.fits') # remove cluster members from tails data print('Cluster members all:', len(CG_data), len(tails_data)) idx_not_in_cluster = np.in1d(tails_data['source_id'], CG_data['source_id'], invert=True) tails_data = tails_data[idx_not_in_cluster] print('Cluster members all:', len(CG_data), len(tails_data)) if USE_DR3: # cannon_data = Table.read(data_dir+'GALAH_iDR3_main_alpha_190529.fits') cannon_data = Table.read(data_dir+'GALAH_iDR3_main_191213.fits') fe_col = 'fe_h' teff_col = 'teff' q_flag = 'flag_sp' suffix += '_DR3' else: pass if Q_FLAGS: suffix += '_flag0' # determine all possible simulation subdirs chdir(data_dir_clusters) for cluster_dir in glob('Cluster_orbits_GaiaDR2_*'): chdir(cluster_dir) print('Working on clusters in ' + cluster_dir) for sub_dir in glob('*'): current_cluster = '_'.join(sub_dir.split('_')[0:2]) source_id_cg = CG_data[CG_data['cluster'] == current_cluster]['source_id'] source_id_tail = tails_data[tails_data['cluster'] == current_cluster]['source_id'] idx_cg_memb = np.in1d(cannon_data['source_id'], np.array(source_id_cg)) idx_tail = np.in1d(cannon_data['source_id'], np.array(source_id_tail)) if '.png' in sub_dir or 'individual-abund' in sub_dir: continue print(' ') print(sub_dir) chdir(sub_dir) try: g_init = Table.read('members_init_galah.csv', format='ascii', delimiter='\t') idx_init = np.in1d(cannon_data['source_id'], g_init['source_id']) except: idx_init = np.full(len(cannon_data), False) try: g_in_all = Table.read('possible_ejected-step1.csv', format='ascii', delimiter='\t') g_in = Table.read('possible_ejected-step1_galah.csv', format='ascii', delimiter='\t') # further refinement of results to be plotted here g_in_all = g_in_all[np.logical_and(g_in_all['time_in_cluster'] >= 1., # [Myr] longest time (of all incarnations) inside cluster g_in_all['in_cluster_prob'] >= 68.)] # percentage of reincarnations inside cluster g_in = g_in[np.logical_and(g_in['time_in_cluster'] >= 1., g_in['in_cluster_prob'] >= 68.)] idx_in = np.in1d(cannon_data['source_id'], g_in['source_id']) idx_in_no_CG = np.logical_and(idx_in, np.logical_not(np.in1d(cannon_data['source_id'], CG_data['source_id']))) except: idx_in = np.full(len(cannon_data), False) idx_in_no_CG = np.full(len(cannon_data), False) try: g_out = Table.read('possible_outside-step1_galah.csv', format='ascii', delimiter='\t') # further refinement of results to be plotted here g_out = g_out[np.logical_and(g_out['time_in_cluster'] <= 0, g_out['in_cluster_prob'] <= 0)] idx_out = np.in1d(cannon_data['source_id'], g_out['source_id']) except: idx_out = np.full(len(cannon_data), False) chdir('..') if np.sum(idx_init) == 0 or np.sum(idx_in) == 0 or np.sum(idx_out) == 0: print(' Some Galah lists are missing') if USE_DR3: abund_cols = [c for c in cannon_data.colnames if '_fe' in c and 'nr_' not in c and 'diff_' not in c and 'e_' not in c and 'Li' not in c and 'alpha' not in c] # and ('I' in c or 'II' in c or 'III' in c)] else: abund_cols = [c for c in cannon_data.colnames if '_abund' in c and len(c.split('_')) == 3] # abund_cols = ['e_' + cc for cc in abund_cols] # rg = (0., 0.35) # yt = [0., 0.1, 0.2, 0.3] # medfix = '-snr-sigma_' abund_cols = ['diff_' + cc for cc in abund_cols] rg = (-0.45, 0.45) yt = [-0.3, -0.15, 0.0, 0.15, 0.3] medfix = '-detrended-snr_' # ------------------------------------------------------------------------------ # NEW: plot with parameter dependency trends # ------------------------------------------------------------------------------ bs = 40 x_cols_fig = 7 y_cols_fig = 5 param_lims = {'snr_c2_iraf': [5, 175], 'age': [0., 14.], 'teff': [3000, 7000], 'logg': [0.0, 5.5], 'fe_h': [-1.2, 0.5]} for param in ['snr_c2_iraf']: #list(param_lims.keys()): cannon_data['abund_det'] = 0 cannon_data['abund_det_elems'] = 0 print('Estimating membership using parameter', param) fig, ax = plt.subplots(y_cols_fig, x_cols_fig, figsize=(15, 10)) for i_c, col in enumerate(abund_cols): # print(col) x_p = i_c % x_cols_fig y_p = int(1. * i_c / x_cols_fig) fit_x_param = 'teff' cur_abund_col = '_'.join(col.split('_')[1:]) cannon_data['diff_' + cur_abund_col] = cannon_data[cur_abund_col] idx_val = np.isfinite(cannon_data[col]) if Q_FLAGS: idx_val = np.logical_and(idx_val, cannon_data[q_flag] == 0) idx_u1 = np.logical_and(idx_out, idx_val) idx_u2 = np.logical_and(idx_init, idx_val) idx_u3 = np.logical_and(idx_in, idx_val) idx_u4 = np.logical_and(idx_cg_memb, idx_val) idx_u5 = np.logical_and(idx_tail, idx_val) fit_model, col_std = fit_abund_trend(cannon_data[fit_x_param][idx_u2], cannon_data[cur_abund_col][idx_u2], order=3, steps=2, func='poly', sigma_low=2.5, sigma_high=2.5, n_min_perc=10.) if fit_model is not None: cannon_data['diff_' + cur_abund_col] = cannon_data[cur_abund_col] - eval_abund_trend(cannon_data[fit_x_param], fit_model, func='poly') else: cannon_data['diff_' + cur_abund_col] = np.nan ax[y_p, x_p].scatter(cannon_data[param][idx_u1], cannon_data[col][idx_u1], lw=0, s=3, color='C2', label='Field') ax[y_p, x_p].scatter(cannon_data[param][idx_u2], cannon_data[col][idx_u2], lw=0, s=3, color='C0', label='Initial') ax[y_p, x_p].scatter(cannon_data[param][idx_u3], cannon_data[col][idx_u3], lw=0, s=3, color='C1', label='Ejected') if np.sum(idx_u5) > 0: print('Ejected in tail:', np.sum(np.logical_and(idx_u3, idx_u5))) ax[y_p, x_p].scatter(cannon_data[param][idx_u5], cannon_data[col][idx_u5], lw=0, s=3, color='C4', label='Tail') label_add = ' = {:.0f}, {:.0f}, {:.0f}'.format(np.sum(idx_u1), np.sum(idx_u2), np.sum(idx_u3)) ax[y_p, x_p].set(xlim=param_lims[param], title=' '.join(col.split('_')[:2]) + label_add, ylim=rg, yticks=yt,) ax[y_p, x_p].grid(ls='--', alpha=0.2, color='black') rg = (-0.6, 0.6) idx_val = np.isfinite(cannon_data[teff_col]) if Q_FLAGS: idx_val = np.logical_and(idx_val, cannon_data[q_flag] == 0) x_p = -1 y_p = -1 idx_u1 = np.logical_and(idx_out, idx_val) idx_u2 = np.logical_and(idx_init, idx_val) idx_u3 = np.logical_and(idx_in, idx_val) idx_u5 =
np.logical_and(idx_tail, idx_val)
numpy.logical_and
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # <NAME> # <NAME> # <NAME> # <NAME> # <NAME> # import time import numpy as np from pyscf import lib from pyscf.lib import logger from pyscf import ao2mo from pyscf.cc import ccsd from pyscf.cc import uccsd from pyscf.cc import eom_rccsd from pyscf.cc import addons from pyscf.cc import uintermediates ######################################## # EOM-IP-CCSD ######################################## def vector_to_amplitudes_ip(vector, nmo, nocc): '''For spin orbitals''' nocca, noccb = nocc nmoa, nmob = nmo nvira, nvirb = nmoa-nocca, nmob-noccb sizes = (nocca, noccb, nocca*(nocca-1)//2*nvira, noccb*nocca*nvira, nocca*noccb*nvirb, noccb*(noccb-1)//2*nvirb) sections = np.cumsum(sizes[:-1]) r1a, r1b, r2a, r2baa, r2abb, r2b = np.split(vector, sections) r2a = r2a.reshape(nocca*(nocca-1)//2,nvira) r2b = r2b.reshape(noccb*(noccb-1)//2,nvirb) r2baa = r2baa.reshape(noccb,nocca,nvira).copy() r2abb = r2abb.reshape(nocca,noccb,nvirb).copy() idxa = np.tril_indices(nocca, -1) idxb = np.tril_indices(noccb, -1) r2aaa = np.zeros((nocca,nocca,nvira), vector.dtype) r2bbb = np.zeros((noccb,noccb,nvirb), vector.dtype) r2aaa[idxa[0],idxa[1]] = r2a r2aaa[idxa[1],idxa[0]] =-r2a r2bbb[idxb[0],idxb[1]] = r2b r2bbb[idxb[1],idxb[0]] =-r2b r1 = (r1a.copy(), r1b.copy()) r2 = (r2aaa, r2baa, r2abb, r2bbb) return r1, r2 def amplitudes_to_vector_ip(r1, r2): '''For spin orbitals''' r1a, r1b = r1 r2aaa, r2baa, r2abb, r2bbb = r2 nocca, noccb, nvirb = r2abb.shape idxa = np.tril_indices(nocca, -1) idxb = np.tril_indices(noccb, -1) return np.hstack((r1a, r1b, r2aaa[idxa].ravel(), r2baa.ravel(), r2abb.ravel(), r2bbb[idxb].ravel())) def spatial2spin_ip(r1, r2, orbspin=None): '''Convert R1/R2 of spatial orbital representation to R1/R2 of spin-orbital representation ''' r1a, r1b = r1 r2aaa, r2baa, r2abb, r2bbb = r2 nocc_a, nvir_a = r2aaa.shape[1:] nocc_b, nvir_b = r2bbb.shape[1:] if orbspin is None: orbspin = np.zeros((nocc_a+nvir_a)*2, dtype=int) orbspin[1::2] = 1 nocc = nocc_a + nocc_b nvir = nvir_a + nvir_b idxoa = np.where(orbspin[:nocc] == 0)[0] idxob = np.where(orbspin[:nocc] == 1)[0] idxva = np.where(orbspin[nocc:] == 0)[0] idxvb = np.where(orbspin[nocc:] == 1)[0] r1 = np.zeros((nocc), dtype=r1a.dtype) r1[idxoa] = r1a r1[idxob] = r1b r2 = np.zeros((nocc**2, nvir), dtype=r2aaa.dtype) idxoaa = idxoa[:,None] * nocc + idxoa idxoab = idxoa[:,None] * nocc + idxob idxoba = idxob[:,None] * nocc + idxoa idxobb = idxob[:,None] * nocc + idxob idxvaa = idxva[:,None] * nvir + idxva idxvab = idxva[:,None] * nvir + idxvb idxvba = idxvb[:,None] * nvir + idxva idxvbb = idxvb[:,None] * nvir + idxvb r2aaa = r2aaa.reshape(nocc_a*nocc_a, nvir_a) r2baa = r2baa.reshape(nocc_b*nocc_a, nvir_a) r2abb = r2abb.reshape(nocc_a*nocc_b, nvir_b) r2bbb = r2bbb.reshape(nocc_b*nocc_b, nvir_b) lib.takebak_2d(r2, r2aaa, idxoaa.ravel(), idxva.ravel()) lib.takebak_2d(r2, r2baa, idxoba.ravel(), idxva.ravel()) lib.takebak_2d(r2, r2abb, idxoab.ravel(), idxvb.ravel()) lib.takebak_2d(r2, r2bbb, idxobb.ravel(), idxvb.ravel()) r2aba = -r2baa r2bab = -r2abb lib.takebak_2d(r2, r2aba, idxoab.T.ravel(), idxva.ravel()) lib.takebak_2d(r2, r2bab, idxoba.T.ravel(), idxvb.ravel()) return r1, r2.reshape(nocc, nocc, nvir) def spin2spatial_ip(r1, r2, orbspin): nocc, nvir = r2.shape[1:] idxoa = np.where(orbspin[:nocc] == 0)[0] idxob = np.where(orbspin[:nocc] == 1)[0] idxva = np.where(orbspin[nocc:] == 0)[0] idxvb = np.where(orbspin[nocc:] == 1)[0] nocc_a = len(idxoa) nocc_b = len(idxob) nvir_a = len(idxva) nvir_b = len(idxvb) r1a = r1[idxoa] r1b = r1[idxob] idxoaa = idxoa[:,None] * nocc + idxoa idxoab = idxoa[:,None] * nocc + idxob idxoba = idxob[:,None] * nocc + idxoa idxobb = idxob[:,None] * nocc + idxob idxvaa = idxva[:,None] * nvir + idxva idxvab = idxva[:,None] * nvir + idxvb idxvba = idxvb[:,None] * nvir + idxva idxvbb = idxvb[:,None] * nvir + idxvb r2 = r2.reshape(nocc**2, nvir) r2aaa = lib.take_2d(r2, idxoaa.ravel(), idxva.ravel()) r2baa = lib.take_2d(r2, idxoba.ravel(), idxva.ravel()) r2abb = lib.take_2d(r2, idxoab.ravel(), idxvb.ravel()) r2bbb = lib.take_2d(r2, idxobb.ravel(), idxvb.ravel()) r2aaa = r2aaa.reshape(nocc_a, nocc_a, nvir_a) r2baa = r2baa.reshape(nocc_b, nocc_a, nvir_a) r2abb = r2abb.reshape(nocc_a, nocc_b, nvir_b) r2bbb = r2bbb.reshape(nocc_b, nocc_b, nvir_b) return [r1a, r1b], [r2aaa, r2baa, r2abb, r2bbb] def ipccsd_matvec(eom, vector, imds=None, diag=None): '''For spin orbitals R2 operators of the form s_{ij}^{ b}, i.e. indices jb are coupled.''' # Ref: <NAME>, and <NAME>. Chem. Phys. 136, 174102 (2012) Eqs.(8)-(9) if imds is None: imds = eom.make_imds() t1, t2, eris = imds.t1, imds.t2, imds.eris t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape nmoa, nmob = nocca+nvira, noccb+nvirb r1, r2 = vector_to_amplitudes_ip(vector, (nmoa,nmob), (nocca,noccb)) r1a, r1b = r1 r2aaa, r2baa, r2abb, r2bbb = r2 #Foo, Fov, and Wooov Hr1a =
np.einsum('me,mie->i', imds.Fov, r2aaa)
numpy.einsum
import isopy import numpy as np import pytest # calculate_mass_fractionation_factor, remove_mass_fractionation, add_mass_fractionation def test_mass_fractionation1(): # Testing with input as isotope array # Using default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed = 46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated1 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, '105pd') c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor) assert c_fractionated1.keys == unfractionated.keys assert c_fractionated1.size == unfractionated.size assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated1 = isopy.tb.remove_mass_fractionation(c_fractionated1, mf_factor, '105pd') c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor) assert c_unfractionated1.keys == unfractionated.keys assert c_unfractionated1.size == unfractionated.size assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated1, '108pd/105pd') np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key/'105pd') fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated1[key], fractionated) np.testing.assert_allclose(c_unfractionated1[key], unfractionated[key]) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) #Changing reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] unfractionated2 = unfractionated.ratio('105pd') mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated1 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, '105pd', isotope_masses=mass_ref) c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, isotope_masses=mass_ref) assert c_fractionated1.keys == unfractionated.keys assert c_fractionated1.size == unfractionated.size assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated1 = isopy.tb.remove_mass_fractionation(c_fractionated1, mf_factor, '105pd', isotope_masses=mass_ref) c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor, isotope_masses=mass_ref) assert c_unfractionated1.keys == unfractionated.keys assert c_unfractionated1.size == unfractionated.size assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated1, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key / '105pd') fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated1[key], fractionated) np.testing.assert_allclose(c_unfractionated1[key], unfractionated[key]) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) # calculate_mass_fractionation_factor, remove_mass_fractionation, add_mass_fractionation def test_mass_fractionation2(): # Testing with input as ratio array # Using default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] unfractionated = unfractionated.ratio('105pd') mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor) assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor) assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated2, '108pd/105pd') np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key) fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated2[key], fractionated) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) # Changing reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] unfractionated = unfractionated.ratio('105pd') mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, isotope_masses=mass_ref) assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor, isotope_masses=mass_ref) assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated2, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key) fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated2[key], fractionated) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) class Test_MassIndependentCorrection: def test_one(self): # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 unfractionated1 = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated1 = unfractionated1 * fraction_ref unfractionated1['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated1['105pd'] unfractionated2 = unfractionated1.ratio('105pd') n_unfractionated2 = (unfractionated2 / fraction_ref - 1) * 10000 mf_factor = isopy.random(100, (0, 2), seed=47) fractionated1 = isopy.tb.add_mass_fractionation(unfractionated2, mf_factor) fractionated2 = fractionated1.deratio(unfractionated1['105pd']) self.run(fractionated1, unfractionated2, '108pd/105pd') self.run(fractionated2, unfractionated2, '108pd/105pd') self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor=10_000) self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor=10_000) self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor='epsilon') self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor='epsilon') # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 unfractionated1 = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated1 = unfractionated1 * fraction_ref unfractionated1['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated1['105pd'] unfractionated2 = unfractionated1.ratio('105pd') n_unfractionated2 = (unfractionated2 / fraction_ref - 1) * 10000 mf_factor = isopy.random(100, (0, 2), seed=47) fractionated1 = isopy.tb.add_mass_fractionation(unfractionated2, mf_factor, isotope_masses=mass_ref) fractionated2 = fractionated1.deratio(unfractionated1['105pd']) self.run(fractionated1, unfractionated2, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated2, unfractionated2, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) def test_two(self): # With interference correctionn # We wont get an exact match here so we have to lower the tolerance. # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor) for key in fractionated.keys.filter(element_symbol='pd'): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= fractionated['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) fractionated[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= fractionated['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) fractionated[key] += cd correct1 = data.copy(element_symbol = 'pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = (correct1 / fraction_ref - 1) * 10_000 self.run(fractionated, correct1, '108pd/105pd') self.run(fractionated, correct2, '108pd/105pd', factor=1) self.run(fractionated, correct3, '108pd/105pd', factor=10_000) self.run(fractionated, correct3, '108pd/105pd', factor='epsilon') # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor, isotope_masses=mass_ref) for key in fractionated.keys.filter(element_symbol='pd'): if (ru := fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= fractionated['101ru'] * ( mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) fractionated[key] += ru if (cd := fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= fractionated['111cd'] * ( mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) fractionated[key] += cd correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = (correct1 / fraction_ref - 1) * 10_000 self.run(fractionated, correct1, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct2, '108pd/105pd', factor=1, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) def test_three(self): # Normalisations # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor) correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct1, '108pd/105pd') self.run(fractionated, correct2, '108pd/105pd', factor=1) self.run(fractionated, correct3, '108pd/105pd', factor=1000) self.run(fractionated, correct3, '108pd/105pd', factor='ppt') self.run(fractionated, correct3, '108pd/105pd', factor='permil') self.run(fractionated, correct4, '108pd/105pd', factor=10_000) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon') self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000) self.run(fractionated, correct5, '108pd/105pd', factor='mu') self.run(fractionated, correct5, '108pd/105pd', factor='ppm') # Single value std1 = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=48) std1 = std1 * fraction_ref rstd1 = std1.ratio('pd105') correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / np.mean(rstd1) - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct2, '108pd/105pd', norm_val=rstd1) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=rstd1) std1 = np.mean(std1) rstd1 = np.mean(rstd1) self.run(fractionated, correct2, '108pd/105pd', norm_val=rstd1) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=rstd1) # Multiple std1 = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=48) std1 = std1 * fraction_ref rstd1 = std1.ratio('pd105') std2 = isopy.random(50, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=49) std2 = std2 * fraction_ref rstd2 = std2.ratio('pd105') correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / (np.mean(rstd1)/2 + np.mean(rstd2)/2) - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2)) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2)) std1 = np.mean(std1) rstd1 = np.mean(rstd1) self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2)) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2)) std2 = np.mean(std2) rstd2 = np.mean(rstd2) self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2)) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2)) # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor, isotope_masses=mass_ref) correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct1, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct2, '108pd/105pd', factor=1, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor=1000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor='permil', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct5, '108pd/105pd', factor='mu', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', mass_ref=mass_ref, fraction_ref=fraction_ref) def run(self, data, correct, mb_ratio, factor = None, mass_ref = None, fraction_ref=None, norm_val = None): if type(factor) is str: func = getattr(isopy.tb.internal_normalisation, factor) factor2 = None else: factor2 = factor func = isopy.tb.internal_normalisation kwargs = {} if factor2 is not None: kwargs['extnorm_factor'] = factor2 if mass_ref is not None: kwargs['isotope_masses'] = mass_ref if fraction_ref is not None: kwargs['isotope_fractions'] = fraction_ref if norm_val is not None: kwargs['extnorm_value'] = norm_val corrected = func(data, mb_ratio, **kwargs) assert corrected.keys == correct.keys - mb_ratio assert corrected.size == correct.size assert corrected.ndim == correct.ndim for key in corrected.keys: np.testing.assert_allclose(corrected[key], correct[key]) # mass independent correction if type(factor) is str: func = getattr(isopy.tb.mass_independent_correction, factor) factor2 = None else: factor2 = factor func = isopy.tb.mass_independent_correction kwargs = {} if factor2 is not None: kwargs['normalisation_factor'] = factor2 if mass_ref is not None: kwargs['isotope_masses'] = mass_ref if fraction_ref is not None: kwargs['isotope_fractions'] = fraction_ref if norm_val is not None: kwargs['normalisation_value'] = norm_val corrected = func(data, mb_ratio, **kwargs) assert corrected.keys == correct.keys - mb_ratio assert corrected.size == correct.size assert corrected.ndim == correct.ndim for key in corrected.keys: np.testing.assert_allclose(corrected[key], correct[key]) class Test_IsobaricInterferences: def test_one(self): # No mass fractionation factor # Single interference isotope # Default reference values fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 base_data = isopy.random(100, (1, 0.01), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split()) base_data = base_data * fraction_ref data = base_data.copy() for key in data.keys.filter(element_symbol='pd'): data[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data['101ru'] data[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data['111cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '111cd'] = 0 interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')} correct2 = base_data.copy() correct2['101ru', '111cd'] = 0 correct2['102pd'] = data['102pd'] correct2['110pd'] = data['110pd'] self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd') # Different reference values fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 base_data = isopy.random(100, (1, 0.01), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split()) base_data = base_data * fraction_ref data = base_data.copy() for key in data.keys.filter(element_symbol='pd'): data[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data['101ru'] data[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data['111cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '111cd'] = 0 interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')} correct2 = base_data.copy() correct2['101ru', '111cd'] = 0 correct2['102pd'] = data['102pd'] correct2['110pd'] = data['110pd'] self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd', fraction_ref=fraction_ref) def test_two(self): # No mass fractionation factor # Multiple interference isotopes # Default reference values fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) # 112cd > 111cd, 101ru > 99ru base_data = base_data * fraction_ref data1 = base_data.copy() data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope for key in data1.keys.filter(key_neq = '<KEY>'.split()): data1[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data1['101ru'] data1[key] += fraction_ref.get(f'cd{key.mass_number}/cd112', 0) * data1['112cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '112cd'] = 0 correct1['99ru', '111cd'] = -1 interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')} data2 = base_data.copy() data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope for key in data2.keys.filter(key_neq='ru99 cd111 102pd 110pd'.split()): data2[key] += fraction_ref.get(f'ru{key.mass_number}/ru99', 0) * data2['99ru'] data2[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data2['111cd'] correct2 = base_data.copy() correct2['99ru', '111cd'] = 0 correct2['101ru', '112cd'] = -1 self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd') # Different reference values fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) # 112cd > 111cd, 101ru > 99ru base_data = base_data * fraction_ref data1 = base_data.copy() data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope for key in data1.keys.filter(key_neq='<KEY>'.split()): data1[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data1['101ru'] data1[key] += fraction_ref.get(f'cd{key.mass_number}/cd112', 0) * data1['112cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '112cd'] = 0 correct1['99ru', '111cd'] = -1 interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')} data2 = base_data.copy() data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope for key in data2.keys.filter(key_neq='<KEY>'.split()): data2[key] += fraction_ref.get(f'ru{key.mass_number}/ru99', 0) * data2['99ru'] data2[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data2['111cd'] correct2 = base_data.copy() correct2['99ru', '111cd'] = 0 correct2['101ru', '112cd'] = -1 self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd', fraction_ref=fraction_ref) def test_three(self): #Mass fractionation #Single interference isotope mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 base_data = isopy.random(100, (1, 0.01), keys='<KEY>'.split()) mf_factor = isopy.random(100, (0,2)) base_data = base_data * fraction_ref data = base_data.copy() for key in data.keys.filter(element_symbol='pd'): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= data['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) data[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= data['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) data[key] += cd interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '111cd'] = 0 interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')} correct2 = base_data.copy() correct2['101ru', '111cd'] = 0 correct2['102pd'] = data['102pd'] correct2['110pd'] = data['110pd'] self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd', mf_factor=mf_factor) #M Multiple interference isotopes # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) # 112cd > 111cd, 101ru > 99ru base_data = base_data * fraction_ref data1 = base_data.copy() data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope for key in data1.keys.filter(key_neq='<KEY>'.split()): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= data1['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) data1[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd112', 0)) > 0: cd *= data1['cd112'] * (mass_ref.get(f'cd{key.mass_number}/cd112', 0) ** mf_factor) data1[key] += cd interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '112cd'] = 0 correct1['99ru', '111cd'] = -1 interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')} data2 = base_data.copy() data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope for key in data2.keys.filter(key_neq='ru99 cd111 102pd 110pd'.split()): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru99', 0)) > 0: ru *= data2['ru99'] * (mass_ref.get(f'ru{key.mass_number}/ru99', 0) ** mf_factor) data2[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= data2['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) data2[key] += cd correct2 = base_data.copy() correct2['99ru', '111cd'] = 0 correct2['101ru', '112cd'] = -1 self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd', fraction_ref=fraction_ref, mass_ref=mass_ref, mf_factor=mf_factor) def run(self, data1, data2, correct1, correct2, interferences1, interferences2, denom=None, mf_factor=None, fraction_ref=None, mass_ref=None): interferences = isopy.tb.find_isobaric_interferences('pd', data1) assert len(interferences) == len(interferences) for key in interferences1: assert key in interferences assert interferences[key] == interferences1[key] corrected1 = isopy.tb.remove_isobaric_interferences(data1, interferences, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected1.keys == correct1.keys assert corrected1.size == correct1.size for key in corrected1.keys: np.testing.assert_allclose(corrected1[key], correct1[key]) corrected2 = isopy.tb.remove_isobaric_interferences(data2, interferences2, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected2.keys == correct2.keys assert corrected2.size == correct2.size for key in corrected2.keys: np.testing.assert_allclose(corrected2[key], correct2[key]) #Ratio test data if denom is not None: data1 = data1.ratio(denom) data2 = data2.ratio(denom) correct1 = correct1.ratio(denom) correct2 = correct2.ratio(denom) interferences = isopy.tb.find_isobaric_interferences('pd', data1) assert len(interferences) == len(interferences) for key in interferences1: assert key in interferences assert interferences[key] == interferences1[key] corrected1 = isopy.tb.remove_isobaric_interferences(data1, interferences, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected1.keys == correct1.keys assert corrected1.size == correct1.size for key in corrected1.keys: np.testing.assert_allclose(corrected1[key], correct1[key]) corrected2 = isopy.tb.remove_isobaric_interferences(data2, interferences2, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected2.keys == correct2.keys assert corrected2.size == correct2.size for key in corrected2.keys: np.testing.assert_allclose(corrected2[key], correct2[key]) def test_find(self): interferences = isopy.tb.find_isobaric_interferences('pd', ('ru', 'cd')) assert len(interferences) == 2 assert 'ru' in interferences assert interferences['ru'] == ('102Pd', '104Pd') assert 'cd' in interferences assert interferences['cd'] == ('106Pd', '108Pd', '110Pd') interferences = isopy.tb.find_isobaric_interferences('pd', ('ru', 'rh', 'ag', 'cd')) assert len(interferences) == 2 assert 'ru' in interferences assert interferences['ru'] == ('102Pd', '104Pd') assert 'cd' in interferences assert interferences['cd'] == ('106Pd', '108Pd', '110Pd') interferences = isopy.tb.find_isobaric_interferences('ce') assert len(interferences) == 4 assert 'xe' in interferences assert interferences['xe'] == ('136Ce',) assert 'ba' in interferences assert interferences['ba'] == ('136Ce', '138Ce') assert 'la' in interferences assert interferences['la'] == ('138Ce', ) assert 'nd' in interferences assert interferences['nd'] == ('142Ce',) interferences = isopy.tb.find_isobaric_interferences('138ce') assert len(interferences) == 2 assert 'ba' in interferences assert interferences['ba'] == ('138Ce',) assert 'la' in interferences assert interferences['la'] == ('138Ce',) interferences = isopy.tb.find_isobaric_interferences('zn', ('ni', 'ge', 'ba++')) assert len(interferences) == 3 assert 'ni' in interferences assert interferences['ni'] == ('64Zn',) assert 'ge' in interferences assert interferences['ge'] == ('70Zn',) assert 'ba++' in interferences assert interferences['ba++'] == ('66Zn', '67Zn', '68Zn') class Test_rDelta(): def test_rDelta1(self): # Data is a single value data = isopy.refval.isotope.fraction.to_array(element_symbol='pd') # Dict reference = isopy.refval.isotope.fraction correct1 = isopy.zeros(None, data.keys) correct2 = isopy.ones(None, data.keys) self.run(data, data, reference, correct1, correct2) # Single array reference = isopy.random(100, keys=data.keys) correct1 = data / np.mean(reference) - 1 correct2 = data / np.mean(reference) self.run(data, data, reference, correct1, correct2) self.run(data, data, np.mean(reference), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, reference, correct1, correct2, 10_000) self.run(data, data, np.mean(reference), correct1, correct2, 10_000) # Multiple values reference1 = isopy.random(100, keys=data.keys) reference2 = isopy.random(100, keys=data.keys) meanmean = np.mean(reference1)/2 + np.mean(reference2)/2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data, (reference1, reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) # Keys that do not match data2 = data.copy() data2['105pd', '106pd'] = np.nan reference1 = isopy.random(100, keys='101ru 102pd 104pd 105pd 108pd 110pd 111cd'.split()) reference2 = isopy.random(100, keys='101ru 102pd 104pd 106pd 108pd 110pd 111cd'.split()) meanmean = np.mean(reference1) / 2 + np.mean(reference2) / 2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data2, (reference1, reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data2, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) def test_rDelta2(self): data = isopy.random(100, keys=isopy.refval.element.isotopes['pd']) data = data * isopy.refval.isotope.fraction # Dict reference = isopy.refval.isotope.fraction correct1 = data / reference - 1 correct2 = data / reference self.run(data, data, reference, correct1, correct2) # Single array reference = isopy.random(100, keys=data.keys) correct1 = data / np.mean(reference) - 1 correct2 = data / np.mean(reference) self.run(data, data, reference, correct1, correct2) self.run(data, data, np.mean(reference), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, reference, correct1, correct2, 10_000) self.run(data, data, np.mean(reference), correct1, correct2, 10_000) # Multiple values reference1 = isopy.random(100, keys=data.keys) reference2 = isopy.random(100, keys=data.keys) meanmean = np.mean(reference1)/2 + np.mean(reference2)/2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data, (reference1, reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) # Keys that do not match data2 = data.copy() data2['105pd', '106pd'] = np.nan reference1 = isopy.random(100, keys='101ru 102pd 104pd 105pd 108pd 110pd 111cd'.split()) reference2 = isopy.random(100, keys='101ru 102pd 104pd 106pd 108pd 110pd 111cd'.split()) meanmean = np.mean(reference1) / 2 + np.mean(reference2) / 2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data2, (reference1, reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data2, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) def test_presets(self): data = isopy.random(100, keys=isopy.refval.element.isotopes['pd']) data = data * isopy.refval.isotope.fraction reference = isopy.refval.isotope.fraction correct = (data / reference - 1) * 1000 normalised = isopy.tb.rDelta.ppt(data, reference) denormalised = isopy.tb.inverse_rDelta.ppt(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 1000 normalised = isopy.tb.rDelta.permil(data, reference) denormalised = isopy.tb.inverse_rDelta.permil(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 10_000 normalised = isopy.tb.rDelta.epsilon(data, reference) denormalised = isopy.tb.inverse_rDelta.epsilon(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 1_000_000 normalised = isopy.tb.rDelta.mu(data, reference) denormalised = isopy.tb.inverse_rDelta.mu(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 1_000_000 normalised = isopy.tb.rDelta.ppm(data, reference) denormalised = isopy.tb.inverse_rDelta.ppm(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) def run(self, data1, data2, reference_value, correct1, correct2, factor=1): normalised = isopy.tb.rDelta(data1, reference_value, factor=factor) assert normalised.keys == data1.keys assert normalised.size == data1.size assert normalised.ndim == data1.ndim for key in normalised.keys: np.testing.assert_allclose(normalised[key], correct1[key]) denormalised = isopy.tb.inverse_rDelta(normalised, reference_value, factor=factor) assert denormalised.keys == data1.keys assert denormalised.size == data1.size assert denormalised.ndim == data1.ndim for key in denormalised.keys: np.testing.assert_allclose(denormalised[key], data2[key]) normalised = isopy.tb.rDelta(data1, reference_value, factor=factor, deviations=0) assert normalised.keys == data1.keys assert normalised.size == data1.size assert normalised.ndim == data1.ndim for key in normalised.keys:
np.testing.assert_allclose(normalised[key], correct2[key])
numpy.testing.assert_allclose
# -*- coding: utf-8 -*- from __future__ import division, print_function __all__ = ["TimeSeries"] import numpy as np from itertools import izip from .frame import Frame from ._kpsf import solve, N_INT_TIME class TimeSeries(object): def __init__(self, time, flux_images, ferr_images, quality, **kwargs): # Initialize the frame images. self.time = time self.frames = [] for i, (f, fe) in enumerate(izip(flux_images, ferr_images)): frame = [] if quality[i] == 0: frame = Frame(f, fe, **kwargs) if not np.any(frame.mask): frame = [] self.frames.append(frame) # Save the frame shape. self.shape = self.frames[0].shape if any(f.shape != self.shape for f in self.frames if len(f)): raise ValueError("Frame shape mismatch") # Update the frames to have a coherent time series. self.initialize() def initialize(self): # Traverse the graph and construct the (greedy) best path. ns = min(map(len, filter(len, self.frames))) metric = np.array([1.0, 1.0, 1e-8]) current = None for t, node in enumerate(self.frames): if not len(node): continue if current is None: current = node.coords[:ns] node.coords = current continue # Compute the set of distances between this node and the current # position. r = sum([(node.coords[k][:, None] - current[k][None, :]) ** 2 * metric[i] for i, k in enumerate(("x", "y", "flux"))]) r0 = np.array(r) # Loop over the permutations and greedily choose the best update. rows, cols = np.arange(r.shape[0]), np.arange(r.shape[1]) update = np.nan +
np.zeros(ns)
numpy.zeros
# -*- coding: utf-8 -*- import os import argparse import random import numpy as np from tqdm import tqdm import torch import torch.nn.functional as F from torch.utils.data import DataLoader from torch.autograd import Variable from models.resnet12_2 import resnet12 from models.meta_part_inference_mini import ProtoComNet from models.PredTrainHead import LinearClassifier, LinearRotateHead from utils import set_gpu, Timer, count_accuracy, check_dir, log import pickle def one_hot(indices, depth): """ Returns a one-hot tensor. This is a PyTorch equivalent of Tensorflow's tf.one_hot. Parameters: indices: a (n_batch, m) Tensor or (m) Tensor. depth: a scalar. Represents the depth of the one hot dimension. Returns: a (n_batch, m, depth) Tensor or (m, depth) Tensor. """ encoded_indicies = torch.zeros(indices.size() + torch.Size([depth])).cuda() index = indices.view(indices.size()+torch.Size([1])) encoded_indicies = encoded_indicies.scatter_(1,index,1) return encoded_indicies def get_model(options): # Choose the embedding network if options.network == 'ResNet': network = resnet12().cuda() network = torch.nn.DataParallel(network) fea_dim = 512 else: print ("Cannot recognize the network type") assert(False) propa_head = ProtoComNet(opt=options, in_dim=fea_dim).cuda() # Choose the classification head if opt.use_trainval == 'True': n_classes=80 else: n_classes=64 if options.pre_head == 'LinearNet': pre_head = LinearClassifier(in_dim=fea_dim, n_classes=n_classes).cuda() elif options.pre_head == 'LinearRotateNet': pre_head = LinearRotateHead(in_dim=fea_dim, n_classes=n_classes).cuda() else: print("Cannot recognize the dataset type") assert (False) if options.phase == 'pretrain': from models.classification_heads_orgin import ClassificationHead else: from models.classification_heads import ClassificationHead # Choose the classification head if options.head == 'CosineNet': cls_head = ClassificationHead(base_learner='CosineNet').cuda() elif options.head == 'FuseCosNet': cls_head = ClassificationHead(base_learner='FuseCos').cuda() else: print ("Cannot recognize the dataset type") assert(False) return (network, propa_head, pre_head, cls_head) def get_dataset(options): # Choose the embedding network if options.dataset == 'miniImageNet': from data.mini_imagenet import MiniImageNet, FewShotDataloader, MiniImageNetPC # dataset_trainval = MiniImageNet(phase='trainval') if options.phase == 'savepart': dataset_train = MiniImageNet(phase='train', do_not_use_random_transf=True) elif options.phase == 'metainfer': dataset_train = MiniImageNetPC(phase='train', shot=options.train_shot) else: dataset_train = MiniImageNet(phase='train') dataset_val = MiniImageNet(phase='val') dataset_test = MiniImageNet(phase='test') data_loader = FewShotDataloader else: print ("Cannot recognize the dataset type") assert(False) return (dataset_train, dataset_val, dataset_test, data_loader) def seed_torch(seed=21): os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def pre_train(opt, dataset_train, dataset_val, dataset_test, data_loader): data_loader_pre = torch.utils.data.DataLoader # Dataloader of Gidaris & Komodakis (CVPR 2018) if opt.use_trainval == 'True': train_way = 80 dloader_train = data_loader_pre( dataset=dataset_trainval, batch_size=128, shuffle=True, num_workers=4 ) else: train_way = 64 dloader_train = data_loader_pre( dataset=dataset_train, batch_size=128, shuffle=True, num_workers=4 ) dloader_val = data_loader( dataset=dataset_val, nKnovel=opt.test_way, nKbase=0, nExemplars=opt.val_shot, # num training examples per novel category nTestNovel=opt.val_query * opt.test_way, # num test examples for all the novel categories nTestBase=0, # num test examples for all the base categories batch_size=1, num_workers=0, epoch_size=1 * opt.val_episode, # num of batches per epoch ) set_gpu(opt.gpu) check_dir('./experiments/') check_dir(opt.save_path) log_file_path = os.path.join(opt.save_path, "train_log.txt") log(log_file_path, str(vars(opt))) (embedding_net, propa_head, pre_head, cls_head) = get_model(opt) print(list(dict(propa_head.named_parameters()).keys())) optimizer = torch.optim.SGD([{'params': embedding_net.parameters()}, {'params': pre_head.parameters()}], lr=0.1, momentum=0.9, \ weight_decay=5e-4, nesterov=True) lambda_epoch = lambda e: 1.0 if e < 60 else (0.1 if e < 80 else 0.01 if e < 90 else (0.001)) lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_epoch, last_epoch=-1) max_val_acc = 0.0 max_test_acc = 0.0 timer = Timer() x_entropy = torch.nn.CrossEntropyLoss() for epoch in range(1, opt.num_epoch + 1): # Train on the training split lr_scheduler.step() # Fetch the current epoch's learning rate epoch_learning_rate = 0.1 for param_group in optimizer.param_groups: epoch_learning_rate = param_group['lr'] log(log_file_path, 'Train Epoch: {}\tLearning Rate: {:.4f}'.format( epoch, epoch_learning_rate)) _, _, _, _ = [x.train() for x in (embedding_net, propa_head, pre_head, cls_head)] train_accuracies = [] train_losses = [] for i, batch in enumerate(tqdm(dloader_train), 1): data, labels = [x.cuda() for x in batch] if opt.pre_head == 'LinearNet' or opt.pre_head == 'CosineNet': emb = embedding_net(data) logit = pre_head(emb) smoothed_one_hot = one_hot(labels.reshape(-1), train_way) smoothed_one_hot = smoothed_one_hot * (1 - opt.eps) + (1 - smoothed_one_hot) * opt.eps / (train_way - 1) log_prb = F.log_softmax(logit.reshape(-1, train_way), dim=1) loss = -(smoothed_one_hot * log_prb).sum(dim=1) loss = loss.mean() acc = count_accuracy(logit.reshape(-1, train_way), labels.reshape(-1)) elif opt.pre_head == 'LinearRotateNet' or opt.pre_head == 'DistRotateNet': x_ = [] y_ = [] a_ = [] for j in range(data.shape[0]): x90 = data[j].transpose(2, 1).flip(1) x180 = x90.transpose(2, 1).flip(1) x270 = x180.transpose(2, 1).flip(1) x_ += [data[j], x90, x180, x270] y_ += [labels[j] for _ in range(4)] a_ += [torch.tensor(0), torch.tensor(1), torch.tensor(2), torch.tensor(3)] x_ = Variable(torch.stack(x_, 0)).cuda() y_ = Variable(torch.stack(y_, 0)).cuda() a_ = Variable(torch.stack(a_, 0)).cuda() emb = embedding_net(x_) # print(emb.shape) logit = pre_head(emb, use_cls=True) logit_rotate = pre_head(emb, use_cls=False) smoothed_one_hot = one_hot(y_.reshape(-1), train_way) smoothed_one_hot = smoothed_one_hot * (1 - opt.eps) + (1 - smoothed_one_hot) * opt.eps / (train_way - 1) log_prb = F.log_softmax(logit.reshape(-1, train_way), dim=1) loss = -(smoothed_one_hot * log_prb).sum(dim=1) loss = loss.mean() rloss = F.cross_entropy(input=logit_rotate, target=a_) loss = 0.5 * loss + 0.5 * rloss acc = count_accuracy(logit.reshape(-1, train_way), y_.reshape(-1)) else: print("Cannot recognize the pre_head type") assert (False) train_accuracies.append(acc.item()) train_losses.append(loss.item()) if (i % 100 == 0): train_acc_avg = np.mean(np.array(train_accuracies)) log(log_file_path, 'Train Epoch: {}\tBatch: [{}]\tLoss: {}\tAccuracy: {} % ({} %)'.format( epoch, i, loss.item(), train_acc_avg, acc)) optimizer.zero_grad() loss.backward() optimizer.step() # Evaluate on the validation split _, _, _, _ = [x.eval() for x in (embedding_net, propa_head, pre_head, cls_head)] val_accuracies = [] val_losses = [] for i, batch in enumerate(tqdm(dloader_val(opt.seed)), 1): data_support, labels_support, \ data_query, labels_query, _, _ = [ x.cuda() for x in batch] test_n_support = opt.test_way * opt.val_shot test_n_query = opt.test_way * opt.val_query emb_support = embedding_net(data_support.reshape([-1] + list(data_support.shape[-3:]))) emb_support = emb_support.reshape(1, test_n_support, -1) emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:]))) emb_query = emb_query.reshape(1, test_n_query, -1) logit_query = cls_head(emb_query, emb_support, labels_support, opt.test_way, opt.val_shot) loss = x_entropy(logit_query.reshape(-1, opt.test_way), labels_query.reshape(-1)) acc = count_accuracy(logit_query.reshape(-1, opt.test_way), labels_query.reshape(-1)) val_accuracies.append(acc.item()) val_losses.append(loss.item()) val_acc_avg = np.mean(np.array(val_accuracies)) val_acc_ci95 = 1.96 * np.std(np.array(val_accuracies)) / np.sqrt(opt.val_episode) val_loss_avg = np.mean(np.array(val_losses)) if val_acc_avg > max_val_acc: max_val_acc = val_acc_avg torch.save({'embedding': embedding_net.state_dict(), 'propa_head': propa_head.state_dict(), 'pre_head': pre_head.state_dict(), 'cls_head': cls_head.state_dict()}, \ os.path.join(opt.save_path, 'best_pretrain_model.pth')) log(log_file_path, 'Validation Epoch: {}\t\t\tLoss: {:.4f}\tAccuracy: {:.2f} ± {:.2f} % (Best)' \ .format(epoch, val_loss_avg, val_acc_avg, val_acc_ci95)) else: log(log_file_path, 'Validation Epoch: {}\t\t\tLoss: {:.4f}\tAccuracy: {:.2f} ± {:.2f} %' \ .format(epoch, val_loss_avg, val_acc_avg, val_acc_ci95)) torch.save({'embedding': embedding_net.state_dict(), 'propa_head': propa_head.state_dict(), 'pre_head': pre_head.state_dict(), 'cls_head': cls_head.state_dict()} \ , os.path.join(opt.save_path, 'last_pretrain_epoch.pth')) if epoch % opt.save_epoch == 0: torch.save({'embedding': embedding_net.state_dict(), 'propa_head': propa_head.state_dict(), 'pre_head': pre_head.state_dict(), 'cls_head': cls_head.state_dict()} \ , os.path.join(opt.save_path, 'epoch_{}_pretrain.pth'.format(epoch))) def part_prototype(opt, dataset_train, dataset_val, dataset_test, data_loader): data_loader_pre = torch.utils.data.DataLoader # Dataloader of Gidaris & Komodakis (CVPR 2018) dloader_train = data_loader_pre( dataset=dataset_train, batch_size=1, shuffle=False, num_workers=0 ) set_gpu(opt.gpu) check_dir('./experiments/') check_dir(opt.save_path) log_file_path = os.path.join(opt.save_path, "train_log.txt") log(log_file_path, str(vars(opt))) (embedding_net, propa_head, pre_head, cls_head) = get_model(opt) # Load saved model checkpoints saved_models = torch.load(os.path.join(opt.save_path, 'best_pretrain_model.pth')) embedding_net.load_state_dict(saved_models['embedding']) embedding_net.eval() embs = [] for i, batch in enumerate(tqdm(dloader_train), 1): data, labels = [x.cuda() for x in batch] with torch.no_grad(): emb = embedding_net(data) embs.append(emb) embs = torch.cat(embs, dim=0) with open('./data/mini_imagenet_part_prior_train.pickle', 'rb') as handle: part_prior = pickle.load(handle) train_class_name_file = './data/mini_imagenet_catname2label_train.pickle' with open(train_class_name_file, 'rb') as handle: catname2label_train = pickle.load(handle) a = 1 attr_feature = {} for attr_id in part_prior['attribute_id_class_dict'].keys(): if attr_id not in [part_prior['wnids2id'][wnid] for wnid in part_prior['all_wnids']]: attr_im_id = [] for sel_class_id in list(set(part_prior['attribute_id_class_dict'][attr_id])): if sel_class_id in [part_prior['wnids2id'][wnid] for wnid in part_prior['wnids_train']]: sel_class = catname2label_train[part_prior['id2wnids'][sel_class_id]] attr_im_id.extend(dataset_train.label2ind[sel_class]) attr_im = embs[attr_im_id, :] mean = torch.mean(attr_im, dim=0).unsqueeze(dim=0) std = torch.std(attr_im, dim=0).unsqueeze(dim=0) attr_feature[attr_id] = {'mean': mean, 'std':std} with open(os.path.join(opt.save_path, "mini_imagenet_metapart_feature.pickle"), 'wb') as handle: pickle.dump(attr_feature, handle, protocol=pickle.HIGHEST_PROTOCOL) class_feature = {} for class_id in part_prior['class_attribute_id_dict'].keys(): if class_id in [part_prior['wnids2id'][wnid] for wnid in part_prior['wnids_train']]: sel_class = catname2label_train[part_prior['id2wnids'][class_id]] class_im = embs[dataset_train.label2ind[sel_class], :] mean = torch.mean(class_im, dim=0).unsqueeze(dim=0) std = torch.std(class_im, dim=0).unsqueeze(dim=0) class_feature[sel_class] = {'mean': mean, 'std':std} with open(os.path.join(opt.save_path, "mini_imagenet_class_feature.pickle"), 'wb') as handle: pickle.dump(class_feature, handle, protocol=pickle.HIGHEST_PROTOCOL) def meta_inference(opt, dataset_train, dataset_val, dataset_test, data_loader): data_loader_pre = torch.utils.data.DataLoader # Dataloader of Gidaris & Komodakis (CVPR 2018) dloader_train = data_loader_pre( dataset=dataset_train, batch_size=128, shuffle=True, num_workers=0 ) dloader_val = data_loader( dataset=dataset_val, nKnovel=opt.test_way, nKbase=0, nExemplars=opt.val_shot, # num training examples per novel category nTestNovel=opt.val_query * opt.test_way, # num test examples for all the novel categories nTestBase=0, # num test examples for all the base categories batch_size=1, num_workers=0, epoch_size=1 * opt.val_episode, # num of batches per epoch ) set_gpu(opt.gpu) check_dir('./experiments/') check_dir(opt.save_path) log_file_path = os.path.join(opt.save_path, "train_log.txt") log(log_file_path, str(vars(opt))) (embedding_net, propa_head, pre_head, cls_head) = get_model(opt) # Load saved model checkpoints saved_models = torch.load(os.path.join(opt.save_path, 'best_pretrain_model.pth')) embedding_net.load_state_dict(saved_models['embedding']) embedding_net.eval() cls_head.eval() optimizer = torch.optim.SGD([{'params': propa_head.parameters()}], lr=0.1, momentum=0.9, \ weight_decay=5e-4, nesterov=True) lambda_epoch = lambda e: 1.0 if e < 15 else (0.1 if e < 40 else 0.01 if e < 80 else (0.001)) lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_epoch, last_epoch=-1) train_losses = [] x_entropy = torch.nn.CrossEntropyLoss() max_loss = 10e16 max_val_acc = 0 max_test_acc = 0 for epoch in range(0, opt.num_epoch + 1): # Train on the training split lr_scheduler.step() # Fetch the current epoch's learning rate epoch_learning_rate = 0.1 for param_group in optimizer.param_groups: epoch_learning_rate = param_group['lr'] log(log_file_path, 'Train Epoch: {}\tLearning Rate: {:.4f}'.format( epoch, epoch_learning_rate)) propa_head.train() train_accuracies = [] for i, batch in enumerate(tqdm(dloader_train), 1): data, labels = [x.cuda() for x in batch] nb, ns, nc, nw, nh = data.shape with torch.no_grad(): data = data.reshape(nb*ns, nc, nw, nh) emb = embedding_net(data) emb = emb.reshape(nb, ns, -1) emb = emb.mean(dim=1) proto, proto_true = propa_head(emb, labels) loss = F.mse_loss(proto, proto_true) optimizer.zero_grad() loss.backward() optimizer.step() train_losses.append(loss.item()) if (i % 10 == 0): train_loss_avg = np.mean(np.array(train_losses)) log(log_file_path, 'Train Epoch: {}\tBatch: [{}]\tLoss: {}({})'.format( epoch, i, loss.item(), train_loss_avg)) # Evaluate on the validation split _, _, _, _ = [x.eval() for x in (embedding_net, propa_head, pre_head, cls_head)] val_accuracies = [] val_losses = [] for i, batch in enumerate(tqdm(dloader_val(opt.seed)), 1): data_support, labels_support, \ data_query, labels_query, k_all, _ = [ x.cuda() for x in batch] test_n_support = opt.test_way * opt.val_shot test_n_query = opt.test_way * opt.val_query with torch.no_grad(): emb_support = embedding_net(data_support.reshape([-1] + list(data_support.shape[-3:]))) emb_support = emb_support.reshape(1, test_n_support, -1) emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:]))) emb_query = emb_query.reshape(1, test_n_query, -1) logit_query = cls_head(k_all, propa_head, emb_query, emb_support, labels_support, opt.test_way, opt.val_shot, is_scale=True) loss = x_entropy(logit_query.reshape(-1, opt.test_way), labels_query.reshape(-1)) acc = count_accuracy(logit_query.reshape(-1, opt.test_way), labels_query.reshape(-1)) val_accuracies.append(acc.item()) val_losses.append(loss.item()) val_acc_avg = np.mean(np.array(val_accuracies)) val_acc_ci95 = 1.96 * np.std(np.array(val_accuracies)) / np.sqrt(opt.val_episode) val_loss_avg = np.mean(np.array(val_losses)) if val_acc_avg > max_val_acc: max_val_acc = val_acc_avg torch.save({'embedding': embedding_net.state_dict(), 'propa_head': propa_head.state_dict(), 'pre_head': pre_head.state_dict(), 'cls_head': cls_head.state_dict()}, \ os.path.join(opt.save_path, 'best_pretrain_model_meta_infer_val_{}w_{}s_{}.pth'.format(opt.test_way, opt.val_shot, opt.head))) log(log_file_path, 'Validation Epoch: {}\t\t\tLoss: {:.4f}\tAccuracy: {:.2f} ± {:.2f} % (Best)' \ .format(epoch, val_loss_avg, val_acc_avg, val_acc_ci95)) else: log(log_file_path, 'Validation Epoch: {}\t\t\tLoss: {:.4f}\tAccuracy: {:.2f} ± {:.2f} %' \ .format(epoch, val_loss_avg, val_acc_avg, val_acc_ci95)) torch.save({'embedding': embedding_net.state_dict(), 'propa_head': propa_head.state_dict(), 'pre_head': pre_head.state_dict(), 'cls_head': cls_head.state_dict()} \ , os.path.join(opt.save_path, 'last_pretrain_epoch_meta_infer.pth')) if epoch % opt.save_epoch == 0: torch.save({'embedding': embedding_net.state_dict(), 'propa_head': propa_head.state_dict(), 'pre_head': pre_head.state_dict(), 'cls_head': cls_head.state_dict()} \ , os.path.join(opt.save_path, 'epoch_{}_pretrain_meta_infer.pth'.format(epoch))) def meta_train(opt, dataset_train, dataset_val, dataset_test, data_loader): # Dataloader of Gidaris & Komodakis (CVPR 2018) dloader_train = data_loader( dataset=dataset_train, nKnovel=opt.train_way, nKbase=0, nExemplars=opt.train_shot, # num training examples per novel category nTestNovel=opt.train_way * opt.train_query, # num test examples for all the novel categories nTestBase=0, # num test examples for all the base categories batch_size=opt.episodes_per_batch, num_workers=4, epoch_size=opt.episodes_per_batch * 100, # num of batches per epoch ) dloader_val = data_loader( dataset=dataset_val, nKnovel=opt.test_way, nKbase=0, nExemplars=opt.val_shot, # num training examples per novel category nTestNovel=opt.val_query * opt.test_way, # num test examples for all the novel categories nTestBase=0, # num test examples for all the base categories batch_size=1, num_workers=0, epoch_size=1 * opt.val_episode, # num of batches per epoch ) set_gpu(opt.gpu) check_dir('./experiments/') check_dir(opt.save_path) log_file_path = os.path.join(opt.save_path, "train_log.txt") log(log_file_path, str(vars(opt))) (embedding_net, propa_head, pre_head, cls_head) = get_model(opt) # Load saved model checkpoints saved_models = torch.load(os.path.join(opt.save_path, 'best_pretrain_model_meta_infer_val_{}w_{}s_{}.pth'.format(opt.test_way, opt.val_shot, opt.head))) embedding_net.load_state_dict(saved_models['embedding']) embedding_net.eval() propa_head.load_state_dict(saved_models['propa_head']) propa_head.eval() optimizer = torch.optim.SGD([{'params': embedding_net.parameters()}, {'params': propa_head.parameters()}, {'params': cls_head.parameters()}], lr=0.0001, momentum=0.9, \ weight_decay=5e-4, nesterov=True) lambda_epoch = lambda e: 1.0 if e < 15 else (0.1 if e < 25 else 0.01 if e < 30 else (0.001)) lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_epoch, last_epoch=-1) max_val_acc = 0.0 max_test_acc = 0.0 timer = Timer() x_entropy = torch.nn.CrossEntropyLoss() for epoch in range(0, opt.num_epoch + 1): if epoch != 0: # Train on the training split lr_scheduler.step() # Fetch the current epoch's learning rate epoch_learning_rate = 0.1 for param_group in optimizer.param_groups: epoch_learning_rate = param_group['lr'] log(log_file_path, 'Train Epoch: {}\tLearning Rate: {:.4f}'.format( epoch, epoch_learning_rate)) _, _, _ = [x.train() for x in (embedding_net, propa_head, cls_head)] train_accuracies = [] train_losses = [] for i, batch in enumerate(tqdm(dloader_train(epoch)), 1): data_support, labels_support, \ data_query, labels_query, k_all, _ = [ x.cuda() for x in batch] train_n_support = opt.train_way * opt.train_shot train_n_query = opt.train_way * opt.train_query emb_support = embedding_net(data_support.reshape([-1] + list(data_support.shape[-3:]))) emb_support = emb_support.reshape(opt.episodes_per_batch, train_n_support, -1) emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:]))) emb_query = emb_query.reshape(opt.episodes_per_batch, train_n_query, -1) logit_query = cls_head(k_all, propa_head, emb_query, emb_support, labels_support, opt.train_way, opt.train_shot, is_scale=False) smoothed_one_hot = one_hot(labels_query.reshape(-1), opt.train_way) smoothed_one_hot = smoothed_one_hot * (1 - opt.eps) + (1 - smoothed_one_hot) * opt.eps / (opt.train_way - 1) log_prb = F.log_softmax(logit_query.reshape(-1, opt.train_way), dim=1) loss = -(smoothed_one_hot * log_prb).sum(dim=1) loss = loss.mean() acc = count_accuracy(logit_query.reshape(-1, opt.train_way), labels_query.reshape(-1)) train_accuracies.append(acc.item()) train_losses.append(loss.item()) if (i % 10 == 0): train_acc_avg = np.mean(np.array(train_accuracies)) log(log_file_path, 'Train Epoch: {}\tBatch: [{}]\tLoss: {}\tAccuracy: {} % ({} %)'.format( epoch, i, loss.item(), train_acc_avg, acc)) optimizer.zero_grad() loss.backward() optimizer.step() # Evaluate on the validation split _, _, _ = [x.eval() for x in (embedding_net, propa_head, cls_head)] val_accuracies = [] val_losses = [] for i, batch in enumerate(tqdm(dloader_val(opt.seed)), 1): data_support, labels_support, \ data_query, labels_query, k_all, _ = [ x.cuda() for x in batch] test_n_support = opt.test_way * opt.val_shot test_n_query = opt.test_way * opt.val_query with torch.no_grad(): emb_support = embedding_net(data_support.reshape([-1] + list(data_support.shape[-3:]))) emb_support = emb_support.reshape(1, test_n_support, -1) emb_query = embedding_net(data_query.reshape([-1] + list(data_query.shape[-3:]))) emb_query = emb_query.reshape(1, test_n_query, -1) logit_query = cls_head(k_all, propa_head, emb_query, emb_support, labels_support, opt.test_way, opt.val_shot, is_scale=True) loss = x_entropy(logit_query.reshape(-1, opt.test_way), labels_query.reshape(-1)) acc = count_accuracy(logit_query.reshape(-1, opt.test_way), labels_query.reshape(-1)) val_accuracies.append(acc.item()) val_losses.append(loss.item()) val_acc_avg = np.mean(np.array(val_accuracies)) val_acc_ci95 = 1.96 * np.std(
np.array(val_accuracies)
numpy.array
from __future__ import print_function import sys import numpy import os import glob import pickle as cPickle import signal import csv import ntpath from pyAudioAnalysis import audioFeatureExtraction as aF from pyAudioAnalysis import audioBasicIO from scipy import linalg as la from scipy.spatial import distance import sklearn.svm import sklearn.decomposition import sklearn.ensemble def signal_handler(signal, frame): print('You pressed Ctrl+C! - EXIT') os.system("stty -cbreak echo") sys.exit(0) signal.signal(signal.SIGINT, signal_handler) shortTermWindow = 0.050 shortTermStep = 0.050 eps = 0.00000001 class kNN: def __init__(self, X, Y, k): self.X = X self.Y = Y self.k = k def classify(self, testSample): nClasses = numpy.unique(self.Y).shape[0] YDist = (distance.cdist(self.X, testSample.reshape(1, testSample.shape[0]), 'euclidean')).T iSort = numpy.argsort(YDist) P = numpy.zeros((nClasses,)) for i in range(nClasses): P[i] = numpy.nonzero(self.Y[iSort[0][0:self.k]] == i)[0].shape[0] / float(self.k) return (numpy.argmax(P), P) def classifierWrapper(classifier, classifierType, testSample): ''' This function is used as a wrapper to pattern classification. ARGUMENTS: - classifier: a classifier object of type sklearn.svm.SVC or kNN (defined in this library) or sklearn.ensemble.RandomForestClassifier or sklearn.ensemble.GradientBoostingClassifier or sklearn.ensemble.ExtraTreesClassifier - classifierType: "svm" or "knn" or "randomforests" or "gradientboosting" or "extratrees" - testSample: a feature vector (numpy array) RETURNS: - R: class ID - P: probability estimate EXAMPLE (for some audio signal stored in array x): import audioFeatureExtraction as aF import audioTrainTest as aT # load the classifier (here SVM, for kNN use loadKNNModel instead): [Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep] = aT.loadSVModel(modelName) # mid-term feature extraction: [MidTermFeatures, _] = aF.mtFeatureExtraction(x, Fs, mtWin * Fs, mtStep * Fs, round(Fs*stWin), round(Fs*stStep)); # feature normalization: curFV = (MidTermFeatures[:, i] - MEAN) / STD; # classification [Result, P] = classifierWrapper(Classifier, modelType, curFV) ''' R = -1 P = -1 if classifierType == "knn": [R, P] = classifier.classify(testSample) elif classifierType == "svm" or classifierType == "randomforest" or classifierType == "gradientboosting" or "extratrees": R = classifier.predict(testSample.reshape(1,-1))[0] P = classifier.predict_proba(testSample.reshape(1,-1))[0] return [R, P] def regressionWrapper(model, modelType, testSample): ''' This function is used as a wrapper to pattern classification. ARGUMENTS: - model: regression model - modelType: "svm" or "knn" (TODO) - testSample: a feature vector (numpy array) RETURNS: - R: regression result (estimated value) EXAMPLE (for some audio signal stored in array x): TODO ''' if modelType == "svm" or modelType == "randomforest" or modelType == "svm_rbf": return (model.predict(testSample.reshape(1,-1))[0]) # elif classifierType == "knn": # TODO return None def randSplitFeatures(features, partTrain): ''' def randSplitFeatures(features): This function splits a feature set for training and testing. ARGUMENTS: - features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features. each matrix features[i] of class i is [numOfSamples x numOfDimensions] - partTrain: percentage RETURNS: - featuresTrains: a list of training data for each class - featuresTest: a list of testing data for each class ''' featuresTrain = [] featuresTest = [] for i, f in enumerate(features): [numOfSamples, numOfDims] = f.shape randperm = numpy.random.permutation(range(numOfSamples)) nTrainSamples = int(round(partTrain * numOfSamples)) featuresTrain.append(f[randperm[0:nTrainSamples]]) featuresTest.append(f[randperm[nTrainSamples::]]) return (featuresTrain, featuresTest) def trainKNN(features, K): ''' Train a kNN classifier. ARGUMENTS: - features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features. each matrix features[i] of class i is [numOfSamples x numOfDimensions] - K: parameter K RETURNS: - kNN: the trained kNN variable ''' [Xt, Yt] = listOfFeatures2Matrix(features) knn = kNN(Xt, Yt, K) return knn def trainSVM(features, Cparam): ''' Train a multi-class probabilitistic SVM classifier. Note: This function is simply a wrapper to the sklearn functionality for SVM training See function trainSVM_feature() to use a wrapper on both the feature extraction and the SVM training (and parameter tuning) processes. ARGUMENTS: - features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features each matrix features[i] of class i is [numOfSamples x numOfDimensions] - Cparam: SVM parameter C (cost of constraints violation) RETURNS: - svm: the trained SVM variable NOTE: This function trains a linear-kernel SVM for a given C value. For a different kernel, other types of parameters should be provided. ''' [X, Y] = listOfFeatures2Matrix(features) svm = sklearn.svm.SVC(C = Cparam, kernel = 'linear', probability = True) svm.fit(X,Y) return svm def trainSVM_RBF(features, Cparam): ''' Train a multi-class probabilitistic SVM classifier. Note: This function is simply a wrapper to the sklearn functionality for SVM training See function trainSVM_feature() to use a wrapper on both the feature extraction and the SVM training (and parameter tuning) processes. ARGUMENTS: - features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features each matrix features[i] of class i is [numOfSamples x numOfDimensions] - Cparam: SVM parameter C (cost of constraints violation) RETURNS: - svm: the trained SVM variable NOTE: This function trains a linear-kernel SVM for a given C value. For a different kernel, other types of parameters should be provided. ''' [X, Y] = listOfFeatures2Matrix(features) svm = sklearn.svm.SVC(C = Cparam, kernel = 'rbf', probability = True) svm.fit(X,Y) return svm def trainRandomForest(features, n_estimators): ''' Train a multi-class decision tree classifier. Note: This function is simply a wrapper to the sklearn functionality for SVM training See function trainSVM_feature() to use a wrapper on both the feature extraction and the SVM training (and parameter tuning) processes. ARGUMENTS: - features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features each matrix features[i] of class i is [numOfSamples x numOfDimensions] - n_estimators: number of trees in the forest RETURNS: - svm: the trained SVM variable NOTE: This function trains a linear-kernel SVM for a given C value. For a different kernel, other types of parameters should be provided. ''' [X, Y] = listOfFeatures2Matrix(features) rf = sklearn.ensemble.RandomForestClassifier(n_estimators = n_estimators) rf.fit(X,Y) return rf def trainGradientBoosting(features, n_estimators): ''' Train a gradient boosting classifier Note: This function is simply a wrapper to the sklearn functionality for SVM training See function trainSVM_feature() to use a wrapper on both the feature extraction and the SVM training (and parameter tuning) processes. ARGUMENTS: - features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features each matrix features[i] of class i is [numOfSamples x numOfDimensions] - n_estimators: number of trees in the forest RETURNS: - svm: the trained SVM variable NOTE: This function trains a linear-kernel SVM for a given C value. For a different kernel, other types of parameters should be provided. ''' [X, Y] = listOfFeatures2Matrix(features) rf = sklearn.ensemble.GradientBoostingClassifier(n_estimators = n_estimators) rf.fit(X,Y) return rf def trainExtraTrees(features, n_estimators): ''' Train a gradient boosting classifier Note: This function is simply a wrapper to the sklearn functionality for extra tree classifiers See function trainSVM_feature() to use a wrapper on both the feature extraction and the SVM training (and parameter tuning) processes. ARGUMENTS: - features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features each matrix features[i] of class i is [numOfSamples x numOfDimensions] - n_estimators: number of trees in the forest RETURNS: - svm: the trained SVM variable NOTE: This function trains a linear-kernel SVM for a given C value. For a different kernel, other types of parameters should be provided. ''' [X, Y] = listOfFeatures2Matrix(features) et = sklearn.ensemble.ExtraTreesClassifier(n_estimators = n_estimators) et.fit(X,Y) return et def trainSVMregression(Features, Y, Cparam): svm = sklearn.svm.SVR(C = Cparam, kernel = 'linear') svm.fit(Features,Y) trainError = numpy.mean(numpy.abs(svm.predict(Features) - Y)) return svm, trainError def trainSVMregression_rbf(Features, Y, Cparam): svm = sklearn.svm.SVR(C = Cparam, kernel = 'rbf') svm.fit(Features,Y) trainError = numpy.mean(numpy.abs(svm.predict(Features) - Y)) return svm, trainError def trainRandomForestRegression(Features, Y, n_estimators): rf = sklearn.ensemble.RandomForestRegressor(n_estimators = n_estimators) rf.fit(Features,Y) trainError = numpy.mean(numpy.abs(rf.predict(Features) - Y)) return rf, trainError def featureAndTrain(listOfDirs, mtWin, mtStep, stWin, stStep, classifierType, modelName, computeBEAT=False, perTrain=0.90): ''' This function is used as a wrapper to segment-based audio feature extraction and classifier training. ARGUMENTS: listOfDirs: list of paths of directories. Each directory contains a signle audio class whose samples are stored in seperate WAV files. mtWin, mtStep: mid-term window length and step stWin, stStep: short-term window and step classifierType: "svm" or "knn" or "randomforest" or "gradientboosting" or "extratrees" modelName: name of the model to be saved RETURNS: None. Resulting classifier along with the respective model parameters are saved on files. ''' # STEP A: Feature Extraction: [features, classNames, _] = aF.dirsWavFeatureExtraction(listOfDirs, mtWin, mtStep, stWin, stStep, computeBEAT=computeBEAT) if len(features) == 0: print("trainSVM_feature ERROR: No data found in any input folder!") return numOfFeatures = features[0].shape[1] featureNames = ["features" + str(d + 1) for d in range(numOfFeatures)] writeTrainDataToARFF(modelName, features, classNames, featureNames) for i, f in enumerate(features): if len(f) == 0: print("trainSVM_feature ERROR: " + listOfDirs[i] + " folder is empty or non-existing!") return # STEP B: Classifier Evaluation and Parameter Selection: if classifierType == "svm" or classifierType == "svm_rbf": classifierParams = numpy.array([0.001, 0.01, 0.5, 1.0, 5.0, 10.0, 20.0]) elif classifierType == "randomforest": classifierParams = numpy.array([10, 25, 50, 100,200,500]) elif classifierType == "knn": classifierParams = numpy.array([1, 3, 5, 7, 9, 11, 13, 15]) elif classifierType == "gradientboosting": classifierParams = numpy.array([10, 25, 50, 100,200,500]) elif classifierType == "extratrees": classifierParams = numpy.array([10, 25, 50, 100,200,500]) # get optimal classifeir parameter: features2 = [] for f in features: fTemp = [] for i in range(f.shape[0]): temp = f[i,:] if (not numpy.isnan(temp).any()) and (not numpy.isinf(temp).any()) : fTemp.append(temp.tolist()) else: print("NaN Found! Feature vector not used for training") features2.append(numpy.array(fTemp)) features = features2 bestParam = evaluateClassifier(features, classNames, 100, classifierType, classifierParams, 0, perTrain) print("Selected params: {0:.5f}".format(bestParam)) C = len(classNames) [featuresNorm, MEAN, STD] = normalizeFeatures(features) # normalize features MEAN = MEAN.tolist() STD = STD.tolist() featuresNew = featuresNorm # STEP C: Save the classifier to file if classifierType == "svm": Classifier = trainSVM(featuresNew, bestParam) elif classifierType == "svm_rbf": Classifier = trainSVM_RBF(featuresNew, bestParam) elif classifierType == "randomforest": Classifier = trainRandomForest(featuresNew, bestParam) elif classifierType == "gradientboosting": Classifier = trainGradientBoosting(featuresNew, bestParam) elif classifierType == "extratrees": Classifier = trainExtraTrees(featuresNew, bestParam) if classifierType == "knn": [X, Y] = listOfFeatures2Matrix(featuresNew) X = X.tolist() Y = Y.tolist() fo = open(modelName, "wb") cPickle.dump(X, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(Y, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(MEAN, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(STD, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(classNames, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(bestParam, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mtWin, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mtStep, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(stWin, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(stStep, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(computeBEAT, fo, protocol=cPickle.HIGHEST_PROTOCOL) fo.close() elif classifierType == "svm" or classifierType == "svm_rbf" or classifierType == "randomforest" or classifierType == "gradientboosting" or classifierType == "extratrees": with open(modelName, 'wb') as fid: # save to file cPickle.dump(Classifier, fid) fo = open(modelName + "MEANS", "wb") cPickle.dump(MEAN, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(STD, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(classNames, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mtWin, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mtStep, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(stWin, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(stStep, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(computeBEAT, fo, protocol=cPickle.HIGHEST_PROTOCOL) fo.close() def featureAndTrainRegression(dirName, mtWin, mtStep, stWin, stStep, modelType, modelName, computeBEAT=False): ''' This function is used as a wrapper to segment-based audio feature extraction and classifier training. ARGUMENTS: dirName: path of directory containing the WAV files and Regression CSVs mtWin, mtStep: mid-term window length and step stWin, stStep: short-term window and step modelType: "svm" or "knn" or "randomforest" modelName: name of the model to be saved RETURNS: None. Resulting regression model along with the respective model parameters are saved on files. ''' # STEP A: Feature Extraction: [features, _, fileNames] = aF.dirsWavFeatureExtraction([dirName], mtWin, mtStep, stWin, stStep, computeBEAT= computeBEAT) features = features[0] fileNames = [ntpath.basename(f) for f in fileNames[0]] featuresFinal = [] # Read CSVs: CSVs = glob.glob(dirName + os.sep + "*.csv") regressionLabels = [] regressionNames = [] featuresFinal = [] for c in CSVs: # for each CSV curRegressionLabels = [] featuresTemp = [] with open(c, 'rt') as csvfile: # open the csv file that contains the current target value's annotations CSVreader = csv.reader(csvfile, delimiter=',', quotechar='|') for row in CSVreader: if len(row) == 2: # if the current row contains two fields (filename, target value) if row[0] in fileNames: # ... and if the current filename exists in the list of filenames index = fileNames.index(row[0]) curRegressionLabels.append(float(row[1])) featuresTemp.append(features[index,:]) else: print("Warning: {} not found in list of files.".format(row[0])) else: print("Warning: Row with unknown format in regression file") featuresFinal.append(numpy.array(featuresTemp)) regressionLabels.append(numpy.array(curRegressionLabels)) # curRegressionLabels is the list of values for the current regression problem regressionNames.append(ntpath.basename(c).replace(".csv", "")) # regression task name if len(features) == 0: print("ERROR: No data found in any input folder!") return numOfFeatures = featuresFinal[0].shape[1] # TODO: ARRF WRITE???? # STEP B: Classifier Evaluation and Parameter Selection: if modelType == "svm" or modelType == "svm_rbf": modelParams = numpy.array([0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 5.0, 10.0]) elif modelType == "randomforest": modelParams = numpy.array([5, 10, 25, 50, 100]) # elif modelType == "knn": # modelParams = numpy.array([1, 3, 5, 7, 9, 11, 13, 15]); errors = [] errorsBase = [] bestParams = [] for iRegression, r in enumerate(regressionNames): # get optimal classifeir parameter: print("Regression task " + r) bestParam, error, berror = evaluateRegression(featuresFinal[iRegression], regressionLabels[iRegression], 100, modelType, modelParams) errors.append(error) errorsBase.append(berror) bestParams.append(bestParam) print("Selected params: {0:.5f}".format(bestParam)) [featuresNorm, MEAN, STD] = normalizeFeatures([featuresFinal[iRegression]]) # normalize features # STEP C: Save the model to file if modelType == "svm": Classifier, _ = trainSVMregression(featuresNorm[0], regressionLabels[iRegression], bestParam) if modelType == "svm_rbf": Classifier, _ = trainSVMregression_rbf(featuresNorm[0], regressionLabels[iRegression], bestParam) if modelType == "randomforest": Classifier, _ = trainRandomForestRegression(featuresNorm[0], regressionLabels[iRegression], bestParam) if modelType == "svm" or modelType == "svm_rbf" or modelType == "randomforest": with open(modelName + "_" + r, 'wb') as fid: # save to file cPickle.dump(Classifier, fid) fo = open(modelName + "_" + r + "MEANS", "wb") cPickle.dump(MEAN, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(STD, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mtWin, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(mtStep, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(stWin, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(stStep, fo, protocol=cPickle.HIGHEST_PROTOCOL) cPickle.dump(computeBEAT, fo, protocol=cPickle.HIGHEST_PROTOCOL) fo.close() return errors, errorsBase, bestParams def loadKNNModel(kNNModelName, isRegression=False): try: fo = open(kNNModelName, "rb") except IOError: print("didn't find file") return try: X = cPickle.load(fo) Y = cPickle.load(fo) MEAN = cPickle.load(fo) STD = cPickle.load(fo) if not isRegression: classNames = cPickle.load(fo) K = cPickle.load(fo) mtWin = cPickle.load(fo) mtStep = cPickle.load(fo) stWin = cPickle.load(fo) stStep = cPickle.load(fo) computeBEAT = cPickle.load(fo) except: fo.close() fo.close() X = numpy.array(X) Y = numpy.array(Y) MEAN = numpy.array(MEAN) STD = numpy.array(STD) Classifier = kNN(X, Y, K) # Note: a direct call to the kNN constructor is used here if isRegression: return(Classifier, MEAN, STD, mtWin, mtStep, stWin, stStep, computeBEAT) else: return(Classifier, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT) def loadSVModel(SVMmodelName, isRegression=False): ''' This function loads an SVM model either for classification or training. ARGMUMENTS: - SVMmodelName: the path of the model to be loaded - isRegression: a flag indigating whereas this model is regression or not ''' try: fo = open(SVMmodelName+"MEANS", "rb") except IOError: print("Load SVM Model: Didn't find file") return try: MEAN = cPickle.load(fo) STD = cPickle.load(fo) if not isRegression: classNames = cPickle.load(fo) mtWin = cPickle.load(fo) mtStep = cPickle.load(fo) stWin = cPickle.load(fo) stStep = cPickle.load(fo) computeBEAT = cPickle.load(fo) except: fo.close() fo.close() MEAN = numpy.array(MEAN) STD = numpy.array(STD) COEFF = [] with open(SVMmodelName, 'rb') as fid: SVM = cPickle.load(fid) if isRegression: return(SVM, MEAN, STD, mtWin, mtStep, stWin, stStep, computeBEAT) else: return(SVM, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT) def loadRandomForestModel(RFmodelName, isRegression=False): ''' This function loads an SVM model either for classification or training. ARGMUMENTS: - SVMmodelName: the path of the model to be loaded - isRegression: a flag indigating whereas this model is regression or not ''' try: fo = open(RFmodelName+"MEANS", "rb") except IOError: print("Load Random Forest Model: Didn't find file") return try: MEAN = cPickle.load(fo) STD = cPickle.load(fo) if not isRegression: classNames = cPickle.load(fo) mtWin = cPickle.load(fo) mtStep = cPickle.load(fo) stWin = cPickle.load(fo) stStep = cPickle.load(fo) computeBEAT = cPickle.load(fo) except: fo.close() fo.close() MEAN = numpy.array(MEAN) STD = numpy.array(STD) COEFF = [] with open(RFmodelName, 'rb') as fid: RF = cPickle.load(fid) if isRegression: return(RF, MEAN, STD, mtWin, mtStep, stWin, stStep, computeBEAT) else: return(RF, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT) def loadGradientBoostingModel(GBModelName, isRegression=False): ''' This function loads gradient boosting either for classification or training. ARGMUMENTS: - SVMmodelName: the path of the model to be loaded - isRegression: a flag indigating whereas this model is regression or not ''' try: fo = open(GBModelName+"MEANS", "rb") except IOError: print("Load Random Forest Model: Didn't find file") return try: MEAN = cPickle.load(fo) STD = cPickle.load(fo) if not isRegression: classNames = cPickle.load(fo) mtWin = cPickle.load(fo) mtStep = cPickle.load(fo) stWin = cPickle.load(fo) stStep = cPickle.load(fo) computeBEAT = cPickle.load(fo) except: fo.close() fo.close() MEAN = numpy.array(MEAN) STD = numpy.array(STD) COEFF = [] with open(GBModelName, 'rb') as fid: GB = cPickle.load(fid) if isRegression: return(GB, MEAN, STD, mtWin, mtStep, stWin, stStep, computeBEAT) else: return(GB, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT) def loadExtraTreesModel(ETmodelName, isRegression=False): ''' This function loads extra trees either for classification or training. ARGMUMENTS: - SVMmodelName: the path of the model to be loaded - isRegression: a flag indigating whereas this model is regression or not ''' try: fo = open(ETmodelName+"MEANS", "rb") except IOError: print("Load Random Forest Model: Didn't find file") return try: MEAN = cPickle.load(fo) STD = cPickle.load(fo) if not isRegression: classNames = cPickle.load(fo) mtWin = cPickle.load(fo) mtStep = cPickle.load(fo) stWin = cPickle.load(fo) stStep = cPickle.load(fo) computeBEAT = cPickle.load(fo) except: fo.close() fo.close() MEAN = numpy.array(MEAN) STD = numpy.array(STD) COEFF = [] with open(ETmodelName, 'rb') as fid: GB = cPickle.load(fid) if isRegression: return(GB, MEAN, STD, mtWin, mtStep, stWin, stStep, computeBEAT) else: return(GB, MEAN, STD, classNames, mtWin, mtStep, stWin, stStep, computeBEAT) def evaluateClassifier(features, ClassNames, nExp, ClassifierName, Params, parameterMode, perTrain=0.90): ''' ARGUMENTS: features: a list ([numOfClasses x 1]) whose elements containt numpy matrices of features. each matrix features[i] of class i is [numOfSamples x numOfDimensions] ClassNames: list of class names (strings) nExp: number of cross-validation experiments ClassifierName: svm or knn or randomforest Params: list of classifier parameters (for parameter tuning during cross-validation) parameterMode: 0: choose parameters that lead to maximum overall classification ACCURACY 1: choose parameters that lead to maximum overall F1 MEASURE RETURNS: bestParam: the value of the input parameter that optimizes the selected performance measure ''' # feature normalization: (featuresNorm, MEAN, STD) = normalizeFeatures(features) #featuresNorm = features; nClasses = len(features) CAll = [] acAll = [] F1All = [] PrecisionClassesAll = [] RecallClassesAll = [] ClassesAll = [] F1ClassesAll = [] CMsAll = [] # compute total number of samples: nSamplesTotal = 0 for f in features: nSamplesTotal += f.shape[0] if nSamplesTotal > 1000 and nExp > 50: nExp = 50 print("Number of training experiments changed to 50 due to high number of samples") if nSamplesTotal > 2000 and nExp > 10: nExp = 10 print("Number of training experiments changed to 10 due to high number of samples") for Ci, C in enumerate(Params): # for each param value CM =
numpy.zeros((nClasses, nClasses))
numpy.zeros
import json import sys import os import io import copy from collections import OrderedDict import warnings from typing import Optional import numpy as np import tiledb from tiledb import TileDBError # from tiledb.tests.common import xprint if sys.version_info >= (3, 3): unicode_type = str else: unicode_type = unicode unicode_dtype = np.dtype(unicode_type) def check_dataframe_deps(): pd_error = """Pandas version >= 1.0 required for dataframe functionality. Please `pip install pandas>=1.0` to proceed.""" pa_error = """PyArrow version >= 1.0 is suggested for dataframe functionality. Please `pip install pyarrow>=1.0`.""" from distutils.version import LooseVersion try: import pandas as pd except ImportError: raise Exception(pd_error) if LooseVersion(pd.__version__) < LooseVersion("1.0"): raise Exception(pd_error) try: import pyarrow as pa if LooseVersion(pa.__version__) < LooseVersion("1.0"): warnings.warn(pa_error) except ImportError: warnings.warn(pa_error) # Note: 'None' is used to indicate optionality for many of these options # For example, if the `sparse` argument is unspecified we will default # to False (dense) unless the input has string or heterogenous indexes. TILEDB_KWARG_DEFAULTS = { "ctx": None, "sparse": None, "index_dims": None, "allows_duplicates": True, "mode": "ingest", "attr_filters": None, "dim_filters": None, "coords_filters": None, "full_domain": False, "tile": None, "row_start_idx": None, "fillna": None, "column_types": None, "capacity": None, "date_spec": None, "cell_order": "row-major", "tile_order": "row-major", "timestamp": None, "debug": None, } def parse_tiledb_kwargs(kwargs): parsed_args = dict(TILEDB_KWARG_DEFAULTS) for key in TILEDB_KWARG_DEFAULTS.keys(): if key in kwargs: parsed_args[key] = kwargs.pop(key) return parsed_args class ColumnInfo: def __init__(self, dtype, repr: Optional[str] = None, nullable: bool = False): self.dtype = dtype self.repr = repr self.nullable = nullable def dtype_from_column(col): import pandas as pd col_dtype = col.dtype if col_dtype in ( np.int32, np.int64, np.uint32, np.uint64, np.float, np.double, np.uint8, ): return ColumnInfo(col_dtype) if isinstance( col_dtype, ( pd.Int64Dtype, pd.Int32Dtype, pd.Int16Dtype, pd.Int8Dtype, pd.UInt64Dtype, pd.UInt32Dtype, pd.UInt16Dtype, pd.UInt8Dtype, ), ): return ColumnInfo(col_dtype.numpy_dtype, repr=str(col_dtype), nullable=True) if isinstance(col_dtype, pd.BooleanDtype): return ColumnInfo(np.uint8, repr=pd.BooleanDtype(), nullable=True) # TODO this seems kind of brittle if col_dtype.base == np.dtype("M8[ns]"): if col_dtype == np.dtype("datetime64[ns]"): return ColumnInfo(col_dtype) elif hasattr(col_dtype, "tz"): raise ValueError("datetime with tz not yet supported") else: raise ValueError( "unsupported datetime subtype ({})".format(type(col_dtype)) ) # Pandas 1.0 has StringDtype extension type if col_dtype.name == "string": return ColumnInfo(unicode_dtype) if col_dtype == "bool": return ColumnInfo(np.uint8, repr=np.dtype("bool")) if col_dtype == np.dtype("O"): # Note: this does a full scan of the column... not sure what else to do here # because Pandas allows mixed string column types (and actually has # problems w/ allowing non-string types in object columns) inferred_dtype = pd.api.types.infer_dtype(col) if inferred_dtype == "bytes": return ColumnInfo(np.bytes_) elif inferred_dtype == "string": # TODO we need to make sure this is actually convertible return ColumnInfo(unicode_dtype) elif inferred_dtype == "mixed": raise ValueError( "Column '{}' has mixed value dtype and cannot yet be stored as a TileDB attribute".format( col.name ) ) raise ValueError("Unhandled column type: '{}'".format(col_dtype)) # TODO make this a staticmethod on Attr? def attrs_from_df(df, index_dims=None, filters=None, column_types=None, ctx=None): attr_reprs = dict() if ctx is None: ctx = tiledb.default_ctx() if column_types is None: column_types = dict() attrs = list() for name, col in df.items(): if isinstance(filters, dict): if name in filters: attr_filters = filters[name] else: attr_filters = None elif filters is not None: attr_filters = filters else: attr_filters = tiledb.FilterList([tiledb.ZstdFilter(1, ctx=ctx)]) # ignore any column used as a dim/index if index_dims and name in index_dims: continue if name in column_types: spec_type = column_types[name] # Handle ExtensionDtype if hasattr(spec_type, "type"): spec_type = spec_type.type attr_info = ColumnInfo(spec_type) else: attr_info = dtype_from_column(col) attrs.append( tiledb.Attr( name=name, dtype=attr_info.dtype, filters=attr_filters, nullable=attr_info.nullable, ) ) if attr_info.repr is not None: attr_reprs[name] = attr_info.repr return attrs, attr_reprs def dim_info_for_column(ctx, df, col, tile=None, full_domain=False, index_dtype=None): if isinstance(col, np.ndarray): col_values = col else: col_values = col.values if len(col_values) < 1: raise ValueError( "Empty column '{}' cannot be used for dimension!".format(col_name) ) if index_dtype is not None: dim_info = ColumnInfo(index_dtype) elif col_values.dtype is np.dtype("O"): col_val0_type = type(col_values[0]) if col_val0_type in (bytes, unicode_type): # TODO... core only supports TILEDB_ASCII right now dim_info = ColumnInfo(np.bytes_) else: raise TypeError( "Unknown column type not yet supported ('{}')".format(col_val0_type) ) else: dim_info = dtype_from_column(col_values) return dim_info def dim_for_column( ctx, name, dim_info, col, tile=None, full_domain=False, ndim=None, dim_filters=None ): if isinstance(col, np.ndarray): col_values = col else: col_values = col.values if tile is None: if ndim is None: raise TileDBError("Unexpected Nonetype ndim") if ndim == 1: tile = 10000 elif ndim == 2: tile = 1000 elif ndim == 3: tile = 100 else: tile = 10 dtype = dim_info.dtype if full_domain: if not dim_info.dtype in (np.bytes_, np.unicode_): # Use the full type domain, deferring to the constructor (dtype_min, dtype_max) = tiledb.libtiledb.dtype_range(dim_info.dtype) dim_max = dtype_max if dtype.kind == "M": date_unit =
np.datetime_data(dtype)
numpy.datetime_data
from timeit import default_timer as timer import subprocess import numpy as np import sys ''' usage: python performance.py <luthien_location> <luthien_location2> <n_tests> ''' n_tests = 10 luthien2 = sys.argv[2] luthien1 = sys.argv[1] if len(sys.argv) >= 4: n_tests = int(sys.argv[3]) big_single = "big/SRR941557.fastq" big_single_out = "output/SRR941557.fastq" big_pair_1 = "big/SRR3309317_1.mini.fastq" big_pair_2 = "big/SRR3309317_2.mini.fastq" big_pair_1_out = "output/SRR3309317_1.mini.fastq" big_pair_2_out = "output/SRR3309317_2.mini.fastq" small_single = "test.fastq" small_single_out = "output/test.fastq" small_pair_1 = "test.f.fastq" small_pair_2 = "test.r.fastq" small_pair_1_out = "output/test.f.fastq" small_pair_2_out = "output/test.r.fastq" def runCommand(cmd): #print("\t> " + cmd) process = subprocess.call(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) #process = subprocess.call(cmd, shell=True) return process def run_luthien(threads, chunk_size, luthien): #print("Running test for " + str(threads) + " " + str(chunk_size)) durations_single = [] durations_paired = [] code = runCommand(" ".join([luthien, "-i1", big_pair_1, "-o1", big_pair_1_out, "-i2", big_pair_2, "-o2", big_pair_2_out, "-t", str(threads), "-c", str(chunk_size)])) for i in range(n_tests): start = timer() code = runCommand(" ".join([luthien, "-i1", big_pair_1, "-o1", big_pair_1_out, "-i2", big_pair_2, "-o2", big_pair_2_out, "-t", str(threads), "-c", str(chunk_size)])) if(code != 0): quit() end = timer() durations_paired.append(end-start) code = runCommand(" ".join([luthien, "-i1", big_single, "-o1", big_single_out, "-t", str(threads), "-c", str(chunk_size)])) for i in range(n_tests): start = timer() code = runCommand(" ".join([luthien, "-i1", big_single, "-o1", big_single_out, "-t", str(threads), "-c", str(chunk_size)])) end = timer() if(code != 0): quit() durations_single.append(end-start) return np.array(durations_single), np.array(durations_paired) def run_fastp(threads): duration_single = 0.0 duration_paired = 0.0 cmd_single = " ".join(["~/miniconda3/bin/fastp --in1", big_single, "-o", big_single_out, "-w", str(threads), "-A"]) cmd_paired = " ".join(["~/miniconda3/bin/fastp --in1", big_pair_1, "-o", big_pair_1_out, "--in2", big_pair_2, "--out2", big_pair_2_out, "-w", str(threads), "-A"]) code = runCommand(cmd_single) for i in range(n_tests): start = timer() code = runCommand(cmd_single) end = timer() if(code != 0): quit() duration_single += (end-start) code = runCommand(cmd_paired) for i in range(n_tests): start = timer() code = runCommand(cmd_paired) end = timer() if(code != 0): quit() duration_paired += (end-start) return duration_single / n_tests, duration_paired / n_tests start_threads = 4 step_threads = 1 end_threads = 4 threads_list = np.arange(start_threads, end_threads+step_threads, step_threads) #chunks_list = np.arange(start_chunk, end_chunk+step_chunk, step_chunk) for thread_number in threads_list: #fastp_single, fastp_paired = run_fastp(thread_number) #print("-t " + str(4) + " -A: " + str(fastp_single) + "s, " + str(fastp_paired) + "s") single_time, paired_time = run_luthien(thread_number, 12, luthien2) print(luthien2 + ": -t " + str(thread_number) + ": " + str(np.mean(single_time))+"+/-"+str(np.std(single_time)) +" single, " + str(np.mean(paired_time))+"+/-"+str(np.std(paired_time)) +" paired.") single_time, paired_time = run_luthien(thread_number, 12, luthien1) print(luthien1 + ": -t " + str(thread_number) + ": " + str(np.mean(single_time))+"+/-"+str(np.std(single_time)) +" single, " + str(np.mean(paired_time))+"+/-"+str(
np.std(paired_time)
numpy.std
# coding: utf-8 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Utility classes.""" import logging import math import os import sys import time import numpy as np import mxnet as mx from mxnet import nd from mxnet.gluon import rnn, contrib from .data import ParserVocabulary from .tarjan import Tarjan class Progbar(object): """Progbar class copied from keras (https://github.com/fchollet/keras/) Displays a progress bar. Small edit : added strict arg to update Parameters ---------- target : int Total number of steps expected. width : int Progress bar width. verbose : int Verbosity level. Options are 1 and 2. """ def __init__(self, target, width=30, verbose=1): self.width = width self.target = target self.sum_values = {} self.unique_values = [] self.start = time.time() self.total_width = 0 self.seen_so_far = 0 self.verbose = verbose def update(self, current, values=None, exact=None, strict=None): """ Updates the progress bar. Parameters ---------- current : int Index of current step. values : List of tuples (name, value_for_last_step). The progress bar will display averages for these values. exact : List of tuples (name, value_for_last_step). The progress bar will display these values directly. """ values = values or [] exact = exact or [] strict = strict or [] for k, v in values: if k not in self.sum_values: self.sum_values[k] = [v * (current - self.seen_so_far), current - self.seen_so_far] self.unique_values.append(k) else: self.sum_values[k][0] += v * (current - self.seen_so_far) self.sum_values[k][1] += (current - self.seen_so_far) for cells in exact: k, v, w = cells[0], cells[1], 4 if len(cells) == 3: w = cells[2] if k not in self.sum_values: self.unique_values.append(k) self.sum_values[k] = [v, 1, w] for k, v in strict: if k not in self.sum_values: self.unique_values.append(k) self.sum_values[k] = v self.seen_so_far = current now = time.time() if self.verbose == 1: prev_total_width = self.total_width sys.stdout.write('\b' * prev_total_width) sys.stdout.write('\r') numdigits = 0 if self.target == 0 or math.isnan(self.target) \ else int(np.floor(np.log10(self.target))) + 1 barstr = '%%%dd/%%%dd [' % (numdigits, numdigits) bar = barstr % (current, self.target) prog = 0 if self.target == 0 else float(current) / self.target prog_width = int(self.width * prog) if prog_width > 0: bar += ('=' * (prog_width - 1)) if current < self.target: bar += '>' else: bar += '=' bar += ('.' * (self.width - prog_width)) bar += ']' sys.stdout.write(bar) self.total_width = len(bar) if current: time_per_unit = (now - self.start) / current else: time_per_unit = 0 eta = time_per_unit * (self.target - current) info = '' if current < self.target: info += ' - ETA: %ds' % eta else: info += ' - %ds' % (now - self.start) for k in self.unique_values: if isinstance(self.sum_values[k], list): info += (' - %s: %.' + str(self.sum_values[k][2]) + 'f') % ( k, self.sum_values[k][0] / max(1, self.sum_values[k][1])) else: info += ' - %s: %s' % (k, self.sum_values[k]) self.total_width += len(info) if prev_total_width > self.total_width: info += ((prev_total_width - self.total_width) * ' ') sys.stdout.write(info) sys.stdout.flush() if current >= self.target: sys.stdout.write('\n') if self.verbose == 2: if current >= self.target: info = '%ds' % (now - self.start) for k in self.unique_values: info += ' - %s: %.4f' % (k, self.sum_values[k][0] / max(1, self.sum_values[k][1])) sys.stdout.write(info + '\n') def add(self, n, values=None): values = values or [] self.update(self.seen_so_far + n, values) def mxnet_prefer_gpu(): """If gpu available return gpu, else cpu Returns ------- context : Context The preferable GPU context. """ gpu = int(os.environ.get('MXNET_GPU', default=0)) if gpu in mx.test_utils.list_gpus(): return mx.gpu(gpu) return mx.cpu() def init_logger(root_dir, name='train.log'): """Initialize a logger Parameters ---------- root_dir : str directory for saving log name : str name of logger Returns ------- logger : logging.Logger a logger """ os.makedirs(root_dir, exist_ok=True) log_formatter = logging.Formatter('%(message)s') logger = logging.getLogger(name) file_handler = logging.FileHandler('{0}/{1}'.format(root_dir, name), mode='w') file_handler.setFormatter(log_formatter) logger.addHandler(file_handler) console_handler = logging.StreamHandler() console_handler.setFormatter(log_formatter) logger.addHandler(console_handler) logger.setLevel(logging.INFO) return logger def orthonormal_VanillaLSTMBuilder(lstm_layers, input_dims, lstm_hiddens, dropout_h=0., debug=False): """Build a standard LSTM cell, with variational dropout, with weights initialized to be orthonormal (https://arxiv.org/abs/1312.6120) Parameters ---------- lstm_layers : int Currently only support one layer input_dims : int word vector dimensions lstm_hiddens : int hidden size dropout_h : float dropout on hidden states debug : bool set to True to skip orthonormal initialization Returns ------- lstm_cell : VariationalDropoutCell A LSTM cell """ assert lstm_layers == 1, 'only accept one layer lstm' W = orthonormal_initializer(lstm_hiddens, lstm_hiddens + input_dims, debug) W_h, W_x = W[:, :lstm_hiddens], W[:, lstm_hiddens:] b = nd.zeros((4 * lstm_hiddens,)) b[lstm_hiddens:2 * lstm_hiddens] = -1.0 lstm_cell = rnn.LSTMCell(input_size=input_dims, hidden_size=lstm_hiddens, i2h_weight_initializer=mx.init.Constant(np.concatenate([W_x] * 4, 0)), h2h_weight_initializer=mx.init.Constant(np.concatenate([W_h] * 4, 0)), h2h_bias_initializer=mx.init.Constant(b)) wrapper = contrib.rnn.VariationalDropoutCell(lstm_cell, drop_states=dropout_h) return wrapper def biLSTM(f_lstm, b_lstm, inputs, dropout_x=0.): """Feature extraction through BiLSTM Parameters ---------- f_lstm : VariationalDropoutCell Forward cell b_lstm : VariationalDropoutCell Backward cell inputs : NDArray seq_len x batch_size dropout_x : float Variational dropout on inputs Returns ------- outputs : NDArray Outputs of BiLSTM layers, seq_len x 2 hidden_dims x batch_size """ for f, b in zip(f_lstm, b_lstm): inputs = nd.Dropout(inputs, dropout_x, axes=[0]) # important for variational dropout fo, _ = f.unroll(length=inputs.shape[0], inputs=inputs, layout='TNC', merge_outputs=True) bo, _ = b.unroll(length=inputs.shape[0], inputs=inputs.flip(axis=0), layout='TNC', merge_outputs=True) f.reset() b.reset() inputs = nd.concat(fo, bo.flip(axis=0), dim=2) return inputs def leaky_relu(x): """slope=0.1 leaky ReLu Parameters ---------- x : NDArray Input Returns ------- y : NDArray y = x > 0 ? x : 0.1 * x """ return nd.LeakyReLU(x, slope=.1) def bilinear(x, W, y, input_size, seq_len, batch_size, num_outputs=1, bias_x=False, bias_y=False): """Do xWy Parameters ---------- x : NDArray (input_size x seq_len) x batch_size W : NDArray (num_outputs x ny) x nx y : NDArray (input_size x seq_len) x batch_size input_size : int input dimension seq_len : int sequence length batch_size : int batch size num_outputs : int number of outputs bias_x : bool whether concat bias vector to input x bias_y : bool whether concat bias vector to input y Returns ------- output : NDArray [seq_len_y x seq_len_x if output_size == 1 else seq_len_y x num_outputs x seq_len_x] x batch_size """ if bias_x: x = nd.concat(x, nd.ones((1, seq_len, batch_size)), dim=0) if bias_y: y = nd.concat(y, nd.ones((1, seq_len, batch_size)), dim=0) ny = input_size + bias_y # W: (num_outputs x ny) x nx lin = nd.dot(W, x) if num_outputs > 1: lin = reshape_fortran(lin, (ny, num_outputs * seq_len, batch_size)) y = y.transpose([2, 1, 0]) # May cause performance issues lin = lin.transpose([2, 1, 0]) blin = nd.batch_dot(lin, y, transpose_b=True) blin = blin.transpose([2, 1, 0]) if num_outputs > 1: blin = reshape_fortran(blin, (seq_len, num_outputs, seq_len, batch_size)) return blin def orthonormal_initializer(output_size, input_size, debug=False): """adopted from <NAME> https://github.com/tdozat/Parser/blob/master/lib/linalg.py Parameters ---------- output_size : int input_size : int debug : bool Whether to skip this initializer Returns ------- Q : np.ndarray The orthonormal weight matrix of input_size x output_size """ print((output_size, input_size)) if debug: Q =
np.random.randn(input_size, output_size)
numpy.random.randn
from .single_tile_affine_renderer import SingleTileAffineRenderer import numpy as np import tinyr from enum import Enum class BlendType(Enum): NO_BLENDING = 0 AVERAGING = 1 LINEAR = 2 MULTI_BAND_SEAM = 3 class MultipleTilesAffineRenderer: BLEND_TYPE = { "NO_BLENDING" : 0, "AVERAGING" : 1, "LINEAR" : 2 } def __init__(self, single_tiles, blend_type=BlendType.NO_BLENDING): """Receives a number of image paths, and for each a transformation matrix""" self.blend_type = blend_type self.single_tiles = single_tiles # Create an RTree of the bounding boxes of the tiles self.rtree = tinyr.RTree(interleaved=True, max_cap=5, min_cap=2) for t in self.single_tiles: bbox = t.get_bbox() # using the (x_min, y_min, x_max, y_max) notation self.rtree.insert(t, (bbox[0], bbox[2], bbox[1], bbox[3])) #should_compute_mask = False if self.blend_type == 0 else True #self.single_tiles = [SingleTileAffineRenderer(img_path, img_shape[1], img_shape[0], compute_mask=should_compute_mask) for img_path, img_shape in zip(img_paths, img_shapes)] #for i, matrix in enumerate(transform_matrices): # self.single_tiles[i].add_transformation(matrix) def add_transformation(self, transform_matrix): """Adds a transformation to all tiles""" self.rtree = tinyr.RTree(interleaved=True, max_cap=5, min_cap=2) for single_tile in self.single_tiles: single_tile.add_transformation(transform_matrix) bbox = single_tile.get_bbox() # using the (x_min, y_min, x_max, y_max) notation self.rtree.insert(single_tile, (bbox[0], bbox[2], bbox[1], bbox[3])) def render(self): if len(self.single_tiles) == 0: return None, None # Render all tiles by finding the bounding box, and using crop all_bboxes = np.array([t.get_bbox() for t in self.single_tiles]).T bbox = [
np.min(all_bboxes[0])
numpy.min
"""detectlines includes tasks and tools for handling 1-d spectra """ import numpy as np from PySpectrograph import SpectrographError default_kernal = [0, -1, -2, -3, -2, -1, 0, 1, 2, 3, 2, 1, 0] def centroid(xarr, yarr, kern=default_kernal, mask=None, mode='same'): """Find the centroid of a line following a similar algorithm as the center1d algorithm in IRAF. xarr and yarr should be an area around the desired feature to be centroided. The default kernal is used if the user does not specific one. The algorithm solves for the solution to the equation ..math:: \int (I-I_0) f(x-x_0) dx = 0 returns xc """ if len(yarr) < len(kern): raise SpectrographError('Array has to be larger than kernal') if mask is not None: # catch the fact that at the edges it if mask.sum() < len(default_kernal): warr = np.convolve(yarr, kern, mode=mode) xc = np.interp(0, warr[mask], xarr[mask]) return xc else: yarr = yarr[mask] xarr = xarr[mask] # convle the input array with the default kernal warr =
np.convolve(yarr, kern, mode=mode)
numpy.convolve
from fides import ( Optimizer, BFGS, SR1, DFP, BB, BG, Broyden, GNSBFGS, HybridFixed, FX, SSM, TSSM, SubSpaceDim, StepBackStrategy ) import numpy as np import logging import pytest import fides import time def rosen(x): f = 100 * (x[1] - x[0] ** 2) ** 2 + (1 - x[0]) ** 2 return f def rosengrad(x): f = rosen(x) g = np.array([-400 * (x[1] - x[0] ** 2) * x[0] - 2 * (1 - x[0]), 200 * (x[1] - x[0] ** 2)]) return f, g def rosenboth(x): f, g = rosengrad(x) h = np.array([[1200 * x[0] ** 2 - 400 * x[1] + 2, -400 * x[0]], [-400 * x[0], 200]]) return f, g, h def fletcher(x): res = np.array([np.sqrt(10.2)*x[0], np.sqrt(10.8)*x[1], 4.6-x[0]**2, 4.9-x[1]**2]) sres = np.array([[np.sqrt(10.2), 0], [0, np.sqrt(10.8)], [-2*x[0], 0], [0, -2*x[1]]]) return res, sres def rosenrandomfail(x): f, g, h = rosenboth(x) p = 1/4 # elementwise probability for nan if
np.random.choice(a=[True, False], p=[p, 1-p])
numpy.random.choice
import brancher.config as cfg cfg.set_device('gpu') print(cfg.device) import numpy as np import matplotlib.pyplot as plt from brancher.variables import RootVariable, ProbabilisticModel from brancher.standard_variables import NormalVariable, DeterministicVariable, CategoricalVariable, EmpiricalVariable, RandomIndices from brancher import inference import brancher.functions as BF from brancher.particle_inference_tools import VoronoiSet from brancher import inference from brancher.inference import WassersteinVariationalGradientDescent as WVGD #import brancher.config as cfg #cfg.set_device('gpu') #print(cfg.device) # Data import torchvision ELBO_list = [] num_iterations = 25 for iteration in range(num_iterations): # Data image_size = 28 num_classes = 10 train = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=None) test = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=None) dataset_size = 500 # indices = np.random.choice(range(len(train)), dataset_size) # le test_indices = np.random.choice(range(len(test)), dataset_size)# n(train) particles_ELBO = [] for num_particles in [3, 1]: input_variable = np.reshape(train.train_data.numpy()[indices, :], newshape=(dataset_size, 1, image_size, image_size)) output_labels = train.train_labels.numpy()[indices] # Test set data input_variable_test = np.reshape(test.test_data.numpy()[test_indices, :], newshape=(dataset_size, 1, image_size, image_size)) output_labels_test = test.test_labels.numpy()[test_indices] # Data sampling model minibatch_size = 30 minibatch_indices = RandomIndices(dataset_size=dataset_size, batch_size=minibatch_size, name="indices", is_observed=True) x = EmpiricalVariable(input_variable, indices=minibatch_indices, name="x", is_observed=True) labels = EmpiricalVariable(output_labels, indices=minibatch_indices, name="labels", is_observed=True) # Test data x_test = EmpiricalVariable(input_variable_test, indices=minibatch_indices, name="x", is_observed=True) labels_test = EmpiricalVariable(output_labels_test, indices=minibatch_indices, name="labels", is_observed=True) # Forward pass in_channels = 1 out_channels = 10 image_size = 28 Wk = NormalVariable(loc=np.zeros((out_channels, in_channels, 2, 2)), scale=10*np.ones((out_channels, in_channels, 2, 2)), name="Wk") z = DeterministicVariable(BF.mean(BF.relu(BF.conv2d(x, Wk, stride=1)), (2, 3)), name="z") Wl = NormalVariable(loc=np.zeros((num_classes, out_channels)), scale=10*np.ones((num_classes, out_channels)), name="Wl") b = NormalVariable(loc=
np.zeros((num_classes, 1))
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Fri Feb 26 18:07:47 2021 @author: <NAME> Cestimii. Compute curvature estimations on point clouds using integral invariants. This file contains all methods that have something to do with the initialization, construction, splitting or merging of occupancy grids or occupancy grids of boundary boxes. Both on strict and relaxed occupancy grids. """ import time import warnings import numpy as np import scipy.ndimage as nd #these three imports are only necessary for imgstack method from PIL import Image import h5py import os import cestimii.geomshapes as gs def constructoccgrid_sphere(r=6, samp=0): """ Constructs a (strict) occupancy grids of a spheres of radius 'r'. Input is a parameter 'r', which specifies the radius of the sphere. If r is negative, an alternative, more accurate, but less efficient way to generate a sphere of radius -r is used. While the "samp" parameter, which specifies the amount of points used to create the sphere's point cloud, often yields good results for 360*5 for a wide variety of scales, setting samp=0, uses a formula to dynamically adapt the sample rate to the radius to ensure the sphere's occupancy grid is always initialized correctly. Returns a matrix 'OGS', which represent the Occupancy Grid of the Sphere with radius 'r'. OGB has dimensions (2*r+1)x(2*r+1)x(2*r+1). The default sphere radius 'r' is 6. Formerly known as "createsphereoccgrid()". """ if samp==0: samp=360*r/2 if (r == 0.5) | (r == 1.5) | (r < 0 ): if r == 0.5: OGB = np.ones((1,1,1), int) return OGB if r == 1.5: OGB = np.ones((3,3,3), int) OGB[0,0,0] = 0 OGB[0,0,2] = 0 OGB[0,2,0] = 0 OGB[0,2,2] = 0 OGB[2,0,0] = 0 OGB[2,0,2] = 0 OGB[2,2,0] = 0 OGB[2,2,2] = 0 OGB[1,1,1] = 0 return OGB if r < 1: #this kernel might be more precise radius = -r W = 2*radius +1 center=(radius, radius, radius) a=[] b=[] c=[] OGB=np.zeros((W,W,W), np.int8) for z in range(W): for y in range(W): for x in range(W): val=(x-center[2])**2+(y-center[1])**2+(z-center[0])**2 if val==radius**2: a.append(x) b.append(y) c.append(z) OGB[z,y,x]=1 return OGB elif type(r)!=int: raise NameError('Radius has to be a integer.') else: #load sphere pointcloud x,y,z = gs.sphere(r=100, c=[0,0,0], samp=samp) x = x.flatten() y = y.flatten() z = z.flatten() #find min,max values of each axis xmin =np.min(x) xmax =np.max(x) ymin =np.min(y) ymax =np.max(y) zmin =np.min(z) zmax =np.max(z) #normalise the axes, i.e. rescale the object (!) xn = ((x-xmin)/(xmax-xmin)) yn = ((y-ymin)/(ymax-ymin)) zn = ((z-zmin)/(zmax-zmin)) #init grid over whole ball domain OGS = np.zeros([2*r+1,2*r+1,2*r+1], int) #see sketch on rmkbl tablet #populate ballgrid boundary OGS[(np.round(xn * 2*r)).astype(int), (np.round(yn * 2*r)).astype(int), (np.round(zn * 2*r)).astype(int)] = 1 return OGS def constructoccgrid_ball(r=6, samp=0): """ Constructs a (strict) occupancy grid of a ball of radius 'r'. Input is a parameter 'r', which specifies the radius of the ball. If r is negative, an alternative, more accurate, but less efficient way to generate a sphere of radius -r is used. As the kernel is quite inaccurate for small values of r, I hardcoded two small kernels for r=1 and r=1.5, whereby the latter should serve as a better kernel for r=2. While the "samp" parameter, which specifies the amount of points used to create the sphere's point cloud, often yields good results for 360*5 for a wide variety of scales, setting samp=0, uses a formula to dynamically adapt the sample rate to the radius to ensure the sphere's occupancy grid is always initialized correctly. Returns a matrix 'OGB', which represent the Occupancy Grid of the Ball with radius 'r'. OGB has dimensions (2*r+1)x(2*r+1)x(2*r+1). The default ball radius 'r' is 6. Formerly known as "createballoccgrid()". """ if samp==0: samp=360*r//2 if (r == 0.5) | (r == 1.5) | (r < 0 ): if r == 0.5: OGB = np.ones((1,1,1), int) return OGB if r == 1.5: OGB = np.ones((3,3,3), int) OGB[0,0,0] = 0 OGB[0,0,2] = 0 OGB[0,2,0] = 0 OGB[0,2,2] = 0 OGB[2,0,0] = 0 OGB[2,0,2] = 0 OGB[2,2,0] = 0 OGB[2,2,2] = 0 return OGB if r < 1: #more accurate, but less efficient. radius = -r W = 2*radius +1 center=(radius, radius, radius) a=[] b=[] c=[] OGB=np.zeros((W,W,W), np.int8) for z in range(W): for y in range(W): for x in range(W): val=(x-center[2])**2+(y-center[1])**2+(z-center[0])**2 if val<=radius**2: a.append(x) b.append(y) c.append(z) OGB[z,y,x]=1 return OGB elif type(r)!=int: raise NameError('Radius has to be an integer.') else: #load pointcloud x,y,z = gs.sphere(r=100, c=[0,0,0], samp=samp) x = x.flatten() y = y.flatten() z = z.flatten() #find min,max values of each axis xmin =np.min(x) xmax =np.max(x) ymin =np.min(y) ymax =np.max(y) zmin =np.min(z) zmax =np.max(z) #normalise the axes, i.e. rescale the object (!) xn = ((x-xmin)/(xmax-xmin)) yn = ((y-ymin)/(ymax-ymin)) zn = ((z-zmin)/(zmax-zmin)) #init grid over whole ball domain OGB = np.zeros([2*r+1,2*r+1,2*r+1], int) #populate ballgrid boundary OGB[(np.round(xn * 2*r)).astype(int), (np.round(yn * 2*r)).astype(int), (np.round(zn * 2*r)).astype(int)] = 1 #fill ballgrid OGB = nd.binary_fill_holes(OGB).astype(int) return OGB def constructoccgrid_ballzone(kr, alpha): """ Constructs an (strict) occupancy grid of a ballzone of with 'alpha', i.e. difference of a ball of radius 'r' and a ball of radius 'r-alpha'. Input: -'r': specifies the radius of the ball -'alpha': is used for the inner circle of the zonal ball area, i.e. the inner circle is of radius r-alpha -'r', which specifies the radius of the ball. If r is negative, an alternative, more accurate, but less efficient way to generate a sphere of radius -r is used. As the kernel is quite inaccurate for small values of r, I hardcoded two small kernels for r=1 and r=1.5, whereby the latter should serve as a better kernel for r=2. Returns a matrix 'OGBZ', which represent the Occupancy Grid of the ballzone. I.e. we return the difference between the ball kernel of size r and the ball kernel of size r-alpha. This ballzone is alpha wide. """ #get occgrid of ball with radius r rball = constructoccgrid_ball(r=kr) #dims (2xkr+1)**3 #get occgrid of ball with radius r ralphaball = constructoccgrid_ball(r=kr-alpha) #(2x(kr-alpha) +1)**3 #pad occgrid ralphaball to the size of the occgrid rball ralphaball = np.pad(ralphaball,((alpha, alpha),(alpha, alpha), (alpha, alpha)), 'constant') OGBZ = rball-ralphaball return OGBZ def constructoccgrid_pointcloud(inp, rho, ocg="str", taulow=0, fill=1): """ Construct a (strict or relaxed) occupancy grid of arbitrary pointclouds. Input: -'inp': inp can be a .xyz pointcloud in the format x y z, OR a list or array in the format of z y x. -'rho': controls the amount of cells in the occupancy grid. -'ocg' specifies wether a strict or relaxed occupancy grid is used in the method itself. Use "str" for strict occgrid, "rlx" for relaxed. -'taulow' is the threshold for the values in the relaxed occgrid. If a value is >taulow it is used in the relaxed occgrid and ignored otherwise. This exists to limit the error that can happen due to the usage of a relaxed occupancy grid. -'fill': controls wether occupancy grid will be filled or not. 'fill'==1 means it is filled (using ndimage.binary_fill_holes() ). Due to the resizing with rho, the output occupancy grid might be of lower resolution than the actual dataset. If the occupancy grid is not filled correctly, try reducing 'rho' or use a point cloud that is sampled more densely. A relaxed occgrid will not be filled. Returns a matrix 'OGD', which represents the Occupancy Grid of the pointcloud over the whole volume Domain. """ if type(inp)==str: #load pointcloud if ocg=="str": x, y, z = np.loadtxt(inp,skiprows=1, unpack=True, usecols=(0,1,2)) else: x, y, z, vals = np.loadtxt(inp,skiprows=1, unpack=True, usecols=(0,1,2,3)) elif isinstance(inp,np.ndarray): z = inp[:,0] y = inp[:,1] x = inp[:,2] if ocg=="rlx": vals = inp[:,3] elif isinstance(inp,list): #we assume the input list is given like [z,y,x] inp = np.transpose(inp) # shape is now [#pts, 3] (= z y x) #get the separate coordinate vectors z = inp[:,0] y = inp[:,1] x = inp[:,2] if ocg=="rlx": vals = inp[:,3] else: raise NameError('Input can be an already loaded pointcloud that \ consists of the three coordinates z y x or a string \ that leads to the file that is in z y x format with \ no header.') if ocg=="rlx": #first, shift values if they are negative, then normalize vals s.t. #max is 1, then multiply all values such that the maximum is sc valsmin = np.min(vals) if valsmin<0: vals = vals-valsmin #shift to 0 valsmax = np.max(vals) if valsmax==0: raise NameError('Maximum Value of the point cloud is 0. Cant \ divide by zero') vals = (vals/valsmax) #find min,max values of each axis xmin =np.min(x) ymin =np.min(y) zmin =np.min(z) #normalise x and then rescale axes to max val # xrs = ((x-xmin)/(xmax-xmin))*xmax # yrs = ((y-ymin)/(ymax-ymin))*ymax # zrs = ((z-zmin)/(zmax-zmin))*zmax xrs = (x-xmin) yrs = (y-ymin) zrs = (z-zmin) xmax = np.max(xrs) ymax = np.max(yrs) zmax = np.max(zrs) if ocg=="str": #init grid over domain OGD = np.zeros([int(zmax*rho)+1,int(ymax*rho)+1,int(xmax*rho)+1], bool) #populate domaingrid boundary OGD[(zrs * rho).astype(int), (yrs * rho).astype(int), (xrs * rho).astype(int)] = 1 #fill domaingrid if fill==1: OGD = nd.binary_fill_holes(OGD).astype(int) else: #init grid over domain OGD = np.zeros([int(zmax*rho)+1,int(ymax*rho)+1,int(xmax*rho)+1], np.double) #populate domaingrid boundary but only for values >= taulow okvals = vals >= taulow okindc = np.where(okvals==1) OGD[(zrs[okindc[0]] * rho).astype(int), (yrs[okindc[0]] * rho).astype(int), (xrs[okindc[0]] * rho).astype(int)] = vals return OGD def constructpcagrids_pointcloud(inp, rho, kr=6, ocg="str", taulow=0, variant=1, debug=0): """ Construct all necessary occupancy grids for the calculation of the curvature estimation using integral invariants and PCA. Input: -'inp' can be an already loaded pointcloud that consists of the three coordinates x y z or a string that leads to the file that is in x y z format with no header. -'rho' controls the amount of cells in the occupancy grid (=rho+1). -'kr' is the kernel radius -'ocg' specifies wether a strict or relaxed occupancy grid is used in the method itself. Use "str" for strict occgrid, "rlx" for relaxed. -'taulow' is the threshold for the values in the relaxed occgrid. If a value is >taulow it is used in the relaxed occgrid and ignored otherwise. This exists to limit the error that can happen due to the usage of a relaxed occupancy grid. -'variant': there are two variants to calculate these values, which are equivalent, but return two different outputs. -the debug parameter is just there to enable easier debugging, e.g. by printing certain statements at a time. Returns the Occupancy Grid of the Domain 'OGD', the Occupancy Grid of the Ball neighborhoord 'OGB', and the other two Occupancy Grids necessary for the convolution, which are OGB*(-x), here 'OGBX', and OGB*(x*x^T), here called 'OGBXX'. """ if debug==1: starttime = time.time() if type(inp)==str: #load pointcloud if ocg=="str": x, y, z = np.loadtxt(inp,skiprows=1, unpack=True, usecols=(0,1,2)) else: x, y, z, vals = np.loadtxt(inp,skiprows=1, unpack=True, usecols=(0,1,2,3)) elif isinstance(inp,np.ndarray): z = inp[:,0] y = inp[:,1] x = inp[:,2] if ocg=="rlx": vals = inp[:,3] elif isinstance(inp,list): #we assume the input list is given like [z,y,x] inp = np.transpose(inp) # shape is now [#pts, 3] (= z y x) #get the separate coordinate vectors z = inp[:,0] y = inp[:,1] x = inp[:,2] if ocg=="rlx": vals = inp[:,3] else: raise NameError('Input can be an already loaded pointcloud that \ consists of the three coordinates z y x or a string \ that leads to the file that is in z y x format with \ no header.') if debug==1: print("Initialised the input point cloud.\n" + "Current Runtime: " + str(time.time() - starttime)) print("Number of Points in the pointcloud: " + str(np.shape(x)[0])) if ocg=="str": OGD = constructoccgrid_pointcloud([z,y,x], rho) else: OGD = constructoccgrid_pointcloud([z,y,x, vals], rho, ocg=ocg, taulow=taulow, fill=0) OGB = constructoccgrid_ball(kr) if (np.shape(OGB)[0] %2 == 0 | np.shape(OGB)[1] %2 == 0 | np.shape(OGB)[2] %2 == 0): warnings.warn("The lengths of the kernel should be uneven s.t. there\ is a proper center element.") if variant==0: ogbx, ogby, ogbz, ogbxx, ogbyy, ogbzz, ogbxy,\ ogbxz, ogbyz = np.zeros([9, np.shape(OGB)[0], np.shape(OGB)[1], np.shape(OGB)[2]]) cx=np.shape(OGB)[1] // 2 cy=np.shape(OGB)[0] // 2 cz=np.shape(OGB)[2] // 2 coords = np.ones([np.shape(OGB)[0],np.shape(OGB)[1],np.shape(OGB)[2]]) xcoord = np.linspace(-cx,np.shape(OGB)[1]-1-cx,np.shape(OGB)[1]) xcoords = np.multiply(np.transpose(coords,(0,2,1)),xcoord) ogbx = np.multiply(OGB, np.transpose(-xcoords,(0,2,1))) ogbxx = np.multiply(OGB, np.transpose(xcoords**2,(0,2,1))) ycoord = np.linspace(-cy,np.shape(OGB)[0]-1-cy,np.shape(OGB)[0]) ycoords = np.multiply(np.transpose(coords,(2,1,0)),ycoord) ogby = np.multiply(OGB, np.transpose(-ycoords,(2,1,0))) ogbyy = np.multiply(OGB, np.transpose(ycoords**2,(2,1,0))) zcoord = np.linspace(-cz,np.shape(OGB)[2]-1-cz,np.shape(OGB)[2]) zcoords = np.multiply(np.transpose(coords,(0,1,2)),zcoord) ogbz = np.multiply(OGB, np.transpose(-zcoords,(0,1,2))) ogbzz = np.multiply(OGB, np.transpose(zcoords**2,(0,1,2))) ogbxy = np.multiply(np.transpose(xcoords,(0,2,1)), -ogby) ogbxz = np.multiply(np.transpose(xcoords,(0,2,1)), -ogbz) ogbyz = np.multiply(np.transpose(ycoords,(2,1,0)), -ogbz) OGBX = [ogbx, ogby, ogbz] OGBXX = [[ogbxx, ogbxy, ogbxz], [ogbxy, ogbyy, ogbyz], [ogbxz, ogbyz, ogbzz]] if debug==1: print("Computed OGD, OGB, OGBX, OGBXX.\n" + "Current Runtime: " + str(time.time() - starttime)) return OGD, OGB, OGBX, OGBXX elif variant==1: xcoords = np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]]) ycoords = np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]]) zcoords = np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]]) cx=np.shape(OGB)[2] // 2 cy=np.shape(OGB)[1] // 2 cz=np.shape(OGB)[0] // 2 #this is all the same value in general #this is rather inefficient for z in range(np.shape(OGB)[0]): for y in range(np.shape(OGB)[1]): for x in range(np.shape(OGB)[2]): xcoords[z,y,x]=x-cx ycoords[z,y,x]=y-cy zcoords[z,y,x]=z-cz if debug==1: print("Computed OGD, OGB, xcoords,ycoords,zcoords.\n" + "Current Runtime: " + str(time.time() - starttime)) return OGD, OGB, xcoords, ycoords, zcoords def constructpcagrids_ocg(inpoccgrid, kr=6, variant=1, debug=0): """ Construct all necessary occupancy grids for the calculation of the curvature estimation using integral invariants and PCA. Input: -'inp' is a strict or relaxed occupancy grid. -'kr' is the kernel radius -'variant': there are two variants to calculate these values, which are equivalent, but return two different outputs. -the debug parameter is just there to enable easier debugging, e.g. by printing certain statements at a time. Returns the Occupancy Grid of the Domain 'OGD', the Occupancy Grid of the Ball neighborhoord 'OGB', and the other two Occupancy Grids necessary for the convolution, which are OGB*(-x), here 'OGBX', and OGB*(x*x^T), here called 'OGBXX'. """ if debug==1: starttime = time.time() OGD = inpoccgrid OGB = constructoccgrid_ball(kr) if (np.shape(OGB)[0] %2 == 0 | np.shape(OGB)[1] %2 == 0 | np.shape(OGB)[2] %2 == 0): warnings.warn("The lengths of the kernel should be uneven s.t. there\ is a proper center element.") if variant==0: ogbx, ogby, ogbz, ogbxx, ogbyy, ogbzz, ogbxy,\ ogbxz, ogbyz = np.zeros([9, np.shape(OGB)[0], np.shape(OGB)[1], np.shape(OGB)[2]]) cx=np.shape(OGB)[1] // 2 cy=np.shape(OGB)[0] // 2 cz=np.shape(OGB)[2] // 2 coords = np.ones([np.shape(OGB)[0],np.shape(OGB)[1],np.shape(OGB)[2]]) xcoord = np.linspace(-cx,np.shape(OGB)[1]-1-cx,np.shape(OGB)[1]) xcoords = np.multiply(np.transpose(coords,(0,2,1)),xcoord) ogbx = np.multiply(OGB, np.transpose(-xcoords,(0,2,1))) ogbxx = np.multiply(OGB, np.transpose(xcoords**2,(0,2,1))) ycoord = np.linspace(-cy,np.shape(OGB)[0]-1-cy,np.shape(OGB)[0]) ycoords = np.multiply(np.transpose(coords,(2,1,0)),ycoord) ogby = np.multiply(OGB, np.transpose(-ycoords,(2,1,0))) ogbyy = np.multiply(OGB, np.transpose(ycoords**2,(2,1,0))) zcoord = np.linspace(-cz,np.shape(OGB)[2]-1-cz,np.shape(OGB)[2]) zcoords = np.multiply(np.transpose(coords,(0,1,2)),zcoord) ogbz = np.multiply(OGB, np.transpose(-zcoords,(0,1,2))) ogbzz = np.multiply(OGB, np.transpose(zcoords**2,(0,1,2))) ogbxy = np.multiply(np.transpose(xcoords,(0,2,1)), -ogby) ogbxz = np.multiply(np.transpose(xcoords,(0,2,1)), -ogbz) ogbyz = np.multiply(np.transpose(ycoords,(2,1,0)), -ogbz) OGBX = [ogbx, ogby, ogbz] OGBXX = [[ogbxx, ogbxy, ogbxz], [ogbxy, ogbyy, ogbyz], [ogbxz, ogbyz, ogbzz]] if debug==1: print("Computed OGD, OGB, OGBX, OGBXX.\n" + "Current Runtime: " + str(time.time() - starttime)) return OGD, OGB, OGBX, OGBXX elif variant==1: xcoords = np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]]) ycoords = np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]]) zcoords = np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]]) cx=np.shape(OGB)[2] // 2 cy=np.shape(OGB)[1] // 2 cz=np.shape(OGB)[0] // 2 #this is all the same value in general #this is rather inefficient for z in range(np.shape(OGB)[0]): for y in range(np.shape(OGB)[0]): for x in range(np.shape(OGB)[0]): xcoords[z,y,x]=x-cx ycoords[z,y,x]=y-cy zcoords[z,y,x]=z-cz if debug==1: print("Computed OGD, OGB, xcoords,ycoords,zcoords.\n" + "Current Runtime: " + str(time.time() - starttime)) return OGD, OGB, xcoords, ycoords, zcoords def constructpcagrids_ms_pointcloud(inp, kr, rho, startscale, scaledist, ocg="str", taulow=0, variant=1, debug=0): """ Construct all necessary occupancy grids for the calculation of the multiscale curvature estimation using integral invariants and PCA. The main difference is the splitting of the kernel into separate parts. Input: -'inp' can be an already loaded pointcloud that consists of the three coordinates x y z or a string that leads to the file that is in x y z format with no header. -'rho' controls the amount of cells in the occupancy grid. -'kr' is the kernel radius -'ocg' specifies wether a strict or relaxed occupancy grid is used in the method itself. Use "str" for strict occgrid, "rlx" for relaxed. -'taulow' is the threshold for the values in the relaxed occgrid. If a value is >taulow it is used in the relaxed occgrid and ignored otherwise. This exists to limit the error that can happen due to the usage of a relaxed occupancy grid. -'variant': there are two variants to calculate these values, which are equivalent, but return two different outputs. -the debug parameter is just there to enable easier debugging, e.g. by printing certain statements at a time. Returns the Occupancy Grid of the Domain 'OGD', the Occupancy Grid of the Ball neighborhoord 'OGB', and the other two Occupancy Grids necessary for the convolution, which are OGB*(-x), here 'OGBX', and OGB*(x*x^T), here called 'OGBXX'. """ if debug==1: starttime = time.time() if type(inp)==str: #load pointcloud if ocg=="str": x, y, z = np.loadtxt(inp,skiprows=1, unpack=True, usecols=(0,1,2)) else: x, y, z, vals = np.loadtxt(inp,skiprows=1, unpack=True, usecols=(0,1,2,3)) elif isinstance(inp,np.ndarray): z = inp[:,0] y = inp[:,1] x = inp[:,2] if ocg=="rlx": vals = inp[:,3] elif isinstance(inp,list): #we assume the input list is given like [z,y,x] inp = np.transpose(inp) # shape is now [#pts, 3] (= z y x) #get the separate coordinate vectors z = inp[:,0] y = inp[:,1] x = inp[:,2] if ocg=="rlx": vals = inp[:,3] else: raise NameError('Input can be an already loaded pointcloud that \ consists of the three coordinates z y x or a string \ that leads to the file that is in z y x format with \ no header.') if debug==1: print("Initialised the input point cloud.\n" + "Current Runtime: " + str(time.time() - starttime)) print("Number of Points in the pointcloud: " + str(np.shape(x)[0])) if ocg=="str": OGD = constructoccgrid_pointcloud([z,y,x], rho) else: OGD = constructoccgrid_pointcloud([z,y,x, vals], rho, ocg=ocg, taulow=taulow) if kr==startscale: OGB = constructoccgrid_ball(kr) else: OGB = constructoccgrid_ballzone(kr=kr, alpha=scaledist) if (np.shape(OGB)[0] %2 == 0 | np.shape(OGB)[1] %2 == 0 | np.shape(OGB)[2] %2 == 0): warnings.warn("The lengths of the kernel should be uneven s.t. there\ is a proper center element.") if variant==0: ogbx, ogby, ogbz, ogbxx, ogbyy, ogbzz, ogbxy,\ ogbxz, ogbyz = np.zeros([9, np.shape(OGB)[0], np.shape(OGB)[1], np.shape(OGB)[2]]) cx=np.shape(OGB)[1] // 2 cy=np.shape(OGB)[0] // 2 cz=np.shape(OGB)[2] // 2 coords = np.ones([np.shape(OGB)[0],np.shape(OGB)[1],np.shape(OGB)[2]]) xcoord = np.linspace(-cx,np.shape(OGB)[1]-1-cx,np.shape(OGB)[1]) xcoords = np.multiply(np.transpose(coords,(0,2,1)),xcoord) ogbx = np.multiply(OGB, np.transpose(-xcoords,(0,2,1))) ogbxx = np.multiply(OGB, np.transpose(xcoords**2,(0,2,1))) ycoord = np.linspace(-cy,np.shape(OGB)[0]-1-cy,np.shape(OGB)[0]) ycoords = np.multiply(np.transpose(coords,(2,1,0)),ycoord) ogby = np.multiply(OGB, np.transpose(-ycoords,(2,1,0))) ogbyy = np.multiply(OGB, np.transpose(ycoords**2,(2,1,0))) zcoord = np.linspace(-cz,np.shape(OGB)[2]-1-cz,np.shape(OGB)[2]) zcoords = np.multiply(np.transpose(coords,(0,1,2)),zcoord) ogbz = np.multiply(OGB, np.transpose(-zcoords,(0,1,2))) ogbzz = np.multiply(OGB, np.transpose(zcoords**2,(0,1,2))) ogbxy = np.multiply(np.transpose(xcoords,(0,2,1)), -ogby) ogbxz = np.multiply(np.transpose(xcoords,(0,2,1)), -ogbz) ogbyz = np.multiply(np.transpose(ycoords,(2,1,0)), -ogbz) OGBX = [ogbx, ogby, ogbz] OGBXX = [[ogbxx, ogbxy, ogbxz], [ogbxy, ogbyy, ogbyz], [ogbxz, ogbyz, ogbzz]] if debug==1: print("Computed OGD, OGB, OGBX, OGBXX.\n" + "Current Runtime: " + str(time.time() - starttime)) return OGD, OGB, OGBX, OGBXX elif variant==1: xcoords = np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]]) ycoords = np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]]) zcoords = np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]]) cx=np.shape(OGB)[2] // 2 cy=np.shape(OGB)[1] // 2 cz=np.shape(OGB)[0] // 2 #this is all the same value in general #this is rather inefficient for z in range(np.shape(OGB)[0]): for y in range(np.shape(OGB)[0]): for x in range(np.shape(OGB)[0]): xcoords[z,y,x]=x-cx ycoords[z,y,x]=y-cy zcoords[z,y,x]=z-cz if debug==1: print("Computed OGD, OGB, xcoords,ycoords,zcoords.\n" + "Current Runtime: " + str(time.time() - starttime)) return OGD, OGB, xcoords, ycoords, zcoords def constructpcagrids_ms_ocg(inpocg, kr, startscale, scaledist, variant=1, debug=0): """ Construct all necessary occupancy grids for the calculation of the multiscale curvature estimation using integral invariants and PCA. The main difference is the splitting of the kernel into separate parts. Input: -'inp' is a strict or relaxed occupancy grid -'kr' is the kernel radius -'variant': there are two variants to calculate these values, which are equivalent, but return two different outputs. -the debug parameter is just there to enable easier debugging, e.g. by printing certain statements at a time. Returns the Occupancy Grid of the Domain 'OGD', the Occupancy Grid of the Ball neighborhoord 'OGB', and the other two Occupancy Grids necessary for the convolution, which are OGB*(-x), here 'OGBX', and OGB*(x*x^T), here called 'OGBXX'. """ if debug==1: starttime = time.time() OGD = inpocg if kr==startscale: OGB = constructoccgrid_ball(kr) else: OGB = constructoccgrid_ballzone(kr=kr, alpha=scaledist) if (np.shape(OGB)[0] %2 == 0 | np.shape(OGB)[1] %2 == 0 | np.shape(OGB)[2] %2 == 0): warnings.warn("The lengths of the kernel should be uneven s.t. there\ is a proper center element.") if variant==0: ogbx, ogby, ogbz, ogbxx, ogbyy, ogbzz, ogbxy,\ ogbxz, ogbyz = np.zeros([9, np.shape(OGB)[0], np.shape(OGB)[1], np.shape(OGB)[2]]) cx=np.shape(OGB)[1] // 2 cy=np.shape(OGB)[0] // 2 cz=np.shape(OGB)[2] // 2 coords = np.ones([np.shape(OGB)[0],np.shape(OGB)[1],np.shape(OGB)[2]]) xcoord = np.linspace(-cx,np.shape(OGB)[1]-1-cx,np.shape(OGB)[1]) xcoords = np.multiply(np.transpose(coords,(0,2,1)),xcoord) ogbx = np.multiply(OGB, np.transpose(-xcoords,(0,2,1))) ogbxx = np.multiply(OGB, np.transpose(xcoords**2,(0,2,1))) ycoord = np.linspace(-cy,np.shape(OGB)[0]-1-cy,np.shape(OGB)[0]) ycoords = np.multiply(np.transpose(coords,(2,1,0)),ycoord) ogby = np.multiply(OGB, np.transpose(-ycoords,(2,1,0))) ogbyy = np.multiply(OGB, np.transpose(ycoords**2,(2,1,0))) zcoord = np.linspace(-cz,np.shape(OGB)[2]-1-cz,np.shape(OGB)[2]) zcoords = np.multiply(np.transpose(coords,(0,1,2)),zcoord) ogbz = np.multiply(OGB, np.transpose(-zcoords,(0,1,2))) ogbzz = np.multiply(OGB, np.transpose(zcoords**2,(0,1,2))) ogbxy = np.multiply(np.transpose(xcoords,(0,2,1)), -ogby) ogbxz = np.multiply(np.transpose(xcoords,(0,2,1)), -ogbz) ogbyz = np.multiply(np.transpose(ycoords,(2,1,0)), -ogbz) OGBX = [ogbx, ogby, ogbz] OGBXX = [[ogbxx, ogbxy, ogbxz], [ogbxy, ogbyy, ogbyz], [ogbxz, ogbyz, ogbzz]] if debug==1: print("Computed OGD, OGB, OGBX, OGBXX.\n" + "Current Runtime: " + str(time.time() - starttime)) return OGD, OGB, OGBX, OGBXX elif variant==1: xcoords =
np.zeros([OGB.shape[0],OGB.shape[1],OGB.shape[2]])
numpy.zeros
import numpy as np from .util import pad, make_windows, weights_to_laplacian import scipy.sparse def closed_form_laplacian(image, epsilon): h, w, depth = image.shape n = h * w indices = np.arange(n).reshape(h, w) neighbor_indices = make_windows(pad(indices)) # shape: h w 3 means = make_windows(pad(image)).mean(axis=2) # shape: h w 9 3 centered_neighbors = make_windows(pad(image)) - means.reshape(h, w, 1, depth) # shape: h w 3 3 covariance = np.matmul(centered_neighbors.transpose(0, 1, 3, 2), centered_neighbors) / (3 * 3) inv_cov = np.linalg.inv(covariance + epsilon / (3 * 3) * np.eye(3, 3)) # shape: h w 9 3 weights = np.matmul(centered_neighbors, inv_cov) # shape: h w 9 9 weights = 1 + np.matmul(weights, centered_neighbors.transpose(0, 1, 3, 2)) i_inds =
np.tile(neighbor_indices, 3 * 3)
numpy.tile
__all__ = ['logpolar', 'patch_match'] import supreme as sr import supreme.geometry import supreme.config _log = supreme.config.get_log(__name__) from supreme.config import ftype,itype from supreme.io import Image import numpy as np import scipy.fftpack as fftpack from itertools import izip from scipy import ndimage as ndi import timeit fft2 = fftpack.fft2 ifft2 = fftpack.ifft2 def patch_match(a, b, angles=360, Rs=None, plot_corr=False): """Align two patches, using the log polar transform. Parameters ---------- a : ndarray of uint8 Reference image. b : ndarray of uint8 Target image. angles : int Number of angles to use in log-polar transform. Rs : int Number of radial samples used in the log-polar transform. plot_corr : bool, optional Whether to plot the phase correlation coefficients. Returns ------- c : float Peak correlation value. theta : float Estimated rotation angle from `a` to `b`. scale : float Estimated scaling from `a` to `b`. """ from image import phase_corr import supreme.transform as tr angles = np.linspace(0, np.pi * 2, angles) if Rs is None: Rs = max(a.shape[:2]) A, angles, log_base = tr.logpolar(a, angles=angles, Rs=Rs, extra_info=True) B = tr.logpolar(b, angles=angles, Rs=Rs) cv = phase_corr(B, A) m, n = np.unravel_index(np.argmax(cv), cv.shape) if n > Rs/2: n = n - Rs # correlation matched, but from the other side if plot_corr: import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import axes3d fig = plt.figure() cv_cut = cv[max(0, m - 30):min(cv.shape[1], m + 30), max(0, n - 30):min(cv.shape[0], n + 30)] coords = sr.geometry.Grid(*cv_cut.shape) ax3d = axes3d.Axes3D(fig) ax3d.plot_wireframe(coords['cols'], coords['rows'], cv_cut) ax3d.set_title('Phase correlation around peak\n$\\log(100 + x)$') plt.show() return cv[m, n], angles[m], np.exp(n * log_base) def _clearborder(image,border_shape): rows,cols = image.shape br,bc = border_shape image[:br,:] = 0 image[rows-br:,:] = 0 image[:,:bc] = 0 image[:,cols-bc:] = 0 return image def _peaks(image,nr,minvar=0): """Divide image into nr quadrants and return peak value positions.""" n = np.ceil(np.sqrt(nr)) quadrants = _rects(image.shape,n,n) peaks = [] for q in quadrants: q_image = image[q.as_slice()] q_argmax = q_image.argmax() q_maxpos = np.unravel_index(q_argmax,q.shape) if q_image.flat[q_argmax] > minvar: peaks.append(np.array(q_maxpos) + q.origin) return peaks def rectangle_inside(shape,percent=10): """Return a path inside the border as defined by shape.""" shape = np.asarray(shape) rtop = np.round_(shape*percent/100.) rbottom = shape - rtop cp = sr.geometry.coord_path return cp.build(cp.rectangle(rtop,rbottom)) def _rects(shape,divide_rows,divide_cols): class Rect: def __init__(self,top_r,top_c,height,width): self.top_r = top_r self.top_c = top_c self.width = width self.height = height @property def origin(self): return (self.top_r,self.top_c) @property def shape(self): return (int(self.height),int(self.width)) @property def coords(self): """x- and y-coordinates, rather than row/column""" return (self.top_c,self.top_c, self.top_c+self.width,self.top_c+self.width),\ (self.top_r,self.top_r+self.height, self.top_r+self.height,self.top_r) def as_slice(self): return [slice(self.top_r,self.top_r+self.height), slice(self.top_c,self.top_c+self.width)] def __str__(self): return "Rectangle: (%d,%d), height: %d, width: %d" % \ (self.top_r,self.top_c,self.height,self.width) rows,cols = shape rows = np.linspace(0,rows,divide_rows+1).astype(int) cols = np.linspace(0,cols,divide_cols+1).astype(int) rects = [] for r0,r1 in zip(rows[:-1],rows[1:]): for c0,c1 in zip(cols[:-1],cols[1:]): rects.append(Rect(r0,c0,r1-r0,c1-c0)) return rects def _lpt_on_path(image,path,shape, **lp_args): """Calculate log polar transforms along a given path.""" path = list(path) cutouts = sr.geometry.cut.along_path(path,image,shape=shape) for pos,cut in izip(path,cutouts): lpt = sr.transform.logpolar(cut, **lp_args) yield (pos,cut,lpt - lpt.mean()) def _lpt_corr(reference_frames, frame, descr, path, window_shape, fft_shape, angles, log_base, **lpt_args): try: max_corr_sofar = descr['source'].info['variance'] except: max_corr_sofar = 0 corr_vals = [] for pos,cut,lpt in _lpt_on_path(frame,path,window_shape, **lpt_args): # prepare correlation FFT X = fft2(lpt) for rf in reference_frames: # Phase correlation corr = rf['fft'] * X.conj() corr /= np.abs(corr) corr = np.abs(ifft2(corr)) corr_max_arg = corr.argmax() corr_max = corr.flat[corr_max_arg] corr_vals.append(corr_max) if corr_max_arg != 0 and corr_max > max_corr_sofar: rotation, scale =
np.unravel_index(corr_max_arg, fft_shape)
numpy.unravel_index
import matplotlib.pyplot as plt import yaml import os import zipfile import numpy as np # ['all_grad_norm', 'all_updated_grad_norm', 'all_probability', 'all_entropy', 'all_entropy_scale', 'all_probability_distribution'] plt.figure() npz_path = '/workspace/mnt/storage/guangcongzheng/zju_zgc/guided-diffusion/log/imagenet1000_classifier256x256_channel128_upperbound/predict/model500000_imagenet1000_stepsddim25_sample192_plot/metainfo_scale10.0_stepsddim25_class0_samples_192x256x256x3.npz' npz = np.load(npz_path) arr = npz['all_probability'] plt.plot([t for t in range(960, -1, -40)], np.mean(arr, axis=1)) plt.xticks([960 - t for t in range(960, -1, -160)], []) npz_path = '/workspace/mnt/storage/guangcongzheng/zju_zgc/guided-diffusion/log/imagenet1000_classifier256x256_channel128_upperbound/predict/model500000_imagenet1000_stepsddim25_sample192_plot_entropyScale/metainfo_scale5.0_stepsddim25_class0_samples_192x256x256x3.npz' # npz_path = '/workspace/mnt/storage/guangcongzheng/zju_zgc/guided-diffusion/log/imagenet1000_classifier256x256_channel128_upperbound/predict/model500000_imagenet1000_stepsddim25_sample192_plot_entropyScale/metainfo_scale10.0_stepsddim25_class0_samples_192x256x256x3.npz' # npz_path = '/workspace/mnt/storage/guangcongzheng/zju_zgc/guided-diffusion/log/imagenet1000_classifier256x256_channel128_upperbound/predict/model500000_imagenet1000_stepsddim25_sample5000_plot_entropyScale/metainfo_scale10.0_stepsddim25_class0-999_samples_5000x256x256x3.npz' npz = np.load(npz_path) arr = npz['all_probability'] plt.plot([t for t in range(960, -1, -40)],
np.mean(arr, axis=1)
numpy.mean
# threads.py # import time import pickle from datetime import datetime import numpy as np from PyQt5.QtCore import QThread from .. import __version__ from ..fly import Fly from ..ts import FixedCourtshipTrackingSummary from .tracking import * class TrackingThread(QThread): """Worker thread to run tracking algorithm. Parameters ---------- video_settings : list of TrackingSettings Each TrackingSettings object should be completely filled before creating an instance of this object, and running this thread. logger : QTextEdit To store information about video being currently tracked. This may need to be changed to prevent "QObject::connect: Cannot queue arguments of type 'QTextBlock' from being displayed. """ def __init__(self, video_settings, logger, progress, parent=None): super(TrackingThread, self).__init__(parent) self.video_settings = video_settings self.logger = logger self.tracking_progress = progress def run(self): for ix in xrange(len(self.video_settings)): start_time = time.time() settings = self.video_settings[ix] video = settings.video n_frames = video.get_n_frames() timestamps = video.get_all_timestamps() fps = (1. / np.mean(
np.diff(timestamps)
numpy.diff
from __future__ import absolute_import, division, print_function import numpy as np import time import copy from utils.npangles import quaternion_between, quaternion_to_expmap, expmap_to_rotmat, rotmat_to_euler, rotmat_to_quaternion, rotate_vector_by_quaternion MASK_MODES = ('No mask', 'Future Prediction', 'Missing Frames', 'Occlusion Simulation', 'Structured Occlusion', 'Noisy Transmission') def gen_mask(mask_type, keep_prob, batch_size, njoints, seq_len, body_members, baseline_mode=False): # Default mask, no mask mask = np.ones(shape=(batch_size, njoints, seq_len, 1)) if mask_type == 1: # Future Prediction mask[:, :, np.int(seq_len * keep_prob):, :] = 0.0 elif mask_type == 2: # Missing Frames occ_frames = np.random.randint(seq_len - 1, size=np.int(seq_len * (1.0 - keep_prob))) mask[:, :, occ_frames, :] = 0.0 elif mask_type == 3: # Occlusion Simulation rand_joints = np.random.randint(njoints, size=np.int(njoints * (1.0 - keep_prob))) mask[:, rand_joints, :, :] = 0.0 elif mask_type == 4: # Structured Occlusion Simulation rand_joints = set() while ((njoints - len(rand_joints)) > (njoints * keep_prob)): joints_to_add = (body_members.values()[np.random.randint(len(body_members))])['joints'] for joint in joints_to_add: rand_joints.add(joint) mask[:, list(rand_joints), :, :] = 0.0 elif mask_type == 5: # Noisy transmission mask = np.random.binomial(1, keep_prob, size=mask.shape) if baseline_mode: # This unmasks first and last frame for all sequences (required for baselines) mask[:, :, [0, -1], :] = 1.0 return mask def gen_latent_noise(batch_size, latent_cond_dim): return np.random.uniform(size=(batch_size, latent_cond_dim)) def linear_baseline(real_seq, mask): linear_seq = real_seq * mask for j in range(real_seq.shape[0]): for f in range(1, real_seq.shape[1] - 1): if mask[j, f, 0] == 0: prev_f = f - 1 for g in range(f - 1, -1, -1): if mask[j, g, 0] == 1: prev_f = g break next_f = f + 1 for g in range(f + 1, real_seq.shape[1]): if mask[j, g, 0] == 1: next_f = g break blend_factor = (f - prev_f) / (next_f - prev_f) linear_seq[j, f, :] = ((linear_seq[j, prev_f, :] * (1 - blend_factor)) + (linear_seq[j, next_f, :] * blend_factor)) return linear_seq def burke_baseline(rawdata, mask, tol=0.0025, sigR=1e-3, keepOriginal=True): """Low-Rank smoothed Kalman filter, based in Burke et. al""" rawdata = np.transpose(rawdata.copy(), (1, 0, 2)) raw_shape = [int(dim) for dim in rawdata.shape] rawdata = np.reshape(rawdata, (raw_shape[0], raw_shape[1] * raw_shape[2])) mask = np.tile(mask.copy(), (1, 1, raw_shape[2])) mask = np.transpose(mask, (1, 0, 2)) mask = np.reshape(mask, (raw_shape[0], raw_shape[1] * raw_shape[2])) rawdata[mask == 0] = np.nan X = rawdata[~np.isnan(rawdata).any(axis=1)] if X.size == 0 or np.product(X.shape[-2:]) == 0: return np.zeros((raw_shape[1], raw_shape[0], raw_shape[2])) m = np.mean(X, axis=0) U, S, V = np.linalg.svd(X - m) d = np.nonzero(
np.cumsum(S)
numpy.cumsum
import inspect import sys from typing import List, Optional import numpy as np from .config import ( SIMULATION_CONFIG, get_observation_names, get_reward_names_and_weights, ) from .models import Direction, Node, Table from .simulation import Factory __all__ = ["get_observations", "get_reward", "get_done", "can_move_in_direction"] def get_done(agent_id: int, factory: Factory) -> bool: """We're done with the table if it doesn't have a core anymore or we're out of moves.""" counter = factory.agent_step_counter.get(agent_id) if counter > factory.max_num_steps: # Note that we track the maximum number of steps per agent, not in total. return True agent: Table = factory.tables[agent_id] return not agent.has_core() def get_reward(agent_id: int, factory: Factory, episodes: int) -> float: """Get the reward for a single agent in its current state. Similar to observations, reward terms get configured in config.yml. """ # only configured rewards get picked up rewards_to_use = get_reward_names_and_weights() rewards = {} if SIMULATION_CONFIG.get("tighten_max_steps"): discount_by = SIMULATION_CONFIG.get("discount_episodes_by") discount_until = SIMULATION_CONFIG.get("discount_episodes_until") episode_discount = max(discount_until, 1 - (episodes / float(discount_by))) factory.max_num_steps = int(factory.initial_max_num_steps * episode_discount) # We set this to 0, as this is just a mean to decrease the max step count over # time. This leads to shorter episodes and is reflected in "rew_punish_slow_tables". rewards["rew_tighten_max_steps"] = 0 max_num_steps = factory.max_num_steps steps = factory.agent_step_counter.get(agent_id) agent: Table = factory.tables[agent_id] # sum negative rewards due to collisions and illegal moves if factory.moves.get(agent_id): move = factory.moves[agent_id].pop(-1) rewards["rew_collisions"] = move.reward() # high incentive for reaching a target, quickly time_taken = steps / float(max_num_steps) if agent.is_at_target: rewards["rew_found_target"] = 1.0 - time_taken rewards["rew_found_target_squared"] = (1.0 - time_taken) ** 2 # Draft reward term that accounts for physical moves physical_moves = factory.move_counter["MOVED"] physical_moves_ratio = physical_moves / float(max_num_steps) if agent.is_at_target: rewards["rew_found_target_physical"] = 1.0 - physical_moves_ratio rewards["rew_found_target_physical_squared"] = (1.0 - physical_moves_ratio) ** 2 # punish if too slow if steps == max_num_steps: num_cores_left = len([t for t in factory.tables if t.has_core()]) rewards["rew_punish_slow_tables"] = -1 * num_cores_left if not agent.has_core(): # If an agent without core is close to one with core, let it shy away... rewards["rew_avoid_cores"] = -1.0 * has_core_neighbour(agent.node, factory) # ... and if it sits on any current target, punish it # TODO: how can we account for the fact that tables might be "on the path" # to a target, given that we don't know what the path is? # Maybe we can account for situation in which ALL paths to a core target are obstructed # by this table? all_targets = [c.current_target for c in factory.cores] rewards["rew_blocking_target"] = -1.0 * int(agent.node in all_targets) reward = 0 for reward_name, weight in rewards_to_use.items(): # multiply rewards by configured weight terms reward += rewards.get(reward_name, 0) * weight return reward def one_hot_encode(total: int, positions: List[int]): """Compute one-hot encoding of a list of positions (ones) in a vector of length 'total'.""" lst = [0 for _ in range(total)] for position in positions: assert position <= total, "index out of bounds" lst[position] = 1 return lst def can_move_in_direction(node: Node, direction: Direction, factory: Factory): """If an agent has a neighbour in the specified direction, add a 1, else 0 to the observation space. If that neighbour is free, add 1, else 0 (a non-existing neighbour counts as occupied). """ has_direction = node.has_neighbour(direction) is_free = False if has_direction: neighbour: Node = node.get_neighbour(direction) if neighbour.is_rail: neighbour_rail = factory.get_rail(neighbour) is_free = neighbour_rail.is_free() or node in neighbour_rail.nodes else: is_free = not neighbour.has_table() return is_free def has_core_neighbour(node: Node, factory: Factory): """If a node has at least one direct neighbour with a core, return True, else False. We use this to inform tables without cores to move out of the way of tables with cores.""" for direction in Direction: has_direction = node.has_neighbour(direction) is_free = can_move_in_direction(node, direction, factory) if has_direction and not is_free: neighbour: Node = node.get_neighbour(direction) if neighbour.has_table() and neighbour.table.has_core(): return True return False # COORDINATE-BASED OBSERVATIONS # TODO: investigate if there's a way to assess the "value" of locations for # non-core bearing tables to move to? This way we could assign them more concrete goals in the reward function. def obs_agent_id(agent_id: int, factory: Factory) -> np.ndarray: """This agent's ID""" return np.asarray([agent_id]) def obs_agent_coordinates(agent_id: int, factory: Factory) -> np.ndarray: """This agent's coordinates""" agent: Table = factory.tables[agent_id] return np.asarray(list(agent.node.coordinates)) def obs_all_table_coordinates(agent_id: int, factory: Factory) -> np.ndarray: """encode all table coordinates""" coordinates = [] for table in factory.tables: coordinates += list(table.node.coordinates) return np.asarray(coordinates) def obs_agent_has_neighbour(agent_id: int, factory: Factory) -> np.ndarray: """Does this agent have a neighbouring node?""" agent: Table = factory.tables[agent_id] return np.asarray( [ agent.node.has_neighbour(Direction.up), agent.node.has_neighbour(Direction.right), agent.node.has_neighbour(Direction.down), agent.node.has_neighbour(Direction.left), ] ) def obs_agent_free_neighbour(agent_id: int, factory: Factory): """Does this agent have a neighbouring node and, if so, can we go there?""" agent: Table = factory.tables[agent_id] return np.asarray( [ can_move_in_direction(agent.node, Direction.up, factory), can_move_in_direction(agent.node, Direction.right, factory), can_move_in_direction(agent.node, Direction.down, factory), can_move_in_direction(agent.node, Direction.left, factory), ] ) def obs_agent_has_core(agent_id: int, factory: Factory): """Does this agent have a core?""" agent: Table = factory.tables[agent_id] return np.asarray([agent.has_core()]) def obs_agent_core_target_coordinates(agent_id: int, factory: Factory): """Return this agent's core coordinates, it it has a core, otherwise [-1, -1]""" agent: Table = factory.tables[agent_id] if agent.has_core(): current_target: Node = agent.core.current_target return np.asarray(list(current_target.coordinates)) else: # TODO: is there something more natural/clever than this? # compare this to the one-hot encoded situation, where we simply have a zeros-only array. return
np.asarray([-1, -1])
numpy.asarray
""" Copyright 2019 <NAME>, <NAME> This file is part of A2DR. A2DR is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. A2DR is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with A2DR. If not, see <http://www.gnu.org/licenses/>. """ import numpy as np import scipy as sp import numpy.linalg as LA import copy import time import scipy.sparse.linalg import matplotlib.pyplot as plt from cvxpy import * from scipy import sparse from scipy.optimize import nnls from sklearn.datasets import make_sparse_spd_matrix from a2dr import a2dr from a2dr.proximal import * from a2dr.tests.base_test import BaseTest class TestPaper(BaseTest): """Reproducible tests and plots for A2DR paper experiments.""" def setUp(self): np.random.seed(1) self.eps_rel = 1e-8 # specify these in all examples? self.eps_abs = 1e-6 self.MAX_ITER = 1000 def test_nnls(self, figname): # minimize ||Fz - g||_2^2 subject to z >= 0. # Problem data. p, q = 10000, 8000 density = 0.001 F = sparse.random(p, q, density=density, data_rvs=np.random.randn) g = np.random.randn(p) # Convert problem to standard form. # f_1(x_1) = ||Fx_1 - g||_2^2, f_2(x_2) = I(x_2 >= 0). # A_1 = I_n, A_2 = -I_n, b = 0. prox_list = [lambda v, t: prox_sum_squares_affine(v, t, F, g), prox_nonneg_constr] A_list = [sparse.eye(q), -sparse.eye(q)] b = np.zeros(q) # Solve with DRS. drs_result = a2dr(prox_list, A_list, b, anderson=False, precond=True, max_iter=self.MAX_ITER) print('Finish DRS.') # Solve with A2DR. t0 = time.time() a2dr_result = a2dr(prox_list, A_list, b, anderson=True, precond=True, max_iter=self.MAX_ITER) t1 = time.time() a2dr_beta = a2dr_result["x_vals"][-1] print('nonzero entries proportion = {}'.format(np.sum(a2dr_beta > 0)*1.0/len(a2dr_beta))) print('Finish A2DR.') self.compare_total(drs_result, a2dr_result, figname) # Check solution correctness. print('run time of A2DR = {}'.format(t1-t0)) print('constraint violation of A2DR = {}'.format(np.min(a2dr_beta))) print('objective value of A2DR = {}'.format(np.linalg.norm(F.dot(a2dr_beta)-g))) def test_nnls_reg(self, figname): # minimize ||Fz - g||_2^2 subject to z >= 0. # Problem data. p, q = 300, 500 density = 0.001 F = sparse.random(p, q, density=density, data_rvs=np.random.randn) g = np.random.randn(p) # Convert problem to standard form. # f_1(x_1) = ||Fx_1 - g||_2^2, f_2(x_2) = I(x_2 >= 0). # A_1 = I_n, A_2 = -I_n, b = 0. prox_list = [lambda v, t: prox_sum_squares_affine(v, t, F, g), prox_nonneg_constr] A_list = [sparse.eye(q), -sparse.eye(q)] b = np.zeros(q) # Solve with no regularization. a2dr_noreg_result = a2dr(prox_list, A_list, b, anderson=True, precond=True, lam_accel=0, max_iter=self.MAX_ITER) print('Finish A2DR no regularization.') # Solve with constant regularization. a2dr_consreg_result = a2dr(prox_list, A_list, b, anderson=True, precond=True, ada_reg=False, max_iter=self.MAX_ITER) print('Finish A2DR constant regularization.') # Solve with adaptive regularization. a2dr_result = a2dr(prox_list, A_list, b, anderson=True, precond=True, ada_reg=True, max_iter=self.MAX_ITER) print('Finish A2DR adaptive regularization.') self.compare_total_all([a2dr_noreg_result, a2dr_consreg_result, a2dr_result], ['no-reg', 'constant-reg', 'ada-reg'], figname) def test_sparse_inv_covariance(self, q, alpha_ratio, figname): # minimize -log(det(S)) + trace(S*Q) + \alpha*||S||_1 subject to S is symmetric PSD. # Problem data. # q: Dimension of matrix. p = 1000 # Number of samples. ratio = 0.9 # Fraction of zeros in S. S_true = sparse.csc_matrix(make_sparse_spd_matrix(q, ratio)) Sigma = sparse.linalg.inv(S_true).todense() z_sample = np.real(sp.linalg.sqrtm(Sigma)).dot(np.random.randn(q,p)) # make sure it's real matrices. Q = np.cov(z_sample) print('Q is positive definite? {}'.format(bool(LA.slogdet(Q)[0]))) mask = np.ones(Q.shape, dtype=bool) np.fill_diagonal(mask, 0) alpha_max = np.max(np.abs(Q)[mask]) alpha = alpha_ratio*alpha_max # 0.001 for q = 100, 0.01 for q = 50. # Convert problem to standard form. # f_1(S_1) = -log(det(S_1)) + trace(S_1*Q) on symmetric PSD matrices, f_2(S_2) = \alpha*||S_2||_1. # A_1 = I, A_2 = -I, b = 0. prox_list = [lambda v, t: prox_neg_log_det(v.reshape((q,q), order='C'), t, lin_term=t*Q).ravel(order='C'), lambda v, t: prox_norm1(v, t*alpha)] A_list = [sparse.eye(q*q), -sparse.eye(q*q)] b = np.zeros(q*q) # Solve with DRS. drs_result = a2dr(prox_list, A_list, b, anderson=False, precond=True, max_iter=self.MAX_ITER) print('Finished DRS.') # Solve with A2DR. a2dr_result = a2dr(prox_list, A_list, b, anderson=True, precond=True, max_iter=self.MAX_ITER) # lam_accel = 0 seems to work well sometimes, although it oscillates a lot. a2dr_S = a2dr_result["x_vals"][-1].reshape((q,q), order='C') self.compare_total(drs_result, a2dr_result, figname) print('Finished A2DR.') print('recovered sparsity = {}'.format(np.sum(a2dr_S != 0)*1.0/a2dr_S.shape[0]**2)) def test_l1_trend_filtering(self, figname): # minimize (1/2)||y - z||_2^2 + \alpha*||Dz||_1, # where (Dz)_{t-1} = z_{t-1} - 2*z_t + z_{t+1} for t = 2,...,q-1. # Reference: https://web.stanford.edu/~boyd/papers/l1_trend_filter.html # Problem data. q = int(2*10**4) y = np.random.randn(q) alpha = 0.01*np.linalg.norm(y, np.inf) # Form second difference matrix. D = sparse.lil_matrix(sparse.eye(q)) D.setdiag(-2, k = 1) D.setdiag(1, k = 2) D = D[:(q-2),:] # Convert problem to standard form. # f_1(x_1) = (1/2)||y - x_1||_2^2, f_2(x_2) = \alpha*||x_2||_1. # A_1 = D, A_2 = -I_{n-2}, b = 0. prox_list = [lambda v, t: prox_sum_squares(v, t = 0.5*t, offset = y), lambda v, t: prox_norm1(v, t = alpha*t)] A_list = [D, -sparse.eye(q-2)] b = np.zeros(q-2) # Solve with DRS. drs_result = a2dr(prox_list, A_list, b, anderson=False, precond=True, max_iter=self.MAX_ITER) print('Finished DRS.') # Solve with A2DR. a2dr_result = a2dr(prox_list, A_list, b, anderson=True, precond=True, max_iter=self.MAX_ITER) self.compare_total(drs_result, a2dr_result, figname) print('Finished A2DR.') def test_optimal_control(self, figname): # Problem data/ p = 80 q = 150 L = 20 F = np.random.randn(q,q) G = np.random.randn(q,p) h = np.random.randn(q) z_init = np.random.randn(q) F = F / np.max(np.abs(LA.eigvals(F))) z_hat = z_init for l in range(L-1): u_hat = np.random.randn(p) u_hat = u_hat / np.max(np.abs(u_hat)) z_hat = F.dot(z_hat) + G.dot(u_hat) + h z_term = z_hat # no normalization of u_hat actually leads to more significant improvement of A2DR over DRS, and also happens to be feasible # x_term = 0 also happens to be feasible # Convert problem to standard form. def prox_sat(v, t, v_lo = -np.inf, v_hi = np.inf): return prox_box_constr(prox_sum_squares(v, t), t, v_lo, v_hi) prox_list = [prox_sum_squares, lambda v, t: prox_sat(v, t, -1, 1)] A1 = sparse.lil_matrix(((L+1)*q,L*q)) A1[q:L*q,:(L-1)*q] = -sparse.block_diag((L-1)*[F]) A1.setdiag(1) A1[L*q:,(L-1)*q:] = sparse.eye(q) A2 = sparse.lil_matrix(((L+1)*q,L*p)) A2[q:L*q,:(L-1)*p] = -sparse.block_diag((L-1)*[G]) A_list = [sparse.csr_matrix(A1), sparse.csr_matrix(A2)] b_list = [z_init] b_list.extend((L-1)*[h]) b_list.extend([z_term]) b = np.concatenate(b_list) # Solve with CVXPY z = Variable((L,q)) u = Variable((L,p)) obj = sum([sum_squares(z[l]) + sum_squares(u[l]) for l in range(L)]) constr = [z[0] == z_init, norm_inf(u) <= 1] constr += [z[l+1] == F*z[l] + G*u[l] + h for l in range(L-1)] constr += [z[L-1] == z_term] prob = Problem(Minimize(obj), constr) prob.solve(solver='SCS', verbose=True) # OSQP fails for p=50, q=100, L=30, and also for p=100, q=200, L=30 # SCS also fails to converge cvxpy_obj = prob.value cvxpy_z = z.value.ravel(order='C') cvxpy_u = u.value.ravel(order='C') # Solve with DRS. drs_result = a2dr(prox_list, A_list, b, anderson=False, precond=True, max_iter=self.MAX_ITER) print('Finished DRS.') # Solve with A2DR. a2dr_result = a2dr(prox_list, A_list, b, anderson=True, precond=True, max_iter=self.MAX_ITER) self.compare_total(drs_result, a2dr_result, figname) print('Finished A2DR.') # check solution correctness a2dr_z = a2dr_result['x_vals'][0] a2dr_u = a2dr_result['x_vals'][1] a2dr_obj = np.sum(a2dr_z**2) + np.sum(a2dr_u**2) cvxpy_obj_raw = np.sum(cvxpy_z**2) + np.sum(cvxpy_u**2) cvxpy_Z = cvxpy_z.reshape([L,q], order='C') cvxpy_U = cvxpy_u.reshape([L,p], order='C') a2dr_Z = a2dr_z.reshape([L,q], order='C') a2dr_U = a2dr_u.reshape([L,p], order='C') cvxpy_constr_vio = [np.linalg.norm(cvxpy_Z[0]-z_init), np.linalg.norm(cvxpy_Z[L-1]-z_term)] a2dr_constr_vio = [np.linalg.norm(a2dr_Z[0]-z_init), np.linalg.norm(a2dr_Z[L-1]-z_term)] for l in range(L-1): cvxpy_constr_vio.append(np.linalg.norm(cvxpy_Z[l+1]-F.dot(cvxpy_Z[l])-G.dot(cvxpy_U[l])-h)) a2dr_constr_vio.append(np.linalg.norm(a2dr_Z[l+1]-F.dot(a2dr_Z[l])-G.dot(a2dr_U[l])-h)) print('linear constr vio cvxpy = {}, linear constr_vio a2dr = {}'.format( np.mean(cvxpy_constr_vio), np.mean(a2dr_constr_vio))) print('norm constr vio cvxpy = {}, norm constr vio a2dr = {}'.format(np.max(np.abs(cvxpy_u)), np.max(np.abs(a2dr_u)))) print('objective cvxpy = {}, objective cvxpy raw = {}, objective a2dr = {}'.format(cvxpy_obj, cvxpy_obj_raw, a2dr_obj)) def test_coupled_qp(self, figname): # Problem data. L = 8 # number of blocks s = 50 # number of coupling constraints ql = 300 # variable dimension of each subproblem QP pl = 200 # constraint dimension of each subproblem QP G_list = [np.random.randn(s,ql) for l in range(L)] F_list = [np.random.randn(pl,ql) for l in range(L)] c_list = [np.random.randn(ql) for l in range(L)] z_tld_list = [np.random.randn(ql) for l in range(L)] d_list = [F_list[l].dot(z_tld_list[l])+0.1 for l in range(L)] G = np.hstack(G_list) z_tld = np.hstack(z_tld_list) h = G.dot(z_tld) H_list = [np.random.randn(ql,ql) for l in range(L)] Q_list = [H_list[l].T.dot(H_list[l]) for l in range(L)] # Convert problem to standard form. def tmp(l, Q_list, c_list, F_list, d_list): return lambda v, t: prox_qp(v, t, Q_list[l], c_list[l], F_list[l], d_list[l]) # Use "map" method to avoid implicit overriding, which would make all the proximal operators the same prox_list = list(map(lambda l: tmp(l, Q_list, c_list, F_list, d_list), range(L))) A_list = G_list b = h # Solve with DRS. drs_result = a2dr(prox_list, A_list, b, anderson=False, precond=True, max_iter=self.MAX_ITER) print('DRS finished.') # Solve with A2DR. a2dr_result = a2dr(prox_list, A_list, b, anderson=True, precond=True, max_iter=self.MAX_ITER) print('A2DR finished.') self.compare_total(drs_result, a2dr_result, figname) # Check solution correctness. a2dr_z = a2dr_result['x_vals'] a2dr_obj = np.sum([a2dr_z[l].dot(Q_list[l]).dot(a2dr_z[l]) + c_list[l].dot(a2dr_z[l]) for l in range(L)]) a2dr_constr_vio = [np.linalg.norm(np.maximum(F_list[l].dot(a2dr_z[l])-d_list[l],0))**2 for l in range(L)] a2dr_constr_vio += [np.linalg.norm(G.dot(
np.hstack(a2dr_z)
numpy.hstack
import numpy as np from scipy import optimize def fit(X, y, population_count=100, elite_count=2, velocity_rate=0.001, epoch_count=25): params_count = 4 lower_limits = np.array([0, 0, -np.pi, -1]) upper_limits = np.array([1, np.pi * 2, np.pi, 1]) bounds = np.array([(l, u) for l, u in zip(lower_limits, upper_limits)]) def function(afsb, t): return afsb[..., 0:1] * np.sin(afsb[..., 1:2] * t - afsb[..., 2:3]) + afsb[..., 3:4] def error(params, X, y): y_ = function(params, X) return np.sqrt(np.sum((y - y_) ** 2, axis=-1) / X.shape[-1]) def extinctions(fitness): return (swarm_fitness + np.min(swarm_fitness) * ( ((params_count - 1.0) / (population_count - 1.0)) - 1.0)) / np.max( swarm_fitness) # initial population swarm_positions = np.random.uniform(lower_limits, upper_limits, (population_count, params_count)) swarm_velocities = np.random.uniform(-0.1, 0.1, population_count * params_count).reshape( (population_count, params_count)) swarm_fitness = error(swarm_positions, X[np.newaxis, :], y) swarm_extinction = extinctions(swarm_fitness) swarm_sorted_args = np.argsort(swarm_fitness, axis=0) # global best solution = swarm_positions[swarm_sorted_args[0], ...] best_fitness = swarm_fitness[swarm_sorted_args[0]] # iterate for epoch in range(epoch_count): # early exit if close enough if best_fitness < 1e-6: break # pick elites and do a gradient descent using l-bfgs-b algorithm for e in range(elite_count): x, _, _ = optimize.fmin_l_bfgs_b( func=error, x0=swarm_positions[swarm_sorted_args[e], ...], args=(X[np.newaxis, :], y), approx_grad=True, bounds=bounds, maxiter=100) swarm_velocities[swarm_sorted_args[e], ...] = np.random.uniform() * \ swarm_velocities[swarm_sorted_args[e], ...] + x - \ swarm_positions[swarm_sorted_args[e], ...] swarm_positions[swarm_sorted_args[e], ...] = x # create the offsprings offspring_positions = np.zeros((population_count, params_count), dtype=np.float32) offspring_velocities = np.zeros((population_count, params_count), dtype=np.float32) offspring_fitness = np.zeros(population_count, dtype=np.float32) # populate offsprings for off in range(population_count): parents_count = len(swarm_sorted_args) # rank based selection probabilities = np.array([parents_count - i for i in range(parents_count)], dtype=np.float32) probabilities /= np.sum(probabilities) a, b, prot = np.random.choice(swarm_sorted_args, 3, p=probabilities, replace=False) # combine parents mix_values = np.random.uniform(size=params_count) offspring_positions[off, :] = swarm_positions[a, :] * mix_values + \ swarm_positions[b, :] * (1.0 - mix_values) # add a bit of the velocity from the parents offspring_positions[off, :] += velocity_rate * (swarm_velocities[a, :] + swarm_velocities[b, :]) # use the velocities from the parents offspring_velocities[off, :] = np.random.uniform(size=params_count) * swarm_velocities[a, :] + \ np.random.uniform(size=params_count) * swarm_velocities[b, :] # mutate p = (np.mean(swarm_extinction[[a, b]]) * (params_count - 1.0) + 1.0) / params_count if p < np.random.uniform(): swarm_min = np.min(swarm_positions, axis=0) swarm_max = np.max(swarm_positions, axis=0) x = np.random.uniform(-1, 1, size=params_count) * np.mean(swarm_extinction[[a, b]]) * ( swarm_max - swarm_min) offspring_velocities[off, :] += x offspring_positions[off, :] += x # adoption mix_values =
np.random.uniform(size=params_count)
numpy.random.uniform
# This code is optimized for just the 3D plot of the evolution of # The defuzzified output based on the input parameters import numpy as np import matplotlib.pyplot as plt # A function that creates a triangle membership function def triangleMembershipFunction(x, a, b, c): # This function takes in an array of x points and # a vector containing a, b and c # where a=> left side, b = center, c = right side y = np.zeros(len(x)) # shape of the output array # Setting the areas outside of our interest to zero y[x <= a] = 0 y[x >= c] = 0 # Setting the center to 1 y[x == b] = 1 # Determine the index of the left side and right side left_side = np.logical_and(a < x, x <= b) right_side = np.logical_and(b < x, x < c) # Replacing those values with the appropriate values using interpolation y[left_side] = (x[left_side] - a) / (b - a) y[right_side] = (x[right_side] - c) / (b - c) return y # A function that interpolates the fuzzy data to give the degree of membership def Interpolate(x, y, value): # This function takes in: # x => a 1d array of x-axis coordinates # y => a 1d array of y-axis coordinates # value => the exact value we desire the interpolation for y = np.interp(value, x, y) return y # A function that computes the center of Gravity of 2 Arrays def Centroid(x, aggregate): # This function takes in the x-axis of the curve and the aggregated area of the # fuzzy set and returns the centroid position centroid = np.sum(x * aggregate) / np.sum(aggregate) return centroid # A function that computes the mean of maximum of 2 arrays def MeanOfMax(x, a): # This function takes in a 1-D array a => aggregate of the fuzzy logic # another 1-D array x=> the x-axis # Returns the mean of the maximum value(s) of the aggregate array idx = np.argwhere(a == np.max(a)) # Finding the index of all max values on the y-axis res = np.mean(x[idx]) # computing the mean of the max values on the x-axis return res # Generating the universe variables # *Ammo and Health input ranges [0, 100] # *Action output ranges [0, 100] # Generating the points from 1 to 100 n = 1000 # number of points x_ammo = np.linspace(0, 100, n) x_health = np.linspace(0, 100, n) x_action = np.linspace(0, 100, n) # Fuzzy Logic Game Engine # This function takes in the health and ammo value and returns the # fuzzy action output after applying fuzzy logic # it returns 4 outputs: *the crisp value from Sum aggregate and centroid defuzz # *the crisp value from Sum aggregate and Mean of Maximum defuzz # *the crisp value from Max aggregate and Mean of Maximum defuzz # *the crisp value from Max aggregate and Mean of Maximum defuzz def fuzzyEngine(x_ammo, x_health, x_action, health, ammo): # This function takes in the ammo x-axis, health x-axis, ammo x-axis # the health and ammo input # Then returns the crisp value of the action to be take. # Creating triangle fuzzy membership functions for the ammo ammo_vlo = triangleMembershipFunction(x_ammo, 0, 0, 25) # very low ammo ammo_lo = triangleMembershipFunction(x_ammo, 0, 25, 50) # low ammo ammo_md = triangleMembershipFunction(x_ammo, 25, 50, 75) # medium ammo ammo_hi = triangleMembershipFunction(x_ammo, 50, 75, 100) # high ammo ammo_vhi = triangleMembershipFunction(x_ammo, 75, 100, 100) # very high ammo # Creating triangle fuzzy membership functions for the health set health_vlo = triangleMembershipFunction(x_health, 0, 0, 25) # very low health health_lo = triangleMembershipFunction(x_health, 0, 25, 50) # low health health_md = triangleMembershipFunction(x_health, 25, 50, 75) # medium health health_hi = triangleMembershipFunction(x_health, 50, 75, 100) # high health health_vhi = triangleMembershipFunction(x_health, 75, 100, 100) # very high health # Creating triangle fuzzy membership functions for the action set hide = triangleMembershipFunction(x_action, 0, 0, 25) run = triangleMembershipFunction(x_action, 0, 25, 50) stop = triangleMembershipFunction(x_action, 25, 50, 75) walk = triangleMembershipFunction(x_action, 50, 75, 100) attack = triangleMembershipFunction(x_action, 75, 100, 100) # Calculating the degree of membership for the input variables # Degree of memberships for ammo ammo_level_vlo = Interpolate(x_ammo, ammo_vlo, ammo) ammo_level_lo = Interpolate(x_ammo, ammo_lo, ammo) ammo_level_md = Interpolate(x_ammo, ammo_md, ammo) ammo_level_hi = Interpolate(x_ammo, ammo_hi, ammo) ammo_level_vhi = Interpolate(x_ammo, ammo_vhi, ammo) # Degree of memberships for health health_level_vlo = Interpolate(x_health, health_vlo, health) health_level_lo = Interpolate(x_health, health_lo, health) health_level_md = Interpolate(x_health, health_md, health) health_level_hi = Interpolate(x_health, health_hi, health) health_level_vhi = Interpolate(x_health, health_vhi, health) # Applying the rules specified by the article. # The condition is the AND condition, thus we use the MIN operator # There are 25 rules in total from the article rule1 = np.fmin(ammo_level_vlo, health_level_vlo) # ammo very low and health very low => hide rule2 = np.fmin(ammo_level_vlo, health_level_lo) # ammo very low and health low => hide rule3 = np.fmin(ammo_level_vlo, health_level_md) # ammo very low and health mid => run away rule4 = np.fmin(ammo_level_vlo, health_level_hi) # ammo very low and health high => run away rule5 = np.fmin(ammo_level_vlo, health_level_vhi) # ammo very low and health very high => stop rule6 = np.fmin(ammo_level_lo, health_level_vlo) # ammo low and health very low => hide rule7 = np.fmin(ammo_level_lo, health_level_lo) # ammo low and health low => run away rule8 = np.fmin(ammo_level_lo, health_level_md) # ammo low and health mid => run away rule9 = np.fmin(ammo_level_lo, health_level_hi) # ammo low and health high => stop rule10 = np.fmin(ammo_level_lo, health_level_vhi) # ammo low and health very high => walk around rule11 = np.fmin(ammo_level_md, health_level_vlo) # ammo mid and health very low => run away rule12 = np.fmin(ammo_level_md, health_level_lo) # ammo mid and health low => run away rule13 = np.fmin(ammo_level_md, health_level_md) # ammo mid and health mid => stop rule14 = np.fmin(ammo_level_md, health_level_hi) # ammo mid and health high => walk around rule15 = np.fmin(ammo_level_md, health_level_vhi) # ammo mid and health very high => walk around rule16 = np.fmin(ammo_level_hi, health_level_vlo) # ammo high and health very low => run away rule17 = np.fmin(ammo_level_hi, health_level_lo) # ammo high and health low => stop rule18 = np.fmin(ammo_level_hi, health_level_md) # ammo high and health mid => walk around rule19 = np.fmin(ammo_level_hi, health_level_hi) # ammo high and health high => walk around rule20 = np.fmin(ammo_level_hi, health_level_vhi) # ammo high and health very high => attack rule21 = np.fmin(ammo_level_vhi, health_level_vlo) # ammo very high and health very low => stop rule22 = np.fmin(ammo_level_vhi, health_level_lo) # ammo very high and health low => walk around rule23 = np.fmin(ammo_level_vhi, health_level_md) # ammo very high and health mid => walk around rule24 = np.fmin(ammo_level_vhi, health_level_hi) # ammo very high and health high => attack rule25 = np.fmin(ammo_level_vhi, health_level_vhi) # ammo very high and health very high => attack # Finding the points in the universe activated by the rules # This is useful for plotting the region on the graph # The logic is to cut the output domain but the y-value of the rules rule1_area = np.fmin(hide, rule1) # hide zone rule2_area = np.fmin(hide, rule2) # hide zone rule3_area = np.fmin(run, rule3) # run away zone rule4_area = np.fmin(run, rule4) # run zone rule5_area = np.fmin(stop, rule5) # stop zone rule6_area = np.fmin(hide, rule6) # hide zone rule7_area = np.fmin(run, rule7) # run away zone rule8_area = np.fmin(run, rule8) # run away zone rule9_area = np.fmin(stop, rule9) # stop zone rule10_area = np.fmin(walk, rule10) # walk around zone rule11_area = np.fmin(run, rule11) # run away zone rule12_area = np.fmin(run, rule12) # run away zone rule13_area = np.fmin(stop, rule13) # stop zone rule14_area = np.fmin(walk, rule14) # walk around zone rule15_area = np.fmin(walk, rule15) # walk around zone rule16_area = np.fmin(run, rule16) # run away zone rule17_area =
np.fmin(stop, rule17)
numpy.fmin
import urllib.request import tarfile import zipfile import os.path import numpy as np def download_url(url, save_path): with urllib.request.urlopen(url) as dl_file: with open(save_path, 'wb') as out_file: out_file.write(dl_file.read()) def untar_file(data_dir, file_name): tar_name = os.path.join(data_dir, file_name) with tarfile.open(tar_name) as tar: tar.extractall() tar.close() def unzip_file(file_name, data_dir=None): if (data_dir is None): data_dir = os.path.dirname(file_name) with zipfile.ZipFile(file_name, 'r') as zip_ref: zip_ref.extractall(data_dir) def edge_list_to_dense(elist, num_vertices = 75): adj_mat = np.zeros((num_vertices,num_vertices), dtype=np.float) num_edges = elist.shape[0] for edge in range(num_edges): source, sink = elist[edge,:] source = source.item() sink = sink.item() adj_mat[source][sink] = 1.0 adj_mat[sink][source] = 1.0 return adj_mat ######################################################## # # TU Dataset specific functions # ######################################################## def extract_node_features(node_slices, node_labels, max_nodes, num_classes = None): node_label_list = [] for i, ind in enumerate(node_slices[1:]): if num_classes: graph_x = np.eye(num_classes)[np.asarray([int(x) for x in node_labels[node_slices[i]:ind]],dtype=np.int)] else: graph_x = anp.asarray([int(x) for x in node_labels[node_slices[i]:ind]],dtype=np.int) if (len(graph_x) < max_nodes): pad = max_nodes - len(graph_x) graph_x = np.pad(graph_x, ((0,pad),(0,0)), 'constant') node_label_list.append(graph_x) return node_label_list def extract_adj_mat(node_slices, edge_list, max_nodes): adj_mat_list = [] removed_graphs = [] for i, max_node_id in enumerate(node_slices[1:]): min_node_id = node_slices[i] num_nodes = max_node_id - min_node_id if (num_nodes < max_nodes): edges = edge_list[(edge_list[:,1] > min_node_id) & (edge_list[:,1] < max_node_id)] edges = edges -1 - min_node_id adj_mat = edge_list_to_dense(edges, max_nodes) adj_mat_list.append(adj_mat) else: removed_graphs.append(i) return adj_mat_list, removed_graphs def extract_targets(graph_labels, num_classes, removed_graphs): graph_labels = np.array([int(x) for x in graph_labels]) labels =
np.eye(num_classes)
numpy.eye
import logging import numpy as np import scipy as sp import collections import torch import functools from numpy.lib.stride_tricks import as_strided from sklearn.utils.extmath import randomized_svd from sklearn.utils import check_random_state logging.basicConfig() def form_lag_matrix(X, T, stride=1, stride_tricks=True, rng=None, writeable=False): """Form the data matrix with `T` lags. Parameters ---------- X : ndarray (n_time, N) Timeseries with no lags. T : int Number of lags. stride : int or float If stride is an `int`, it defines the stride between lagged samples used to estimate the cross covariance matrix. Setting stride > 1 can speed up the calculation, but may lead to a loss in accuracy. Setting stride to a `float` greater than 0 and less than 1 will random subselect samples. rng : NumPy random state Only used if `stride` is a float. stride_tricks : bool Whether to use numpy stride tricks to form the lagged matrix or create a new array. Using numpy stride tricks can can lower memory usage, especially for large `T`. If `False`, a new array is created. writeable : bool For testing. You should not need to set this to True. This function uses stride tricks to form the lag matrix which means writing to the array will have confusing behavior. If `stride_tricks` is `False`, this flag does nothing. Returns ------- X_with_lags : ndarray (n_lagged_time, N * T) Timeseries with lags. """ if not isinstance(stride, int) or stride < 1: if not isinstance(stride, float) or stride <= 0. or stride >= 1.: raise ValueError('stride should be an int and greater than or equal to 1 or a float ' + 'between 0 and 1.') N = X.shape[1] frac = None if isinstance(stride, float): frac = stride stride = 1 n_lagged_samples = (len(X) - T) // stride + 1 if n_lagged_samples < 1: raise ValueError('T is too long for a timeseries of length {}.'.format(len(X))) if stride_tricks: X =
np.asarray(X, dtype=float, order='C')
numpy.asarray
import os, time from typing import Dict, Tuple, Callable, Union, Optional, List import ctypes as ct from pathlib import Path from functools import partial import pandas as pd import numpy as np import numba as nb from astropy import units as un from astropy.constants import sigma_T, m_p, c sigma_T = sigma_T.to(un.Mpc**2).value #[Mpc^2] m_p = m_p.to(un.M_sun).value #[M_sun] c_light = c.to("km/s").value T_cmb = 2.7251 #[K] Gcm2 = 4.785E-20 # G/c^2 (Mpc/M_sun) c_lib_path = Path(__file__).parent.absolute() class SkyNumbaUtils: @nb.jit(nopython=True) def convert_convergence_to_deflection_numba( kappa: np.ndarray, npix: int, opening_angle: float, padding_factor: int = 4, ) -> Tuple[np.ndarray, np.ndarray]: """ Args: kappa: Convergence map opening_angle: Edge length of field-of-view [angular distance] npix: Number of pixels along edge of field-of-view Returns: alpha1,2: deflection angle in units of opening_angle """ xlen, ylen = kappa.shape xpad, ypad = xlen * padFac, ylen * padFac # Array of 2D dimensionless coordinates xsgrid, ysgrid = _make_r_coor(opening_angle, xlen) x = np.zeros((xlen, xlen, 2)) x[:, :, 0] = xsgrid x[:, :, 1] = ysgrid Lx = x[-1, 0, 0] - x[0, 0, 0] Ly = x[0, -1, 1] - x[0, 0, 1] # round to power of 2 to speed up FFT xpad = np.int(2 ** (np.ceil(np.log2(xpad)))) ypad = np.int(2 ** (np.ceil(np.log2(ypad)))) kappa_ft = np.fft.fft2(kappa, s=[xpad, ypad]) Lxpad = Lx * xpad / xlen Lypad = Ly * ypad / ylen # make a k-space grid kxgrid, kygrid = np.meshgrid( np.fft.fftfreq(xpad), np.fft.fftfreq(ypad), indexing="ij" ) kxgrid *= 2 * np.pi * xpad / Lxpad kygrid *= 2 * np.pi * ypad / Lypad alphaX_kfac = 2j * kxgrid / (kxgrid ** 2 + kygrid ** 2) alphaY_kfac = 2j * kygrid / (kxgrid ** 2 + kygrid ** 2) # [0,0] component mucked up by dividing by k^2 alphaX_kfac[0, 0], alphaY_kfac[0, 0] = 0, 0 alphaX_ft = alphaX_kfac * kappa_ft alphaY_ft = alphaY_kfac * kappa_ft alphaX = np.fft.ifft2(alphaX_ft)[:xlen, :ylen] alphaY = np.fft.ifft2(alphaY_ft)[:xlen, :ylen] alpha = np.zeros(x.shape) alpha[:, :, 0] = alphaX alpha[:, :, 1] = alphaY return -alpha # minus sign correction class SkyUtils: def analytic_Halo_signal_to_SkyArray( halo_idx: np.array, halo_cat: Dict[str, list], extent: int, direction: list, suppress: bool, suppression_R: float, npix: int, signal: str, ) -> np.ndarray: map_array = np.zeros((npix, npix)) # filter out indicis from halo catalogue for key, val in halo_cat.items(): halo_cat[key] = np.asarray(val)[halo_idx] if signal == "dT": partial_method= partial( SkyUtils.NFW_temperature_perturbation_map, extent=extent, direction=direction, suppress=suppress, suppression_R=suppression_R, ) for idx in range(len(halo_idx)): map_halo = partial_method( halo_cat["r200_deg"][idx], halo_cat["m200"][idx], halo_cat["c_NFW"][idx], [halo_cat["theta1_tv"][idx], halo_cat["theta2_tv"][idx]], halo_cat["Dc"][idx] * 0.6774, npix = int(2 * halo_cat["r200_pix"][idx] * extent) + 1, ) map_array = SkyUtils.add_patch_to_map( map_array, map_halo, (halo_cat["theta1_pix"][idx], halo_cat["theta2_pix"][idx]), ) elif signal == "alpha": partial_method= partial( SkyUtils.NFW_deflection_angle_map, extent=extent, direction=direction, suppress=suppress, suppression_R=suppression_R, ) for idx in range(len(halo_idx)): map_halo = partial_method( halo_cat["r200_deg"][idx], halo_cat["m200"][idx], halo_cat["c_NFW"][idx], halo_cat["Dc"][idx] * 0.6774, npix = int(2 * halo_cat["r200_pix"][idx] * extent) + 1, ) map_array = SkyUtils.add_patch_to_map( map_array, map_halo, (halo_cat["theta1_pix"][idx], halo_cat["theta2_pix"][idx]), ) return map_array def add_patch_to_map( limg: np.ndarray, simg: np.ndarray, cen_pix: tuple, ) -> tuple: """ Add small image (simg) onto large image (limg) such that simg does not shoot over the boundary of limg. Args: limg, simg: large-image to which small-image will be added. cen_pix: (x,y)-coordinates of the centre of the small image. The small image needs to have an uneven number of pixels. Returns: simg: Small image that is guaranteed to not exceed the boundary of the large image x,y-lim: pixel coordinates for the large image """ #assert limg.flags['C_CONTIGUOUS'] #assert simg.flags['C_CONTIGUOUS'] rad = int(len(simg)/2) xedges = np.arange(cen_pix[0] - rad, cen_pix[0] + rad + 1) yedges = np.arange(cen_pix[1] - rad, cen_pix[1] + rad + 1) x_pix, y_pix = np.meshgrid(xedges, yedges) mask = np.logical_and( np.logical_and(0 <= x_pix, x_pix < len(limg)), np.logical_and(0 <= y_pix, y_pix < len(limg)), ) x_bool = np.sum(mask, axis=0) > 0 y_bool = np.sum(mask, axis=1) > 0 simg = simg[mask].reshape((np.sum(y_bool), np.sum(x_bool))) xlim = np.array([xedges[x_bool].min(), xedges[x_bool].max()+1]).astype(int) ylim = np.array([yedges[y_bool].min(), yedges[y_bool].max()+1]).astype(int) limg[ylim[0]:ylim[1], xlim[0]:xlim[1]] += simg return limg def NFW_temperature_perturbation_map( theta_200c: float, M_200c: float, c_200c: float, vel: Union[list, tuple, np.ndarray], angu_diam_dist: float, npix: int = 100, extent: float = 1, direction: List[int] = [0, 1], suppress: bool = False, suppression_R: float = 1, ) -> np.ndarray: """ The Rees-Sciama / Birkinshaw-Gull / moving cluster of galaxies effect. Args: vel: transverse to the line-of-sight velocity, [km/sec] Returns: Temperature perturbation map, \Delta T / T_CMB, [-] """ dt_map = np.zeros((npix, npix)) for direc in direction: alpha_map = SkyUtils.NFW_deflection_angle_map( theta_200c, M_200c, c_200c, angu_diam_dist, npix, extent, [direc], suppress, suppression_R, ) dt_map += - alpha_map * vel[direc] / c_light return dt_map def NFW_deflection_angle_map( theta_200c: float, M_200c: float, c_200c: float, angu_diam_dist: float, npix: int = 100, extent: float = 1, direction: List[int] = [0], suppress: bool = False, suppression_R: float = 1, ) -> np.ndarray: """ Calculate the deflection angle of a halo with NFW profile using method in described Sec. 3.2 in Baxter et al 2015 (1412.7521). Note: In this application it can be assumed that s_{SL}/s_{S}=1. Furthermore, we can deglect vec{theta}/norm{theta} as it will be multiplied by the same in the integral of Eq. 9 in Yasini et a. 2018 (1812.04241). Args: theta_200c: radius, [deg] M_200c: mass, [Msun] c_200c: concentration, [-] extent: The size of the map from which the trans-vel is calculated in units of R200 of the associated halo. suppress: suppression_R: angu_diam_dist: angular diameter distance, [Mpc] direction: 0=(along x-axis), 1=(along y-axis) Returns: Deflection angle map. """ assert np.sum(direction) <= 1, "Only 0 and 1 are valid direction indications." R_200c = np.tan(theta_200c * np.pi / 180) * angu_diam_dist # [Mpc] edges = np.linspace(0, 2*R_200c*extent, npix) - R_200c * extent thetax, thetay = np.meshgrid(edges, edges) R = np.sqrt(thetax ** 2 + thetay ** 2) # distances to pixels # Eq. 8 A = M_200c * c_200c ** 2 / (np.log(1 + c_200c) - c_200c / (1 + c_200c)) / 4. / np.pi # constant in Eq. 6 C = 16 * np.pi * Gcm2 * A / c_200c / R_200c R_s = R_200c / c_200c x = R / R_s x = x.astype(np.complex) # Eq. 7 f = np.true_divide(1, x) * ( np.log(x / 2) + 2 / np.sqrt(1 - x ** 2) * \ np.arctanh(np.sqrt(np.true_divide(1 - x, 1 + x))) ) alpha_map = np.zeros((npix, npix)).astype(np.complex) for direc in direction: # Eq. 6 if direc == 0: thetax_hat = np.true_divide(thetax, R) alpha_map += C * thetax_hat * f elif direc == 1: thetay_hat = np.true_divide(thetay, R) alpha_map += C * thetay_hat * f alpha_map = np.nan_to_num(alpha_map, copy=False, nan=0.0, posinf=0.0, neginf=0.0) if suppress: # suppress alpha at large radii suppress_radius = suppression_R * R_200c alpha_map *= np.exp(-(R / suppress_radius) ** 3) alpha_map = alpha_map.real alpha_map[abs(alpha_map) > 100] = 0. # remove unphysical results return alpha_map #@LOS_integrate #def rho_2D(R, rho_s, R_s): # """ # 3D NFW profile intgrated along the line of sight # Returns # ------- # surface mass density: [M_sun/Mpc^2] # """ # return rho_3D(R, rho_s, R_s) #def LOS_integrate(profile_3D, *args, **kwargs): # """integrate along the line of sight for all 3D r's that correspond to the 2D R""" # # extract R # R = args[0] # args = args[1:] # #TODO: Add support for R_vec too # # see if R is a scalar or a list (array) # R_is_scalar = False # if not hasattr(R, "__iter__"): # R_is_scalar = True # R = [R] # # integrate along LOS for each R # LOS_integrated = [] # for R_i in R: # #TODO: Take f outside and profile the funtion # f = lambda r: profile_3D(r, *args, **kwargs) * 2. * r / np.sqrt(r ** 2 - R_i ** 2) # LOS_integrated.append(integrate.quad(f, R_i, np.inf, epsabs=0., epsrel=1.e-2)[0]) # # if R was a scalar, return a scalar # if R_is_scalar: # LOS_integrated = LOS_integrated[0] # return np.asarray(LOS_integrated) def convert_code_to_phy_units( quantity: str, map_df: pd.DataFrame ) -> pd.DataFrame: """ Convert from RayRamses code units to physical units. Args: quantity: map_df: Returns: Dimensionless values converted from code to physical units. shear_: [-] deflt_: double check kappa_: [-] isw_rs: \Delta T / T_cmb [-] """ if quantity in ["shear_x", "shear_y", "deflt_x", "deflt_y", "kappa_2"]: map_df.loc[:, [quantity]] /= c_light ** 2 elif quantity in ["isw_rs"]: map_df.loc[:, [quantity]] /= c_light ** 3 return map_df def convert_deflection_to_shear( alpha1: np.ndarray, alpha2: np.ndarray, npix: int, opening_angle: float ) -> Tuple[np.ndarray, np.ndarray]: """ Args: alpha1,2: opening_angle: Edge length of field-of-view [angular distance] npix: Number of pixels along edge of field-of-view Returns: gamma1,2: shear map """ # TODO al11 = 1 - np.gradient(alpha1, coord, axis=0) al12 = -np.gradient(alpha1, coord, axis=1) al21 = -np.gradient(alpha2, coord, axis=0) al22 = 1 - np.gradient(alpha2, coord, axis=1) shear1 = 0.5 * (al11 - al22) shear2 = 0.5 * (al21 + al12) return shear1, shear2 def convert_convergence_to_deflection_ctypes( kappa: np.ndarray, npix: int, opening_angle: float ) -> Tuple[np.ndarray, np.ndarray]: """ Args: kappa: Convergence map opening_angle: Edge length of field-of-view [angular distance] npix: Number of pixels along edge of field-of-view Returns: alpha1,2: deflection angle in units of opening_angle """ alpha1, alpha2 = _call_alphas( kappa, npix, (opening_angle).to(un.rad).value ) return alpha1, alpha2 def _make_r_coor( opening_angle: float, npix: int ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Returns pixel coordinates """ ds = opening_angle / npix x1edge = ( np.linspace(0, opening_angle - ds, npix) - opening_angle / 2.0 + ds / 2.0 ) x2, x1 = np.meshgrid(x1edge, x1edge) return x1, x2, x1edge gls = ct.CDLL(c_lib_path / "lib_so_cgls/libglsg.so") gls.kappa0_to_alphas.argtypes = [ np.ctypeslib.ndpointer(dtype=ct.c_double), ct.c_int, ct.c_double, np.ctypeslib.ndpointer(dtype=ct.c_double), np.ctypeslib.ndpointer(dtype=ct.c_double), ] gls.kappa0_to_alphas.restype = ct.c_void_p def _call_alphas( kappa: np.ndarray, npix: int, opening_angle: float ) -> Tuple[np.ndarray, np.ndarray]: _kappa = np.array(kappa, dtype=ct.c_double) alpha1 = np.array(np.zeros((npix, npix)), dtype=ct.c_double) alpha2 = np.array(
np.zeros((npix, npix))
numpy.zeros
# this tells python to act as if though We are one folder up import sys sys.path.insert(0,'..') import pandas as pd import FixedEffectModelPyHDFE.api as FEM from FixedEffectModelPyHDFE.DemeanDataframe import get_np_columns #import FixedEffectModel.api as FEM import numpy as np from patsy import dmatrices import statsmodels.formula.api as smf import statsmodels.api as sm from fastreg import linear from datetime import datetime import unittest from math import isclose NLS_WORK = "./../data/test_dropped_na.dta" CEREAL = "./../data/cereal.dta" AUTO = "./../data/auto_drop_na.dta" TOLERANCE = 0.01 class FixedEffectsModelTestsVSfastreg(unittest.TestCase): def setup(self, data_directory, target, regressors, absorb, cluster): print(self._testMethodName) print("target: ", target) print("regressors: ", regressors) print("absorb: ", absorb) print("cluster: ", cluster) df = pd.read_stata(data_directory) df.reset_index(drop=True, inplace=True) fem_start = datetime.now() self.result = FEM.ols_high_d_category(df, regressors, target, absorb, cluster, formula=None, robust=False, epsilon = 1e-8, max_iter = 1e6) fem_end = datetime.now() print("FEM time taken: " + str(fem_end-fem_start)) self.result.summary() print() if absorb[0] == '0': absorb=None fastreg_start = datetime.now() fastreg = linear.ols(y=target[0], x=regressors, absorb=absorb, cluster=cluster, data=df) fastreg_end = datetime.now() print(fastreg) print("fastreg time taken: " + str(fastreg_end - fastreg_start)) print("\n\n\n\n\n") ######################################################################### ######################################################################### def test_just_absorb_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts'], cluster=[]) def test_no_absorb_cluster_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['idcode', 'birth_yr', 'fifty_clusts', 'sixty_clusts']) # comparing fvalue def test_clustering_single_variable_no_absorb2_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['race']) # comparing fvalue assert(np.isclose(self.result.fvalue, 127593.72, atol=TOLERANCE)) # comparing standard errors assert(np.all(np.isclose(self.result.bse, np.asarray([.148934, .0065111, .0113615]), atol=TOLERANCE))) # comparing tvalues assert(np.all(np.isclose(self.result.tvalues, np.asarray([27.75, 2.32, 66.61]), atol=TOLERANCE))) def test_clustering_single_variable_no_absorb_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['fifty_clusts']) assert(np.isclose(self.result.fvalue, 10230.63, atol=TOLERANCE)) assert(np.all(np.isclose(self.result.bse, np.asarray([.048274, .0044294, .0052923]), atol=TOLERANCE))) assert(np.all(np.isclose(self.result.tvalues, np.asarray([85.60, 3.42, 143.00]), atol=TOLERANCE))) def test_clustering_two_variables_no_absorb_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['fifty_clusts', 'sixty_clusts']) assert(np.isclose(self.result.fvalue, 12347.24, atol=TOLERANCE)) assert(np.all(np.isclose(self.result.bse, np.asarray([.0518019, .0048228, .00492]), atol=TOLERANCE))) assert(np.all(np.isclose(self.result.tvalues, np.asarray([79.77, 3.14, 153.82]), atol=TOLERANCE))) def test_clustering_many_variables_no_absorb_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['0'], cluster=['fifty_clusts', 'sixty_clusts', 'birth_yr', 'idcode']) assert(np.isclose(self.result.fvalue, 4664.62, atol=TOLERANCE)) assert(np.all(np.isclose(self.result.bse, np.asarray([.0551555, .0080815, .007881]), atol=TOLERANCE))) assert(np.all(np.isclose(self.result.tvalues, np.asarray([74.92, 1.87, 96.03]), atol=TOLERANCE))) def test_just_absorb_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['fifty_clusts', 'sixty_clusts', 'birth_yr', 'idcode'], cluster=[]) assert(np.isclose(self.result.fvalue, 3891.51, atol=TOLERANCE)) assert(np.all(np.isclose(self.result.bse, np.asarray([.0047052, .0096448]), atol=TOLERANCE))) assert(np.all(np.isclose(self.result.tvalues, np.asarray([6.48, 88.22]), atol=TOLERANCE))) def test_cluster_1_absorb_1_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['fifty_clusts'], cluster=['sixty_clusts']) assert(np.isclose(self.result.fvalue, 9884.24, atol=TOLERANCE)) assert(np.all(np.isclose(self.result.bse, np.asarray([.004654, .0055812]), atol=TOLERANCE))) assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.18, 135.54]), atol=TOLERANCE))) def test_cluster_1_absorb_1_2_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['fifty_clusts'], cluster=['fifty_clusts']) assert(np.isclose(self.result.fvalue, 10100.50, atol=TOLERANCE)) assert(np.all(np.isclose(self.result.bse, np.asarray([.0044538, .005324]), atol=TOLERANCE))) assert(np.all(np.isclose(self.result.tvalues, np.asarray([3.33, 142.09]), atol=TOLERANCE))) def test_cluster_many_absorb_1_nls_work_dataset(self): self.setup(NLS_WORK, target=['ttl_exp'], regressors=['wks_ue', 'tenure'], absorb=['fifty_clusts'], cluster=['fifty_clusts', 'sixty_clusts', 'idcode', 'year']) assert(
np.isclose(self.result.fvalue, 86.89, atol=TOLERANCE)
numpy.isclose
# -*- coding: utf-8 -*- """ A class for working with a collection of spaCy docs. Includes functionality for easily adding, getting, and removing documents; saving to / loading their data from disk; and tracking basic corpus statistics. """ from __future__ import absolute_import, division, print_function, unicode_literals import collections import itertools import logging import math import numpy as np import spacy import srsly from cytoolz import itertoolz from thinc.neural.ops import NumpyOps from . import cache from . import compat from . import io as tio from . import utils LOGGER = logging.getLogger(__name__) class Corpus(object): """ An ordered collection of :class:`spacy.tokens.Doc`, all of the same language and sharing the same :class:`spacy.language.Language` processing pipeline and vocabulary, with data held *in-memory*. Initialize from a language / ``Language`` and (optionally) one or a stream of texts or (text, metadata) pairs: .. code-block:: pycon >>> ds = textacy.datasets.CapitolWords() >>> records = ds.records(limit=50) >>> corpus = textacy.Corpus("en", data=records) >>> corpus Corpus(50 docs, 32175 tokens) Add or remove documents, with automatic updating of corpus statistics: .. code-block:: pycon >>> texts = ds.texts(congress=114, limit=25) >>> corpus.add(texts) >>> corpus.add("If Burton were a member of Congress, here's what he'd say.") >>> corpus Corpus(76 docs, 55906 tokens) >>> corpus.remove(lambda doc: doc._.meta.get("speaker_name") == "<NAME>") >>> corpus Corpus(61 docs, 48567 tokens) Get subsets of documents matching your particular use case: .. code-block:: pycon >>> match_func = lambda doc: doc._.meta.get("speaker_name") == "<NAME>" >>> for doc in corpus.get(match_func, limit=3): ... print(doc._.preview) Doc(159 tokens: "Mr. Speaker, 480,000 Federal employees are work...") Doc(336 tokens: "Mr. Speaker, I thank the gentleman for yielding...") Doc(177 tokens: "Mr. Speaker, if we want to understand why in th...") Get or remove documents by indexing, too: .. code-block:: pycon >>> corpus[0]._.preview 'Doc(159 tokens: "Mr. Speaker, 480,000 Federal employees are work...")' >>> [doc._.preview for doc in corpus[:3]] ['Doc(159 tokens: "Mr. Speaker, 480,000 Federal employees are work...")', 'Doc(219 tokens: "Mr. Speaker, a relationship, to work and surviv...")', 'Doc(336 tokens: "Mr. Speaker, I thank the gentleman for yielding...")'] >>> del corpus[:5] >>> corpus Corpus(56 docs, 41573 tokens) Compute basic corpus statistics: .. code-block:: pycon >>> corpus.n_docs, corpus.n_sents, corpus.n_tokens (56, 1771, 41573) >>> word_counts = corpus.word_counts(as_strings=True) >>> sorted(word_counts.items(), key=lambda x: x[1], reverse=True)[:5] [('-PRON-', 2553), ('people', 215), ('year', 148), ('Mr.', 139), ('$', 137)] >>> word_doc_counts = corpus.word_doc_counts(weighting="freq", as_strings=True) >>> sorted(word_doc_counts.items(), key=lambda x: x[1], reverse=True)[:5] [('-PRON-', 0.9821428571428571), ('Mr.', 0.7678571428571429), ('President', 0.5), ('people', 0.48214285714285715), ('need', 0.44642857142857145)] Save corpus data to and load from disk: .. code-block:: pycon >>> corpus.save("~/Desktop/capitol_words_sample.bin.gz") >>> corpus = textacy.Corpus.load("en", "~/Desktop/capitol_words_sample.bin.gz") >>> corpus Corpus(56 docs, 41573 tokens) Args: lang (str or :class:`spacy.language.Language`): Language with which spaCy processes (or processed) all documents added to the corpus, whether as ``data`` now or later. Pass a standard 2-letter language code (e.g. "en"), or the name of a spacy language pipeline (e.g. "en_core_web_md"), or an already-instantiated :class:`spacy.language.Language` object. A given / detected language string is then used to instantiate a corresponding ``Language`` with all default components enabled. data (obj or Iterable[obj]): One or a stream of texts, records, or :class:`spacy.tokens.Doc` s to be added to the corpus. .. seealso:: :meth:`Corpus.add()` Attributes: lang (str) spacy_lang (:class:`spacy.language.Language`) docs (List[:class:`spacy.tokens.Doc`]) n_docs (int) n_sents (int) n_tokens (int) """ def __init__(self, lang, data=None): self.spacy_lang = _get_spacy_lang(lang) self.lang = self.spacy_lang.lang self.docs = [] self._doc_ids = [] self.n_docs = 0 self.n_sents = 0 self.n_tokens = 0 if data: self.add(data) # dunder def __repr__(self): return "Corpus({} docs, {} tokens)".format(self.n_docs, self.n_tokens) def __len__(self): return self.n_docs def __iter__(self): for doc in self.docs: yield doc def __contains__(self, doc): return id(doc) in self._doc_ids def __getitem__(self, idx_or_slice): return self.docs[idx_or_slice] def __delitem__(self, idx_or_slice): if isinstance(idx_or_slice, int): self._remove_one_doc_by_index(idx_or_slice) elif isinstance(idx_or_slice, slice): start, end, step = idx_or_slice.indices(self.n_docs) idxs = compat.range_(start, end, step) self._remove_many_docs_by_index(idxs) else: raise TypeError( "list indices must be integers or slices, not {}".format(type(idx_or_slice)) ) # add documents def add(self, data, batch_size=1000): """ Add one or a stream of texts, records, or :class:`spacy.tokens.Doc` s to the corpus, ensuring that all processing is or has already been done by the :attr:`Corpus.spacy_lang` pipeline. Args: data (obj or Iterable[obj]): str or Iterable[str] Tuple[str, dict] or Iterable[Tuple[str, dict]] :class:`spacy.tokens.Doc` or Iterable[:class:`spacy.tokens.Doc`] batch_size (int) See Also: * :meth:`Corpus.add_text()` * :meth:`Corpus.add_texts()` * :meth:`Corpus.add_record()` * :meth:`Corpus.add_records()` * :meth:`Corpus.add_doc()` * :meth:`Corpus.add_docs()` """ if isinstance(data, compat.unicode_): self.add_text(data) elif isinstance(data, spacy.tokens.Doc): self.add_doc(data) elif utils.is_record(data): self.add_record(data) elif isinstance(data, compat.Iterable): first, data = itertoolz.peek(data) if isinstance(first, compat.unicode_): self.add_texts(data, batch_size=batch_size) elif isinstance(first, spacy.tokens.Doc): self.add_docs(data) elif utils.is_record(first): self.add_records(data, batch_size=batch_size) else: raise TypeError( "data must be one of {} or an interable thereof, not {}".format( {compat.unicode_, spacy.tokens.Doc, tuple}, type(data), ) ) else: raise TypeError( "data must be one of {} or an interable thereof, not {}".format( {compat.unicode_, spacy.tokens.Doc, tuple}, type(data), ) ) def add_text(self, text): """ Add one text to the corpus, processing it into a :class:`spacy.tokens.Doc` using the :attr:`Corpus.spacy_lang` pipeline. Args: text (str) """ self._add_valid_doc(self.spacy_lang(text)) def add_texts(self, texts, batch_size=1000): """ Add a stream of texts to the corpus, efficiently processing them into :class:`spacy.tokens.Doc` s using the :attr:`Corpus.spacy_lang` pipeline. Args: texts (Iterable[str]) batch_size (int) """ for doc in self.spacy_lang.pipe(texts, as_tuples=False, batch_size=batch_size): self._add_valid_doc(doc) def add_record(self, record): """ Add one record to the corpus, processing it into a :class:`spacy.tokens.Doc` using the :attr:`Corpus.spacy_lang` pipeline. Args: record (Tuple[str, dict]) """ doc = self.spacy_lang(record[0]) doc._.meta = record[1] self._add_valid_doc(doc) def add_records(self, records, batch_size=1000): """ Add a stream of records to the corpus, efficiently processing them into :class:`spacy.tokens.Doc` s using the :attr:`Corpus.spacy_lang` pipeline. Args: records (Iterable[Tuple[str, dict]]) batch_size (int) """ for doc, meta in self.spacy_lang.pipe(records, as_tuples=True, batch_size=batch_size): doc._.meta = meta self._add_valid_doc(doc) def add_doc(self, doc): """ Add one :class:`spacy.tokens.Doc` to the corpus, provided it was processed using the :attr:`Corpus.spacy_lang` pipeline. Args: doc (:class:`spacy.tokens.Doc`) """ if not isinstance(doc, spacy.tokens.Doc): raise TypeError( "doc must be a {}, not {}".format(spacy.tokens.Doc, type(doc)) ) if doc.vocab is not self.spacy_lang.vocab: raise ValueError( "doc.vocab ({}) must be the same as corpus.vocab ({})".format( doc.vocab, self.spacy_lang.vocab, ) ) self._add_valid_doc(doc) def add_docs(self, docs): """ Add a stream of :class:`spacy.tokens.Doc` s to the corpus, provided they were processed using the :attr:`Corpus.spacy_lang` pipeline. Args: doc (Iterable[:class:`spacy.tokens.Doc`]) """ for doc in docs: self.add_doc(doc) def _add_valid_doc(self, doc): self.docs.append(doc) self._doc_ids.append(id(doc)) self.n_docs += 1 self.n_tokens += len(doc) if doc.is_sentenced: self.n_sents += itertoolz.count(doc.sents) # get documents def get(self, match_func, limit=None): """ Get all (or N <= ``limit``) docs in :class:`Corpus` for which ``match_func(doc)`` is True. Args: match_func (Callable): Function that takes a :class:`spacy.tokens.Doc` as input and returns a boolean value. For example:: Corpus.get(lambda x: len(x) >= 100) gets all docs with at least 100 tokens. And:: Corpus.get(lambda doc: doc._.meta["author"] == "<NAME>") gets all docs whose author was given as '<NAME>'. limit (int): Maximum number of matched docs to return. Yields: :class:`spacy.tokens.Doc`: Next document passing ``match_func``. .. tip:: To get doc(s) by index, treat :class:`Corpus` as a list and use Python's usual indexing and slicing: ``Corpus[0]`` gets the first document in the corpus; ``Corpus[:5]`` gets the first 5; etc. """ matched_docs = (doc for doc in self if match_func(doc) is True) for doc in itertools.islice(matched_docs, limit): yield doc # remove documents def remove(self, match_func, limit=None): """ Remove all (or N <= ``limit``) docs in :class:`Corpus` for which ``match_func(doc)`` is True. Corpus doc/sent/token counts are adjusted accordingly. Args: match_func (func): Function that takes a :class:`spacy.tokens.Doc` and returns a boolean value. For example:: Corpus.remove(lambda x: len(x) >= 100) removes docs with at least 100 tokens. And:: Corpus.remove(lambda doc: doc._.meta["author"] == "<NAME>") removes docs whose author was given as "<NAME>". limit (int): Maximum number of matched docs to remove. .. tip:: To remove doc(s) by index, treat :class:`Corpus` as a list and use Python's usual indexing and slicing: ``del Corpus[0]`` removes the first document in the corpus; ``del Corpus[:5]`` removes the first 5; etc. """ matched_docs = (doc for doc in self if match_func(doc) is True) self._remove_many_docs_by_index( self._doc_ids.index(id(doc)) for doc in itertools.islice(matched_docs, limit) ) def _remove_many_docs_by_index(self, idxs): for idx in sorted(idxs, reverse=True): self._remove_one_doc_by_index(idx) def _remove_one_doc_by_index(self, idx): doc = self.docs[idx] self.n_docs -= 1 self.n_tokens -= len(doc) if doc.is_sentenced: self.n_sents -= itertoolz.count(doc.sents) del self.docs[idx] del self._doc_ids[idx] # useful properties @property def vectors(self): """Constituent docs' word vectors stacked in a 2d array.""" return np.vstack((doc.vector for doc in self)) @property def vector_norms(self): """Constituent docs' L2-normalized word vectors stacked in a 2d array.""" return np.vstack((doc.vector_norm for doc in self)) # useful methods def word_counts(self, normalize="lemma", weighting="count", as_strings=False, filter_stops=True, filter_punct=True, filter_nums=False): """ Map the set of unique words in :class:`Corpus` to their counts as absolute, relative, or binary frequencies of occurence, similar to :meth:`Doc._.to_bag_of_words() <textacy.spacier.doc_extensions.to_bag_of_words>` but aggregated over all docs. Args: normalize (str): If "lemma", lemmatize words before counting; if "lower", lowercase words before counting; otherwise, words are counted using the form with which they appear. weighting ({"count", "freq"}): Type of weight to assign to words. If "count" (default), weights are the absolute number of occurrences (count) of word in corpus. If "freq", word counts are normalized by the total token count, giving their relative frequencies of occurrence. .. note:: The resulting set of frequencies won't (necessarily) sum to 1.0, since punctuation and stop words are filtered out after counts are normalized. as_strings (bool): If True, words are returned as strings; if False (default), words are returned as their unique integer ids. filter_stops (bool): If True (default), stop word counts are removed. filter_punct (bool): If True (default), punctuation counts are removed. filter_nums (bool): If True, number counts are removed. Returns: dict: mapping of a unique word id or string (depending on the value of ``as_strings``) to its absolute, relative, or binary frequency of occurrence (depending on the value of ``weighting``). See Also: * :func:`textacy.vsm.get_term_freqs() <textacy.vsm.matrix_utils.get_term_freqs>` """ word_counts_ = collections.Counter() for doc in self: word_counts_.update( doc._.to_bag_of_words( normalize=normalize, weighting="count", as_strings=as_strings, filter_stops=filter_stops, filter_punct=filter_punct, filter_nums=filter_nums ) ) if weighting == "count": word_counts_ = dict(word_counts_) elif weighting == "freq": n_tokens = self.n_tokens word_counts_ = { word: count / n_tokens for word, count in word_counts_.items() } else: raise ValueError( "weighting='{}' is invalid; valid values are {}".format( weighting, {"count", "freq"} ) ) return word_counts_ def word_doc_counts( self, normalize="lemma", weighting="count", smooth_idf=True, as_strings=False, filter_stops=True, filter_punct=True, filter_nums=True): """ Map the set of unique words in :class:`Corpus` to their *document* counts as absolute, relative, inverse, or binary frequencies of occurence. Args: normalize (str): If "lemma", lemmatize words before counting; if "lower", lowercase words before counting; otherwise, words are counted using the form with which they appear. weighting ({"count", "freq", "idf"}): Type of weight to assign to words. If "count" (default), weights are the absolute number (count) of documents in which word appears. If "freq", word doc counts are normalized by the total document count, giving their relative frequencies of occurrence. If "idf", weights are the log of the inverse relative frequencies: ``log(n_docs / word_doc_count)`` or (if ``smooth_idf`` is True) ``log(1 + (n_docs / word_doc_count))`` . smooth_idf (bool): If True, add 1 to all word doc counts when calculating "idf" weighting, equivalent to adding a single document to the corpus containing every unique word. as_strings (bool): If True, words are returned as strings; if False (default), words are returned as their unique integer ids filter_stops (bool): If True (default), stop word counts are removed. filter_punct (bool): If True (default), punctuation counts are removed. filter_nums (bool): If True, number counts are removed. Returns: dict: mapping of a unique word id or string (depending on the value of ``as_strings``) to the number of documents in which it appears weighted as absolute, relative, or binary frequencies (depending on the value of ``weighting``). See Also: * :func:`textacy.vsm.get_doc_freqs() <textacy.vsm.matrix_utils.get_doc_freqs>` """ word_doc_counts_ = collections.Counter() for doc in self: word_doc_counts_.update( doc._.to_bag_of_words( normalize=normalize, weighting="binary", as_strings=as_strings, filter_stops=filter_stops, filter_punct=filter_punct, filter_nums=filter_nums ) ) if weighting == "count": word_doc_counts_ = dict(word_doc_counts_) elif weighting == "freq": n_docs = self.n_docs word_doc_counts_ = { word: count / n_docs for word, count in word_doc_counts_.items() } elif weighting == "idf": n_docs = self.n_docs if smooth_idf is True: word_doc_counts_ = { word: math.log(1 + (n_docs / count)) for word, count in word_doc_counts_.items() } else: word_doc_counts_ = { word: math.log(n_docs / count) for word, count in word_doc_counts_.items() } else: raise ValueError( "weighting='{}' is invalid; valid values are {}".format( weighting, {"count", "freq", "idf"} ) ) return word_doc_counts_ # file io def save(self, filepath): """ Save :class:`Corpus` to disk as binary data. Args: filepath (str): Full path to file on disk where :class:`Corpus` data will be saved as a binary file. See Also: :meth:`Corpus.load()` """ attrs = [ spacy.attrs.ORTH, spacy.attrs.SPACY, spacy.attrs.LEMMA, spacy.attrs.ENT_IOB, spacy.attrs.ENT_TYPE, ] if self[0].is_tagged: attrs.append(spacy.attrs.TAG) if self[0].is_parsed: attrs.append(spacy.attrs.HEAD) attrs.append(spacy.attrs.DEP) else: attrs.append(spacy.attrs.SENT_START) tokens = [] lengths = [] strings = set() user_datas = [] for doc in self: tokens.append(doc.to_array(attrs)) lengths.append(len(doc)) strings.update(tok.text for tok in doc) user_datas.append(doc.user_data) msg = { "meta": self.spacy_lang.meta, "attrs": attrs, "tokens": np.vstack(tokens).tobytes("C"), "lengths": np.asarray(lengths, dtype="int32").tobytes("C"), "strings": list(strings), "user_datas": user_datas, } with tio.open_sesame(filepath, mode="wb") as f: f.write(srsly.msgpack_dumps(msg)) @classmethod def load(cls, lang, filepath): """ Load previously saved :class:`Corpus` binary data, reproduce the original `:class:`spacy.tokens.Doc`s tokens and annotations, and instantiate a new :class:`Corpus` from them. Args: lang (str or :class:`spacy.language.Language`) filepath (str): Full path to file on disk where :class:`Corpus` data was previously saved as a binary file. Returns: :class:`Corpus` See Also: :meth:`Corpus.save()` """ spacy_lang = _get_spacy_lang(lang) with tio.open_sesame(filepath, mode="rb") as f: msg = srsly.msgpack_loads(f.read()) if spacy_lang.meta != msg["meta"]: LOGGER.warning("the spacy langs are different!") for string in msg["strings"]: spacy_lang.vocab[string] attrs = msg["attrs"] lengths = np.frombuffer(msg["lengths"], dtype="int32") flat_tokens =
np.frombuffer(msg["tokens"], dtype="uint64")
numpy.frombuffer
from mlpractice.stats.stats_utils import print_stats, _update_stats from mlpractice.utils import ExceptionInterception try: from mlpractice_solutions.mlpractice_solutions.\ linear_classifier_solution import softmax_with_cross_entropy except ImportError: softmax_with_cross_entropy = None import torch import numpy as np def test_all(softmax_with_cross_entropy=softmax_with_cross_entropy): test_interface(softmax_with_cross_entropy) test_public(softmax_with_cross_entropy) test_normalization(softmax_with_cross_entropy) test_random(softmax_with_cross_entropy, 100) print('All tests passed!') _update_stats('linear_classifier', 'softmax_with_cross_entropy') print_stats('linear_classifier') def test_interface(softmax_with_cross_entropy=softmax_with_cross_entropy): with ExceptionInterception(): predictions1 = np.array([1, 2, 3]) target_index1 = np.array([2]) predictions2 = np.array([[1, 2, 3], [1, 2, 3]]) target_index2 = np.array([2, 2]) loss1, d_predictions1 = softmax_with_cross_entropy( predictions1, target_index1, ) loss2, d_predictions2 = softmax_with_cross_entropy( predictions2, target_index2, ) assert isinstance(loss1, float), \ "softmax_with_cross_entropy must return a float and an ndarray" assert isinstance(loss2, float), \ "softmax_with_cross_entropy must return a float and an ndarray" assert isinstance(d_predictions1, np.ndarray), \ "softmax_with_cross_entropy must return a float and an ndarray" assert isinstance(d_predictions2, np.ndarray), \ "softmax_with_cross_entropy must return a float and an ndarray" assert d_predictions1.shape == predictions1.shape, \ "The output d_predictions shape must match the predictions shape" assert d_predictions2.shape == predictions2.shape, \ "The output d_predictions shape must match the predictions shape" def test_public(softmax_with_cross_entropy=softmax_with_cross_entropy): with ExceptionInterception(): predictions = np.array([1, 2, 3]) target_index = np.array([2]) loss, d_predictions = softmax_with_cross_entropy( predictions, target_index, ) predictions_tensor = torch.from_numpy( predictions[np.newaxis, :], ).float() predictions_tensor.requires_grad = True sample_loss = torch.nn.CrossEntropyLoss(reduction='sum') sample_output = sample_loss(predictions_tensor, torch.from_numpy(target_index).long()) sample_output.backward() assert abs(loss - sample_output) < 10 ** -6 assert np.all(np.abs(d_predictions - predictions_tensor.grad.numpy()) < 10 ** -6) def test_normalization(softmax_with_cross_entropy=softmax_with_cross_entropy): with ExceptionInterception(): predictions = np.array([0, 0, 10000]) target_index = np.array([2]) loss, d_predictions = softmax_with_cross_entropy( predictions, target_index, ) predictions_tensor = torch.from_numpy( predictions[np.newaxis, :], ).float() predictions_tensor.requires_grad = True sample_loss = torch.nn.CrossEntropyLoss(reduction='sum') sample_output = sample_loss(predictions_tensor, torch.from_numpy(target_index).long()) sample_output.backward() assert abs(loss - sample_output) < 10 ** -6 assert np.all(np.abs(d_predictions - predictions_tensor.grad.numpy()) < 10 ** -6) def test_random( softmax_with_cross_entropy=softmax_with_cross_entropy, iterations=1, ): with ExceptionInterception(): np.random.seed(42) for _ in range(iterations): predictions = np.random.rand(3, 4) target_index =
np.random.randint(0, 4, size=3)
numpy.random.randint
import argparse import numpy as np import tensorflow as tf import socket import importlib import os import sys from tqdm import tqdm from timeit import default_timer as timer import utils.tfrecord_utils as tfrecord_utils from tensorflow.python.client import timeline def log_string(out_str): #LOG_FOUT.write(out_str + '\n') #LOG_FOUT.flush() print(out_str) def get_learning_rate(batch, batch_size, base_learning_rate, learning_rate_decay_rate, learning_rate_decay_step): learning_rate = tf.train.exponential_decay(base_learning_rate, # Base learning rate. batch * batch_size, # Current index into the dataset. learning_rate_decay_step, # Decay step. learning_rate_decay_rate, # Decay rate. staircase=True) learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch, batch_size, bn_init_decay, bn_decay_decay_rate, bn_decay_decay_step, bn_decay_clip): bn_momentum = tf.train.exponential_decay(bn_init_decay, batch * batch_size, bn_decay_decay_step, bn_decay_decay_rate, staircase=True) bn_decay = tf.minimum(bn_decay_clip, 1 - bn_momentum) return bn_decay def train(tfrecords_path, model_name, batch_size=16, base_learning_rate=0.001, learning_rate_decay_rate=0.8, gpu_index=0, optimizer_name='adam', log_dir='log', epochs=100, bn_init_decay=0.5, bn_decay_decay_rate=0.5, bn_decay_decay_step=200000, bn_decay_clip=0.99, pretrained_weights_file_path=None): """ Args: tfrecords_path (str): Top level input path where are train/test dirs with tfrecords. batch_size (int): Batch Size during training [default: 32]. base_learning_rate (float): Initial learning rate [default: 0.001]. gpu_index (int): GPU index to use [default: GPU 0]. """ # TFRecords paths NUM_CLASSES = 51 TFRECORDS_TRAIN_DIRPATH = os.path.join(tfrecords_path, 'train') TFRECORDS_TEST_DIRPATH = os.path.join(tfrecords_path, 'test') # Import model module BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) sys.path.append(os.path.join(BASE_DIR, 'models', model_name)) MODEL = importlib.import_module(model_name) # Log dir if not os.path.exists(log_dir): os.mkdir(log_dir) os.mkdir(os.path.join(log_dir, 'timeline')) with tf.Graph().as_default(): ####################################################################### # TFRecords ####################################################################### # Train filenames tfrecord_filenames_train = [f for f in os.listdir(TFRECORDS_TRAIN_DIRPATH) if '.tfrecord' in f] tfrecord_filenames_train.sort() tfrecord_filepaths_train = [os.path.join(TFRECORDS_TRAIN_DIRPATH, f) for f in tfrecord_filenames_train] # Train filenames tfrecord_filenames_test = [f for f in os.listdir(TFRECORDS_TEST_DIRPATH) if '.tfrecord' in f] tfrecord_filenames_test.sort() tfrecord_filepaths_test = [os.path.join(TFRECORDS_TEST_DIRPATH, f) for f in tfrecord_filenames_test] # TFdataset tfrecord_filepaths_placeholder = tf.placeholder(tf.string, [None]) tfdataset = tf.data.TFRecordDataset(tfrecord_filepaths_placeholder) tfdataset = tfdataset.shuffle(buffer_size=batch_size*10) # Only one tfrecord file -> no action tfdataset = tfdataset.map(tfrecord_utils.tfexample_to_depth_image, num_parallel_calls=4) ####################################################################### # Unorganized point cloud ####################################################################### # # Load # tfdataset = tfdataset.map(lambda a, b: tf.py_func(tfrecord_utils.load_depth_and_create_point_cloud_data_rnd, # [a['pcd_path'], a['img_path'], a['loc_path'], b['name'], # b['int'], NUM_POINT], # [tf.float32, tf.string, tf.string, tf.string, tf.int64])) # # Augment # tfdataset = tfdataset.map(lambda a, b, c, d, e: # tf.py_func(tfrecord_utils.augment_point_cloud, [a, b, c, d, e, True, True, False], # [tf.float32, tf.string, tf.string, tf.string, tf.int64])) ####################################################################### # Organized point cloud ####################################################################### # Settings data_channels = 3 data_height = 224 data_width = 224 zero_mean = True unit_ball = True # # Load data # tfdataset = tfdataset.map(lambda a, b: tf.py_func(tfrecord_utils.load_depth_and_create_organized_point_cloud, # [a['pcd_path'], a['img_path'], a['loc_path'], b['name'], # b['int'], data_height, zero_mean, unit_ball], # [tf.float32, tf.string, tf.string, tf.string, tf.int64]), # num_parallel_calls=4) # Load data tfdataset = tfdataset.map(lambda a, b: tf.py_func(tfrecord_utils.create_organized_point_cloud, [a['depth-image'], a['depth-image-loc'], b['name'], b['int'], data_height, zero_mean, unit_ball], [tf.float32, tf.int64, tf.string, tf.int64]), num_parallel_calls=4) ####################################################################### # Depth image ####################################################################### # # Load data # data_channels = 1 # data_height = 299 # data_width = 299 # data_scale = 1.0 # max depth from kinect is 10m, so 0.1 gives us range of 0-1 # # data_mean = 775.6092 # None if zero, sample specific if below zero, given value otherwise # # data_std = 499.1676 # None if zero, sample specific if below zero, given value otherwise # data_mean = 775.6092 - 499.1676 # To be in the range of 0-1 # data_std = 499.1676 * 2 # To be in the range of 0-1 # tfdataset = tfdataset.map(lambda a, b: tf.py_func(tfrecord_utils.load_depth, # [a['pcd_path'], a['img_path'], a['loc_path'], b['name'], # b['int'], data_height, data_scale, data_mean, data_std], # [tf.float32, tf.string, tf.string, tf.string, tf.int64]), # num_parallel_calls=4) # # Tile # if data_channels == 3: # tfdataset = tfdataset.map(lambda a, b, c, d, e: # tf.py_func(tfrecord_utils.tile_depth_image, [a, b, c, d, e], # [tf.float32, tf.string, tf.string, tf.string, tf.int64])) # # Augment # tfdataset = tfdataset.map(lambda a, b, c, d, e: # tf.py_func(tfrecord_utils.augment_depth_image, [a, b, c, d, e], # [tf.float32, tf.string, tf.string, tf.string, tf.int64])) # Transformations tfdataset = tfdataset.shuffle(buffer_size=batch_size * 2) tfdataset = tfdataset.batch(batch_size=batch_size, drop_remainder=True) tfdataset = tfdataset.prefetch(10) # Iterator data_iterator = tfdataset.make_initializable_iterator() data_pcd, _, _, data_y_int = data_iterator.get_next() data_pcd = tf.reshape(data_pcd, (batch_size, data_height, data_width, data_channels)) ####################################################################### # Network architecture ####################################################################### with tf.device('/gpu:' + str(gpu_index)): is_training_pl = tf.Variable(True, trainable=False, dtype=tf.bool) # Note the global_step=batch parameter to minimize. # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains. batch = tf.Variable(0, trainable=False) bn_decay = get_bn_decay(batch, batch_size=batch_size, bn_init_decay=bn_init_decay, bn_decay_decay_rate=bn_decay_decay_rate, bn_decay_decay_step=bn_decay_decay_step, bn_decay_clip=bn_decay_clip) tf.summary.scalar('bn_decay', bn_decay) # Get model and loss pred, end_points = MODEL.get_model(data_pcd, is_training_pl, num_classes=NUM_CLASSES, bn_decay=bn_decay, with_bn=False) loss = MODEL.get_loss(pred, data_y_int, end_points, num_classes=NUM_CLASSES) # # Number of trainable weights # trainable_weights_no = np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]) # print('trainable_weights_no: {}'.format(trainable_weights_no)) # exit(0) tf.summary.scalar('loss', loss) correct = tf.equal(tf.argmax(pred, 1), tf.to_int64(data_y_int)) accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)) / float(batch_size) tf.summary.scalar('accuracy', accuracy) # Get learning rate learning_rate = get_learning_rate(batch, batch_size=batch_size, base_learning_rate=base_learning_rate, learning_rate_decay_rate=learning_rate_decay_rate, learning_rate_decay_step=bn_decay_decay_step) tf.summary.scalar('learning_rate', learning_rate) # OPTIMIZATION - Also updates batchnorm operations automatically with tf.variable_scope('opt') as scope: if optimizer_name == 'momentum': optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM) elif optimizer_name == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # for batchnorm with tf.control_dependencies(update_ops): train_op = optimizer.minimize(loss, global_step=batch) # Load weghts from checkpoint if model_name == 'inception_v3' and pretrained_weights_file_path is not None: # Lists of scopes of weights to include/exclude from pretrained snapshot pretrained_include = ["InceptionV3"] pretrained_exclude = ["InceptionV3/AuxLogits", "InceptionV3/Logits"] # PRETRAINED SAVER - For loading pretrained weights on the first run pretrained_vars = tf.contrib.framework.get_variables_to_restore(include=pretrained_include, exclude=pretrained_exclude) tf_pretrained_saver = tf.train.Saver(pretrained_vars, name="pretrained_saver") # Add ops to save and restore all the variables. saver = tf.train.Saver() ####################################################################### # Create session ####################################################################### # Create a session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False sess = tf.Session(config=config) # Add summary writers merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter(os.path.join(log_dir, 'train'), sess.graph) test_writer = tf.summary.FileWriter(os.path.join(log_dir, 'test')) # Init variables sess.run(tf.global_variables_initializer()) # Profiling sess_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) sess_metadata = tf.RunMetadata() # print('VARS NO: {}'.format(np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))) # exit() # Restore? # saver.restore(sess, tf.train.latest_checkpoint('log')) if model_name == 'inception_v3' and pretrained_weights_file_path is not None: sess.run(tf.global_variables_initializer()) tf_pretrained_saver.restore(sess, pretrained_weights_file_path) ops = {'is_training_pl': is_training_pl, 'pred': pred, 'loss': loss, 'train_op': train_op, 'merged': merged, 'step': batch, # 'pointclouds_pl': pointclouds_pl, 'labels_pl': labels_pl, 'data_y_int': data_y_int, 'data_pcd': data_pcd, 'batch_size': batch_size, 'num_classes': NUM_CLASSES, 'sess_options': sess_options, 'sess_metadata': sess_metadata, 'log_dir': log_dir, } for epoch in range(epochs): log_string('**** EPOCH %03d ****' % epoch) sys.stdout.flush() train_one_epoch(sess, ops, train_writer, data_iterator, tfrecord_filepaths_train, tfrecord_filepaths_placeholder) eval_one_epoch(sess, ops, test_writer, data_iterator, tfrecord_filepaths_test, tfrecord_filepaths_placeholder) # Save the variables to disk. save_path = saver.save(sess, os.path.join(log_dir, "model.ckpt")) log_string("Model saved in file: %s" % save_path) def train_one_epoch(sess, ops, train_writer, data_iterator, tfrecord_filepaths_train, tfrecord_filepaths_placeholder): """ ops: dict mapping from string to tf ops """ # Iterate over the all datapoints total_correct = 0. total_seen = 0. loss_sum = 0. # Reset train data sess.run(data_iterator.initializer, feed_dict={tfrecord_filepaths_placeholder: tfrecord_filepaths_train}) # Set trainable weights sess.run(ops['is_training_pl'].assign(True)) pbar = tqdm(desc='', unit='tick') try: while True: # Train it batch_train_start = timer() summary, step, _, loss_val, pred_val, current_label = sess.run( [ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['pred'], ops['data_y_int']], options=ops['sess_options'], run_metadata=ops['sess_metadata']) batch_train_end = timer() # Profiling fetched_timeline = timeline.Timeline(ops['sess_metadata'].step_stats) chrome_trace = fetched_timeline.generate_chrome_trace_format() with open(os.path.join(ops['log_dir'], 'timeline', 'timeline_02_step_%d.json' % step), 'w') as f: f.write(chrome_trace) # Print predited value and label # print('pred_val: {} curr_lab: {}'.format(pred_val[0], current_label[0])) # Some acc calulation train_writer.add_summary(summary, step) pred_val =
np.argmax(pred_val, 1)
numpy.argmax
""" Compute global or local influence. """ import os import sys import time import joblib import argparse import resource from datetime import datetime import numpy as np from sklearn.base import clone here = os.path.abspath(os.path.dirname(__file__)) sys.path.insert(0, here + '/../../') import intent import util from influence import select_elements def get_pred(objective, model, X, y): """ Return predictions of shape=(X.shape[0], no. class). """ if objective == 'regression': pred = model.predict(X) elif objective == 'binary': pred = model.predict_proba(X)[:, 1] elif objective == 'multiclass': pred = model.predict_proba(X) else: raise ValueError(f'objective {objective} unknown!') return pred def get_ranking(inf_obj, method, params, agg, tree, X_train, y_train, X, y, logger=None): """ Return influence values. """ # fit explainer start = time.time() explainer = intent.TreeExplainer(method, params, logger).fit(tree, X_train, y_train) fit_time = time.time() - start - explainer.parse_time_ if logger: logger.info(f'\n[INFO] explainer fit time: {fit_time:.5f}s') # compute infu start2 = time.time() if inf_obj == 'local': influence = explainer.get_local_influence(X, y) if agg == 'sum': influence = np.sum(influence, axis=1) # shape=(no. train,) elif agg == 'abs_sum': influence = np.sum(np.abs(influence), axis=1) # shape=(no. train,) elif agg == 'mean': influence = np.mean(influence, axis=1) # shape=(no. train,) else: assert agg == 'abs_mean' influence = np.mean(np.abs(influence), axis=1) # shape=(no. train,) else: assert inf_obj == 'global' influence = explainer.get_global_influence() inf_time = time.time() - start2 if logger: logger.info(f'[INFO] explainer influence time: {inf_time:.5f}s') ranking = np.argsort(np.abs(influence)) return ranking def remove_and_evaluate(args, objective, params, tree, X_train, y_train, X_test, y_test, test_idxs, logger): # initial predictions pred = get_pred(objective, tree, X_test, y_test) # get list of remove fractions remove_frac_arr = np.linspace(0, args.remove_frac, args.n_ckpt + 1) n_remove = int(args.remove_frac * X_train.shape[0] / args.n_ckpt) # # result container # result = {} # result['remove_frac'] = remove_frac_arr # result['loss'] = np.full(remove_frac_arr.shape[0], np.nan, dtype=np.float32) # result['pred'] = [] new_X_train = X_train.copy() new_y_train = y_train.copy() new_tree = clone(tree).fit(new_X_train, new_y_train) for i in range(1, args.n_ckpt): ranking = get_ranking(args.inf_obj, args.method, params, args.agg, new_tree, new_X_train, new_y_train, X_test[test_idxs], y_test[test_idxs], logger=None) new_X_train = np.delete(new_X_train, ranking[:n_remove], axis=0) new_y_train = np.delete(new_y_train, ranking[:n_remove]) if objective == 'binary' and len(np.unique(new_y_train)) == 1: logger.info('Only samples from one class remain!') break elif objective == 'multiclass' and len(
np.unique(new_y_train)
numpy.unique
# -*- coding: utf-8 -*- """ File Name: pipeline Description : 处理流程 Author : mick.yi date: 2019/1/3 """ import tensorflow as tf import numpy as np import h5py import keras from keras.layers import Input from keras.models import Model from keras.optimizers import SGD import keras.backend as K from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, TensorBoard import sys import os import time import argparse if __package__ is None: sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) __package__ = "keras-lbl-IvS" from .config import current_config as config from .utils import random_select, get_weights, update_weights, update_queue from .faiss_utils import get_index, update_multi from .reader import get_mslm_infos, load_img from .layers import DenseWithDPSoftmaxLoss def set_gpu_growth(): os.environ["CUDA_VISIBLE_DEVICES"] = "0" cfg = tf.ConfigProto() cfg.gpu_options.allow_growth = True session = tf.Session(config=cfg) K.set_session(session) def generator(images_info, label_id_dict, dominant_queue, num_class, batch_size): """ 训练样本生成器 :param images_info: 图像的元数据信息 :param label_id_dict: 类别和对应的图像id字典 :param dominant_queue: 支配队列; 类别和对应的支配类别 :param num_class: 类别数 :param batch_size: batch_size :return: """ while True: # 两级采样,首先采样batch_size/2个正类别;然后随机采样支配类别 sample_labels = np.random.choice(num_class, batch_size // 2, replace=False) # 无放回抽样 selected_labels = set(sample_labels) # 保存当前选中类别set selected_image_labels = [] # 保存当前step选中的图像和对应的类别标签 # 首先选择正原型 for label in sample_labels: selected_image_id = random_select(label_id_dict[label]) selected_image_labels.append([selected_image_id, label]) # 再选择相关的支配原型,直到mini-batch大小 while len(selected_image_labels) < batch_size: # 随机采样当前正原型 label = random_select(sample_labels) # 随机选择支配类别,不能是之前已经选择过的 dq_label = random_select(dominant_queue[label]) while dq_label in selected_labels: dq_label = random_select(dominant_queue[label]) selected_labels.add(dq_label) # 选择支配类别的图像 selected_image_id = random_select(label_id_dict[dq_label]) selected_image_labels.append([selected_image_id, dq_label]) # 当前选中标签 selected_image_labels = np.asarray(selected_image_labels) # 转为numpy数组 current_selected_labels = selected_image_labels[:, 1] current_weights = get_weights(config.pw_h5_file[config.prototype_weights_dataset], current_selected_labels) # 加载图像 images = [load_img(images_info[image_id]['img_path']) for image_id, label in selected_image_labels] images = np.asarray(images) # 返回当前mini-batch current_selected_labels = np.expand_dims(current_selected_labels, axis=1) # print("current_selected_labels.shape:{}".format(current_selected_labels.shape)) # print("images.shape:{},type(images):{}".format(images.shape, type(images))) yield [images, current_weights, current_selected_labels], np.arange(batch_size) # 标签类别永远是0~batch_size-1 def init_queue(index, weights_set, num_class, dq_num, cq_num): """ 初始化候选队列和支配队列 :param index: :param weights_set: h5py dataset对象 :param num_class: :param dq_num: :param cq_num: :return: """ data, candidate_label_idx = index.search(weights_set[:num_class], cq_num) dominant_label_idx = candidate_label_idx[:, :dq_num] # 候选队列包含支配队列 # 转为字典类型 dominant_queue = dict(enumerate(dominant_label_idx)) candidate_queue = dict(enumerate(candidate_label_idx)) return dominant_queue, candidate_queue def init_prototype(images_info, label_id_dict, num_class): inputs = Input(batch_shape=(config.batch_size,) + config.input_shape) features = config.backbone(inputs) model = Model(inputs, features) model.load_weights(config.backbone_weights, by_name=True) # 原型权重一份放到hdf5,一份存放到faiss中(faiss中保留的不是精准的) f_label = h5py.File(config.prototype_weights_hdf5, 'w') label_feature = f_label.create_dataset(config.prototype_weights_dataset, shape=(num_class, 512), dtype='f') # 逐个类别处理 for label in range(num_class): # 获取某个label的所有图像,并使用模型预测图像的特征,最后求均值作为label的原型权重 image_ids = label_id_dict[label] # 图像id images = [load_img(images_info[image_id]['img_path']) for image_id in image_ids] # 图像数据 features = model.predict(np.asarray(images)) # 输出特征 features = keras.utils.np_utils.normalize(features) # 归一化 features = np.mean(features, axis=0) # 求均值 features = keras.utils.np_utils.normalize(features) # 再次归一化; 是二维的 # 赋值给hdf5 label_feature[label] = features[0] # (1,d) 转为 (d,) # 每1w次,刷写到磁盘 if label % 500 == 0: f_label.flush() print("{} init_prototype 完成:{}".format(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), label)) # 最后关闭文件 f_label.close() def get_prototype(deal_batch=1000): f_label = h5py.File(config.prototype_weights_hdf5, 'r+') dset = f_label[config.prototype_weights_dataset] length = len(dset) index = get_index(512) # 逐个类别处理,更新faiss index for batch_no in range(length // deal_batch): start = batch_no * deal_batch end = (batch_no + 1) * deal_batch features = dset[start:end] update_multi(index, features, np.arange(start, end)) # 处理不能整除的情况 if not length % deal_batch == 0: start = length - length % deal_batch end = length features = dset[start:end] update_multi(index, features, np.arange(start, end)) return f_label, index def label_id_map(images_info, num_class): """ 将图像按照类别分组 :param images_info: 图像字典{'img_path': 图像路径,'label': 类别,'img_id':图像id} :param num_class: 类别数 :return: """ # 初始化 label_id_dict = dict() for i in range(num_class): label_id_dict[i] = [] # 逐个图像归类 for i in range(len(images_info)): label = int(images_info[i]['label']) img_id = images_info[i]['img_id'] label_id_dict[label].append(img_id) return label_id_dict class ExportWeights(keras.callbacks.Callback): def on_batch_end(self, batch, logs=None): layer = self.model.layers[-1] trained_weights, current_trained_labels, y_pred = layer.get_weights()[:3] trained_weights =
np.transpose(trained_weights)
numpy.transpose
# -*- coding: utf-8 -*- """ Created on Fri Apr 3 07:52:07 2020 @author: <NAME> This code is written based on WEC-sim. <EMAIL> Note: readData method is included to import data type of both .txt and .mat Note: irregularWaveSpectrum method has been modified for the faster computation. The original method from WEC-sim is commented. Note: MATLAB column vectors are changed to array for faster computation Note: waveElevationGrid method and write_paraview_vtp_wave method is moved to paraviewClass.py Note: Values are equal to tolerance rtol=1e-07, atol=0 Values will not be exact to WEC-sim due to difference in significant figures or the way some methods are used. (e.g) integrate.cumtrapz(S_f,freq) and MATLAB cumtrapz(freq,S_f) does not produce same results but silimar values to rtol=1e-06 Note: "RuntimeWarning: overflow encountered in sinh" When using irregular wave or spectrumImport, Equal Energy with wDepth value over 100 can generate "RuntimeWarning: overflow encountered in sinh" as the value of sinh in waveSetup method reaches infinity. """ from scipy import integrate import matplotlib.pyplot as plt import numpy as np import numpy.matlib import warnings import scipy.io as sio class WaveClass: def inputProperties(self): """ Set up necessary properties of the wave condition based on input file Returns ------- wType, T, H, spectrumType, gamma, phaseSeed, spectrumDataFile, etaDataFile, numFreq, waveDir, waveSpread, viz, statisticsDataLoad, freqDisc, wavegauge1loc, wavegauge2loc, wavegauge3loc, currentSpeed, currentDirection, currentOption, currentDepth """ #wType - String defining the type of waves to be generated. #Can be one of: 'noWave', 'noWaveCIC', 'regular', 'regularCIC','irregular', #'spectrumImport', and 'etaImport' #(Default = 'NOT DEFINED'). self.wType = 'NOT DEFINED' #T - [s] Wave period, peak wave period or BEM period. #Wave period (regular waves), peak period (irregular waves), or period of #BEM data used for hydrodynamic coefficients ('noWave') #(Default = 'NOT DEFINED'). self.T = 'NOT DEFINED' #H - % [m] Wave height or significant wave height for irregular #Wave height (regular waves) or significant wave height (irregular waves) #(Default = 'NOT DEFINED'). self.H = 'NOT DEFINED' #spectrumType - String containing the wave spectrum type #Can be one of : 'PM', 'BS', and 'JS' #(Default = 'NOT DEFINED'). self.spectrumType = 'NOT DEFINED' #gamma - Only used for 'JS' spectrum type to define gamma #(Default = 3.3) self.gamma = 3.3 #phaseSeed - Only used for irregular waves #if equal to 1,2,3,...,etc, the waves phase is seeded. #(Default = 0) self.phaseSeed = 0 #spectrumDataFile - Data file that contains the spectrum data file #(Default = 'NOT DEFINED') self.spectrumDataFile = 'NOT DEFINED' #etaDataFile - Data file that contains the times-series data file #(Default = 'NOT DEFINED') self.etaDataFile = 'NOT DEFINED' #freqRange - Min and max frequency for irregular waves. #array with two values, rad/s, (default = frequency range in BEM data) #(Default = []) #eg. [0.3,0.5] self.freqRange = [] #numFreq - of interpolated wave frequencies #Number of frequencies used, varies depending on method: #Traditional = 1000, EqualEnergy = 500 or 'Imported' #(Default = 0) self.numFreq = 0 #waveDir - [deg] Incident wave direction(s) #Should be defined as a column vector for more than one wave direction #For multiple wave direction it will be an array of angle in degree #[20,45,60,80] #(Default = 0) self.waveDir = [0] #waveSpread - Wave Spread probability associated with wave direction(s) #Should be defined as a column vector for more than one wave direction #For multiple wave direction it will be an array that corresponds to #wave direction [20,45,60,80] #(Default = [1]) self.waveSpread = [1] #viz - Dictionary defining visualization options #Should be a dictionary containing the fields 'numPointsX' and 'numPointsY'. #numPointsX is the number of visualization points in x direction, and #numPointsY the number of visualization points in y direction self.viz = {'numPointsX': 50,'numPointsY': 50 } #statisticsDataLoad - File name from which to load wave statistics data #(Default = []) self.statisticsDataLoad = [] #freqDisc - Method of frequency discretization for irregular waves. #Options for this variable are 'EqualEnergy' or 'Traditional'. #(Default = 'EqualEnergy'). self.freqDisc = 'EqualEnergy' #wavegauge1loc - [m] Wave gauge 1 [x,y] location #(Default = [0,0]). self.wavegauge1loc = [0,0] #wavegauge2loc - [m] Wave gauge 2 [x,y] location #(Default = [0,0]). self.wavegauge2loc = [0,0] #wavegauge3loc - [m] Wave gauge 3 [x,y] location #(Default = [0,0]). self.wavegauge3loc = [0,0] #currentSpeed - [m/s] Surface current speed that is uniform along the #water column. #(Default = 0). self.currentSpeed = 0 #currentDirection - [deg] Surface current direction. #(Default = 0). self.currentDirection = 0 #currentOption - [-] Define the sub-surface current model to be used in #WEC-Sim. #(Default = 0) #0 : Depth-independent model #1 : 1/7 power law variation with depth #2 : linear variation with depth #3 : no current self.currentOption = 3 #currentDepth - [m] Define the depth over which the sub-surface current is #modeled. #For options (1) and (2) the currentDepth must be defined. The #current is not calculated for any depths greater than the #specified currentDepth. (Default = 0). self.currentDepth = 0 def _internalProperties(self): """ The following properties are for internal use Returns ------- typeNum, bemFreq, waterDepth, deepWaterWave, waveAmpTime,waveAmpTime1, waveAmpTime2, waveAmpTime3, A, w, phase, dw, k, S, Pw """ #typeNum - Number to represent different type of waves self.typeNum = [] #bemFreq - Number of wave frequencies from BEM self.bemFreq = [] #waterDepth - [m] Water depth (from BEM) self.waterDepth = [] #deepWaterWave - Deep water or not, depending on input from WAMIT, #NEMOH and AQWA self.deepWaterWave = [] #waveAmpTime - [m] Wave elevation time history self.waveAmpTime = [] #waveAmpTime1 - [m] Wave elevation time history at a wave gauge 1 location #specified by user self.waveAmpTime1 = [] #waveAmpTime2 - [m] Wave elevation time history at a wave gauge 2 location #specified by user self.waveAmpTime2 = [] #waveAmpTime3 - [m] Wave elevation time history at a wave gauge 3 location #specified by user self.waveAmpTime3 = [] #A - [m] Wave amplitude for regular waves or 2*(wave spectrum vector) for #irregular waves self.A = [] #w - [rad/s] Wave frequency (regular waves) or #wave frequency vector (irregular waves) self.w = [] #phase - [rad] Wave phase (only used for irregular waves) self.phase = 0 #dw - [rad] Frequency spacing for irregular waves. self.dw = 0 #k - Wave Number self.k = [] #S - Wave Spectrum [m^2-s/rad] for 'Traditional' self.S = [] #Pw - Wave Power Per Unit Wave Crest [W/m] self.Pw = [] def __init__(self,wType): """ waveClass constructor function Parameters ---------- Returns ------- self - waveClass object """ self.wType = wType self.gamma = 3.3 self.w = [] if self.wType == 'noWave': #No Waves with Constant Hydrodynamic Coefficients self.typeNum = 0 elif self.wType == 'noWaveCIC': #No Waves w/Convolution Integral Calculation self.typeNum = 1 elif self.wType == 'regular': #Regular Waves with Constant Hydrodynamic Coefficients self.typeNum = 10 elif self.wType == 'regularCIC': #Regular Waves w/Convolution Integral Calculation self.typeNum = 11 elif self.wType == 'irregular': #Irregular Waves with 'PM', BS' or 'JS' wave spectrum self.typeNum = 20 elif self.wType == 'spectrumImport': #Irregular waves with imported wave spectrum self.typeNum = 21 elif self.wType == 'etaImport': #Waves with imported wave elevation time-history self.typeNum = 30 def plotEta(self, *rampTime): """ Plot wave elevation time-history This method is for our visual understanding. Does not get used in any method rampTime input argument is optional """ plt.figure(figsize=(10,8)) plt.plot(self.waveAmpTime[0],self.waveAmpTime[1]) plt.title('Wave Surfave Elevation') if np.size(rampTime) == 1: # If ramptime is given we can specify it but will generate similar graph plt.plot(np.array(rampTime),np.array(1.5*min(self.waveAmpTime[1]),1.5*max(self.waveAmpTime[1]))) plt.title(['Wave Surfave Elevation, Ramp Time ' + str(rampTime) +' (s)']) plt.xlabel('Time (s)') plt.ylabel('Eta (m)') def plotSpectrum(self): """ Plot wave spetrum This method is for our visual understanding. Does not get used in any method """ m0 = np.trapz(self.S, x = self.w) HsTest = 4*np.sqrt(m0) I = np.argmax(np.abs(self.S)) wp = self.w[I] TpTest = 2*np.pi/wp plt.figure(figsize=(10,8)) plt.plot(self.w,self.S,'s-') plt.plot(wp,np.array(max(self.S))) plt.xlim([0, max(self.w)]) plt.title([self.spectrumType, ' Spectrum, T_p= ' + str(TpTest) + ' [s], H_m_0= ' + str(HsTest) + ', [m]']) if self.spectrumType == 'JS': plt.title([self.spectrumType, ' Spectrum, T_p= ' + str(TpTest) + ' [s], H_m_0= ' + str(HsTest) + ', [m], gamma = ' + str(self.gamma)]) plt.xlabel('Frequency (rad/s)') plt.ylabel('Spectrum (m^2-s/rad)') def waveSetup(self,bemFreq,wDepth,rampTime,dt,maxIt,g,rho,endTime): """ Set up wave for all wave type. Input parameters are from simulationClass.py This method is the most important method to check out in this class """ self.bemFreq = bemFreq # array of the beam frequency from BEMIO. Only the max and min values gets used. self.setWaveProps(wDepth) # method called to set up wave properties. if (self.wType == 'noWave') or (self.wType == 'noWaveCIC'): if np.size(self.w) == 0: self.w = 2*np.pi/self.T self.waveNumber(g) # used to set self.k self.A = self.H/2 self.waveElevNowave(maxIt,dt) # method called to set wave elevation elif (self.wType == 'regular') or (self.wType == 'regularCIC'): if np.size(self.w) == 0: self.w = 2*np.pi/self.T self.A = self.H/2 self.waveNumber(g) # used to set self.k self.waveElevReg(rampTime, dt, maxIt) # method called to set wave elevation self.wavePowerReg(g,rho) # method called to find wave power elif (self.wType == 'irregular') or (self.wType == 'spectrumImport'): WFQSt = np.min(bemFreq) WFQEd = np.max(bemFreq) if np.size(self.freqRange) != 0: # frequency range that can be set bu user. eg.[0.2, 0.5] if self.freqRange[0] > WFQSt and self.freqRange[0] > 0: # if minimum frequency range value set by user is greater than minimum beam frequency and 0 WFQSt = self.freqRange[0] # set new minimum beam frequency provided by user else: warnings.warn("Min frequency range outside BEM data, min frequency set to min BEM frequency",DeprecationWarning) if self.freqRange[1] < WFQEd and self.freqRange[1] > WFQSt: # if maximum frequency range value set by user is lower than maximum beam frequency but greater than minimum beam frequency WFQEd = self.freqRange[1] # set new maximum beam frequncy provided by user else: warnings.warn("Max frequency range outside BEM data, max frequency set to max BEM frequency",DeprecationWarning) if self.freqDisc == 'Traditional': # Traditional method of computing. Refer to theory of waveclass provided by WEC-Sim to understand the theory. if np.size(self.numFreq) == 0: # numfreq for Traditional is 1000 for default self.numFreq = 1000 self.w = arange_MATLAB(WFQSt,WFQEd+((WFQEd-WFQSt)/(self.numFreq-1)),(WFQEd-WFQSt)/(self.numFreq-1)) self.dw = np.ones(shape=(self.numFreq,1))*(WFQEd-WFQSt)/(self.numFreq-1) elif self.freqDisc == 'EqualEnergy': # Default way of computing irregular wave. Refer to theory of waveclass provided by WEC-Sim to understand the theory. numFreq_interp = 500000 # number of interpolation that will set array size for SF and S_f used in irregWaveSpectrum method. Lowering this value might decrease the run time but accuracy will decrease self.w = arange_MATLAB(WFQSt,WFQEd+((WFQEd-WFQSt)/numFreq_interp),(WFQEd-WFQSt)/numFreq_interp) self.dw = np.mean(np.diff(self.w)) if np.size(self.numFreq) == 0: # numfreq for EqualEnergy is 500 for default self.numFreq = 500 elif self.freqDisc == 'Imported': # set from setWaveProps method data = self.readData(self.spectrumDataFile) # call on readData method to get files in both mat file and txt file freq_data = data[0] # the first row out of the three rows in spectrum data file is frequency self.w = np.array([i*2*np.pi for i in freq_data if i>=min(bemFreq)/2/np.pi and i<=max(bemFreq)/2/np.pi]) self.numFreq = len(self.w) self.dw = np.zeros(self.numFreq) self.dw[0]= np.array(self.w[1]-self.w[0]) self.dw[1:self.numFreq-1]= np.array((self.w[2:]-self.w[:-2])/2) self.dw[self.numFreq-1]= np.array(self.w[-1]-self.w[-2]) self.setWavePhase() # method called to generate wave phase. there can be multiple phase if there are more than one wave direction self.irregWaveSpectrum(g,rho) # method called to calculate for different kinds of irregular wave calculation methods self.waveNumber(g) # used to set self.k self.waveElevIrreg(rampTime, dt, maxIt, self.dw) # method called to set wave elevation elif self.wType == 'etaImport': #Import 'etaImport' time-series here and interpolate data = self.readData(self.etaDataFile) #Import time-series t = arange_MATLAB(0,endTime+dt,dt) #simulation time self.waveElevUser(rampTime, dt, maxIt, data, t) # method called to set wave elevation t2 = np.arange(maxIt+1)*dt initialZeros = np.zeros((maxIt+1)) self.waveAmpTime1 = [t2,initialZeros] # set wave elevation as zeros since we just wants to look at imported data self.waveAmpTime2 = self.waveAmpTime1 # set wave elevation as zeros since we just wants to look at imported data self.waveAmpTime3 = self.waveAmpTime1 # set wave elevation as zeros since we just wants to look at imported data def setWaveProps(self,wDepth): """ Sets wave properties check for wave depth check for wave type of noWave, noWaveCIC, and spectrumImport """ if wDepth == 'infinite': # Can be 'infinite' or number. From BEMIO self.deepWaterWave = 1 # means deep water self.waterDepth = 200 # minimu water depth for deep water set print('\tInfinite water depth specified in BEM, "waves.waterDepth" set to 200m for vizualisation.\n') else: self.deepWaterWave = 0 # means shallow water self.waterDepth = wDepth # set it to specific water depth. Can cause warning when some calculations reach infinity if self.wType == 'noWave': self.H = 0 # set wave height as 0 elif self.wType == 'noWaveCIC': self.H = 0 # set wave height as 0 if np.size(self.w) == 0 and self.T == 'NOT DEFINED': self.w = np.min(self.bemFreq) self.T = 2*np.pi/self.w elif np.size(self.w) == 0: self.w = 2*np.pi/self.T else: self.T = 2*np.pi/self.w elif self.wType == 'spectrumImport': self.H = 0 self.T = 0 self.freqDisc = 'Imported' # one of the type of freqDisc that used later in waveSetup method self.spectrumType = 'spectrumImport' def waveNumber(self, g): """ Calculate wave number """ self.k= self.w**2/g # general method of calculating k if self.deepWaterWave == 0: # calculate k directly from specific water depth for i in range(100): self.k = self.w**2/g/np.tanh(self.k*self.waterDepth) def readData(self,file): """ Return Data from the file Supported file type: .txt, .mat """ if file.endswith('.txt'): data = np.conj(np.transpose(np.loadtxt(file))) # transforms data in to array no matter it was in vector form or array form elif file.endswith('.mat'): # specific for MATLAB data file. Allows collaboration between MATLAB user and Python user. matFile = sio.loadmat(file) keys = list(matFile.keys())[-1] data = np.conj(np.transpose(matFile[keys])) # this transforms data in to array no matter it was in vector form or array form return data def setWavePhase(self): """ Sets the irregular wave's random phase MATLAB and Python use same random number generator multiple arrays of phase is not supported for regular wave as it was not supported in the WEC-Sim """ if self.phaseSeed != 0: np.random.seed(self.phaseSeed) #Phase seed = 1,2,3,...,etc else: np.random.seed(np.random.shuffle(self.phaseSeed)) # shuffle phase seed if (self.freqDisc == 'EqualEnergy') or (self.freqDisc == 'Traditional'): self.phase = 2*np.pi*np.conj(np.transpose(np.random.rand(self.numFreq,np.size(self.waveDir)))) # for multiple wave direction, multiple arrays of phase will be made elif (self.freqDisc == 'Imported'): data = self.readData(self.spectrumDataFile) if len(data) == 3: # if imported spectrum data file is correct it should have 3 rows of data freq_data = data[0] self.phase = np.array([[x for x,i in zip(data[2],freq_data) if i>=min(self.bemFreq)/2/np.pi and i<=max(self.bemFreq)/2/np.pi]]) else: self.phase = 2*np.pi*np.random.rand(1,self.numFreq) # if imported spectrum data is faulty, phase will be calculated randomly def waveElevNowave(self,maxIt,dt): """ Set noWave elevation time-history """ t = np.arange(maxIt+1)*dt initialZeros =
np.zeros((maxIt+1))
numpy.zeros
# -*- coding: utf-8 -*- import numpy as np import torch import random from torch import multiprocessing as mp from convlab2.dialog_agent.agent import PipelineAgent from convlab2.dialog_agent.session import BiSession from convlab2.dialog_agent.env import Environment from convlab2.dst.rule.multiwoz import RuleDST from convlab2.policy.rule.multiwoz import RulePolicy from convlab2.policy.rlmodule import Memory, Transition from convlab2.evaluator.multiwoz_eval import MultiWozEvaluator from pprint import pprint import json import matplotlib.pyplot as plt import sys import logging import os import datetime import argparse import os def init_logging(log_dir_path, path_suffix=None): if not os.path.exists(log_dir_path): os.makedirs(log_dir_path) current_time = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S") if path_suffix: log_file_path = os.path.join(log_dir_path, f"{current_time}_{path_suffix}.log") else: log_file_path = os.path.join(log_dir_path, "{}.log".format(current_time)) stderr_handler = logging.StreamHandler() file_handler = logging.FileHandler(log_file_path) format_str = "%(levelname)s - %(filename)s - %(funcName)s - %(lineno)d - %(message)s" logging.basicConfig(level=logging.DEBUG, handlers=[stderr_handler, file_handler], format=format_str) DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") def sampler(pid, queue, evt, env, policy, batchsz): """ This is a sampler function, and it will be called by multiprocess.Process to sample data from environment by multiple processes. :param pid: process id :param queue: multiprocessing.Queue, to collect sampled data :param evt: multiprocessing.Event, to keep the process alive :param env: environment instance :param policy: policy network, to generate action from current policy :param batchsz: total sampled items :return: """ buff = Memory() # we need to sample batchsz of (state, action, next_state, reward, mask) # each trajectory contains `trajectory_len` num of items, so we only need to sample # `batchsz//trajectory_len` num of trajectory totally # the final sampled number may be larger than batchsz. sampled_num = 0 sampled_traj_num = 0 traj_len = 50 real_traj_len = 0 while sampled_num < batchsz: # for each trajectory, we reset the env and get initial state s = env.reset() for t in range(traj_len): # [s_dim] => [a_dim] s_vec = torch.Tensor(policy.vector.state_vectorize(s)) a = policy.predict(s) # interact with env next_s, r, done = env.step(a) # a flag indicates ending or not mask = 0 if done else 1 # get reward compared to demostrations next_s_vec = torch.Tensor(policy.vector.state_vectorize(next_s)) # save to queue buff.push(s_vec.numpy(), policy.vector.action_vectorize(a), r, next_s_vec.numpy(), mask) # update per step s = next_s real_traj_len = t if done: break # this is end of one trajectory sampled_num += real_traj_len sampled_traj_num += 1 # t indicates the valid trajectory length # this is end of sampling all batchsz of items. # when sampling is over, push all buff data into queue queue.put([pid, buff]) evt.wait() def sample(env, policy, batchsz, process_num): """ Given batchsz number of task, the batchsz will be splited equally to each processes and when processes return, it merge all data and return :param env: :param policy: :param batchsz: :param process_num: :return: batch """ # batchsz will be splitted into each process, # final batchsz maybe larger than batchsz parameters process_batchsz = np.ceil(batchsz / process_num).astype(np.int32) # buffer to save all data queue = mp.Queue() # start processes for pid in range(1, processnum) # if processnum = 1, this part will be ignored. # when save tensor in Queue, the process should keep alive till Queue.get(), # please refer to : https://discuss.pytorch.org/t/using-torch-tensor-over-multiprocessing-queue-process-fails/2847 # however still some problem on CUDA tensors on multiprocessing queue, # please refer to : https://discuss.pytorch.org/t/cuda-tensors-on-multiprocessing-queue/28626 # so just transform tensors into numpy, then put them into queue. evt = mp.Event() processes = [] for i in range(process_num): process_args = (i, queue, evt, env, policy, process_batchsz) processes.append(mp.Process(target=sampler, args=process_args)) for p in processes: # set the process as daemon, and it will be killed once the main process is stoped. p.daemon = True p.start() # we need to get the first Memory object and then merge others Memory use its append function. pid0, buff0 = queue.get() for _ in range(1, process_num): pid, buff_ = queue.get() buff0.append(buff_) # merge current Memory into buff0 evt.set() # now buff saves all the sampled data buff = buff0 return buff.get_batch() def evaluate(dataset_name, model_name, load_path, calculate_reward=True): seed = 20190827 random.seed(seed)
np.random.seed(seed)
numpy.random.seed
import sys import math import random from copy import deepcopy from itertools import combinations from unittest.mock import patch, MagicMock import pytest import numpy as np from text_rank.graph import AdjacencyList, AdjacencyMatrix, Vertex from text_rank.text_rank import ( sum_edges, accumulate_score, text_rank, text_rank_init_list, text_rank_init_matrix, text_rank_update_list, text_rank_update_matrix, text_rank_output_list, text_rank_output_matrix, ) from utils import rand_str TRIALS = 100 GOLD_SEED = 1337 GOLD_WS = [ 0.11241286838510592, 0.09703866532611793, 0.0665736515734767, 0.10659608608017906, 0.03015021720224241, 0.1500117991660606, 0.0698230006775505, 0.14368633275201811, 0.1677271414904536, 0.05598023734679501, ] def test_sum_edges(): def test(): edges = {} gold_total = random.randint(0, 100) total = gold_total i = 0 while total > 0: weight = random.randint(1, 5) weight = min(weight, total) edges[i] = weight i += 1 total -= weight score = sum_edges(edges) assert score == gold_total for _ in range(TRIALS): test() def test_accumulate_score(): vertex = MagicMock(edges_in={0: 0.5, 1: 0.6, 4: 0.1}) denom = [0.1, 0.7, 0.4, 0.0, 0.3] ws = [0.9, 0.2, 0.5, 0.1, 0.4] gold = 4.8047619047619055 assert math.isclose(accumulate_score(vertex, ws, denom), gold) def test_init_list_shapes(): graph = MagicMock(vertices=[MagicMock() for _ in range(random.randint(10, 100))]) ws, denom = text_rank_init_list(graph) assert len(ws) == len(denom) == len(graph.vertices) def test_init_list_ws_inits(): graph = MagicMock(vertices=[MagicMock() for _ in range(len(GOLD_WS))]) ws, _ = text_rank_init_list(graph, seed=GOLD_SEED) for w, gw in zip(ws, GOLD_WS): assert math.isclose(w, gw) def test_init_list_d_norms(): graph = MagicMock(vertices=[MagicMock() for _ in range(random.randint(10, 100))]) gold = [random.random() for _ in range(len(graph.vertices))] values = deepcopy(gold) zero_indices = random.sample(range(len(gold)), len(gold) // 2) for i in zero_indices: gold[i] = 1 values[i] = 0 with patch("text_rank.text_rank_module.sum_edges") as sum_patch: sum_patch.side_effect = values _, denom = text_rank_init_list(graph) for d, g in zip(denom, gold): assert math.isclose(d, g) def test_init_list_sum_to_one(): graph = MagicMock(vertices=[MagicMock() for _ in range(random.randint(10, 100))]) ws, _ = text_rank_init_list(graph) assert math.isclose(sum(ws), 1) def test_init_list_uniform(): graph = MagicMock(vertices=[MagicMock() for _ in range(random.randint(10, 100))]) golds = [1 for _ in graph.vertices] norm = sum(golds) golds = [g / norm for g in golds] ws, _ = text_rank_init_list(graph, uniform=True) for w, g in zip(ws, golds): assert math.isclose(w, g) def test_init_matrix_shapes(): verts = random.randint(10, 100) graph = MagicMock(vertex_count=verts, adjacency_matrix=np.random.rand(verts, verts)) ws, denom = text_rank_init_matrix(graph) assert len(ws) == len(denom) == verts def test_init_matrix_ws_inits(): graph = MagicMock(vertex_count=len(GOLD_WS), adjacency_matrix=np.random.rand(len(GOLD_WS), len(GOLD_WS))) ws, _ = text_rank_init_matrix(graph, seed=GOLD_SEED) np.testing.assert_allclose(ws, np.array(GOLD_WS)) def test_init_matrix_d_norms(): graph = MagicMock(vertices=[MagicMock() for _ in range(random.randint(10, 100))]) gold = [random.random() for _ in range(len(graph.vertices))] values = deepcopy(gold) zero_indices = random.sample(range(len(gold)), len(gold) // 2) for i in zero_indices: gold[i] = 1 values[i] = 0 with patch("text_rank.text_rank_module.sum_edges") as sum_patch: sum_patch.side_effect = values _, denom = text_rank_init_matrix(graph) for d, g in zip(denom, gold): assert math.isclose(d, g) def test_init_matrix_sum_to_one(): verts = random.randint(10, 100) graph = MagicMock(vertex_count=verts, adjacency_matrix=np.random.rand(verts, verts)) ws, _ = text_rank_init_matrix(graph) assert math.isclose(sum(ws), 1) def test_init_matrix_uniform(): verts = random.randint(10, 100) graph = MagicMock(vertex_count=verts, adjacency_matrix=np.random.rand(verts, verts)) golds = [1 for _ in graph.vertices] norm = sum(golds) golds = [g / norm for g in golds] ws, _ = text_rank_init_list(graph, uniform=True) np.testing.assert_allclose(ws, np.array(golds)) def test_update_list(): graph = MagicMock(vertices=[MagicMock() for _ in range(random.randint(10, 100))]) damping = random.random() golds = [random.random() for _ in graph.vertices] update_values = [(g - 1 + damping) / damping for g in golds] with patch("text_rank.text_rank_module.accumulate_score") as acc_patch: acc_patch.side_effect = update_values ws = text_rank_update_list(graph, None, None, damping) for w, g in zip(ws, golds): math.isclose(w, g) def test_update_matrix(): verts = np.random.randint(10, 100) ws = np.random.rand(verts) adj = np.random.rand(verts, verts) denom = np.random.rand(verts, 1) graph = MagicMock(adjacency_matrix=adj) damping = np.random.rand() gold = (1 - damping) + damping * np.sum(ws.reshape((-1, 1)) * (adj / denom), axis=0) res = text_rank_update_matrix(graph, ws, denom, damping) np.testing.assert_allclose(res, gold) def test_output_list(): v = random.randint(2, 10) verts = [rand_str() for _ in range(v)] graph = MagicMock(vertices=[Vertex(v) for v in verts]) ws = np.random.rand(v) gold_labels = [verts[i] for i in np.argsort(ws)[::-1]] gold_score = np.sort(ws)[::-1] gold_score = gold_score / np.sum(gold_score) res = text_rank_output_list(graph, ws) for gl, gs, (l, s) in zip(gold_labels, gold_score, res): assert l == gl assert math.isclose(s, gs) def test_output_list_sum_to_one(): v = random.randint(2, 10) verts = [rand_str() for _ in range(v)] graph = MagicMock(vertices=[Vertex(v) for v in verts]) ws =
np.random.rand(v)
numpy.random.rand
import cv2 import numpy as np def add(img1, img2, xyCor): xPos,yPos = xyCor xBefore,yBefore=xPos,yPos xReal,yReal=0,0 imageWidth2 = img2.shape[1] imageHeight2 = img2.shape[0] while xReal < imageWidth2: while yReal < imageHeight2: Pos1=cv2.add(int(img1[yPos,xPos,0]),int(img2[yReal,xReal,0])) Pos2=cv2.add(int(img1[yPos,xPos,1]),int(img2[yReal,xReal,1])) Pos3=cv2.add(int(img1[yPos,xPos,2]),int(img2[yReal,xReal,2])) img1.itemset((yPos, xPos, 0),int(Pos1[0][0]) ) img1.itemset((yPos, xPos, 1),int(Pos2[0][0]) ) img1.itemset((yPos, xPos, 2),int(Pos3[0][0]) ) yPos = yPos + 1 yReal= yReal+1 yPos = yBefore yReal = 0 xPos = xPos + 1 xReal = xReal +1 return img1 def subtract(img1,img2,xyCor): xPos,yPos = xyCor xBefore,yBefore=xPos,yPos xReal,yReal=0,0 imageWidth2 = img2.shape[1] imageHeight2 = img2.shape[0] while xReal < imageWidth2: while yReal < imageHeight2: Pos1=cv2.subtract(int(img1[yPos,xPos,0]),int(img2[yReal,xReal,0])) Pos2=cv2.subtract(int(img1[yPos,xPos,1]),int(img2[yReal,xReal,1])) Pos3=cv2.subtract(int(img1[yPos,xPos,2]),int(img2[yReal,xReal,2])) img1.itemset((yPos, xPos, 0),int(Pos1[0][0]) ) img1.itemset((yPos, xPos, 1),int(Pos2[0][0]) ) img1.itemset((yPos, xPos, 2),int(Pos3[0][0]) ) yPos = yPos + 1 yReal= yReal+1 yPos = yBefore yReal = 0 xPos = xPos + 1 xReal = xReal +1 return img1 def multiply(img1,img2,xyCor): xPos,yPos = xyCor xBefore,yBefore=xPos,yPos xReal,yReal=0,0 imageWidth2 = img2.shape[1] imageHeight2 = img2.shape[0] while xReal < imageWidth2: while yReal < imageHeight2: Pos1=cv2.multiply(int(img1[yPos,xPos,0]),int(img2[yReal,xReal,0])) Pos2=cv2.multiply(int(img1[yPos,xPos,1]),int(img2[yReal,xReal,1])) Pos3=cv2.multiply(int(img1[yPos,xPos,2]),int(img2[yReal,xReal,2])) if(np.isnan(Pos1[0][0]) or np.isinf(Pos1[0][0])): Pos1[0][0] = 0 if(
np.isnan(Pos2[0][0])
numpy.isnan
import numpy as np import pybullet as p import itertools class Robot(): index = 0 Kf =1 # proportionality formation constant Kt =1 # target proportionality constant def __init__(self, init_pos, robot_id, dt): self.id = robot_id self.dt = dt # self.pybullet_id = p.loadSDF("../models/robot.sdf")[0] self.pybullet_id = p.loadURDF("../models/robot_with_4_tyres_trail_2/urdf/robot_with_4_tyres_trail_2.urdf",[0, 0, 1]) self.joint_ids = list(range(p.getNumJoints(self.pybullet_id))) self.initial_position = init_pos self.velocity = [0,0] self.reset() p_des = [] goal_pose = [] self.time = 0 self.old_theta_1 = 0 self.old_theta_2 = 0 self.old_theta_3 = 0 self.old_theta_4 = 0 # No friction between body and surface. p.changeDynamics(self.pybullet_id, -1, lateralFriction=2, rollingFriction=0.) # Friction between joint links and surface. for i in range(p.getNumJoints(self.pybullet_id)): p.changeDynamics(self.pybullet_id, i, lateralFriction=2, rollingFriction=0.) self.messages_received = [] self.messages_to_send = [] self.neighbors = [] def reset(self): p.resetBasePositionAndOrientation(self.pybullet_id, self.initial_position, (0., 0., 0., 1.)) def set_wheel_velocity(self, V_x,V_y,W): """ Sets the wheel velocity,expects an array containing two numbers (left and right wheel vel) """ # assert len(vel) == 2, "Expect velocity to be array of size two" # p.setJointMotorControlArray(self.pybullet_id, self.joint_ids, p.VELOCITY_CONTROL, # targetVelocities=vel) l = 0.23 w = 0.23 v1_x = V_x - W*l # velcity for robot 1 x component v1_y = V_y + W*w # velocity for robot 1 y component v2_x = V_x + W*l # velcity for robot 2 x component v2_y = V_y + W*w # velocity for robot 2 y component v3_x = V_x - W*l # velcity for robot 3 x component v3_y = V_y - W*w # velocity for robot 3 y component v4_x = V_x + W*l # velcity for robot 4 x component v4_y = V_y - W*w # velocity for robot 4 y component #add this delta_theta to the previous theta delta_theta_1 = np.arctan2(v1_y,v1_x) # theta for robot 1 delta_theta_2 = np.arctan2(v2_y,v2_x) # theta for robot 2 delta_theta_3 = np.arctan2(v3_y,v3_x) # theta for robot 3 delta_theta_4 = np.arctan2(v4_y,v4_x) # theta for robot 4 v1 = np.linalg.norm([v1_x,v1_y]) # maginitude for velocity of robot 1 v2 = np.linalg.norm([v2_x,v2_y]) # maginitude for velocity of robot 2 v3 = np.linalg.norm([v3_x,v3_y]) # maginitude for velocity of robot 3 v4 = np.linalg.norm([v4_x,v4_y]) # maginitude for velocity of robot 4 theta_1 = 2.13 + delta_theta_1 theta_2 = 3.23 + delta_theta_2 theta_3 = 1.28 + delta_theta_3 theta_4 = 3.67 + delta_theta_4 p.setJointMotorControl2(bodyUniqueId = self.pybullet_id, jointIndex = 0, controlMode = p.POSITION_CONTROL,targetPosition = theta_1, force= 5) p.setJointMotorControl2(bodyUniqueId = self.pybullet_id, jointIndex = 2, controlMode = p.POSITION_CONTROL,targetPosition = theta_2, force= 5) p.setJointMotorControl2(bodyUniqueId = self.pybullet_id, jointIndex = 4, controlMode = p.POSITION_CONTROL,targetPosition = theta_3, force= 5) p.setJointMotorControl2(bodyUniqueId = self.pybullet_id, jointIndex = 6, controlMode = p.POSITION_CONTROL,targetPosition = theta_4, force= 5) p.setJointMotorControl2(bodyUniqueId = self.pybullet_id, jointIndex = 1, controlMode = p.VELOCITY_CONTROL,targetVelocity = v1, force= 100) p.setJointMotorControl2(bodyUniqueId = self.pybullet_id, jointIndex = 3, controlMode = p.VELOCITY_CONTROL,targetVelocity = v2, force= 100) p.setJointMotorControl2(bodyUniqueId = self.pybullet_id, jointIndex = 5, controlMode = p.VELOCITY_CONTROL,targetVelocity = v3, force= 100) p.setJointMotorControl2(bodyUniqueId = self.pybullet_id, jointIndex = 7, controlMode = p.VELOCITY_CONTROL,targetVelocity = v4, force= 100) def get_pos_and_orientation(self): """ Returns the position and orientation (as Yaw angle) of the robot. """ pos, rot = p.getBasePositionAndOrientation(self.pybullet_id) euler = p.getEulerFromQuaternion(rot) return
np.array(pos)
numpy.array
import math import numpy as np from utils.env_objects import Cylinder, Cube import os class EnvDefs: epuck = ('EPUCK', os.path.abspath('webots_objects/E-puck.wbo')) cylinders = [ # node DEF, node file definition, radius ('Cylinder1', os.path.abspath('webots_objects/Cylinder1.wbo'), 0.05), ('Cylinder2', os.path.abspath('webots_objects/Cylinder2.wbo'), 0.05) ] boxes = [ # node DEF, node file definition, side length ('Box1', os.path.abspath('webots_objects/Box1.wbo'), 0.1), ('Box2', os.path.abspath('webots_objects/Box2.wbo'), 0.1) ] wall = ('Wall', os.path.abspath('webots_objects/Wall.wbo')) class SimpleArena: def __init__(self, supervisor): self.supervisor = supervisor # initialization helper variables self.robot_initial_position = [] self.children_field = self.supervisor.getRoot().getField('children') # Get list of all the objects of the scene self.robot = None self.environment_objects = [] def reset(self): self._remove_objects() # Respawn robot in starting position and state epuck_def, epuck_file = EnvDefs.epuck self.children_field.importMFNode(-2, epuck_file) # Load robot from file and add to second-to-last position self.robot = self.supervisor.getFromDef(epuck_def) self._insert_robot_in_random_position() self.environment_objects = self._populate_environment_objects() def _remove_objects(self): if self.robot is not None: self.robot.remove() for environment_object in self.environment_objects: if environment_object.webot_object: environment_object.webot_object.remove() def get_robot(self): return self.robot def _populate_environment_objects(self): environment_objects = [] for node_def, node_file, radius in EnvDefs.cylinders: wrapped_object = Cylinder(node_def, node_file, radius=radius) self._place_object_in_random_position(environment_objects, wrapped_object) environment_objects.append(wrapped_object) for node_def, node_file, side_length in EnvDefs.boxes: wrapped_object = Cube(node_def, node_file, side_length=side_length) self._place_object_in_random_position(environment_objects, wrapped_object) environment_objects.append(wrapped_object) return environment_objects def _place_object_in_random_position(self, placed_objects, wrapped_object): """ Sets the shape passed by parameter to a random valid position within the parent's node environment. :param wrapped_object: the wrapped object with utility functions that is to be placed :param placed_objects: the objects that have already been placed :return: the node corresponding to the shape """ self.children_field.importMFNode(-1, wrapped_object.node_file) shape = self.supervisor.getFromDef(wrapped_object.node_def) wrapped_object.webot_object = shape x, z = self._generate_random_valid_position(placed_objects, wrapped_object) trans_field = shape.getField('translation') initial_position = [x, 0.05, z] wrapped_object.initial_position = initial_position trans_field.setSFVec3f(initial_position) shape.resetPhysics() return wrapped_object def _generate_random_valid_position(self, placed_objects, wrapped_object): valid_position_found = False min_distance_from_wall = wrapped_object.get_min_distance_from_wall() position_x = None position_z = None while not valid_position_found: position_x, position_z = self._get_random_coords_in_arena(min_distance_from_wall) if self._intersects_with_robot(position_x, position_z): continue valid_position_found = True for placed_object in placed_objects: if placed_object.is_inside_object(position_x, position_z, wrapped_object.get_min_distance_from_wall()): valid_position_found = False continue return position_x, position_z @staticmethod def _get_random_coords_in_arena(min_distance_from_wall): floor_x = 1 / 2 floor_z = 1 / 2 position_x = np.random.uniform(-floor_x + min_distance_from_wall, floor_x - min_distance_from_wall) position_z = np.random.uniform(-floor_z + min_distance_from_wall, floor_z - min_distance_from_wall) return position_x, position_z def _intersects_with_robot(self, position_x, position_z): position_vec = self.robot_initial_position return np.sqrt(((position_vec[0] - position_x) ** 2) + ((position_vec[2] - position_z) ** 2)) < 0.1 def _insert_robot_in_random_position(self): trans_field = self.robot.getField('translation') x, z = self._get_random_coords_in_arena(0.045) self.robot_initial_position = [x, 0.01, z] trans_field.setSFVec3f(self.robot_initial_position) class Maze: def __init__(self, supervisor): self.supervisor = supervisor # initialization helper variables self.children_field = self.supervisor.getRoot().getField('children') # Get list of all the objects of the scene self.robot = None self.arena_size = np.array(self.supervisor.getFromDef('arena').getField('floorSize').getSFVec2f()) self.tile_size = np.array([0.25, 0.25]) self.walls = self._create_walls() def reset(self): self._respawn_robot() self._create_maze() def _respawn_robot(self): if self.robot is not None: self.robot.remove() epuck_def, epuck_file = EnvDefs.epuck self.children_field.importMFNode(-2, epuck_file) # Load robot from file and add to second-to-last position self.robot = self.supervisor.getFromDef(epuck_def) self._insert_robot_in_initial_position() def _create_walls(self): wall_def, wall_file = EnvDefs.wall walls = [] for i in range(int((self.arena_size[0] / 0.25 + 1) * (self.arena_size[1] / 0.25 + 1))): self.children_field.importMFNode(0, wall_file) wb_object = self.supervisor.getFromDef(wall_def) self._set_object_position(wb_object, 10 + i*0.1, 0) walls.append(wb_object) return walls def _create_maze(self): shape = np.ceil(self.arena_size / self.tile_size).astype(int) h_walls = np.ones(shape -
np.array([1, 0])
numpy.array
import tensorflow as tf import scipy.sparse as sp import numpy as np import GCN import utils class AFGSM: def __init__(self, A, X, Z, num_vicious_nodes, num_vicious_edges, dmin=1): """ :param A: sparse matrix, the adjacency matrix ,[n X n] :param X: sparse or dense matrix, the feature matrix ,[n x d], d is the dimension of features :param Z: sparse matrix, the labels, [n x c], c is the dimension of one-hot label :param num_vicious_nodes: int, the number of vicious nodes :param num_vicious_edges: int, the number of vicous edges :param dmin: int, min degree assigned for vicious nodes """ self.A = A.tocsr() self.A_orig = self.A.copy() self.A.setdiag(0) self.X = X self.Z = Z self.labels = list(np.squeeze(np.argmax(self.Z, axis=1))) self.num_vicious_nodes = num_vicious_nodes self.num_vicious_edges = num_vicious_edges self.An = utils.preprocess_graph(self.A) self.degree = np.squeeze(self.A.sum(axis=1).getA()) + 1 self.old_degree = np.squeeze(self.A.sum(axis=1).getA()) + 1 if sp.issparse(self.X): self.cooc_X = sp.csr_matrix(self.X.T.dot(self.X)) self.cooc_X[self.cooc_X.nonzero()] = 1 self.X_d = int(np.sum(X) / self.X.shape[0]) else: self.cooc_X = None self.X_d = None self.D_inv = sp.diags(1 / self.degree) self.D_inv_sqrt = sp.diags(1 / np.sqrt(self.degree)) self.dv = self.get_random_degrees(dmin) def get_random_degrees(self, dmin=1): """ assign degrees of vicious nodes randomly :param dmin: min degree assigned for vicious nodes :return: a numpy array contains the degrees of vicious nodes """ dv = np.zeros(self.num_vicious_nodes,dtype=int) + dmin for _ in range(int(self.num_vicious_edges-dmin*self.num_vicious_nodes)): dv[np.random.randint(0, self.num_vicious_nodes)] += 1 return dv def cal_loss(self, logits_attacked, idx): best_wrong_label = np.argmax(logits_attacked[idx, :] - 1000000 * self.Z[idx, :]) true_label = np.argmax(self.Z[idx, :]) loss_ = logits_attacked[idx, true_label] - logits_attacked[idx, best_wrong_label] return loss_ def classification_margins(self, probs, idx): true_label = np.argmax(self.Z[idx, :]) best_wrong_label = np.argmax(probs[0, :] - 1000 * self.Z[idx, :]) return -probs[0, best_wrong_label] + probs[0, true_label] def update_M(self, M1, M2, w, idx,i, direct_attack): """ update the intermediate quantity for calculation of gradients """ nodes_changed = self.A[-1, 0:-1].nonzero()[1] if direct_attack: M1 = M1 * np.sqrt(self.dv[i-1] / self.dv[i]) M1[nodes_changed] = M1[nodes_changed] / np.sqrt(self.degree[nodes_changed]) * np.sqrt(self.old_degree[nodes_changed]) M1_1 = (1 / np.sqrt(self.dv[i]*self.degree[-1]) * self.X[-1, :]).dot(w) M1_ = np.zeros(M1.shape[0] + 1) M1_[0:-1] = M1 M1_[-1] = M1_1 else: M1_ = None M2[nodes_changed] = M2[nodes_changed] * self.degree[nodes_changed] / self.old_degree[nodes_changed] M2_1 = (self.A[-1, idx])/self.degree[-1] M2_ =
np.zeros(M2.shape[0]+1)
numpy.zeros
import operator import threading import functools import itertools import contextlib import collections import numpy as np from ..autoray import ( get_lib_fn, infer_backend, get_dtype_name, register_function, astype, ) _EMPTY_DICT = {} class LazyArray: """A lazy array representing a shaped node in a computational graph. """ __slots__ = ( "_backend", "_fn", "_args", "_kwargs", "_shape", "_dtype", "_data", "_deps", ) def __init__( self, backend, fn, args, kwargs, shape, dtype, deps=None, ): # info required to perform the computation self._backend = backend self._fn = fn self._args = args if kwargs is None: self._kwargs = _EMPTY_DICT else: self._kwargs = kwargs # resulting array information self._shape = shape self._dtype = dtype self._data = None # lazy arrays this ``LazyArray`` depends on if deps is None: # automatically find them self._deps = (*find_lazy(self._args), *find_lazy(self._kwargs)) else: # manually specified (more efficient) self._deps = deps @classmethod def from_data(cls, data): """Create a new ``LazyArray`` directly from a concrete array. """ obj = cls.__new__(cls) obj._backend = infer_backend(data) obj._fn = obj._args = obj._kwargs = None obj._shape = tuple(map(int, data.shape)) obj._dtype = get_dtype_name(data) obj._data = data obj._deps = () return obj @classmethod def from_shape(cls, shape, backend='numpy', dtype=None): """Create a new ``LazyArray`` with a given shape. """ obj = cls.__new__(cls) obj._backend = backend obj._fn = obj._args = obj._kwargs = None obj._shape = tuple(map(int, shape)) obj._dtype = dtype obj._data = '__PLACEHOLDER__' obj._deps = () return obj def to( self, fn, args, kwargs=None, backend=None, shape=None, dtype=None, deps=None, ): """Create a new ``LazyArray``, by default propagating backend, shape, dtype and deps from the the current LazyArray. """ return LazyArray( fn=fn, args=args, kwargs=kwargs, backend=backend if backend is not None else self._backend, shape=shape if shape is not None else self.shape, dtype=dtype if dtype is not None else self.dtype, deps=deps if deps is not None else (self,), ) def _materialize(self): """Recursively compute all required args and kwargs for this node before computing itself and dereferencing dependencies. Note using this to materialize a large computation from scratch should be avoided due to the recursion limit, use ``x.compute()`` instead. """ if self._data is None: # materialize any actual array args args = (maybe_materialize(x) for x in self._args) kwargs = {k: maybe_materialize(v) for k, v in self._kwargs.items()} self._data = self._fn(*args, **kwargs) # free any references to deps self._fn = self._args = self._kwargs = None self._deps = () return self._data def __iter__(self): """Generate each unique computational node. Use ``ascend`` if you need to visit children before parents. """ seen = set() queue = [self] queue_pop = queue.pop queue_extend = queue.extend seen_add = seen.add while queue: node = queue_pop() nid = id(node) if nid not in seen: yield node queue_extend(node._deps) seen_add(nid) def ascend(self): """Generate each unique computational node, from leaves to root. """ seen = set() ready = set() queue = [self] queue_extend = queue.extend queue_pop = queue.pop ready_add = ready.add seen_add = seen.add while queue: node = queue[-1] need_to_visit = [c for c in node._deps if id(c) not in ready] if need_to_visit: queue_extend(need_to_visit) else: node = queue_pop() nid = id(node) ready_add(nid) if nid not in seen: yield node seen_add(nid) def compute(self): """Compute the value of this lazy array. Unlike ``self._materialize()`` this avoids deep recursion. """ for node in self.ascend(): node._materialize() return self._data def compute_constants(self, variables): """Fold constant arrays - everything not dependent on ``variables`` - into the graph. """ if isinstance(variables, LazyArray): variables = (variables,) variables = set(variables) # must ascend for node in self.ascend(): if not any(c in variables for c in node._deps): # can fold node._materialize() else: # mark as variable variables.add(node) def as_string(self, params): """Create a string which evaluates to the lazy array creation. """ # name function and store in locals fn_name = f"{getattr(self._fn, '__name__', 'fn')}{id(self._fn)}" params.setdefault(fn_name, self._fn) # string of args and kwargs str_call = ", ".join( itertools.chain( (stringify(x, params) for x in self._args), ( f"{k}: {stringify(v, params)}" for k, v in self._kwargs.items() ), ) ) # assign function call to new variable return f"x{id(self)} = {fn_name}({str_call})" def get_source(self, params=None): """Write the source code of an unravelled version of the computational graph, injecting required runtime objects into ``params``. """ if params is None: # locals space mapping LazyArray names to values params = {} delete_checked = set() s = [] # source code lines for node in reversed(tuple(self.ascend())): # when *descending*, the first encounter of a node is the # *last* time it is referenced in forward pass -> delete, # need to do this for GC since running in single big function for c in node._deps: if c not in delete_checked: if c._deps: # is an intermediate - safe to delete s.append(f"del x{id(c)}") delete_checked.add(c) if node._data is None: # create the array via computation s.append(node.as_string(params)) else: # inject the already computed data as constant params[f"x{id(node)}"] = node._data # reverse (ascend) into source code return "\n".join(reversed(s)) def get_compiled(self, optimize=1): """Compile the function into a code object using ``compile``, returning a wrapper that executes it using ``exec`` and the 'locals' dict specifiying inputs which can be modified. It should be called like: fn, params = x.get_compiled() # modify params e.g. inject new arrays here before call ... fn(params) """ # write source and populate locals mapping that function will run under params = {} source = self.get_source(params) # compile source code = compile(source, f"code{id(self)}", "exec", optimize=optimize) compiled = functools.partial( _code_exec_fn, code=code, out_name=f"x{id(self)}" ) # need both function and locals mapping to run it with / modify args return compiled, params def get_function(self, variables, fold_constants=True): """Get a compiled function that computes ``fn(arrays)``, with ``fn`` describing the computational graph of this ``LazyArray`` and ``arrays`` corresponding to the downstream ``LazyArray`` nodes ``variables``. Parameters ---------- variables : sequence of LazyArray Input nodes whose data can change between calls. fold_constants : bool, optional Compute all intermediates which do not depend on ``variables`` prior to compilation. Returns ------- fn : callable Function with signature ``fn(arrays)``. """ if fold_constants: self.compute_constants(variables=variables) var_names = tuple(f"x{id(v)}" for v in variables) fn, params = self.get_compiled() return functools.partial( _array_fn, var_names=var_names, params=params, fn=fn ) def history_max_size(self): """Get the largest single tensor size appearing in this computation. """ return max(node.size for node in self) def history_size_footprint(self): """Get the combined size of intermediates at each step of the computation. Note this assumes that intermediates are immediately garbage collected when they are no longer required. """ delete_checked = set() sizes = [] for node in reversed(tuple(self.ascend())): for c in node._deps: if c not in delete_checked: # last time a dependency is seen, subtract the size if c._deps: sizes.append(-c.size) delete_checked.add(c) if node._data is None: # this is a new intermediate, add the size sizes.append(+node.size) sizes.reverse() return list(itertools.accumulate(sizes)) def history_peak_size(self): """Get the peak combined intermediate size of this computation. """ return max(self.history_size_footprint()) def history_total_size(self): """The the total size of all unique arrays in the computational graph, possibly relevant e.g. for back-propagation algorithms. """ return sum(node.size for node in self) def plot_history_size_footprint( self, log=None, figsize=(8, 2), color='purple', alpha=0.5, ax=None, return_fig=False, ): """Plot the memory footprint throughout this computation. Parameters ---------- log : None or int, optional If not None, display the sizes in base ``log``. figsize : tuple, optional Size of the figure. color : str, optional Color of the line. alpha : float, optional Alpha of the line. ax : matplotlib.axes.Axes, optional Axes to plot on, will be created if not provided. return_fig : bool, optional If True, return the figure object, else just show and close it. """ import matplotlib.pyplot as plt y = np.array(self.history_size_footprint()) if log: y = np.log2(y) / np.log2(log) ylabel = f'$\\log_{log}[SIZE]$' else: ylabel = 'SIZE' x = np.arange(y.size) if ax is None: fig, ax = plt.subplots(figsize=figsize) else: fig = None ax.fill_between(x, 0, y, alpha=alpha, color=color) if fig is not None: ax.grid(True, c=(0.95, 0.95, 0.95), which='both') ax.set_axisbelow(True) ax.set_xlim(0,
np.max(x)
numpy.max
# -- coding: utf-8 -- # Copyright 2018 <NAME> <<EMAIL>> """ Library to handle SPM data. This is the core module of all images retrieved by SPM and ToF-SIMS. """ import numpy as np import matplotlib.pyplot as plt import scipy import scipy.ndimage import scipy.optimize import skimage import skimage.exposure import skimage.filters import scipy.interpolate from skimage import transform as tf import copy from .utils import CDF, funit import sys import matplotlib as mpl import warnings from .utils.misc import PB try: from skimage.filters import threshold_local except: # For compatibility with old versions of skimage from skimage.filters import threshold_adaptive as threshold_local class SPM_image: """ Main class to handle SPM images. This class contains the pixels data of the images as well as it's real size. It also provides a lot of tools to correct and perform various analysis and tasks on the image. """ def __init__(self, BIN, channel='Topography', corr=None, real=None, zscale='?', _type='Unknown'): """ Create a new SPM_image Parameters ---------- BIN : 2D numpy array The pixel values of the image as a 2D numpy array channel : string The name of the channel. What does the image represents? corr : string or None 'slope' : correct the SPM image for its slope (see pySPM.SPM.SPM_image.correct_slope) 'lines' : correct the SPM image for its lines (see pySPM.SPM.SPM_image.correct_lines) 'plane' : correct the SPM image by plane fitting (see pySPM.SPM.SPM_image.correct_plane) real : None or dictionary Information about the real size of the image {'x':width,'y':height,'unit':unit_name} zscale : string Unit used to describe the z-scale. (units of the data of BIN) _type : string represent the type of measurement """ self.channel = channel self.direction = 'Unknown' self.size = {'pixels': {'x': BIN.shape[1], 'y': BIN.shape[0]}} if not real is None: self.size['real'] = real else: self.size['real'] = {'unit': 'pixels', 'x': BIN.shape[1], 'y': BIN.shape[0]} if not 'unit' in self.size['real']: self.size['real']['unit'] = 'px' self.pixels = BIN self.type = _type self.zscale = zscale if corr is not None: if corr.lower() == 'slope': self.correct_slope() elif corr.lower() == 'lines': self.correct_lines() elif corr.lower() == 'plane': self.correct_plane() def __add__(self, b): """ Add up two images. This is a low level function and no check is performed to proof that both images have the same size. """ New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels += b.pixels New.channel += " + "+b.channel elif type(b) in [int, float]: New.pixels += b New.channels += " + {:.2f}".format(b) return New def __sub__(self, b): """ Subtract two images. This is a low level function and no check is performed to proof that both images have the same size. """ New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels -= b.pixels New.channel += " - "+b.channel elif type(b) in [int, float]: New.pixels -= b New.channels += " - {:.2f}".format(b) return New def __mul__(self, b): New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels *= b.pixels New.channel = "({})*{}".format(New.channel,b.channel) elif type(b) in [int, float]: New.pixels *= b New.channels = "({})*{:.2f}".format(New.channel,b) return New def __div__(self, b): New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels /= b.pixels New.channel = "({})/{}".format(New.channel,b.channel) elif type(b) in [int, float]: New.pixels /= b New.channels = "({})/{:.2f}".format(New.channel,b) return New def pxs(self): """ Return the pixel size """ fxy = {xy: funit(self.size['real'][xy], self.size['real']['unit']) for xy in 'xy'} return [(fxy[xy]['value']/self.size['pixels'][xy], fxy[xy]['unit']) for xy in 'xy'] def add_scale(self, length, ax=None, height=20, margin=5, color='w', loc=4, text=True, pixels=None, fontsize=20, edge_color='k', edge_width=3): """ Display a scale marker on an existing image Parameters ---------- length : float The length of the scale in real units ax : matplotlib axis if None the current axis will be taken (plt.gca()) height : int The height of the scale bar in pixels color : string The color used to display the scale bar loc : int The location of the scale bar. 1 : top right 2 : top left 3 : bottom left 4 : bottom right text : bool display the size of the scale on top of it? pixels : bool Is the image plotted in ax with a x/y scale in pixels? fontsize : float The fontsize used to display the text Example ------- >>> img = pySPM.SPM_image() >>> img.show() >>> img.add_scale(50e-6, pixels=False); Add a scale of 50 μm on an image displayed with real units >>> img = pySPM.SPM_image() >>> img.show(pixels=True) >>> img.add_scale(50e-6); Add a scale of 50 μm on an image displayed in pixels """ import matplotlib.patches import matplotlib.patheffects as PathEffects fL = length/self.size['real']['x'] L = self.size['pixels']['x']*fL fH = height/self.size['pixels']['y'] if ax is None: ax = plt.gca() if pixels is None: if hasattr(ax, 'isPixel'): pixels = ax.isPixel else: pixels = False flipped = False if hasattr(ax, 'flipped'): flipped = ax.flipped if type(loc) is int: assert loc in [1, 2, 3, 4] ref = ax.transAxes.transform({1:(1-fL,0),2:(0,0),3:(0,1-fH),4:(1-fL,1-fH)}[loc]) if loc in [2,3]: ref[0] += margin else: ref[0] -= margin if loc in [1,2]: ref[1] += margin else: ref[1] -= margin else: assert type(loc) in [tuple, list] assert len(loc)==2 ref = ax.transData.transform(loc) + ax.transAxes.transform((-fL/2,-fH/2)) - ax.transAxes.transform((0,0)) inv = ax.transData.inverted() ref = inv.transform(ref) WH = inv.transform(ax.transAxes.transform((fL,fH)))-inv.transform(ax.transAxes.transform((0,0))) rect = ax.add_patch(matplotlib.patches.Rectangle(ref, width=WH[0], height=WH[1], color=color)) if text: r = funit(length, self.size['real']['unit']) if r['unit'][0] == 'u': r['unit'] = '$\\mu$' + r['unit'][1:] if loc in [3,4]: label_ref = [ref[0]+WH[0]/2, ref[1]] ann = ax.annotate("{value:.01f} {unit}".format(**r), label_ref, color=color, fontsize=fontsize, va="top", ha="center") else: label_ref = [ref[0]+WH[0]/2, ref[1]+WH[1]] ann = ax.annotate("{value:.01f} {unit}".format(**r), label_ref, color=color, fontsize=fontsize, va="bottom", ha="center") ann.set_path_effects([PathEffects.withStroke(linewidth=edge_width, foreground=edge_color)]) def offset(self, profiles, width=1, ax=None, col='w', inline=True, **kargs): """ Correct an image by offsetting each row individually in order that the lines passed as argument in "profiles" becomes flat. Parameters ---------- profiles: list of list each sublist represent a line as [x1, y1, x2, y2] in pixels known to be flat width : int, float the line width in pixels used for better statistics ax : matplotlib axis or None If not None, axis in which the profiles will be plotted in inline : bool If True perform the correction on the current object, otherwise return a new image col : string matrplotlib color used to plot the profiles (if ax is not None) labels : bool display a label number with each profile **kargs: arguments passed further to get_row_profile. axPixels: set to True if you axis "ax" have the data plotted in pixel instead of real distance Example ------- Exampel if the data are plotted in pixels: >>> topo = pySPM.SPM_image(...) >>> fig, ax = plt.subplots(1, 2, figsize=(10, 5)) >>> topoC = topo.offset([[150, 0, 220, 255]], inline=False,axPixels=True) >>> topo.show(pixels=True, ax=ax[0]) >>> topoC.show(ax=ax[1]); Example if the data are plotted with real units >>> topo = pySPM.SPM_image(...) >>> fig, ax = plt.subplots(1, 2, figsize=(10, 5)) >>> topoC = topo.offset([[150, 0, 220, 255]], inline=False) >>> topo.show(ax=ax[0]) >>> topoC.show(ax=ax[1]); """ offset = np.zeros(self.pixels.shape[0]) counts = np.zeros(self.pixels.shape[0]) for i, p in enumerate(profiles): if kargs.get('labels', False): y, D = self.get_row_profile(*p, width=width, ax=ax, col=col, label=str(i), **kargs) else: y, D = self.get_row_profile(*p, width=width, ax=ax, col=col, **kargs) counts[y] += 1 offset[y[1:]] += np.diff(D) counts[counts == 0] = 1 offset = offset/counts offset = np.cumsum(offset) offset = offset.reshape((self.pixels.shape[0], 1)) if inline: self.pixels = self.pixels - \ np.flipud(np.repeat(offset, self.pixels.shape[1], axis=1)) return self else: C = copy.deepcopy(self) C.pixels = self.pixels - \ np.flipud(np.repeat(offset, self.pixels.shape[1], axis=1)) return C def pxRect2Real(self, xy, width, height): """ Transform a xy, width, height data in pixels to an equivalentz one with real units """ ll = self.px2real(xy[0],xy[1]) ur = self.px2real(xy[0]+width,xy[1]+height) return ll,ur[0]-ll[0],ur[1]-ll[1] def get_row_profile(self, x1, y1, x2, y2, width=1, col='C1', ax=None, alpha=0, **kargs): """ Get a profile per row along a given line. This function is mainly useful for the function offset. x1, y1, x2, y2: int coordinates of the line. width : int the width of the line used for statistics (in pixels) col: string color used to plot the line position ax : matplotlib axis axis in which the lines position will plotted alpha : float The alpha channel of the line color (≥0 and ≤1) **kargs: line style arguments: linewidth, color and linestyle axis units: axPixels set to True if ax has the image plotted in pixels. Returns ------- Y coordinates : 1D numpy array distance along the profile starting at 0 Z coordinates : 1D numpy array profile """ plotargs = { key: kargs[key] for key in ['linewidth', 'color', 'linestyle'] if key in kargs } if y2 < y1: x1, y1, x2, y2 = x2, y2, x1, y1 if ax is not None: d = np.sqrt((x2-x1)**2+(y2-y1)**2) dx = -width/2*(y2-y1)/d dy = width/2*(x2-x1)/d if kargs.get('axPixels', False): ax.plot([x1-dx, x1+dx], [y1-dy, y1+dy], col) ax.plot([x2-dx, x2+dx], [y2-dy, y2+dy], col) ax.plot((x1, x2), (y1, y2), col, **plotargs) if kargs.get('label', False): ax.annotate(kargs.get('label'), (.5*(x1+x2),.5*(y1+y2)), color=col) if alpha>0: import matplotlib.patches ax.add_patch(matplotlib.patches.Rectangle((x1+dx,y1+dy),width, d, -np.degrees(np.arctan2(x2-x1,y2-y1)), color=col, alpha=alpha)) else: h = self.pixels.shape[0] pxs = self.size['real']['x'] / self.pixels.shape[1] pys = self.size['real']['y'] / h ax.plot([(x1-dx)*pxs, (x1+dx)*pxs], [(h-(y1-dy))*pys, (h-(y1+dy))*pys], col) ax.plot([(x2-dx)*pxs, (x2+dx)*pxs], [(h-(y2-dy))*pys, (h-(y2+dy))*pys], col) ax.plot((x1*pxs, x2*pxs), ((h-y1)*pys, (h-y2)*pys), col, **plotargs) if kargs.get('label', False): ax.annotate(kargs.get('label'), (.5*(x1+x2)*pxs,.5*(2*h-y1-y2)*pys), color=col) if alpha>0: import matplotlib.patches W = np.sqrt((2*dx*pxs)**2+(2*dy*pys)**2) L = np.sqrt(((x2-x1)*pxs)**2+((y2-y1)*pys)**2) ax.add_patch(matplotlib.patches.Rectangle(((x1+dx)*pxs,(y1+dy)*pys), W, L, -np.degrees(np.arctan2((x2-x1)*pxs,(y2-y1)*pys)), color=col, alpha=alpha)) x = np.arange(self.pixels.shape[1]) y = np.arange(self.pixels.shape[0]) I = scipy.interpolate.interp2d(x, y, np.flipud(self.pixels)) Y = np.arange(y1, y2+1) V = np.zeros(len(Y)) for w in np.arange(width): xl = np.linspace(x1-(width-1)/2.+w, x2-(width-1)/2.+w, len(Y)) for i in range(len(Y)): Z = I(xl[i], Y[i]) V[i] += Z return Y, V/width def correct_median_diff(self, inline=True): """ Correct the image with the median difference """ N = self.pixels # Difference of the pixel between two consecutive row N2 = np.vstack([N[1:, :], N[-1:, :]])-N # Take the median of the difference and cumsum them C = np.cumsum(np.median(N2, axis=1)) # Extend the vector to a matrix (row copy) D = np.tile(C, (N.shape[0], 1)).T if inline: self.pixels = N-D else: New = copy.deepcopy(self) New.pixels = N-D return New def correct_slope(self, inline=True): """ Correct the image by subtracting a fitted slope along the y-axis """ s = np.mean(self.pixels, axis=1) i = np.arange(len(s)) fit = np.polyfit(i, s, 1) if inline: self.pixels -= np.tile(np.polyval(fit, i).reshape(len(i), 1), len(i)) return self else: New = copy.deepcopy(self) New.pixels -= np.tile(np.polyval(fit, i).reshape(len(i), 1), len(i)) return New def correct_plane(self, inline=True, mask=None): """ Correct the image by subtracting a fitted 2D-plane on the data Parameters ---------- inline : bool If True the data of the current image will be updated otherwise a new image is created mask : None or 2D numpy array If not None define on which pixels the data should be taken. """ x = np.arange(self.pixels.shape[1]) y = np.arange(self.pixels.shape[0]) X0, Y0 = np.meshgrid(x, y) Z0 = self.pixels if mask is not None: X = X0[mask] Y = Y0[mask] Z = Z0[mask] else: X = X0 Y = Y0 Z = Z0 A = np.column_stack((np.ones(Z.ravel().size), X.ravel(), Y.ravel())) c, resid, rank, sigma = np.linalg.lstsq(A, Z.ravel(), rcond=-1) if inline: self.pixels -= c[0] * \ np.ones(self.pixels.shape) + c[1] * X0 + c[2] * Y0 return self else: New = copy.deepcopy(self) New.pixels -= c[0]*np.ones(self.pixels.shape) + c[1] * X0 + c[2] * Y0 return New def correct_lines(self, inline=True): """ Subtract the average of each line for the image. if inline is True the current data are updated otherwise a new image with the corrected data is returned """ if inline: self.pixels -= np.tile(np.mean(self.pixels, axis=1).T, (self.pixels.shape[0], 1)).T return self else: New = copy.deepcopy(self) New.pixels -= np.tile(np.mean(self.pixels, axis=1).T, (self.pixels.shape[0], 1)).T return New def dist_v2(self, pixel=False): """ Return a 2D array with the distance between each pixel and the closest border. Might be usefull for FFT filtering """ if pixel: dx = 1 dy = 1 else: dx = self.size['real']['x']/self.size['pixels']['x'] dy = self.size['real']['y']/self.size['pixels']['y'] x2 = np.arange(self.size['pixels']['x']) x2 = (np.minimum(x2, self.size['pixels']['x']-x2) * dx)**2 y2 = np.arange(self.size['pixels']['y']) y2 = (np.minimum(y2, self.size['pixels']['y'] - y2) * dy)**2 X, Y = np.meshgrid(x2, y2) return np.sqrt(X+Y) def inv_calc_flat(self, d, l=0.1): """ Function used for inverse MFM calculation (inspired from http://qmfm.empa.ch/qmfm/) The function is in its early devlopment stage as not used by the developed. Parameters ---------- d : float Height distance in the input data l : float Tikhonov parameter for the deconvolution """ work_image = self.pixels ny, nx = self.pixels.shape dx = self.size['real']['x']/self.size['pixels']['x'] dy = self.size['real']['y']/self.size['pixels']['y'] k = self.dist_v2() k[0, 0] = 1e-10 tf = np.exp(-d*k) tf[0, 0] = np.mean(tf) tf /= 2 tf *= 1-np.exp(-d * k) recon_tf = np.ones(tf.shape) / (tf+l*np.ones(tf.shape) / np.conj(tf)) tf *= recon_tf return np.real(np.fft.ifft2(np.fft.fft2(work_image)*recon_tf)) def get_extent(self): """ Get the image extent in real data """ if 'recorded' in self.size: W = self.size['recorded']['real']['x'] H = self.size['recorded']['real']['y'] else: W = self.size['real']['x'] H = self.size['real']['y'] return (0, W, 0, H) def show(self, ax=None, sig=None, cmap=None, title=None, adaptive=False, dmin=0, dmax=0, pixels=False, flip=False, wrap=None, mul=1, symmetric=False, **kargs): """ Function to display the image with a lot of parametrization Parameters ---------- ax : matplotlib axis or None matplotlib axis if given otherwise current axis will be used (plt.gca()) sig : float sigma values to adjust the contrast range around the mean ±sig times the standard-deviation cmap : string colormap name used. By default a gray map is used. If the zscale of the data are in 'meter' (i.e. topography data) the 'hot' colormap is used title : string The title of the plot. By default is the channel name adaptive : bool The color scale used is linear. If adaptive is True a non linear color scale is used in order that each color is used with the same amount. dmin : float minimum value adjustment used for the colorscale dmax: float maximum value adjustment used for the colorscale pixels : bool Display the image with x/y-labels with real unit. If pixels is True, the axes are in pixels flip : bool Flip the image upside-down wrap : Nont or int wrap the title to a width of wrap chars symmetric : bool If True will place the middle of the colorscale to the value 0. This is specially usefull for diverging colormaps such as : BrBG, bwr, coolwarm, seismiv, spectral, etc. level : float level should be ≥0 and <50. Adjust the lower and upper colorscale to level% and (100-level)% of the data range. e.g. if level=1, the colorscale will display 1-99% of the data range vmin : float Minimum value used for the colorscale vmax : flaot Maximum value used for the colorscale Returns ------- matplotlib.image.AxesImage matplolib axis instance returned by imshow Examples -------- >>> topo = pySPM.SPM_image(...) >>> fig, (ax, ax2) = plt.subplots(2, 3, figsize=(15, 10)) >>> topo.show(ax=ax[0], cmap='gray', title="color map=\"gray\"") >>> topo.show(ax=ax[1], sig=2, title="standard deviation=2") >>> topo.show(ax=ax[2], adaptive=True, title="Adaptive colormap") >>> topo.show(ax=ax2[0], dmin=4e-8, cmap='gray', title="raise the lowest value for the colormap of +40nm") >>> topo.show(ax=ax2[1], dmin=3e-8, dmax=-3e-8, cmap='gray',title="raise lower of +30nm and highest of -30nm") >>> topo.show(ax=ax2[2], pixels=True, title="Set axis value in pixels"); """ mpl.rc('axes', grid=False) if ax is None: ax = plt.gca() ax.src = self if title == None: title = u"{0} - {1}".format(self.type, self.channel) if wrap is not None: title = "\n".join([title[i*wrap:(i+1)*wrap] for i in range(int(len(title)/wrap)+1)]) unit = self.size['real']['unit'] sunit = 'afpnum kMGTPE' if len(unit) == 1 or unit in ['pixels']: isunit = 6 elif unit[0] in sunit: isunit = sunit.find(unit[0]) unit = unit[1:] else: isunit = 6 W = self.size['real']['x'] H = self.size['real']['y'] fact = int(np.floor(np.log(W)/np.log(10)/3)) isunit += fact W, H = W/10**(fact*3), H/10**(fact*3) if cmap == None: cmap = 'gray' if unit == 'm' and self.channel == "Topography": cmap = 'hot' mi, ma = np.nanmin(self.pixels), np.nanmax(self.pixels) if adaptive: img = np.asarray(256**2*(self.pixels-mi)/(ma-mi), dtype=np.uint16) mi, ma = 0, 1 img = skimage.exposure.equalize_adapthist(img, clip_limit=0.03) else: img = mul*self.pixels mi *= mul ma *= mul if sig == None: vmin = mi+dmin vmax = ma+dmax else: std = np.nanstd(img) avg = np.nanmean(img) vmin = avg - sig * std vmax = avg + sig * std if 'level' in kargs: if kargs['level'] < 0 or kargs['level']>=50: raise ValueError("The level shoud have a value in [0,50)") vmax = np.percentile(img, 100-kargs['level']) vmin = np.percentile(img, kargs['level']) del kargs['level'] if 'vmin' in kargs: vmin = kargs['vmin'] del kargs['vmin'] if 'vmax' in kargs: vmax = kargs['vmax'] del kargs['vmax'] if symmetric: vmax = abs(max(vmin,vmax)) vmin = -vmax if not flip: ax.flipped = False if pixels: ax.isPixel = True r = ax.imshow(np.flipud(img), extent=[0,img.shape[1],img.shape[0],0], cmap=cmap, vmin=vmin, vmax=vmax, **kargs) else: ax.isPixel = False r = ax.imshow(np.flipud(img), extent=[0, W, 0, H], cmap=cmap, vmin=vmin, vmax=vmax, **kargs) else: ax.flipped = True if pixels: ax.isPixel = True r = ax.imshow(np.flipud(img), extent=[0,img.shape[1],img.shape[0],0], cmap=cmap, vmin=vmin, vmax=vmax, **kargs) else: ax.isPixel = False r = ax.imshow(np.flipud(img), cmap=cmap, extent=[0, W, 0, H], vmin=vmin, vmax=vmax, **kargs) if pixels: ax.set_xlim((0, self.pixels.shape[1])) if flip: ax.set_ylim((0, self.pixels.shape[0])) else: ax.set_ylim((self.pixels.shape[0], 0)) else: ax.set_xlim((0,W)) if flip: ax.set_ylim((H,0)) else: ax.set_ylim((0,H)) if not pixels: if isunit != 6: u = sunit[isunit] if u == 'u': u = '$\\mu$' ax.set_xlabel(u'x [{0}{1}]'.format(u, unit)) ax.set_ylabel(u'y [{0}{1}]'.format(u, unit)) else: ax.set_xlabel(u'x [{0}]'.format(unit)) ax.set_ylabel(u'y [{0}]'.format(unit)) if title != None: ax.set_title(title) return r def real2px(self, x, y): """ Transform a real (x,y) value in pixels Units should be the same as the one plotted by pySPM.SPM_image.show """ return self.real2pixels(x,y) def real2pixels(self, x, y, float=False): """ Transform a real (x,y) value in pixels Units should be the same as the one plotted by pySPM.SPM_image.show """ W = self.size['real']['x'] fact = int(np.floor(np.log(W)/np.log(10)/3))*3 if not float: px = np.digitize(x, np.linspace(0,self.size['real']['x']/(10**fact),self.pixels.shape[1]), right=True) py = np.digitize(y, np.linspace(0,self.size['real']['y']/(10**fact),self.pixels.shape[0]), right=False) else: px = x*(self.pixels.shape[1]-1)/(self.size['real']['x']/(10**fact)) py = y*(self.pixels.shape[0]-1)/(self.size['real']['y']/(10**fact)) return px, py def px2real(self, x, y): """ Transform a (x,y) value from pixels to real Units are the same as the one plotted by pySPM.SPM_image.show """ W = self.size['real']['x'] fact = int(np.floor(np.log(W)/np.log(10)/3))*3 rx = x*self.size['real']['x']/(10**fact)/self.pixels.shape[1] ry = (self.pixels.shape[0]-y)*self.size['real']['y']/(10**fact)/self.pixels.shape[0] return rx, ry def circular_profile(self, x0, y0, Ra=1, Rn=0, width=1, N=20, A=0, B=360,\ cmap='jet', axImg=None, axPolar=None, axProfile=None, plotProfileEvery=1,\ xtransf=lambda x: x*1e9, ytransf=lambda x:x*1e9,\ ToFcorr=False, fit=lambda x, *p: p[3]+p[2]*CDF(x, *p[:2]), p0=None, errors=False, bounds=(-np.inf, np.inf), fakefit=False, **kargs): """ Create radial profiles from point x0,y0 with length Ra (outer radius) and Rn (negative Radius). Start from angle A° to angle B° with N profiles. If you want to apply the ToF-correction, please set ToFcorr to the number of scans used to record the ToF-SIMS image. Return the fitting uncertainty on sigma if errors is set to True The fitting function can be adjusted by fit and the default parameters by p0 which is an array of function where the first parameter passed will be the x-values and the second the y-values. """ from matplotlib import colors, cm # Create a colormap for each profile CM = plt.get_cmap(cmap) cNorm = colors.Normalize(vmin=0, vmax=N) scalarMap = cm.ScalarMappable(norm=cNorm, cmap=CM) res = [] cov = [] angles = [] assert A<B for i, angle in enumerate(np.linspace(A, B, N)): a = np.radians(angle) angles.append(a) l, p = self.get_profile( x0-Rn*np.cos(a), y0+Rn*np.sin(a), x0+Ra*np.cos(a), y0-Ra*np.sin(a), ax=axImg, width=width, color=scalarMap.to_rgba(i), **kargs) if width==0: profile = p else: profile = np.mean(p, axis=1) if ToFcorr: profile = -np.log(1.001-profile/ToFcorr) if p0 is None: AC = np.mean(profile[:len(l)//2]) AE = np.mean(profile[len(l)//2:]) if AC<AE: p0 = [l[len(l)//2], 5*(l[1]-l[0]), np.max(profile)-np.min(profile), np.min(profile) ] else: p0 = [l[len(l)//2], 5*(l[1]-l[0]), -np.max(profile)+np.min(profile), np.max(profile) ] else: for j,p in enumerate(p0): if callable(p): p0[j] = p(l,profile) if kargs.get('debug',False): print("calculate fit parameters are", p0) if not fakefit: p0, pcov = scipy.optimize.curve_fit(fit, l , profile, p0) else: pcov = np.zeros((len(p0),len(p0))) res.append(p0) cov.append([np.sqrt(abs(pcov[i,i])) for i in range(len(p0))]) if axProfile and i%plotProfileEvery == 0: axProfile.plot(xtransf(l-p0[0]), profile, color=scalarMap.to_rgba(i), linestyle=':') axProfile.plot(xtransf(l-p0[0]), fit(l,*p0), color=scalarMap.to_rgba(i)) # close loop if A%360 == B%360: angles.append(angles[0]) res.append(res[0]) cov.append(cov[0]) # Plot polar angles = np.array(angles) res =
np.array(res)
numpy.array
import pdb import numpy as np import os import tensorflow as tf import math from .data_utils import minibatches, pad_sequences, get_chunks from .general_utils import Progbar from .base_model import BaseModel class NERModel(BaseModel): """Specialized class of Model for NER""" def __init__(self, config): super(NERModel, self).__init__(config) self.idx_to_tag = {idx: tag for tag, idx in self.config.vocab_tags.items()} self.tag_to_idx = {tag: idx for tag, idx in self.config.vocab_tags.items()} def add_placeholders(self): """Define placeholders = entries to computational graph""" # shape = (batch size, max length of sentence in batch) self.word_ids = tf.placeholder(tf.int32, shape=[None, None], name="word_ids") # shape = (batch size) self.sequence_lengths = tf.placeholder(tf.int32, shape=[None], name="sequence_lengths") # shape = (batch size, max length of sentence, max length of word) self.char_ids = tf.placeholder(tf.int32, shape=[None, None, None], name="char_ids") # shape = (batch_size, max_length of sentence) self.word_lengths = tf.placeholder(tf.int32, shape=[None, None], name="word_lengths") # shape = (batch size, max length of sentence in batch) self.labels = tf.placeholder(tf.int32, shape=[None, None], name="labels") # hyper parameters self.dropout = tf.placeholder(dtype=tf.float32, shape=[], name="dropout") self.lr = tf.placeholder(dtype=tf.float32, shape=[], name="lr") def get_feed_dict(self, words, labels=None, lr=None, dropout=None): """Given some data, pad it and build a feed dictionary Args: words: list of sentences. A sentence is a list of ids of a list of words. A word is a list of ids labels: list of ids lr: (float) learning rate dropout: (float) keep prob Returns: dict {placeholder: value} """ # perform padding of the given data if self.config.use_chars: char_ids, word_ids = zip(*words) word_ids, sequence_lengths = pad_sequences(word_ids, 0) char_ids, word_lengths = pad_sequences(char_ids, pad_tok=0, nlevels=2) else: word_ids, sequence_lengths = pad_sequences(words, 0) # build feed dictionary feed = { self.word_ids: word_ids, self.sequence_lengths: sequence_lengths } if self.config.use_chars: feed[self.char_ids] = char_ids feed[self.word_lengths] = word_lengths if labels is not None: labels, _ = pad_sequences(labels, 0) feed[self.labels] = labels if lr is not None: feed[self.lr] = lr if dropout is not None: feed[self.dropout] = dropout return feed, sequence_lengths def add_word_embeddings_op(self): """Defines self.word_embeddings If self.config.embeddings is not None and is a np array initialized with pre-trained word vectors, the word embeddings is just a look-up and we don't train the vectors. Otherwise, a random matrix with the correct shape is initialized. """ with tf.variable_scope("words"): if self.config.embeddings is None: self.logger.info("WARNING: randomly initializing word vectors") _word_embeddings = tf.get_variable( name="_word_embeddings", dtype=tf.float32, shape=[self.config.nwords, self.config.dim_word]) else: _word_embeddings = tf.Variable( self.config.embeddings, name="_word_embeddings", dtype=tf.float32, trainable=self.config.train_embeddings) word_embeddings = tf.nn.embedding_lookup(_word_embeddings, self.word_ids, name="word_embeddings") with tf.variable_scope("chars"): if self.config.use_chars: # get char embeddings matrix _char_embeddings = tf.get_variable( name="_char_embeddings", dtype=tf.float32, shape=[self.config.nchars, self.config.dim_char]) char_embeddings = tf.nn.embedding_lookup(_char_embeddings, self.char_ids, name="char_embeddings") # put the time dimension on axis=1 s = tf.shape(char_embeddings) char_embeddings = tf.reshape(char_embeddings, shape=[s[0]*s[1], s[-2], self.config.dim_char]) word_lengths = tf.reshape(self.word_lengths, shape=[s[0]*s[1]]) # bi lstm on chars cell_fw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_char, state_is_tuple=True) cell_bw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_char, state_is_tuple=True) _output = tf.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, char_embeddings, sequence_length=word_lengths, dtype=tf.float32) # read and concat output _, ((_, output_fw), (_, output_bw)) = _output output = tf.concat([output_fw, output_bw], axis=-1) # shape = (batch size, max sentence length, char hidden size) output = tf.reshape(output, shape=[s[0], s[1], 2*self.config.hidden_size_char]) word_embeddings = tf.concat([word_embeddings, output], axis=-1) self.word_embeddings = tf.nn.dropout(word_embeddings, self.dropout) def add_logits_op(self): """Defines self.logits For each word in each sentence of the batch, it corresponds to a vector of scores, of dimension equal to the number of tags. """ with tf.variable_scope("bi-lstm"): cell_fw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm) cell_bw = tf.contrib.rnn.LSTMCell(self.config.hidden_size_lstm) (output_fw, output_bw), _ = tf.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, self.word_embeddings, sequence_length=self.sequence_lengths, dtype=tf.float32) output = tf.concat([output_fw, output_bw], axis=-1) output = tf.nn.dropout(output, self.dropout) with tf.variable_scope("proj"): W = tf.get_variable("W", dtype=tf.float32, shape=[2*self.config.hidden_size_lstm, self.config.ntags]) b = tf.get_variable("b", shape=[self.config.ntags], dtype=tf.float32, initializer=tf.zeros_initializer()) nsteps = tf.shape(output)[1] output = tf.reshape(output, [-1, 2*self.config.hidden_size_lstm]) pred = tf.matmul(output, W) + b self.logits = tf.reshape(pred, [-1, nsteps, self.config.ntags]) def add_pred_op(self): """Defines self.labels_pred This op is defined only in the case where we don't use a CRF since in that case we can make the prediction "in the graph" (thanks to tf functions in other words). With theCRF, as the inference is coded in python and not in pure tensroflow, we have to make the prediciton outside the graph. """ if not self.config.use_crf: self.labels_pred = tf.cast(tf.argmax(self.logits, axis=-1), tf.int32) def add_loss_op(self): """Defines the loss""" if self.config.use_crf: log_likelihood, trans_params = tf.contrib.crf.crf_log_likelihood( self.logits, self.labels, self.sequence_lengths) self.trans_params = trans_params # need to evaluate it for decoding self.loss = tf.reduce_mean(-log_likelihood) else: losses = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=self.logits, labels=self.labels) mask = tf.sequence_mask(self.sequence_lengths) losses = tf.boolean_mask(losses, mask) self.loss = tf.reduce_mean(losses) # for tensorboard tf.summary.scalar("loss", self.loss) def build(self): # NER specific functions self.add_placeholders() self.add_word_embeddings_op() self.add_logits_op() self.add_pred_op() self.add_loss_op() # Generic functions that add training op and initialize session self.add_train_op(self.config.lr_method, self.lr, self.loss, self.config.clip) self.initialize_session() # now self.sess is defined and vars are init def predict_batch(self, words): """ Args: words: list of sentences Returns: labels_pred: list of labels for each sentence sequence_length """ fd, sequence_lengths = self.get_feed_dict(words, dropout=1.0) if self.config.use_crf: # get tag scores and transition params of CRF viterbi_sequences = [] scores = [] logits, trans_params = self.sess.run( [self.logits, self.trans_params], feed_dict=fd) #logits = sigmoid_v(logits) #trans_params = sigmoid_v(trans_params) # iterate over the sentences because no batching in vitervi_decode for logit, sequence_length in zip(logits, sequence_lengths): logit = logit[:sequence_length] # keep only the valid steps #print("Logit ", logit) viterbi_seq, viterbi_score = tf.contrib.crf.viterbi_decode( logit, trans_params) viterbi_sequences += [viterbi_seq] #print('trans_params ', trans_params) #print('Sequence ', viterbi_seq) #print(sequence_length) #print(len(viterbi_seq)) #print('Score ', viterbi_score)#Use to decide least-uncertainty if self.config.active_strategy=="nus": viterbi_score = float(viterbi_score/sequence_length) else: viterbi_score = active_strategy(logit, trans_params, self.config.active_strategy, self.tag_to_idx) scores.append(viterbi_score) return viterbi_sequences, sequence_lengths, scores else: labels_pred = self.sess.run(self.labels_pred, feed_dict=fd) return labels_pred, sequence_lengths, None def run_epoch(self, train, dev, epoch): """Performs one complete pass over the train set and evaluate on dev Args: train: dataset that yields tuple of sentences, tags dev: dataset epoch: (int) index of the current epoch Returns: f1: (python float), score to select model on, higher is better """ # progbar stuff for logging batch_size = self.config.batch_size nbatches = (len(train) + batch_size - 1) // batch_size #prog = Progbar(target=nbatches) # iterate over dataset for i, (words, labels) in enumerate(minibatches(train, batch_size)): #print(words, labels) fd, _ = self.get_feed_dict(words, labels, self.config.lr, self.config.dropout) _, train_loss, summary = self.sess.run( [self.train_op, self.loss, self.merged], feed_dict=fd) #prog.update(i + 1, [("train loss", train_loss)]) # tensorboard if i % 10 == 0: self.file_writer.add_summary(summary, epoch*nbatches + i) metrics = self.run_evaluate(dev) msg = "Accuracy " + str(metrics["acc"]) + " - F1 " + str(metrics["f1"]) #msg = " - ".join(["{} {:04.2f}".format(k, v) # for k, v in metrics.items()]) print(msg) self.logger.info(msg) return metrics["f1"] def run_evaluate(self, test, mode="train"): """Evaluates performance on test set Args: test: dataset that yields tuple of (sentences, tags) Returns: metrics: (dict) metrics["acc"] = 98.4, ... """ accs = [] l = [] #correct_preds_ne, total_correct_ne, total_preds_ne = 0.,0.,0. s= "" correct_preds, total_correct, total_preds = 0., 0., 0. for words, labels in minibatches(test, self.config.batch_size): #print(words,labels) labels_pred, sequence_lengths, prob = self.predict_batch(words) #pdb.set_trace() #l.append((list(words),prob)) #list of words, list of scores corresponding #l += prob #print('labels_pred ', labels_pred) if 'test' in mode: for lab, pred in zip(labels, labels_pred): #print('lab',lab) #print('pred',pred) for i,j in zip(lab,pred): s+=self.idx_to_tag[i] + '\t' + self.idx_to_tag[j] + '\n' s+='\n' for lab, lab_pred, length in zip(labels, labels_pred, sequence_lengths): lab = lab[:length] lab_pred = lab_pred[:length] accs += [a==b for (a, b) in zip(lab, lab_pred)] lab_chunks = set(get_chunks(lab, self.config.vocab_tags)) lab_pred_chunks = set(get_chunks(lab_pred, self.config.vocab_tags)) correct_preds += len(lab_chunks & lab_pred_chunks) total_preds += len(lab_pred_chunks) total_correct += len(lab_chunks) #print("Total Preds ", total_preds) #print("Total correct ", total_correct) #print("Correct preds ", correct_preds) p = correct_preds / total_preds if correct_preds > 0 else 0 r = correct_preds / total_correct if correct_preds > 0 else 0 f1 = 2 * p * r / (p + r) if correct_preds > 0 else 0 acc = np.mean(accs) if "test" in mode: f = open(self.config.file_out + "_" + mode,'w') f.write(s) f.close() #Sort l to get most/least uncertain #l2 = sorted(l) #mu = [] #lu = [] #for i in range(0,self.config.num_query): # mu.append(l.index(l2[i])) # lu.append(l.index(l2[len(l2)-i-1])) #l = sorted(l, key=lambda pr: pr[2]) #pdb.set_trace() #print("l",l) #return acc, f1, list of most uncertainty and list of least uncertainty examples #return {"acc": 100*acc, "f1": 100*f1, "out":l} return {"acc": 100*acc, "f1": 100*f1} #return {"acc": 100*acc, "f1": 100*f1, "mu": l[0:self.config.num_query], "lu": l[len(l)-self.config.num_query: len(l)]} def predict(self, words_raw): """Returns list of tags Args: words_raw: list of words (string), just one sentence (no batch) Returns: preds: list of tags (string), one for each word in the sentence """ #words = [self.config.processing_word(w) for w in words_raw] #this is used for word raw #print(words) words = words_raw words_o = list(words) #print(words_o) if type(words[0]) == tuple: words = zip(*words) #print(words) pred_ids, _, scores = self.predict_batch([words]) #print("Prediction: ") #print(pred_ids, _, scores) preds = [self.idx_to_tag[idx] for idx in list(pred_ids[0])] return (words_o, scores) #return preds def active_strategy(score, transition_params, active_strategy, tag_to_idx): """ Args: output of CRF score: A [seq_len, num_tags] matrix of unary potentials. transition_params: A [num_tags, num_tags] matrix of binary potentials. """ if active_strategy=="cluster": return score trellis = np.zeros_like(score) backpointers = np.zeros_like(score, dtype=np.int32) trellis[0] = score[0] for t in range(1, score.shape[0]): v = np.expand_dims(trellis[t - 1], 1) + transition_params trellis[t] = score[t] + np.max(v, 0) backpointers[t] = np.argmax(v, 0) viterbi = [np.argmax(trellis[-1])] for bp in reversed(backpointers[1:]): viterbi.append(bp[viterbi[-1]]) viterbi.reverse() score_final = np.max(trellis[-1]) #Score of sequences (higher = better) if (active_strategy=='mg'): top_scores = trellis[-1][
np.argsort(trellis[-1])
numpy.argsort
import numpy as np from .qnumber import is_qsparse __all__ = ['retained_bond_indices', 'split_matrix_svd', 'qr'] def retained_bond_indices(s, tol): """ Indices of retained singular values based on given tolerance. """ w = np.linalg.norm(s) if w == 0: return np.array([], dtype=int) # normalized squares s = (s / w)**2 # accumulate values from smallest to largest sort_idx = np.argsort(s) s[sort_idx] = np.cumsum(s[sort_idx]) return np.where(s > tol)[0] def split_matrix_svd(A, q0, q1, tol): """ Split a matrix by singular value decomposition, taking block sparsity structure dictated by quantum numbers into account, and truncate small singular values based on tolerance. """ assert A.ndim == 2 assert len(q0) == A.shape[0] assert len(q1) == A.shape[1] assert is_qsparse(A, [q0, -q1]) # find common quantum numbers qis = np.intersect1d(q0, q1) if len(qis) == 0: assert np.linalg.norm(A) == 0 # special case: no common quantum numbers; # use dummy intermediate dimension 1 u = np.zeros((A.shape[0], 1), dtype=A.dtype) v = np.zeros((1, A.shape[1]), dtype=A.dtype) s = np.zeros(1) # single column of 'u' should have norm 1 if A.shape[0] > 0: u[0, 0] = 1 # ensure non-zero entry in 'u' formally matches quantum numbers q = q0[:1] # 'v' must remain zero matrix to satisfy quantum number constraints return (u, s, v, q) # require NumPy arrays for indexing q0 = np.array(q0) q1 = np.array(q1) # sort quantum numbers and arrange entries in A accordingly; # using mergesort to avoid permutations of identical quantum numbers idx0 = np.argsort(q0, kind='mergesort') idx1 = np.argsort(q1, kind='mergesort') if np.any(idx0 - np.arange(len(idx0))): # if not sorted yet... q0 = q0[idx0] A = A[idx0, :] if np.any(idx1 - np.arange(len(idx1))): # if not sorted yet... q1 = q1[idx1] A = A[:, idx1] # maximum intermediate dimension max_interm_dim = min(A.shape) # keep track of intermediate dimension D = 0 # allocate memory for U and V matrices, singular values and # corresponding intermediate quantum numbers u = np.zeros((A.shape[0], max_interm_dim), dtype=A.dtype) v = np.zeros((max_interm_dim, A.shape[1]), dtype=A.dtype) s = np.zeros(max_interm_dim) q = np.zeros(max_interm_dim, dtype=q0.dtype) # for each shared quantum number... for qn in qis: # indices of current quantum number iqn = np.where(q0 == qn)[0]; i0 = iqn[0]; i1 = iqn[-1] + 1 iqn = np.where(q1 == qn)[0]; j0 = iqn[0]; j1 = iqn[-1] + 1 # perform SVD decomposition of current block usub, ssub, vsub = np.linalg.svd(A[i0:i1, j0:j1], full_matrices=False) # update intermediate dimension Dprev = D D += len(ssub) u[i0:i1, Dprev:D] = usub v[Dprev:D, j0:j1] = vsub s[Dprev:D] = ssub q[Dprev:D] = qn assert D <= max_interm_dim # use actual intermediate dimensions u = u[:, :D] v = v[:D, :] s = s[:D] q = q[:D] # truncate small singular values idx = retained_bond_indices(s, tol) u = u[:, idx] v = v[idx, :] s = s[idx] q = q[idx] # undo sorting of quantum numbers if np.any(idx0 - np.arange(len(idx0))): u = u[np.argsort(idx0), :] if np.any(idx1 - np.arange(len(idx1))): v = v[:, np.argsort(idx1)] return (u, s, v, q) def qr(A, q0, q1): """ Compute the block-wise QR decompositions of a matrix, taking block sparsity structure dictated by quantum numbers into account (that is, `A[i, j]` can only be non-zero if `q0[i] == q1[j]`). The resulting R matrix is not necessarily upper triangular due to reordering of entries. """ assert A.ndim == 2 assert len(q0) == A.shape[0] assert len(q1) == A.shape[1] assert is_qsparse(A, [q0, -q1]) # find common quantum numbers qis = np.intersect1d(q0, q1) if len(qis) == 0: assert np.linalg.norm(A) == 0 # special case: no common quantum numbers; # use dummy intermediate dimension 1 with all entries in 'R' set to zero Q = np.zeros((A.shape[0], 1), dtype=A.dtype) R = np.zeros((1, A.shape[1]), dtype=A.dtype) # single column of 'Q' should have norm 1 Q[0, 0] = 1 # ensure non-zero entry in 'Q' formally matches quantum numbers qinterm = q0[:1] return (Q, R, qinterm) # require NumPy arrays for indexing q0 = np.array(q0) q1 = np.array(q1) # sort quantum numbers and arrange entries in A accordingly; # using mergesort to avoid permutations of identical quantum numbers idx0 = np.argsort(q0, kind='mergesort') idx1 = np.argsort(q1, kind='mergesort') if np.any(idx0 - np.arange(len(idx0))): # if not sorted yet... q0 = q0[idx0] A = A[idx0, :] if np.any(idx1 - np.arange(len(idx1))): # if not sorted yet... q1 = q1[idx1] A = A[:, idx1] # maximum intermediate dimension max_interm_dim = min(A.shape) # keep track of intermediate dimension D = 0 Q = np.zeros((A.shape[0], max_interm_dim), dtype=A.dtype) R = np.zeros((max_interm_dim, A.shape[1]), dtype=A.dtype) # corresponding intermediate quantum numbers qinterm = np.zeros(max_interm_dim, dtype=q0.dtype) # for each shared quantum number... for qn in qis: # indices of current quantum number iqn = np.where(q0 == qn)[0]; i0 = iqn[0]; i1 = iqn[-1] + 1 iqn = np.where(q1 == qn)[0]; j0 = iqn[0]; j1 = iqn[-1] + 1 # perform QR decomposition of current block Qsub, Rsub =
np.linalg.qr(A[i0:i1, j0:j1], mode='reduced')
numpy.linalg.qr
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # '''PP with numeric integration. See also pyscf/pbc/gto/pesudo/pp_int.py For GTH/HGH PPs, see: Goedecker, Teter, Hutter, PRB 54, 1703 (1996) Hartwigsen, Goedecker, and Hutter, PRB 58, 3641 (1998) ''' import numpy as np import scipy.linalg import scipy.special from pyscf import lib from pyscf.gto import mole from pyscf.pbc.gto.pseudo import pp_int def get_alphas(cell): '''alpha parameters from the non-divergent Hartree+Vloc G=0 term. See ewald.pdf Returns: alphas : (natm,) ndarray ''' return get_alphas_gth(cell) def get_alphas_gth(cell): '''alpha parameters for the local GTH pseudopotential.''' G0 = np.zeros((1,3)) return -get_gth_vlocG(cell, G0) def get_vlocG(cell, Gv=None): '''Local PP kernel in G space: Vloc(G) Returns: (natm, ngrids) ndarray ''' if Gv is None: Gv = cell.Gv vlocG = get_gth_vlocG(cell, Gv) return vlocG def get_gth_vlocG(cell, Gv): '''Local part of the GTH pseudopotential. See MH (4.79). Args: Gv : (ngrids,3) ndarray Returns: (natm, ngrids) ndarray ''' vlocG = pp_int.get_gth_vlocG_part1(cell, Gv) # Add the C1, C2, C3, C4 contributions G2 = np.einsum('ix,ix->i', Gv, Gv) for ia in range(cell.natm): symb = cell.atom_symbol(ia) if symb not in cell._pseudo: continue pp = cell._pseudo[symb] rloc, nexp, cexp = pp[1:3+1] G2_red = G2 * rloc**2 cfacs = 0 if nexp >= 1: cfacs += cexp[0] if nexp >= 2: cfacs += cexp[1] * (3 - G2_red) if nexp >= 3: cfacs += cexp[2] * (15 - 10*G2_red + G2_red**2) if nexp >= 4: cfacs += cexp[3] * (105 - 105*G2_red + 21*G2_red**2 - G2_red**3) vlocG[ia,:] -= (2*np.pi)**(3/2.)*rloc**3*np.exp(-0.5*G2_red) * cfacs return vlocG def get_projG(cell, kpt=np.zeros(3)): '''PP weight and projector for the nonlocal PP in G space. Returns: hs : list( list( np.array( , ) ) ) - hs[atm][l][i,j] projs : list( list( list( list( np.array(ngrids) ) ) ) ) - projs[atm][l][m][i][ngrids] ''' return get_gth_projG(cell, kpt+cell.Gv) def get_gth_projG(cell, Gvs): r'''G space projectors from the FT of the real-space projectors. \int e^{iGr} p_j^l(r) Y_{lm}^*(theta,phi) = i^l p_j^l(G) Y_{lm}^*(thetaG, phiG) See MH Eq.(4.80) ''' Gs,thetas,phis = cart2polar(Gvs) hs = [] projs = [] for ia in range(cell.natm): symb = cell.atom_symbol(ia) pp = cell._pseudo[symb] nproj_types = pp[4] h_ia = [] proj_ia = [] for l,proj in enumerate(pp[5:]): rl, nl, hl = proj h_ia.append( np.array(hl) ) proj_ia_l = [] for m in range(-l,l+1): projG_ang = Ylm(l,m,thetas,phis).conj() proj_ia_lm = [] for i in range(nl): projG_radial = projG_li(Gs,l,i,rl) proj_ia_lm.append( (1j)**l * projG_radial*projG_ang ) proj_ia_l.append(proj_ia_lm) proj_ia.append(proj_ia_l) hs.append(h_ia) projs.append(proj_ia) return hs, projs def projG_li(G, l, i, rl): G = np.array(G) G_red = G*rl # MH Eq. (4.81) return ( _qli(G_red,l,i) * np.pi**(5/4.) * G**l * np.sqrt(rl**(2*l+3)) / np.exp(0.5*G_red**2) ) def _qli(x,l,i): # MH Eqs. (4.82)-(4.93) :: beware typos! # Mathematica formulas: # p[l_, i_, r_] = Sqrt[2] r^(l + 2 (i - 1)) Exp[-r^2/(2 R^2)]/(R^(l + (4 i - 1)/2) Sqrt[Gamma[l + (4 i - 1)/2]]) # pG[l_, i_, G_] = Integrate[p[l, i, r] 4 Pi r^2 SphericalBesselJ[l, G r], {r, 0, Infinity}] # qG[l_, i_, G_] := pG[l, i, G]/(Pi^(5/4) G^l Sqrt[R^(2 l + 3)]/Exp[(G R)^2/2]) # FullSimplify[qG[4, 3, G], R > 0 && G > 0] sqrt = np.sqrt if l==0 and i==0: return 4*sqrt(2.) elif l==0 and i==1: return 8*sqrt(2/15.)*(3-x**2) # MH & GTH (right) #return sqrt(8*2/15.)*(3-x**2) # HGH (wrong) elif l==0 and i==2: #return 16/3.*sqrt(2/105.)*(15-20*x**2+4*x**4) # MH (wrong) return 16/3.*sqrt(2/105.)*(15-10*x**2+x**4) # HGH (right) elif l==1 and i==0: return 8*sqrt(1/3.) elif l==1 and i==1: return 16*sqrt(1/105.)*(5-x**2) elif l==1 and i==2: #return 32/3.*sqrt(1/1155.)*(35-28*x**2+4*x**4) # MH (wrong) return 32/3.*sqrt(1/1155.)*(35-14*x**2+x**4) # HGH (right) elif l==2 and i==0: return 8*sqrt(2/15.) elif l==2 and i==1: return 16/3.*sqrt(2/105.)*(7-x**2) elif l==2 and i==2: #return 32/3.*sqrt(2/15015.)*(63-36*x**2+4*x**4) # MH (wrong I think) return 32/3.*sqrt(2/15015.)*(63-18*x**2+x**4) # TCB elif l==3 and i==0: return 16*sqrt(1/105.) elif l==3 and i==1: return 32/3.*sqrt(1/1155.)*(9-x**2) elif l==3 and i==2: return 64/45.*sqrt(1/1001.)*(99-22*x**2+x**4) elif l==4 and i==0: return 16/3.*sqrt(2/105.) elif l==4 and i==1: return 32/3.*sqrt(2/15015.)*(11-x**2) elif l==4 and i==2: return 64/45.*sqrt(2/17017.)*(143-26*x**2+x**4) else: print("*** WARNING *** l =", l, ", i =", i, "not yet implemented for NL PP!") return 0. def Ylm_real(l,m,theta,phi): '''Real spherical harmonics, if desired.''' Ylabsm = Ylm(l,np.abs(m),theta,phi) if m < 0: return np.sqrt(2.) * Ylabsm.imag elif m > 0: return np.sqrt(2.) * Ylabsm.real else: # m == 0 return Ylabsm.real def Ylm(l,m,theta,phi): ''' Spherical harmonics; returns a complex number Note the "convention" for theta and phi: http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.special.sph_harm.html ''' #return scipy.special.sph_harm(m=m,n=l,theta=phi,phi=theta) return scipy.special.sph_harm(m,l,phi,theta) def cart2polar(rvec): # The rows of rvec are the 3-component vectors # i.e. rvec is N x 3 x,y,z = rvec.T r = lib.norm(rvec, axis=1) # theta is the polar angle, 0 < theta < pi # catch possible 0/0 theta =
np.arccos(z/(r+1e-200))
numpy.arccos
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
# -*- coding: utf-8 -*- """ @author: <NAME> This is where everything is put togegher. It receives all the user-provided specs from 'main.py' as well as the data generated by 'data_preparation.py' (or by the user if working with real experimental data), and perform the PAHMC algorithm for state and parameter estimations. The dynamics model is defined in 'cuda_lib_dynamics.py' or in 'def_dynamics.py', other necessary CUDA kernels are defined in 'cuda_utilities.py', and the gradient descent functionality is implemented in 'gd.py'. """ from pathlib import Path import time from numba import cuda, jit import numpy as np from pahmc_ode_gpu.gd import descend from pahmc_ode_gpu.cuda_utilities import k__action, k__diff, k__dAdX, \ k__dAdpar, k__leapfrog_X, k__leapfrog_par, k__linearop2d, k__linearop1d, \ k__zeros1d def anneal(k__field, k__jacobian, k__dfield_dpar, stimuli, Y, D, M, obsdim, dt, Rf0, alpha, betamax, n_iter, epsilon, S, mass, scaling, soft_dynrange, par_start, name, tune_beta, Rm=1.0, burn=0.5): """ This is the master function that brings the PAHMC algorithm into one piece. Inputs ------ k__field: CUDA kernel. k__jacobian: CUDA kernel. k__dfield_dpar: CUDA kernel. stimuli: D-by-M numpy array of floats. Y: len(obsdim)-by-M numpy array of floats. D: integer. M: integer. obsdim: 1d (shapeless) numpy array of integers. dt: float. Rf0: 1d (shapeless) numpy array of floats, with length D. alpha: float. betamax: integer. n_iter: 1d (shapeless) numpy array of integers, with length betamax. epsilon: 1d (shapeless) numpy array of floats, with length betamax. S: 1d (shapeless) numpy array of integers, with length betamax. mass: betamax-by-3 numpy array of floats. scaling: 1d (shapeless) numpy array of floats, with length betamax. soft_dynrange: D-by-2 numpy array of floats. par_start: 1d (shapeless) numpy array. name: the name of the dynamical system. tune_beta: the current beta value that is undergoing stepwise tuning. Rm: float. burn: float. Note that this is the proportion of HMC samples that are thrown away in each beta, which is different from the 'burndata' switch. Returns ------ Rm: float. burn: float. Rf: betamax-by-D numpy array of floats. eta_avg: 1d (shapeless) numpy array of floats, with length betamax. acceptance: 1d (shapeless) numpy array of floats, with length betamax. action: betamax-by-(max(n_iter)+2) numpy array of floats. action_meanpath: 1d (shapeless) numpy array of floats, with length betamax. ME_meanpath: 1d (shapeless) numpy array of floats, with length betamax. FE_meanpath: 1d (shapeless) numpy array of floats, with length betamax. X_init: betamax-by-D-by-M numpy array of floats. X_gd: betamax-by-D-by-M numpy array of floats. X_mean: betamax-by-D-by-M numpy array of floats. par_history: betamax-by-(max(n_iter)+2)-by-len(par_start) numpy array of floats. par_mean: betamax-by-len(par_start) numpy array of floats. Xfinal_history: betamax-by-(max(n_iter)+2)-by-D numpy array of floats. """ # create some utility variables Rf = Rf0 * (alpha ** np.arange(betamax))[:, np.newaxis] unobsdim = np.int64(np.setdiff1d(np.arange(D), obsdim)) obs_ind = -np.ones(D, dtype='int64') for l in range(len(obsdim)): obs_ind[obsdim[l]] = l mass_X = np.zeros((betamax,D,M)) mass_par = np.zeros((betamax,len(par_start))) for beta in range(betamax): mass_X[beta, obsdim, :] = mass[beta, 0] mass_X[beta, unobsdim, :] = mass[beta, 1] mass_par[beta, :] = mass[beta, 2] # initialize the remaining output variables eta_avg = np.zeros(betamax) acceptance = np.zeros(betamax) action = np.zeros((betamax,np.max(n_iter)+2)) action_meanpath = np.zeros(betamax) ME_meanpath = np.zeros(betamax) FE_meanpath = np.zeros(betamax) X_init = np.zeros((betamax,D,M)) X_gd = np.zeros((betamax,D,M)) X_mean = np.zeros((betamax,D,M)) par_history = np.zeros((betamax,np.max(n_iter)+2,len(par_start))) par_mean = np.zeros((betamax,len(par_start))) Xfinal_history = np.zeros((betamax,np.max(n_iter)+2,D)) # bring static variables to GPU d_stimuli = cuda.to_device(stimuli) d_Y = cuda.to_device(Y) d_obsdim = cuda.to_device(obsdim) d_obs_ind = cuda.to_device(obs_ind) # initialize device arrays that will be used as outputs for the kernels d_field = cuda.device_array((D,M)) d_jacobian = cuda.device_array((D,D,M)) d_dfield_dpar = cuda.device_array((D,len(par_start),M)) d_diff = cuda.device_array((D,M-1)) d_dAdX = cuda.device_array((D,M)) d_dAdpar = cuda.device_array((len(par_start),)) d_action = cuda.device_array((1,)) # stepwise tuning=========================================================== if tune_beta == 0: # perform dynamic initialization, i.e., initialize X and par for beta=0 X_init[0, :, 0] \ = np.random.uniform(soft_dynrange[:, 0], soft_dynrange[:, 1], (D,)) X_init[0, obsdim, 0] = Y[:, 0] d_par_start = cuda.to_device(par_start) d_field_m = cuda.device_array((D,1)) for m in range(M-1): d_X_m = cuda.to_device(X_init[0][:, [m]]) d_stimuli_m = cuda.to_device(stimuli[:, [m]]) k__field[(16,32), (2,128)](d_X_m, d_par_start, d_stimuli_m, d_field_m) F = dt / 2 * d_field_m.copy_to_host() d_X_m = cuda.to_device(X_init[0][:, [m]]+F) k__field[(16,32), (2,128)](d_X_m, d_par_start, d_stimuli_m, d_field_m) X_init[0][:, [m+1]] \ = X_init[0][:, [m]] + dt * d_field_m.copy_to_host() X_init[0, obsdim, m+1] = Y[:, m+1] par_history[0, 0, :] = par_start else: # extract results from the previous beta file \ = np.load(Path.cwd()/'user_results'/f'tune_{name}_{tune_beta-1}.npz') X_init = file['X_mean'] par_history[0, 0, :] = file['par_mean'][0, :] file.close() #=========================================================================== # do PAHMC for beta in range(betamax): print('-------------------------------------------------------------') print(f'beta = {beta}:\n') # initialize device arrays specific to current beta d_Rf_beta = cuda.to_device(Rf[beta, :]) d_mass_X_beta = cuda.to_device(mass_X[beta, :, :]) d_mass_par_beta = cuda.to_device(mass_par[beta, :]) # initialize action and Xfinal_history (2 out of 4) for current beta d_X_init_beta = cuda.to_device(X_init[beta, :, :]) d_par_init_beta = cuda.to_device(par_history[beta, 0, :]) k__field[(16,32), (2,128)](d_X_init_beta, d_par_init_beta, d_stimuli, d_field) k__zeros1d[40, 256](d_action) cuda.synchronize() k__action[(16,32), (16,16)](d_X_init_beta, d_field, d_Rf_beta, d_Y, dt, d_obsdim, Rm, d_action) action[beta, 0] = d_action.copy_to_host()[0] Xfinal_history[beta, 0, :] = X_init[beta, :, -1] # exploration - gradient descent X_gd[beta, :, :], par_history[beta, 1, :], action[beta, 1], eta \ = descend(k__field, k__jacobian, k__dfield_dpar, X_init[beta, :, :], par_history[beta, 0, :], Rf[beta, :], d_stimuli, d_Y, dt, d_obsdim, d_obs_ind, Rm) eta_avg[beta] = np.mean(eta) Xfinal_history[beta, 1, :] = X_gd[beta, :, -1] # exploitation - Hamiltonian Monte Carlo t0 = time.perf_counter() errcount = 0 printflag = 0 X0 = X_gd[beta, :, :] par0 = par_history[beta, 1, :] for n in range(2, n_iter[beta]+2): print(f'\r Performing calculations... (step={n-1})', end='') # call HMC X, par, action[beta, n], accept, errflag \ = hmc(X0, par0, action[beta, n-1], beta, d_Rf_beta, d_mass_X_beta, d_mass_par_beta, D, M, dt, obsdim, unobsdim, Rm, epsilon, S, mass, scaling, mass_X, mass_par, k__field, k__jacobian, k__dfield_dpar, d_stimuli, d_Y, d_obsdim, d_obs_ind, d_field, d_jacobian, d_dfield_dpar, d_diff, d_dAdX, d_dAdpar, d_action) X0 = X par0 = par # sanity check if errflag == 1: errcount += 1 if errcount == 5 and printflag == 0: print('\n WARNING: got bad values when performing ' +'leapfrog simulations!') printflag = 1 else: errcount = 0 # keep results acceptance[beta] += accept if n - 1 > burn * n_iter[beta]: X_mean[beta, :, :] += X par_mean[beta, :] += par Xfinal_history[beta, n, :] = X[:, -1] par_history[beta, n, :] = par print(f'\r Performing calculations... ' +f'finished in {time.perf_counter()-t0:.2f} seconds;\n') # finalize acceptance rate and mean path for current beta acceptance[beta] /= n_iter[beta] X_mean[beta, :, :] /= np.ceil((1-burn)*n_iter[beta]) par_mean[beta, :] /= np.ceil((1-burn)*n_iter[beta]) # calculate action, measurement and model errors from mean path d_X_mean_beta = cuda.to_device(X_mean[beta, :, :]) d_par_mean_beta = cuda.to_device(par_mean[beta, :]) k__field[(16,32), (2,128)](d_X_mean_beta, d_par_mean_beta, d_stimuli, d_field) k__zeros1d[40, 256](d_action) cuda.synchronize() k__action[(16,32), (16,16)](d_X_mean_beta, d_field, d_Rf_beta, d_Y, dt, d_obsdim, Rm, d_action) action_meanpath[beta] = d_action.copy_to_host()[0] ME_meanpath[beta] = Rm / 2 / M * np.sum((X_mean[beta, obsdim, :]-Y)**2) field_mean = d_field.copy_to_host() fX_mean = X_mean[beta, :, :M-1] \ + dt / 2 * (field_mean[:, 1:] + field_mean[:, :M-1]) FE_meanpath[beta] \ = np.sum(Rf[beta, :]/2/M\ *np.sum((X_mean[beta, :, 1:]-fX_mean)**2, axis=1)) # print action_meanpath and FE_meanpath for current beta print(f' action (mean path) = {action_meanpath[beta]};') print(f' model error (mean path) = {FE_meanpath[beta]}.\n') # initialize X and par (2 out of 4) for next beta if beta != betamax - 1: X_init[beta+1, :, :] = X_mean[beta, :, :] par_history[beta+1, 0, :] = par_mean[beta, :] return burn, Rm, Rf, eta_avg, acceptance, \ action, action_meanpath, ME_meanpath, FE_meanpath, \ X_init, X_gd, X_mean, par_history, par_mean, Xfinal_history def hmc(X0, par0, action0, beta, d_Rf_beta, d_mass_X_beta, d_mass_par_beta, D, M, dt, obsdim, unobsdim, Rm, epsilon, S, mass, scaling, mass_X, mass_par, k__field, k__jacobian, k__dfield_dpar, d_stimuli, d_Y, d_obsdim, d_obs_ind, d_field, d_jacobian, d_dfield_dpar, d_diff, d_dAdX, d_dAdpar, d_action): """ This function generates one HMC proposal per call. Inputs ------ X0: D-by-M numpy array of floats. par0: 1d (shapeless) numpy array of floats. action0: float. beta: integer. d_Rf_beta: 1d (shapeless) device array of floats, with length D. d_mass_X_beta: D-by-M device array of floats. d_mass_par_beta: 1d (shapeless) device array of floats, with length len(par0). ... unobsdim: 1d (shapeless) numpy array of integers. ... mass_X: betamax-by-D-by-M numpy array of floats. mass_par: betamax-by-len(par0) array of floats. ... d_stimuli: D-by-M device array of floats. d_Y: len(obsdim)-by-M device array of floats. d_obsdim: 1d (shapeless) device array of floats. d_obs_ind: 1d (shapeless) device array of floats, with length D. d_field: D-by-M device array of floats. d_jacobian: D-by-D-by-M device array of floats. d_dfield_dpar: D-by-len(par0)-by-M device array of floats. d_diff: D-by-(M-1) deivce array of floats. d_dAdX: D-by-M device array of floats. d_dAdpar: 1d (shapeless) device array of floats, with length len(par0). d_action: 1d (shapeless) device array of float, with length 1. Returns ------ X: D-by-M numpy array of floats. par: 1d (shapeless) numpy array of floats. action: float. accept: integer. errflag: integer. """ # generate initial momenta pX0, ppar0 = pre_process(beta, D, M, obsdim, unobsdim, mass, len(par0)) # bring phase space variables to GPU d_X = cuda.to_device(X0) d_par = cuda.to_device(par0) d_pX = cuda.to_device(pX0) d_ppar = cuda.to_device(ppar0) # initialze candidate action k__zeros1d[40, 256](d_action) # Hamiltonian dynamics - half step for momenta k__field[(16,32), (2,128)](d_X, d_par, d_stimuli, d_field) cuda.synchronize() k__diff[(32,16), (2,128)](d_X, d_field, dt, d_diff) k__jacobian[(4,4,32), (2,2,64)](d_X, d_par, d_jacobian) k__dfield_dpar[(4,4,32), (2,2,64)](d_X, d_par, d_dfield_dpar) k__zeros1d[40, 256](d_dAdpar) cuda.synchronize() k__dAdX[(32,16), (2,128)](d_X, d_diff, d_jacobian, d_Rf_beta, scaling[beta], d_Y, dt, d_obsdim, d_obs_ind, Rm, d_dAdX) k__dAdpar[(4,4,32), (2,2,64)](d_X, d_diff, d_dfield_dpar, d_Rf_beta, scaling[beta], dt, d_dAdpar) cuda.synchronize() k__linearop2d[(32,16), (2,128)](d_pX, -epsilon[beta]/2, d_dAdX, d_pX) k__linearop1d[40, 256](d_ppar, -epsilon[beta]/2, d_dAdpar, d_ppar) cuda.synchronize() # Hamiltonian dynamics - full steps for X, par, and momenta for i in range(S[beta]): # full step for X, par k__leapfrog_X[(32,16), (2,128)](d_pX, epsilon[beta], d_mass_X_beta, d_X) k__leapfrog_par[40, 256](d_ppar, epsilon[beta], d_mass_par_beta, d_par) cuda.synchronize() # full step for momenta except at the end of trajectory k__field[(16,32), (2,128)](d_X, d_par, d_stimuli, d_field) cuda.synchronize() k__diff[(32,16), (2,128)](d_X, d_field, dt, d_diff) k__jacobian[(4,4,32), (2,2,64)](d_X, d_par, d_jacobian) k__dfield_dpar[(4,4,32), (2,2,64)](d_X, d_par, d_dfield_dpar) k__zeros1d[40, 256](d_dAdpar) cuda.synchronize() k__dAdX[(32,16), (2,128)](d_X, d_diff, d_jacobian, d_Rf_beta, scaling[beta], d_Y, dt, d_obsdim, d_obs_ind, Rm, d_dAdX) k__dAdpar[(4,4,32), (2,2,64)](d_X, d_diff, d_dfield_dpar, d_Rf_beta, scaling[beta], dt, d_dAdpar) cuda.synchronize() if i != S[beta] - 1: k__linearop2d[(32,16), (2,128)](d_pX, -epsilon[beta], d_dAdX, d_pX) k__linearop1d[40, 256](d_ppar, -epsilon[beta], d_dAdpar, d_ppar) cuda.synchronize() # Hamiltonian dynamics - half step for momenta k__linearop2d[(32,16), (2,128)](d_pX, -epsilon[beta]/2, d_dAdX, d_pX) k__linearop1d[40, 256](d_ppar, -epsilon[beta]/2, d_dAdpar, d_ppar) cuda.synchronize() # bring momenta back to CPU pX = d_pX.copy_to_host() ppar = d_ppar.copy_to_host() # get candidate action k__action[(16,32), (16,16)](d_X, d_field, d_Rf_beta, d_Y, dt, d_obsdim, Rm, d_action) action_cand = d_action.copy_to_host()[0] # calculate change in Hamiltonian dH = post_process(pX0, ppar0, pX, ppar, action0, action_cand, beta, D, M, mass_X, mass_par, scaling) # check for numerical issues if np.isnan(action_cand) == False and
np.isinf(action_cand)
numpy.isinf
import unittest from context import modest as md import numpy as np from scipy.linalg import block_diag from scipy.stats import multivariate_normal as mvn class TestModularFilters(unittest.TestCase): def setUp(self): class simpleState(md.substates.SubState): def __init__(self, dimension, stateVectorHistory, covarianceStorage='covariance'): if not isinstance(stateVectorHistory['covariance'], md.utils.covarianceContainer): stateVectorHistory['covariance'] = md.utils.covarianceContainer( stateVectorHistory['covariance'],covarianceStorage ) super().__init__(stateDimension=dimension, stateVectorHistory=stateVectorHistory) self.simpleState = simpleState class oneDPositionVelocity(md.substates.SubState): def __init__(self, objectID, stateVectorHistory,covarianceStorage='covariance'): if not isinstance(stateVectorHistory['covariance'], md.utils.covarianceContainer): stateVectorHistory['covariance'] = md.utils.covarianceContainer( stateVectorHistory['covariance'],covarianceStorage ) super().__init__(stateDimension=2, stateVectorHistory=stateVectorHistory) self.stateVector = stateVectorHistory['stateVector'] self.objectID = objectID self.covarianceStorage = covarianceStorage def storeStateVector(self, svDict): xPlus = svDict['stateVector'] aPriori = svDict['aPriori'] if aPriori is False: self.stateVector = xPlus svDict['stateVector'] = self.stateVector super().storeStateVector(svDict) def timeUpdate(self, dT, dynamics=None): F = np.array([[1, dT],[0, 1]]) dT2 = np.square(dT) dT3 = np.power(dT, 3) dT4 = np.power(dT, 4) if self.covariance().form == 'covariance': Q = np.array([[dT4/4, dT3/2],[dT3/2, dT2]]) elif self.covariance().form == 'cholesky': Q = np.array([[dT2/2,0],[dT,0]]) accelKey = self.objectID + 'acceleration' if dynamics is not None and accelKey in dynamics: acceleration = dynamics[accelKey]['value'] accVar = dynamics[accelKey]['var'] else: acceleration = 0 accVar = 0 self.stateVector = F.dot(self.stateVector) + np.array([0, acceleration]) if self.covariance().form == 'covariance': Q = md.utils.covarianceContainer(Q * accVar, 'covariance') elif self.covariance().form == 'cholesky': Q = md.utils.covarianceContainer(Q * np.sqrt(accVar), 'cholesky') else: raise ValueError('unrecougnized covariance') return {'F': F, 'Q': Q} def getMeasurementMatrices(self, measurement, source=None): HDict = {} RDict = {} dyDict = {} if isinstance(source, oneDObjectMeasurement) and source.objectID == self.objectID: if 'position' in measurement: H = np.array([[1, 0]]) dY = measurement['position']['value'] - H.dot(self.stateVector) HDict['%s position' %self.objectID] = H RDict['%s position' %self.objectID] = np.array( [[measurement['position']['var']]] ) dyDict['%s position' %self.objectID] = dY if 'velocity' in measurement: H = np.array([[0, 1]]) dY = measurement['velocity']['value'] - H.dot(self.stateVector) HDict['%s velocity' %self.objectID] = H RDict['%s velocity' %self.objectID] = np.array( [[measurement['velocity']['var']]] ) dyDict['%s velocity' %self.objectID] = dY return {'H': HDict, 'R': RDict, 'dY': dyDict} self.oneDPositionVelocity = oneDPositionVelocity class oneDObjectMeasurement(md.signals.SignalSource): def __init__(self, objectID): self.objectID = objectID return def computeAssociationProbability(self, measurement, stateDict, validationThreshold=0): myMeasMat = stateDict[self.objectID]['stateObject'].getMeasurementMatrices(measurement, source=self) dY = None R = None H = None for key in myMeasMat['dY']: if H is None: H = myMeasMat['H'][key] R = myMeasMat['R'][key] dY = myMeasMat['dY'][key] else: H = np.vstack([H, myMeasMat['H'][key]]) R = block_diag(R, myMeasMat['R'][key]) dY = np.append(dY, myMeasMat['dY'][key]) if dY is not None: P = stateDict[self.objectID]['stateObject'].covariance() Pval = P.convertCovariance('covariance').value # if P.form == 'cholesky': # Pval = P.value.dot(P.value.transpose()) # elif P.form == 'covariance': # Pval = P.value # else: # raise ValueError('Unrecougnized covariance specifier %s' %P.form) S = H.dot(Pval).dot(H.transpose()) + R myProbability = mvn.pdf(dY, cov=S) else: myProbability = 0 return myProbability self.oneDObjectMeasurement = oneDObjectMeasurement def testAddStates(self): # Create a simple state class to add to the filter stateLength1 =
np.random.randint(0, 10)
numpy.random.randint
import numpy as np from typing import Iterable, Tuple from collections import namedtuple import scipy.stats as stats from abito.lib.stats.plain import * __all__ = [ 't_test_from_stats', 't_test', 't_test_1samp', 'mann_whitney_u_test_from_stats', 'mann_whitney_u_test', 'bootstrap_test', 'shapiro_test', 'median_test', 'levene_test', 'mood_test', ] def _unequal_var_ttest_denom(v1, n1, v2, n2): vn1 = v1 / n1 vn2 = v2 / n2 with np.errstate(divide='ignore', invalid='ignore'): df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1)) # If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0). # Hence it doesn't matter what df is as long as it's not np.nan. df = np.where(np.isnan(df), 1, df) denom = np.sqrt(vn1 + vn2) return df, denom def _equal_var_ttest_denom(v1, n1, v2, n2): df = n1 + n2 - 2.0 svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2)) return df, denom TTestResult = namedtuple('TTestResult', [ 'statistic', 'p_value', 'mean_diff', 'mean_diff_std', ]) TTestResult.__new__.__defaults__ = (np.nan,) * len(TTestResult._fields) def _t_test_from_stats(mean1, mean2, denom, df) -> TTestResult: d = mean1 - mean2 with
np.errstate(divide='ignore', invalid='ignore')
numpy.errstate
import numpy as np from colour.characterisation import polynomial_expansion_Finlayson2015, matrix_colour_correction_Finlayson2015 from .Node import Node from typing import Optional, Any from numpy.typing import NDArray from camera_match.optimise import NodeOptimiser class LinearMatrix(Node): def __init__(self, matrix: Optional[NDArray[Any]] = None): self.matrix = matrix if self.matrix is None: self.matrix = self.identity() def solve(self, source: NDArray[Any], target: NDArray[Any]): # Setting Matrix with Moore-Penrose solution for speed self.matrix = matrix_colour_correction_Finlayson2015(source, target, degree=1) optimiser = NodeOptimiser(self.apply_matrix, self.matrix) self.matrix = optimiser.solve(source, target) def apply(self, RGB: NDArray[Any]) -> NDArray[Any]: return self.apply_matrix(RGB, self.matrix) @staticmethod def identity() -> NDArray[Any]: return np.identity(3) @staticmethod def apply_matrix(RGB: NDArray[Any], matrix: NDArray[Any]) -> NDArray[Any]: shape = RGB.shape RGB = np.reshape(RGB, (-1, 3)) return np.reshape(np.transpose(np.dot(matrix, np.transpose(RGB))), shape) class RootPolynomialMatrix(Node): def __init__(self, matrix: Optional[NDArray[Any]] = None, degree: int=2): if degree > 4 or degree < 1: raise ValueError( f"Degree for Root Polynomial Matrix must be between 1 and 4." ) self.matrix = matrix self.degree = degree if self.matrix is None: self.matrix = self.identity(self.degree) def solve(self, source: NDArray[Any], target: NDArray[Any]): # Setting Matrix with Moore-Penrose solution for speed self.matrix = matrix_colour_correction_Finlayson2015(source, target, degree=self.degree, root_polynomial_expansion=True) optimiser = NodeOptimiser(self.apply_matrix, self.matrix, fn_args=(self.degree)) self.matrix = optimiser.solve(source, target) def apply(self, RGB: NDArray[Any]) -> NDArray[Any]: return self.apply_matrix(RGB, self.matrix, self.degree) @staticmethod def identity(degree: int) -> NDArray[Any]: polynomial_expansion = { 1: np.identity(3), 2: np.hstack((np.identity(3), np.zeros((3, 3)))), 3: np.hstack((np.identity(3), np.zeros((3, 10)))), 4: np.hstack((np.identity(3), np.zeros((3, 19)))), } return polynomial_expansion[degree] @staticmethod def apply_matrix(RGB: NDArray[Any], matrix: NDArray[Any], degree: int) -> NDArray[Any]: shape = RGB.shape RGB = np.reshape(RGB, (-1, 3)) RGB_e = polynomial_expansion_Finlayson2015(RGB, degree, root_polynomial_expansion=True) return np.reshape(np.transpose(np.dot(matrix, np.transpose(RGB_e))), shape) class TetrahedralMatrix(Node): def __init__(self, matrix: Optional[NDArray[Any]] = None): self.matrix = matrix if self.matrix is None: self.matrix = self.identity() def solve(self, source: NDArray[Any], target: NDArray[Any]): optimiser = NodeOptimiser(self.apply_matrix, self.matrix) self.matrix = optimiser.solve(source, target) def apply(self, RGB: NDArray[Any]) -> NDArray[Any]: return self.apply_matrix(RGB, self.matrix) @staticmethod def identity() -> NDArray[Any]: return np.array([[1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 1, 1], [0, 0, 1], [1, 0, 1]]) @staticmethod def apply_matrix(RGB: NDArray[Any], matrix: NDArray[Any]) -> NDArray[Any]: def tetra_case(index, r, matrix_r, g, matrix_g, b, matrix_b, constant): R = np.multiply.outer(r[index], matrix_r) G = np.multiply.outer(g[index], matrix_g) B =
np.multiply.outer(b[index], matrix_b)
numpy.multiply.outer
from parcels import (FieldSet, ScipyParticle, JITParticle, Variable, ErrorCode) from parcels.particlefile import _set_calendar from parcels.tools.converters import _get_cftime_calendars, _get_cftime_datetimes from parcels import ParticleSetSOA, ParticleFileSOA, KernelSOA # noqa from parcels import ParticleSetAOS, ParticleFileAOS, KernelAOS # noqa import numpy as np import pytest import os from netCDF4 import Dataset import cftime import random as py_random ptype = {'scipy': ScipyParticle, 'jit': JITParticle} pset_type = {'soa': {'pset': ParticleSetSOA, 'pfile': ParticleFileSOA, 'kernel': KernelSOA}, 'aos': {'pset': ParticleSetAOS, 'pfile': ParticleFileAOS, 'kernel': KernelAOS}} def fieldset(xdim=40, ydim=100): U = np.zeros((ydim, xdim), dtype=np.float32) V = np.zeros((ydim, xdim), dtype=np.float32) lon = np.linspace(0, 1, xdim, dtype=np.float32) lat =
np.linspace(-60, 60, ydim, dtype=np.float32)
numpy.linspace
"""Array printing function $Id: arrayprint.py,v 1.9 2005/09/13 13:58:44 teoliphant Exp $ """ from __future__ import division, absolute_import, print_function __all__ = ["array2string", "array_str", "array_repr", "set_string_function", "set_printoptions", "get_printoptions", "printoptions", "format_float_positional", "format_float_scientific"] __docformat__ = 'restructuredtext' # # Written by <NAME> <<EMAIL>> # last revision: 1996-3-13 # modified by <NAME> 1997-3-3 for repr's and str's (and other details) # and by <NAME> 2000-4-1 for numarray # and by <NAME> 2005-8-22 for numpy # Note: Both scalartypes.c.src and arrayprint.py implement strs for numpy # scalars but for different purposes. scalartypes.c.src has str/reprs for when # the scalar is printed on its own, while arrayprint.py has strs for when # scalars are printed inside an ndarray. Only the latter strs are currently # user-customizable. import sys import functools import numbers if sys.version_info[0] >= 3: try: from _thread import get_ident except ImportError: from _dummy_thread import get_ident else: try: from thread import get_ident except ImportError: from dummy_thread import get_ident import numpy as np from . import numerictypes as _nt from .umath import absolute, not_equal, isnan, isinf, isfinite, isnat from . import multiarray from .multiarray import (array, dragon4_positional, dragon4_scientific, datetime_as_string, datetime_data, ndarray, set_legacy_print_mode) from .fromnumeric import ravel, any from .numeric import concatenate, asarray, errstate from .numerictypes import (longlong, intc, int_, float_, complex_, bool_, flexible) from .overrides import array_function_dispatch, set_module import warnings import contextlib _format_options = { 'edgeitems': 3, # repr N leading and trailing items of each dimension 'threshold': 1000, # total items > triggers array summarization 'floatmode': 'maxprec', 'precision': 8, # precision of floating point representations 'suppress': False, # suppress printing small floating values in exp format 'linewidth': 75, 'nanstr': 'nan', 'infstr': 'inf', 'sign': '-', 'formatter': None, 'legacy': False} def _make_options_dict(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, sign=None, formatter=None, floatmode=None, legacy=None): """ make a dictionary out of the non-None arguments, plus sanity checks """ options = {k: v for k, v in locals().items() if v is not None} if suppress is not None: options['suppress'] = bool(suppress) modes = ['fixed', 'unique', 'maxprec', 'maxprec_equal'] if floatmode not in modes + [None]: raise ValueError("floatmode option must be one of " + ", ".join('"{}"'.format(m) for m in modes)) if sign not in [None, '-', '+', ' ']: raise ValueError("sign option must be one of ' ', '+', or '-'") if legacy not in [None, False, '1.13']: warnings.warn("legacy printing option can currently only be '1.13' or " "`False`", stacklevel=3) if threshold is not None: # forbid the bad threshold arg suggested by stack overflow, gh-12351 if not isinstance(threshold, numbers.Number): raise TypeError("threshold must be numeric") if np.isnan(threshold): raise ValueError("threshold must be non-NAN, try " "sys.maxsize for untruncated representation") return options @set_module('numpy') def set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, suppress=None, nanstr=None, infstr=None, formatter=None, sign=None, floatmode=None, **kwarg): """ Set printing options. These options determine the way floating point numbers, arrays and other NumPy objects are displayed. Parameters ---------- precision : int or None, optional Number of digits of precision for floating point output (default 8). May be `None` if `floatmode` is not `fixed`, to print as many digits as necessary to uniquely specify the value. threshold : int, optional Total number of array elements which trigger summarization rather than full repr (default 1000). To always use the full repr without summarization, pass `sys.maxsize`. edgeitems : int, optional Number of array items in summary at beginning and end of each dimension (default 3). linewidth : int, optional The number of characters per line for the purpose of inserting line breaks (default 75). suppress : bool, optional If True, always print floating point numbers using fixed point notation, in which case numbers equal to zero in the current precision will print as zero. If False, then scientific notation is used when absolute value of the smallest number is < 1e-4 or the ratio of the maximum absolute value to the minimum is > 1e3. The default is False. nanstr : str, optional String representation of floating point not-a-number (default nan). infstr : str, optional String representation of floating point infinity (default inf). sign : string, either '-', '+', or ' ', optional Controls printing of the sign of floating-point types. If '+', always print the sign of positive values. If ' ', always prints a space (whitespace character) in the sign position of positive values. If '-', omit the sign character of positive values. (default '-') formatter : dict of callables, optional If not None, the keys should indicate the type(s) that the respective formatting function applies to. Callables should return a string. Types that are not specified (by their corresponding keys) are handled by the default formatters. Individual types for which a formatter can be set are: - 'bool' - 'int' - 'timedelta' : a `numpy.timedelta64` - 'datetime' : a `numpy.datetime64` - 'float' - 'longfloat' : 128-bit floats - 'complexfloat' - 'longcomplexfloat' : composed of two 128-bit floats - 'numpystr' : types `numpy.string_` and `numpy.unicode_` - 'object' : `np.object_` arrays - 'str' : all other strings Other keys that can be used to set a group of types at once are: - 'all' : sets all types - 'int_kind' : sets 'int' - 'float_kind' : sets 'float' and 'longfloat' - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' - 'str_kind' : sets 'str' and 'numpystr' floatmode : str, optional Controls the interpretation of the `precision` option for floating-point types. Can take the following values (default maxprec_equal): * 'fixed': Always print exactly `precision` fractional digits, even if this would print more or fewer digits than necessary to specify the value uniquely. * 'unique': Print the minimum number of fractional digits necessary to represent each value uniquely. Different elements may have a different number of digits. The value of the `precision` option is ignored. * 'maxprec': Print at most `precision` fractional digits, but if an element can be uniquely represented with fewer digits only print it with that many. * 'maxprec_equal': Print at most `precision` fractional digits, but if every element in the array can be uniquely represented with an equal number of fewer digits, use that many digits for all elements. legacy : string or `False`, optional If set to the string `'1.13'` enables 1.13 legacy printing mode. This approximates numpy 1.13 print output by including a space in the sign position of floats and different behavior for 0d arrays. If set to `False`, disables legacy mode. Unrecognized strings will be ignored with a warning for forward compatibility. .. versionadded:: 1.14.0 See Also -------- get_printoptions, printoptions, set_string_function, array2string Notes ----- `formatter` is always reset with a call to `set_printoptions`. Use `printoptions` as a context manager to set the values temporarily. Examples -------- Floating point precision can be set: >>> np.set_printoptions(precision=4) >>> np.array([1.123456789]) [1.1235] Long arrays can be summarised: >>> np.set_printoptions(threshold=5) >>> np.arange(10) array([0, 1, 2, ..., 7, 8, 9]) Small results can be suppressed: >>> eps = np.finfo(float).eps >>> x = np.arange(4.) >>> x**2 - (x + eps)**2 array([-4.9304e-32, -4.4409e-16, 0.0000e+00, 0.0000e+00]) >>> np.set_printoptions(suppress=True) >>> x**2 - (x + eps)**2 array([-0., -0., 0., 0.]) A custom formatter can be used to display array elements as desired: >>> np.set_printoptions(formatter={'all':lambda x: 'int: '+str(-x)}) >>> x = np.arange(3) >>> x array([int: 0, int: -1, int: -2]) >>> np.set_printoptions() # formatter gets reset >>> x array([0, 1, 2]) To put back the default options, you can use: >>> np.set_printoptions(edgeitems=3, infstr='inf', ... linewidth=75, nanstr='nan', precision=8, ... suppress=False, threshold=1000, formatter=None) Also to temporarily override options, use `printoptions` as a context manager: >>> with np.printoptions(precision=2, suppress=True, threshold=5): ... np.linspace(0, 10, 10) array([ 0. , 1.11, 2.22, ..., 7.78, 8.89, 10. ]) """ legacy = kwarg.pop('legacy', None) if kwarg: msg = "set_printoptions() got unexpected keyword argument '{}'" raise TypeError(msg.format(kwarg.popitem()[0])) opt = _make_options_dict(precision, threshold, edgeitems, linewidth, suppress, nanstr, infstr, sign, formatter, floatmode, legacy) # formatter is always reset opt['formatter'] = formatter _format_options.update(opt) # set the C variable for legacy mode if _format_options['legacy'] == '1.13': set_legacy_print_mode(113) # reset the sign option in legacy mode to avoid confusion _format_options['sign'] = '-' elif _format_options['legacy'] is False: set_legacy_print_mode(0) @set_module('numpy') def get_printoptions(): """ Return the current print options. Returns ------- print_opts : dict Dictionary of current print options with keys - precision : int - threshold : int - edgeitems : int - linewidth : int - suppress : bool - nanstr : str - infstr : str - formatter : dict of callables - sign : str For a full description of these options, see `set_printoptions`. See Also -------- set_printoptions, printoptions, set_string_function """ return _format_options.copy() @set_module('numpy') @contextlib.contextmanager def printoptions(*args, **kwargs): """Context manager for setting print options. Set print options for the scope of the `with` block, and restore the old options at the end. See `set_printoptions` for the full description of available options. Examples -------- >>> from numpy.testing import assert_equal >>> with np.printoptions(precision=2): ... np.array([2.0]) / 3 array([0.67]) The `as`-clause of the `with`-statement gives the current print options: >>> with np.printoptions(precision=2) as opts: ... assert_equal(opts, np.get_printoptions()) See Also -------- set_printoptions, get_printoptions """ opts = np.get_printoptions() try: np.set_printoptions(*args, **kwargs) yield np.get_printoptions() finally: np.set_printoptions(**opts) def _leading_trailing(a, edgeitems, index=()): """ Keep only the N-D corners (leading and trailing edges) of an array. Should be passed a base-class ndarray, since it makes no guarantees about preserving subclasses. """ axis = len(index) if axis == a.ndim: return a[index] if a.shape[axis] > 2*edgeitems: return concatenate(( _leading_trailing(a, edgeitems, index + np.index_exp[ :edgeitems]), _leading_trailing(a, edgeitems, index + np.index_exp[-edgeitems:]) ), axis=axis) else: return _leading_trailing(a, edgeitems, index + np.index_exp[:]) def _object_format(o): """ Object arrays containing lists should be printed unambiguously """ if type(o) is list: fmt = 'list({!r})' else: fmt = '{!r}' return fmt.format(o) def repr_format(x): return repr(x) def str_format(x): return str(x) def _get_formatdict(data, **opt): prec, fmode = opt['precision'], opt['floatmode'] supp, sign = opt['suppress'], opt['sign'] legacy = opt['legacy'] # wrapped in lambdas to avoid taking a code path with the wrong type of data formatdict = { 'bool': lambda: BoolFormat(data), 'int': lambda: IntegerFormat(data), 'float': lambda: FloatingFormat(data, prec, fmode, supp, sign, legacy=legacy), 'longfloat': lambda: FloatingFormat(data, prec, fmode, supp, sign, legacy=legacy), 'complexfloat': lambda: ComplexFloatingFormat(data, prec, fmode, supp, sign, legacy=legacy), 'longcomplexfloat': lambda: ComplexFloatingFormat(data, prec, fmode, supp, sign, legacy=legacy), 'datetime': lambda: DatetimeFormat(data, legacy=legacy), 'timedelta': lambda: TimedeltaFormat(data), 'object': lambda: _object_format, 'void': lambda: str_format, 'numpystr': lambda: repr_format, 'str': lambda: str} # we need to wrap values in `formatter` in a lambda, so that the interface # is the same as the above values. def indirect(x): return lambda: x formatter = opt['formatter'] if formatter is not None: fkeys = [k for k in formatter.keys() if formatter[k] is not None] if 'all' in fkeys: for key in formatdict.keys(): formatdict[key] = indirect(formatter['all']) if 'int_kind' in fkeys: for key in ['int']: formatdict[key] = indirect(formatter['int_kind']) if 'float_kind' in fkeys: for key in ['float', 'longfloat']: formatdict[key] = indirect(formatter['float_kind']) if 'complex_kind' in fkeys: for key in ['complexfloat', 'longcomplexfloat']: formatdict[key] = indirect(formatter['complex_kind']) if 'str_kind' in fkeys: for key in ['numpystr', 'str']: formatdict[key] = indirect(formatter['str_kind']) for key in formatdict.keys(): if key in fkeys: formatdict[key] = indirect(formatter[key]) return formatdict def _get_format_function(data, **options): """ find the right formatting function for the dtype_ """ dtype_ = data.dtype dtypeobj = dtype_.type formatdict = _get_formatdict(data, **options) if issubclass(dtypeobj, _nt.bool_): return formatdict['bool']() elif issubclass(dtypeobj, _nt.integer): if issubclass(dtypeobj, _nt.timedelta64): return formatdict['timedelta']() else: return formatdict['int']() elif issubclass(dtypeobj, _nt.floating): if issubclass(dtypeobj, _nt.longfloat): return formatdict['longfloat']() else: return formatdict['float']() elif issubclass(dtypeobj, _nt.complexfloating): if issubclass(dtypeobj, _nt.clongfloat): return formatdict['longcomplexfloat']() else: return formatdict['complexfloat']() elif issubclass(dtypeobj, (_nt.unicode_, _nt.string_)): return formatdict['numpystr']() elif issubclass(dtypeobj, _nt.datetime64): return formatdict['datetime']() elif issubclass(dtypeobj, _nt.object_): return formatdict['object']() elif issubclass(dtypeobj, _nt.void): if dtype_.names is not None: return StructuredVoidFormat.from_data(data, **options) else: return formatdict['void']() else: return formatdict['numpystr']() def _recursive_guard(fillvalue='...'): """ Like the python 3.2 reprlib.recursive_repr, but forwards *args and **kwargs Decorates a function such that if it calls itself with the same first argument, it returns `fillvalue` instead of recursing. Largely copied from reprlib.recursive_repr """ def decorating_function(f): repr_running = set() @functools.wraps(f) def wrapper(self, *args, **kwargs): key = id(self), get_ident() if key in repr_running: return fillvalue repr_running.add(key) try: return f(self, *args, **kwargs) finally: repr_running.discard(key) return wrapper return decorating_function # gracefully handle recursive calls, when object arrays contain themselves @_recursive_guard() def _array2string(a, options, separator=' ', prefix=""): # The formatter __init__s in _get_format_function cannot deal with # subclasses yet, and we also need to avoid recursion issues in # _formatArray with subclasses which return 0d arrays in place of scalars data = asarray(a) if a.shape == (): a = data if a.size > options['threshold']: summary_insert = "..." data = _leading_trailing(data, options['edgeitems']) else: summary_insert = "" # find the right formatting function for the array format_function = _get_format_function(data, **options) # skip over "[" next_line_prefix = " " # skip over array( next_line_prefix += " "*len(prefix) lst = _formatArray(a, format_function, options['linewidth'], next_line_prefix, separator, options['edgeitems'], summary_insert, options['legacy']) return lst def _array2string_dispatcher( a, max_line_width=None, precision=None, suppress_small=None, separator=None, prefix=None, style=None, formatter=None, threshold=None, edgeitems=None, sign=None, floatmode=None, suffix=None, **kwarg): return (a,) @array_function_dispatch(_array2string_dispatcher, module='numpy') def array2string(a, max_line_width=None, precision=None, suppress_small=None, separator=' ', prefix="", style=np._NoValue, formatter=None, threshold=None, edgeitems=None, sign=None, floatmode=None, suffix="", **kwarg): """ Return a string representation of an array. Parameters ---------- a : array_like Input array. max_line_width : int, optional Inserts newlines if text is longer than `max_line_width`. Defaults to ``numpy.get_printoptions()['linewidth']``. precision : int or None, optional Floating point precision. Defaults to ``numpy.get_printoptions()['precision']``. suppress_small : bool, optional Represent numbers "very close" to zero as zero; default is False. Very close is defined by precision: if the precision is 8, e.g., numbers smaller (in absolute value) than 5e-9 are represented as zero. Defaults to ``numpy.get_printoptions()['suppress']``. separator : str, optional Inserted between elements. prefix : str, optional suffix: str, optional The length of the prefix and suffix strings are used to respectively align and wrap the output. An array is typically printed as:: prefix + array2string(a) + suffix The output is left-padded by the length of the prefix string, and wrapping is forced at the column ``max_line_width - len(suffix)``. It should be noted that the content of prefix and suffix strings are not included in the output. style : _NoValue, optional Has no effect, do not use. .. deprecated:: 1.14.0 formatter : dict of callables, optional If not None, the keys should indicate the type(s) that the respective formatting function applies to. Callables should return a string. Types that are not specified (by their corresponding keys) are handled by the default formatters. Individual types for which a formatter can be set are: - 'bool' - 'int' - 'timedelta' : a `numpy.timedelta64` - 'datetime' : a `numpy.datetime64` - 'float' - 'longfloat' : 128-bit floats - 'complexfloat' - 'longcomplexfloat' : composed of two 128-bit floats - 'void' : type `numpy.void` - 'numpystr' : types `numpy.string_` and `numpy.unicode_` - 'str' : all other strings Other keys that can be used to set a group of types at once are: - 'all' : sets all types - 'int_kind' : sets 'int' - 'float_kind' : sets 'float' and 'longfloat' - 'complex_kind' : sets 'complexfloat' and 'longcomplexfloat' - 'str_kind' : sets 'str' and 'numpystr' threshold : int, optional Total number of array elements which trigger summarization rather than full repr. Defaults to ``numpy.get_printoptions()['threshold']``. edgeitems : int, optional Number of array items in summary at beginning and end of each dimension. Defaults to ``numpy.get_printoptions()['edgeitems']``. sign : string, either '-', '+', or ' ', optional Controls printing of the sign of floating-point types. If '+', always print the sign of positive values. If ' ', always prints a space (whitespace character) in the sign position of positive values. If '-', omit the sign character of positive values. Defaults to ``numpy.get_printoptions()['sign']``. floatmode : str, optional Controls the interpretation of the `precision` option for floating-point types. Defaults to ``numpy.get_printoptions()['floatmode']``. Can take the following values: - 'fixed': Always print exactly `precision` fractional digits, even if this would print more or fewer digits than necessary to specify the value uniquely. - 'unique': Print the minimum number of fractional digits necessary to represent each value uniquely. Different elements may have a different number of digits. The value of the `precision` option is ignored. - 'maxprec': Print at most `precision` fractional digits, but if an element can be uniquely represented with fewer digits only print it with that many. - 'maxprec_equal': Print at most `precision` fractional digits, but if every element in the array can be uniquely represented with an equal number of fewer digits, use that many digits for all elements. legacy : string or `False`, optional If set to the string `'1.13'` enables 1.13 legacy printing mode. This approximates numpy 1.13 print output by including a space in the sign position of floats and different behavior for 0d arrays. If set to `False`, disables legacy mode. Unrecognized strings will be ignored with a warning for forward compatibility. .. versionadded:: 1.14.0 Returns ------- array_str : str String representation of the array. Raises ------ TypeError if a callable in `formatter` does not return a string. See Also -------- array_str, array_repr, set_printoptions, get_printoptions Notes ----- If a formatter is specified for a certain type, the `precision` keyword is ignored for that type. This is a very flexible function; `array_repr` and `array_str` are using `array2string` internally so keywords with the same name should work identically in all three functions. Examples -------- >>> x = np.array([1e-16,1,2,3]) >>> np.array2string(x, precision=2, separator=',', ... suppress_small=True) '[0.,1.,2.,3.]' >>> x = np.arange(3.) >>> np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) '[0.00 1.00 2.00]' >>> x = np.arange(3) >>> np.array2string(x, formatter={'int':lambda x: hex(x)}) '[0x0 0x1 0x2]' """ legacy = kwarg.pop('legacy', None) if kwarg: msg = "array2string() got unexpected keyword argument '{}'" raise TypeError(msg.format(kwarg.popitem()[0])) overrides = _make_options_dict(precision, threshold, edgeitems, max_line_width, suppress_small, None, None, sign, formatter, floatmode, legacy) options = _format_options.copy() options.update(overrides) if options['legacy'] == '1.13': if style is np._NoValue: style = repr if a.shape == () and a.dtype.names is None: return style(a.item()) elif style is not np._NoValue: # Deprecation 11-9-2017 v1.14 warnings.warn("'style' argument is deprecated and no longer functional" " except in 1.13 'legacy' mode", DeprecationWarning, stacklevel=3) if options['legacy'] != '1.13': options['linewidth'] -= len(suffix) # treat as a null array if any of shape elements == 0 if a.size == 0: return "[]" return _array2string(a, options, separator, prefix) def _extendLine(s, line, word, line_width, next_line_prefix, legacy): needs_wrap = len(line) + len(word) > line_width if legacy != '1.13': s# don't wrap lines if it won't help if len(line) <= len(next_line_prefix): needs_wrap = False if needs_wrap: s += line.rstrip() + "\n" line = next_line_prefix line += word return s, line def _formatArray(a, format_function, line_width, next_line_prefix, separator, edge_items, summary_insert, legacy): """formatArray is designed for two modes of operation: 1. Full output 2. Summarized output """ def recurser(index, hanging_indent, curr_width): """ By using this local function, we don't need to recurse with all the arguments. Since this function is not created recursively, the cost is not significant """ axis = len(index) axes_left = a.ndim - axis if axes_left == 0: return format_function(a[index]) # when recursing, add a space to align with the [ added, and reduce the # length of the line by 1 next_hanging_indent = hanging_indent + ' ' if legacy == '1.13': next_width = curr_width else: next_width = curr_width - len(']') a_len = a.shape[axis] show_summary = summary_insert and 2*edge_items < a_len if show_summary: leading_items = edge_items trailing_items = edge_items else: leading_items = 0 trailing_items = a_len # stringify the array with the hanging indent on the first line too s = '' # last axis (rows) - wrap elements if they would not fit on one line if axes_left == 1: # the length up until the beginning of the separator / bracket if legacy == '1.13': elem_width = curr_width - len(separator.rstrip()) else: elem_width = curr_width - max(len(separator.rstrip()), len(']')) line = hanging_indent for i in range(leading_items): word = recurser(index + (i,), next_hanging_indent, next_width) s, line = _extendLine( s, line, word, elem_width, hanging_indent, legacy) line += separator if show_summary: s, line = _extendLine( s, line, summary_insert, elem_width, hanging_indent, legacy) if legacy == '1.13': line += ", " else: line += separator for i in range(trailing_items, 1, -1): word = recurser(index + (-i,), next_hanging_indent, next_width) s, line = _extendLine( s, line, word, elem_width, hanging_indent, legacy) line += separator if legacy == '1.13': # width of the separator is not considered on 1.13 elem_width = curr_width word = recurser(index + (-1,), next_hanging_indent, next_width) s, line = _extendLine( s, line, word, elem_width, hanging_indent, legacy) s += line # other axes - insert newlines between rows else: s = '' line_sep = separator.rstrip() + '\n'*(axes_left - 1) for i in range(leading_items): nested = recurser(index + (i,), next_hanging_indent, next_width) s += hanging_indent + nested + line_sep if show_summary: if legacy == '1.13': # trailing space, fixed nbr of newlines, and fixed separator s += hanging_indent + summary_insert + ", \n" else: s += hanging_indent + summary_insert + line_sep for i in range(trailing_items, 1, -1): nested = recurser(index + (-i,), next_hanging_indent, next_width) s += hanging_indent + nested + line_sep nested = recurser(index + (-1,), next_hanging_indent, next_width) s += hanging_indent + nested # remove the hanging indent, and wrap in [] s = '[' + s[len(hanging_indent):] + ']' return s try: # invoke the recursive part with an initial index and prefix return recurser(index=(), hanging_indent=next_line_prefix, curr_width=line_width) finally: # recursive closures have a cyclic reference to themselves, which # requires gc to collect (gh-10620). To avoid this problem, for # performance and PyPy friendliness, we break the cycle: recurser = None def _none_or_positive_arg(x, name): if x is None: return -1 if x < 0: raise ValueError("{} must be >= 0".format(name)) return x class FloatingFormat(object): """ Formatter for subtypes of np.floating """ def __init__(self, data, precision, floatmode, suppress_small, sign=False, **kwarg): # for backcompatibility, accept bools if isinstance(sign, bool): sign = '+' if sign else '-' self._legacy = kwarg.get('legacy', False) if self._legacy == '1.13': # when not 0d, legacy does not support '-' if data.shape != () and sign == '-': sign = ' ' self.floatmode = floatmode if floatmode == 'unique': self.precision = None else: self.precision = precision self.precision = _none_or_positive_arg(self.precision, 'precision') self.suppress_small = suppress_small self.sign = sign self.exp_format = False self.large_exponent = False self.fillFormat(data) def fillFormat(self, data): # only the finite values are used to compute the number of digits finite_vals = data[isfinite(data)] # choose exponential mode based on the non-zero finite values: abs_non_zero = absolute(finite_vals[finite_vals != 0]) if len(abs_non_zero) != 0: max_val = np.max(abs_non_zero) min_val = np.min(abs_non_zero) with errstate(over='ignore'): # division can overflow if max_val >= 1.e8 or (not self.suppress_small and (min_val < 0.0001 or max_val/min_val > 1000.)): self.exp_format = True # do a first pass of printing all the numbers, to determine sizes if len(finite_vals) == 0: self.pad_left = 0 self.pad_right = 0 self.trim = '.' self.exp_size = -1 self.unique = True elif self.exp_format: trim, unique = '.', True if self.floatmode == 'fixed' or self._legacy == '1.13': trim, unique = 'k', False strs = (dragon4_scientific(x, precision=self.precision, unique=unique, trim=trim, sign=self.sign == '+') for x in finite_vals) frac_strs, _, exp_strs = zip(*(s.partition('e') for s in strs)) int_part, frac_part = zip(*(s.split('.') for s in frac_strs)) self.exp_size = max(len(s) for s in exp_strs) - 1 self.trim = 'k' self.precision = max(len(s) for s in frac_part) # for back-compat with np 1.13, use 2 spaces & sign and full prec if self._legacy == '1.13': self.pad_left = 3 else: # this should be only 1 or 2. Can be calculated from sign. self.pad_left = max(len(s) for s in int_part) # pad_right is only needed for nan length calculation self.pad_right = self.exp_size + 2 + self.precision self.unique = False else: # first pass printing to determine sizes trim, unique = '.', True if self.floatmode == 'fixed': trim, unique = 'k', False strs = (dragon4_positional(x, precision=self.precision, fractional=True, unique=unique, trim=trim, sign=self.sign == '+') for x in finite_vals) int_part, frac_part = zip(*(s.split('.') for s in strs)) if self._legacy == '1.13': self.pad_left = 1 + max(len(s.lstrip('-+')) for s in int_part) else: self.pad_left = max(len(s) for s in int_part) self.pad_right = max(len(s) for s in frac_part) self.exp_size = -1 if self.floatmode in ['fixed', 'maxprec_equal']: self.precision = self.pad_right self.unique = False self.trim = 'k' else: self.unique = True self.trim = '.' if self._legacy != '1.13': # account for sign = ' ' by adding one to pad_left if self.sign == ' ' and not any(np.signbit(finite_vals)): self.pad_left += 1 # if there are non-finite values, may need to increase pad_left if data.size != finite_vals.size: neginf = self.sign != '-' or any(data[isinf(data)] < 0) nanlen = len(_format_options['nanstr']) inflen = len(_format_options['infstr']) + neginf offset = self.pad_right + 1 # +1 for decimal pt self.pad_left = max(self.pad_left, nanlen - offset, inflen - offset) def __call__(self, x): if not np.isfinite(x): with errstate(invalid='ignore'): if np.isnan(x): sign = '+' if self.sign == '+' else '' ret = sign + _format_options['nanstr'] else: # isinf sign = '-' if x < 0 else '+' if self.sign == '+' else '' ret = sign + _format_options['infstr'] return ' '*(self.pad_left + self.pad_right + 1 - len(ret)) + ret if self.exp_format: return dragon4_scientific(x, precision=self.precision, unique=self.unique, trim=self.trim, sign=self.sign == '+', pad_left=self.pad_left, exp_digits=self.exp_size) else: return dragon4_positional(x, precision=self.precision, unique=self.unique, fractional=True, trim=self.trim, sign=self.sign == '+', pad_left=self.pad_left, pad_right=self.pad_right) @set_module('numpy') def format_float_scientific(x, precision=None, unique=True, trim='k', sign=False, pad_left=None, exp_digits=None): """ Format a floating-point scalar as a decimal string in scientific notation. Provides control over rounding, trimming and padding. Uses and assumes IEEE unbiased rounding. Uses the "Dragon4" algorithm. Parameters ---------- x : python float or numpy floating scalar Value to format. precision : non-negative integer or None, optional Maximum number of digits to print. May be None if `unique` is `True`, but must be an integer if unique is `False`. unique : boolean, optional If `True`, use a digit-generation strategy which gives the shortest representation which uniquely identifies the floating-point number from other values of the same type, by judicious rounding. If `precision` was omitted, print all necessary digits, otherwise digit generation is cut off after `precision` digits and the remaining value is rounded. If `False`, digits are generated as if printing an infinite-precision value and stopping after `precision` digits, rounding the remaining value. trim : one of 'k', '.', '0', '-', optional Controls post-processing trimming of trailing digits, as follows: * 'k' : keep trailing zeros, keep decimal point (no trimming) * '.' : trim all trailing zeros, leave decimal point * '0' : trim all but the zero before the decimal point. Insert the zero if it is missing. * '-' : trim trailing zeros and any trailing decimal point sign : boolean, optional Whether to show the sign for positive values. pad_left : non-negative integer, optional Pad the left side of the string with whitespace until at least that many characters are to the left of the decimal point. exp_digits : non-negative integer, optional Pad the exponent with zeros until it contains at least this many digits. If omitted, the exponent will be at least 2 digits. Returns ------- rep : string The string representation of the floating point value See Also -------- format_float_positional Examples -------- >>> np.format_float_scientific(np.float32(np.pi)) '3.1415927e+00' >>> s = np.float32(1.23e24) >>> np.format_float_scientific(s, unique=False, precision=15) '1.230000071797338e+24' >>> np.format_float_scientific(s, exp_digits=4) '1.23e+0024' """ precision = _none_or_positive_arg(precision, 'precision') pad_left = _none_or_positive_arg(pad_left, 'pad_left') exp_digits = _none_or_positive_arg(exp_digits, 'exp_digits') return dragon4_scientific(x, precision=precision, unique=unique, trim=trim, sign=sign, pad_left=pad_left, exp_digits=exp_digits) @set_module('numpy') def format_float_positional(x, precision=None, unique=True, fractional=True, trim='k', sign=False, pad_left=None, pad_right=None): """ Format a floating-point scalar as a decimal string in positional notation. Provides control over rounding, trimming and padding. Uses and assumes IEEE unbiased rounding. Uses the "Dragon4" algorithm. Parameters ---------- x : python float or numpy floating scalar Value to format. precision : non-negative integer or None, optional Maximum number of digits to print. May be None if `unique` is `True`, but must be an integer if unique is `False`. unique : boolean, optional If `True`, use a digit-generation strategy which gives the shortest representation which uniquely identifies the floating-point number from other values of the same type, by judicious rounding. If `precision` was omitted, print out all necessary digits, otherwise digit generation is cut off after `precision` digits and the remaining value is rounded. If `False`, digits are generated as if printing an infinite-precision value and stopping after `precision` digits, rounding the remaining value. fractional : boolean, optional If `True`, the cutoff of `precision` digits refers to the total number of digits after the decimal point, including leading zeros. If `False`, `precision` refers to the total number of significant digits, before or after the decimal point, ignoring leading zeros. trim : one of 'k', '.', '0', '-', optional Controls post-processing trimming of trailing digits, as follows: * 'k' : keep trailing zeros, keep decimal point (no trimming) * '.' : trim all trailing zeros, leave decimal point * '0' : trim all but the zero before the decimal point. Insert the zero if it is missing. * '-' : trim trailing zeros and any trailing decimal point sign : boolean, optional Whether to show the sign for positive values. pad_left : non-negative integer, optional Pad the left side of the string with whitespace until at least that many characters are to the left of the decimal point. pad_right : non-negative integer, optional Pad the right side of the string with whitespace until at least that many characters are to the right of the decimal point. Returns ------- rep : string The string representation of the floating point value See Also -------- format_float_scientific Examples -------- >>> np.format_float_positional(np.float32(np.pi)) '3.1415927' >>> np.format_float_positional(np.float16(np.pi)) '3.14' >>> np.format_float_positional(np.float16(0.3)) '0.3' >>> np.format_float_positional(np.float16(0.3), unique=False, precision=10) '0.3000488281' """ precision = _none_or_positive_arg(precision, 'precision') pad_left = _none_or_positive_arg(pad_left, 'pad_left') pad_right = _none_or_positive_arg(pad_right, 'pad_right') return dragon4_positional(x, precision=precision, unique=unique, fractional=fractional, trim=trim, sign=sign, pad_left=pad_left, pad_right=pad_right) class IntegerFormat(object): def __init__(self, data): if data.size > 0: max_str_len = max(len(str(np.max(data))), len(str(np.min(data)))) else: max_str_len = 0 self.format = '%{}d'.format(max_str_len) def __call__(self, x): return self.format % x class BoolFormat(object): def __init__(self, data, **kwargs): # add an extra space so " True" and "False" have the same length and # array elements align nicely when printed, except in 0d arrays self.truestr = ' True' if data.shape != () else 'True' def __call__(self, x): return self.truestr if x else "False" class ComplexFloatingFormat(object): """ Formatter for subtypes of np.complexfloating """ def __init__(self, x, precision, floatmode, suppress_small, sign=False, **kwarg): # for backcompatibility, accept bools if isinstance(sign, bool): sign = '+' if sign else '-' floatmode_real = floatmode_imag = floatmode if kwarg.get('legacy', False) == '1.13': floatmode_real = 'maxprec_equal' floatmode_imag = 'maxprec' self.real_format = FloatingFormat(x.real, precision, floatmode_real, suppress_small, sign=sign, **kwarg) self.imag_format = FloatingFormat(x.imag, precision, floatmode_imag, suppress_small, sign='+', **kwarg) def __call__(self, x): r = self.real_format(x.real) i = self.imag_format(x.imag) # add the 'j' before the terminal whitespace in i sp = len(i.rstrip()) i = i[:sp] + 'j' + i[sp:] return r + i class _TimelikeFormat(object): def __init__(self, data): non_nat = data[~isnat(data)] if len(non_nat) > 0: # Max str length of non-NaT elements max_str_len = max(len(self._format_non_nat(np.max(non_nat))), len(self._format_non_nat(np.min(non_nat)))) else: max_str_len = 0 if len(non_nat) < data.size: # data contains a NaT max_str_len = max(max_str_len, 5) self._format = '%{}s'.format(max_str_len) self._nat = "'NaT'".rjust(max_str_len) def _format_non_nat(self, x): # override in subclass raise NotImplementedError def __call__(self, x): if isnat(x): return self._nat else: return self._format % self._format_non_nat(x) class DatetimeFormat(_TimelikeFormat): def __init__(self, x, unit=None, timezone=None, casting='same_kind', legacy=False): # Get the unit from the dtype if unit is None: if x.dtype.kind == 'M': unit = datetime_data(x.dtype)[0] else: unit = 's' if timezone is None: timezone = 'naive' self.timezone = timezone self.unit = unit self.casting = casting self.legacy = legacy # must be called after the above are configured super(DatetimeFormat, self).__init__(x) def __call__(self, x): if self.legacy == '1.13': return self._format_non_nat(x) return super(DatetimeFormat, self).__call__(x) def _format_non_nat(self, x): return "'%s'" % datetime_as_string(x, unit=self.unit, timezone=self.timezone, casting=self.casting) class TimedeltaFormat(_TimelikeFormat): def _format_non_nat(self, x): return str(x.astype('i8')) class SubArrayFormat(object): def __init__(self, format_function): self.format_function = format_function def __call__(self, arr): if arr.ndim <= 1: return "[" + ", ".join(self.format_function(a) for a in arr) + "]" return "[" + ", ".join(self.__call__(a) for a in arr) + "]" class StructuredVoidFormat(object): """ Formatter for structured np.void objects. This does not work on structured alias types like np.dtype(('i4', 'i2,i2')), as alias scalars lose their field information, and the implementation relies upon np.void.__getitem__. """ def __init__(self, format_functions): self.format_functions = format_functions @classmethod def from_data(cls, data, **options): """ This is a second way to initialize StructuredVoidFormat, using the raw data as input. Added to avoid changing the signature of __init__. """ format_functions = [] for field_name in data.dtype.names: format_function = _get_format_function(data[field_name], **options) if data.dtype[field_name].shape != (): format_function = SubArrayFormat(format_function) format_functions.append(format_function) return cls(format_functions) def __call__(self, x): str_fields = [ format_function(field) for field, format_function in zip(x, self.format_functions) ] if len(str_fields) == 1: return "({},)".format(str_fields[0]) else: return "({})".format(", ".join(str_fields)) def _void_scalar_repr(x): """ Implements the repr for structured-void scalars. It is called from the scalartypes.c.src code, and is placed here because it uses the elementwise formatters defined above. """ return StructuredVoidFormat.from_data(array(x), **_format_options)(x) _typelessdata = [int_, float_, complex_, bool_] if issubclass(intc, int): _typelessdata.append(intc) if issubclass(longlong, int): _typelessdata.append(longlong) def dtype_is_implied(dtype): """ Determine if the given dtype is implied by the representation of its values. Parameters ---------- dtype : dtype Data type Returns ------- implied : bool True if the dtype is implied by the representation of its values. Examples -------- >>> np.core.arrayprint.dtype_is_implied(int) True >>> np.array([1, 2, 3], int) array([1, 2, 3]) >>> np.core.arrayprint.dtype_is_implied(np.int8) False >>> np.array([1, 2, 3], np.int8) array([1, 2, 3], dtype=int8) """ dtype = np.dtype(dtype) if _format_options['legacy'] == '1.13' and dtype.type == bool_: return False # not just void types can be structured, and names are not part of the repr if dtype.names is not None: return False return dtype.type in _typelessdata def dtype_short_repr(dtype): """ Convert a dtype to a short form which evaluates to the same dtype. The intent is roughly that the following holds >>> from numpy import * >>> dt = np.int64([1, 2]).dtype >>> assert eval(dtype_short_repr(dt)) == dt """ if dtype.names is not None: # structured dtypes give a list or tuple repr return str(dtype) elif issubclass(dtype.type, flexible): # handle these separately so they don't give garbage like str256 return "'%s'" % str(dtype) typename = dtype.name # quote typenames which can't be represented as python variable names if typename and not (typename[0].isalpha() and typename.isalnum()): typename = repr(typename) return typename def _array_repr_implementation( arr, max_line_width=None, precision=None, suppress_small=None, array2string=array2string): """Internal version of array_repr() that allows overriding array2string.""" if max_line_width is None: max_line_width = _format_options['linewidth'] if type(arr) is not ndarray: class_name = type(arr).__name__ else: class_name = "array" skipdtype = dtype_is_implied(arr.dtype) and arr.size > 0 prefix = class_name + "(" suffix = ")" if skipdtype else "," if (_format_options['legacy'] == '1.13' and arr.shape == () and not arr.dtype.names): lst = repr(arr.item()) elif arr.size > 0 or arr.shape == (0,): lst = array2string(arr, max_line_width, precision, suppress_small, ', ', prefix, suffix=suffix) else: # show zero-length shape unless it is (0,) lst = "[], shape=%s" % (repr(arr.shape),) arr_str = prefix + lst + suffix if skipdtype: return arr_str dtype_str = "dtype={})".format(dtype_short_repr(arr.dtype)) # compute whether we should put dtype on a new line: Do so if adding the # dtype would extend the last line past max_line_width. # Note: This line gives the correct result even when rfind returns -1. last_line_len = len(arr_str) - (arr_str.rfind('\n') + 1) spacer = " " if _format_options['legacy'] == '1.13': if issubclass(arr.dtype.type, flexible): spacer = '\n' + ' '*len(class_name + "(") elif last_line_len + len(dtype_str) + 1 > max_line_width: spacer = '\n' + ' '*len(class_name + "(") return arr_str + spacer + dtype_str def _array_repr_dispatcher( arr, max_line_width=None, precision=None, suppress_small=None): return (arr,) @array_function_dispatch(_array_repr_dispatcher, module='numpy') def array_repr(arr, max_line_width=None, precision=None, suppress_small=None): """ Return the string representation of an array. Parameters ---------- arr : ndarray Input array. max_line_width : int, optional Inserts newlines if text is longer than `max_line_width`. Defaults to ``numpy.get_printoptions()['linewidth']``. precision : int, optional Floating point precision. Defaults to ``numpy.get_printoptions()['precision']``. suppress_small : bool, optional Represent numbers "very close" to zero as zero; default is False. Very close is defined by precision: if the precision is 8, e.g., numbers smaller (in absolute value) than 5e-9 are represented as zero. Defaults to ``numpy.get_printoptions()['suppress']``. Returns ------- string : str The string representation of an array. See Also -------- array_str, array2string, set_printoptions Examples -------- >>> np.array_repr(np.array([1,2])) 'array([1, 2])' >>> np.array_repr(np.ma.array([0.])) 'MaskedArray([0.])' >>> np.array_repr(np.array([], np.int32)) 'array([], dtype=int32)' >>> x = np.array([1e-6, 4e-7, 2, 3]) >>> np.array_repr(x, precision=6, suppress_small=True) 'array([0.000001, 0. , 2. , 3. ])' """ return _array_repr_implementation( arr, max_line_width, precision, suppress_small) @_recursive_guard() def _guarded_repr_or_str(v): if isinstance(v, bytes): return repr(v) return str(v) def _array_str_implementation( a, max_line_width=None, precision=None, suppress_small=None, array2string=array2string): """Internal version of array_str() that allows overriding array2string.""" if (_format_options['legacy'] == '1.13' and a.shape == () and not a.dtype.names): return str(a.item()) # the str of 0d arrays is a special case: It should appear like a scalar, # so floats are not truncated by `precision`, and strings are not wrapped # in quotes. So we return the str of the scalar value. if a.shape == (): # obtain a scalar and call str on it, avoiding problems for subclasses # for which indexing with () returns a 0d instead of a scalar by using # ndarray's getindex. Also guard against recursive 0d object arrays. return _guarded_repr_or_str(
np.ndarray.__getitem__(a, ())
numpy.ndarray.__getitem__
import numpy as np import pandas as pd import scipy.stats as stats import os class FDR_control: def __init__(self): print("__init__"); def kfilter(self, W, offset=1.0, q=0.05): """ Adaptive significance threshold with the knockoff filter :param W: vector of knockoff statistics :param offset: equal to one for strict false discovery rate control :param q: nominal false discovery rate :return a threshold value for which the estimated FDP is less or equal q """ t = np.insert(
np.abs(W[W!=0])
numpy.abs
import pandas as pd import numpy as np from numpy.linalg import inv import math as m import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 25}) df = pd.read_csv('Dados90.csv') VEmod=df['Vemod'][399] VEfase=(df['Vefase'][399]*m.pi/180) IEmod=df['Iemod'][399] IEfase=(df['Iefase'][399]*m.pi/180) VSmod=df['Vsmod'][399] VSfase=(df['Vsfase'][399]*m.pi/180) ISmod=df['Ismod'][399] ISfase=(df['Isfase'][399]*m.pi/180) Rex=5 Xex=48.8 Bex=3.371*(10**(-4)) n=5000 sigma = 0.04 thetamax = 8 * (10 ** (-3)) itmax = 4 alpha = 0.7 B = np.zeros(itmax + 1) B[0] = alpha * Bex R = np.zeros(itmax + 1) R[0] = alpha * Rex X = np.zeros(itmax + 1) X[0] = alpha * Xex np.random.seed(42) w1=VEmod*np.ones(n)+VEmod*(sigma/3)*np.random.normal(0,1,n) np.random.seed(41) w2=VEfase+(thetamax/3)*np.random.normal(0,1,n) np.random.seed(40) w3=IEmod*np.ones(n)+IEmod*(sigma/3)*np.random.normal(0,1,n) np.random.seed(39) w4=IEfase+(thetamax/3)*np.random.normal(0,1,n) np.random.seed(38) w5=VSmod*np.ones(n)+VSmod*(sigma/3)*np.random.normal(0,1,n) np.random.seed(37) w6=VSfase+(thetamax/3)*np.random.normal(0,1,n) np.random.seed(36) w7=ISmod*np.ones(n)+ISmod*(sigma/3)*np.random.normal(0,1,n) np.random.seed(35) w8=ISfase+(thetamax/3)*np.random.normal(0,1,n) realIe=np.ones(n) imagVe=np.ones(n) imagIe=np.ones(n) realVe=np.ones(n) realIs=np.ones(n) imagVs=np.ones(n) imagIs=np.ones(n) realVs=np.ones(n) for j in range(0,n): realIe[j]=w3[j]*np.cos(w4[j]) imagVe[j]=w1[j]*
np.sin(w2[j])
numpy.sin
import matplotlib.pyplot as plt import numpy as np import os import flopter.core.constants import flopter.magnum.database from flopter.magnum.magopter import Magopter from flopter.core.lputils import MagnumProbes import glob import flopter.magnum.readfastadc as adc from flopter.core import constants as c, normalise as nrm, fitters as f, lputils as lp import flopter.magnum.database as mag from scipy.interpolate import interp1d import scipy.signal as sig import concurrent.futures as cf import pathlib as pth import pandas as pd # from tkinter.filedialog import askopenfilename def main_magopter_analysis(): folders = ['2018-05-01_Leland/', '2018-05-02_Leland/', '2018-05-03_Leland/', '2018-06-05_Leland/', '2018-06-06_Leland/', '2018-06-07_Leland/'] files = [] file_folders = [] for folder1 in folders: os.chdir(Magopter.get_data_path() + folder1) files.extend(glob.glob('*.adc')) file_folders.extend([folder1] * len(glob.glob('*.adc'))) # files = [f.replace(' ', '_') for f in files] files.sort() # file = '2018-05-01_12h_55m_47s_TT_06550564404491814477.adc' # 8 # file = '2018-05-03_11h_31m_41s_TT_06551284859908422561.adc' # 82 files_of_interest = { 8: "First analysed", 82: "Higher Temp", 97: "Angular Sweep with different probes" } file_index = 82 # file = files[file_index] file = files[-2] ts_file = files[-1] folder = file_folders[-2] print(folder, file) print(flopter.magnum.database.human_time_str(adc.get_magnumdb_timestamp(ts_file))) print(ts_file) magopter = Magopter(folder, ts_file) # print(file, magopter.magnum_db.get_time_range(filename=file)) # plt.figure() # plt.errorbar(magopter.ts_coords, magopter.ts_temp, yerr=magopter.ts_temp_d, label='Temperature') # exit() # length = len(magopter.t_file) # for i in range(1, 20): # split = int(length / i) # plt.figure() # plt.title('i = {}'.format(i)) # plt.log # for j in range(i): # plt.semilogy(magopter.t_file[j*split:j+1*split], label='j = {}'.format(j)) # plt.show() dsr = 10 magopter.prepare(down_sampling_rate=dsr, plot_fl=True) # magopter.trim(trim_end=0.82) magopter.trim(trim_end=0.83) fit_df_0, fit_df_1 = magopter.fit() iv_data = fit_df_0.iloc[[125]] plt.figure() for iv_curve in magopter.iv_arrs[0]: plt.plot(iv_curve.time, iv_curve.current) plt.axvline(x=iv_data.index) # Flush probe measurements L_small = 3e-3 # m a_small = 2e-3 # m b_small = 3e-3 # m g_small = 2e-3 # m theta_f_small = np.radians(72) L_large = 5e-3 # m a_large = 4.5e-3 # m b_large = 6e-3 # m g_large = 1e-3 # m theta_f_large = np.radians(73.3) L_reg = 5e-3 # m a_reg = 2e-3 # m b_reg = 3.34e-3 # m g_reg = 1e-3 # m theta_f_reg = np.radians(75) L_cyl = 4e-3 # m g_cyl = 5e-4 # m # T_e = 1.78 # eV # n_e = 5.1e19 # m^-3 # fwhm = 14.3 # mm # T_e = 0.67 # eV # n_e = 2.3e19 # m^-3 # fwhm = 16 # mm # T_e = 1.68 # n_e = 1.93e19 # fwhm = 16.8 # T_e = 0.75 # n_e = 1.3e20 # fwhm = 16.8 # T_e = 0.76 # n_e = 1.0e20 # fwhm = 16.8 T_e = 1.61 n_e = 1.41e20 fwhm = 12.4 deg_freedom = 3 gamma_i = (deg_freedom + 2) / 2 d_perp = 3e-4 # m theta_p = np.radians(10) theta_perp = np.radians(10) probe_s = lp.AngledTipProbe(a_small, b_small, L_small, g_small, d_perp, theta_f_small, theta_p) probe_l = lp.AngledTipProbe(a_large, b_large, L_large, g_large, d_perp, theta_f_large, theta_p) probe_r = lp.AngledTipProbe(a_reg, b_reg, L_reg, g_reg, d_perp, theta_f_reg, theta_p) probe_c = lp.FlushCylindricalProbe(L_cyl / 2, g_cyl, d_perp) A_coll_s = lp.calc_probe_collection_area(a_small, b_small, L_small, g_small, d_perp, theta_perp, theta_p, print_fl=False) A_coll_l = lp.calc_probe_collection_area(a_large, b_large, L_large, g_large, d_perp, theta_perp, theta_p, print_fl=False) A_coll_r = lp.calc_probe_collection_area(a_reg, b_reg, L_reg, g_reg, d_perp, theta_perp, theta_p, print_fl=False) A_coll_c = probe_c.get_collection_area(theta_perp) print('Small area: {}, Large area: {}, Regular area: {}, Cylindrical area: {}'.format(A_coll_s, A_coll_l, A_coll_r, A_coll_c)) # Plotting analytical IV over the top of the raw IVs print(fit_df_0) plt.figure() # for iv_curve in magopter.iv_arr_coax_0: # plt.plot(iv_curve.voltage, iv_curve.current) plt.plot(iv_data[c.RAW_X].tolist()[0], iv_data[c.RAW_Y].tolist()[0], 'x', label='Raw IV') plt.plot(iv_data[c.RAW_X].tolist()[0], iv_data[c.FIT_Y].tolist()[0], label='Fit IV') iv_v_f = -10 I_s = lp.analytical_iv_curve(iv_data[c.RAW_X].tolist()[0], iv_v_f, T_e, n_e, theta_perp, A_coll_s, L=L_small, g=g_small) I_c = lp.analytical_iv_curve(iv_data[c.RAW_X].tolist()[0], iv_v_f, T_e, n_e, theta_perp, A_coll_c, L=L_small, g=g_small) plt.plot(iv_data[c.RAW_X].tolist()[0], I_s, label='Analytical', linestyle='dashed', linewidth=1, color='r') # plt.plot(iv_data[c.RAW_X].tolist()[0], I_c, label='Analytical (c)', linestyle='dashed', linewidth=1, color='g') plt.legend() plt.title('Comparison of analytical to measured IV curves for the small area probe') plt.xlabel('Voltage (V)') plt.ylabel('Current (A)') # A_coll_s = calc_probe_collection_A_alt(a_small, b_small, L_small, theta_perp, theta_p) # A_coll_l = calc_probe_collection_A_alt(a_large, b_large, L_large, theta_perp, theta_p) # A_coll_l = (26.25 * 1e-6) * np.sin(theta_perp + theta_p) # print('Small area: {}, Large area: {}'.format(A_coll_s, A_coll_l)) c_s = np.sqrt((flopter.core.constants.ELEM_CHARGE * (T_e + gamma_i * T_e)) / flopter.core.constants.PROTON_MASS) n_e_0 = fit_df_0[c.ION_SAT] / (flopter.core.constants.ELEM_CHARGE * c_s * A_coll_s) n_e_1 = fit_df_1[c.ION_SAT] / (flopter.core.constants.ELEM_CHARGE * c_s * A_coll_c) I_sat_0 = c_s * n_e * flopter.core.constants.ELEM_CHARGE * A_coll_s I_sat_1 = c_s * n_e * flopter.core.constants.ELEM_CHARGE * A_coll_c J_sat_0 = fit_df_0[c.ION_SAT] / A_coll_s J_sat_1 = fit_df_1[c.ION_SAT] / A_coll_c plt.figure() plt.subplot(221) plt.title('Electron Temperature Measurements') plt.xlabel('Time (s)') plt.ylabel(r'$T_e$ (eV)') plt.errorbar(fit_df_0.index, c.ELEC_TEMP, yerr=c.ERROR_STRING.format(c.ELEC_TEMP), data=fit_df_0, fmt='x', label='Half area') plt.errorbar(fit_df_1.index, c.ELEC_TEMP, yerr=c.ERROR_STRING.format(c.ELEC_TEMP), data=fit_df_1, fmt='x', label='Cylinder area') plt.axhline(y=T_e, linestyle='dashed', linewidth=1, color='r', label='TS') plt.legend() plt.subplot(222) plt.title('Ion Saturation Current Measurements') plt.xlabel('Time (s)') plt.ylabel(r'$I^+_{sat}$ (eV)') plt.errorbar(fit_df_0.index, c.ION_SAT, yerr=c.ERROR_STRING.format(c.ION_SAT), data=fit_df_0, label='Half area', fmt='x') plt.errorbar(fit_df_1.index, c.ION_SAT, yerr=c.ERROR_STRING.format(c.ION_SAT), data=fit_df_1, label='Cylinder area', fmt='x') # for arc in magopter.arcs: # plt.axvline(x=arc, linestyle='dashed', linewidth=1, color='r') plt.axhline(y=I_sat_0, linestyle='dashed', linewidth=1, color='r', label='Expected I_sat (s)') plt.legend() # plt.figure() # plt.subplot(223) # plt.title('Current Density Measurements') # plt.xlabel('Time (s)') # plt.ylabel(r'$J_{sat}$ (Am$^{-2}$)') # plt.plot(fit_df_0.index, J_sat_0, label='Half area') # plt.plot(fit_df_1.index, J_sat_1, label='Cylinder area') # for arc in magopter.arcs: # plt.axvline(x=arc, linestyle='dashed', linewidth=1, color='r') # plt.legend() # plt.figure() plt.subplot(223) plt.title('Electron Density Measurements') plt.xlabel('Time (s)') plt.ylabel(r'$n_e$ (m$^{-3}$)') plt.plot(fit_df_0.index, n_e_0, 'x', label='Half Area') plt.plot(fit_df_1.index, n_e_1, 'x', label='Cylinder Area') plt.axhline(y=n_e, linestyle='dashed', linewidth=1, color='r', label='TS') plt.legend() a_s = lp.calc_sheath_expansion_param(T_e, n_e, L_small, g_small, theta_perp) a_c = lp.calc_sheath_expansion_param(T_e, n_e, L_cyl, g_cyl, theta_perp) print(a_s, a_c) plt.subplot(224) plt.title('Sheath Expansion Coefficient Measurements') plt.xlabel('Time (s)') plt.ylabel(r'$a$') plt.errorbar(fit_df_0.index, c.SHEATH_EXP, yerr=c.ERROR_STRING.format(c.SHEATH_EXP), data=fit_df_0, fmt='x', label='Half Area') plt.errorbar(fit_df_1.index, c.SHEATH_EXP, yerr=c.ERROR_STRING.format(c.SHEATH_EXP), data=fit_df_1, fmt='x', label='Cylinder Area') plt.axhline(y=a_s, linestyle='dashed', linewidth=1, color='r', label='Expected - small') plt.axhline(y=a_c, linestyle='dashed', linewidth=1, color='b', label='Expected - cyl') plt.legend() plt.show() def integrated_analysis(probe_coax_0, probe_coax_1, folder, file, ts_file=None): magopter = Magopter(folder, file, ts_filename=ts_file) dsr = 1 magopter.prepare(down_sampling_rate=dsr, roi_b_plasma=True, crit_freq=4000, crit_ampl=None) # magopter.trim(trim_end=0.83) fit_df_0, fit_df_1 = magopter.fit() theta_perp = np.radians(10) A_coll_0 = probe_coax_0.get_collection_area(theta_perp) A_coll_1 = probe_coax_1.get_collection_area(theta_perp) if magopter.ts_temp is not None: temps = [
np.max(temp)
numpy.max
""" Created on 16/11/2012 @author: victor """ from __future__ import print_function import unittest import pyRMSD.RMSDCalculator import numpy class TestRMSDCalculators(unittest.TestCase): @classmethod def setUpClass(cls): cls.expected_rmsd = {0:[ 0.60179184, 0.70814575, 0.88785042, 0.92862096, 0.69024252, 0.59267699, 0.66596155, 0.81180133, 0.87438831, 1.00465129], 1:[ 0.61473279, 0.82416178, 0.96955624, 0.71842781, 0.5359385, 0.68621908, 0.90540226, 0.83185205, 0.96145774], 2:[ 1.02156795, 1.16059055, 0.80778577, 0.72752425, 0.80478222, 0.98594799, 1.04869932, 1.01149253], 3:[ 0.69628994, 1.04059251, 0.77859792, 0.74962628, 0.73856698, 0.70444404, 0.92168545]} cls.expected_serial_matrix = [0.60179184,0.70814575,0.88785042,0.92862096,0.69024252,0.59267699, 0.66596155,0.81180133,0.87438831,1.00465129,0.61473279,0.82416178, 0.96955624,0.71842781,0.5359385, 0.68621908,0.90540226,0.83185205, 0.96145774,1.02156795,1.16059055,0.80778577,0.72752425,0.80478222, 0.98594799,1.04869932,1.01149253,0.69628994,1.04059251,0.77859792, 0.74962628,0.73856698,0.70444404,0.92168545,1.08217543,0.86196576, 0.89731473,0.96848922,0.84721509,1.13748551,0.64892912,0.87248355, 1.00029474,1.01622641,1.10694473,0.68347196,0.83819283,0.7589582, 0.93694602,0.76944618,0.82288799,0.91196003,0.75938856,0.68278426, 0.76302383] def setUp(self): # print("In method", self._testMethodName) # Each test gets a fresh coordinates set, as they will modify the coordinates # QCP is specially sensitive to variations in input coordinates and results can vary self.coordsets_mini = numpy.load("data/coordsets_mini.npy") self.coordsets = numpy.load("data/coordsets.npy") self.number_of_conformations = self.coordsets.shape[0] self.number_of_atoms = self.coordsets.shape[1] def test_serial_omp_pairwise(self): """ Calculates all matrix elements one by one with the pairwise operation. """ expected_rmsd_data = [0.22677106513739653, 0.44598234794295144, 0.37817804816455303] calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QTRFIT_OMP_CALCULATOR",self.coordsets_mini) rmsd = [] for i in range(len(self.coordsets_mini)): for j in range(i+1, len(self.coordsets_mini)): rmsd.append(calculator.pairwise(i, j)) numpy.testing.assert_array_almost_equal(rmsd, expected_rmsd_data,8) @unittest.skipIf(not "QCP_CUDA_CALCULATOR" in pyRMSD.RMSDCalculator.availableCalculators(),"CUDA calculator not available") def test_theobald_cuda_pairwise(self): """ Calculates all matrix elements one by one with the pairwise operation. """ expected_rmsd_data = [0.22677106513739653, 0.44598234794295144, 0.37817804816455303] calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QCP_CUDA_CALCULATOR",self.coordsets_mini) rmsd = [] for i in range(len(self.coordsets_mini)): for j in range(i+1, len(self.coordsets_mini)): rmsd.append(calculator.pairwise(i, j)) numpy.testing.assert_array_almost_equal(rmsd, expected_rmsd_data,4) def test_one_vs_others_serial_omp(self): """ Calculates the reference vs the others with the OpenMP functions. """ expected = [0.88785042, 0.82416178, 1.02156795, 0.69628994, 1.04059251, 0.77859792, 0.74962628, 0.73856698, 0.70444404, 0.92168545] rmsd = pyRMSD.RMSDCalculator.RMSDCalculator("QTRFIT_OMP_CALCULATOR", self.coordsets).oneVsTheOthers(3) numpy.testing.assert_array_almost_equal(rmsd, expected,8) def test_kabsch_serial(self): """ Calculates the whole pairwise matrix by calculating each of the rows of the matrix. """ for conf_num in self.expected_rmsd: calculator = pyRMSD.RMSDCalculator.RMSDCalculator("KABSCH_SERIAL_CALCULATOR",self.coordsets) rmsd = calculator.oneVsFollowing(conf_num) numpy.testing.assert_array_almost_equal(rmsd, self.expected_rmsd[conf_num],8) def test_kabsch_OpenMP(self): """ Calculates the whole pairwise matrix by calculating each of the rows of the matrix. """ for conf_num in self.expected_rmsd: calculator = pyRMSD.RMSDCalculator.RMSDCalculator("KABSCH_OMP_CALCULATOR", self.coordsets) rmsd = calculator.oneVsFollowing(conf_num) numpy.testing.assert_array_almost_equal(rmsd, self.expected_rmsd[conf_num],8) def test_serial(self): """ Calculates the whole pairwise matrix by calculating each of the rows of the matrix. """ for conf_num in self.expected_rmsd: calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QTRFIT_SERIAL_CALCULATOR", self.coordsets ) rmsd = calculator.oneVsFollowing(conf_num) numpy.testing.assert_array_almost_equal(rmsd, self.expected_rmsd[conf_num],8) def test_OpenMP(self): """ Calculates the whole pairwise matrix by calculating each of the rows of the matrix. """ for conf_num in self.expected_rmsd: calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QTRFIT_OMP_CALCULATOR", self.coordsets) rmsd = calculator.oneVsFollowing(conf_num) numpy.testing.assert_array_almost_equal(rmsd, self.expected_rmsd[conf_num],8) def test_theobald_serial(self): """ Calculates the whole pairwise matrix by calculating each of the rows of the matrix. """ for conf_num in self.expected_rmsd: calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QCP_SERIAL_CALCULATOR", self.coordsets) rmsd = calculator.oneVsFollowing(conf_num) numpy.testing.assert_array_almost_equal(rmsd, self.expected_rmsd[conf_num],8) def test_theobald_OpenMP(self): """ Calculates the whole pairwise matrix by calculating each of the rows of the matrix. """ for conf_num in self.expected_rmsd: calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QCP_OMP_CALCULATOR", self.coordsets) rmsd = calculator.oneVsFollowing(conf_num) numpy.testing.assert_array_almost_equal(rmsd, self.expected_rmsd[conf_num],8) @unittest.skipIf(not "QCP_CUDA_CALCULATOR" in pyRMSD.RMSDCalculator.availableCalculators(),"CUDA calculator not available") def test_theobald_CUDA(self): """ Calculates the whole pairwise matrix by calculating each of the rows of the matrix. """ for conf_num in self.expected_rmsd: calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QCP_CUDA_CALCULATOR", self.coordsets) rmsd = calculator.oneVsFollowing(conf_num) numpy.testing.assert_array_almost_equal(rmsd, self.expected_rmsd[conf_num],4) @unittest.skipIf(not "QCP_CUDA_MEM_CALCULATOR" in pyRMSD.RMSDCalculator.availableCalculators(),"CUDA calculator not available") def test_theobald_experimental_CUDA(self): """ Calculates the whole pairwise matrix by calculating each of the rows of the matrix. """ for conf_num in self.expected_rmsd: calculator = pyRMSD.RMSDCalculator.RMSDCalculator( "QCP_CUDA_MEM_CALCULATOR", self.coordsets) rmsd = calculator.oneVsFollowing(conf_num) numpy.testing.assert_array_almost_equal(rmsd, self.expected_rmsd[conf_num],4) def test_serial_matrix_generation(self): """ Calculates the whole matrix. """ calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QTRFIT_SERIAL_CALCULATOR", self.coordsets) rmsd = calculator.pairwiseRMSDMatrix() numpy.testing.assert_array_almost_equal(rmsd, self.expected_serial_matrix,8) def test_openmp_matrix_generation(self): """ Calculates the whole matrix. """ calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QTRFIT_OMP_CALCULATOR", self.coordsets) rmsd = calculator.pairwiseRMSDMatrix() numpy.testing.assert_array_almost_equal(rmsd, self.expected_serial_matrix,8) def test_theobald_serial_matrix_generation(self): """ Calculates the whole matrix. """ calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QCP_SERIAL_CALCULATOR", self.coordsets) rmsd = calculator.pairwiseRMSDMatrix() numpy.testing.assert_array_almost_equal(rmsd, self.expected_serial_matrix,8) def test_theobald_OpenMP_matrix_generation(self): """ Calculates the whole matrix. """ calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QCP_OMP_CALCULATOR", self.coordsets) rmsd = calculator.pairwiseRMSDMatrix() numpy.testing.assert_array_almost_equal(rmsd, self.expected_serial_matrix,8) @unittest.skipIf(not "QCP_CUDA_CALCULATOR" in pyRMSD.RMSDCalculator.availableCalculators(),"CUDA calculator not available") def test_theobald_cuda_matrix_generation(self): """ Calculates the whole matrix. """ calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QCP_CUDA_CALCULATOR", self.coordsets) rmsd = calculator.pairwiseRMSDMatrix() numpy.testing.assert_array_almost_equal(rmsd, self.expected_serial_matrix, 4) @unittest.skipIf(not "QCP_CUDA_MEM_CALCULATOR" in pyRMSD.RMSDCalculator.availableCalculators(),"CUDA calculator not available") def test_theobald_cuda_experimental_matrix_generation(self): """ Calculates the whole matrix. """ calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QCP_CUDA_MEM_CALCULATOR", self.coordsets) rmsd = calculator.pairwiseRMSDMatrix() numpy.testing.assert_array_almost_equal(rmsd, self.expected_serial_matrix, 4) def test_coordinates_change(self): """ Tests if """ number_of_coordsets = 5; number_of_atoms = 3239; number_of_CAs = 224; not_aligned_CA = numpy.reshape(numpy.loadtxt("data/ligand_mini_CAs"), (number_of_coordsets,number_of_CAs,3)) reference_copy = numpy.copy(not_aligned_CA[0]) target_copy = numpy.copy(not_aligned_CA[4]) calculator = pyRMSD.RMSDCalculator.RMSDCalculator("QTRFIT_OMP_CALCULATOR", not_aligned_CA) rmsd = calculator.pairwise(0, 4, get_superposed_coordinates=False) self.assertAlmostEqual(rmsd, 0.3383320758562839, 12) # After the calculations, the target and reference coordinates have not changed, because # a copy was performed ... numpy.testing.assert_almost_equal(not_aligned_CA[0],reference_copy,16) numpy.testing.assert_almost_equal(not_aligned_CA[4],target_copy,16) # Helper functions def read_coords_file(self, path): file_handler = open(path, "r") data = [] for line in file_handler: if line.strip() != "": parts = line.split() data.append([float(x) for x in parts]) file_handler.close() float_shape = data.pop(0) shape = (int(float_shape[0]),int(float_shape[1]),int(float_shape[2])) return
numpy.array(data)
numpy.array
# -*- coding: utf-8 -*- """ @author: ruess """ from __future__ import division from __future__ import absolute_import from builtins import object import pytest from masci_tools.io.common_functions import (interpolate_dos, get_alat_from_bravais, search_string, angles_to_vec, vec_to_angles, get_version_info, get_corestates_from_potential, get_highest_core_state, get_ef_from_potfile, open_general, convert_to_pystd) class Test_common_functions(object): """ Tests for the common functions from tools.common_functions """ def test_open_general(self): path = '../tests/files/kkr/kkr_run_slab_nosoc/out_kkr' f = open_general(path) l1 = len(f.readlines()) f = open_general(f) l2 = len(f.readlines()) assert l1==l2 assert l2>0 def test_interpolate_dos(self): from numpy import load, loadtxt, shape d0 = '../tests/files/interpol/complex.dos' ef, dos, dos_int = interpolate_dos(d0, return_original=True) assert ef == 0.5256 dos_ref = loadtxt('../tests/files/interpol/new3.dos') assert (dos_int.reshape(shape(dos_ref))-dos_ref).max()<10**-4 assert (dos == load('../tests/files/interpol/ref_dos.npy')).all() def test_interpolate_dos_filehandle(self): from numpy import load, loadtxt, shape d0 = open('../tests/files/interpol/complex.dos') d0 = '../tests/files/interpol/complex.dos' ef, dos, dos_int = interpolate_dos(d0, return_original=True) assert ef == 0.5256 dos_ref = loadtxt('../tests/files/interpol/new3.dos') assert (dos_int.reshape(shape(dos_ref))-dos_ref).max()<10**-4 assert (dos == load('../tests/files/interpol/ref_dos.npy')).all() def test_get_alat_from_bravais(self): from numpy import array, sqrt bravais =
array([[0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0]])
numpy.array
"""Return elements chosen from `x` or `y` depending on `condition`.""" from __future__ import annotations import numpy import numpy.typing import numpoly from ..baseclass import ndpoly, PolyLike from ..dispatch import implements @implements(numpy.where) def where(condition: numpy.typing.ArrayLike, *args: PolyLike) -> ndpoly: """ Return elements chosen from `x` or `y` depending on `condition`. .. note:: When only `condition` is provided, this function is a shorthand for ``np.asarray(condition).nonzero()``. Using `nonzero` directly should be preferred, as it behaves correctly for subclasses. The rest of this documentation covers only the case where all three arguments a re provided. Args: condition: Where True, yield `x`, otherwise yield `y`. x: Values from which to choose. `x`, `y` and `condition` need to be broadcastable to some shape. Returns: An array with elements from `x` where `condition` is True, and elements from `y` elsewhere. Examples: >>> poly = numpoly.variable()*numpy.arange(4) >>> poly polynomial([0, q0, 2*q0, 3*q0]) >>> numpoly.where([1, 0, 1, 0], 7, 2*poly) polynomial([7, 2*q0, 7, 6*q0]) >>> numpoly.where(poly, 2*poly, 4) polynomial([4, 2*q0, 4*q0, 6*q0]) >>> numpoly.where(poly) (array([1, 2, 3]),) """ if isinstance(condition, numpoly.ndpoly): condition = numpy.any(numpy.asarray( condition.coefficients), 0).astype(bool) if not args: return numpy.where(condition) poly1, poly2 = numpoly.align_polynomials(*args) coefficients = [numpy.where(condition, x1, x2) for x1, x2 in zip(poly1.coefficients, poly2.coefficients)] dtype =
numpy.result_type(poly1.dtype, poly2.dtype)
numpy.result_type
#!/usr/bin/env python """A class for handling 5C analysis.""" import os import sys from math import log import numpy from scipy.stats import linregress import h5py from scipy.optimize import fmin_l_bfgs_b as bfgs import libraries._fivec_binning as _binning import libraries._fivec_optimize as _optimize import fivec_binning import plotting class FiveC(object): """ This is the class for handling 5C analysis. This class relies on :class:`Fragment <hifive.fragment.Fragment>` and :class:`FiveCData <hifive.fivec_data.FiveCData>` for genomic position and interaction count data. Use this class to perform filtering of fragments based on coverage, model fragment bias and distance dependence, and downstream analysis and manipulation. This includes binning of data, plotting of data, and statistical analysis. .. note:: This class is also available as hifive.FiveC When initialized, this class creates an h5dict in which to store all data associated with this object. :param filename: The file name of the h5dict. This should end with the suffix '.hdf5' :type filename: str. :param mode: The mode to open the h5dict with. This should be 'w' for creating or overwriting an h5dict with name given in filename. :type mode: str. :param silent: Indicates whether to print information about function execution for this object. :type silent: bool. :returns: :class:`FiveC <hifive.fivec.FiveC>` class object. :attributes: * **file** (*str.*) - A string containing the name of the file passed during object creation for saving the object to. * **silent** (*bool.*) - A boolean indicating whether to suppress all of the output messages. * **history** (*str.*) - A string containing all of the commands executed on this object and their outcome. * **normalization** (*str.*) - A string stating which type of normalization has been performed on this object. This starts with the value 'none'. In addition, many other attributes are initialized to the 'None' state. """ def __init__(self, filename, mode='r', silent=False): """Create a FiveC object.""" self.file = os.path.abspath(filename) self.filetype = 'fivec_project' self.silent = silent self.binning_corrections = None self.binning_correction_indices = None self.binning_frag_indices = None self.binning_num_bins = None self.model_parameters = None self.corrections = None self.region_means = None self.gamma = None self.sigma = None self.trans_mean = None self.normalization = 'none' self.history = '' if mode != 'w': self.load() return None def __getitem__(self, key): """Dictionary-like lookup.""" if key in self.__dict__: return self.__dict__[key] else: return None def __setitem__(self, key, value): """Dictionary-like value setting.""" self.__dict__[key] = value return None def load_data(self, filename): """ Load fragment-pair counts and fragment object from :class:`FiveCData <hifive.fivec_data.FiveCData>` object. :param filename: Specifies the file name of the :class:`FiveCData <hifive.fivec_data.FiveCData>` object to associate with this analysis. :type filename: str. :returns: None :Attributes: * **datafilename** (*str.*) - A string containing the relative path of the FiveCData file. * **fragfilename** (*str.*) - A string containing the relative path of the Fragment file associated with the FiveCData file. * **frags** (*filestream*) - A filestream to the hdf5 Fragment file such that all saved Fragment attributes can be accessed through this class attribute. * **data** (*filestream*) - A filestream to the hdf5 FiveCData file such that all saved FiveCData attributes can be accessed through this class attribute. * **chr2int** (*dict.*) - A dictionary that converts chromosome names to chromosome indices. * **filter** (*ndarray*) - A numpy array of type int32 and size N where N is the number of fragments. This contains the inclusion status of each fragment with a one indicating included and zero indicating excluded and is initialized with all fragments included. When a FiveCData object is associated with the project file, the 'history' attribute is updated with the history of the FiveCData object. """ self.history += "FiveC.load_data(filename='%s') - " % filename # ensure data h5dict exists if not os.path.exists(filename): if not self.silent: print >> sys.stderr, ("Could not find %s. No data loaded.\n") % (filename.split('/')[-1]), self.history += "Error: '%s' not found\n" % filename return None self.datafilename = "%s/%s" % (os.path.relpath(os.path.dirname(os.path.abspath(filename)), os.path.dirname(self.file)), os.path.basename(filename)) self.data = h5py.File(filename, 'r') self.history = self.data['/'].attrs['history'] + self.history fragfilename = self.data['/'].attrs['fragfilename'] if fragfilename[:2] == './': fragfilename = fragfilename[2:] parent_count = fragfilename.count('../') fragfilename = '/'.join(os.path.abspath(filename).split('/')[:-(1 + parent_count)] + fragfilename.lstrip('/').split('/')[parent_count:]) self.fragfilename = "%s/%s" % (os.path.relpath(os.path.dirname(fragfilename), os.path.dirname(self.file)), os.path.basename(fragfilename)) # ensure fend h5dict exists if not os.path.exists(fragfilename): if not self.silent: print >> sys.stderr, ("Could not find %s.\n") % (fragfilename), self.history += "Error: '%s' not found\n" % fragfilename return None self.frags = h5py.File(fragfilename, 'r') # create dictionary for converting chromosome names to indices self.chr2int = {} for i, chrom in enumerate(self.frags['chromosomes']): self.chr2int[chrom] = i # create arrays self.filter = numpy.ones(self.frags['fragments'].shape[0], dtype=numpy.int32) self.history += 'Success\n' return None def save(self, out_fname=None): """ Save analysis parameters to h5dict. :param filename: Specifies the file name of the :class:`FiveC <hifive.fivec.FiveC>` object to save this analysis to. :type filename: str. :returns: None """ self.history.replace("'None'", "None") if not out_fname is None: original_file = os.path.abspath(self.file) if 'datafilename' in self.__dict__: datafilename = self.datafilename if datafilename[:2] == './': datafilename = datafilename[2:] parent_count = datafilename.count('../') datafilename = '/'.join(original_file.split('/')[:-(1 + parent_count)] + datafilename.lstrip('/').split('/')[parent_count:]) self.datafilename = "%s/%s" % (os.path.relpath(os.path.dirname(os.path.abspath(datafilename)), os.path.dirname(self.file)), os.path.basename(datafilename)) if 'fragfilename' in self.__dict__: fragfilename = self.fragfilename if fragfilename[:2] == './': fragfilename = fragfilename[2:] parent_count = fragfilename.count('../') fragfilename = '/'.join(original_file.split('/')[:-(1 + parent_count)] + fragfilename.lstrip('/').split('/')[parent_count:]) self.fragfilename = "%s/%s" % (os.path.relpath(os.path.dirname(os.path.abspath(fragfilename)), os.path.dirname(self.file)), os.path.basename(fragfilename)) else: out_fname = self.file datafile = h5py.File(out_fname, 'w') for key in self.__dict__.keys(): if key in ['data', 'frags', 'file', 'chr2int', 'silent']: continue elif self[key] is None: continue elif isinstance(self[key], numpy.ndarray): datafile.create_dataset(key, data=self[key]) elif not isinstance(self[key], dict): datafile.attrs[key] = self[key] datafile.close() return None def load(self): """ Load analysis parameters from h5dict specified at object creation and open h5dicts for associated :class:`FiveCData <hifive.fivec_data.FiveCData>` and :class:`Fragment <hifive.fragment.Fragment>` objects. Any call of this function will overwrite current object data with values from the last :func:`save` call. :returns: None """ # return attributes to init state self.binning_corrections = None self.binning_correction_indices = None self.binning_frag_indices = None self.binning_num_bins = None self.model_parameters = None self.corrections = None self.region_means = None self.gamma = None self.sigma = None self.trans_mean = None self.normalization = 'none' self.history = '' # load data hdf5 dict datafile = h5py.File(self.file, 'r') for key in datafile.keys(): self[key] = numpy.copy(datafile[key]) for key in datafile['/'].attrs.keys(): self[key] = datafile['/'].attrs[key] # ensure data h5dict exists if 'datafilename' in self.__dict__: datafilename = self.datafilename if datafilename[:2] == './': datafilename = datafilename[2:] parent_count = datafilename.count('../') datafilename = '/'.join(self.file.split('/')[:-(1 + parent_count)] + datafilename.lstrip('/').split('/')[parent_count:]) if not os.path.exists(datafilename): if not self.silent: print >> sys.stderr, ("Could not find %s. No data loaded.\n") % (datafilename), else: self.data = h5py.File(datafilename, 'r') # ensure fragment h5dict exists if 'fragfilename' in self.__dict__: fragfilename = self.fragfilename if fragfilename[:2] == './': fragfilename = fragfilename[2:] parent_count = fragfilename.count('../') fragfilename = '/'.join(self.file.split('/')[:-(1 + parent_count)] + fragfilename.lstrip('/').split('/')[parent_count:]) if not os.path.exists(fragfilename): if not self.silent: print >> sys.stderr, ("Could not find %s. No fragments loaded.\n") % (fragfilename), else: self.frags = h5py.File(fragfilename, 'r') # create dictionary for converting chromosome names to indices self.chr2int = {} for i, chrom in enumerate(self.frags['chromosomes']): self.chr2int[chrom] = i datafile.close() return None def filter_fragments(self, mininteractions=20, mindistance=0, maxdistance=0): """ Iterate over the dataset and remove fragments that do not have 'minobservations' using only unfiltered fragments and interactions falling with the distance limits specified. In order to create a set of fragments that all have the necessary number of interactions, after each round of filtering, fragment interactions are retallied using only interactions that have unfiltered fragments at both ends. :param mininteractions: The required number of interactions for keeping a fragment in analysis. :type mininteractions: int. :param mindistance: The minimum inter-fragment distance to be included in filtering. :type mindistance: int. :param maxdistance: The maximum inter-fragment distance to be included in filtering. A value of zero indicates no maximum cutoff. :type maxdistance: int. :returns: None """ self.history += "FiveC.filter_fragments(mininteractions=%i, mindistance=%s, maxdistance=%s) - " % (mininteractions, str(mindistance), str(maxdistance)) if not self.silent: print >> sys.stderr, ("Filtering fragments..."), original_count = numpy.sum(self.filter) previous_valid = original_count + 1 current_valid = original_count coverage = numpy.zeros(self.filter.shape[0], dtype=numpy.int32) # copy needed arrays data = self.data['cis_data'][...] distances = self.frags['fragments']['mid'][data[:, 1]] - self.frags['fragments']['mid'][data[:, 0]] if maxdistance == 0 or maxdistance is None: maxdistance = numpy.amax(distances) + 1 valid = numpy.where((self.filter[data[:, 0]] * self.filter[data[:, 1]]) * (distances >= mindistance) * (distances < maxdistance))[0] data = data[valid, :] # repeat until all remaining fragments have minobservation valid observations while current_valid < previous_valid: previous_valid = current_valid coverage = numpy.bincount(data[:, 0], minlength=self.filter.shape[0]) coverage += numpy.bincount(data[:, 1], minlength=self.filter.shape[0]) invalid = numpy.where(coverage < mininteractions)[0] self.filter[invalid] = 0 valid = numpy.where(self.filter[data[:, 0]] * self.filter[data[:, 1]])[0] data = data[valid, :] current_valid = numpy.sum(self.filter) if not self.silent: print >> sys.stderr, ("Removed %i of %i fragments\n") % (original_count - current_valid, original_count), self.history += "Success\n" return None def find_distance_parameters(self): """ Regress log counts versus inter-fragment distances to find slope and intercept values and then find the standard deviation of corrected counts. :returns: None :Attributes: * **gamma** (*float*) - A float denoting the negative slope of the distance-dependence regression line. * **sigma** (*float*) - A float denoting the standard deviation of nonzero data about the distance-dependence regression line. * **region_means** (*ndarray*) - A numpy array of type float32 and length equal to the number of regions. This is initialized to zeros until fragment correction values are found. """ self.history += "FiveC.find_distance_parameters() - " if not self.silent: print >> sys.stderr, ("Finding distance parameters..."), # copy needed arrays data = self.data['cis_data'][...] mids = self.frags['fragments']['mid'][...] # find which pairs are both unfiltered valid = numpy.where(self.filter[data[:, 0]] * self.filter[data[:, 1]])[0] # find distances between fragment pairs log_distances = numpy.log(mids[data[valid, 1]] - mids[data[valid, 0]]) # find regression line counts = numpy.log(data[valid, 2]) if not self.corrections is None: counts -= self.corrections[data[valid, 0]] - self.corrections[data[valid, 1]] temp = linregress(log_distances, counts)[:2] self.gamma = -float(temp[0]) if self.region_means is None: self.region_means = numpy.zeros(self.frags['regions'].shape[0], dtype=numpy.float32) + temp[1] self.sigma = float(numpy.std(counts - temp[1] + self.gamma * log_distances)) if not self.silent: print >> sys.stderr, ("Done\n"), self.history += "Success\n" return None def find_probability_fragment_corrections(self, mindistance=0, maxdistance=0, max_iterations=1000, minchange=0.0005, learningstep=0.1, precalculate=True, regions=[], precorrect=False): """ Using gradient descent, learn correction values for each valid fragment based on a Log-Normal distribution of observations. :param mindistance: The minimum inter-fragment distance to be included in modeling. :type mindistance: int. :param maxdistance: The maximum inter-fragment distance to be included in modeling. :type maxdistance: int. :param max_iterations: The maximum number of iterations to carry on gradient descent for. :type max_iterations: int. :type annealing_iterations: int. :param minchange: The cutoff threshold for early learning termination for the maximum absolute gradient value. :type minchange: float :param learningstep: The scaling factor for decreasing learning rate by if step doesn't meet armijo criterion. :type learningstep: float :param precalculate: Specifies whether the correction values should be initialized at the fragment means. :type precalculate: bool. :param regions: A list of regions to calculate corrections for. If set as None, all region corrections are found. :type regions: list :param precorrect: Use binning-based corrections in expected value calculations, resulting in a chained normalization approach. :type precorrect: bool. :returns: None :Attributes: * **corrections** (*ndarray*) - A numpy array of type float32 and length equal to the number of fragments. All invalid fragments have an associated correction value of zero. The 'normalization' attribute is updated to 'probability' or 'binning-probability', depending on if the 'precorrect' option is selected. In addition, the 'region_means' attribute is updated such that the mean correction (sum of all valid regional correction value pairs) is adjusted to zero and the corresponding region mean is adjusted the same amount but the opposite sign. """ self.history += "FiveC.find_probability_fragment_corrections(mindistance=%s, maxdistance=%s, max_iterations=%i, minchange=%f, learningstep=%f, precalculate=%s, regions=%s, precorrect=%s) - " % (str(mindistance), str(maxdistance), max_iterations, minchange, learningstep, precalculate, str(regions), precorrect) if precorrect and self.binning_corrections is None: if not self.silent: print >> sys.stderr, ("Precorrection can only be used in project has previously run 'find_binning_fragment_corrections'.\n"), self.history += "Error: 'find_binning_fragment_corrections()' not run yet\n" return None if self.corrections is None: self.corrections = numpy.zeros(self.frags['fragments'].shape[0], dtype=numpy.float32) # if regions not given, set to all regions if regions == None or len(regions) == 0: regions = numpy.arange(self.frags['regions'].shape[0]) # determine if distance parameters have been calculated if self.gamma is None: self.find_distance_parameters() # limit corrections to only requested regions filt = numpy.copy(self.filter) for i in range(self.frags['regions'].shape[0]): if i not in regions: filt[self.frags['regions']['start_frag'][i]:self.frags['regions']['stop_frag'][i]] = 0 # copy and calculate needed arrays if not self.silent: print >> sys.stderr, ("\r%s\rCopying needed data...") % (' ' * 80), data = self.data['cis_data'][...] distances = self.frags['fragments']['mid'][data[:, 1]] - self.frags['fragments']['mid'][data[:, 0]] if maxdistance == 0 or maxdistance is None: maxdistance = numpy.amax(distances) + 1 valid = numpy.where((filt[data[:, 0]] * filt[data[:, 1]]) * (distances >= mindistance) * (distances < maxdistance))[0] data = data[valid, :] distances = numpy.log(distances[valid]) counts_n = numpy.log(data[:, 2] - 0.5).astype(numpy.float32) counts = numpy.log(data[:, 2]).astype(numpy.float32) counts_p = numpy.log(data[:, 2] + 0.5).astype(numpy.float32) distance_signal = (-self.gamma * distances).astype(numpy.float32) distance_signal += self.region_means[self.frags['fragments']['region'][data[:, 0]]] # create empty arrays gradients = numpy.zeros(self.filter.shape[0], dtype=numpy.float32) valid = numpy.where(filt)[0] # find number of interactions for each fragment interactions = numpy.bincount(data[:, 0], minlength=self.filter.shape[0]).astype(numpy.int32) interactions += numpy.bincount(data[:, 1], minlength=self.filter.shape[0]).astype(numpy.int32) interactions = numpy.maximum(1, interactions) # if precalculation requested, find fragment means if precalculate: enrichments = counts - distance_signal count_sums = numpy.bincount(data[:, 0], weights=enrichments, minlength=gradients.shape[0]) count_sums += numpy.bincount(data[:, 1], weights=enrichments, minlength=gradients.shape[0]) self.corrections = ((count_sums / numpy.maximum(1, interactions)) * 0.5).astype(numpy.float32) if precorrect: if not self.silent: print >> sys.stderr, ("\r%s\rFinding binning corrections...") % (' ' * 80), _optimize.find_binning_correction_adjustment(distance_signal, data, self.binning_corrections, self.binning_correction_indices, self.binning_num_bins, self.binning_frag_indices) # cycle through learning phases if not self.silent: print >> sys.stderr, ("\r%s\rLearning corrections...") % (' ' * 80), iteration = 0 cont = True change = numpy.inf new_corrections = numpy.copy(self.corrections) start_cost = _optimize.calculate_prob_cost(data, counts_n, counts, counts_p, distance_signal, self.corrections, self.sigma) previous_cost = start_cost while cont: iteration += 1 # find gradients gradients.fill(0.0) _optimize.calculate_gradients(data, counts_n, counts, counts_p, distance_signal, self.corrections, gradients, self.sigma) # find best step size armijo = numpy.inf t = 0.1 gradients /= interactions gradient_norm = numpy.sum(gradients[valid] ** 2.0) j = 0 best_score = numpy.inf best_t = 0.1 while armijo > 0.0: # update gradients _optimize.update_corrections(filt, self.corrections, new_corrections, gradients, t) cost = _optimize.calculate_prob_cost(data, counts_n, counts, counts_p, distance_signal, new_corrections, self.sigma) if numpy.isnan(cost): cost = numpy.inf armijo = numpy.inf else: armijo = cost - previous_cost + t * gradient_norm if cost < best_score: best_score = cost best_t = t if not self.silent: print >> sys.stderr, ("\r%s iteration:%i cost:%f change:%f armijo: %f %s") %\ ('Learning corrections...', iteration, previous_cost, change, armijo, ' ' * 20), t *= learningstep j += 1 if j == 20: armijo = -numpy.inf t = best_t _optimize.update_corrections(filt, self.corrections, new_corrections, gradients, t) cost = _optimize.calculate_prob_cost(data, counts_n, counts, counts_p, distance_signal, new_corrections, self.sigma) previous_cost = cost self.corrections = new_corrections change = numpy.amax(numpy.abs(gradients[valid] / new_corrections[valid])) if not self.silent: print >> sys.stderr, ("\r%s iteration:%i cost:%f change:%f %s") %\ ('Learning corrections...', iteration, cost, change, ' ' * 40), iteration += 1 if iteration >= max_iterations or change <= minchange: cont = False if not self.silent: print >> sys.stderr, ("\r%s\rLearning corrections... Initial Cost: %f Final Cost: %f Done\n") %\ (' ' * 80, start_cost, cost), # Calculate region means if self.region_means is None: self.region_means = numpy.zeros(self.frags['regions'].shape[0], dtype=numpy.float32) for i in regions: start = self.frags['regions']['start_frag'][i] stop = self.frags['regions']['stop_frag'][i] forward = (numpy.where(self.filter[start:stop] * (self.frags['fragments']['strand'][start:stop] == 0))[0] + start) reverse = (numpy.where(self.filter[start:stop] * (self.frags['fragments']['strand'][start:stop] == 1))[0] + start) if forward.shape[0] == 0 or reverse.shape[0] == 0: continue region_mean = (numpy.sum(self.corrections[forward]) * reverse.shape[0] + numpy.sum(self.corrections[reverse]) * forward.shape[0]) region_mean /= forward.shape[0] * reverse.shape[0] self.corrections[forward] -= region_mean / 2.0 self.corrections[reverse] -= region_mean / 2.0 self.region_means[i] += region_mean if precorrect: self.normalization = 'binning-probability' else: self.normalization = 'probability' self.history += 'Succcess\n' return None def find_express_fragment_corrections(self, mindistance=0, maxdistance=0, iterations=1000, remove_distance=False, usereads='cis', regions=[], precorrect=False, logged=True, kr=False): """ Using iterative approximation, learn correction values for each valid fragment. :param mindistance: The minimum inter-fragment distance to be included in modeling. :type mindistance: int. :param maxdistance: The maximum inter-fragment distance to be included in modeling. :type maxdistance: int. :param iterations: The number of iterations to use for learning fragment corrections. :type iterations: int. :param remove_distance: Specifies whether the estimated distance-dependent portion of the signal is removed prior to learning fragment corrections. :type remove_distance: bool. :param usereads: Specifies which set of interactions to use, 'cis', 'trans', or 'all'. :type usereads: str. :param regions: A list of regions to calculate corrections for. If set as None, all region corrections are found. :type regions: list :param precorrect: Use binning-based corrections in expected value calculations, resulting in a chained normalization approach. :type precorrect: bool. :param logged: Use log-counts instead of counts for learning. :type logged: bool. :param kr: Use the Knight Ruiz matrix balancing algorithm instead of weighted matrix balancing. This option ignores 'iterations' and 'logged'. :type kr: bool. :returns: None Calling this function creates the following attributes: :Attributes: * **corrections** (*ndarray*) - A numpy array of type float32 and length equal to the number of fragments. All invalid fragments have an associated correction value of zero. The 'normalization' attribute is updated to 'express' or 'binning-express', depending on if the 'precorrect' option is selected. In addition, if the 'remove_distance' option is selected, the 'region_means' attribute is updated such that the mean correction (sum of all valid regional correction value pairs) is adjusted to zero and the corresponding region mean is adjusted the same amount but the opposite sign. """ self.history += "FiveC.find_express_fragment_corrections(mindistance=%s, maxdistance=%s, iterations=%i, remove_distance=%s, usereads='%s', regions=%s, precorrect=%s, logged=%s, kr=%s) - " % (str(mindistance), str(maxdistance), iterations, remove_distance, usereads, str(regions), precorrect, logged, kr) if precorrect and self.binning_corrections is None: if not self.silent: print >> sys.stderr, ("Precorrection can only be used in project has previously run 'find_binning_fragment_corrections'.\n"), self.history += "Error: 'find_binning_fragment_corrections()' not run yet\n" return None # make sure usereads has a valid value if usereads not in ['cis', 'trans', 'all']: if not self.silent: print >> sys.stderr, ("'usereads' does not have a valid value.\n"), self.history += "Error: '%s' not a valid value for 'usereads'\n" % usereads return None # if regions not given, set to all regions if regions == None or len(regions) == 0: regions = numpy.arange(self.frags['regions'].shape[0]) if self.corrections is None: self.corrections = numpy.zeros(self.frags['fragments'].shape[0], dtype=numpy.float32) if kr: self._find_kr_corrections(mindistance, maxdistance, remove_distance, usereads, regions, precorrect, logged) return None # limit corrections to only requested regions filt = numpy.copy(self.filter) for i in range(self.frags['regions'].shape[0]): if i not in regions: filt[self.frags['regions']['start_frag'][i]:self.frags['regions']['stop_frag'][i]] = 0 if not self.silent: print >> sys.stderr, ("\r%s\rCopying needed data...") % (' ' * 80), # copy and calculate needed arrays data = None trans_data = None counts = None trans_counts = None distance_signal = None trans_signal = None corrections = numpy.copy(self.corrections) if usereads in ['cis', 'all']: data = self.data['cis_data'][...] distances = (self.frags['fragments']['mid'][data[:, 1]] - self.frags['fragments']['mid'][data[:, 0]]).astype(numpy.float32) if maxdistance == 0 or maxdistance is None: maxdistance = numpy.amax(distances) + 1 valid = numpy.where((filt[data[:, 0]] * filt[data[:, 1]]) * (distances >= mindistance) * (distances < maxdistance))[0] data = data[valid, :] counts = numpy.log(data[:, 2]).astype(numpy.float64) distances = distances[valid] if remove_distance: if self.gamma is None: self.find_distance_parameters() distance_signal = (-self.gamma *
numpy.log(distances)
numpy.log
#!/usr/bin/env python from __future__ import print_function import argparse import numpy as np import os, sys, shutil, subprocess, glob import re from numpy import pi from scipy import * import json from tabulate import tabulate from itertools import chain import flapwmbpt_ini import prepare_realaxis # from scipy.interpolate import interp1d # trans_basis_mode: 0, use wannier function as basis set # trans_basis_mode: 1, use transformation matrix to rotate the basis set. this matrix doesn't change as a function of iteration. # trans_basis_mode: 2, use transformation matrix to rotate the basis set. this matrix does change as a function of iteration. this matrix diagonalize the spectral function at the chemical potential. def open_h_log(control): if (control['restart']): control['h_log']=open('./cmd.log', 'a') else: control['h_log']=open('./cmd.log', 'w') print('', file=control['h_log'],flush=True) print('*********************************',file=control['h_log'],flush=True) print(' ComDMFT', file=control['h_log'],flush=True) print('*********************************',file=control['h_log'],flush=True) print('', file=control['h_log'],flush=True) #DEBUG control['h_log'].flush() os.fsync(control['h_log'].fileno()) #DEBUG return None def close_h_log(control): control['h_log'].close() return None def read_comdmft_ini_control(): vglobl={} vlocal={} with open('comdmft.ini') as f_ini: code = compile(f_ini.read(), "comdmft.ini", 'exec') exec(code, vglobl, vlocal) f_ini.close() control=vlocal['control'] return control def read_comdmft_ini_postprocessing(): vglobl={} vlocal={} with open('comdmft.ini') as f_ini: code = compile(f_ini.read(), "comdmft.ini", 'exec') exec(code, vglobl, vlocal) f_ini.close() control=vlocal['control'] postprocessing_dict=vlocal['postprocessing'] check_key_in_string('mpi_prefix', control) check_key_in_string('comsuite_dir', postprocessing_dict) if (control['method']=='spectral') | (control['method']=='band'): with open(postprocessing_dict['comsuite_dir']+'/comdmft.ini') as f_ini: code = compile(f_ini.read(), "comdmft.ini", 'exec') exec(code, vglobl, vlocal) f_ini.close() control_temp=vlocal['control'] postprocessing_dict['kpoints']=postprocessing_dict.get('kpoints', os.path.abspath(postprocessing_dict['comsuite_dir']+'/'+control_temp['initial_lattice_dir'])+'/kpoints') if ((control['method']=='dos') | (control['method']=='dos_qp')): check_key_in_string('kmesh', postprocessing_dict) if ((control['method']=='spectral') | (control['method']=='dos')): check_key_in_string('self energy', postprocessing_dict) postprocessing_dict['broadening']=postprocessing_dict.get('broadening', 0.01) return control, postprocessing_dict def read_comdmft_ini(): vglobl={} vlocal={} with open('comdmft.ini') as f_ini: code = compile(f_ini.read(), "comdmft.ini", 'exec') exec(code, vglobl, vlocal) f_ini.close() # print vglobl # print 'here' control=vlocal['control'] wan_hmat=vlocal['wan_hmat'] imp=vlocal['imp'] control['name']='control' wan_hmat['name']='wan_hmat' imp['name']='imp' control['restart']=control.get('restart', False) open_h_log(control) control['comsuitedir']=os.environ.get('COMSUITE_BIN') if not control['comsuitedir']: print("Error: Environment variable COMSUITE_BIN is not defined.", file=control['h_log'],flush=True) sys.exit() print('comsuitedir', control['comsuitedir']) control['conv_table']=[] ### in control control['cal_mu']=control.get('cal_mu', True) control['top_dir']=os.path.abspath('./') check_key_in_string('method', control) control['sigma_mix_ratio']=control.get('sigma_mix_ratio', 0.5) control['doping']=control.get('doping', 0.0) control['dc_mode']=control.get('dc_mode', 'dc_at_gw') control['u_mode']=control.get('u_mode', 'bnse') control['trans_basis_mode']=control.get('trans_basis_mode', 0) if (control['trans_basis_mode']==1): check_key_in_string('trans_basis', control) elif (control['trans_basis_mode']==2): check_key_in_string('metal_threshold', control) check_key_in_string('spin_orbit', control) check_key_in_string('impurity_problem', control) check_key_in_string('impurity_problem_equivalence', control) check_key_in_string('initial_lattice_dir', control) control['initial_lattice_dir']=os.path.abspath(control['initial_lattice_dir']) control['allfile']=find_allfile(control['initial_lattice_dir']) if ('dc_directory' not in control): control['dc_directory']='./dc' control['dc_directory']=os.path.abspath(control['dc_directory']) if ('impurity_directory' not in control): control['impurity_directory']='./impurity' control['impurity_directory']=os.path.abspath(control['impurity_directory']) if ('lowh_directory' not in control): control['lowh_directory']='./lowh' control['lowh_directory']=os.path.abspath(control['lowh_directory']) if ('wannier_directory' not in control): control['wannier_directory']='./wannier' control['wannier_directory']=os.path.abspath(control['wannier_directory']) if ('initial_self_energy' in control): control['initial_self_energy'] =os.path.abspath(control['initial_self_energy']) if (control['trans_basis_mode']!=0): check_key_in_string('trans_basis', control) if ('dc_mat_to_read' in control): control['dc_mat_to_read'] =os.path.abspath(control['dc_mat_to_read']) if (control['method']=='lda+dmft'): control['convergence_header']=['step','i_outer','i_latt','i_imp','causality','delta_rho','w_sp_min','w_sp_max', 'mu', 'std_sig', 'n_imp', 'histo_1', 'histo_2', 'ctqmc_sign'] if (control['method']=='lqsgw+dmft'): control['convergence_header']=['step','i_imp','causality','static_f0','w_sp_min','w_sp_max', 'mu', 'std_sig', 'n_imp', 'histo_1', 'histo_2', 'ctqmc_sign'] # mpi_prefix if ('mpi_prefix' in control): control['mpi_prefix_flapwmbpt']=control.get('mpi_prefix_flapwmbpt', control['mpi_prefix']) control['mpi_prefix_lowh']=control.get('mpi_prefix_lowh', control['mpi_prefix']) control['mpi_prefix_impurity']=control.get('mpi_prefix_impurity', control['mpi_prefix']) control['mpi_prefix_wannier']=control.get('mpi_prefix_wannier', control['mpi_prefix']) if (control['method']=='lda+dmft'): control['mpi_prefix_lattice']=control.get('mpi_prefix_lattice', control['mpi_prefix']) if (control['method']=='lqsgw+dmft'): control['mpi_prefix_dc']=control.get('mpi_prefix_dc', control['mpi_prefix']) # mpi_prefix_coulomb if ('mpi_prefix_coulomb' in control): check_key_in_string('nproc_k_coulomb', control) check_key_in_string('nproc_tau_coulomb', control) else: # temp=[int(x) for x in np.loadtxt(control['initial_lattice_dir']+'/k_tau_freq.dat')] temp=list(map(int,np.loadtxt(control['initial_lattice_dir']+'/k_tau_freq.dat'))) control['mpi_prefix_coulomb'], control['nproc_k_coulomb'],control['nproc_tau_coulomb']=optimized_nproc_for_comcoulomb(control['mpi_prefix'], temp[0], temp[1],temp[2],temp[3]) # print('mpi_prefix_coulomb', control['mpi_prefix_coulomb'], file=control['h_log'],flush=True) # max iteration if (control['method']=='lda+dmft'): control['max_iter_num_impurity']=control.get('max_iter_num_impurity', 1) control['max_iter_num_outer']=control.get('max_iter_num_outer', 50) elif (control['method']=='lqsgw+dmft'): control['max_iter_num_impurity']=control.get('max_iter_num_impurity', 50) # directory_name if (control['method']=='lda+dmft'): if ('lattice_directory' not in control): control['lattice_directory']='./lattice' control['lattice_directory']=os.path.abspath(control['lattice_directory']) if (control['method']=='lqsgw+dmft'): if ('coulomb_directory' not in control): control['coulomb_directory']='./coulomb' control['coulomb_directory']=os.path.abspath(control['coulomb_directory']) if (control['method']=='lqsgw+dmft'): control['do_wannier']=True control['do_coulomb']=True control['do_dc']=True control['iter_num_impurity']=1 control['iter_num_outer']=1 elif (control['method']=='lda+dmft'): control['iter_num_outer']=1 control['iter_num_impurity']=0 if (control['restart']): find_place_to_restart(control) if (control['method']=='lqsgw+dmft'): print('do_wannier', control['do_wannier'], file=control['h_log'],flush=True) print('do_coulomb', control['do_coulomb'], file=control['h_log'],flush=True) print('do_dc', control['do_dc'], file=control['h_log'],flush=True) # in wan_hmat check_key_in_string('kgrid', wan_hmat) check_key_in_string('froz_win_min', wan_hmat) check_key_in_string('froz_win_max', wan_hmat) wan_hmat['write_wan']=wan_hmat.get('write_wan', False) wan_hmat['dis_win_min']=wan_hmat.get('dis_win_min', wan_hmat['froz_win_min']) wan_hmat['dis_win_max']=wan_hmat.get('dis_win_max', wan_hmat['froz_win_max']+40.0) control['proj_win_min']=control.get('proj_win_min', wan_hmat['dis_win_min']) control['proj_win_max']=control.get('proj_win_max', wan_hmat['dis_win_max']) wan_hmat['num_iter']=wan_hmat.get('num_iter', 0) wan_hmat['dis_num_iter']=wan_hmat.get('dis_num_iter', 100) wan_hmat['cut_low']=wan_hmat.get('cut_low', 0.4) wan_hmat['cut_froz']=wan_hmat.get('cut_froz', 0.10) wan_hmat['cut_total']=wan_hmat.get('cut_total', 0.0) if (control['method']=='lqsgw+dmft'): wan_hmat['rmode']=wan_hmat.get('rmode', 0) wan_hmat['radfac']=wan_hmat.get('radfac', 1.0) if (control['method']=='lda+dmft'): wan_hmat['rmode']=wan_hmat.get('rmode', 0) wan_hmat['radfac']=wan_hmat.get('radfac', 1.0) # in imp check_key_in_string('temperature', imp) imp['beta']=1.0/(8.6173303*10**-5*imp['temperature']) if ('initial_self_energy' in control): control['n_omega']=np.shape(np.loadtxt(control['initial_self_energy']))[0] else: control['n_omega']=int(300.0/(2*pi/imp['beta'])) control['omega']=(np.arange(control['n_omega'])*2+1)*pi/imp['beta'] for key, value in imp.items(): if (not (isinstance(imp[key], dict))): continue imp[key]['name']=key # imp[key]['para']=True # for ktemp in control['impurity_problem_equivalence'] : # if (ktemp == -1): # imp[key]['para']=False if (-1*int(key) in control['impurity_problem_equivalence']): imp[key]['para']=False else: imp[key]['para']=True imp[key]['problem']=control['impurity_problem'][control['impurity_problem_equivalence'].index(int(key))][1] if (control['method']=='lda+dmft'): check_key_in_string('f0', imp[key]) if ((imp[key]['problem']=='p') | (imp[key]['problem']=='d') | (imp[key]['problem']=='f')): check_key_in_string('f2', imp[key]) if ((imp[key]['problem']=='d') | (imp[key]['problem']=='f')): check_key_in_string('f4', imp[key]) if (imp[key]['problem']=='f'): check_key_in_string('f6', imp[key]) # elif (control['method']=='lqsgw+dmft'): # check_key_in_string('boson_low_truncation', imp[key]) check_key_in_string('thermalization_time', imp[key]) check_key_in_string('measurement_time', imp[key]) check_key_in_string('impurity_matrix', imp[key]) if (control['trans_basis_mode']<2): imp[key]['impurity_matrix']=np.array(imp[key]['impurity_matrix']) else: print("impurity_matrix reset", file=control['h_log'],flush=True) nimp_orb=len(imp[key]['impurity_matrix']) imp[key]['impurity_matrix']=np.zeros((nimp_orb,nimp_orb), dtype='int') for ii in range(nimp_orb): imp[key]['impurity_matrix'][ii,ii]=ii+1 print('here', file=control['h_log'],flush=True) print(type(imp[key]['impurity_matrix']), file=control['h_log'],flush=True) print(imp[key]['impurity_matrix'], file=control['h_log'],flush=True) print('here', file=control['h_log'],flush=True) if (control['method']=='lda+dmft'): check_key_in_string('nominal_n', imp[key]) check_key_in_string('green_cutoff', imp[key]) imp[key]['susceptibility_cutoff']=imp[key].get('susceptibility_cutoff', 50) imp[key]['susceptibility_tail']=imp[key].get('susceptibility_tail', 300) if ('coulomb' not in imp[key]): imp[key]["coulomb"]='full' control['sig_header']=['# omega(eV)'] for ii in sorted(set(control['impurity_problem_equivalence'])): for jj in sorted(set(imp[str(abs(ii))]['impurity_matrix'].flatten().tolist())-{0}): control['sig_header'].append("Re Sig_{"+str(ii)+','+str(jj)+'}(eV)') control['sig_header'].append("Im Sig_{"+str(ii)+','+str(jj)+'}(eV)') # check hdf5 if (os.path.isdir(control['initial_lattice_dir']+"/checkpoint/")): control['hdf5']=False else: control['hdf5']=True print('hdf5', control['hdf5'],file=control['h_log'],flush=True) # print print('top_dir', control['top_dir'], file=control['h_log'],flush=True) if (control['method']=='lda+dmft'): print('lattice_directory', control['lattice_directory'], file=control['h_log'],flush=True) elif (control['method']=='lqsgw+dmft'): print('coulomb_directory', control['coulomb_directory'], file=control['h_log'],flush=True) print('wannier_directory', control['wannier_directory'], file=control['h_log'],flush=True) print('dc_directory', control['dc_directory'], file=control['h_log'],flush=True) print('impurity_directory', control['impurity_directory'], file=control['h_log'],flush=True) print('lowh_directory', control['lowh_directory'], file=control['h_log'],flush=True) return control,wan_hmat,imp def find_impurity_wan(control, wan_hmat): num_wann=np.shape(wan_hmat['basis'])[0] control['impurity_wan']=[] for ip in range(np.shape(control['impurity_problem'])[0]): if (control['spin_orbit']): if (control['impurity_problem'][ip][1].lower()=='f'): control['impurity_wan'].append([0]*14) for iwan in range(num_wann): if ((wan_hmat['basis'][iwan]['atom']==control['impurity_problem'][ip][0]) and (wan_hmat['basis'][iwan]['l']==3)): if (int(wan_hmat['basis'][iwan]['i']*2)==-1): if (int(wan_hmat['basis'][iwan]['m']*2)==-5): control['impurity_wan'][ip][0]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==-3): control['impurity_wan'][ip][1]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==-1): control['impurity_wan'][ip][2]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==1): control['impurity_wan'][ip][3]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==3): control['impurity_wan'][ip][4]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==5): control['impurity_wan'][ip][5]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['i']*2)==1): if (int(wan_hmat['basis'][iwan]['m']*2)==-7): control['impurity_wan'][ip][6]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==-5): control['impurity_wan'][ip][7]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==-3): control['impurity_wan'][ip][8]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==-1): control['impurity_wan'][ip][9]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==1): control['impurity_wan'][ip][10]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==3): control['impurity_wan'][ip][11]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==5): control['impurity_wan'][ip][12]=wan_hmat['basis'][iwan]['ind'] elif (int(wan_hmat['basis'][iwan]['m']*2)==7): control['impurity_wan'][ip][13]=wan_hmat['basis'][iwan]['ind'] if (control['impurity_wan'][ip].count(0) !=0): print('something wrong in find_impurity_wan', file=control['h_log'],flush=True) sys.exit() else: if (control['impurity_problem'][ip][1].lower()=='s'): control['impurity_wan'].append([0]*1) for iwan in range(num_wann): if ((wan_hmat['basis'][iwan]['atom']==control['impurity_problem'][ip][0]) and (wan_hmat['basis'][iwan]['l']==0)): if (wan_hmat['basis'][iwan]['m']==-0): control['impurity_wan'][ip][0]=wan_hmat['basis'][iwan]['ind'] if (control['impurity_wan'][ip].count(0) !=0): print('something wrong in find_impurity_wan', file=control['h_log'],flush=True) sys.exit() elif (control['impurity_problem'][ip][1].lower()=='p'): control['impurity_wan'].append([0]*3) for iwan in range(num_wann): if ((wan_hmat['basis'][iwan]['atom']==control['impurity_problem'][ip][0]) and (wan_hmat['basis'][iwan]['l']==1)): if (wan_hmat['basis'][iwan]['m']==-1): control['impurity_wan'][ip][0]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==-0): control['impurity_wan'][ip][1]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==1): control['impurity_wan'][ip][2]=wan_hmat['basis'][iwan]['ind'] if (control['impurity_wan'][ip].count(0) !=0): print('something wrong in find_impurity_wan', file=control['h_log'],flush=True) sys.exit() elif (control['impurity_problem'][ip][1].lower()=='d'): control['impurity_wan'].append([0]*5) for iwan in range(num_wann): if ((wan_hmat['basis'][iwan]['atom']==control['impurity_problem'][ip][0]) and (wan_hmat['basis'][iwan]['l']==2)): if (wan_hmat['basis'][iwan]['m']==-2): control['impurity_wan'][ip][0]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==-1): control['impurity_wan'][ip][1]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==-0): control['impurity_wan'][ip][2]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==1): control['impurity_wan'][ip][3]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==2): control['impurity_wan'][ip][4]=wan_hmat['basis'][iwan]['ind'] if (control['impurity_wan'][ip].count(0) !=0): print('something wrong in find_impurity_wan', file=control['h_log'],flush=True) sys.exit() elif (control['impurity_problem'][ip][1].lower()=='f'): control['impurity_wan'].append([0]*7) for iwan in range(num_wann): if ((wan_hmat['basis'][iwan]['atom']==control['impurity_problem'][ip][0]) and (wan_hmat['basis'][iwan]['l']==3)): if (wan_hmat['basis'][iwan]['m']==-3): control['impurity_wan'][ip][0]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==-2): control['impurity_wan'][ip][1]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==-1): control['impurity_wan'][ip][2]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==-0): control['impurity_wan'][ip][3]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==1): control['impurity_wan'][ip][4]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==2): control['impurity_wan'][ip][5]=wan_hmat['basis'][iwan]['ind'] elif (wan_hmat['basis'][iwan]['m']==3): control['impurity_wan'][ip][6]=wan_hmat['basis'][iwan]['ind'] if (control['impurity_wan'][ip].count(0) !=0): print('something wrong in find_impurity_wan', file=control['h_log'],flush=True) sys.exit() return None def initial_file_directory_setup(control): directory_setup(control) if (control['method'] == 'lda+dmft'): print('iter_num_impurity', control['iter_num_impurity'], ' max_iter_num_impurity', control['max_iter_num_impurity'], file=control['h_log'],flush=True) print('iter_num_outer', control['iter_num_outer'], ' max_iter_num_outer', control['max_iter_num_outer'], file=control['h_log'],flush=True) elif (control['method'] == 'lqsgw+dmft'): print('iter_num_impurity', control['iter_num_impurity'], file=control['h_log'],flush=True) print('max_iter_num_impurity', control['max_iter_num_impurity'], file=control['h_log'],flush=True) return None def find_place_to_restart(control): if (control['method']=='lqsgw+dmft'): control['conv_table']=read_convergence_table(control) # print(control['conv_table'], file=control['h_log'],flush=True) if (len(control['conv_table'])>0): n_imp_problem=np.amax(control['impurity_problem_equivalence']) last_step=control['conv_table'][-1][0].strip().split('_')[0] last_imp_iter=control['conv_table'][-1][1].strip() if (len(control['conv_table'][-1][0].strip().split('_')) > 1): last_imp=control['conv_table'][-1][0].strip().split('_')[1] print(last_step, last_imp, last_imp_iter, file=control['h_log'],flush=True) else: print(last_step, last_imp_iter, file=control['h_log'],flush=True) if last_step == 'wannier': control['do_wannier']=False control['do_coulomb']=True control['do_dc']=True control['iter_num_impurity']=1 elif last_step == 'coulomb': control['do_wannier']=False control['do_coulomb']=False control['do_dc']=True control['iter_num_impurity']=1 elif last_step == 'dc': if (int(last_imp) == n_imp_problem): control['do_wannier']=False control['do_coulomb']=False control['do_dc']=False control['iter_num_impurity']=1 else: control['do_wannier']=False control['do_coulomb']=False control['do_dc']=True control['iter_num_impurity']=1 for ii in range(int(last_imp)): control['conv_table'].pop(-1) elif (last_step == 'delta'): control['do_wannier']=False control['do_coulomb']=False control['do_dc']=False control['iter_num_impurity']=int(last_imp_iter) control['conv_table'].pop(-1) elif (last_step == 'impurity'): if (int(last_imp) == n_imp_problem): control['do_wannier']=False control['do_coulomb']=False control['do_dc']=False control['iter_num_impurity']=int(last_imp_iter)+1 else: control['do_wannier']=False control['do_coulomb']=False control['do_dc']=True control['iter_num_impurity']=int(last_imp_iter) for ii in range(int(last_imp)): control['conv_table'].pop(-1) else: control['do_wannier']=True control['do_coulomb']=True control['do_dc']=True control['iter_num_impurity']=1 else: control['do_wannier']=True control['do_coulomb']=True control['do_dc']=True control['iter_num_impurity']=1 elif (control['method']=='lda+dmft'): control['conv_table']=read_convergence_table(control) if (len(control['conv_table'])>0): linecnt=0 for ii in range(np.shape(control['conv_table'])[0]): if control['conv_table'][ii][0].strip()=='dft': linecnt=ii control['iter_num_outer']=int(control['conv_table'][ii][1]) for ii in range(linecnt, np.shape(control['conv_table'])[0]): control['conv_table'].pop(-1) return None # def find_iter_num_for_restart(control): # if (control['restart']): # line_count=sum(1 for line in open(control['top_dir']+'/convergence.log')) # if (line_count <=1): # if (control['method']=='lda+dmft'): # iter_num_outer=1 # elif (control['method']=='lqsgw+dmft'): # iter_num_impurity=1 # else: # if (control['method']=='lda+dmft'): # iter_num_outer=1 # ff=open(control['top_dir']+'/convergence.log', 'r') # firstline=ff.readline() # for line in ff: # temp=line.split() # if (temp[0] == 'dft'): # iter_num_outer=int(temp[1]) # ff.close() # elif (control['method']=='lqsgw+dmft'): # iter_num_impurity=1 # ff=open(control['top_dir']+'/convergence.log', 'r') # firstline=ff.readline() # for line in ff: # temp=line.split() # temp1=temp[0] # if (temp1 == 'impurity'): # iter_num_impurity=int(temp[2]) # ff.close() # else: # if (control['method']=='lda+dmft'): # iter_num_outer=1 # elif (control['method']=='lqsgw+dmft'): # iter_num_impurity=1 # if (control['method']=='lda+dmft'): # return iter_num_outer # elif (control['method']=='lqsgw+dmft'): # return iter_num_impurity def initial_lattice_directory_setup(control): os.chdir(control['lattice_directory']) if control['hdf5']: files = glob.iglob(control['initial_lattice_dir']+"/*.rst") for filename in files: shutil.copy(filename, './') else: files = glob.iglob(control['initial_lattice_dir']+"/checkpoint/*.rst") for filename in files: shutil.copy(filename, './checkpoint/') files = glob.iglob(control['initial_lattice_dir']+"/*el_density") for filename in files: shutil.copy(filename, './') if os.path.exists(control['initial_lattice_dir']+'/kpath'): shutil.copy(control['initial_lattice_dir']+'/kpath', './') if os.path.exists(control['initial_lattice_dir']+'/ini'): shutil.copy(control['initial_lattice_dir']+'/ini', './') if os.path.exists(control['initial_lattice_dir']+'/symmetry_operations'): shutil.copy(control['initial_lattice_dir']+'/symmetry_operations', './') if os.path.exists(control['initial_lattice_dir']+'/kpoints'): shutil.copy(control['initial_lattice_dir']+'/symmetry_operations', './') files = glob.iglob(control['initial_lattice_dir']+"/*.cif") for filename in files: shutil.copy(filename, './') iter_string='_'+str(control['iter_num_outer']) shutil.copy(control['initial_lattice_dir']+'/'+control['allfile']+'.out', control['allfile']+iter_string+'.out') print("initial dft directory setup done", file=control['h_log'],flush=True) os.chdir(control['top_dir']) return None def create_comwann_ini(control, wan_hmat): f=open('comwann.ini','w') if (control['method']=='lda+dmft'): f.write(control['lattice_directory']+'\n') f.write('dft\n') elif (control['method']=='lqsgw+dmft'): f.write(control['initial_lattice_dir']+'\n') f.write('qp\n') elif (control['method']=='dft'): f.write('../\n') f.write('dft\n') elif (control['method']=='lqsgw'): f.write('../\n') f.write('qp\n') f.write(str(wan_hmat['dis_win_max'])+'\n') f.write(str(wan_hmat['dis_win_min'])+'\n') f.write(str(wan_hmat['froz_win_max'])+'\n') f.write(str(wan_hmat['froz_win_min'])+'\n') f.write(str(wan_hmat['num_iter'])+'\n') f.write(str(wan_hmat['dis_num_iter'])+'\n') if (wan_hmat['write_wan']): f.write('1\n') else: f.write('0\n') f.write(str(wan_hmat['cut_low'])+'\n') f.write(str(wan_hmat['cut_froz'])+'\n') f.write(str(wan_hmat['cut_total'])+'\n') f.write(str(wan_hmat['rmode'])+'\n') f.write(str(wan_hmat['radfac'])+'\n') f.close() def create_comcoulomb_ini(control): f=open('comcoulomb.ini','w') f.write(control['initial_lattice_dir']+'\n') f.write(control['wannier_directory']+'\n') f.write(str(control['nproc_tau_coulomb'])+'\n') f.write(str(control['nproc_k_coulomb'])+'\n') f.write(str(control['proj_win_min'])+'\n') f.write(str(control['proj_win_max'])+'\n') f.write('F\n') f.write(control['u_mode']+'\n') nimp_orb=0 natom=len(control['impurity_wan']) for ii in range(natom): nimp_orb=nimp_orb+len(control['impurity_wan'][ii]) f.write(str(nimp_orb)+'\n') for iatom in range(natom): f.write(' '.join(map(str,control['impurity_wan'][iatom]))+' ') f.write('\n') f.write('1\n') f.write('F\n') f.write('3.0\n') f.write('F\n') f.close() # def create_wannier_inip(wan_hmat): # # in the wannier directory # g=open('wannier.inip', 'w') # num_wann=np.shape(wan_hmat['basis'])[0] # g.write(str(num_wann)+'\n') # for ii in range(num_wann): # if (control['spin_orbit']==False): # tempstr=[wan_hmat['basis'][ii]['atom'], wan_hmat['basis'][ii]['l'], wan_hmat['basis'][ii]['m'], wan_hmat['basis'][ii]['xaxis'][0], wan_hmat['basis'][ii]['xaxis'][1], wan_hmat['basis'][ii]['xaxis'][2], wan_hmat['basis'][ii]['zaxis'][0], wan_hmat['basis'][ii]['zaxis'][1], wan_hmat['basis'][ii]['zaxis'][2]] # else: # tempstr=[wan_hmat['basis'][ii]['atom'], wan_hmat['basis'][ii]['l'], wan_hmat['basis'][ii]['i'], wan_hmat['basis'][ii]['m'], wan_hmat['basis'][ii]['xaxis'][0], wan_hmat['basis'][ii]['xaxis'][1], wan_hmat['basis'][ii]['xaxis'][2], wan_hmat['basis'][ii]['zaxis'][0], wan_hmat['basis'][ii]['zaxis'][1], wan_hmat['basis'][ii]['zaxis'][2]] # g.write(' '.join(map(str, tempstr))+'\n') # g.close() # return None def read_wan_hmat_basis(control): # in the wannier directory inip=np.loadtxt(control['wannier_directory']+'/wannier.inip') basis_info=[] if (control['spin_orbit']): for ii in range(np.shape(inip)[0]): basis_info.append({'atom':int(inip[ii,0]), 'l':int(inip[ii,1]), 'i':inip[ii,2],'m':inip[ii,3],'xaxis':inip[ii,4:7],'zaxis':inip[ii,7:10], 'ind':ii+1}) else: for ii in range(np.shape(inip)[0]): basis_info.append({'atom':int(inip[ii,0]), 'l':int(inip[ii,1]), 'm':int(inip[ii,2]),'xaxis':inip[ii,3:6],'zaxis':inip[ii,6:9], 'ind':ii+1}) print(basis_info, file=control['h_log'],flush=True) print('reading wannier.inip to get basis information', file=control['h_log'],flush=True) return basis_info def check_key_in_string(key,dictionary): if (key not in dictionary): print('missing \''+key+'\' in '+dictionary['name'],flush=True) sys.exit() return None def overwrite_key_in_string(key,dictionary,dictionaryname,value,h_log): if (key in dictionary): print('\''+key+'\' in '+dictionaryname+' is overwritten', file=control['h_log'],flush=True) return value # def dft_rst_file_check(): # check_for_files('*acc_core_dft.rst', h_log) # check_for_files('*chemical_potential_dft.rst', h_log) # check_for_files('*cor_norm_dft.rst', h_log) # check_for_files('*dfi_dft.rst', h_log) # check_for_files('*dfidot2_dft.rst', h_log) # check_for_files('*dfidot_dft.rst', h_log) # check_for_files('*e_bnd_dft.rst', h_log) # check_for_files('*e_core_dft.rst', h_log) # check_for_files('*el_density_dft.rst', h_log) # check_for_files('*eny_dft.rst', h_log) # check_for_files('*etot_dft.rst', h_log) # check_for_files('*ev_bnd_*_dft.rst', h_log) # check_for_files('*ffsmt_dft.rst', h_log) # check_for_files('*fi_dft.rst', h_log) # check_for_files('*fidot2_dft.rst', h_log) # check_for_files('*fidot_dft.rst', h_log) # check_for_files('*g_full_00_*_dft.rst', h_log) # check_for_files('*g_loc_0_dft.rst', h_log) # check_for_files('*gfun_dft.rst', h_log) # check_for_files('*gfun_old_dft.rst', h_log) # check_for_files('*gfund_dft.rst', h_log) # check_for_files('*gfund_old_dft.rst', h_log) # check_for_files('*n_bnd_dft.rst', h_log) # check_for_files('*p_f_dft.rst', h_log) # check_for_files('*pcor_dft.rst', h_log) # check_for_files('*pcor_old_dft.rst', h_log) # check_for_files('*pd2_f_dft.rst', h_log) # check_for_files('*pd_f_dft.rst', h_log) # check_for_files('*ptnl_dft.rst', h_log) # check_for_files('*q_f_dft.rst', h_log) # check_for_files('*qcor_dft.rst', h_log) # check_for_files('*qcor_old_dft.rst', h_log) # check_for_files('*qd2_f_dft.rst', h_log) # check_for_files('*qd_f_dft.rst', h_log) # check_for_files('*restart_ubi.rst', h_log) # check_for_files('*ro_core_dft.rst', h_log) # check_for_files('*v_intr_h_dft.rst', h_log) # check_for_files('*v_intr_xc_dft.rst', h_log) # check_for_files('*v_mt_h_dft.rst', h_log) # check_for_files('*v_mt_xc_dft.rst', h_log) # check_for_files('*z_bnd_*_dft.rst', h_log) # return None # def string_addwhitespace(string, stringsize): # stringout=string # if stringsize > len(string): # stringout=string+' '*(stringsize-len(string)) # return stringout def find_all_in_string(str, ch): for i, ltr in enumerate(str): if ltr == ch: yield i def read_convergence_table(control): if os.path.exists(control['top_dir']+'/convergence.log'): with open(control['top_dir']+'/convergence.log', 'r') as logfile: tmp=logfile.readlines() nstep=len(tmp)-2 if (nstep>0): endind=list(find_all_in_string(tmp[1],' '))[::2]+[len(tmp[1])-1] startind=[0]+(np.array(list(find_all_in_string(tmp[1],' '))[1::2])+1).tolist() ncolumn=len(endind) f=open('./convergence.log', 'r') f.readline() f.readline() convergence_table=[] for lines in f: eachline=[] for ii in range(ncolumn): eachline.append(lines.rstrip()[startind[ii]:endind[ii]]) if (len(eachline[0])>0): convergence_table.append(eachline) f.close() else: convergence_table=[] else: convergence_table=[] return convergence_table def generate_initial_self_energy(control,imp): os.chdir(control['impurity_directory']) if ('initial_self_energy' in control): shutil.copy(control['initial_self_energy'], './sig.dat') if ('initial_impurity_dir' in control): initial_impurity_dirname=os.path.abspath(os.path.dirname(control['initial_impurity_dir'])) directories = glob.glob(initial_impurity_dirname+"/*/") for directory_name in directories: dest_dir=directory_name.split('/')[-2] files = glob.iglob(os.path.abspath(directory_name)+"/config*") for filename in files: shutil.copy(filename, control['impurity_directory']+'/'+dest_dir) else: dc=np.loadtxt(control['dc_directory']+'/dc.dat') beta=imp['beta'] n_omega=control['n_omega'] omega=control['omega'] cnt=0 dclist=[] for ii in sorted(set(control['impurity_problem_equivalence'])): for jj in sorted(set(imp[str(abs(ii))]['impurity_matrix'].flatten().tolist())-{0}): if (imp[str(abs(ii))]['para']): dclist=dclist+list(dc[(2*cnt):(2*cnt+2)]) else: dclist=dclist+list(dc[(2*cnt):(2*cnt+2)]-np.array([0.001*np.sign(ii), 0.0])) cnt=cnt+1 sig_table=[] for jj in range(control['n_omega']): sig_omega=[control['omega'][jj]]+dclist sig_table.append(sig_omega) with open('./sig.dat', 'w') as outputfile: outputfile.write(tabulate(sig_table, headers=control['sig_header'], floatfmt=".12f", numalign="right", tablefmt="plain")) if (control['method']=='lqsgw+dmft'): iter_string='_0' elif (control['method']=='lda+dmft'): iter_string='_'+str(control['iter_num_outer'])+'_0' labeling_file('./sig.dat', iter_string) print('initial_self_energy generation done', file=control['h_log'],flush=True) os.chdir(control['top_dir']) return None def prepare_initial_ef(control): os.chdir(control['lowh_directory']) f=open('ef.dat','w') f.write('0.0\n') f.close() os.chdir(control['top_dir']) return None def delta_postprocessing(control,imp): write_transformation_matrix(control,control['lowh_directory']+'/local_spectral_matrix_ef.dat') cal_projected_mean_field_diagonal(control,imp) cal_dc_diagonal(control) cal_zinv_m1_diagonal(control) cal_e_imp_diagonal(control) delta_causality=cal_hyb_diagonal(control,imp) if (delta_causality ==0): print('delta causality broken', file=control['h_log'],flush=True) sys.exit() return delta_causality def cal_dc_diagonal(control): os.chdir(control['dc_directory']) dc_mat=read_impurity_mat_static(control,control['dc_directory']+'/dc_mat.dat') h=open('./dc.dat', 'w') for ii in sorted(set(control['impurity_problem_equivalence'])): dc_vec=imp_from_mat_to_array(dc_mat[str(ii)],imp[str(abs(ii))]['impurity_matrix']) for jj in range(len(dc_vec)): h.write(str(np.real(dc_vec[jj]))+' '+str(np.imag(dc_vec[jj]))+' ') h.close() if (control['method']=='lqsgw+dmft'): iter_string='_'+str(control['iter_num_impurity']) elif (control['method']=='lda+dmft'): iter_string='_'+str(control['iter_num_outer'])+'_'+str(control['iter_num_impurity']) labeling_file('./dc.dat', iter_string) print('dc.dat generation done', file=control['h_log'],flush=True) os.chdir(control['top_dir']) return None # def cal_dc_diagonal_new(control): # os.chdir(control['dc_directory']) # dc_mat=read_impurity_mat_static(control,control['dc_directory']+'/dc_mat.dat') # h=open('./dc.dat', 'w') # for ii in sorted(set(control['impurity_problem_equivalence'])): # dc_vec=imp_from_mat_to_array(dc_mat[str(ii)],imp[str(abs(ii))]['impurity_matrix']) # for jj in range(len(dc_vec)): # h.write(str(np.real(dc_vec[jj]))+' '+str(np.imag(dc_vec[jj]))+' ') # h.close() # if (control['method']=='lqsgw+dmft'): # iter_string='_'+str(control['iter_num_impurity']) # elif (control['method']=='lda+dmft'): # iter_string='_'+str(control['iter_num_outer'])+'_'+str(control['iter_num_impurity']) # labeling_file('./dc.dat', iter_string) # print('dc.dat generation done', file=control['h_log'],flush=True) # os.chdir(control['top_dir']) # return None def cal_zinv_m1_diagonal(control): os.chdir(control['dc_directory']) if os.path.isfile(control['dc_directory']+'/zinv_m1_mat.dat'): zinv_m1_mat=read_impurity_mat_static(control,control['dc_directory']+'/zinv_m1_mat.dat') h=open('./zinv_m1.dat', 'w') for ii in sorted(set(control['impurity_problem_equivalence'])): zinv_m1_vec=imp_from_mat_to_array(zinv_m1_mat[str(ii)],imp[str(abs(ii))]['impurity_matrix']) for jj in range(len(zinv_m1_vec)): h.write(str(np.real(zinv_m1_vec[jj]))+' '+str(np.imag(zinv_m1_vec[jj]))+' ') h.close() if (control['method']=='lqsgw+dmft'): iter_string='_'+str(control['iter_num_impurity']) elif (control['method']=='lda+dmft'): iter_string='_'+str(control['iter_num_outer'])+'_'+str(control['iter_num_impurity']) labeling_file('./zinv_m1.dat', iter_string) print('zinv_m1.dat generation done', file=control['h_log'],flush=True) os.chdir(control['top_dir']) return None def vec_from_mat_dynamic(mat,trans): vec=np.zeros(np.shape(mat, 0), np.shape(mat, 1)) for ii in range(np.shape(mat, 0)): vec[ii,:]=np.diag(dot(np.transpose(np.conj(trans)), np.dot(mat[ii,:,:], trans))) return vec def prepare_impurity_solver(control,wan_hmat,imp): # cal_trans_from_patrick(control, imp) delta=array_impurity_dynamic(control,imp,control['lowh_directory']+'/delta.dat') write_json_all(control,imp,delta,'hyb.json') e_imp=generate_mat_from_array_impurity_static(control,imp,control['lowh_directory']+'/e_imp.dat') trans_basis=read_impurity_mat_static(control,control['lowh_directory']+'/trans_basis.dat') for key, value in imp.items(): if (not (isinstance(imp[key], dict))): continue nimp_orb=len(imp[key]['impurity_matrix']) os.chdir(control['impurity_directory']+'/'+key) if (control['spin_orbit']): ndim=nimp_orb e_imp_key=np.zeros((ndim, ndim)) trans_key=np.zeros((ndim, ndim)) # equivalence_key=np.zeros((ndim,ndim),dtype='int') e_imp_key=np.real(e_imp[key]) trans_key=np.real(trans_basis[key]) # equivalence_key=array([[(lambda ii: str(ii) if str(ii)!='0' else '')(ii) for ii in row] for row in imp[key]['impurity_matrix']]) equivalence_key=list(map(lambda row: list(map(lambda x: str(x) if x!='0' else '', list(map(str, row)))), imp[key]['impurity_matrix'])) else: ndim=nimp_orb*2 e_imp_key=np.zeros((ndim, ndim)) trans_key=np.zeros((ndim, ndim)) equivalence_key_int_mat=np.array(imp[key]['impurity_matrix']) equivalence_key_int_mat_all=
np.zeros((ndim, ndim),dtype='int')
numpy.zeros